Mimetic finite difference method
Lipnikov, Konstantin; Manzini, Gianmarco; Shashkov, Mikhail
2014-01-01
The mimetic finite difference (MFD) method mimics fundamental properties of mathematical and physical systems including conservation laws, symmetry and positivity of solutions, duality and self-adjointness of differential operators, and exact mathematical identities of the vector and tensor calculus. This article is the first comprehensive review of the 50-year long history of the mimetic methodology and describes in a systematic way the major mimetic ideas and their relevance to academic and real-life problems. The supporting applications include diffusion, electromagnetics, fluid flow, and Lagrangian hydrodynamics problems. The article provides enough details to build various discrete operators on unstructured polygonal and polyhedral meshes and summarizes the major convergence results for the mimetic approximations. Most of these theoretical results, which are presented here as lemmas, propositions and theorems, are either original or an extension of existing results to a more general formulation using polyhedral meshes. Finally, flexibility and extensibility of the mimetic methodology are shown by deriving higher-order approximations, enforcing discrete maximum principles for diffusion problems, and ensuring the numerical stability for saddle-point systems.
Finite element and finite difference methods in electromagnetic scattering
Morgan, MA
2013-01-01
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca
Group foliation of finite difference equations
Thompson, Robert; Valiquette, Francis
2018-06-01
Using the theory of equivariant moving frames, a group foliation method for invariant finite difference equations is developed. This method is analogous to the group foliation of differential equations and uses the symmetry group of the equation to decompose the solution process into two steps, called resolving and reconstruction. Our constructions are performed algorithmically and symbolically by making use of discrete recurrence relations among joint invariants. Applications to invariant finite difference equations that approximate differential equations are given.
Implicit and fully implicit exponential finite difference methods
Indian Academy of Sciences (India)
Burgers' equation; exponential finite difference method; implicit exponential finite difference method; ... This paper describes two new techniques which give improved exponential finite difference solutions of Burgers' equation. ... Current Issue
Electron-phonon coupling from finite differences
Monserrat, Bartomeu
2018-02-01
The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.
Hybrid finite difference/finite element immersed boundary method.
E Griffith, Boyce; Luo, Xiaoyu
2017-12-01
The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International Journal for Numerical Methods in Biomedical Engineering Published by John Wiley & Sons Ltd.
Finite difference order doubling in two dimensions
International Nuclear Information System (INIS)
Killingbeck, John P; Jolicard, Georges
2008-01-01
An order doubling process previously used to obtain eighth-order eigenvalues from the fourth-order Numerov method is applied to the perturbed oscillator in two dimensions. A simple method of obtaining high order finite difference operators is reported and an odd parity boundary condition is found to be effective in facilitating the smooth operation of the order doubling process
Elementary introduction to finite difference equations
International Nuclear Information System (INIS)
White, J.W.
1976-01-01
An elementary description is given of the basic vocabulary and concepts associated with finite difference modeling. The material discussed is biased toward the types of large computer programs used at the Lawrence Livermore Laboratory. Particular attention is focused on truncation error and how it can be affected by zoning patterns. The principle of convergence is discussed, and convergence as a tool for improving calculational accuracy and efficiency is emphasized
Integral and finite difference inequalities and applications
Pachpatte, B G
2006-01-01
The monograph is written with a view to provide basic tools for researchers working in Mathematical Analysis and Applications, concentrating on differential, integral and finite difference equations. It contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools and will be a valuable source for a long time to come. It is self-contained and thus should be useful for those who are interested in learning or applying the inequalities with explicit estimates in their studies.- Contains a variety of inequalities discovered which find numero
Energy Technology Data Exchange (ETDEWEB)
Kim, S. [Purdue Univ., West Lafayette, IN (United States)
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Abstract Level Parallelization of Finite Difference Methods
Directory of Open Access Journals (Sweden)
Edwin Vollebregt
1997-01-01
Full Text Available A formalism is proposed for describing finite difference calculations in an abstract way. The formalism consists of index sets and stencils, for characterizing the structure of sets of data items and interactions between data items (“neighbouring relations”. The formalism provides a means for lifting programming to a more abstract level. This simplifies the tasks of performance analysis and verification of correctness, and opens the way for automaticcode generation. The notation is particularly useful in parallelization, for the systematic construction of parallel programs in a process/channel programming paradigm (e.g., message passing. This is important because message passing, unfortunately, still is the only approach that leads to acceptable performance for many more unstructured or irregular problems on parallel computers that have non-uniform memory access times. It will be shown that the use of index sets and stencils greatly simplifies the determination of which data must be exchanged between different computing processes.
Finite difference computation of Casimir forces
International Nuclear Information System (INIS)
Pinto, Fabrizio
2016-01-01
In this Invited paper, we begin by a historical introduction to provide a motivation for the classical problems of interatomic force computation and associated challenges. This analysis will lead us from early theoretical and experimental accomplishments to the integration of these fascinating interactions into the operation of realistic, next-generation micro- and nanodevices both for the advanced metrology of fundamental physical processes and in breakthrough industrial applications. Among several powerful strategies enabling vastly enhanced performance and entirely novel technological capabilities, we shall specifically consider Casimir force time-modulation and the adoption of non-trivial geometries. As to the former, the ability to alter the magnitude and sign of the Casimir force will be recognized as a crucial principle to implement thermodynamical nano-engines. As to the latter, we shall first briefly review various reported computational approaches. We shall then discuss the game-changing discovery, in the last decade, that standard methods of numerical classical electromagnetism can be retooled to formulate the problem of Casimir force computation in arbitrary geometries. This remarkable development will be practically illustrated by showing that such an apparently elementary method as standard finite-differencing can be successfully employed to numerically recover results known from the Lifshitz theory of dispersion forces in the case of interacting parallel-plane slabs. Other geometries will be also be explored and consideration given to the potential of non-standard finite-difference methods. Finally, we shall introduce problems at the computational frontier, such as those including membranes deformed by Casimir forces and the effects of anisotropic materials. Conclusions will highlight the dramatic transition from the enduring perception of this field as an exotic application of quantum electrodynamics to the recent demonstration of a human climbing
Determination of finite-difference weights using scaled binomial windows
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
The finite-difference method evaluates a derivative through a weighted summation of function values from neighboring grid nodes. Conventional finite-difference weights can be calculated either from Taylor series expansions or by Lagrange interpolation polynomials. The finite-difference method can be interpreted as a truncated convolutional counterpart of the pseudospectral method in the space domain. For this reason, we also can derive finite-difference operators by truncating the convolution series of the pseudospectral method. Various truncation windows can be employed for this purpose and they result in finite-difference operators with different dispersion properties. We found that there exists two families of scaled binomial windows that can be used to derive conventional finite-difference operators analytically. With a minor change, these scaled binomial windows can also be used to derive optimized finite-difference operators with enhanced dispersion properties. © 2012 Society of Exploration Geophysicists.
Determination of finite-difference weights using scaled binomial windows
Chu, Chunlei
2012-05-01
The finite-difference method evaluates a derivative through a weighted summation of function values from neighboring grid nodes. Conventional finite-difference weights can be calculated either from Taylor series expansions or by Lagrange interpolation polynomials. The finite-difference method can be interpreted as a truncated convolutional counterpart of the pseudospectral method in the space domain. For this reason, we also can derive finite-difference operators by truncating the convolution series of the pseudospectral method. Various truncation windows can be employed for this purpose and they result in finite-difference operators with different dispersion properties. We found that there exists two families of scaled binomial windows that can be used to derive conventional finite-difference operators analytically. With a minor change, these scaled binomial windows can also be used to derive optimized finite-difference operators with enhanced dispersion properties. © 2012 Society of Exploration Geophysicists.
High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains
Fisher, Travis C.; Carpenter, Mark H.
2013-01-01
Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.
Finite Mathematics and Discrete Mathematics: Is There a Difference?
Johnson, Marvin L.
Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…
Iterative solutions of finite difference diffusion equations
International Nuclear Information System (INIS)
Menon, S.V.G.; Khandekar, D.C.; Trasi, M.S.
1981-01-01
The heterogeneous arrangement of materials and the three-dimensional character of the reactor physics problems encountered in the design and operation of nuclear reactors makes it necessary to use numerical methods for solution of the neutron diffusion equations which are based on the linear Boltzmann equation. The commonly used numerical method for this purpose is the finite difference method. It converts the diffusion equations to a system of algebraic equations. In practice, the size of this resulting algebraic system is so large that the iterative methods have to be used. Most frequently used iterative methods are discussed. They include : (1) basic iterative methods for one-group problems, (2) iterative methods for eigenvalue problems, and (3) iterative methods which use variable acceleration parameters. Application of Chebyshev theorem to iterative methods is discussed. The extension of the above iterative methods to multigroup neutron diffusion equations is also considered. These methods are applicable to elliptic boundary value problems in reactor design studies in particular, and to elliptic partial differential equations in general. Solution of sample problems is included to illustrate their applications. The subject matter is presented in as simple a manner as possible. However, a working knowledge of matrix theory is presupposed. (M.G.B.)
The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion
International Nuclear Information System (INIS)
Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.
2006-01-01
Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)
Finite difference time domain analysis of a chiro plasma
International Nuclear Information System (INIS)
Torres-Silva, H.; Obligado, A.; Reggiani, N.; Sakanaka, P.H.
1995-01-01
The finite difference time-domain (FDTD) method is one of the most widely used computational methods in electromagnetics. Using FDTD, Maxwell's equations are solved directly in the time domain via finite differences and time stepping. The basic approach is relatively easy to understand and is an alternative to the more usual frequency-domain approaches. (author). 5 refs
Exact Finite Differences. The Derivative on Non Uniformly Spaced Partitions
Directory of Open Access Journals (Sweden)
Armando Martínez-Pérez
2017-10-01
Full Text Available We define a finite-differences derivative operation, on a non uniformly spaced partition, which has the exponential function as an exact eigenvector. We discuss some properties of this operator and we propose a definition for the components of a finite-differences momentum operator. This allows us to perform exact discrete calculations.
Finite element analysis of thermal stress distribution in different ...
African Journals Online (AJOL)
Nigerian Journal of Clinical Practice • Jan-Feb 2016 • Vol 19 • Issue 1. Abstract ... Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ... applications for force analysis and assessment of different.
Comparison of different precondtioners for nonsymmtric finite volume element methods
Energy Technology Data Exchange (ETDEWEB)
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
Evaluation of Callable Bonds: Finite Difference Methods, Stability and Accuracy.
Buttler, Hans-Jurg
1995-01-01
The purpose of this paper is to evaluate numerically the semi-American callable bond by means of finite difference methods. This study implies three results. First, the numerical error is greater for the callable bond price than for the straight bond price, and too large for real applications Secondly, the numerical accuracy of the callable bond price computed for the relevant range of interest rates depends entirely on the finite difference scheme which is chosen for the boundary points. Thi...
Implicit finite-difference simulations of seismic wave propagation
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.
Implicit finite-difference simulations of seismic wave propagation
Chu, Chunlei
2012-03-01
We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.
Finite difference techniques for nonlinear hyperbolic conservation laws
International Nuclear Information System (INIS)
Sanders, R.
1985-01-01
The present study is concerned with numerical approximations to the initial value problem for nonlinear systems of conservative laws. Attention is given to the development of a class of conservation form finite difference schemes which are based on the finite volume method (i.e., the method of averages). These schemes do not fit into the classical framework of conservation form schemes discussed by Lax and Wendroff (1960). The finite volume schemes are specifically intended to approximate solutions of multidimensional problems in the absence of rectangular geometries. In addition, the development is reported of different schemes which utilize the finite volume approach for time discretization. Particular attention is given to local time discretization and moving spatial grids. 17 references
Finite-difference schemes for anisotropic diffusion
Energy Technology Data Exchange (ETDEWEB)
Es, Bram van, E-mail: es@cwi.nl [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)
2014-09-01
In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.
An implicit finite-difference operator for the Helmholtz equation
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.
An implicit finite-difference operator for the Helmholtz equation
Chu, Chunlei
2012-07-01
We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.
On the spectral properties of random finite difference operators
International Nuclear Information System (INIS)
Kunz, H.; Souillard, B.
1980-01-01
We study a class of random finite difference operators, a typical example of which is the finite difference Schroedinger operator with a random potential which arises in solid state physics in the tight binding approximation. We obtain with probability one, in various situations, the exact location of the spectrum, and criterions for a given part in the spectrum to be pure point or purely continuous, or for the static electric conductivity to vanish. A general formalism is developped which transforms the study of these random operators into that of the asymptotics of a multiple integral constructed from a given recipe. Finally we apply our criterions and formalism to prove that, with probability one, the one-dimensional finite difference Schroedinger operator with a random potential has pure point spectrum and developps no static conductivity. (orig.)
Nonstandard Finite Difference Method Applied to a Linear Pharmacokinetics Model
Directory of Open Access Journals (Sweden)
Oluwaseun Egbelowo
2017-05-01
Full Text Available We extend the nonstandard finite difference method of solution to the study of pharmacokinetic–pharmacodynamic models. Pharmacokinetic (PK models are commonly used to predict drug concentrations that drive controlled intravenous (I.V. transfers (or infusion and oral transfers while pharmacokinetic and pharmacodynamic (PD interaction models are used to provide predictions of drug concentrations affecting the response of these clinical drugs. We structure a nonstandard finite difference (NSFD scheme for the relevant system of equations which models this pharamcokinetic process. We compare the results obtained to standard methods. The scheme is dynamically consistent and reliable in replicating complex dynamic properties of the relevant continuous models for varying step sizes. This study provides assistance in understanding the long-term behavior of the drug in the system, and validation of the efficiency of the nonstandard finite difference scheme as the method of choice.
Finite difference computing with PDEs a modern software approach
Langtangen, Hans Petter
2017-01-01
This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.
Different radiation impedance models for finite porous materials
DEFF Research Database (Denmark)
Nolan, Melanie; Jeong, Cheol-Ho; Brunskog, Jonas
2015-01-01
The Sabine absorption coefficients of finite absorbers are measured in a reverberation chamber according to the international standard ISO 354. They vary with the specimen size essentially due to diffraction at the specimen edges, which can be seen as the radiation impedance differing from...... the infinite case. Thus, in order to predict the Sabine absorption coefficients of finite porous samples, one can incorporate models of the radiation impedance. In this study, different radiation impedance models are compared with two experimental examples. Thomasson’s model is compared to Rhazi’s method when...
International Nuclear Information System (INIS)
Ackroyd, R.T.
1987-01-01
A least squares principle is described which uses a penalty function treatment of boundary and interface conditions. Appropriate choices of the trial functions and vectors employed in a dual representation of an approximate solution established complementary principles for the diffusion equation. A geometrical interpretation of the principles provides weighted residual methods for diffusion theory, thus establishing a unification of least squares, variational and weighted residual methods. The complementary principles are used with either a trial function for the flux or a trial vector for the current to establish for regular meshes a connection between finite element, finite difference and nodal methods, which can be exact if the mesh pitches are chosen appropriately. Whereas the coefficients in the usual nodal equations have to be determined iteratively, those derived via the complementary principles are given explicitly in terms of the data. For the further development of the connection between finite element, finite difference and nodal methods, some hybrid variational methods are described which employ both a trial function and a trial vector. (author)
High-order finite-difference methods for Poisson's equation
van Linde, Hendrik Jan
1971-01-01
In this thesis finite-difference approximations to the three boundary value problems for Poisson’s equation are given, with discretization errors of O(H^3) for the mixed boundary value problem, O(H^3 |ln(h)| for the Neumann problem and O(H^4)for the Dirichlet problem respectively . First an operator
Chebyshev Finite Difference Method for Fractional Boundary Value Problems
Directory of Open Access Journals (Sweden)
Boundary
2015-09-01
Full Text Available This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivatives are described in the Caputo sense. Numerical results show that this method is of high accuracy and is more convenient and efficient for solving boundary value problems involving fractional ordinary differential equations. AMS Subject Classification: 34A08 Keywords and Phrases: Chebyshev polynomials, Gauss-Lobatto points, fractional differential equation, finite difference 1. Introduction The idea of a derivative which interpolates between the familiar integer order derivatives was introduced many years ago and has gained increasing importance only in recent years due to the development of mathematical models of a certain situations in engineering, materials science, control theory, polymer modelling etc. For example see [20, 22, 25, 26]. Most fractional order differential equations describing real life situations, in general do not have exact analytical solutions. Several numerical and approximate analytical methods for ordinary differential equation Received: December 2014; Accepted: March 2015 57 Journal of Mathematical Extension Vol. 9, No. 3, (2015, 57-71 ISSN: 1735-8299 URL: http://www.ijmex.com Chebyshev Finite Difference Method for Fractional Boundary Value Problems H. Azizi Taft Branch, Islamic Azad University Abstract. This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivative
Finite difference time domain modelling of particle accelerators
International Nuclear Information System (INIS)
Jurgens, T.G.; Harfoush, F.A.
1989-03-01
Finite Difference Time Domain (FDTD) modelling has been successfully applied to a wide variety of electromagnetic scattering and interaction problems for many years. Here the method is extended to incorporate the modelling of wake fields in particle accelerators. Algorithmic comparisons are made to existing wake field codes, such as MAFIA T3. 9 refs., 7 figs
Finite Difference Schemes as Algebraic Correspondences between Layers
Malykh, Mikhail; Sevastianov, Leonid
2018-02-01
For some differential equations, especially for Riccati equation, new finite difference schemes are suggested. These schemes define protective correspondences between the layers. Calculation using these schemes can be extended to the area beyond movable singularities of exact solution without any error accumulation.
A finite difference method for free boundary problems
Fornberg, Bengt
2010-01-01
Fornberg and Meyer-Spasche proposed some time ago a simple strategy to correct finite difference schemes in the presence of a free boundary that cuts across a Cartesian grid. We show here how this procedure can be combined with a minimax
The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion
International Nuclear Information System (INIS)
Moczo, P.; Kristek, J.; Pazak, P.; Balazovjech, M.; Moczo, P.; Kristek, J.; Galis, M.
2007-01-01
Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite difference (FD), finite-element (FE), and hybrid FD-FE methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. We present alternative formulations of equation of motion for a smooth elastic continuum. We then develop alternative formulations for a canonical problem with a welded material interface and free surface. We continue with a model of an earthquake source. We complete the general theoretical introduction by a chapter on the constitutive laws for elastic and viscoelastic media, and brief review of strong formulations of the equation of motion. What follows is a block of chapters on the finite-difference and finite-element methods. We develop FD targets for the free surface and welded material interface. We then present various FD schemes for a smooth continuum, free surface, and welded interface. We focus on the staggered-grid and mainly optimally-accurate FD schemes. We also present alternative formulations of the FE method. We include the FD and FE implementations of the traction-at-split-nodes method for simulation of dynamic rupture propagation. The FD modeling is applied to the model of the deep sedimentary Grenoble basin, France. The FD and FE methods are combined in the hybrid FD-FE method. The hybrid
The Laguerre finite difference one-way equation solver
Terekhov, Andrew V.
2017-05-01
This paper presents a new finite difference algorithm for solving the 2D one-way wave equation with a preliminary approximation of a pseudo-differential operator by a system of partial differential equations. As opposed to the existing approaches, the integral Laguerre transform instead of Fourier transform is used. After carrying out the approximation of spatial variables it is possible to obtain systems of linear algebraic equations with better computing properties and to reduce computer costs for their solution. High accuracy of calculations is attained at the expense of employing finite difference approximations of higher accuracy order that are based on the dispersion-relationship-preserving method and the Richardson extrapolation in the downward continuation direction. The numerical experiments have verified that as compared to the spectral difference method based on Fourier transform, the new algorithm allows one to calculate wave fields with a higher degree of accuracy and a lower level of numerical noise and artifacts including those for non-smooth velocity models. In the context of solving the geophysical problem the post-stack migration for velocity models of the types Syncline and Sigsbee2A has been carried out. It is shown that the images obtained contain lesser noise and are considerably better focused as compared to those obtained by the known Fourier Finite Difference and Phase-Shift Plus Interpolation methods. There is an opinion that purely finite difference approaches do not allow carrying out the seismic migration procedure with sufficient accuracy, however the results obtained disprove this statement. For the supercomputer implementation it is proposed to use the parallel dichotomy algorithm when solving systems of linear algebraic equations with block-tridiagonal matrices.
The mimetic finite difference method for elliptic problems
Veiga, Lourenço Beirão; Manzini, Gianmarco
2014-01-01
This book describes the theoretical and computational aspects of the mimetic finite difference method for a wide class of multidimensional elliptic problems, which includes diffusion, advection-diffusion, Stokes, elasticity, magnetostatics and plate bending problems. The modern mimetic discretization technology developed in part by the Authors allows one to solve these equations on unstructured polygonal, polyhedral and generalized polyhedral meshes. The book provides a practical guide for those scientists and engineers that are interested in the computational properties of the mimetic finite difference method such as the accuracy, stability, robustness, and efficiency. Many examples are provided to help the reader to understand and implement this method. This monograph also provides the essential background material and describes basic mathematical tools required to develop further the mimetic discretization technology and to extend it to various applications.
Integral equations with difference kernels on finite intervals
Sakhnovich, Lev A
2015-01-01
This book focuses on solving integral equations with difference kernels on finite intervals. The corresponding problem on the semiaxis was previously solved by N. Wiener–E. Hopf and by M.G. Krein. The problem on finite intervals, though significantly more difficult, may be solved using our method of operator identities. This method is also actively employed in inverse spectral problems, operator factorization and nonlinear integral equations. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Kac problems on stable processes. In this second edition these results are extensively generalized and include the case of all Levy processes. We present the convolution expression for the well-known Ito formula of the generator operator, a convolution expression that has proven to be fruitful...
Finite-Difference Frequency-Domain Method in Nanophotonics
DEFF Research Database (Denmark)
Ivinskaya, Aliaksandra
Optics and photonics are exciting, rapidly developing fields building their success largely on use of more and more elaborate artificially made, nanostructured materials. To further advance our understanding of light-matter interactions in these complicated artificial media, numerical modeling...... is often indispensable. This thesis presents the development of rigorous finite-difference method, a very general tool to solve Maxwell’s equations in arbitrary geometries in three dimensions, with an emphasis on the frequency-domain formulation. Enhanced performance of the perfectly matched layers...... is obtained through free space squeezing technique, and nonuniform orthogonal grids are built to greatly improve the accuracy of simulations of highly heterogeneous nanostructures. Examples of the use of the finite-difference frequency-domain method in this thesis range from simulating localized modes...
Temperature Calculation of Annular Fuel Pellet by Finite Difference Method
Energy Technology Data Exchange (ETDEWEB)
Yang, Yong Sik; Bang, Je Geon; Kim, Dae Ho; Kim, Sun Ki; Lim, Ik Sung; Song, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2009-10-15
KAERI has started an innovative fuel development project for applying dual-cooled annular fuel to existing PWR reactor. In fuel design, fuel temperature is the most important factor which can affect nuclear fuel integrity and safety. Many models and methodologies, which can calculate temperature distribution in a fuel pellet have been proposed. However, due to the geometrical characteristics and cooling condition differences between existing solid type fuel and dual-cooled annular fuel, current fuel temperature calculation models can not be applied directly. Therefore, the new heat conduction model of fuel pellet was established. In general, fuel pellet temperature is calculated by FDM(Finite Difference Method) or FEM(Finite Element Method), because, temperature dependency of fuel thermal conductivity and spatial dependency heat generation in the pellet due to the self-shielding should be considered. In our study, FDM is adopted due to high exactness and short calculation time.
Optimized Finite-Difference Coefficients for Hydroacoustic Modeling
Preston, L. A.
2014-12-01
Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A finite difference method for free boundary problems
Fornberg, Bengt
2010-04-01
Fornberg and Meyer-Spasche proposed some time ago a simple strategy to correct finite difference schemes in the presence of a free boundary that cuts across a Cartesian grid. We show here how this procedure can be combined with a minimax-based optimization procedure to rapidly solve a wide range of elliptic-type free boundary value problems. © 2009 Elsevier B.V. All rights reserved.
Non Standard Finite Difference Scheme for Mutualistic Interaction Description
Gabbriellini, Gianluca
2012-01-01
One of the more interesting themes of the mathematical ecology is the description of the mutualistic interaction between two interacting species. Based on continuous-time model developed by Holland and DeAngelis 2009 for consumer-resource mutualism description, this work deals with the application of the Mickens Non Standard Finite Difference method to transform the continuous-time scheme into a discrete-time one. It has been proved that the Mickens scheme is dynamically consistent with the o...
Directory of Open Access Journals (Sweden)
W.R. Azzam
2015-08-01
Full Text Available This paper reports the application of using a skirted foundation system to study the behavior of foundations with structural skirts adjacent to a sand slope and subjected to earthquake loading. The effect of the adopted skirts to safeguard foundation and slope from collapse is studied. The skirts effect on controlling horizontal soil movement and decreasing pore water pressure beneath foundations and beside the slopes during earthquake is investigated. This technique is investigated numerically using finite element analysis. A four story reinforced concrete building that rests on a raft foundation is idealized as a two-dimensional model with and without skirts. A two dimensional plain strain program PLAXIS, (dynamic version is adopted. A series of models for the problem under investigation were run under different skirt depths and lactation from the slope crest. The effect of subgrade relative density and skirts thickness is also discussed. Nodal displacement and element strains were analyzed for the foundation with and without skirts and at different studied parameters. The research results showed a great effectiveness in increasing the overall stability of the slope and foundation. The confined soil footing system by such skirts reduced the foundation acceleration therefore it can be tended to damping element and relieved the transmitted disturbance to the adjacent slope. This technique can be considered as a good method to control the slope deformation and decrease the slope acceleration during earthquakes.
Finite difference program for calculating hydride bed wall temperature profiles
International Nuclear Information System (INIS)
Klein, J.E.
1992-01-01
A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis
Explicit Finite Difference Methods for the Delay Pseudoparabolic Equations
Directory of Open Access Journals (Sweden)
I. Amirali
2014-01-01
Full Text Available Finite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used. Based on the method of energy estimates the fully discrete scheme is shown to be absolutely stable and convergent of order two in space and of order one in time. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown.
Thermal buckling comparative analysis using Different FE (Finite Element) tools
Energy Technology Data Exchange (ETDEWEB)
Banasiak, Waldemar; Labouriau, Pedro [INTECSEA do Brasil, Rio de Janeiro, RJ (Brazil); Burnett, Christopher [INTECSEA UK, Surrey (United Kingdom); Falepin, Hendrik [Fugro Engineers SA/NV, Brussels (Belgium)
2009-12-19
High operational temperature and pressure in offshore pipelines may lead to unexpected lateral movements, sometimes call lateral buckling, which can have serious consequences for the integrity of the pipeline. The phenomenon of lateral buckling in offshore pipelines needs to be analysed in the design phase using FEM. The analysis should take into account many parameters, including operational temperature and pressure, fluid characteristic, seabed profile, soil parameters, coatings of the pipe, free spans etc. The buckling initiation force is sensitive to small changes of any initial geometric out-of-straightness, thus the modeling of the as-laid state of the pipeline is an important part of the design process. Recently some dedicated finite elements programs have been created making modeling of the offshore environment more convenient that has been the case with the use of general purpose finite element software. The present paper aims to compare thermal buckling analysis of sub sea pipeline performed using different finite elements tools, i.e. general purpose programs (ANSYS, ABAQUS) and dedicated software (SAGE Profile 3D) for a single pipeline resting on an the seabed. The analyses considered the pipeline resting on a flat seabed with a small levels of out-of straightness initiating the lateral buckling. The results show the quite good agreement of results of buckling in elastic range and in the conclusions next comparative analyses with sensitivity cases are recommended. (author)
Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.
2013-01-01
With the rapid developments in parallel compute architectures, algorithms for seismic modeling and imaging need to be reconsidered in terms of parallelization. The aim of this paper is to compare scalability of seismic modeling algorithms: finite differences, continuous mass-lumped finite elements
Finite difference evolution equations and quantum dynamical semigroups
International Nuclear Information System (INIS)
Ghirardi, G.C.; Weber, T.
1983-12-01
We consider the recently proposed [Bonifacio, Lett. Nuovo Cimento, 37, 481 (1983)] coarse grained description of time evolution for the density operator rho(t) through a finite difference equation with steps tau, and we prove that there exists a generator of the quantum dynamical semigroup type yielding an equation giving a continuous evolution coinciding at all time steps with the one induced by the coarse grained description. The map rho(0)→rho(t) derived in this way takes the standard form originally proposed by Lindblad [Comm. Math. Phys., 48, 119 (1976)], even when the map itself (and, therefore, the corresponding generator) is not bounded. (author)
Finite difference time domain modeling of spiral antennas
Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.
1992-01-01
The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.
Mimetic Finite Differences for Flow in Fractures from Microseismic Data
Al-Hinai, Omar; Srinivasan, Sanjay; Wheeler, Mary F.
2015-01-01
We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD's ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.
Mimetic Finite Differences for Flow in Fractures from Microseismic Data
Al-Hinai, Omar
2015-01-01
We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD\\'s ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.
A parallel adaptive finite difference algorithm for petroleum reservoir simulation
Energy Technology Data Exchange (ETDEWEB)
Hoang, Hai Minh
2005-07-01
Adaptive finite differential for problems arising in simulation of flow in porous medium applications are considered. Such methods have been proven useful for overcoming limitations of computational resources and improving the resolution of the numerical solutions to a wide range of problems. By local refinement of the computational mesh where it is needed to improve the accuracy of solutions, yields better solution resolution representing more efficient use of computational resources than is possible with traditional fixed-grid approaches. In this thesis, we propose a parallel adaptive cell-centered finite difference (PAFD) method for black-oil reservoir simulation models. This is an extension of the adaptive mesh refinement (AMR) methodology first developed by Berger and Oliger (1984) for the hyperbolic problem. Our algorithm is fully adaptive in time and space through the use of subcycling, in which finer grids are advanced at smaller time steps than the coarser ones. When coarse and fine grids reach the same advanced time level, they are synchronized to ensure that the global solution is conservative and satisfy the divergence constraint across all levels of refinement. The material in this thesis is subdivided in to three overall parts. First we explain the methodology and intricacies of AFD scheme. Then we extend a finite differential cell-centered approximation discretization to a multilevel hierarchy of refined grids, and finally we are employing the algorithm on parallel computer. The results in this work show that the approach presented is robust, and stable, thus demonstrating the increased solution accuracy due to local refinement and reduced computing resource consumption. (Author)
Mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods
International Nuclear Information System (INIS)
Baker, A.R.
1982-07-01
A study has been performed of mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods. As the objective was to illuminate the issues, the study was performed for a 1D slab model of a reactor with one neutron-energy group for which analytical solutions were possible. A computer code SLAB was specially written to perform the finite-difference and finite-element calculations and also to obtain the analytical solutions. The standard finite-difference equations were obtained by starting with an expansion of the neutron current in powers of the mesh size, h, and keeping terms as far as h 2 . It was confirmed that these equations led to the well-known result that the criticality parameter varied with the square of the mesh size. An improved form of the finite-difference equations was obtained by continuing the expansion for the neutron current as far as the term in h 4 . In this case, the critical parameter varied as the fourth power of the mesh size. The finite-element solutions for 2 and 3 nodes per element revealed that the criticality parameter varied as the square and fourth power of the mesh size, respectively. Numerical results are presented for a bare reactive core of uniform composition with 2 zones of different uniform mesh and for a reactive core with an absorptive reflector. (author)
Acoustic, finite-difference, time-domain technique development
International Nuclear Information System (INIS)
Kunz, K.
1994-01-01
A close analog exists between the behavior of sound waves in an ideal gas and the radiated waves of electromagnetics. This analog has been exploited to obtain an acoustic, finite-difference, time-domain (AFDTD) technique capable of treating small signal vibrations in elastic media, such as air, water, and metal, with the important feature of bending motion included in the behavior of the metal. This bending motion is particularly important when the metal is formed into sheets or plates. Bending motion does not have an analog in electromagnetics, but can be readily appended to the acoustic treatment since it appears as a single additional term in the force equation for plate motion, which is otherwise analogous to the electromagnetic wave equation. The AFDTD technique has been implemented in a code architecture that duplicates the electromagnetic, finite-difference, time-domain technique code. The main difference in the implementation is the form of the first-order coupled differential equations obtained from the wave equation. The gradient of pressure and divergence of velocity appear in these equations in the place of curls of the electric and magnetic fields. Other small changes exist as well, but the codes are essentially interchangeable. The pre- and post-processing for model construction and response-data evaluation of the electromagnetic code, in the form of the TSAR code at Lawrence Livermore National Laboratory, can be used for the acoustic version. A variety of applications is possible, pending validation of the bending phenomenon. The applications include acoustic-radiation-pattern predictions for a submerged object; mine detection analysis; structural noise analysis for cars; acoustic barrier analysis; and symphonic hall/auditorium predictions and speaker enclosure modeling
Computational electrodynamics the finite-difference time-domain method
Taflove, Allen
2005-01-01
This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers engineers the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. The method helps practitioners design antennas, wireless communications devices, high-speed digital and microwave circuits, and integrated optical devices with unsurpassed efficiency. There has been considerable advancement in FDTD computational technology over the past few years, and the third edition brings professionals the very latest details with entirely new chapters on important techniques, major updates on key topics, and new discussions on emerging areas such as nanophotonics. What's more, to supplement the third edition, the authors have created a Web site with solutions to problems, downloadable graphics and videos, and updates, making this new edition the ideal textbook on the subject as well.
A parallel finite-difference method for computational aerodynamics
International Nuclear Information System (INIS)
Swisshelm, J.M.
1989-01-01
A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed. 14 refs
Finite-difference modeling of commercial aircraft using TSAR
Energy Technology Data Exchange (ETDEWEB)
Pennock, S.T.; Poggio, A.J.
1994-11-15
Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.
Visualization of elastic wavefields computed with a finite difference code
Energy Technology Data Exchange (ETDEWEB)
Larsen, S. [Lawrence Livermore National Lab., CA (United States); Harris, D.
1994-11-15
The authors have developed a finite difference elastic propagation model to simulate seismic wave propagation through geophysically complex regions. To facilitate debugging and to assist seismologists in interpreting the seismograms generated by the code, they have developed an X Windows interface that permits viewing of successive temporal snapshots of the (2D) wavefield as they are calculated. The authors present a brief video displaying the generation of seismic waves by an explosive source on a continent, which propagate to the edge of the continent then convert to two types of acoustic waves. This sample calculation was part of an effort to study the potential of offshore hydroacoustic systems to monitor seismic events occurring onshore.
Moving magnets in a micromagnetic finite-difference framework
Rissanen, Ilari; Laurson, Lasse
2018-05-01
We present a method and an implementation for smooth linear motion in a finite-difference-based micromagnetic simulation code, to be used in simulating magnetic friction and other phenomena involving moving microscale magnets. Our aim is to accurately simulate the magnetization dynamics and relative motion of magnets while retaining high computational speed. To this end, we combine techniques for fast scalar potential calculation and cubic b-spline interpolation, parallelizing them on a graphics processing unit (GPU). The implementation also includes the possibility of explicitly simulating eddy currents in the case of conducting magnets. We test our implementation by providing numerical examples of stick-slip motion of thin films pulled by a spring and the effect of eddy currents on the switching time of magnetic nanocubes.
Modeling of NiTiHf using finite difference method
Farjam, Nazanin; Mehrabi, Reza; Karaca, Haluk; Mirzaeifar, Reza; Elahinia, Mohammad
2018-03-01
NiTiHf is a high temperature and high strength shape memory alloy with transformation temperatures above 100oC. A constitutive model based on Gibbs free energy is developed to predict the behavior of this material. Two different irrecoverable strains including transformation induced plastic strain (TRIP) and viscoplastic strain (VP) are considered when using high temperature shape memory alloys (HTSMAs). The first one happens during transformation at high levels of stress and the second one is related to the creep which is rate-dependent. The developed model is implemented for NiTiHf under uniaxial loading. Finite difference method is utilized to solve the proposed equations. The material parameters in the equations are calibrated from experimental data. Simulation results are captured to investigate the superelastic behavior of NiTiHf. The extracted results are compared with experimental tests of isobaric heating and cooling at different levels of stress and also superelastic tests at different levels of temperature. More results are generated to investigate the capability of the proposed model in the prediction of the irrecoverable strain after full transformation in HTSMAs.
Finite differences versus finite elements in slab geometry, even-parity transport theory
International Nuclear Information System (INIS)
Miller, W.F. Jr.; Noh, T.
1993-01-01
There continues to be considerable interest in the application of the even-parity transport equation to problems of radiation transfer and neutron transport. The motivation for this interest arises from several potential advantages of this equation when compared with the more traditional first-order form of the equation. First, assuming that the scalar flux is of primary interest, the angular domain under consideration is one-half of that required for the first-order equation. Thus, for the same degree of accuracy, one would hopefully require substantiably fewer unknown values of the dependent variable to be determined. Secondly, the elliptic-like nature of the set of even-parity equations should allow certain parallel computer architectures to be used more readily. In a recent paper, it was shown that for neutron transport applications in slab geometry, finite differencing the even-parity equation on the cell edges yields algebraic equations with numerical properties that are superior to the traditional diamond difference approach. Specifically, a positive, second-order method with a rapidly convergent iteration approach emerged from cell-edge differencing. Additionally, for radiation transfer problems that are optically thick, it was shown that cell-edge differencing demonstrates better behavior than does diamond-differencing. However, some problems in accuracy could occur due to vacuum boundaries as well as at interfaces between very different types of material regions. These problems emerge from a boundary-layer analysis of the so called open-quotes thickclose quotes diffusion limit. For neutronics calculations, which are the subject of this paper, however, the open-quotes thickclose quotes diffusion limit analysis has little applicability, and the cell-edge differencing derived previously seems to have considerable promise. 13 refs., 2 figs., 3 tabs
High-resolution finite-difference algorithms for conservation laws
International Nuclear Information System (INIS)
Towers, J.D.
1987-01-01
A new class of Total Variation Decreasing (TVD) schemes for 2-dimensional scalar conservation laws is constructed using either flux-limited or slope-limited numerical fluxes. The schemes are proven to have formal second-order accuracy in regions where neither u/sub x/ nor y/sub y/ vanishes. A new class of high-resolution large-time-step TVD schemes is constructed by adding flux-limited correction terms to the first-order accurate large-time-step version of the Engquist-Osher scheme. The use of the transport-collapse operator in place of the exact solution operator for the construction of difference schemes is studied. The production of spurious extrema by difference schemes is studied. A simple condition guaranteeing the nonproduction of spurious extrema is derived. A sufficient class of entropy inequalities for a conservation law with a flux having a single inflection point is presented. Finite-difference schemes satisfying a discrete version of each entropy inequality are only first-order accurate
Finite-difference analysis of shells impacting rigid barriers
International Nuclear Information System (INIS)
Pirotin, S.D.; Witmer, E.A.
1977-01-01
Nuclear power plants must be protected from the adverse effects of missile impacts. A significant category of missile impact involves deformable structures (pressure vessel components, whipping pipes) striking relatively rigid targets (concrete walls, bumpers) which act as protective devices. The response and interaction of these structures is needed to assess the adequacy of these barriers for protecting vital safety related equipment. The present investigation represents an initial attempt to develop an efficient numerical procedure for predicting the deformations and impact force time-histories of shells which impact upon a rigid target. The general large-deflection equations of motion of the shell are expressed in finite-difference form in space and integrated in time through application of the central-difference temporal operator. The effect of material nonlinearities is treated by a mechanical sublayer material model which handles the strain-hardening, Bauschinger, and strain-rate effects. The general adequacy of this shell treatment has been validated by comparing predictions with the results of various experiments in which structures have been subjected to well-defined transient forcing functions (typically high-explosive impulse loading). The 'new' ingredient addressed in the present study involves an accounting for impact interaction and response of both the target structure and the attacking body. (Auth.)
Finite element analysis of thermal stress distribution in different ...
African Journals Online (AJOL)
Nigerian Journal of Clinical Practice. Journal Home ... Von Mises and thermal stress distributions were evaluated. Results: In all ... distribution. Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ...
Finite-difference numerical simulations of underground explosion cavity decoupling
Aldridge, D. F.; Preston, L. A.; Jensen, R. P.
2012-12-01
Earth models containing a significant portion of ideal fluid (e.g., air and/or water) are of increasing interest in seismic wave propagation simulations. Examples include a marine model with a thick water layer, and a land model with air overlying a rugged topographic surface. The atmospheric infrasound community is currently interested in coupled seismic-acoustic propagation of low-frequency signals over long ranges (~tens to ~hundreds of kilometers). Also, accurate and efficient numerical treatment of models containing underground air-filled voids (caves, caverns, tunnels, subterranean man-made facilities) is essential. In support of the Source Physics Experiment (SPE) conducted at the Nevada National Security Site (NNSS), we are developing a numerical algorithm for simulating coupled seismic and acoustic wave propagation in mixed solid/fluid media. Solution methodology involves explicit, time-domain, finite-differencing of the elastodynamic velocity-stress partial differential system on a three-dimensional staggered spatial grid. Conditional logic is used to avoid shear stress updating within the fluid zones; this approach leads to computational efficiency gains for models containing a significant proportion of ideal fluid. Numerical stability and accuracy are maintained at air/rock interfaces (where the contrast in mass density is on the order of 1 to 2000) via a finite-difference operator "order switching" formalism. The fourth-order spatial FD operator used throughout the bulk of the earth model is reduced to second-order in the immediate vicinity of a high-contrast interface. Current modeling efforts are oriented toward quantifying the amount of atmospheric infrasound energy generated by various underground seismic sources (explosions and earthquakes). Source depth and orientation, and surface topography play obvious roles. The cavity decoupling problem, where an explosion is detonated within an air-filled void, is of special interest. A point explosion
Evaluation of finite difference and FFT-based solutions of the transport of intensity equation.
Zhang, Hongbo; Zhou, Wen-Jing; Liu, Ying; Leber, Donald; Banerjee, Partha; Basunia, Mahmudunnabi; Poon, Ting-Chung
2018-01-01
A finite difference method is proposed for solving the transport of intensity equation. Simulation results show that although slower than fast Fourier transform (FFT)-based methods, finite difference methods are able to reconstruct the phase with better accuracy due to relaxed assumptions for solving the transport of intensity equation relative to FFT methods. Finite difference methods are also more flexible than FFT methods in dealing with different boundary conditions.
Implicit time-dependent finite different algorithm for quench simulation
International Nuclear Information System (INIS)
Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi
1994-12-01
A magnet in a fusion machine has many difficulties in its application because of requirement of a large operating current, high operating field and high breakdown voltage. A cable-in-conduit (CIC) conductor is the best candidate to overcome these difficulties. However, there remained uncertainty in a quench event in the cable-in-conduit conductor because of a difficulty to analyze a fluid dynamics equation. Several scientists, then, developed the numerical code for the quench simulation. However, most of them were based on an explicit time-dependent finite difference scheme. In this scheme, a discrete time increment is strictly restricted by CFL (Courant-Friedrichs-Lewy) condition. Therefore, long CPU time was consumed for the quench simulation. Authors, then, developed a new quench simulation code, POCHI1, which is based on an implicit time dependent scheme. In POCHI1, the fluid dynamics equation is linearlized according to a procedure applied by Beam and Warming and then, a tridiagonal system can be offered. Therefore, no iteration is necessary to solve the fluid dynamics equation. This leads great reduction of the CPU time. Also, POCHI1 can cope with non-linear boundary condition. In this study, comparison with experimental results was carried out. The normal zone propagation behavior was investigated in two samples of CIC conductors which had different hydraulic diameters. The measured and simulated normal zone propagation length showed relatively good agreement. However, the behavior of the normal voltage shows a little disagreement. These results indicate necessity to improve the treatment of the heat transfer coefficient in the turbulent flow region and the electric resistivity of the copper stabilizer in high temperature and high field region. (author)
A hybrid finite-volume and finite difference scheme for depth-integrated non-hydrostatic model
Yin, Jing; Sun, Jia-wen; Wang, Xing-gang; Yu, Yong-hai; Sun, Zhao-chen
2017-06-01
A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into hydrostatic and non-hydrostatic parts. The first part is solved by using the finite volume conservative discretization method, whilst the latter is considered by solving discretized Poisson-type equations with the finite difference method. The second-order accuracy, both in time and space, of the finite volume scheme is achieved by using an explicit predictor-correction step and linear construction of variable state in cells. The fluxes across the cell faces are computed in a Godunov-based manner by using MUSTA scheme. Slope and flux limiting technique is used to equip the algorithm with total variation dimensioning property for shock capturing purpose. Wave breaking is treated as a shock by switching off the non-hydrostatic pressure in the steep wave front locally. The model deals with moving wet/dry front in a simple way. Numerical experiments are conducted to verify the proposed model.
A finite-difference contrast source inversion method
International Nuclear Information System (INIS)
Abubakar, A; Hu, W; Habashy, T M; Van den Berg, P M
2008-01-01
We present a contrast source inversion (CSI) algorithm using a finite-difference (FD) approach as its backbone for reconstructing the unknown material properties of inhomogeneous objects embedded in a known inhomogeneous background medium. Unlike the CSI method using the integral equation (IE) approach, the FD-CSI method can readily employ an arbitrary inhomogeneous medium as its background. The ability to use an inhomogeneous background medium has made this algorithm very suitable to be used in through-wall imaging and time-lapse inversion applications. Similar to the IE-CSI algorithm the unknown contrast sources and contrast function are updated alternately to reconstruct the unknown objects without requiring the solution of the full forward problem at each iteration step in the optimization process. The FD solver is formulated in the frequency domain and it is equipped with a perfectly matched layer (PML) absorbing boundary condition. The FD operator used in the FD-CSI method is only dependent on the background medium and the frequency of operation, thus it does not change throughout the inversion process. Therefore, at least for the two-dimensional (2D) configurations, where the size of the stiffness matrix is manageable, the FD stiffness matrix can be inverted using a non-iterative inversion matrix approach such as a Gauss elimination method for the sparse matrix. In this case, an LU decomposition needs to be done only once and can then be reused for multiple source positions and in successive iterations of the inversion. Numerical experiments show that this FD-CSI algorithm has an excellent performance for inverting inhomogeneous objects embedded in an inhomogeneous background medium
A simple finite-difference scheme for handling topography with the first-order wave equation
Mulder, W.A.; Huiskes, M.J.
2017-01-01
One approach to incorporate topography in seismic finite-difference codes is a local modification of the difference operators near the free surface. An earlier paper described an approach for modelling irregular boundaries in a constant-density acoustic finite-difference code, based on the
A finite difference, multipoint flux numerical approach to flow in porous media: Numerical examples
Osman, Hossam Omar; Salama, Amgad; Sun, Shuyu; Bao, Kai
2012-01-01
It is clear that none of the current available numerical schemes which may be adopted to solve transport phenomena in porous media fulfill all the required robustness conditions. That is while the finite difference methods are the simplest of all, they face several difficulties in complex geometries and anisotropic media. On the other hand, while finite element methods are well suited to complex geometries and can deal with anisotropic media, they are more involved in coding and usually require more execution time. Therefore, in this work we try to combine some features of the finite element technique, namely its ability to work with anisotropic media with the finite difference approach. We reduce the multipoint flux, mixed finite element technique through some quadrature rules to an equivalent cell-centered finite difference approximation. We show examples on using this technique to single-phase flow in anisotropic porous media.
A finite difference, multipoint flux numerical approach to flow in porous media: Numerical examples
Osman, Hossam Omar
2012-06-17
It is clear that none of the current available numerical schemes which may be adopted to solve transport phenomena in porous media fulfill all the required robustness conditions. That is while the finite difference methods are the simplest of all, they face several difficulties in complex geometries and anisotropic media. On the other hand, while finite element methods are well suited to complex geometries and can deal with anisotropic media, they are more involved in coding and usually require more execution time. Therefore, in this work we try to combine some features of the finite element technique, namely its ability to work with anisotropic media with the finite difference approach. We reduce the multipoint flux, mixed finite element technique through some quadrature rules to an equivalent cell-centered finite difference approximation. We show examples on using this technique to single-phase flow in anisotropic porous media.
A finite different field solver for dipole modes
International Nuclear Information System (INIS)
Nelson, E.M.
1992-08-01
A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL
A simple finite-difference scheme for handling topography with the second-order wave equation
Mulder, W.A.
2017-01-01
The presence of topography poses a challenge for seismic modeling with finite-difference codes. The representation of topography by means of an air layer or vacuum often leads to a substantial loss of numerical accuracy. A suitable modification of the finite-difference weights near the free
Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.
2008-01-01
Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling
Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.
2008-01-01
Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling
International Nuclear Information System (INIS)
Shtromberger, N.L.
1989-01-01
To design a cyclotron magnetic system the legitimacy of two-dimensional approximations application is discussed. In all the calculations the finite difference method is used, and the linearization method with further use of the gradient conjugation method is used to solve the set of finite-difference equations. 3 refs.; 5 figs
The computation of pressure waves in shock tubes by a finite difference procedure
International Nuclear Information System (INIS)
Barbaro, M.
1988-09-01
A finite difference solution of one-dimensional unsteady isentropic compressible flow equations is presented. The computer program has been tested by solving some cases of the Riemann shock tube problem. Predictions are in good agreement with those presented by other authors. Some inaccuracies may be attributed to the wave smearing consequent of the finite-difference treatment. (author)
Quiney, H. M.; Glushkov, V. N.; Wilson, S.; Sabin,; Brandas, E
2001-01-01
A comparison is made of the accuracy achieved in finite difference and finite basis set approximations to the Dirac equation for the ground state of the hydrogen molecular ion. The finite basis set calculations are carried out using a distributed basis set of Gaussian functions the exponents and
Finite-Time Synchronization of Chaotic Systems with Different Dimension and Secure Communication
Directory of Open Access Journals (Sweden)
Shouquan Pang
2016-01-01
Full Text Available Finite-time synchronization of chaotic systems with different dimension and secure communication is investigated. It is rigorously proven that global finite-time synchronization can be achieved between three-dimension Lorenz chaotic system and four-dimension Lorenz hyperchaotic system which have certain parameters or uncertain parameters. The electronic circuits of finite-time synchronization using Multisim 12 are designed to verify our conclusion. And the application to the secure communications is also analyzed and discussed.
HEATING-7, Multidimensional Finite-Difference Heat Conduction Analysis
International Nuclear Information System (INIS)
2000-01-01
problems, surface fluxes may be plotted with H7TECPLOT which requires the proprietary software TECPLOT. HEATING 7.3 runs under Windows95 and WindowsNT on PC's. No future modifications are planned for HEATING7. See README.1ST for more information. 2 - Method of solution: Three steady-state solution techniques are available: point-successive over-relaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion.) The solution of the system of equations arising from the implicit techniques is accomplished by point-successive over-relaxation iteration and includes procedures to estimate the optimum acceleration parameter. 3 - Restrictions on the complexity of the problem: All surfaces in a model must be parallel to one of the coordinate axes which makes modeling complex geometries difficult. Transient change of phase problems can only be solved with one of the explicit techniques - an implicit change-of-phase capability has not been implemented
Panczak, Tim; Ring, Steve; Welch, Mark
1999-01-01
Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.
SLIC: an interactive mesh generator for finite element and finite difference application programs
International Nuclear Information System (INIS)
Gerhard, M.A.; Greenlaw, R.C.
1979-01-01
Computers with extended memory, such as the CDC STAR 100 and the CRAY 1 with mega-word capacities, are greatly enlarging the size of finite element problems which can be solved. The cost of developing and testing large meshes can be prohibitive unless one uses a computer program for mesh generation and plotting. SLIC is an interactive mesh program which builds and plots 2- and 3-D continuum meshes from interactive terminal or disc input. The user inputs coordinates for certain key points and enters commands which complete the description of the geometry. Entire surfaces and volumes are then generated from the geometric skeleton. SLIC allows the user to correct input errors and saves the corrected command list for later reuse. The mesh can be plotted on a video display at any stage of development to evaluate the work in progress. Output is in the form of an input file to a user-selected computer code. Among the available output types are ADINA, SAP4, and NIKE2D. 11 figures
Gao, Longfei
2018-02-22
We consider numerical simulation of the isotropic elastic wave equations arising from seismic applications with non-trivial land topography. The more flexible finite element method is applied to the shallow region of the simulation domain to account for the topography, and combined with the more efficient finite difference method that is applied to the deep region of the simulation domain. We demonstrate that these two discretization methods, albeit starting from different formulations of the elastic wave equation, can be joined together smoothly via weakly imposed interface conditions. Discrete energy analysis is employed to derive the proper interface treatment, leading to an overall discretization that is energy-conserving. Numerical examples are presented to demonstrate the efficacy of the proposed interface treatment.
Gao, Longfei; Keyes, David E.
2018-01-01
We consider numerical simulation of the isotropic elastic wave equations arising from seismic applications with non-trivial land topography. The more flexible finite element method is applied to the shallow region of the simulation domain to account for the topography, and combined with the more efficient finite difference method that is applied to the deep region of the simulation domain. We demonstrate that these two discretization methods, albeit starting from different formulations of the elastic wave equation, can be joined together smoothly via weakly imposed interface conditions. Discrete energy analysis is employed to derive the proper interface treatment, leading to an overall discretization that is energy-conserving. Numerical examples are presented to demonstrate the efficacy of the proposed interface treatment.
Application of compact finite-difference schemes to simulations of stably stratified fluid flows
Czech Academy of Sciences Publication Activity Database
Bodnár, Tomáš; Beneš, L.; Fraunie, P.; Kozel, Karel
2012-01-01
Roč. 219, č. 7 (2012), s. 3336-3353 ISSN 0096-3003 Institutional support: RVO:61388998 Keywords : stratification * finite- difference * finite-volume * Runge-Kutta Subject RIV: BA - General Mathematics Impact factor: 1.349, year: 2012 http://www.sciencedirect.com/science/article/pii/S0096300311010988
International Nuclear Information System (INIS)
Wang Shumin; Duyn, Jeff H
2008-01-01
A hybrid method that combines the finite-difference time-domain (FDTD) method and the finite-element time-domain (FETD) method is presented for simulating radio-frequency (RF) coils in magnetic resonance imaging. This method applies a high-fidelity FETD method to RF coils, while the human body is modeled with a low-cost FDTD method. Since the FDTD and the FETD methods are applied simultaneously, the dynamic interaction between RF coils and the human body is fully accounted for. In order to simplify the treatment of the highly irregular FDTD/FETD interface, composite elements are proposed. Two examples are provided to demonstrate the validity and effectiveness of the hybrid method in high-field receive-and-transmit coil design. This approach is also applicable to general bio-electromagnetic simulations
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced
Mickens, Ronald E.
1989-01-01
A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.
On the raising and lowering difference operators for eigenvectors of the finite Fourier transform
International Nuclear Information System (INIS)
Atakishiyeva, M K; Atakishiyev, N M
2015-01-01
We construct explicit forms of raising and lowering difference operators that govern eigenvectors of the finite (discrete) Fourier transform. Some of the algebraic properties of these operators are also examined. (paper)
Stability and non-standard finite difference method of the generalized Chua's circuit
Radwan, Ahmed G.; Moaddy, K.; Momani, Shaher M.
2011-01-01
In this paper, we develop a framework to obtain approximate numerical solutions of the fractional-order Chua's circuit with Memristor using a non-standard finite difference method. Chaotic response is obtained with fractional-order elements as well
Energy Technology Data Exchange (ETDEWEB)
Swegle, J.W.; Hicks, D.L.
1979-05-01
An anisotropic constitutive relation was incorporated into the Lagrangian finite-difference wavecode TOODY. The details of the implementation of the constitutive relation in the wavecode and an example of its use are discussed. 4 figures, 1 table.
Directory of Open Access Journals (Sweden)
Peng Jiang
2013-01-01
Full Text Available The authors attempt to construct the exact finite-difference schemes for linear stochastic differential equations with constant coefficients. The explicit solutions to Itô and Stratonovich linear stochastic differential equations with constant coefficients are adopted with the view of providing exact finite-difference schemes to solve them. In particular, the authors utilize the exact finite-difference schemes of Stratonovich type linear stochastic differential equations to solve the Kubo oscillator that is widely used in physics. Further, the authors prove that the exact finite-difference schemes can preserve the symplectic structure and first integral of the Kubo oscillator. The authors also use numerical examples to prove the validity of the numerical methods proposed in this paper.
The finite precision computation and the nonconvergence of difference scheme
Pengfei, Wang; Jianping, Li
2008-01-01
The authors show that the round-off error can break the consistency which is the premise of using the difference equation to replace the original differential equations. We therefore proposed a theoretical approach to investigate this effect, and found that the difference scheme can not guarantee the convergence of the actual compute result to the analytical one. A conservation scheme experiment is applied to solve a simple linear differential equation satisfing the LAX equivalence theorem in...
Neutron-proton mass difference in finite nuclei and the Nolen-Schiffer anomaly
International Nuclear Information System (INIS)
Meissner, U.G.; Rakhimov, A.M.; Wirzba, A.; Yakhshiev, U.T.
2008-01-01
The neutron-proton mass difference in finite nuclei is studied in the framework of a medium-modified Skyrme model. The possible interplay between the effective nucleon mass in finite nuclei and the Nolen-Schiffer anomaly is discussed. In particular, we find that a correct description of the properties of mirror nuclei leads to a stringent restriction of possible modifications of the nucleon's effective mass in nuclei. (orig.)
田中, 英一; TANAKA, Eiichi; 山本, 創太; YAMAMOTO, Sota; 坂本, 誠二; SAKAMOTO, Seiji; 中西, 孝文; NAKANISHI, Takafumi; 原田, 敦; HARADA, Atsushi; 水野, 雅士; MIZUNO, Masashi
2004-01-01
This paper is concerned with an individual finite element modeling system for femur and biomechanical evaluations of the influences of loading conditions, bone shape and bone density on risks of hip fracture. Firstly, a method to construct an individual finite element model by morphological parameters that represent femoral shapes was developed. Using the models with different shapes constructed by this method, the effects of fall direction, posture of upper body, femur shape and bone density...
Byun, Chansup; Guruswamy, Guru P.; Kutler, Paul (Technical Monitor)
1994-01-01
In recent years significant advances have been made for parallel computers in both hardware and software. Now parallel computers have become viable tools in computational mechanics. Many application codes developed on conventional computers have been modified to benefit from parallel computers. Significant speedups in some areas have been achieved by parallel computations. For single-discipline use of both fluid dynamics and structural dynamics, computations have been made on wing-body configurations using parallel computers. However, only a limited amount of work has been completed in combining these two disciplines for multidisciplinary applications. The prime reason is the increased level of complication associated with a multidisciplinary approach. In this work, procedures to compute aeroelasticity on parallel computers using direct coupling of fluid and structural equations will be investigated for wing-body configurations. The parallel computer selected for computations is an Intel iPSC/860 computer which is a distributed-memory, multiple-instruction, multiple data (MIMD) computer with 128 processors. In this study, the computational efficiency issues of parallel integration of both fluid and structural equations will be investigated in detail. The fluid and structural domains will be modeled using finite-difference and finite-element approaches, respectively. Results from the parallel computer will be compared with those from the conventional computers using a single processor. This study will provide an efficient computational tool for the aeroelastic analysis of wing-body structures on MIMD type parallel computers.
A new fitted operator finite difference method to solve systems of ...
African Journals Online (AJOL)
In recent years, fitted operator finite difference methods (FOFDMs) have been developed for numerous types of singularly perturbed ordinary differential equations. The construction of most of these methods differed though the final outcome remained similar. The most crucial aspect was how the difference operator was ...
Perfectly Matched Layer for the Wave Equation Finite Difference Time Domain Method
Miyazaki, Yutaka; Tsuchiya, Takao
2012-07-01
The perfectly matched layer (PML) is introduced into the wave equation finite difference time domain (WE-FDTD) method. The WE-FDTD method is a finite difference method in which the wave equation is directly discretized on the basis of the central differences. The required memory of the WE-FDTD method is less than that of the standard FDTD method because no particle velocity is stored in the memory. In this study, the WE-FDTD method is first combined with the standard FDTD method. Then, Berenger's PML is combined with the WE-FDTD method. Some numerical demonstrations are given for the two- and three-dimensional sound fields.
Wu, Zedong
2018-04-05
Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is is highly accurate and efficient.
Formulation of coarse mesh finite difference to calculate mathematical adjoint flux
International Nuclear Information System (INIS)
Pereira, Valmir; Martinez, Aquilino Senra; Silva, Fernando Carvalho da
2002-01-01
The objective of this work is the obtention of the mathematical adjoint flux, having as its support the nodal expansion method (NEM) for coarse mesh problems. Since there are difficulties to evaluate this flux by using NEM. directly, a coarse mesh finite difference program was developed to obtain this adjoint flux. The coarse mesh finite difference formulation (DFMG) adopted uses results of the direct calculation (node average flux and node face averaged currents) obtained by NEM. These quantities (flux and currents) are used to obtain the correction factors which modify the classical finite differences formulation . Since the DFMG formulation is also capable of calculating the direct flux it was also tested to obtain this flux and it was verified that it was able to reproduce with good accuracy both the flux and the currents obtained via NEM. In this way, only matrix transposition is needed to calculate the mathematical adjoint flux. (author)
Interactive finite difference preprocessor for three-dimensional fluid flow systems. [PREFLO
Energy Technology Data Exchange (ETDEWEB)
Kleinstreuer, C. (Rensselaer Polytechnic Inst., Troy, NY); Patterson, M.R.
1981-06-01
A preprocessor, called PREFLO, consisting of data processing modules combined with a flexible finite difference grid generator is described. This economical, interactive computer code is a useful research tool contributing significantly to the accurate analysis and modeling of large and/or geometrically complex flow systems. PREFLO (PREprocessor for fluid FLOw problems), written in FORTRAN IV, consists of four modules which in turn call various subroutines. The main programs accomplish the following tasks: (1) system identification and selection of appropriate finite difference algorithms; (2) input devices for storage of natural flow boundaries; (3) interactive generation of finite difference meshes and display of computer graphics; (4) preparation of all data files for the source program. The computation of the velocity field near a power plant site is outlined to illustrate the capabilities and application of PREFLO.
Modeling seismic wave propagation using staggered-grid mimetic finite differences
Directory of Open Access Journals (Sweden)
Freysimar Solano-Feo
2017-04-01
Full Text Available Mimetic finite difference (MFD approximations of continuous gradient and divergence operators satisfy a discrete version of the Gauss-Divergence theorem on staggered grids. On the mimetic approximation of this integral conservation principle, an unique boundary flux operator is introduced that also intervenes on the discretization of a given boundary value problem (BVP. In this work, we present a second-order MFD scheme for seismic wave propagation on staggered grids that discretized free surface and absorbing boundary conditions (ABC with same accuracy order. This scheme is time explicit after coupling a central three-level finite difference (FD stencil for numerical integration. Here, we briefly discuss the convergence properties of this scheme and show its higher accuracy on a challenging test when compared to a traditional FD method. Preliminary applications to 2-D seismic scenarios are also presented and show the potential of the mimetic finite difference method.
Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation
Prentice, J. S. C.
2012-01-01
An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…
Accuracy of finite-difference modeling of seismic waves : Simulation versus laboratory measurements
Arntsen, B.
2017-12-01
The finite-difference technique for numerical modeling of seismic waves is still important and for some areas extensively used.For exploration purposes is finite-difference simulation at the core of both traditional imaging techniques such as reverse-time migration and more elaborate Full-Waveform Inversion techniques.The accuracy and fidelity of finite-difference simulation of seismic waves are hard to quantify and meaningfully error analysis is really onlyeasily available for simplistic media. A possible alternative to theoretical error analysis is provided by comparing finite-difference simulated data with laboratory data created using a scale model. The advantage of this approach is the accurate knowledge of the model, within measurement precision, and the location of sources and receivers.We use a model made of PVC immersed in water and containing horizontal and tilted interfaces together with several spherical objects to generateultrasonic pressure reflection measurements. The physical dimensions of the model is of the order of a meter, which after scaling represents a model with dimensions of the order of 10 kilometer and frequencies in the range of one to thirty hertz.We find that for plane horizontal interfaces the laboratory data can be reproduced by the finite-difference scheme with relatively small error, but for steeply tilted interfaces the error increases. For spherical interfaces the discrepancy between laboratory data and simulated data is sometimes much more severe, to the extent that it is not possible to simulate reflections from parts of highly curved bodies. The results are important in view of the fact that finite-difference modeling is often at the core of imaging and inversion algorithms tackling complicatedgeological areas with highly curved interfaces.
Optimal 25-Point Finite-Difference Subgridding Techniques for the 2D Helmholtz Equation
Directory of Open Access Journals (Sweden)
Tingting Wu
2016-01-01
Full Text Available We present an optimal 25-point finite-difference subgridding scheme for solving the 2D Helmholtz equation with perfectly matched layer (PML. This scheme is second order in accuracy and pointwise consistent with the equation. Subgrids are used to discretize the computational domain, including the interior domain and the PML. For the transitional node in the interior domain, the finite difference equation is formulated with ghost nodes, and its weight parameters are chosen by a refined choice strategy based on minimizing the numerical dispersion. Numerical experiments are given to illustrate that the newly proposed schemes can produce highly accurate seismic modeling results with enhanced efficiency.
Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics
Gedney, Stephen
2011-01-01
Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to p
A perturbational h4 exponential finite difference scheme for the convective diffusion equation
International Nuclear Information System (INIS)
Chen, G.Q.; Gao, Z.; Yang, Z.F.
1993-01-01
A perturbational h 4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h 2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes. Besides, the h 4 accuracy of the perturbational scheme is verified using double precision arithmetic
Analysis of equilibrium in a tokamak by the finite-difference method
International Nuclear Information System (INIS)
Kim, K.E.; Jeun, G.D.
1983-01-01
Ideal magnetohydrodynamic equilibrium in a Tokamak having a small radius with an elongated rectangular cross section is studied by applying the finite-difference method to the Grad-Shafranov equation to determine possible limitations for *b=8*pPsup(2)/Bsup(2). The coupled first-order differential equations resulting from the finite-difference Grad-Shafranov equation is solved by the numarical method:1)We concluded that equilibrium consideration alone gives no limitation even for *b approx.1. 2)We have obtained the equilibrium magnetic field configuration charcterized by a set of three parameters;the aspect ratio, *b,and the safety factor. (Author)
A fast finite-difference algorithm for topology optimization of permanent magnets
Abert, Claas; Huber, Christian; Bruckner, Florian; Vogler, Christoph; Wautischer, Gregor; Suess, Dieter
2017-09-01
We present a finite-difference method for the topology optimization of permanent magnets that is based on the fast-Fourier-transform (FFT) accelerated computation of the stray-field. The presented method employs the density approach for topology optimization and uses an adjoint method for the gradient computation. Comparison to various state-of-the-art finite-element implementations shows a superior performance and accuracy. Moreover, the presented method is very flexible and easy to implement due to various preexisting FFT stray-field implementations that can be used.
Computational Aero-Acoustic Using High-order Finite-Difference Schemes
DEFF Research Database (Denmark)
Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær
2007-01-01
are solved using the in-house flow solver EllipSys2D/3D which is a second-order finite volume code. The acoustic solution is found by solving the acoustic equations using high-order finite difference schemes. The incompressible flow equations and the acoustic equations are solved at the same time levels......In this paper, a high-order technique to accurately predict flow-generated noise is introduced. The technique consists of solving the viscous incompressible flow equations and inviscid acoustic equations using a incompressible/compressible splitting technique. The incompressible flow equations...
Comparison of finite-difference and variational solutions to advection-diffusion problems
International Nuclear Information System (INIS)
Lee, C.E.; Washington, K.E.
1984-01-01
Two numerical solution methods are developed for 1-D time-dependent advection-diffusion problems on infinite and finite domains. Numerical solutions are compared with analytical results for constant coefficients and various boundary conditions. A finite-difference spectrum method is solved exactly in time for periodic boundary conditions by a matrix operator method and exhibits excellent accuracy compared with other methods, especially at late times, where it is also computationally more efficient. Finite-system solutions are determined from a conservational variational principle with cubic spatial trial functions and solved in time by a matrix operator method. Comparisons of problems with few nodes show excellent agreement with analytical solutions and exhibit the necessity of implementing Lagrangian conservational constraints for physically-correct solutions. (author)
Detailed balance principle and finite-difference stochastic equation in a field theory
International Nuclear Information System (INIS)
Kozhamkulov, T.A.
1986-01-01
A finite-difference equation, which is a generalization of the Langevin equation in field theory, has been obtained basing upon the principle of detailed balance for the Markov chain. Advantages of the present approach as compared with the conventional Parisi-Wu method are shown for examples of an exactly solvable problem of zero-dimensional quantum theory and a simple numerical simulation
The finite-difference time-domain method for electromagnetics with Matlab simulations
Elsherbeni, Atef Z
2016-01-01
This book introduces the powerful Finite-Difference Time-Domain method to students and interested researchers and readers. An effective introduction is accomplished using a step-by-step process that builds competence and confidence in developing complete working codes for the design and analysis of various antennas and microwave devices.
High-order Finite Difference Solution of Euler Equations for Nonlinear Water Waves
DEFF Research Database (Denmark)
Christiansen, Torben Robert Bilgrav; Bingham, Harry B.; Engsig-Karup, Allan Peter
2012-01-01
is discretized using arbitrary-order finite difference schemes on a staggered grid with one optional stretching in each coordinate direction. The momentum equations and kinematic free surface condition are integrated in time using the classic fourth-order Runge-Kutta scheme. Mass conservation is satisfied...
Principle of detailed balance and the finite-difference stochastic equation in field theory
International Nuclear Information System (INIS)
Kozhamkulov, T.A.
1986-01-01
The principle of detailed balance for the Markov chain is used to obtain a finite-difference equation which generalizes the Langevin equation in field theory. The advantages of using this approach compared to the conventional Parisi-Wu method are demonstrated for the examples of an exactly solvable problem in zero-dimensional quantum theory and a simple numerical simulation
Chu, Chunlei
2012-01-01
Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.
Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments
DEFF Research Database (Denmark)
Larsen, Casper; Cooke, David G.; Jepsen, Peter Uhd
2011-01-01
In this paper we report on the numerical analysis of a time-resolved terahertz (THz) spectroscopy experiment using a modified finite-difference time-domain method. Using this method, we show that ultrafast carrier dynamics can be extracted with a time resolution smaller than the duration of the T...
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-08-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
Stability of finite difference schemes for generalized von Foerster equations with renewal
Directory of Open Access Journals (Sweden)
Henryk Leszczyński
2014-01-01
Full Text Available We consider a von Foerster-type equation describing the dynamics of a population with the production of offsprings given by the renewal condition. We construct a finite difference scheme for this problem and give sufficient conditions for its stability with respect to \\(l^1\\ and \\(l^\\infty\\ norms.
A coupled boundary element-finite difference solution of the elliptic modified mild slope equation
DEFF Research Database (Denmark)
Naserizadeh, R.; Bingham, Harry B.; Noorzad, A.
2011-01-01
The modified mild slope equation of [5] is solved using a combination of the boundary element method (BEM) and the finite difference method (FDM). The exterior domain of constant depth and infinite horizontal extent is solved by a BEM using linear or quadratic elements. The interior domain...
High-order finite difference solution for 3D nonlinear wave-structure interaction
DEFF Research Database (Denmark)
Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter
2010-01-01
This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme O...
Modeling of Nanophotonic Resonators with the Finite-Difference Frequency-Domain Method
DEFF Research Database (Denmark)
Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry
2011-01-01
Finite-difference frequency-domain method with perfectly matched layers and free-space squeezing is applied to model open photonic resonators of arbitrary morphology in three dimensions. Treating each spatial dimension independently, nonuniform mesh of continuously varying density can be built ea...
Chu, Chunlei
2009-01-01
We analyze the dispersion properties and stability conditions of the high‐order convolutional finite difference operators and compare them with the conventional finite difference schemes. We observe that the convolutional finite difference method has better dispersion properties and becomes more efficient than the conventional finite difference method with the increasing order of accuracy. This makes the high‐order convolutional operator a good choice for anisotropic elastic wave simulations on rotated staggered grids since its enhanced dispersion properties can help to suppress the numerical dispersion error that is inherent in the rotated staggered grid structure and its efficiency can help us tackle 3D problems cost‐effectively.
On the Stability of the Finite Difference based Lattice Boltzmann Method
El-Amin, Mohamed; Sun, Shuyu; Salama, Amgad
2013-01-01
This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.
On the Stability of the Finite Difference based Lattice Boltzmann Method
El-Amin, Mohamed
2013-06-01
This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.
Directory of Open Access Journals (Sweden)
Lei Wang
2015-09-01
Full Text Available Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare with the results from the analytical method, the result from Laplace transform finite difference method turns out to be accurate. The influence factors are analyzed, including fractal dimension, fractal index, skin factor, well bore storage coefficient, energy storage ratio, interporosity flow coefficient and the adsorption factor. The calculating error of Laplace transform difference method is small. Laplace transform difference method has advantages in well-test application since any moment simulation does not rely on other moment results and space grid.
An outgoing energy flux boundary condition for finite difference ICRP antenna models
International Nuclear Information System (INIS)
Batchelor, D.B.; Carter, M.D.
1992-11-01
For antennas at the ion cyclotron range of frequencies (ICRF) modeling in vacuum can now be carried out to a high level of detail such that shaping of the current straps, isolating septa, and discrete Faraday shield structures can be included. An efficient approach would be to solve for the fields in the vacuum region near the antenna in three dimensions by finite methods and to match this solution at the plasma-vacuum interface to a solution obtained in the plasma region in one dimension by Fourier methods. This approach has been difficult to carry out because boundary conditions must be imposed at the edge of the finite difference grid on a point-by-point basis, whereas the condition for outgoing energy flux into the plasma is known only in terms of the Fourier transform of the plasma fields. A technique is presented by which a boundary condition can be imposed on the computational grid of a three-dimensional finite difference, or finite element, code by constraining the discrete Fourier transform of the fields at the boundary points to satisfy an outgoing energy flux condition appropriate for the plasma. The boundary condition at a specific grid point appears as a coupling to other grid points on the boundary, with weighting determined by a kemel calctdated from the plasma surface impedance matrix for the various plasma Fourier modes. This boundary condition has been implemented in a finite difference solution of a simple problem in two dimensions, which can also be solved directly by Fourier transformation. Results are presented, and it is shown that the proposed boundary condition does enforce outgoing energy flux and yields the same solution as is obtained by Fourier methods
Stability and non-standard finite difference method of the generalized Chua's circuit
Radwan, Ahmed G.
2011-08-01
In this paper, we develop a framework to obtain approximate numerical solutions of the fractional-order Chua\\'s circuit with Memristor using a non-standard finite difference method. Chaotic response is obtained with fractional-order elements as well as integer-order elements. Stability analysis and the condition of oscillation for the integer-order system are discussed. In addition, the stability analyses for different fractional-order cases are investigated showing a great sensitivity to small order changes indicating the poles\\' locations inside the physical s-plane. The GrnwaldLetnikov method is used to approximate the fractional derivatives. Numerical results are presented graphically and reveal that the non-standard finite difference scheme is an effective and convenient method to solve fractional-order chaotic systems, and to validate their stability. © 2011 Elsevier Ltd. All rights reserved.
Stability analysis of single-phase thermosyphon loops by finite difference numerical methods
International Nuclear Information System (INIS)
Ambrosini, W.
1998-01-01
In this paper, examples of the application of finite difference numerical methods in the analysis of stability of single-phase natural circulation loops are reported. The problem is here addressed for its relevance for thermal-hydraulic system code applications, in the aim to point out the effect of truncation error on stability prediction. The methodology adopted for analysing in a systematic way the effect of various finite difference discretization can be considered the numerical analogue of the usual techniques adopted for PDE stability analysis. Three different single-phase loop configurations are considered involving various kinds of boundary conditions. In one of these cases, an original dimensionless form of the governing equations is proposed, adopting the Reynolds number as a flow variable. This allows for an appropriate consideration of transition between laminar and turbulent regimes, which is not possible with other dimensionless forms, thus enlarging the field of validity of model assumptions. (author). 14 refs., 8 figs
Energy stable and high-order-accurate finite difference methods on staggered grids
O'Reilly, Ossian; Lundquist, Tomas; Dunham, Eric M.; Nordström, Jan
2017-10-01
For wave propagation over distances of many wavelengths, high-order finite difference methods on staggered grids are widely used due to their excellent dispersion properties. However, the enforcement of boundary conditions in a stable manner and treatment of interface problems with discontinuous coefficients usually pose many challenges. In this work, we construct a provably stable and high-order-accurate finite difference method on staggered grids that can be applied to a broad class of boundary and interface problems. The staggered grid difference operators are in summation-by-parts form and when combined with a weak enforcement of the boundary conditions, lead to an energy stable method on multiblock grids. The general applicability of the method is demonstrated by simulating an explosive acoustic source, generating waves reflecting against a free surface and material discontinuity.
Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells
Deinega, Alexei; John, Sajeev
2012-10-01
We introduce a finite difference discretization of semiconductor drift-diffusion equations using cylindrical partial waves. It can be applied to describe the photo-generated current in radial pn-junction nanowire solar cells. We demonstrate that the cylindrically symmetric (l=0) partial wave accurately describes the electronic response of a square lattice of silicon nanowires at normal incidence. We investigate the accuracy of our discretization scheme by using different mesh resolution along the radial direction r and compare with 3D (x, y, z) discretization. We consider both straight nanowires and nanowires with radius modulation along the vertical axis. The charge carrier generation profile inside each nanowire is calculated using an independent finite-difference time-domain simulation.
A practical implicit finite-difference method: examples from seismic modelling
International Nuclear Information System (INIS)
Liu, Yang; Sen, Mrinal K
2009-01-01
We derive explicit and new implicit finite-difference formulae for derivatives of arbitrary order with any order of accuracy by the plane wave theory where the finite-difference coefficients are obtained from the Taylor series expansion. The implicit finite-difference formulae are derived from fractional expansion of derivatives which form tridiagonal matrix equations. Our results demonstrate that the accuracy of a (2N + 2)th-order implicit formula is nearly equivalent to that of a (6N + 2)th-order explicit formula for the first-order derivative, and (2N + 2)th-order implicit formula is nearly equivalent to (4N + 2)th-order explicit formula for the second-order derivative. In general, an implicit method is computationally more expensive than an explicit method, due to the requirement of solving large matrix equations. However, the new implicit method only involves solving tridiagonal matrix equations, which is fairly inexpensive. Furthermore, taking advantage of the fact that many repeated calculations of derivatives are performed by the same difference formula, several parts can be precomputed resulting in a fast algorithm. We further demonstrate that a (2N + 2)th-order implicit formulation requires nearly the same memory and computation as a (2N + 4)th-order explicit formulation but attains the accuracy achieved by a (6N + 2)th-order explicit formulation for the first-order derivative and that of a (4N + 2)th-order explicit method for the second-order derivative when additional cost of visiting arrays is not considered. This means that a high-order explicit method may be replaced by an implicit method of the same order resulting in a much improved performance. Our analysis of efficiency and numerical modelling results for acoustic and elastic wave propagation validates the effectiveness and practicality of the implicit finite-difference method
A simple finite-difference scheme for handling topography with the first-order wave equation
Mulder, W. A.; Huiskes, M. J.
2017-07-01
One approach to incorporate topography in seismic finite-difference codes is a local modification of the difference operators near the free surface. An earlier paper described an approach for modelling irregular boundaries in a constant-density acoustic finite-difference code, based on the second-order formulation of the wave equation that only involves the pressure. Here, a similar method is considered for the first-order formulation in terms of pressure and particle velocity, using a staggered finite-difference discretization both in space and in time. In one space dimension, the boundary conditions consist in imposing antisymmetry for the pressure and symmetry for particle velocity components. For the pressure, this means that the solution values as well as all even derivatives up to a certain order are zero on the boundary. For the particle velocity, all odd derivatives are zero. In 2D, the 1-D assumption is used along each coordinate direction, with antisymmetry for the pressure along the coordinate and symmetry for the particle velocity component parallel to that coordinate direction. Since the symmetry or antisymmetry should hold along the direction normal to the boundary rather than along the coordinate directions, this generates an additional numerical error on top of the time stepping errors and the errors due to the interior spatial discretization. Numerical experiments in 2D and 3D nevertheless produce acceptable results.
Hannah, S. R.; Palazotto, A. N.
1978-01-01
A new trigonometric approach to the finite difference calculus was applied to the problem of beam buckling as represented by virtual work and equilibrium equations. The trigonometric functions were varied by adjusting a wavelength parameter in the approximating Fourier series. Values of the critical force obtained from the modified approach for beams with a variety of boundary conditions were compared to results using the conventional finite difference method. The trigonometric approach produced significantly more accurate approximations for the critical force than the conventional approach for a relatively wide range in values of the wavelength parameter; and the optimizing value of the wavelength parameter corresponded to the half-wavelength of the buckled mode shape. It was found from a modal analysis that the most accurate solutions are obtained when the approximating function closely represents the actual displacement function and matches the actual boundary conditions.
Energy Technology Data Exchange (ETDEWEB)
Karlsen, Kenneth Hvistendal; Risebro, Nils Henrik
2000-09-01
We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a ''rough'' coefficient function k(x). we show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, k' is in BV, thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion equations as well as new convergence results for their finite difference approximations. In the inviscid case, we also provide a rate of convergence. Our convergence proofs are based on deriving a series of a priori estimates and using a general L{sup p} compactness criterion. (author)
Symmetries of the second-difference matrix and the finite Fourier transform
International Nuclear Information System (INIS)
Aguilar, A.; Wolf, K.B.
1979-01-01
The finite Fourier transformation is well known to diagonalize the second-difference matrix and has been thus applied extensively to describe finite crystal lattices and electric networks. In setting out to find all transformations having this property, we obtain a multiparameter class of them. While permutations and unitary scaling of the eigenvectors constitute the trivial freedom of choice common to all diagonalization processes, the second-difference matrix has a larger symmetry group among whose elements we find the dihedral manifest symmetry transformations of the lattice. The latter are nevertheless sufficient for the unique specification of eigenvectors in various symmetry-adapted bases for the constrained lattice. The free symmetry parameters are shown to lead to a complete set of conserved quantities for the physical lattice motion. (author)
Five-point form of the nodal diffusion method and comparison with finite-difference
International Nuclear Information System (INIS)
Azmy, Y.Y.
1988-01-01
Nodal Methods have been derived, implemented and numerically tested for several problems in physics and engineering. In the field of nuclear engineering, many nodal formalisms have been used for the neutron diffusion equation, all yielding results which were far more computationally efficient than conventional Finite Difference (FD) and Finite Element (FE) methods. However, not much effort has been devoted to theoretically comparing nodal and FD methods in order to explain the very high accuracy of the former. In this summary we outline the derivation of a simple five-point form for the lowest order nodal method and compare it to the traditional five-point, edge-centered FD scheme. The effect of the observed differences on the accuracy of the respective methods is established by considering a simple test problem. It must be emphasized that the nodal five-point scheme derived here is mathematically equivalent to previously derived lowest order nodal methods. 7 refs., 1 tab
Optimal variable-grid finite-difference modeling for porous media
International Nuclear Information System (INIS)
Liu, Xinxin; Yin, Xingyao; Li, Haishan
2014-01-01
Numerical modeling of poroelastic waves by the finite-difference (FD) method is more expensive than that of acoustic or elastic waves. To improve the accuracy and computational efficiency of seismic modeling, variable-grid FD methods have been developed. In this paper, we derived optimal staggered-grid finite difference schemes with variable grid-spacing and time-step for seismic modeling in porous media. FD operators with small grid-spacing and time-step are adopted for low-velocity or small-scale geological bodies, while FD operators with big grid-spacing and time-step are adopted for high-velocity or large-scale regions. The dispersion relations of FD schemes were derived based on the plane wave theory, then the FD coefficients were obtained using the Taylor expansion. Dispersion analysis and modeling results demonstrated that the proposed method has higher accuracy with lower computational cost for poroelastic wave simulation in heterogeneous reservoirs. (paper)
Accuracy of finite-difference harmonic frequencies in density functional theory.
Liu, Kuan-Yu; Liu, Jie; Herbert, John M
2017-07-15
Analytic Hessians are often viewed as essential for the calculation of accurate harmonic frequencies, but the implementation of analytic second derivatives is nontrivial and solution of the requisite coupled-perturbed equations engenders a sizable memory footprint for large systems, given that these equations are not required for energy and gradient calculations in density functional theory. Here, we benchmark the alternative approach to harmonic frequencies based on finite differences of analytic first derivatives, a procedure that is amenable to large-scale parallelization. Not only for absolute frequencies but also for isotopic and conformer-dependent frequency shifts in flexible molecules, we find that the finite-difference approach exhibits mean errors numbers. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Numerical study of water diffusion in biological tissues using an improved finite difference method
International Nuclear Information System (INIS)
Xu Junzhong; Does, Mark D; Gore, John C
2007-01-01
An improved finite difference (FD) method has been developed in order to calculate the behaviour of the nuclear magnetic resonance signal variations caused by water diffusion in biological tissues more accurately and efficiently. The algorithm converts the conventional image-based finite difference method into a convenient matrix-based approach and includes a revised periodic boundary condition which eliminates the edge effects caused by artificial boundaries in conventional FD methods. Simulated results for some modelled tissues are consistent with analytical solutions for commonly used diffusion-weighted pulse sequences, whereas the improved FD method shows improved efficiency and accuracy. A tightly coupled parallel computing approach was also developed to implement the FD methods to enable large-scale simulations of realistic biological tissues. The potential applications of the improved FD method for understanding diffusion in tissues are also discussed. (note)
A novel strong tracking finite-difference extended Kalman filter for nonlinear eye tracking
Institute of Scientific and Technical Information of China (English)
ZHANG ZuTao; ZHANG JiaShu
2009-01-01
Non-Intrusive methods for eye tracking are Important for many applications of vision-based human computer interaction. However, due to the high nonlinearity of eye motion, how to ensure the robust-ness of external interference and accuracy of eye tracking poses the primary obstacle to the integration of eye movements into today's interfaces. In this paper, we present a strong tracking finite-difference extended Kalman filter algorithm, aiming to overcome the difficulty In modeling nonlinear eye tracking. In filtering calculation, strong tracking factor is introduced to modify a priori covariance matrix and im-prove the accuracy of the filter. The filter uses finite-difference method to calculate partial derivatives of nonlinear functions for eye tracking. The latest experimental results show the validity of our method for eye tracking under realistic conditions.
Implementation of compact finite-difference method to parabolized Navier-Stokes equations
International Nuclear Information System (INIS)
Esfahanian, V.; Hejranfar, K.; Darian, H.M.
2005-01-01
The numerical simulation of the Parabolized Navier-Stokes (PNS) equations for supersonic/hypersonic flow field is obtained by using the fourth-order compact finite-difference method. The PNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming. A shock fitting procedure is utilized to obtain the accurate solution in the vicinity of the shock. The computations are performed for hypersonic axisymmetric flow over a blunt cone. The present results for the flow field along with those of the second-order method are presented and accuracy analysis is performed to insure the fourth-order accuracy of the method. (author)
International Nuclear Information System (INIS)
Waligorski, M.P.R.; Urbanczyk, K.M.
1975-01-01
The basic principles of the finite-difference approximation applied to the solution of electrostatic field distributions in gaseous proportional counters are given. Using this method, complicated two-dimensional electrostatic problems may be solved, taking into account any number of anodes, each with its own radius, and any cathode shape. A general formula for introducing the anode radii into the calculations is derived and a method of obtaining extremely accurate (up to 0.1%) solutions is developed. Several examples of potential and absolute field distributions for single rectangular and multiwire proportional counters are calculated and compared with exact results according to Tomitani, in order to discuss in detail errors of the finite-difference approximation. (author)
Directory of Open Access Journals (Sweden)
Xinfeng Ruan
2013-01-01
Full Text Available We study option pricing with risk-minimization criterion in an incomplete market where the dynamics of the risky underlying asset is governed by a jump diffusion equation with stochastic volatility. We obtain the Radon-Nikodym derivative for the minimal martingale measure and a partial integro-differential equation (PIDE of European option. The finite difference method is employed to compute the European option valuation of PIDE.
Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method
International Nuclear Information System (INIS)
Xu Qi; Yu Ganglin; Wang Kan; Sun Jialong
2014-01-01
In this paper, the adaptability of the neutron diffusion numerical algorithm on GPUs was studied, and a GPU-accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. The IAEA 3D PWR benchmark problem was calculated in the numerical test. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. (authors)
Transport and dispersion of pollutants in surface impoundments: a finite difference model
Energy Technology Data Exchange (ETDEWEB)
Yeh, G.T.
1980-07-01
A surface impoundment model by finite-difference (SIMFD) has been developed. SIMFD computes the flow rate, velocity field, and the concentration distribution of pollutants in surface impoundments with any number of islands located within the region of interest. Theoretical derivations and numerical algorithm are described in detail. Instructions for the application of SIMFD and listings of the FORTRAN IV source program are provided. Two sample problems are given to illustrate the application and validity of the model.
Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R
2009-01-01
This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.
Dey, C.; Dey, S. K.
1983-01-01
An explicit finite difference scheme consisting of a predictor and a corrector has been developed and applied to solve some hyperbolic partial differential equations (PDEs). The corrector is a convex-type function which is applied at each time level and at each mesh point. It consists of a parameter which may be estimated such that for larger time steps the algorithm should remain stable and generate a fast speed of convergence to the steady-state solution. Some examples have been given.
TRUMP3-JR: a finite difference computer program for nonlinear heat conduction problems
International Nuclear Information System (INIS)
Ikushima, Takeshi
1984-02-01
Computer program TRUMP3-JR is a revised version of TRUMP3 which is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Pre- and post-processings for input data generation and graphical representations of calculation results of TRUMP3 are avaiable in TRUMP3-JR. The calculation equations, program descriptions and user's instruction are presented. A sample problem is described to demonstrate the use of the program. (author)
Lei Wang; Hongjun Yin; Xiaoshuang Yang; Chuncheng Yang; Jing Fu
2015-01-01
Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare wi...
Lansing, Faiza S.; Rascoe, Daniel L.
1993-01-01
This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.
Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method
Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang
2017-06-01
Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.
Rotational degree-of-freedom synthesis: An optimised finite difference method for non-exact data
Gibbons, T. J.; Öztürk, E.; Sims, N. D.
2018-01-01
Measuring the rotational dynamic behaviour of a structure is important for many areas of dynamics such as passive vibration control, acoustics, and model updating. Specialist and dedicated equipment is often needed, unless the rotational degree-of-freedom is synthesised based upon translational data. However, this involves numerically differentiating the translational mode shapes to approximate the rotational modes, for example using a finite difference algorithm. A key challenge with this approach is choosing the measurement spacing between the data points, an issue which has often been overlooked in the published literature. The present contribution will for the first time prove that the use of a finite difference approach can be unstable when using non-exact measured data and a small measurement spacing, for beam-like structures. Then, a generalised analytical error analysis is used to propose an optimised measurement spacing, which balances the numerical error of the finite difference equation with the propagation error from the perturbed data. The approach is demonstrated using both numerical and experimental investigations. It is shown that by obtaining a small number of test measurements it is possible to optimise the measurement accuracy, without any further assumptions on the boundary conditions of the structure.
Wang, Yi
2016-07-21
Velocity of fluid flow in underground porous media is 6~12 orders of magnitudes lower than that in pipelines. If numerical errors are not carefully controlled in this kind of simulations, high distortion of the final results may occur [1-4]. To fit the high accuracy demands of fluid flow simulations in porous media, traditional finite difference methods and numerical integration methods are discussed and corresponding high-accurate methods are developed. When applied to the direct calculation of full-tensor permeability for underground flow, the high-accurate finite difference method is confirmed to have numerical error as low as 10-5% while the high-accurate numerical integration method has numerical error around 0%. Thus, the approach combining the high-accurate finite difference and numerical integration methods is a reliable way to efficiently determine the characteristics of general full-tensor permeability such as maximum and minimum permeability components, principal direction and anisotropic ratio. Copyright © Global-Science Press 2016.
Enhanced finite difference scheme for the neutron diffusion equation using the importance function
International Nuclear Information System (INIS)
Vagheian, Mehran; Vosoughi, Naser; Gharib, Morteza
2016-01-01
Highlights: • An enhanced finite difference scheme for the neutron diffusion equation is proposed. • A seven-step algorithm is considered based on the importance function. • Mesh points are distributed through entire reactor core with respect to the importance function. • The results all proved that the proposed algorithm is highly efficient. - Abstract: Mesh point positions in Finite Difference Method (FDM) of discretization for the neutron diffusion equation can remarkably affect the averaged neutron fluxes as well as the effective multiplication factor. In this study, by aid of improving the mesh point positions, an enhanced finite difference scheme for the neutron diffusion equation is proposed based on the neutron importance function. In order to determine the neutron importance function, the adjoint (backward) neutron diffusion calculations are performed in the same procedure as for the forward calculations. Considering the neutron importance function, the mesh points can be improved through the entire reactor core. Accordingly, in regions with greater neutron importance, density of mesh elements is higher than that in regions with less importance. The forward calculations are then performed for both of the uniform and improved non-uniform mesh point distributions and the results (the neutron fluxes along with the corresponding eigenvalues) for the two cases are compared with each other. The results are benchmarked against the reference values (with fine meshes) for Kang and Rod Bundle BWR benchmark problems. These benchmark cases revealed that the improved non-uniform mesh point distribution is highly efficient.
Modelling migration in multilayer systems by a finite difference method: the spherical symmetry case
International Nuclear Information System (INIS)
Hojbota, C I; Toşa, V; Mercea, P V
2013-01-01
We present a numerical model based on finite differences to solve the problem of chemical impurity migration within a multilayer spherical system. Migration here means diffusion of chemical species in conditions of concentration partitioning at layer interfaces due to different solubilities of the migrant in different layers. We detail here the numerical model and discuss the results of its implementation. To validate the method we compare it with cases where an analytic solution exists. We also present an application of our model to a practical problem in which we compute the migration of caprolactam from the packaging multilayer foil into the food
International Nuclear Information System (INIS)
Kriventsev, Vladimir
2000-09-01
Most of thermal hydraulic processes in nuclear engineering can be described by general convection-diffusion equations that are often can be simulated numerically with finite-difference method (FDM). An effective scheme for finite-difference discretization of such equations is presented in this report. The derivation of this scheme is based on analytical solutions of a simplified one-dimensional equation written for every control volume of the finite-difference mesh. These analytical solutions are constructed using linearized representations of both diffusion coefficient and source term. As a result, the Efficient Finite-Differencing (EFD) scheme makes it possible to significantly improve the accuracy of numerical method even using mesh systems with fewer grid nodes that, in turn, allows to speed-up numerical simulation. EFD has been carefully verified on the series of sample problems for which either analytical or very precise numerical solutions can be found. EFD has been compared with other popular FDM schemes including novel, accurate (as well as sophisticated) methods. Among the methods compared were well-known central difference scheme, upwind scheme, exponential differencing and hybrid schemes of Spalding. Also, newly developed finite-difference schemes, such as the the quadratic upstream (QUICK) scheme of Leonard, the locally analytic differencing (LOAD) scheme of Wong and Raithby, the flux-spline scheme proposed by Varejago and Patankar as well as the latest LENS discretization of Sakai have been compared. Detailed results of this comparison are given in this report. These tests have shown a high efficiency of the EFD scheme. For most of sample problems considered EFD has demonstrated the numerical error that appeared to be in orders of magnitude lower than that of other discretization methods. Or, in other words, EFD has predicted numerical solution with the same given numerical error but using much fewer grid nodes. In this report, the detailed
Mimetic finite difference method for the stokes problem on polygonal meshes
Energy Technology Data Exchange (ETDEWEB)
Lipnikov, K [Los Alamos National Laboratory; Beirao Da Veiga, L [DIPARTIMENTO DI MATE; Gyrya, V [PENNSYLVANIA STATE UNIV; Manzini, G [ISTIUTO DI MATEMATICA
2009-01-01
Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.
International Nuclear Information System (INIS)
Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi
2015-01-01
Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap
Energy Technology Data Exchange (ETDEWEB)
Ibral, Asmaa [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Zouitine, Asmaa [Département de Physique, Ecole Nationale Supérieure d' Enseignement Technique, Université Mohammed V Souissi, B. P. 6207 Rabat-Instituts, Rabat, Royaume du Maroc (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); and others
2015-02-01
Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.
Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites
Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.
2018-04-01
Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.
A mimetic finite difference method for the Stokes problem with elected edge bubbles
Energy Technology Data Exchange (ETDEWEB)
Lipnikov, K [Los Alamos National Laboratory; Berirao, L [DIPARTMENTO DI MATERMATICA
2009-01-01
A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this article is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.
Ghil, M.; Balgovind, R.
1979-01-01
The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.
Finite-difference solution of the space-angle-lethargy-dependent slowing-down transport equation
Energy Technology Data Exchange (ETDEWEB)
Matausek, M V [Boris Kidric Vinca Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)
1972-07-01
A procedure has been developed for solving the slowing-down transport equation for a cylindrically symmetric reactor system. The anisotropy of the resonance neutron flux is treated by the spherical harmonics formalism, which reduces the space-angle-Iethargy-dependent transport equation to a matrix integro-differential equation in space and lethargy. Replacing further the lethargy transfer integral by a finite-difference form, a set of matrix ordinary differential equations is obtained, with lethargy-and space dependent coefficients. If the lethargy pivotal points are chosen dense enough so that the difference correction term can be ignored, this set assumes a lower block triangular form and can be solved directly by forward block substitution. As in each step of the finite-difference procedure a boundary value problem has to be solved for a non-homogeneous system of ordinary differential equations with space-dependent coefficients, application of any standard numerical procedure, for example, the finite-difference method or the method of adjoint equations, is too cumbersome and would make the whole procedure practically inapplicable. A simple and efficient approximation is proposed here, allowing analytical solution for the space dependence of the spherical-harmonics flux moments, and hence the derivation of the recurrence relations between the flux moments at successive lethargy pivotal points. According to the procedure indicated above a computer code has been developed for the CDC -3600 computer, which uses the KEDAK nuclear data file. The space and lethargy distribution of the resonance neutrons can be computed in such a detailed fashion as the neutron cross-sections are known for the reactor materials considered. The computing time is relatively short so that the code can be efficiently used, either autonomously, or as part of some complex modular scheme. Typical results will be presented and discussed in order to prove and illustrate the applicability of the
Elastic frequency-domain finite-difference contrast source inversion method
International Nuclear Information System (INIS)
He, Qinglong; Chen, Yong; Han, Bo; Li, Yang
2016-01-01
In this work, we extend the finite-difference contrast source inversion (FD-CSI) method to the frequency-domain elastic wave equations, where the parameters describing the subsurface structure are simultaneously reconstructed. The FD-CSI method is an iterative nonlinear inversion method, which exhibits several strengths. First, the finite-difference operator only relies on the background media and the given angular frequency, both of which are unchanged during inversion. Therefore, the matrix decomposition is performed only once at the beginning of the iteration if a direct solver is employed. This makes the inversion process relatively efficient in terms of the computational cost. In addition, the FD-CSI method automatically normalizes different parameters, which could avoid the numerical problems arising from the difference of the parameter magnitude. We exploit a parallel implementation of the FD-CSI method based on the domain decomposition method, ensuring a satisfactory scalability for large-scale problems. A simple numerical example with a homogeneous background medium is used to investigate the convergence of the elastic FD-CSI method. Moreover, the Marmousi II model proposed as a benchmark for testing seismic imaging methods is presented to demonstrate the performance of the elastic FD-CSI method in an inhomogeneous background medium. (paper)
Finite difference applied to the reconstruction method of the nuclear power density distribution
International Nuclear Information System (INIS)
Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.
2016-01-01
Highlights: • A method for reconstruction of the power density distribution is presented. • The method uses discretization by finite differences of 2D neutrons diffusion equation. • The discretization is performed homogeneous meshes with dimensions of a fuel cell. • The discretization is combined with flux distributions on the four node surfaces. • The maximum errors in reconstruction occur in the peripheral water region. - Abstract: In this reconstruction method the two-dimensional (2D) neutron diffusion equation is discretized by finite differences, employed to two energy groups (2G) and meshes with fuel-pin cell dimensions. The Nodal Expansion Method (NEM) makes use of surface discontinuity factors of the node and provides for reconstruction method the effective multiplication factor of the problem and the four surface average fluxes in homogeneous nodes with size of a fuel assembly (FA). The reconstruction process combines the discretized 2D diffusion equation by finite differences with fluxes distribution on four surfaces of the nodes. These distributions are obtained for each surfaces from a fourth order one-dimensional (1D) polynomial expansion with five coefficients to be determined. The conditions necessary for coefficients determination are three average fluxes on consecutive surfaces of the three nodes and two fluxes in corners between these three surface fluxes. Corner fluxes of the node are determined using a third order 1D polynomial expansion with four coefficients. This reconstruction method uses heterogeneous nuclear parameters directly providing the heterogeneous neutron flux distribution and the detailed nuclear power density distribution within the FAs. The results obtained with this method has good accuracy and efficiency when compared with reference values.
A study of unstable rock failures using finite difference and discrete element methods
Garvey, Ryan J.
Case histories in mining have long described pillars or faces of rock failing violently with an accompanying rapid ejection of debris and broken material into the working areas of the mine. These unstable failures have resulted in large losses of life and collapses of entire mine panels. Modern mining operations take significant steps to reduce the likelihood of unstable failure, however eliminating their occurrence is difficult in practice. Researchers over several decades have supplemented studies of unstable failures through the application of various numerical methods. The direction of the current research is to extend these methods and to develop improved numerical tools with which to study unstable failures in underground mining layouts. An extensive study is first conducted on the expression of unstable failure in discrete element and finite difference methods. Simulated uniaxial compressive strength tests are run on brittle rock specimens. Stable or unstable loading conditions are applied onto the brittle specimens by a pair of elastic platens with ranging stiffnesses. Determinations of instability are established through stress and strain histories taken for the specimen and the system. Additional numerical tools are then developed for the finite difference method to analyze unstable failure in larger mine models. Instability identifiers are established for assessing the locations and relative magnitudes of unstable failure through measures of rapid dynamic motion. An energy balance is developed which calculates the excess energy released as a result of unstable equilibria in rock systems. These tools are validated through uniaxial and triaxial compressive strength tests and are extended to models of coal pillars and a simplified mining layout. The results of the finite difference simulations reveal that the instability identifiers and excess energy calculations provide a generalized methodology for assessing unstable failures within potentially complex
International Nuclear Information System (INIS)
Li Bihong; Shuang Na; Liu Qingcheng
2006-01-01
The principle of finite difference method is introduced, and the radon field distribution over sandstone-type uranium deposit is narrated. The radon field distribution theory equation is established. To solve radon field distribution equation using finite difference algorithm is to provide the value computational method for forward calculation about radon field over sandstone-type uranium mine. Study on 2-D finite difference method on the center of either high anomaly radon fields in view of the character of radon field over sandstone-type uranium provide an algorithm for further research. (authors)
DEFF Research Database (Denmark)
Santillan, Arturo Orozco
2011-01-01
The aim of the work described in this paper has been to investigate the use of the finite-difference time-domain method to describe the interactions between a moving object and a sound field. The main objective was to simulate oscillational instabilities that appear in single-axis acoustic...... levitation devices and to describe their evolution in time to further understand the physical mechanism involved. The study shows that the method gives accurate results for steady state conditions, and that it is a promising tool for simulations with a moving object....
Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids
Housman, Jeffrey A.; Kiris, Cetin
2016-01-01
Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.
COVE-1: a finite difference creep collapse code for oval fuel pin cladding material
International Nuclear Information System (INIS)
Mohr, C.L.
1975-03-01
COVE-1 is a time-dependent incremental creep collapse code that estimates the change in ovality of a fuel pin cladding tube. It uses a finite difference method of solving the differential equations which describe the deflection of the tube walls as a function of time. The physical problem is nonlinear, both with respect to geometry and material properties, which requires the use of an incremental, analytical, path-dependent solution. The application of this code is intended primarily for tubes manufactured from Zircaloy. Therefore, provision has been made to include some of the effects of anisotropy in the flow equations for inelastic incremental deformations. 10 references. (U.S.)
Directory of Open Access Journals (Sweden)
Yuan Zhang
2016-01-01
Full Text Available Based on finite difference method, a mathematical model and a numerical model written by Fortran language were established in the paper. Then a series of experiments were conducted to figure out the evolution law of temperature field in high geothermal roadway. Research results indicate that temperature disturbance range increases gradually as the unsteady heat conduction goes on and it presents power function relationship with dimensionless time. Based on the case analysis, there is no distinct expansion of temperature disturbance range after four years of ventilation, when the temperature disturbance range R=13.6.
A multigrid algorithm for the cell-centered finite difference scheme
Ewing, Richard E.; Shen, Jian
1993-01-01
In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.
Analysis of multi lobe journal bearings with surface roughness using finite difference method
PhaniRaja Kumar, K.; Bhaskar, SUdaya; Manzoor Hussain, M.
2018-04-01
Multi lobe journal bearings are used for high operating speeds and high loads in machines. In this paper symmetrical multi lobe journal bearings are analyzed to find out the effect of surface roughnessduring non linear loading. Using the fourth order RungeKutta method, time transient analysis was performed to calculate and plot the journal centre trajectories. Flow factor method is used to evaluate the roughness and the finite difference method (FDM) is used to predict the pressure distribution over the bearing surface. The Transient analysis is done on the multi lobe journal bearings for threedifferent surface roughness orientations. Longitudinal surface roughness is more effective when compared with isotopic and traverse surface roughness.
Four-level conservative finite-difference schemes for Boussinesq paradigm equation
Kolkovska, N.
2013-10-01
In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.
Accuracy of spectral and finite difference schemes in 2D advection problems
DEFF Research Database (Denmark)
Naulin, V.; Nielsen, A.H.
2003-01-01
In this paper we investigate the accuracy of two numerical procedures commonly used to solve 2D advection problems: spectral and finite difference (FD) schemes. These schemes are widely used, simulating, e.g., neutral and plasma flows. FD schemes have long been considered fast, relatively easy...... that the accuracy of FD schemes can be significantly improved if one is careful in choosing an appropriate FD scheme that reflects conservation properties of the nonlinear terms and in setting up the grid in accordance with the problem....
Agarwal, P.; El-Sayed, A. A.
2018-06-01
In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.
New way for determining electron energy levels in quantum dots arrays using finite difference method
Dujardin, F.; Assaid, E.; Feddi, E.
2018-06-01
Electronic states are investigated in quantum dots arrays, depending on the type of cubic Bravais lattice (primitive, body centered or face centered) according to which the dots are arranged, the size of the dots and the interdot distance. It is shown that the ground state energy level can undergo significant variations when these parameters are modified. The results were obtained by means of finite difference method which has proved to be easily adaptable, efficient and precise. The symmetry properties of the lattice have been used to reduce the size of the Hamiltonian matrix.
Calculating modes of quantum wire systems using a finite difference technique
Directory of Open Access Journals (Sweden)
T Mardani
2013-03-01
Full Text Available In this paper, the Schrodinger equation for a quantum wire is solved using a finite difference approach. A new aspect in this work is plotting wave function on cross section of rectangular cross-sectional wire in two dimensions, periodically. It is found that the correct eigen energies occur when wave functions have a complete symmetry. If the value of eigen energy has a small increase or decrease in neighborhood of the correct energy the symmetry will be destroyed and aperturbation value at the first of wave function will be observed. In addition, the demand on computer memory varies linearly with the size of the system under investigation.
Solving the Schroedinger equation using the finite difference time domain method
International Nuclear Information System (INIS)
Sudiarta, I Wayan; Geldart, D J Wallace
2007-01-01
In this paper, we solve the Schroedinger equation using the finite difference time domain (FDTD) method to determine energies and eigenfunctions. In order to apply the FDTD method, the Schroedinger equation is first transformed into a diffusion equation by the imaginary time transformation. The resulting time-domain diffusion equation is then solved numerically by the FDTD method. The theory and an algorithm are provided for the procedure. Numerical results are given for illustrative examples in one, two and three dimensions. It is shown that the FDTD method accurately determines eigenfunctions and energies of these systems
Scattering analysis of periodic structures using finite-difference time-domain
ElMahgoub, Khaled; Elsherbeni, Atef Z
2012-01-01
Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algor
Double absorbing boundaries for finite-difference time-domain electromagnetics
Energy Technology Data Exchange (ETDEWEB)
LaGrone, John, E-mail: jlagrone@smu.edu; Hagstrom, Thomas, E-mail: thagstrom@smu.edu
2016-12-01
We describe the implementation of optimal local radiation boundary condition sequences for second order finite difference approximations to Maxwell's equations and the scalar wave equation using the double absorbing boundary formulation. Numerical experiments are presented which demonstrate that the design accuracy of the boundary conditions is achieved and, for comparable effort, exceeds that of a convolution perfectly matched layer with reasonably chosen parameters. An advantage of the proposed approach is that parameters can be chosen using an accurate a priori error bound.
Raeli, Alice; Bergmann, Michel; Iollo, Angelo
2018-02-01
We consider problems governed by a linear elliptic equation with varying coefficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. We present a compact finite-difference scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel data structure. The main idea is to optimize the truncation error of the discretization scheme as a function of the local grid configuration to achieve second-order accuracy. Numerical illustrations are presented in two and three-dimensional configurations.
Finite difference time domain modeling of light matter interaction in light-propelled microtools
DEFF Research Database (Denmark)
Bañas, Andrew Rafael; Palima, Darwin; Aabo, Thomas
2013-01-01
save time as it helps optimize the structures prior to fabrication and experiments. In addition to field distributions, optical forces can also be obtained using the Maxwell stress tensor formulation. By calculating the forces on bent waveguides subjected to tailored static light distributions, we...... may trigger highly localized non linear processes in the surface of a cell. Since these functionalities are strongly dependent on design, it is important to use models that can handle complexities and take in little simplifying assumptions about the system. Hence, we use the finite difference time...
Mustapha, K.
2017-06-03
Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.
International Nuclear Information System (INIS)
Saha Ray, S.; Patra, A.
2012-01-01
Highlights: ► In this paper fractional neutron point kinetic equation has been analyzed. ► The numerical solution for fractional neutron point kinetic equation is obtained. ► Explicit Finite Difference Method has been applied. ► Supercritical reactivity, critical reactivity and subcritical reactivity analyzed. ► Comparison between fractional and classical neutron density is presented. - Abstract: In the present article, a numerical procedure to efficiently calculate the solution for fractional point kinetics equation in nuclear reactor dynamics is investigated. The Explicit Finite Difference Method is applied to solve the fractional neutron point kinetic equation with the Grunwald–Letnikov (GL) definition (). Fractional Neutron Point Kinetic Model has been analyzed for the dynamic behavior of the neutron motion in which the relaxation time associated with a variation in the neutron flux involves a fractional order acting as exponent of the relaxation time, to obtain the best operation of a nuclear reactor dynamics. Results for neutron dynamic behavior for subcritical reactivity, supercritical reactivity and critical reactivity and also for different values of fractional order have been presented and compared with the classical neutron point kinetic (NPK) equation as well as the results obtained by the learned researchers .
High-order asynchrony-tolerant finite difference schemes for partial differential equations
Aditya, Konduri; Donzis, Diego A.
2017-12-01
Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.
Mustapha, K.; Furati, K.; Knio, Omar; Maitre, O. Le
2017-01-01
Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.
Transient analysis of printed lines using finite-difference time-domain method
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Shahid [Thomas Jefferson National Accelerator Facility, 12050 Jefferson Avenue, Suite 704, Newport News, VA, 23606, USA
2012-03-29
Comprehensive studies of ultra-wideband pulses and electromagnetic coupling on printed coupled lines have been performed using full-wave 3D finite-difference time-domain analysis. Effects of unequal phase velocities of coupled modes, coupling between line traces, and the frequency dispersion on the waveform fidelity and crosstalk have been investigated in detail. To discriminate the contributions of different mechanisms into pulse evolution, single and coupled microstrip lines without (ϵ_{r} = 1) and with (ϵ_{r} > 1) dielectric substrates have been examined. To consistently compare the performance of the coupled lines with substrates of different permittivities and transients of different characteristic times, a generic metric similar to the electrical wavelength has been introduced. The features of pulse propagation on coupled lines with layered and pedestal substrates and on the irregular traces have been explored. Finally, physical interpretations of the simulation results are discussed in the paper.
A moving mesh finite difference method for equilibrium radiation diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaobo, E-mail: xwindyb@126.com [Department of Mathematics, College of Science, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Huang, Weizhang, E-mail: whuang@ku.edu [Department of Mathematics, University of Kansas, Lawrence, KS 66045 (United States); Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn [School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen, Fujian 361005 (China)
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.
Evaluation of explicit finite-difference techniques for LMFBR safety analysis
International Nuclear Information System (INIS)
Bernstein, D.; Golden, R.D.; Gross, M.B.; Hofmann, R.
1976-01-01
In the past few years, the use of explicit finite-difference (EFD) and finite-element computer programs for reactor safety calculations has steadily increased. One of the major areas of application has been for the analysis of hypothetical core disruptive accidents in liquid metal fast breeder reactors. Most of these EFD codes were derived to varying degrees from the same roots, but the codes are large and have progressed rapidly, so there may be substantial differences among them in spite of a common ancestry. When this fact is coupled with the complexity of HCDA calculations, it is not possible to assure that independent calculations of an HCDA will produce substantially the same results. Given the extreme importance of nuclear safety, it is essential to be sure that HCDA analyses are correct, and additional code validation is therefore desirable. A comparative evaluation of HCDA computational techniques is being performed under an ERDA-sponsored program called APRICOT (Analysis of PRImary COntainment Transients). The philosophy, calculations, and preliminary results from this program are described in this paper
Parallelized implicit propagators for the finite-difference Schrödinger equation
Parker, Jonathan; Taylor, K. T.
1995-08-01
We describe the application of block Gauss-Seidel and block Jacobi iterative methods to the design of implicit propagators for finite-difference models of the time-dependent Schrödinger equation. The block-wise iterative methods discussed here are mixed direct-iterative methods for solving simultaneous equations, in the sense that direct methods (e.g. LU decomposition) are used to invert certain block sub-matrices, and iterative methods are used to complete the solution. We describe parallel variants of the basic algorithm that are well suited to the medium- to coarse-grained parallelism of work-station clusters, and MIMD supercomputers, and we show that under a wide range of conditions, fine-grained parallelism of the computation can be achieved. Numerical tests are conducted on a typical one-electron atom Hamiltonian. The methods converge robustly to machine precision (15 significant figures), in some cases in as few as 6 or 7 iterations. The rate of convergence is nearly independent of the finite-difference grid-point separations.
A Proposed Stochastic Finite Difference Approach Based on Homogenous Chaos Expansion
Directory of Open Access Journals (Sweden)
O. H. Galal
2013-01-01
Full Text Available This paper proposes a stochastic finite difference approach, based on homogenous chaos expansion (SFDHC. The said approach can handle time dependent nonlinear as well as linear systems with deterministic or stochastic initial and boundary conditions. In this approach, included stochastic parameters are modeled as second-order stochastic processes and are expanded using Karhunen-Loève expansion, while the response function is approximated using homogenous chaos expansion. Galerkin projection is used in converting the original stochastic partial differential equation (PDE into a set of coupled deterministic partial differential equations and then solved using finite difference method. Two well-known equations were used for efficiency validation of the method proposed. First one being the linear diffusion equation with stochastic parameter and the second is the nonlinear Burger's equation with stochastic parameter and stochastic initial and boundary conditions. In both of these examples, the probability distribution function of the response manifested close conformity to the results obtained from Monte Carlo simulation with optimized computational cost.
A moving mesh finite difference method for equilibrium radiation diffusion equations
International Nuclear Information System (INIS)
Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian
2015-01-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation
International Nuclear Information System (INIS)
Potemki, Valeri G.; Borisevich, Valentine D.; Yupatov, Sergei V.
1996-01-01
This paper describes the the next evolution step in development of the direct method for solving systems of Nonlinear Algebraic Equations (SNAE). These equations arise from the finite difference approximation of original nonlinear partial differential equations (PDE). This method has been extended on the SNAE with three variables. The solving SNAE bases on Reiterating General Singular Value Decomposition of rectangular matrix pencils (RGSVD-algorithm). In contrast to the computer algebra algorithm in integer arithmetic based on the reduction to the Groebner's basis that algorithm is working in floating point arithmetic and realizes the reduction to the Kronecker's form. The possibilities of the method are illustrated on the example of solving the one-dimensional diffusion equation for 3-component model isotope mixture in a ga centrifuge. The implicit scheme for the finite difference equations without simplifying the nonlinear properties of the original equations is realized. The technique offered provides convergence to the solution for the single run. The Toolbox SNAE is developed in the framework of the high performance numeric computation and visualization software MATLAB. It includes more than 30 modules in MATLAB language for solving SNAE with two and three variables. (author)
Finite difference method calculations of X-ray absorption fine structure for copper
Energy Technology Data Exchange (ETDEWEB)
Bourke, J.D. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia); Chantler, C.T. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)]. E-mail: chantler@physics.unimelb.edu.au; Witte, C. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)
2007-01-15
The finite difference method is extended to calculate X-ray absorption fine structure (XAFS) for solid state copper. These extensions include the incorporation of a Monte Carlo frozen phonon technique to simulate the effect of thermal vibrations under a correlated Debye-Waller model, and the inclusion of broadening effects from inelastic processes. Spectra are obtained over an energy range in excess of 300 eV above the K absorption edge-more than twice the greatest energy range previously reported for a solid state calculation using this method. We find this method is highly sensitive to values of the photoelectron inelastic mean free path, allowing us to probe the accuracy of current models of this parameter, particularly at low energies. We therefore find that experimental data for the photoelectron inelastic mean free path can be obtained by this method. Our results compare favourably with high precision measurements of the X-ray mass attenuation coefficient for copper, reaching agreement to within 3%, and improving previous results using the finite difference method by an order of magnitude.
A coarse-mesh nodal method-diffusive-mesh finite difference method
International Nuclear Information System (INIS)
Joo, H.; Nichols, W.R.
1994-01-01
Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper
Gao, Longfei; Ketcheson, David I.; Keyes, David E.
2017-01-01
We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application
International Nuclear Information System (INIS)
Deupree, R.G.
1977-01-01
Finite difference techniques were used to examine the coupling of radial pulsation and convection in stellar models having comparable time scales. Numerical procedures are emphasized, including diagnostics to help determine the range of free parameters
Non-linear analysis of skew thin plate by finite difference method
International Nuclear Information System (INIS)
Kim, Chi Kyung; Hwang, Myung Hwan
2012-01-01
This paper deals with a discrete analysis capability for predicting the geometrically nonlinear behavior of skew thin plate subjected to uniform pressure. The differential equations are discretized by means of the finite difference method which are used to determine the deflections and the in-plane stress functions of plates and reduced to several sets of linear algebraic simultaneous equations. For the geometrically non-linear, large deflection behavior of the plate, the non-linear plate theory is used for the analysis. An iterative scheme is employed to solve these quasi-linear algebraic equations. Several problems are solved which illustrate the potential of the method for predicting the finite deflection and stress. For increasing lateral pressures, the maximum principal tensile stress occurs at the center of the plate and migrates toward the corners as the load increases. It was deemed important to describe the locations of the maximum principal tensile stress as it occurs. The load-deflection relations and the maximum bending and membrane stresses for each case are presented and discussed
Finite element modelling of Plantar Fascia response during running on different surface types
Razak, A. H. A.; Basaruddin, K. S.; Salleh, A. F.; Rusli, W. M. R.; Hashim, M. S. M.; Daud, R.
2017-10-01
Plantar fascia is a ligament found in human foot structure located beneath the skin of human foot that functioning to stabilize longitudinal arch of human foot during standing and normal gait. To perform direct experiment on plantar fascia seems very difficult since the structure located underneath the soft tissue. The aim of this study is to develop a finite element (FE) model of foot with plantar fascia and investigate the effect of the surface hardness on biomechanical response of plantar fascia during running. The plantar fascia model was developed using Solidworks 2015 according to the bone structure of foot model that was obtained from Turbosquid database. Boundary conditions were set out based on the data obtained from experiment of ground reaction force response during running on different surface hardness. The finite element analysis was performed using Ansys 14. The results found that the peak of stress and strain distribution were occur on the insertion of plantar fascia to bone especially on calcaneal area. Plantar fascia became stiffer with increment of Young’s modulus value and was able to resist more loads. Strain of plantar fascia was decreased when Young’s modulus increased with the same amount of loading.
Contact Stress Analysis for Gears of Different Helix Angle Using Finite Element Method
Directory of Open Access Journals (Sweden)
Patil Santosh
2014-07-01
Full Text Available The gear contact stress problem has been a great point of interest for many years, but still an extensive research is required to understand the various parameters affecting this stress. Among such parameters, helix angle is one which has played a crucial role in variation of contact stress. Numerous studies have been carried out on spur gear for contact stress variation. Hence, the present work is an attempt to study the contact stresses among the helical gear pairs, under static conditions, by using a 3D finite element method. The helical gear pairs on which the analysis is carried are 0, 5, 15, 25 degree helical gear sets. The Lagrange multiplier algorithm has been used between the contacting pairs to determine the stresses. The helical gear contact stress is evaluated using FE model and results have also been found at different coefficient of friction, varying from 0.0 to 0.3. The FE results have been further compared with the analytical calculations. The analytical calculations are based upon Hertz and AGMA equations, which are modified to include helix angle. The commercial finite element software was used in the study and it was shown that this approach can be applied to gear design efficiently. The contact stress results have shown a decreasing trend, with increase in helix angle.
Finite element modelling of different CANDU fuel bundle types in various refuelling conditions
International Nuclear Information System (INIS)
Roman, M. R.; Ionescu, D. V.; Olteanu, G.; Florea, S.; Radut, A. C.
2016-01-01
The objective of this paper is to develop a finite element model for static strength analysis of the CANDU standard with 37 elements fuel bundle and the SEU43 with 43 elements fuel bundle design for various refuelling conditions. The computer code, ANSYS7.1, is used to simulate the axial compression in CANDU type fuel bundles subject to hydraulic drag loads, deflection of fuel elements, stresses and displacements in the end plates. Two possible situations for the fuelling machine side stops are considered in our analyses, as follows: the last fuel bundle is supported by the two side stops and a side stop can be blocked therefore, the last fuel bundle is supported by only one side stop. The results of the analyses performed are briefly presented and also illustrated in a graphical form. The finite element model developed in present study is verified against test results for endplate displacement and element bowing obtained from strength tests with fuel bundle string and fuelling machine side-stop simulators. Comparison of ANSYS model predictions with these experimental results led to a very good agreement. Despite the difference in hydraulic load between SEU43 and CANDU standard fuel bundles strings, the maximum stress in the SEU43 endplate is about the same with the maximum stress in the CANDU standard endplate. The comparative assessment reveals that SEU43 fuel bundle is able to withstand high flow rate without showing a significant geometric instability. (authors)
Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs
International Nuclear Information System (INIS)
Bollig, Evan F.; Flyer, Natasha; Erlebacher, Gordon
2012-01-01
This paper presents parallelization strategies for the radial basis function-finite difference (RBF-FD) method. As a generalized finite differencing scheme, the RBF-FD method functions without the need for underlying meshes to structure nodes. It offers high-order accuracy approximation and scales as O(N) per time step, with N being with the total number of nodes. To our knowledge, this is the first implementation of the RBF-FD method to leverage GPU accelerators for the solution of PDEs. Additionally, this implementation is the first to span both multiple CPUs and multiple GPUs. OpenCL kernels target the GPUs and inter-processor communication and synchronization is managed by the Message Passing Interface (MPI). We verify our implementation of the RBF-FD method with two hyperbolic PDEs on the sphere, and demonstrate up to 9x speedup on a commodity GPU with unoptimized kernel implementations. On a high performance cluster, the method achieves up to 7x speedup for the maximum problem size of 27,556 nodes.
Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang
2017-11-01
Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.
International Nuclear Information System (INIS)
Kraus, H.G.; Jones, J.L.
1986-01-01
The problem of non-linear superconducting magnet and electrical protection circuit system transients is formulated. To enable studying the effects of coil normalization transients, coil distortion (due to imbalanced magnetic forces), internal coil arcs and shorts, and other normal and off-normal circuit element responses, the following capabilities are included: temporal, voltage and current-dependent voltage sources, current sources, resistors, capacitors and inductors. The concept of self-mutual inductance, and the form of the associated inductance matrix, is discussed for internally shorted coils. This is a Kirchhoff's voltage loop law and Kirchhoff's current node law formulation. The non-linear integrodifferential equation set is solved via a unique hybrid finite difference/integral finite element technique. (author)
International Nuclear Information System (INIS)
Grant, C.R.
1996-01-01
The reactor code PUMA, developed in CNEA, simulates nuclear reactors discretizing space in finite difference elements. Core representation is performed by means a cylindrical mesh, but the reactor channels are arranged in an hexagonal lattice. That is why a mapping using volume intersections must be used. This spatial treatment is the reason of an overestimation of the control rod reactivity values, which must be adjusted modifying the incremental cross sections. Also, a not very good treatment of the continuity conditions between core and reflector leads to an overestimation of channel power of the peripherical fuel elements between 5 to 8 per cent. Another code, DELFIN, developed also in CNEA, treats the spatial discretization using heterogeneous finite elements, allowing a correct treatment of the continuity of fluxes and current among elements and a more realistic representation of the hexagonal lattice of the reactor. A comparison between results obtained using both methods in done in this paper. (author). 4 refs., 3 figs
Sohn, Kiho D.; Ip, Shek-Se P.
1988-01-01
Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.
GPU-accelerated 3D neutron diffusion code based on finite difference method
Energy Technology Data Exchange (ETDEWEB)
Xu, Q.; Yu, G.; Wang, K. [Dept. of Engineering Physics, Tsinghua Univ. (China)
2012-07-01
Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)
GPU-accelerated 3D neutron diffusion code based on finite difference method
International Nuclear Information System (INIS)
Xu, Q.; Yu, G.; Wang, K.
2012-01-01
Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)
Shen, Yi; Li, Xiaomiao; Fu, Xiaodong; Wang, Weili
2015-11-01
Posterior tibial slope that is created during proximal tibial resection in total knee arthroplasty has emerged as an important factor in the mechanics of the knee joint and the surgical outcome. But the ideal degree of posterior tibial slope for recovery of the knee joint function and preventions of complications remains controversial and should vary in different racial groups. The objective of this paper is to investigate the effects of posterior tibial slope on contact stresses in the tibial polyethylene component of total knee prostheses. Three-dimensional finite element analysis was used to calculate contact stresses in tibial polyethylene component of total knee prostheses subjected to a compressive load. The 3D finite element model of total knee prosthesis was constructed from the images produced by 3D scanning technology. Stresses in tibial polyethylene component were calculated with four different posterior tibial slopes (0°, 3°, 6° and 9°). The 3D finite element model of total knee prosthesis we presented was well validated. We found that the stress distribution in the polythene as evaluated by the distributions of the von Mises stress, the maximum principle stress, the minimum principle stress and the Cpress were more uniform with 3° and 6° posterior tibial slopes than with 0° and 9° posterior tibial slopes. Moreover, the peaks of the above stresses and trends of changes with increasing degree of knee flexion were more ideal with 3° and 6° posterior slopes. The results suggested that the tibial component inclination might be favourable to 7°-10° so far as the stress distribution is concerned. The range of the tibial component inclination also can decrease the wear of polyethylene. Chinese posterior tibial slope is bigger than in the West, and the current domestic use of prostheses is imported from the West, so their demands to tilt back bone cutting can lead to shorten the service life of prostheses; this experiment result is of important
Castaldo, Raffaele; Tizzani, Pietro
2016-04-01
Many numerical models have been developed to simulate the deformation and stress changes associated to the faulting process. This aspect is an important topic in fracture mechanism. In the proposed study, we investigate the impact of the deep fault geometry and tectonic setting on the co-seismic ground deformation pattern associated to different earthquake phenomena. We exploit the impact of the structural-geological data in Finite Element environment through an optimization procedure. In this framework, we model the failure processes in a physical mechanical scenario to evaluate the kinematics associated to the Mw 6.1 L'Aquila 2009 earthquake (Italy), the Mw 5.9 Ferrara and Mw 5.8 Mirandola 2012 earthquake (Italy) and the Mw 8.3 Gorkha 2015 earthquake (Nepal). These seismic events are representative of different tectonic scenario: the normal, the reverse and thrust faulting processes, respectively. In order to simulate the kinematic of the analyzed natural phenomena, we assume, under the plane stress approximation (is defined to be a state of stress in which the normal stress, sz, and the shear stress sxz and syz, directed perpendicular to x-y plane are assumed to be zero), the linear elastic behavior of the involved media. The performed finite element procedure consist of through two stages: (i) compacting under the weight of the rock successions (gravity loading), the deformation model reaches a stable equilibrium; (ii) the co-seismic stage simulates, through a distributed slip along the active fault, the released stresses. To constrain the models solution, we exploit the DInSAR deformation velocity maps retrieved by satellite data acquired by old and new generation sensors, as ENVISAT, RADARSAT-2 and SENTINEL 1A, encompassing the studied earthquakes. More specifically, we first generate 2D several forward mechanical models, then, we compare these with the recorded ground deformation fields, in order to select the best boundaries setting and parameters. Finally
3D finite element analysis of tightening process of bolt and nut connections with pitch difference
Liu, X.; Noda, N.-A.; Sano, Y.; Huang, Y. T.; Takase, Y.
2018-06-01
In a wide industrial field, the bolt-nut joint is unitized as an important machine element and anti-loosening performance is always required. In this paper, the effect of a slight pitch difference between a bolt and nut is studied. Firstly, by varying the pitch difference, the prevailing torque required for the nut rotation, before the nut touches the clamped body, is measured experimentally. Secondly, the tightening torque is determined as a function of the axial force of the bolt after the nut touches the clamped body. The results show that a large value of pitch difference may provide large prevailing torque that causes an anti-loosening effect although a very large pitch difference may deteriorate the bolt axial force under a certain tightening torque. Thirdly, a suitable pitch difference is determined taking into account the anti-loosening and clamping abilities. Furthermore, the chamfered corners at nut ends are considered, and it is found that the 3D finite element analysis with considering the chamfered nut threads has a good agreement with the experimental observation. Finally, the most desirable pitch difference required for improving anti-loosening is proposed.
Thermal Analysis of Ball screw Systems by Explicit Finite Difference Method
Energy Technology Data Exchange (ETDEWEB)
Min, Bog Ki [Hanyang Univ., Seoul (Korea, Republic of); Park, Chun Hong; Chung, Sung Chong [KIMM, Daejeon (Korea, Republic of)
2016-01-15
Friction generated from balls and grooves incurs temperature rise in the ball screw system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ball screw shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ball screw. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.
Energy Technology Data Exchange (ETDEWEB)
Russell, M.B. [University of Hertfordshire, Hatfield (United Kingdom). Department of Aerospace, Automotive and Design Engineering; Probert, S.D. [Cranfield University, Bedfordshire (United Kingdom). School of Engineering
2004-12-01
The growing requirement for energy thrift and hence the increasing emphasis on 'low-purchased-energy' designs are stimulating the need for more accurate insights into the thermal behaviours of buildings and their components. This better understanding is preferably achieved, rather than by using 'closed software' or teaching the relevant mathematics outside heat-transfer lessons, but from embedding the pertinent tutoring while dealing with heat-transfer problems using an open-source code approach. Hence a finite-difference software program (FDiff3) has been composed to show the principles of numerical analysis as well as improve the undergraduates' perception of transient conduction. The pedagogic approach behind the development, its present capabilities and applications to sample test-cases are discussed. (author)
CASKETSS-HEAT: a finite difference computer program for nonlinear heat conduction problems
International Nuclear Information System (INIS)
Ikushima, Takeshi
1988-12-01
A heat conduction program CASKETSS-HEAT has been developed. CASKETSS-HEAT is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Main features of CASKETSS-HEAT are as follows. (1) One, two and three-dimensional geometries for heat conduction calculation are available. (2) Convection and radiation heat transfer of boundry can be specified. (3) Phase change and chemical change can be treated. (4) Finned surface heat transfer can be treated easily. (5) Data memory allocation in the program is variable according to problem size. (6) The program is a compatible heat transfer analysis program to the stress analysis program SAP4 and SAP5. (7) Pre- and post-processing for input data generation and graphic representation of calculation results are available. In the paper, brief illustration of calculation method, input data and sample calculation are presented. (author)
The delay function in finite difference models for nuclear channels thermo-hydraulic transients
International Nuclear Information System (INIS)
Agazzi, A.
1977-01-01
The study of the thermo-hydraulic transients in a nuclear reactor core often requires a bi- or tri-dimensional mathematical simulation of a reactor channel. The equations involved are generally solved by means of finite-difference methods. The determination of the spatial mesh-width and the time interval is strongly conditioned by the necessity of a good accuracy in the description of the delay function which defines the transfer of thermal perturbations along the cooling channel. In this paper the effects of both space and time discretization on the delay function are considered and for the classical cases of inlet temperature step and ramp universal functions and diagrams are given in order to make possible the determination of optimal spatial mesh-width and time interval, once the requested accuracy of the model is fixed in advance
Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation
International Nuclear Information System (INIS)
Sha, Wei; Huang, Zhixiang; Wu, Xianliang; Chen, Mingsheng
2007-01-01
An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to electromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In particular, new strategies for the air-dielectric interface treatment and the near-to-far-field (NFF) transformation are presented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed. Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation. Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-order methods, and can save computational resources
Directory of Open Access Journals (Sweden)
Beltrán-Prieto Juan Carlos
2016-01-01
Full Text Available The mathematical modelling of diffusion of a bleaching agent into a porous material is studied in the present paper. Law of mass conservation was applied to analize the mass transfer of a reactant from the bulk into the external surface of a solid geometrically described as a flat plate. After diffusion of the reactant, surface reaction following kinetics of first order was considered to take place. The solution of the differential equation that described the process leaded to an equation that represents the concentration profile in function of distance, porosity and Thiele modulus. The case of interfacial mass resistance is also discused. In this case, finite difference method was used for the solution of the differential equation taking into account the respective boundary conditions. The profile of concentration can be obtained after numerical especification of Thiele modulus and Biot number.
Finite difference time domain solution of electromagnetic scattering on the hypercube
International Nuclear Information System (INIS)
Calalo, R.H.; Lyons, J.R.; Imbriale, W.A.
1988-01-01
Electromagnetic fields interacting with a dielectric or conducting structure produce scattered electromagnetic fields. To model the fields produced by complicated, volumetric structures, the finite difference time domain (FDTD) method employs an iterative solution to Maxwell's time dependent curl equations. Implementations of the FDTD method intensively use memory and perform numerous calculations per time step iteration. The authors have implemented an FDTD code on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. This code allows to solve problems requiring as many as 2,048,000 unit cells on a 32 node Hypercube. For smaller problems, the code produces solutions in a fraction of the time to solve the same problems on sequential computers
Dispersive finite-difference time-domain (FDTD) analysis of the elliptic cylindrical cloak
Energy Technology Data Exchange (ETDEWEB)
Lee, Y. Y.; Ahn, D. [University of Seoul, Seoul (Korea, Republic of)
2012-05-15
A dispersive full-wave finite-difference time-domain (FDTD) model is used to calculate the performance of elliptic cylindrical cloaking devices. The permittivity and the permeability tensors for the cloaking structure are derived by using an effective medium approach in general relativity. The elliptic cylindrical invisibility devices are found to show imperfect cloaking, and the cloaking performance is found to depend on the polarization of the incident waves, the direction of the propagation of those waves, the semi-focal distances and the loss tangents of the meta-material. When the semifocal distance of the elliptic cylinder decreases, the performance of the cloaking becomes very good, with neither noticeable scatterings nor field penetrations. For a larger semi-focal distance, only the TM wave with a specific propagation direction shows good cloaking performance. Realistic cloaking materials with loss still show a cloak that is working, but attenuated back-scattering waves exist.
Finite-difference time-domain simulation of thermal noise in open cavities
International Nuclear Information System (INIS)
Andreasen, Jonathan; Cao Hui; Taflove, Allen; Kumar, Prem; Cao Changqi
2008-01-01
A numerical model based on the finite-difference time-domain (FDTD) method is developed to simulate thermal noise in open cavities owing to output coupling. The absorbing boundary of the FDTD grid is treated as a blackbody, whose thermal radiation penetrates the cavity in the grid. The calculated amount of thermal noise in a one-dimensional dielectric cavity recovers the standard result of the quantum Langevin equation in the Markovian regime. Our FDTD simulation also demonstrates that in the non-Markovian regime the buildup of the intracavity noise field depends on the ratio of the cavity photon lifetime to the coherence time of thermal radiation. The advantage of our numerical method is that the thermal noise is introduced in the time domain without prior knowledge of cavity modes
Simulation of acoustic streaming by means of the finite-difference time-domain method
DEFF Research Database (Denmark)
Santillan, Arturo Orozco
2012-01-01
Numerical simulations of acoustic streaming generated by a standing wave in a narrow twodimensional cavity are presented. In this case, acoustic streaming arises from the viscous boundary layers set up at the surfaces of the walls. It is known that streaming vortices inside the boundary layer have...... directions of rotation that are opposite to those of the outer streaming vortices (Rayleigh streaming). The general objective of the work described in this paper has been to study the extent to which it is possible to simulate both the outer streaming vortices and the inner boundary layer vortices using...... the finite-difference time-domain method. To simplify the problem, thermal effects are not considered. The motivation of the described investigation has been the possibility of using the numerical method to study acoustic streaming, particularly under non-steady conditions. Results are discussed for channels...
Black-Scholes finite difference modeling in forecasting of call warrant prices in Bursa Malaysia
Mansor, Nur Jariah; Jaffar, Maheran Mohd
2014-07-01
Call warrant is a type of structured warrant in Bursa Malaysia. It gives the holder the right to buy the underlying share at a specified price within a limited period of time. The issuer of the structured warrants usually uses European style to exercise the call warrant on the maturity date. Warrant is very similar to an option. Usually, practitioners of the financial field use Black-Scholes model to value the option. The Black-Scholes equation is hard to solve analytically. Therefore the finite difference approach is applied to approximate the value of the call warrant prices. The central in time and central in space scheme is produced to approximate the value of the call warrant prices. It allows the warrant holder to forecast the value of the call warrant prices before the expiry date.
International Nuclear Information System (INIS)
Paul, O.P.K.
1978-01-01
An approach to simulate the flux vanishing boundary condition in solving the two group coupled neutron diffusion equations in three dimensions (x, y, z) employed to calculate the flux distribution and keff of the reactor is summarised. This is of particular interest when the flux vanishing boundary in x, y, z directions is not an integral multiple of the mesh spacings in these directions. The method assumes the flux to be negative, hypothetically at the mesh points lying outside the boundary and thus the finite difference formalism for Laplacian operator, taking into account six neighbours of a mesh point in a square mesh arrangement, is expressed in a general form so as to account for the boundary mesh points of the system. This approach has been incorporated in a three dimensional diffusion code similar to TAPPS23 and has been used for IRT-2000 reactor and the results are quite satisfactory. (author)
Directory of Open Access Journals (Sweden)
Mohammad Hadi Jalali
2018-01-01
Full Text Available Elastic stress analysis of rotating variable thickness annular disk made of functionally graded material (FGM is presented. Elasticity modulus, density, and thickness of the disk are assumed to vary radially according to a power-law function. Radial stress, circumferential stress, and radial deformation of the rotating FG annular disk of variable thickness with clamped-clamped (C-C, clamped-free (C-F, and free-free (F-F boundary conditions are obtained using the numerical finite difference method, and the effects of the graded index, thickness variation, and rotating speed on the stresses and deformation are evaluated. It is shown that using FG material could decrease the value of radial stress and increase the radial displacement in a rotating thin disk. It is also demonstrated that increasing the rotating speed can strongly increase the stress in the FG annular disk.
Fazi, Giovanni; Tellini, Simone; Vangi, Dario; Branchi, Roberto
2011-01-01
The distribution of stresses in bone, implants, and prosthesis were analyzed via three-dimensional finite element modeling in different implant configurations for a fixed implant-supported prosthesis in an edentulous mandible. A finite element model was created with data obtained from computed tomographic scans of a human mandible. Anisotropic characteristics for cortical and cancellous bone were incorporated into the model. Six different configurations of intraforaminal implants were tested, with the number of implants varying from three to five and the distal implants inserted either parallel to the other implants or tilted distally by 17 or 34 degrees. A prosthetic structure connecting the implants was designed, with 20-mm posterior cantilevers for the parallel implant configurations, and a load of 200 N was applied to the distal portion of the cantilevers. Stresses were measured at the level of the implant, the prosthetic structure, and the bone. Bone-level stresses were analyzed at the implant-bone interface, at the external cortical bone surface, distal to the terminal implant, and in the cancellous bone along the implant body. A three-parallel-implant configuration resulted in higher stress in the implant and bone than configurations with four or five parallel implants. Configurations with the distal implants tilted resulted in a more favorable stress distribution at all levels. In parallel-implant configurations for fixed implant-supported mandibular prostheses, four and five implants resulted in similar stress distribution in the bone, framework, and implants. A distribution of four implants with the distal implants tilted 34 degrees (ie, the "All-on-Four" configuration) resulted in a favorable reduction of stresses in the bone, framework, and implants.
International Nuclear Information System (INIS)
Chernyshenko, Dmitri; Fangohr, Hans
2015-01-01
In the finite difference method which is commonly used in computational micromagnetics, the demagnetizing field is usually computed as a convolution of the magnetization vector field with the demagnetizing tensor that describes the magnetostatic field of a cuboidal cell with constant magnetization. An analytical expression for the demagnetizing tensor is available, however at distances far from the cuboidal cell, the numerical evaluation of the analytical expression can be very inaccurate. Due to this large-distance inaccuracy numerical packages such as OOMMF compute the demagnetizing tensor using the explicit formula at distances close to the originating cell, but at distances far from the originating cell a formula based on an asymptotic expansion has to be used. In this work, we describe a method to calculate the demagnetizing field by numerical evaluation of the multidimensional integral in the demagnetizing tensor terms using a sparse grid integration scheme. This method improves the accuracy of computation at intermediate distances from the origin. We compute and report the accuracy of (i) the numerical evaluation of the exact tensor expression which is best for short distances, (ii) the asymptotic expansion best suited for large distances, and (iii) the new method based on numerical integration, which is superior to methods (i) and (ii) for intermediate distances. For all three methods, we show the measurements of accuracy and execution time as a function of distance, for calculations using single precision (4-byte) and double precision (8-byte) floating point arithmetic. We make recommendations for the choice of scheme order and integrating coefficients for the numerical integration method (iii). - Highlights: • We study the accuracy of demagnetization in finite difference micromagnetics. • We introduce a new sparse integration method to compute the tensor more accurately. • Newell, sparse integration and asymptotic method are compared for all ranges
DETERMINATION OF MOISTURE DIFFUSION COEFFICIENT OF LARCH BOARD WITH FINITE DIFFERENCE METHOD
Directory of Open Access Journals (Sweden)
Qiaofang Zhou
2011-04-01
Full Text Available This paper deals with the moisture diffusion coefficient of Dahurian Larch (Larix gmelinii Rupr. by use of the Finite Difference Method (FDM. To obtain moisture distributions the dimensional boards of Dahurian Larch were dried, from which test samples were cut and sliced evenly into 9 pieces in different drying periods, so that moisture distributions at different locations and times across the thickness of Dahurian Larch were obtained with a weighing method. With these experimental data, FDM was used to solve Fick’s one-dimensional unsteady-state diffusion equation, and the moisture diffusion coefficient across the thickness at specified time was obtained. Results indicated that the moisture diffusion coefficient decreased from the surface to the center of the Dahurian Larch wood, and it decreased with decreasing moisture content at constant wood temperature; as the wood temperature increased, the moisture diffusion coefficient increased, and the effect of the wood temperature on the moisture diffusion coefficient was more significant than that of moisture content. Moisture diffusion coefficients were different for the two experiments due to differing diffusivity of the specimens.
Development and application of a third order scheme of finite differences centered in mesh
International Nuclear Information System (INIS)
Delfin L, A.; Alonso V, G.; Valle G, E. del
2003-01-01
In this work the development of a third order scheme of finite differences centered in mesh is presented and it is applied in the numerical solution of those diffusion equations in multi groups in stationary state and X Y geometry. Originally this scheme was developed by Hennart and del Valle for the monoenergetic diffusion equation with a well-known source and they show that the one scheme is of third order when comparing the numerical solution with the analytical solution of a model problem using several mesh refinements and boundary conditions. The scheme by them developed it also introduces the application of numeric quadratures to evaluate the rigidity matrices and of mass that its appear when making use of the finite elements method of Galerkin. One of the used quadratures is the open quadrature of 4 points, no-standard, of Newton-Cotes to evaluate in approximate form the elements of the rigidity matrices. The other quadrature is that of 3 points of Radau that it is used to evaluate the elements of all the mass matrices. One of the objectives of these quadratures are to eliminate the couplings among the Legendre moments 0 and 1 associated to the left and right faces as those associated to the inferior and superior faces of each cell of the discretization. The other objective is to satisfy the particles balance in weighed form in each cell. In this work it expands such development to multiplicative means considering several energy groups. There are described diverse details inherent to the technique, particularly those that refer to the simplification of the algebraic systems that appear due to the space discretization. Numerical results for several test problems are presented and are compared with those obtained with other nodal techniques. (Author)
A finite difference method for off-fault plasticity throughout the earthquake cycle
Erickson, Brittany A.; Dunham, Eric M.; Khosravifar, Arash
2017-12-01
We have developed an efficient computational framework for simulating multiple earthquake cycles with off-fault plasticity. The method is developed for the classical antiplane problem of a vertical strike-slip fault governed by rate-and-state friction, with inertial effects captured through the radiation-damping approximation. Both rate-independent plasticity and viscoplasticity are considered, where stresses are constrained by a Drucker-Prager yield condition. The off-fault volume is discretized using finite differences and tectonic loading is imposed by displacing the remote side boundaries at a constant rate. Time-stepping combines an adaptive Runge-Kutta method with an incremental solution process which makes use of an elastoplastic tangent stiffness tensor and the return-mapping algorithm. Solutions are verified by convergence tests and comparison to a finite element solution. We quantify how viscosity, isotropic hardening, and cohesion affect the magnitude and off-fault extent of plastic strain that develops over many ruptures. If hardening is included, plastic strain saturates after the first event and the response during subsequent ruptures is effectively elastic. For viscoplasticity without hardening, however, successive ruptures continue to generate additional plastic strain. In all cases, coseismic slip in the shallow sub-surface is diminished compared to slip accumulated at depth during interseismic loading. The evolution of this slip deficit with each subsequent event, however, is dictated by the plasticity model. Integration of the off-fault plastic strain from the viscoplastic model reveals that a significant amount of tectonic offset is accommodated by inelastic deformation ( ∼ 0.1 m per rupture, or ∼ 10% of the tectonic deformation budget).
A Coupled Finite Difference and Moving Least Squares Simulation of Violent Breaking Wave Impact
DEFF Research Database (Denmark)
Lindberg, Ole; Bingham, Harry B.; Engsig-Karup, Allan Peter
2012-01-01
feature of this model is a generalized finite point set method which is applied to the solution of the Poisson equation on an unstructured point distribution. The presented finite point set method is generalized to arbitrary order of approximation. The two models are applied to simulation of steep...
Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.
Qi, Ruxi; Botello-Smith, Wesley M; Luo, Ray
2017-07-11
Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.
Directory of Open Access Journals (Sweden)
Tsugio Fukuchi
2014-06-01
Full Text Available The finite difference method (FDM based on Cartesian coordinate systems can be applied to numerical analyses over any complex domain. A complex domain is usually taken to mean that the geometry of an immersed body in a fluid is complex; here, it means simply an analytical domain of arbitrary configuration. In such an approach, we do not need to treat the outer and inner boundaries differently in numerical calculations; both are treated in the same way. Using a method that adopts algebraic polynomial interpolations in the calculation around near-wall elements, all the calculations over irregular domains reduce to those over regular domains. Discretization of the space differential in the FDM is usually derived using the Taylor series expansion; however, if we use the polynomial interpolation systematically, exceptional advantages are gained in deriving high-order differences. In using the polynomial interpolations, we can numerically solve the Poisson equation freely over any complex domain. Only a particular type of partial differential equation, Poisson's equations, is treated; however, the arguments put forward have wider generality in numerical calculations using the FDM.
Comparison of SAR calculation algorithms for the finite-difference time-domain method
International Nuclear Information System (INIS)
Laakso, Ilkka; Uusitupa, Tero; Ilvonen, Sami
2010-01-01
Finite-difference time-domain (FDTD) simulations of specific-absorption rate (SAR) have several uncertainty factors. For example, significantly varying SAR values may result from the use of different algorithms for determining the SAR from the FDTD electric field. The objective of this paper is to rigorously study the divergence of SAR values due to different SAR calculation algorithms and to examine if some SAR calculation algorithm should be preferred over others. For this purpose, numerical FDTD results are compared to analytical solutions in a one-dimensional layered model and a three-dimensional spherical object. Additionally, the implications of SAR calculation algorithms for dosimetry of anatomically realistic whole-body models are studied. The results show that the trapezium algorithm-based on the trapezium integration rule-is always conservative compared to the analytic solution, making it a good choice for worst-case exposure assessment. In contrast, the mid-ordinate algorithm-named after the mid-ordinate integration rule-usually underestimates the analytic SAR. The linear algorithm-which is approximately a weighted average of the two-seems to be the most accurate choice overall, typically giving the best fit with the shape of the analytic SAR distribution. For anatomically realistic models, the whole-body SAR difference between different algorithms is relatively independent of the used body model, incident direction and polarization of the plane wave. The main factors affecting the difference are cell size and frequency. The choice of the SAR calculation algorithm is an important simulation parameter in high-frequency FDTD SAR calculations, and it should be explained to allow intercomparison of the results between different studies. (note)
Wang, Hua; Tao, Guo; Shang, Xue-Feng; Fang, Xin-Ding; Burns, Daniel R.
2013-12-01
In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius ˜27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is >30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(MPML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one d 0. The optimal parameter space for the maximum value of the linear frequency-shifted factor ( α 0) and the scaling factor ( β 0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to <1
Xu, Zhenli; Ma, Manman; Liu, Pei
2014-07-01
We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.
International Nuclear Information System (INIS)
Thompson, S.L.; Herrmann, W.
1977-01-01
Calculations, using the two-dimensional Eulerian finite-difference code CSQ, were performed for the problem of a small spherical high-explosive charge detonated in a closed heavy-walled cylindrical container partially filled with water. Data from corresponding experiments, specifically performed to validate codes used for hypothetical core disruptive accidents of liquid metal fast breeder reactors, are available in the literature. The calculations were performed specifically to test whether Eulerian methods could handle this type of problem, to determine whether water cavitation, which plays a large role in the loadings on the roof of the containment vessel, could be described adequately by an equilibrium liquid-vapor mixed phase model, and to investigate the trade-off between accuracy and cost of the calculations by using different sizes of computational meshes. Comparison of the experimental and computational data shows that the Eulerian method can handle the problem with ease, giving good predictions of wall and floor loadings. While roof loadings are qualitatively correct, peak impulse appears to be affected by numerical resolution and is underestimated somewhat
Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes
Capuano, M.; Bogey, C.; Spelt, P. D. M.
2018-05-01
A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.
Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials
Bray, Matthew G.
The term "Metamaterial" has been introduced into the electromagnetic lexicon in recent years to describe new artificial materials with electromagnetic properties that are not found in naturally occurring materials. Metamaterials exhibit electromagnetic properties that are not observed in its constituent materials, and/or not observed in nature. This thesis will analyze two different classes of metamaterials through the use of the finite-difference time-domain (FDTD) technique. The first class of metamaterials are artificial magnetic conductors (AMC) which approximate the behavior of a perfect magnetic conductor (PMC) over a finite frequency range. The AMC metamaterials are created through the use of an electromagnetic bandgap (EBG) structure. A periodic FDTD code is used to simulate a full-wave model of the metallodielectric EBG structures. The AMCs developed with the aid of the FDTD tool are then used to create low-profile antenna systems consisting of a dipole antenna in close proximity to an AMC surface. Through the use of this FDTD tool, several original contributions were made to the electromagnetic community. These include the first dual-band independently tunable EBG AMC ground plane and the first linearly polarized single-band and dual-band tunable antenna/EBG systems. The second class of materials analyzed are bi-anisotropic metamaterials. Bi-anisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, and other composite materials. The dispersive properties of these materials can be approximated by the oscillator model. This model assumes a Lorentzian frequency profile for the permittivity and permeability and a Condon model for chirality. A new FDTD formulation is introduced which can simulate this type of bi-anisotropic media. This FDTD method incorporates the dispersive material properties through
DEFF Research Database (Denmark)
Amini Afshar, Mostafa; Bingham, Harry B.
2017-01-01
. Frequency-domain results are then obtained from a Fourier transform of the force and motion signals. In order to make a robust Fourier transform, and capture the response around the critical frequency, the tail of the force signal is asymptotically extrapolated assuming a linear decay rate. Fourth......The linearized potential flow approximation for the forward speed radiation problem is solved in the time domain using a high-order finite difference method. The finite-difference discretization is developed on overlapping, curvilinear body-fitted grids. To ensure numerical stability...
Directory of Open Access Journals (Sweden)
Mohammed Hussein
2007-01-01
Full Text Available The transient response of erodable surface thermocouples has been numerically assessed by using a two dimensional finite element analysis. Four types of base metal erodable surface thermocouples have been examined in this study, included type-K (alumel-chromel, type-E (chromel-constantan, type-T (copper-constantan, and type-J (iron-constantan with 50 mm thick- ness for each. The practical importance of these types of thermocouples is to be used in internal combustion engine studies and aerodynamics experiments. The step heat flux was applied at the surface of the thermocouple model. The heat flux from the measurements of the surface temperature can be commonly identified by assuming that the heat transfer within these devices is one-dimensional. The surface temperature histories at different positions along the thermocouple are presented. The normalized surface temperature histories at the center of the thermocouple for different types at different response time are also depicted. The thermocouple response to different heat flux variations were considered by using a square heat flux with 2 ms width, a sinusoidal surface heat flux variation width 10 ms period and repeated heat flux variation with 2 ms width. The present results demonstrate that the two dimensional transient heat conduction effects have a significant influence on the surface temperature history measurements made with these devices. It was observed that the surface temperature history and the transient response for thermocouple type-E are higher than that for other types due to the thermal properties of this thermocouple. It was concluded that the thermal properties of the surrounding material do have an impact, but the properties of the thermocouple and the insulation materials also make an important contribution to the net response.
Modelling optimization involving different types of elements in finite element analysis
International Nuclear Information System (INIS)
Wai, C M; Rivai, Ahmad; Bapokutty, Omar
2013-01-01
Finite elements are used to express the mechanical behaviour of a structure in finite element analysis. Therefore, the selection of the elements determines the quality of the analysis. The aim of this paper is to compare and contrast 1D element, 2D element, and 3D element used in finite element analysis. A simple case study was carried out on a standard W460x74 I-beam. The I-beam was modelled and analyzed statically with 1D elements, 2D elements and 3D elements. The results for the three separate finite element models were compared in terms of stresses, deformation and displacement of the I-beam. All three finite element models yield satisfactory results with acceptable errors. The advantages and limitations of these elements are discussed. 1D elements offer simplicity although lacking in their ability to model complicated geometry. 2D elements and 3D elements provide more detail yet sophisticated results which require more time and computer memory in the modelling process. It is also found that the choice of element in finite element analysis is influence by a few factors such as the geometry of the structure, desired analysis results, and the capability of the computer
International Nuclear Information System (INIS)
Tokuda, Shinji; Watanabe, Tomoko.
1996-08-01
The matching problem in resistive MagnetoHydroDynamic stability analysis by the asymptotic matching method has been reformulated as an initial-boundary value problem for the inner-layer equations describing the plasma dynamics in the thin layer around a rational surface. The third boundary conditions at boundaries of a finite interval are imposed on the inner layer equations in the formulation instead of asymptotic conditions at infinities. The finite difference method for this problem has been applied to model equations whose solutions are known in a closed form. It has been shown that the initial value problem and the associated eigenvalue problem for the model equations can be solved by the finite difference method with numerical stability. The formulation presented here enables the asymptotic matching method to be a practical method for the resistive MHD stability analysis. (author)
Comparison of measured and predicted thermal mixing tests using improved finite difference technique
International Nuclear Information System (INIS)
Hassan, Y.A.; Rice, J.G.; Kim, J.H.
1983-01-01
The numerical diffusion introduced by the use of upwind formulations in the finite difference solution of the flow and energy equations for thermal mixing problems (cold water injection after small break LOCA in a PWR) was examined. The relative importance of numerical diffusion in the flow equations, compared to its effect on the energy equation was demonstrated. The flow field equations were solved using both first order accurate upwind, and second order accurate differencing schemes. The energy equation was treated using the conventional upwind and a mass weighted skew upwind scheme. Results presented for a simple test case showed that, for thermal mixing problems, the numerical diffusion was most significant in the energy equation. The numerical diffusion effect in the flow field equations was much less significant. A comparison of predictions using the skew upwind and the conventional upwind with experimental data from a two dimensional thermal mixing text are presented. The use of the skew upwind scheme showed a significant improvement in the accuracy of the steady state predicted temperatures. (orig./HP)
Calculation of electrical potentials on the surface of a realistic head model by finite differences
International Nuclear Information System (INIS)
Lemieux, L.; McBride, A.; Hand, J.W.
1996-01-01
We present a method for the calculation of electrical potentials at the surface of realistic head models from a point dipole generator based on a 3D finite-difference algorithm. The model was validated by comparing calculated values with those obtained algebraically for a three-shell spherical model. For a 1.25 mm cubic grid size, the mean error was 4.9% for a superficial dipole (3.75 mm from the inner surface of the skull) pointing in the radial direction. The effect of generator discretization and node spacing on the accuracy of the model was studied. Three values of the node spacing were considered: 1, 1.25 and 1.5 mm. The mean relative errors were 4.2, 6.3 and 9.3%, respectively. The quality of the approximation of a point dipole by an array of nodes in a spherical neighbourhood did not depend significantly on the number of nodes used. The application of the method to a conduction model derived from MRI data is demonstrated. (author)
Ping, Jing
2017-05-19
Optimal management of subsurface processes requires the characterization of the uncertainty in reservoir description and reservoir performance prediction. For fractured reservoirs, the location and orientation of fractures are crucial for predicting production characteristics. With the help of accurate and comprehensive knowledge of fracture distributions, early water/CO 2 breakthrough can be prevented and sweep efficiency can be improved. However, since the rock property fields are highly non-Gaussian in this case, it is a challenge to estimate fracture distributions by conventional history matching approaches. In this work, a method that combines vector-based level-set parameterization technique and ensemble Kalman filter (EnKF) for estimating fracture distributions is presented. Performing the necessary forward modeling is particularly challenging. In addition to the large number of forward models needed, each model is used for sampling of randomly located fractures. Conventional mesh generation for such systems would be time consuming if possible at all. For these reasons, we rely on a novel polyhedral mesh method using the mimetic finite difference (MFD) method. A discrete fracture model is adopted that maintains the full geometry of the fracture network. By using a cut-cell paradigm, a computational mesh for the matrix can be generated quickly and reliably. In this research, we apply this workflow on 2D two-phase fractured reservoirs. The combination of MFD approach, level-set parameterization, and EnKF provides an effective solution to address the challenges in the history matching problem of highly non-Gaussian fractured reservoirs.
Barão, Valentim Adelino Ricardo; Assunção, Wirley Gonçalves; Tabata, Lucas Fernando; Delben, Juliana Aparecida; Gomes, Erica Alves; de Sousa, Edson Antonio Capello; Rocha, Eduardo Passos
2009-07-01
This finite element analysis compared stress distribution on complete dentures and implant-retained overdentures with different attachment systems. Four models of edentulous mandible were constructed: group A (control), complete denture; group B, overdenture retained by 2 splinted implants with bar-clip system; group C, overdenture retained by 2 unsplinted implants with o'ring system; and group D, overdenture retained by 2 splinted implants with bar-clip and 2 distally placed o'ring system. Evaluation was performed on Ansys software, with 100-N vertical load applied on central incisive teeth. The lowest maximum general stress value (in megapascal) was observed in group A (64.305) followed by groups C (119.006), D (258.650), and B (349.873). The same trend occurred in supporting tissues with the highest stress value for cortical bone. Unsplinted implants associated with the o'ring attachment system showed the lowest maximum stress values among all overdenture groups. Furthermore, o'ring system also improved stress distribution when associated with bar-clip system.
Accelerated cardiac cine MRI using locally low rank and finite difference constraints.
Miao, Xin; Lingala, Sajan Goud; Guo, Yi; Jao, Terrence; Usman, Muhammad; Prieto, Claudia; Nayak, Krishna S
2016-07-01
To evaluate the potential value of combining multiple constraints for highly accelerated cardiac cine MRI. A locally low rank (LLR) constraint and a temporal finite difference (FD) constraint were combined to reconstruct cardiac cine data from highly undersampled measurements. Retrospectively undersampled 2D Cartesian reconstructions were quantitatively evaluated against fully-sampled data using normalized root mean square error, structural similarity index (SSIM) and high frequency error norm (HFEN). This method was also applied to 2D golden-angle radial real-time imaging to facilitate single breath-hold whole-heart cine (12 short-axis slices, 9-13s single breath hold). Reconstruction was compared against state-of-the-art constrained reconstruction methods: LLR, FD, and k-t SLR. At 10 to 60 spokes/frame, LLR+FD better preserved fine structures and depicted myocardial motion with reduced spatio-temporal blurring in comparison to existing methods. LLR yielded higher SSIM ranking than FD; FD had higher HFEN ranking than LLR. LLR+FD combined the complimentary advantages of the two, and ranked the highest in all metrics for all retrospective undersampled cases. Single breath-hold multi-slice cardiac cine with prospective undersampling was enabled with in-plane spatio-temporal resolutions of 2×2mm(2) and 40ms. Highly accelerated cardiac cine is enabled by the combination of 2D undersampling and the synergistic use of LLR and FD constraints. Copyright © 2016 Elsevier Inc. All rights reserved.
Finite difference solution of the time dependent neutron group diffusion equations
International Nuclear Information System (INIS)
Hendricks, J.S.; Henry, A.F.
1975-08-01
In this thesis two unrelated topics of reactor physics are examined: the prompt jump approximation and alternating direction checkerboard methods. In the prompt jump approximation it is assumed that the prompt and delayed neutrons in a nuclear reactor may be described mathematically as being instantaneously in equilibrium with each other. This approximation is applied to the spatially dependent neutron diffusion theory reactor kinetics model. Alternating direction checkerboard methods are a family of finite difference alternating direction methods which may be used to solve the multigroup, multidimension, time-dependent neutron diffusion equations. The reactor mesh grid is not swept line by line or point by point as in implicit or explicit alternating direction methods; instead, the reactor mesh grid may be thought of as a checkerboard in which all the ''red squares'' and '' black squares'' are treated successively. Two members of this family of methods, the ADC and NSADC methods, are at least as good as other alternating direction methods. It has been found that the accuracy of implicit and explicit alternating direction methods can be greatly improved by the application of an exponential transformation. This transformation is incompatible with checkerboard methods. Therefore, a new formulation of the exponential transformation has been developed which is compatible with checkerboard methods and at least as good as the former transformation for other alternating direction methods
Methods for compressible fluid simulation on GPUs using high-order finite differences
Pekkilä, Johannes; Väisälä, Miikka S.; Käpylä, Maarit J.; Käpylä, Petri J.; Anjum, Omer
2017-08-01
We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them an attractive platform for fluid simulation. However, high-order stencil computation is memory-intensive with respect to both main memory and the caches of the GPU. We present two approaches for simulating compressible fluids using 55-point and 19-point stencils. We seek to reduce the requirements for memory bandwidth and cache size in our methods by using cache blocking and decomposing a latency-bound kernel into several bandwidth-bound kernels. Our fastest implementation is bandwidth-bound and integrates 343 million grid points per second on a Tesla K40t GPU, achieving a 3 . 6 × speedup over a comparable hydrodynamics solver benchmarked on two Intel Xeon E5-2690v3 processors. Our alternative GPU implementation is latency-bound and achieves the rate of 168 million updates per second.
International Nuclear Information System (INIS)
Filio Lopez, Carlos.
1979-01-01
A calculation program (URA 6.F4) was elaborated on FORTRAN IV language, that through finite differences solves the unidimensional scalar Helmholtz equation, assuming only one energy group, in spherical cylindrical or plane geometry. The purpose is the determination of the flow distribution in a reactor of spherical cylindrical or plane geometry and the critical dimensions. Feeding as entrance datas to the program the geometry, diffusion coefficients and macroscopic transversals cross sections of absorption and fission for each region. The differential diffusion equation is converted with its boundary conditions, to one system of homogeneous algebraic linear equations using the box integration technique. The investigation on criticality is converted then in a succession of eigenvalue problems for the critical eigenvalue. In general, only is necessary to solve the first eigenvalue and its corresponding eigenvector, employing the power method. The obtained results by the program for the critical dimensions of the clean reactors are admissible, the existing error as respect to the analytic is less of 0.5%; by the analysed reactors of three regions, the relative error with respect to the semianalytic result is less of 0.2%. With this program is possible to obtain one quantitative description of one reactor if the transversal sections that appears in the monoenergetic model are adequatedly averaged by the energy group used. (author)
Directory of Open Access Journals (Sweden)
G. F. Sun
2015-01-01
Full Text Available A novel explicit finite-difference (FD method is presented to simulate the positive and bounded development process of a microbial colony subjected to a substrate of nutrients, which is governed by a nonlinear parabolic partial differential equations (PDE system. Our explicit FD scheme is uniquely designed in such a way that it transfers the nonlinear terms in the original PDE into discrete sets of linear ones in the algebraic equation system that can be solved very efficiently, while ensuring the stability and the boundedness of the solution. This is achieved through (1 a proper design of intertwined FD approximations for the diffusion function term in both time and spatial variations and (2 the control of the time-step through establishing theoretical stability criteria. A detailed theoretical stability analysis is conducted to reveal that our FD method is indeed stable. Our examples verified the fact that the numerical solution can be ensured nonnegative and bounded to simulate the actual physics. Numerical examples have also been presented to demonstrate the efficiency of the proposed scheme. The present scheme is applicable for solving similar systems of PDEs in the investigation of the dynamics of biological films.
Chiranjeevi, C.; Srinivas, T.
2017-11-01
Humidifier is an important component in air humidification-dehumidification desalination plant for fresh water production. Liquid to air flow rate ratio is optimization is reported for an industrial cooling towers but for an air humidifier it is not addressed. The current work is focused on the design and analysis of an air humidifier for solar desalination plant to maximize the yield with better humidification, using finite difference method (FDM). The outlet conditions of air from the humidifier are theoretically predicted by FDM with the given inlet conditions, which will be further used in the design calculation of the humidifier. Hot water to air flow rate ratio and inlet hot water temperature are identified as key operating parameters to evaluate the humidifier performance. The maximum and optimal values of mass flow rate ratio of water to air are found to be 2.15 and 1.5 respectively using packing function and Merkel Integral. The height of humidifier is constrained to 1.5 m and the diameter of the humidifier is found as 0.28m. The performance of humidifier and outlet conditions of air are simulated using FDM and compared with experimental results. The obtained results are within an agreeable range of deviation.
Do, Seongju; Li, Haojun; Kang, Myungjoo
2017-06-01
In this paper, we present an accurate and efficient wavelet-based adaptive weighted essentially non-oscillatory (WENO) scheme for hydrodynamics and ideal magnetohydrodynamics (MHD) equations arising from the hyperbolic conservation systems. The proposed method works with the finite difference weighted essentially non-oscillatory (FD-WENO) method in space and the third order total variation diminishing (TVD) Runge-Kutta (RK) method in time. The philosophy of this work is to use the lifted interpolating wavelets as not only detector for singularities but also interpolator. Especially, flexible interpolations can be performed by an inverse wavelet transformation. When the divergence cleaning method introducing auxiliary scalar field ψ is applied to the base numerical schemes for imposing divergence-free condition to the magnetic field in a MHD equation, the approximations to derivatives of ψ require the neighboring points. Moreover, the fifth order WENO interpolation requires large stencil to reconstruct high order polynomial. In such cases, an efficient interpolation method is necessary. The adaptive spatial differentiation method is considered as well as the adaptation of grid resolutions. In order to avoid the heavy computation of FD-WENO, in the smooth regions fixed stencil approximation without computing the non-linear WENO weights is used, and the characteristic decomposition method is replaced by a component-wise approach. Numerical results demonstrate that with the adaptive method we are able to resolve the solutions that agree well with the solution of the corresponding fine grid.
International Nuclear Information System (INIS)
Park, Beom Woo; Joo, Han Gyu
2015-01-01
Highlights: • The stiffness confinement method is combined with multigroup CMFD with SENM nodal kernel. • The systematic methods for determining the shape and amplitude frequencies are established. • Eigenvalue problems instead of fixed source problems are solved in the transient calculation. • It is demonstrated that much larger time step sizes can be used with the SCM–CMFD method. - Abstract: An improved Stiffness Confinement Method (SCM) is formulated within the framework of the coarse mesh finite difference (CMFD) formulation for efficient multigroup spatial kinetics calculation. The algorithm for searching for the amplitude frequency that makes the dynamic eigenvalue unity is developed in a systematic way along with the methods for determining the shape and precursor frequencies. A nodal calculation scheme is established within the CMFD framework to incorporate the cross section changes due to thermal feedback and dynamic frequency update. The conditional nodal update scheme is employed such that the transient calculation is performed mostly with the CMFD formulation and the CMFD parameters are conditionally updated by intermittent nodal calculations. A quadratic representation of amplitude frequency is introduced as another improvement. The performance of the improved SCM within the CMFD framework is assessed by comparing the solution accuracy and computing times for the NEACRP control rod ejection benchmark problems with those obtained with the Crank–Nicholson method with exponential transform (CNET). It is demonstrated that the improved SCM is beneficial for large time step size calculations with stability and accuracy enhancement
A Finite-Difference Solution of Solute Transport through a Membrane Bioreactor
Directory of Open Access Journals (Sweden)
B. Godongwana
2015-01-01
Full Text Available The current paper presents a theoretical analysis of the transport of solutes through a fixed-film membrane bioreactor (MBR, immobilised with an active biocatalyst. The dimensionless convection-diffusion equation with variable coefficients was solved analytically and numerically for concentration profiles of the solutes through the MBR. The analytical solution makes use of regular perturbation and accounts for radial convective flow as well as axial diffusion of the substrate species. The Michaelis-Menten (or Monod rate equation was assumed for the sink term, and the perturbation was extended up to second-order. In the analytical solution only the first-order limit of the Michaelis-Menten equation was considered; hence the linearized equation was solved. In the numerical solution, however, this restriction was lifted. The solution of the nonlinear, elliptic, partial differential equation was based on an implicit finite-difference method (FDM. An upwind scheme was employed for numerical stability. The resulting algebraic equations were solved simultaneously using the multivariate Newton-Raphson iteration method. The solution allows for the evaluation of the effect on the concentration profiles of (i the radial and axial convective velocity, (ii the convective mass transfer rates, (iii the reaction rates, (iv the fraction retentate, and (v the aspect ratio.
Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.
Divall, S A; Humphrey, V F
2000-03-01
Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.
Gerya, T.; Duretz, T.; May, D. A.
2012-04-01
We present new 2D adaptive mesh refinement (AMR) algorithm based on stress-conservative finite-differences formulated for non-uniform rectangular staggered grid. The refinement approach is based on a repetitive cell splitting organized via a quad-tree construction (every parent cell is split into 4 daughter cells of equal size). Irrespective of the level of resolution every cell has 5 staggered nodes (2 horizontal velocities, 2 vertical velocities and 1 pressure) for which respective governing equations, boundary conditions and interpolation equations are formulated. The connectivity of the grid is achieved via cross-indexing of grid cells and basic nodal points located in their corners: four corner nodes are indexed for every cell and up to 4 surrounding cells are indexed for every node. The accuracy of the approach depends critically on the formulation of the stencil used at the "hanging" velocity nodes located at the boundaries between different levels of resolution. Most accurate results are obtained for the scheme based on the volume flux balance across the resolution boundary combined with stress-based interpolation of velocity orthogonal to the boundary. We tested this new approach with a number of 2D variable viscosity analytical solutions. Our tests demonstrate that the adaptive staggered grid formulation has convergence properties similar to those obtained in case of a standard, non-adaptive staggered grid formulation. This convergence is also achieved when resolution boundary crosses sharp viscosity contrast interfaces. The convergence rates measured are found to be insensitive to scenarios when the transition in grid resolution crosses sharp viscosity contrast interfaces. We compared various grid refinement strategies based on distribution of different field variables such as viscosity, density and velocity. According to these tests the refinement allows for significant (0.5-1 order of magnitude) increase in the computational accuracy at the same
Ishak, Muhammad Ikman; Shafi, Aisyah Ahmad; Rosli, M. U.; Khor, C. Y.; Zakaria, M. S.; Rahim, Wan Mohd Faizal Wan Abd; Jamalludin, Mohd Riduan
2017-09-01
The success of dental implant surgery is majorly dependent on the stability of prosthesis to anchor to implant body as well as the integration of implant body to bone. The attachment between dental implant body and abutment plays a vital role in attributing to the stability of dental implant system. A good connection between implant body cavity to abutment may minimize the complications of abutment loosening and implant fractures as widely reported in clinical findings. The aim of this paper is to investigate the effect of different abutment-implant connections on stress dispersion within the abutment and implant bodies as well as displacement of implant body via three-dimensional (3-D) finite element analysis (FEA). A 3-D model of mandible was reconstructed from computed tomography (CT) image datasets using an image-processing software with the selected region of interest was the left side covering the second premolar, first molar and second molar regions. The bone was modelled as compact (cortical) and porous (cancellous) structures. Besides, three implant bodies and three generic models of abutment with different types of connections - tapered interference fit (TIF), tapered integrated screwed-in (TIS) and screw retention (SR) were created using computer-aided design (CAD) software and all models were then analysed via 3D FEA software. Occlusal forces of 114.6 N, 17.2 N and 23.4 N were applied in the axial, lingual and mesio-distal directions, respectively, on the top surface of first molar crown. All planes of the mandibular bone model were rigidly fixed. The result exhibited that abutment with TIS connection produced the most favourable stress and displacement outcomes as compared to other attachment types. This is due to the existence of integrated screw at the bottom portion of tapered abutment which increases the motion resistance.
Use of the finite-difference time-domain method in electromagnetic dosimetry
International Nuclear Information System (INIS)
Sullivan, D.M.
1987-01-01
Although there are acceptable methods for calculating whole body electromagnetic absorption, no completely acceptable method for calculating the local specific absorption rate (SAR) at points within the body has been developed. Frequency domain methods, such as the method of moments (MoM) have achieved some success; however, the MoM requires computer storage on the order of (3N) 2 , and computation time on the order of (3N) 3 where N is the number of cells. The finite-difference time-domain (FDTD) method has been employed extensively in calculating the scattering from metallic objects, and recently is seeing some use in calculating the interaction of EM fields with complex, lossy dielectric bodies. Since the FDTD method has storage and time requirements proportional to N, it presents an attractive alternative to calculating SAR distribution in large bodies. This dissertation describes the FDTD method and evaluates it by comparing its results with analytic solutions in 2 and 3 dimensions. The results obtained demonstrate that the FDTD method is capable of calculating internal SAR distribution with acceptable accuracy. The construction of a data base to provide detailed, inhomogeneous man models for use with the FDTD method is described. Using this construction method, a model of 40,000 1.31 cm. cells is developed for use at 350 MHz, and another model consisting of 5000 2.62 cm. cells is developed for use at 100 MHz. To add more realism to the problem, a ground plane is added to the FDTD software. The needed changes to the software are described, along with a test which confirms its accuracy. Using the CRAY II supercomputer, SAR distributions in human models are calculated using incident frequencies of 100 MHz and 350 MHz for three different cases: (1) A homogeneous man model in free space, (2) an inhomogeneous man model in free space, and (3) an inhomogeneous man model standing on a ground plane
Tang, Hui-Yi; Wang, Jian-Hui; Ma, Yong-Li
2014-06-01
For a small system at a low temperature, thermal fluctuation and quantum effect play important roles in quantum thermodynamics. Starting from micro-canonical ensemble, we generalize the Boltzmann-Gibbs statistical factor from infinite to finite systems, no matter the interactions between particles are considered or not. This generalized factor, similar to Tsallis's q-form as a power-law distribution, has the restriction of finite energy spectrum and includes the nonextensivities of the small systems. We derive the exact expression for distribution of average particle numbers in the interacting classical and quantum nonextensive systems within a generalized canonical ensemble. This expression in the almost independent or elementary excitation quantum finite systems is similar to the corresponding ones obtained from the conventional grand-canonical ensemble. In the reconstruction for the statistical theory of the small systems, we present the entropy of the equilibrium systems and equation of total thermal energy. When we investigate the thermodynamics for the interacting nonextensive systems, we obtain the system-bath heat exchange and "uncompensated heat" which are in the thermodynamical level and independent on the detail of the system-bath coupling. For ideal finite systems, with different traps and boundary conditions, we calculate some thermodynamic quantities, such as the specific heat, entropy, and equation of state, etc. Particularly at low temperatures for the small systems, we predict some novel behaviors in the quantum thermodynamics, including internal entropy production, heat exchanges between the system and its surroundings and finite-size effects on the free energy.
Zhao, Yan; Belov, Pavel A.; Hao, Yang
2006-06-01
In this paper, a spatially dispersive finite-difference time-domain (FDTD) method to model wire media is developed and validated. Sub-wavelength imaging properties of the finite wire medium slabs are examined. It is demonstrated that the slab with its thickness equal to an integer number of half-wavelengths is capable of transporting images with sub-wavelength resolution from one interface of the slab to another. It is also shown that the operation of such transmission devices is not sensitive to their transverse dimensions, which can be made even comparable to the wavelength. In this case, the edge diffractions are negligible and do not disturb the image formation.
Anwar, Adeel; Lv, Decheng; Zhao, Zhi; Zhang, Zhen; Lu, Ming; Nazir, Muhammad Umar; Qasim, Wasim
2017-04-01
Appropriate fixation method for the posterior malleolar fractures (PMF) according to the fracture size is still not clear. Aim of this study was to evaluate the outcomes of the different fixation methods used for fixation of PMF by finite element analysis (FEA) and to compare the effect of fixation constructs on the size of the fracture computationally. Three dimensional model of the tibia was reconstructed from computed tomography (CT) images. PMF of 30%, 40% and 50% fragment sizes were simulated through computational processing. Two antero-posterior (AP) lag screws, two postero-anterior (PA) lag screws and posterior buttress plate were analysed for three different fracture volumes. The simulated loads of 350N and 700N were applied to the proximal tibial end. Models were fixed distally in all degrees of freedom. In single limb standing condition, the posterior plate group produced the lowest relative displacement (RD) among all the groups (0.01, 0.03 and 0.06mm). Further nodal analysis of the highest RD fracture group showed a higher mean displacement of 4.77mm and 4.23mm in AP and PA lag screws model (p=0.000). The amounts of stress subjected to these implants, 134.36MPa and 140.75MPa were also significantly lower (p=0.000). There was a negative correlation (p=0.021) between implant stress and the displacement which signifies a less stable fixation using AP and PA lag screws. Progressively increasing fracture size demands more stable fixation construct because RD increases significantly. Posterior buttress plate produces superior stability and lowest RD in PMF models irrespective of the fragment size. Copyright © 2017 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Kiel, Nikolaj; Andersen, Lars Vabbersgaard; Niu, Bin
2012-01-01
. With the number of modules in the three axial directions defined, wall and floor panels are constructed, placed and coupled in the global model. The core of this modular finite element model consists of connecting the different panels to each other in a rational manner, where the accuracy is as high as possible......, with as many applications as possible, for the least possible computational cost. The coupling method of the structural panels in the above mentioned modular finite element model is in this paper discussed and evaluated. The coupling of the panels are performed using the commercial finite element program....... In this way a well-defined master geometry is present onto which all panels can be tied. But as the skeleton is an element itself, it will have a physical mass and a corresponding stiffness to be included in the linear system of equations. This means that the skeleton will influence the structure...
De Hon, B. P.; Arnold, J. M.
2016-01-01
Time-domain 3-D lattice Green's function (LGF) sequences can be evaluated using a single-lattice point recurrence scheme, and play an important role in finite-difference Green's function diakoptics. Asymptotically, at large distances, the LGFs in three dimensions can be described in terms of six
A finite difference approach to despiking in-stationary velocity data - tested on a triple-lidar
DEFF Research Database (Denmark)
Meyer Forsting, Alexander Raul; Troldborg, Niels
2016-01-01
A novel despiking method is presented for in-stationary wind lidar velocity measurements. A finite difference approach yields the upper and lower bounds for a valid velocity reading. The sole input to the algorithm is the velocity series and optionally a far- field reference to the temporal...
de Hon, B.P.; Arnold, J.M.
2015-01-01
The robust and speedy evaluation of lattice Green's functions LGFs) is crucial to the effectiveness of finite-difference Green's function diakoptics schemes. We have recently determined a generic recurrence scheme for the construction of scalar LGF sequences at arbitrary points on a 3-D cubic
Emoto, K.; Saito, T.; Shiomi, K.
2017-12-01
Short-period (2 s) seismograms. We found that the energy of the coda of long-period seismograms shows a spatially flat distribution. This phenomenon is well known in short-period seismograms and results from the scattering by small-scale heterogeneities. We estimate the statistical parameters that characterize the small-scale random heterogeneity by modelling the spatiotemporal energy distribution of long-period seismograms. We analyse three moderate-size earthquakes that occurred in southwest Japan. We calculate the spatial distribution of the energy density recorded by a dense seismograph network in Japan at the period bands of 8-16 s, 4-8 s and 2-4 s and model them by using 3-D finite difference (FD) simulations. Compared to conventional methods based on statistical theories, we can calculate more realistic synthetics by using the FD simulation. It is not necessary to assume a uniform background velocity, body or surface waves and scattering properties considered in general scattering theories. By taking the ratio of the energy of the coda area to that of the entire area, we can separately estimate the scattering and the intrinsic absorption effects. Our result reveals the spectrum of the random inhomogeneity in a wide wavenumber range including the intensity around the corner wavenumber as P(m) = 8πε2a3/(1 + a2m2)2, where ε = 0.05 and a = 3.1 km, even though past studies analysing higher-frequency records could not detect the corner. Finally, we estimate the intrinsic attenuation by modelling the decay rate of the energy. The method proposed in this study is suitable for quantifying the statistical properties of long-wavelength subsurface random inhomogeneity, which leads the way to characterizing a wider wavenumber range of spectra, including the corner wavenumber.
Three-dimensional body-wave model of Nepal using finite difference tomography
Ho, T. M.; Priestley, K.; Roecker, S. W.
2017-12-01
The processes occurring during continent-continent collision are still poorly understood. Ascertaining the seismic properties of the crust and uppermost mantle in such settings provides insight into continental rheology and geodynamics. The most active present-day continent-continent collision is that of India with Eurasia which has created the Himalayas and the Tibetan Plateau. Nepal provides an ideal laboratory for imaging the crustal processes resulting from the Indo-Eurasia collision. We build body wave models using local body wave arrivals picked at stations in Nepal deployed by the Department of Mining and Geology of Nepal. We use the tomographic inversion method of Roecker et al. [2006], the key feature of which is that the travel times are generated using a finite difference solution to the eikonal equation. The advantage of this technique is increased accuracy in the highly heterogeneous medium expected for the Himalayas. Travel times are calculated on a 3D Cartesian grid with a grid spacing of 6 km and intragrid times are estimated by trilinear interpolation. The gridded area spans a region of 80-90o longitude and 25-30o latitude. For a starting velocity model, we use IASP91. Inversion is performed using the LSQR algorithm. Since the damping parameter can have a significant effect on the final solution, we tested a range of damping parameters to fully explore its effect. Much of the seismicity is clustered to the West of Kathmandu at depths Small areas of strong fast wavespeeds exist in the centre of the region in the upper 30 km of the crust. At depths of 40-50 km, large areas of slow wavespeeds are present which track along the plate boundary.
Pressure transient analysis in single and two-phase water by finite difference methods
International Nuclear Information System (INIS)
Berry, G.F.; Daley, J.G.
1977-01-01
An important consideration in the design of LMFBR steam generators is the possibility of leakage from a steam generator water tube. The ensuing sodium/water reaction will be largely controlled by the amount of water available at the leak site, thus analysis methods treating this event must have the capability of accurately modeling pressure transients through all states of water occurring in a steam generator, whether single or two-phase. The equation systems of the present model consist of the conservation equations together with an equation of state for one-dimensional homogeneous flow. These equations are then solved using finite difference techniques with phase considerations and non-equilibrium effects being treated through the equation of state. The basis for water property computation is Keenan's 'fundamental equation of state' which is applicable to single-phase water at pressures less than 1000 bars and temperatures less than 1300 0 C. This provides formulations allowing computation of any water property to any desired precision. Two-phase properties are constructed from values on the saturation line. The use of formulations permits the direct calculation of any thermodynamic property (or property derivative) to great precision while requiring very little computer storage, but does involve considerable computation time. For this reason an optional calculation scheme based on the method of 'transfinite interpolation' is included to give rapid computation in selected regions with decreased precision. The conservation equations were solved using the second order Lax-Wendroff scheme which includes wall friction, allows the formation of shocks and locally supersonic flow. Computational boundary conditions were found from a method-of-characteristics solution at the reservoir and receiver ends. The local characteristics were used to interpolate data from inside the pipe to the boundary
Plasmonic Resonances for Spectroscopy Applications using 3D Finite-Difference Time-Domain Models
Ravi, Aruna
Tuning plasmonic extinction resonances of sub-wavelength scale structures is essential to achieve maximum sensitivity and accuracy. These resonances can be controlled with careful design of nanoparticle geometries and incident wave attributes. In the first part of this dissertation, plasmonically enhanced effects on hexagonal-arrays of metal nanoparticles, metal-hole arrays (micro-mesh), and linear-arrays of metal nanorings are analyzed using three-dimensional Finite-Difference Time-Domain (3D-FDTD) simulations. The effect of particle size, lattice spacing, and lack of monodispersity of a self-assembled, hexagonal array layer of silver (Ag) nanoparticles on the extinction resonance is investigated to help determine optimal design specifications for efficient organic solar power harvesting. The enhancement of transmission resonances using plasmonic thin metal films with arrays of holes which enable recording of scatter-free infrared (IR) transmission spectra of individual particles is also explored. This method is quantitative, non-destructive and helps in better understanding the interaction of light with sub-wavelength particles. Next, plasmonically enhanced effects on linear arrays of gold (Au) rings are studied. Simulations employing 3D-FDTD can be used to determine the set of geometrical parameters to attain localized surface plasmon resonance (LSPR). The shifts in resonances due to changes in the effective dielectric of the structure are investigated, which is useful in sensing applications. Computational models enrich experimental studies. In the second part of this dissertation, the effect of particle size, shape and orientation on the IR spectra is investigated using 3D-FDTD and Mie-Bruggeman models. This computational analysis is extended to include clusters of particles of mixed composition. The prediction of extinction and absorption spectra of single particles of mixed composition helps in interpreting their physical properties and predict chemical
A finite difference Hartree-Fock program for atoms and diatomic molecules
Kobus, Jacek
2013-03-01
The newest version of the two-dimensional finite difference Hartree-Fock program for atoms and diatomic molecules is presented. This is an updated and extended version of the program published in this journal in 1996. It can be used to obtain reference, Hartree-Fock limit values of total energies and multipole moments for a wide range of diatomic molecules and their ions in order to calibrate existing and develop new basis sets, calculate (hyper)polarizabilities (αzz, βzzz, γzzzz, Az,zz, Bzz,zz) of atoms, homonuclear and heteronuclear diatomic molecules and their ions via the finite field method, perform DFT-type calculations using LDA or B88 exchange functionals and LYP or VWN correlations ones or the self-consistent multiplicative constant method, perform one-particle calculations with (smooth) Coulomb and Krammers-Henneberger potentials and take account of finite nucleus models. The program is easy to install and compile (tarball+configure+make) and can be used to perform calculations within double- or quadruple-precision arithmetic. Catalogue identifier: ADEB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADEB_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 171196 No. of bytes in distributed program, including test data, etc.: 9481802 Distribution format: tar.gz Programming language: Fortran 77, C. Computer: any 32- or 64-bit platform. Operating system: Unix/Linux. RAM: Case dependent, from few MB to many GB Classification: 16.1. Catalogue identifier of previous version: ADEB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 98(1996)346 Does the new version supersede the previous version?: Yes Nature of problem: The program finds virtually exact solutions of the Hartree-Fock and density functional theory type equations for atoms, diatomic molecules and their ions
3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media
Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.
2003-12-01
Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented
Simulation model of stratified thermal energy storage tank using finite difference method
Waluyo, Joko
2016-06-01
Stratified TES tank is normally used in the cogeneration plant. The stratified TES tanks are simple, low cost, and equal or superior in thermal performance. The advantage of TES tank is that it enables shifting of energy usage from off-peak demand for on-peak demand requirement. To increase energy utilization in a stratified TES tank, it is required to build a simulation model which capable to simulate the charging phenomenon in the stratified TES tank precisely. This paper is aimed to develop a novel model in addressing the aforementioned problem. The model incorporated chiller into the charging of stratified TES tank system in a closed system. The model was developed in one-dimensional type involve with heat transfer aspect. The model covers the main factors affect to degradation of temperature distribution namely conduction through the tank wall, conduction between cool and warm water, mixing effect on the initial flow of the charging as well as heat loss to surrounding. The simulation model is developed based on finite difference method utilizing buffer concept theory and solved in explicit method. Validation of the simulation model is carried out using observed data obtained from operating stratified TES tank in cogeneration plant. The temperature distribution of the model capable of representing S-curve pattern as well as simulating decreased charging temperature after reaching full condition. The coefficient of determination values between the observed data and model obtained higher than 0.88. Meaning that the model has capability in simulating the charging phenomenon in the stratified TES tank. The model is not only capable of generating temperature distribution but also can be enhanced for representing transient condition during the charging of stratified TES tank. This successful model can be addressed for solving the limitation temperature occurs in charging of the stratified TES tank with the absorption chiller. Further, the stratified TES tank can be
Domain-adaptive finite difference methods for collapsing annular liquid jets
Ramos, J. I.
1993-01-01
rate increases as the Weber number, nozzle exit angle, gas concentration at the nozzle exit, and temperature of the gases enclosed by the annular liquid jet are increased, but it decreases as the Froude and Peclet numbers, and annular liquid jet's thickness-to-radius ratio at the nozzle exit are increased. It is also shown that the annular liquid jet's collapse rate increases as the Weber number, nozzle exit angle, temperature of the gases enclosed by the annular liquid jet, and pressure of the gases which surround the jet are increased, but decreases as the Froude and Peclet numbers, and annular liquid jet's thickness-toradius ratio at the nozzle exit are increased. It is also shown that both the ratio of the initial pressure of the gas enclosed by the jet to the pressure of the gas surrounding the jet and the ratio of solubilities at the annular liquid jet's inner and outer interfaces play an important role on both the steady state mass absorption rate and the jet collapse. If the product of these ratios is greater or less than one, both the pressure and the mass of the gas enclosed by the annular liquid jet decrease or increase, respectively, with time. It is also shown that the numerical results obtained with the conservative, domain-adaptive method of lines technique presented in this paper are in excellent agreement with those of a domain-adaptive, iterative, non-conservative, block-bidiagonal, finite difference method which uncouples the solution of the fluid dynamics equations from that of the convergence length.
DIF3D: a code to solve one-, two-, and three-dimensional finite-difference diffusion theory problems
International Nuclear Information System (INIS)
Derstine, K.L.
1984-04-01
The mathematical development and numerical solution of the finite-difference equations are summarized. The report provides a guide for user application and details the programming structure of DIF3D. Guidelines are included for implementing the DIF3D export package on several large scale computers. Optimized iteration methods for the solution of large-scale fast-reactor finite-difference diffusion theory calculations are presented, along with their theoretical basis. The computational and data management considerations that went into their formulation are discussed. The methods utilized include a variant of the Chebyshev acceleration technique applied to the outer fission source iterations and an optimized block successive overrelaxation method for the within-group iterations. A nodal solution option intended for analysis of LMFBR designs in two- and three-dimensional hexagonal geometries is incorporated in the DIF3D package and is documented in a companion report, ANL-83-1
International Nuclear Information System (INIS)
Liang, Wen-Quan; Wang, Yan-Fei; Yang, Chang-Chun
2015-01-01
Numerical simulation of the wave equation is widely used to synthesize seismograms theoretically and is also the basis of the reverse time migration and full waveform inversion. For the finite difference methods, grid dispersion often exists because of the discretization of the time and the spatial derivatives in the wave equation. How to suppress the grid dispersion is therefore a key problem for finite difference (FD) approaches. The FD operators for the space derivatives are usually obtained in the space domain. However, the wave equations are discretized in the time and space directions simultaneously. So it would be better to design the FD operators in the time–space domain. We improved the time–space domain method for obtaining the FD operators in an acoustic vertically transversely isotropic (VTI) media so as to cover a much wider range of frequencies. Dispersion analysis and seismic numerical simulation demonstrate the effectiveness of the proposed method. (paper)
Directory of Open Access Journals (Sweden)
Taohua Liu
2017-01-01
Full Text Available Fractional advection-dispersion equations, as generalizations of classical integer-order advection-dispersion equations, are used to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper, we develop an implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions. First-order consistency, solvability, unconditional stability, and first-order convergence of the method are proven. Then, we present a fast iterative method for the implicit finite difference scheme, which only requires storage of O(K and computational cost of O(KlogK. Traditionally, the Gaussian elimination method requires storage of O(K2 and computational cost of O(K3. Finally, the accuracy and efficiency of the method are checked with a numerical example.
Energy Technology Data Exchange (ETDEWEB)
Kim, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petersson, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-25
Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examples and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.
International Nuclear Information System (INIS)
Tamura, Hiroyuki; Hikita, Shiro
1985-01-01
In this paper, we develop an interactive algorithm for identifying multiattribute measurable value functions based on the concept of finite-order independence of structural difference. This concept includes Dyer and Sarin's weak difference independence as special cases. The algorithm developed is composed of four major parts: 1) formulation of the problem 2) assessment of normalized conditional value functions and structural difference functions 3) assessment of corner values 4) assessment of the order of independence of structural difference and selection of the model. A hypothetical numerical example of a trade-off analysis for siting a nuclear power plant is included. (author)
Study of two-dimensional transient cavity fields using the finite-difference time-domain technique
International Nuclear Information System (INIS)
Crisp, J.L.
1988-06-01
This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs
Study of two-dimensional transient cavity fields using the finite-difference time-domain technique
Energy Technology Data Exchange (ETDEWEB)
Crisp, J.L.
1988-06-01
This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs.
Jia, Shouqing; La, Dongsheng; Ma, Xuelian
2018-04-01
The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.
Gao, Longfei
2018-02-16
We consider the numerical simulation of the acoustic wave equations arising from seismic applications, for which staggered grid finite difference methods are popular choices due to their simplicity and efficiency. We relax the uniform grid restriction on finite difference methods and allow the grids to be block-wise uniform with nonconforming interfaces. In doing so, variations in the wave speeds of the subterranean media can be accounted for more efficiently. Staggered grid finite difference operators satisfying the summation-by-parts (SBP) property are devised to approximate the spatial derivatives appearing in the acoustic wave equation. These operators are applied within each block independently. The coupling between blocks is achieved through simultaneous approximation terms (SATs), which impose the interface condition weakly, i.e., by penalty. Ratio of the grid spacing of neighboring blocks is allowed to be rational number, for which specially designed interpolation formulas are presented. These interpolation formulas constitute key pieces of the simultaneous approximation terms. The overall discretization is shown to be energy-conserving and examined on test cases of both theoretical and practical interests, delivering accurate and stable simulation results.
Postigo, Sergio; Schmidt, Hendrik; Rohlmann, Antonius; Putzier, Michael; Simón, Antonio; Duda, Georg; Checa, Sara
2014-04-11
Lumbar interbody fusion cages are commonly used to treat painful spinal degeneration and instability by achieving bony fusion. Many different cage designs exist, however the effect of cage morphology and material properties on the fusion process remains largely unknown. This finite element model study aims to investigate the influence of different cage designs on bone fusion using two mechano-regulation algorithms of tissue formation. It could be observed that different cages play a distinct key role in the mechanical conditions within the fusion region and therefore regulate the time course of the fusion process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
M. Shishesaz
Full Text Available Abstract This study compares ball, bar-clip and bar-ball attachment systems for implant-retained mandibular overdentures with three implants. The first implant is placed in the middle of the mandible and the other two are imbedded in the first premolar regions. Linear elastic finite element analysis is used for design analysis. Three dimensional geometry of the mandible is generated from computed tomography. Other parts are modeled using SolidWorks software. The foodstuff is positioned at the right first molar, representing the most frequent masticating situation. To obtain accurate mesh-independent results, finite element models are solved using several mesh grids. They are then validated by means of a detailed convergence analysis. The results demonstrate that the highest von-Mises stress in the bone is always located around the neck of the implant, at its upper threads. Ball and bar-ball attachments transfer the highest and lowest stresses to the bone surrounding the implants, respectively. The lowest stresses in the cortical and cancellous bones are due to bar-ball attachment. Yet, the overdenture gets its maximum movement for this arrangement. Consequently, the use of bar-ball attachment is only recommended for the cases in which stress transferred to peri-implant bone is more important than overdenture stability. Among the three treatment designs, ball attachment seems to exhibit the lowest lateral and overall displacements and hence, better overdenture stability.
Development of the software Conden 1.0 in finite differences to model electrostatics problems 2D
Directory of Open Access Journals (Sweden)
Wilson Rodríguez Calderón
2004-01-01
Full Text Available The present work consists on the development and implementation of the finite differences method for over-relaxation adapted to irregular meshes to determine the influence of the air frontiers on the potencial values and field electricians, calculated inside a badges parallel condenser, using GID like a pre/post-process platform and Fortran like a programming language of the calculation motor of differences Conden 1.0. The problem domain is constituted by two rectangles that represent the condenser and the air layer that covers it, divided in rectangular meshes no standardize.
Directory of Open Access Journals (Sweden)
Djordjevich Alexandar
2017-12-01
Full Text Available The two-dimensional advection-diffusion equation with variable coefficients is solved by the explicit finitedifference method for the transport of solutes through a homogenous two-dimensional domain that is finite and porous. Retardation by adsorption, periodic seepage velocity, and a dispersion coefficient proportional to this velocity are permitted. The transport is from a pulse-type point source (that ceases after a period of activity. Included are the firstorder decay and zero-order production parameters proportional to the seepage velocity, and periodic boundary conditions at the origin and at the end of the domain. Results agree well with analytical solutions that were reported in the literature for special cases. It is shown that the solute concentration profile is influenced strongly by periodic velocity fluctuations. Solutions for a variety of combinations of unsteadiness of the coefficients in the advection-diffusion equation are obtainable as particular cases of the one demonstrated here. This further attests to the effectiveness of the explicit finite difference method for solving two-dimensional advection-diffusion equation with variable coefficients in finite media, which is especially important when arbitrary initial and boundary conditions are required.
International Nuclear Information System (INIS)
Tan, Sirui; Huang, Lianjie
2014-01-01
For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within a given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion
Directory of Open Access Journals (Sweden)
Mir Hamid Reza Ghoreishy
2014-10-01
Full Text Available This research work is devoted to the simulation of a steel-belted radial tire under different static loads. The nonlinear finite element calculations were performed using the MSC.MARC code, installed on a computer system equipped with a parallel processing technology. Hybrid elements in conjunction with two hyperelastic models, namely Marlow and Yeoh, and rebar layer implemented in surface elements were used for the modeling of rubbery and reinforcing parts, respectively. Linear elastic material models were also used for the modeling of the reinforcing elements including steel cord in belts, polyester cord in carcass and nylon cord in cap ply section. Two-dimensional axisymmetric elements were used for the modeling of rim-mounting and inflation and three-dimensional models were developed for the application of the radial, tangential, lateral and torsional loads. Different finite element models were developed, in which both linear and quadratic elements were used in conjunction with different mesh densities in order to find the optimum finite element model. Based on the results of the load deflection (displacement data, the tire stiffness under radial, tangential, lateral and torsional loads were calculated and compared with their corresponding experimentally measured values. The comparison was verified by the accuracy of the measured radial stiffness. However, due to the neglecting of the stiffness in shear and bending modes in cord-rubber composites, modeled with rebar layer methodology, the difference between computed values and real data are not small enough so that a more robust material models and element formulation are required to be developed.
Ebadian, Behnaz; Farzin, Mahmoud; Talebi, Saeid; Khodaeian, Niloufar
2012-01-01
Background: Available restorative space and bar height is an important factor in stress distribution of implant-supported overdentures. The purpose of this study was to evaluate the effect of different vertical restorative spaces and different bar heights on the stress distribution around implants by 3D finite element analysis. Materials and Methods: 3D finite element models were developed from mandibular overdentures with two implants in the interforaminal region. In these models, four different bar heights from gingival crest (0.5, 1, 1.5, 2 mm) with 15 mm occlusal plane height and three different occlusal plane heights from gingival crest (9, 12, 15 mm) with 2 mm bar height were analyzed. A vertical unilateral and a bilateral load of 150 N were applied to the central occlusal fossa of the first molar and the stress of bone around implant was analyzed by finite element analysis. Results: By increasing vertical restorative space, the maximum stress values around implants were found to be decreased in unilateral loading models but slightly increased in bilateral loading cases. By increasing bar height from gingival crest, the maximum stress values around implants were found to be increased in unilateral loading models but slightly decreased in bilateral loading cases. In unilateral loading models, maximum stress was found in a model with 9 mm occlusal plane height and 1.5 mm bar height (6.254 MPa), but in bilateral loading cases, maximum stress was found in a model with 15 mm occlusal plane height and 0.5 mm bar height (3.482 MPa). Conclusion: The reduction of bar height and increase in the thickness of acrylic resin base in implant-supported overdentures are biomechanically favorable and may result in less stress in periimplant bone. PMID:23559952
Directory of Open Access Journals (Sweden)
Polshkov Yulian M.
2013-11-01
Full Text Available The article considers data on the gross domestic product, consumer expenditures, gross investments and volume of foreign trade for the national economy. It is assumed that time is a discrete variable with one year iteration. The article uses finite-difference equations. It considers models with a high degree of the regulatory function of the state with respect to the consumer market. The econometric component is based on the hypothesis that each of the above said macro-economic indicators for this year depends on the gross domestic product for the previous time periods. Such an assumption gives a possibility to engage the least-squares method for building up linear models of the pair regression. The article obtains the time series model, which allows building point and interval forecasts for the gross domestic product for the next year based on the values of the gross domestic product for the current and previous years. The article draws a conclusion that such forecasts could be considered justified at least in the short-term prospect. From the mathematical point of view the built model is a heterogeneous finite-difference equation of the second order with constant ratios. The article describes specific features of such equations. It illustrates graphically the analytical view of solutions of the finite-difference equation. This gives grounds to differentiate national economies as sustainable growth economies, one-sided, weak or being in the stage of successful re-formation. The article conducts comparison of the listed types with specific economies of modern states.
Double-grid finite-difference frequency-domain (DG-FDFD) method for scattering from chiral objects
Alkan, Erdogan; Elsherbeni, Atef
2013-01-01
This book presents the application of the overlapping grids approach to solve chiral material problems using the FDFD method. Due to the two grids being used in the technique, we will name this method as Double-Grid Finite Difference Frequency-Domain (DG-FDFD) method. As a result of this new approach the electric and magnetic field components are defined at every node in the computation space. Thus, there is no need to perform averaging during the calculations as in the aforementioned FDFD technique [16]. We formulate general 3D frequency-domain numerical methods based on double-grid
A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene
International Nuclear Information System (INIS)
Brinkman, D.; Heitzinger, C.; Markowich, P.A.
2014-01-01
We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses
DEFF Research Database (Denmark)
Shyroki, Dzmitry; Lavrinenko, Andrei
2007-01-01
A complex-coordinate method known under the guise of the perfectly matched layer (PML) method for treating unbounded domains in computational electrodynamics is related to similar techniques in fluid dynamics and classical quantum theory. It may also find use in electronic-structure finite......-difference simulations. Straightforward transfer of the PML formulation to other fields does not seem feasible, however, since it is a unique feature of electrodynamics - the natural invariance - that allows analytic trick of complex coordinate scaling to be represented as pure modification of local material parameters...
Directory of Open Access Journals (Sweden)
Min-Jhong Gu
2014-08-01
Full Text Available This article describes the development of a suite of programs that is capable of simulating the radiation properties of a random rough surface (RRS. The fundamental approach involves the generation, by fast Fourier transform (FFT built with rigorous finite difference time domain (FDTD, as the theoretical basis for the simulation of a bidirectional reflectance distribution function (BRDF of the RRS. The results are compared with the measurements and modeling of existing work to verify the feasibility of customized programming. It was found that the results of this study were a better match to the measurement data than those achieved in other modeling work.
Steger, J. L.; Dougherty, F. C.; Benek, J. A.
1983-01-01
A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.
Directory of Open Access Journals (Sweden)
Navnit Jha
2014-04-01
Full Text Available An efficient numerical method based on quintic nonpolynomial spline basis and high order finite difference approximations has been presented. The scheme deals with the space containing hyperbolic and polynomial functions as spline basis. With the help of spline functions we derive consistency conditions and high order discretizations of the differential equation with the significant first order derivative. The error analysis of the new method is discussed briefly. The new method is analyzed for its efficiency using the physical problems. The order and accuracy of the proposed method have been analyzed in terms of maximum errors and root mean square errors.
A convergent 2D finite-difference scheme for the Dirac-Poisson system and the simulation of graphene
Brinkman, Daniel; Heitzinger, Clemens Heitzinger; Markowich, Peter A.
2014-01-01
We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac-Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac-Poisson system where potentials act as beam splitters or Veselago lenses. © 2013 Elsevier Inc.
DEFF Research Database (Denmark)
Escolano-Carrasco, José; Jacobsen, Finn; López, J.J.
2008-01-01
The finite-difference time-domain (FDTD) method provides a simple and accurate way of solving initial boundary value problems. However, most acoustic problems involve frequency dependent boundary conditions, and it is not easy to include such boundary conditions in an FDTD model. Although solutions...... to this problem exist, most of them have high computational costs, and stability cannot always be ensured. In this work, a solution is proposed based on "mixing modelling strategies"; this involves separating the FDTD mesh and the boundary conditions (a digital filter representation of the impedance...
Sprague, Mark W; Luczkovich, Joseph J
2016-01-01
This finite-difference time domain (FDTD) model for sound propagation in very shallow water uses pressure and velocity grids with both 3-dimensional Cartesian and 2-dimensional cylindrical implementations. Parameters, including water and sediment properties, can vary in each dimension. Steady-state and transient signals from discrete and distributed sources, such as the surface of a vibrating pile, can be used. The cylindrical implementation uses less computation but requires axial symmetry. The Cartesian implementation allows asymmetry. FDTD calculations compare well with those of a split-step parabolic equation. Applications include modeling the propagation of individual fish sounds, fish aggregation sounds, and distributed sources.
Directory of Open Access Journals (Sweden)
Sanjeev Sharma
2013-01-01
Full Text Available Elastic-plastic stresses, strains, and displacements have been obtained for a thin rotating annular disk with exponentially variable thickness and exponentially variable density with nonlinear strain hardening material by finite difference method using Von-Mises' yield criterion. Results have been computed numerically and depicted graphically. From the numerical results, it can be concluded that disk whose thickness decreases radially and density increases radially is on the safer side of design as compared to the disk with exponentially varying thickness and exponentially varying density as well as to flat disk.
Different finite element techniques to predict welding residual stresses in aluminum alloy plates
International Nuclear Information System (INIS)
Moein, Hadi; Sattari-Far, Iradj
2014-01-01
This study is a 3D thermomechanical finite element (FE) analysis of a single-pass and butt-welded work-hardened aluminum (Al) 5456 plates. It aims to validate the use of FE welding simulations to predict residual stress states in assessing the integrity of welded components. The predicted final residual stresses in the plate from the FE simulations are verified through comparison with experimental measurements. Three techniques are used to simulate the welding process. In the first two approaches, welding deposition is applied by using element birth and interaction techniques. In the third approach, the entire weld zone is simultaneously deposited. Results show a value at approximately the yield strength for longitudinal residual stresses of the welded center of the butt-welded Al alloy plates with a thickness of 2 mm. Considering the application of a comprehensive heat source, along with heat loss modeling and the temperature dependent properties of the material, the approach without deposition predicts a reasonable distribution of residual stresses. However, the element birth and interaction techniques, compared with the no-deposit technique, provide more accurate results in calculating residual stresses. Furthermore, the element interaction technique, compared with the element birth technique, exhibits higher efficiency and flexibility in modeling the deposition of welded metals as well as less modeling cost.
Performance analysis of a finite radon transform in OFDM system under different channel models
Energy Technology Data Exchange (ETDEWEB)
Dawood, Sameer A.; Anuar, M. S.; Fayadh, Rashid A. [School of Computer and Communication Engineering, Universiti Malaysia Perlis (UniMAP) Pauh Putra, 02000 Arau, Parlis (Malaysia); Malek, F.; Abdullah, Farrah Salwani [School of Electrical System Engineering, Universiti Malaysia Perlis (UniMAP) Pauh Putra, 02000 Arau, Parlis (Malaysia)
2015-05-15
In this paper, a class of discrete Radon transforms namely Finite Radon Transform (FRAT) was proposed as a modulation technique in the realization of Orthogonal Frequency Division Multiplexing (OFDM). The proposed FRAT operates as a data mapper in the OFDM transceiver instead of the conventional phase shift mapping and quadrature amplitude mapping that are usually used with the standard OFDM based on Fast Fourier Transform (FFT), by the way that ensure increasing the orthogonality of the system. The Fourier domain approach was found here to be the more suitable way for obtaining the forward and inverse FRAT. This structure resulted in a more suitable realization of conventional FFT- OFDM. It was shown that this application increases the orthogonality significantly in this case due to the use of Inverse Fast Fourier Transform (IFFT) twice, namely, in the data mapping and in the sub-carrier modulation also due to the use of an efficient algorithm in determining the FRAT coefficients called the optimal ordering method. The proposed approach was tested and compared with conventional OFDM, for additive white Gaussian noise (AWGN) channel, flat fading channel, and multi-path frequency selective fading channel. The obtained results showed that the proposed system has improved the bit error rate (BER) performance by reducing inter-symbol interference (ISI) and inter-carrier interference (ICI), comparing with conventional OFDM system.
Performance analysis of a finite radon transform in OFDM system under different channel models
International Nuclear Information System (INIS)
Dawood, Sameer A.; Anuar, M. S.; Fayadh, Rashid A.; Malek, F.; Abdullah, Farrah Salwani
2015-01-01
In this paper, a class of discrete Radon transforms namely Finite Radon Transform (FRAT) was proposed as a modulation technique in the realization of Orthogonal Frequency Division Multiplexing (OFDM). The proposed FRAT operates as a data mapper in the OFDM transceiver instead of the conventional phase shift mapping and quadrature amplitude mapping that are usually used with the standard OFDM based on Fast Fourier Transform (FFT), by the way that ensure increasing the orthogonality of the system. The Fourier domain approach was found here to be the more suitable way for obtaining the forward and inverse FRAT. This structure resulted in a more suitable realization of conventional FFT- OFDM. It was shown that this application increases the orthogonality significantly in this case due to the use of Inverse Fast Fourier Transform (IFFT) twice, namely, in the data mapping and in the sub-carrier modulation also due to the use of an efficient algorithm in determining the FRAT coefficients called the optimal ordering method. The proposed approach was tested and compared with conventional OFDM, for additive white Gaussian noise (AWGN) channel, flat fading channel, and multi-path frequency selective fading channel. The obtained results showed that the proposed system has improved the bit error rate (BER) performance by reducing inter-symbol interference (ISI) and inter-carrier interference (ICI), comparing with conventional OFDM system
Energy Technology Data Exchange (ETDEWEB)
Bettaibi, Soufiene, E-mail: Bettaibisoufiene@gmail.com [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia); Kuznik, Frédéric [INSA-Lyon, CETHIL, F-69621 Villeurbanne (France); Université de Lyon, CNRS, UMR5008, F-69622 Villeurbanne (France); Sediki, Ezeddine [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia)
2014-06-27
Highlights: • Mixed convection heat transfer in 2D lid-driven cavity is studied numerically. • Hybrid scheme with multiple relaxation time lattice Boltzmann method is used to obtain the velocity field. • Finite difference method is used to compute the temperature. • Effect of both Richardson and Reynolds numbers for mixed convection is studied. - Abstract: Mixed convection heat transfer in two-dimensional lid-driven rectangular cavity filled with air (Pr=0.71) is studied numerically. A hybrid scheme with multiple relaxation time lattice Boltzmann method (MRT-LBM) is used to obtain the velocity field while the temperature field is deduced from energy balance equation by using the finite difference method (FDM). The main objective of this work is to investigate the model effectiveness for mixed convection flow simulation. Results are presented in terms of streamlines, isotherms and Nusselt numbers. Excellent agreement is obtained between our results and previous works. The different comparisons demonstrate the robustness and the accuracy of our proposed approach.
International Nuclear Information System (INIS)
Dai, Hao; Si, Gangquan; Jia, Lixin; Zhang, Yanbin
2014-01-01
This paper investigates the problem of finite-time generalized function matrix projective lag synchronization between two different coupled dynamical networks with different dimensions of network nodes. The double power function nonlinear feedback control method is proposed in this paper to guarantee that the state trajectories of the response network converge to the state trajectories of the drive network according to a function matrix in a given finite time. Furthermore, in comparison with the traditional nonlinear feedback control method, the new method improves the synchronization efficiency, and shortens the finite synchronization time. Numerical simulation results are presented to illustrate the effectiveness of this method. (papers)
International Nuclear Information System (INIS)
Arora, H.S.; Singh, H.; Dhindaw, B.K.
2012-01-01
Highlights: ► Magnesium alloy AE42 was friction stir processed under different cooling conditions. ► Heat flow model was developed using finite difference heat equations. ► Generalized MATLAB code was developed for solving heat flow model. ► Regression equation for estimation of grain size was developed. - Abstract: The present investigation is aimed at developing a heat flow model to simulate temperature history during friction stir processing (FSP). A new approach of developing implicit form of finite difference heat equations solved using MATLAB code was used. A magnesium based alloy AE42 was friction stir processed (FSPed) at different FSP parameters and cooling conditions. Temperature history was continuously recorded in the nugget zone during FSP using data acquisition system and k type thermocouples. The developed code was validated at different FSP parameters and cooling conditions during FSP experimentation. The temperature history at different locations in the nugget zone at different instants of time was further utilized for the estimation of grain growth rate and final average grain size of the FSPed specimen. A regression equation relating the final grain size, maximum temperature during FSP and the cooling rate was developed. The metallurgical characterization was done using optical microscopy, SEM, and FIB-SIM analysis. The simulated temperature profiles and final average grain size were found to be in good agreement with the experimental results. The presence of fine precipitate particles generated in situ in the investigated magnesium alloy also contributed in the evolution of fine grain structure through Zener pining effect at the grain boundaries.
Itkin, Andrey
2017-01-01
This monograph presents a novel numerical approach to solving partial integro-differential equations arising in asset pricing models with jumps, which greatly exceeds the efficiency of existing approaches. The method, based on pseudo-differential operators and several original contributions to the theory of finite-difference schemes, is new as applied to the Lévy processes in finance, and is herein presented for the first time in a single volume. The results within, developed in a series of research papers, are collected and arranged together with the necessary background material from Lévy processes, the modern theory of finite-difference schemes, the theory of M-matrices and EM-matrices, etc., thus forming a self-contained work that gives the reader a smooth introduction to the subject. For readers with no knowledge of finance, a short explanation of the main financial terms and notions used in the book is given in the glossary. The latter part of the book demonstrates the efficacy of the method by solvin...
Gerke, Kirill M.
2018-01-17
Permeability is one of the fundamental properties of porous media and is required for large-scale Darcian fluid flow and mass transport models. Whilst permeability can be measured directly at a range of scales, there are increasing opportunities to evaluate permeability from pore-scale fluid flow simulations. We introduce the free software Finite-Difference Method Stokes Solver (FDMSS) that solves Stokes equation using a finite-difference method (FDM) directly on voxelized 3D pore geometries (i.e. without meshing). Based on explicit convergence studies, validation on sphere packings with analytically known permeabilities, and comparison against lattice-Boltzmann and other published FDM studies, we conclude that FDMSS provides a computationally efficient and accurate basis for single-phase pore-scale flow simulations. By implementing an efficient parallelization and code optimization scheme, permeability inferences can now be made from 3D images of up to 109 voxels using modern desktop computers. Case studies demonstrate the broad applicability of the FDMSS software for both natural and artificial porous media.
Gerke, Kirill M.; Vasilyev, Roman V.; Khirevich, Siarhei; Collins, Daniel; Karsanina, Marina V.; Sizonenko, Timofey O.; Korost, Dmitry V.; Lamontagne, Sébastien; Mallants, Dirk
2018-05-01
Permeability is one of the fundamental properties of porous media and is required for large-scale Darcian fluid flow and mass transport models. Whilst permeability can be measured directly at a range of scales, there are increasing opportunities to evaluate permeability from pore-scale fluid flow simulations. We introduce the free software Finite-Difference Method Stokes Solver (FDMSS) that solves Stokes equation using a finite-difference method (FDM) directly on voxelized 3D pore geometries (i.e. without meshing). Based on explicit convergence studies, validation on sphere packings with analytically known permeabilities, and comparison against lattice-Boltzmann and other published FDM studies, we conclude that FDMSS provides a computationally efficient and accurate basis for single-phase pore-scale flow simulations. By implementing an efficient parallelization and code optimization scheme, permeability inferences can now be made from 3D images of up to 109 voxels using modern desktop computers. Case studies demonstrate the broad applicability of the FDMSS software for both natural and artificial porous media.
Energy Technology Data Exchange (ETDEWEB)
Rodgers, Arthur J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Dreger, Douglas S. [Univ. of California, Berkeley, CA (United States); Pitarka, Arben [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-06-15
We performed three-dimensional (3D) anelastic ground motion simulations of the South Napa earthquake to investigate the performance of different finite rupture models and the effects of 3D structure on the observed wavefield. We considered rupture models reported by Dreger et al. (2015), Ji et al., (2015), Wei et al. (2015) and Melgar et al. (2015). We used the SW4 anelastic finite difference code developed at Lawrence Livermore National Laboratory (Petersson and Sjogreen, 2013) and distributed by the Computational Infrastructure for Geodynamics. This code can compute the seismic response for fully 3D sub-surface models, including surface topography and linear anelasticity. We use the 3D geologic/seismic model of the San Francisco Bay Area developed by the United States Geological Survey (Aagaard et al., 2008, 2010). Evaluation of earlier versions of this model indicated that the structure can reproduce main features of observed waveforms from moderate earthquakes (Rodgers et al., 2008; Kim et al., 2010). Simulations were performed for a domain covering local distances (< 25 km) and resolution providing simulated ground motions valid to 1 Hz.
Directory of Open Access Journals (Sweden)
Pedram Iranmanesh
2014-01-01
Full Text Available Introduction: In the present study, the finite element method (FEM was used to investigate the effects of prosthesis material types on stress distribution of the bone surrounding implants and to evaluate stress distribution in three-unit implant-supported fixed dental prosthesis (FDP. Materials and Methods: A three-dimensional (3D finite element FDP model of the maxillary second premolar to the second molar was designed. Three load conditions were statically applied on the functional cusps in horizontal (57.0 N, vertical (200.0 N, and oblique (400.0 N, θ = 120° directions. Four standard framework materials were evaluated: Polymethyl methacrylate (PMMA, base-metal, porcelain fused to metal, andporcelain. Results: The maximum of von Mises stress in the oblique direction was higher than the vertical and horizontal directions in all conditions. In the bone-crestal section, the maximum von Mises stress (53.78 MPa was observed in PMMA within oblique load. In FDPs, the maximum stress was generated at the connector region in all conditions. Conclusion: A noticeable difference was not observed in the bone stress distribution pattern with different prosthetic materials. Although, higher stress value could be seen in polymethyl methacrylate, all types of prosthesis yielded the same stress distribution pattern in FDP. More clinical studies are needed to evaluate the survival rate of these materials.
Khanday, M A; Hussain, Fida
2015-02-01
During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, -5 °C and -10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Yang, Fan; Yang, Haicheng; Guo, Xueyan; Ren Dai [University of Shanghai for Science and Technology, Shanghai (China); Yan, Yonghua [Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai (China); Liu, Chaoqun [University of Texas at Arlington, Arlington (United States)
2017-06-15
Natural convection heat transfer in an inclined polar cavity was studied using a Finite-difference lattice Boltzmann method (FDLBM) based on a double-population approach for body-fitted coordinates. A D2G9 model coupled with the simplest TD2Q4 lattice model was applied to determine the velocity field and temperature field. For both velocity and temperature fields, the discrete spatial derivatives were obtained by combining the upwind scheme with the central scheme, and the discrete temporal term is obtained using a fourth-order Runge-Kutta scheme. Studies were carried out for different Rayleigh numbers and different inclination angles. The results in terms of streamlines, isotherms, and Nusselt numbers explain the heat transfer mechanism of natural convection in an inclined polar cavity due to the change of Rayleigh number and inclination angle.
Du, Liang; Yang, Yi; Harley, Ronald Gordon; Habetler, Thomas G.; He, Dawei
2016-08-09
A system is for a plurality of different electric load types. The system includes a plurality of sensors structured to sense a voltage signal and a current signal for each of the different electric loads; and a processor. The processor acquires a voltage and current waveform from the sensors for a corresponding one of the different electric load types; calculates a power or current RMS profile of the waveform; quantizes the power or current RMS profile into a set of quantized state-values; evaluates a state-duration for each of the quantized state-values; evaluates a plurality of state-types based on the power or current RMS profile and the quantized state-values; generates a state-sequence that describes a corresponding finite state machine model of a generalized load start-up or transient profile for the corresponding electric load type; and identifies the corresponding electric load type.
Dynza Anggary, Sheyza Rery; Danusaputro, Hernowo; Harmoko, Udi
2015-01-01
Analysis on Post Stack Time Migration (Post-STM) with finite difference method and Kirchoff method with determine gap parameter on deconvolution after stack had been applied to 2D land seismic at line “SRDA”. This research had purpose to applied seismic data processing to get subsurface imaging with high signal-to-noise ratio and analyze how the gap parameter corresponding on deconvolution after stack, and to determine which the appropriate method of migration between migration finite differe...
Hajipour, Mojtaba; Jajarmi, Amin
2018-02-01
Using the Pontryagin's maximum principle for a time-delayed optimal control problem results in a system of coupled two-point boundary-value problems (BVPs) involving both time-advance and time-delay arguments. The analytical solution of this advance-delay two-point BVP is extremely difficult, if not impossible. This paper provides a discrete general form of the numerical solution for the derived advance-delay system by applying a finite difference θ-method. This method is also implemented for the infinite-time horizon time-delayed optimal control problems by using a piecewise version of the θ-method. A matrix formulation and the error analysis of the suggested technique are provided. The new scheme is accurate, fast and very effective for the optimal control of linear and nonlinear time-delay systems. Various types of finite- and infinite-time horizon problems are included to demonstrate the accuracy, validity and applicability of the new technique.
Directory of Open Access Journals (Sweden)
Arezoo Jahanbin
2014-01-01
Full Text Available Background. The aim of this study was to evaluate root displacement of the lower incisors fixed with FRC in different positions versus FSW retainers using the finite element method. Materials and Methods. 3D finite element models were designed for a mandibular anterior segment: Model 1: flexible spiral wire bonded to the lingual teeth surfaces, Model 2: FRC bonded to the upper third of lingual teeth surfaces, and Model 3: FRC bonded to the middle third. FE analysis was performed for three models and then tooth displacements were evaluated. Results. In contrast to lateral incisors and canines, the FSW retainer caused the central teeth to move more than the teeth bonded with FRC in both loadings. Comparison between Models 2 and 3 (in vertical loading showed that FRC retainers that bonded at the upper third of lingual teeth surfaces made central and canine teeth move less than FRC retainers bonded at the middle third; however, for lateral teeth it was the opposite. Conclusion. FRC retainers bonded at the upper third of lingual teeth surfaces make central and canine teeth move less than FRC retainers bonded at the middle third in vertical loading; however, for lateral teeth it was the opposite.
Energy Technology Data Exchange (ETDEWEB)
Martin, Bradley, E-mail: brma7253@colorado.edu; Fornberg, Bengt, E-mail: Fornberg@colorado.edu
2017-04-15
In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy for the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.
Fisher, Travis C.; Carpenter, Mark H.; Nordstroem, Jan; Yamaleev, Nail K.; Swanson, R. Charles
2011-01-01
Simulations of nonlinear conservation laws that admit discontinuous solutions are typically restricted to discretizations of equations that are explicitly written in divergence form. This restriction is, however, unnecessary. Herein, linear combinations of divergence and product rule forms that have been discretized using diagonal-norm skew-symmetric summation-by-parts (SBP) operators, are shown to satisfy the sufficient conditions of the Lax-Wendroff theorem and thus are appropriate for simulations of discontinuous physical phenomena. Furthermore, special treatments are not required at the points that are near physical boundaries (i.e., discrete conservation is achieved throughout the entire computational domain, including the boundaries). Examples are presented of a fourth-order, SBP finite-difference operator with second-order boundary closures. Sixth- and eighth-order constructions are derived, and included in E. Narrow-stencil difference operators for linear viscous terms are also derived; these guarantee the conservative form of the combined operator.
International Nuclear Information System (INIS)
Lu Jia; Zhou Huaichun
2016-01-01
To deal with the staircase approximation problem in the standard finite-difference time-domain (FDTD) simulation, the two-dimensional boundary condition equations (BCE) method is proposed in this paper. In the BCE method, the standard FDTD algorithm can be used as usual, and the curved surface is treated by adding the boundary condition equations. Thus, while maintaining the simplicity and computational efficiency of the standard FDTD algorithm, the BCE method can solve the staircase approximation problem. The BCE method is validated by analyzing near field and far field scattering properties of the PEC and dielectric cylinders. The results show that the BCE method can maintain a second-order accuracy by eliminating the staircase approximation errors. Moreover, the results of the BCE method show good accuracy for cylinder scattering cases with different permittivities. (paper)
Umari, A.M.; Szeliga, T.L.
1989-01-01
The three-dimensional finite-difference groundwater model (using a mathematical groundwater flow code) of the Tesuque aquifer system in northern New Mexico was converted to run using the U.S. Geological Survey 's modular groundwater flow code. Results from the final versions of the predevelopment and 1947 to 2080 transient simulations of the two models are compared. A correlation coefficient of 0.9905 was obtained for the match in block-by-block head-dependent fluxes for predevelopment conditions. There are, however, significant differences in at least two specific cases. In the first case, a difference is associated with the net loss from the Pojoaque River and its tributaries to the aquifer. The net loss by the river is given as 1.134 cu ft/sec using the original groundwater model, which is 38.1% less than the net loss by the river of 1.8319 cu ft/sec computed in this study. In the second case, the large difference is computed for the transient decline in the hydraulic head of a model block near Tesuque Pueblo. The hydraulic-head decline by 2080 is, using the original model, 249 ft, which is 14.7% less than the hydraulic head of 292 ft computed by this study. In general, the differences between the two sets of results are not large enough to lead to different conclusions regarding the behavior of the system at steady state or when pumped. (USGS)
International Nuclear Information System (INIS)
Lan, Haiqiang; Zhang, Zhongjie
2011-01-01
The finite-difference (FD) method is a powerful tool in seismic wave field modelling for understanding seismic wave propagation in the Earth's interior and interpreting the real seismic data. The accuracy of FD modelling partly depends on the implementation of the free-surface (i.e. traction-free) condition. In the past 40 years, at least six kinds of free-surface boundary condition approximate schemes (such as one-sided, centred finite-difference, composed, new composed, implicit and boundary-modified approximations) have been developed in FD second-order elastodynamic simulation. Herein we simulate seismic wave fields in homogeneous and lateral heterogeneous models using these free-surface boundary condition approximate schemes and evaluate their stability and applicability by comparing with corresponding analytical solutions, and then quantitatively evaluate the accuracies of different approximate schemes from the misfit of the amplitude and phase between the numerical and analytical results. Our results confirm that the composed scheme becomes unstable for the V s /V p ratio less than 0.57, and suggest that (1) the one-sided scheme is only accurate to first order and therefore introduces serious errors for the shorter wavelengths, other schemes are all of second-order precision; (2) the new composed, implicit and boundary-modified schemes are stable even when the V s /V p ratio is less than 0.2; (3) the implicit and boundary-modified schemes are able to deal with laterally varying (heterogeneous) free surface; (4) in the corresponding stability range, the one-sided scheme shows remarkable errors in both phase and amplitude compared to analytical solution (which means larger errors in travel-time and reflection strength), the other five approximate schemes show better performance in travel-time (phase) than strength (amplitude)
Directory of Open Access Journals (Sweden)
Koichi Narahara
2012-01-01
Full Text Available Nonlinear transmission lines, which define transmission lines periodically loaded with nonlinear devices such as varactors, diodes, and transistors, are modeled in the framework of finite-difference time-domain (FDTD method. Originally, some root-finding routine is needed to evaluate the contributions of nonlinear device currents appropriately to the temporally advanced electrical fields. Arbitrary nonlinear transmission lines contain large amount of nonlinear devices; therefore, it costs too much time to complete calculations. To reduce the calculation time, we recently developed a simple model of diodes to eliminate root-finding routines in an FDTD solver. Approximating the diode current-voltage relation by a piecewise-linear function, an extended Ampere's law is solved in a closed form for the time-advanced electrical fields. In this paper, we newly develop an FDTD model of field-effect transistors (FETs, together with several numerical examples that demonstrate pulse-shortening phenomena in a traveling-wave FET.
Directory of Open Access Journals (Sweden)
Juan C. Chimal-Eguía
2012-12-01
Full Text Available This work shows the power of the variational approach for studying the efficiency of thermal engines in the context of the Finite Time Thermodynamics (FTT. Using an endoreversible Curzon–Ahlborn (CA heat engine as a model for actual thermal engines, three different criteria for thermal efficiency were analyzed: maximum power output, ecological function, and maximum power density. By means of this procedure, the performance of the CA heat engine with a nonlinear heat transfer law (the Stefan–Boltzmann law was studied to describe the heat exchanges between the working substance and its thermal reservoirs. The specific case of the Müser engine for all the criteria was analyzed. The results confirmed some previous findings using other procedures and additionally new results for the Müser engine performance were obtained.
International Nuclear Information System (INIS)
Pereira, P H R; Langdon, T G; Figueiredo, R B; Cetlin, P R
2014-01-01
High-pressure torsion (HPT) is a metal-working technique used to impose severe plastic deformation into disc-shaped samples under high hydrostatic pressures. Different HPT facilities have been developed and they may be divided into three distinct categories depending upon the configuration of the anvils and the restriction imposed on the lateral flow of the samples. In the present paper, finite element simulations were performed to compare the flow process, temperature, strain and hydrostatic stress distributions under unconstrained, quasi-constrained and constrained conditions. It is shown there are distinct strain distributions in the samples depending on the facility configurations and a similar trend in the temperature rise of the HPT workpieces
Directory of Open Access Journals (Sweden)
B. U. Musa
2017-04-01
Full Text Available The C++ programming language was used to implement three-dimensional (3-D finite-difference time-domain (FDTD technique to simulate radiation of high frequency electromagnetic waves in free space. To achieve any meaningful results the computational domain of interest should have to be truncated in some way and this is achieved by applying absorbing boundary conditions. A uniaxial perfectly matched layer (UPML absorbing boundary condition is used in this work. The discretised equations of the UPML in FDTD time stepping scheme were derived and has been successfully implemented using the computer program. Simulation results showed that the UPML behaves as an absorber. This was confirmed by comparing the results with another boundary condition, the Mur ABC.
Directory of Open Access Journals (Sweden)
Treena Basu
2015-10-01
Full Text Available This paper proposes an approach for the space-fractional diffusion equation in one dimension. Since fractional differential operators are non-local, two main difficulties arise after discretization and solving using Gaussian elimination: how to handle the memory requirement of O(N2 for storing the dense or even full matrices that arise from application of numerical methods and how to manage the significant computational work count of O(N3 per time step, where N is the number of spatial grid points. In this paper, a fast iterative finite difference method is developed, which has a memory requirement of O(N and a computational cost of O(N logN per iteration. Finally, some numerical results are shown to verify the accuracy and efficiency of the new method.
Gao, Longfei
2017-10-26
We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application settings. Analysis of this algebraic problem leads to better understanding of the cause of the instability and provides guidance for its treatment. Specifically, we use the concept of discrete energy to derive the proper solution transfer operators and design an effective way to damp the unstable solution modes. Our investigation shows that the interpolation operators need to be matched with their companion restriction operators in order to properly couple the coarse and fine grids. Moreover, to provide effective damping, specially designed diffusive terms are introduced to the equations at designated locations and discretized with specially designed schemes. These techniques are applied to simulations in practical settings and are shown to lead to superior results in terms of both stability and accuracy.
Directory of Open Access Journals (Sweden)
Alexandre Bambina
2018-01-01
Full Text Available Limitation of the cloak-size reduction is investigated numerically by a finite-difference time-domain (FDTD method. A metallic pole that imitates an antenna is cloaked with an anisotropic and parameter-gradient medium against electromagnetic-wave propagation in microwave range. The cloaking structure is a metamaterial submerged in a plasma confined in a vacuum chamber made of glass. The smooth-permittivity plasma can be compressed in the radial direction, which enables us to decrease the size of the cloak. Theoretical analysis is performed numerically by comparing scattering waves in various cases; there exists a high reduction of the scattering wave when the radius of the cloak is larger than a quarter of one wavelength. This result indicates that the required size of the cloaking layer is more than an object scale in the Rayleigh scattering regime.
Directory of Open Access Journals (Sweden)
N. Dadashzadeh
2013-09-01
Full Text Available Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We provide an overview of recent theoretical developments in a numerical modeling of Maxwell's equations to analyze the propagation of short laser pulses in photonic structures. The process of short light pulse propagation through 2D periodic and quasi-periodic photonic structures is simulated based on Finite-Difference Time-Domain calculations of Maxwell’s equations.
International Nuclear Information System (INIS)
Morisaki, T.; Ono, H.
2005-01-01
A laser-induced liquid-crystal lens is formed by large optical non-linearity and anisotropic complex refractive indices in guest-host liquid crystals. We obtained light wave propagation characteristics of the laser-induced LC lens. Three analytical methods were used to obtain light wave propagation characteristics. Analysis by 3-dimensional heat conduction was applied to determine the refractive index in the liquid-crystal layer. Another method used was to determine light wave propagation characteristics in the laser-induced lens by means of the finite-difference tune domain (FDTD) method and diffraction theory. In this study, we draw a parallel between the experimental results and FDTD. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd
Directory of Open Access Journals (Sweden)
Nurista Wahyu Kirana
2016-06-01
Full Text Available Pada penelitian ini dirancang antena mikrostrip dengan slot double F, di mana antena ini dapat digunakan untuk perangkat wireless yang bekerja pada frekuensi multiband. Antena mikrostrip double F dirancang dengan simulasi, dipabrikasi dan diukur secara riil. Finite Difference Time Domain (FDTD digunakan untuk menganalisis karakteristik distribusi arus yang tersebar pada mikrostrip. Nilai parameter terbaik dari hasil simulasi untuk return loss adalah -31,09 dB pada frekuensi 2,4 GHz dan VSWR sebesar 1,057 sedangkan hasil pengukurannya sebesar -32,82 dB pada frekuensi 2,4 GHz dan VSWR sebesar 1,045. Penggunaan slot pada patch antena dan pencatuan proximity yang digunakan meningkatkan bandwidth antena sebesar 48,7% dan gain yang dihasilkan sebesar 5,97 dBi.
Huang, Shi-Hao; Wang, Shiang-Jiu; Tseng, Snow H.
2015-03-01
Optical coherence tomography (OCT) provides high resolution, cross-sectional image of internal microstructure of biological tissue. We use the Finite-Difference Time-Domain method (FDTD) to analyze the data acquired by OCT, which can help us reconstruct the refractive index of the biological tissue. We calculate the refractive index tomography and try to match the simulation with the data acquired by OCT. Specifically, we try to reconstruct the structure of melanin, which has complex refractive indices and is the key component of human pigment system. The results indicate that better reconstruction can be achieved for homogenous sample, whereas the reconstruction is degraded for samples with fine structure or with complex interface. Simulation reconstruction shows structures of the Melanin that may be useful for biomedical optics applications.
Energy Technology Data Exchange (ETDEWEB)
Aldridge, David Franklin; Collier, Sandra L. (U.S. Army Research Laboratory); Marlin, David H. (U.S. Army Research Laboratory); Ostashev, Vladimir E. (NOAA/Environmental Technology Laboratory); Symons, Neill Phillip; Wilson, D. Keith (U.S. Army Cold Regions Research Engineering Lab.)
2005-05-01
This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.
Banerjee, Saswatee; Hoshino, Tetsuya; Cole, James B
2008-08-01
We introduce a new implementation of the finite-difference time-domain (FDTD) algorithm with recursive convolution (RC) for first-order Drude metals. We implemented RC for both Maxwell's equations for light polarized in the plane of incidence (TM mode) and the wave equation for light polarized normal to the plane of incidence (TE mode). We computed the Drude parameters at each wavelength using the measured value of the dielectric constant as a function of the spatial and temporal discretization to ensure both the accuracy of the material model and algorithm stability. For the TE mode, where Maxwell's equations reduce to the wave equation (even in a region of nonuniform permittivity) we introduced a wave equation formulation of RC-FDTD. This greatly reduces the computational cost. We used our methods to compute the diffraction characteristics of metallic gratings in the visible wavelength band and compared our results with frequency-domain calculations.
Marsden, O; Bogey, C; Bailly, C
2014-03-01
The feasibility of using numerical simulation of fluid dynamics equations for the detailed description of long-range infrasound propagation in the atmosphere is investigated. The two dimensional (2D) Navier Stokes equations are solved via high fidelity spatial finite differences and Runge-Kutta time integration, coupled with a shock-capturing filter procedure allowing large amplitudes to be studied. The accuracy of acoustic prediction over long distances with this approach is first assessed in the linear regime thanks to two test cases featuring an acoustic source placed above a reflective ground in a homogeneous and weakly inhomogeneous medium, solved for a range of grid resolutions. An atmospheric model which can account for realistic features affecting acoustic propagation is then described. A 2D study of the effect of source amplitude on signals recorded at ground level at varying distances from the source is carried out. Modifications both in terms of waveforms and arrival times are described.
Gao, Longfei; Ketcheson, David; Keyes, David
2018-02-01
We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application settings. Analysis of this algebraic problem leads to better understanding of the cause of the instability and provides guidance for its treatment. Specifically, we use the concept of discrete energy to derive the proper solution transfer operators and design an effective way to damp the unstable solution modes. Our investigation shows that the interpolation operators need to be matched with their companion restriction operators in order to properly couple the coarse and fine grids. Moreover, to provide effective damping, specially designed diffusive terms are introduced to the equations at designated locations and discretized with specially designed schemes. These techniques are applied to simulations in practical settings and are shown to lead to superior results in terms of both stability and accuracy.
Wilts, Bodo D; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G
2014-03-25
Birds-of-paradise are nature's prime examples of the evolution of color by sexual selection. Their brilliant, structurally colored feathers play a principal role in mating displays. The structural coloration of both the occipital and breast feathers of the bird-of-paradise Lawes' parotia is produced by melanin rodlets arranged in layers, together acting as interference reflectors. Light reflection by the silvery colored occipital feathers is unidirectional as in a classical multilayer, but the reflection by the richly colored breast feathers is three-directional and extraordinarily complex. Here we show that the reflection properties of both feather types can be quantitatively explained by finite-difference time-domain modeling using realistic feather anatomies and experimentally determined refractive index dispersion values of keratin and melanin. The results elucidate the interplay between avian coloration and vision and indicate tuning of the mating displays to the spectral properties of the avian visual system.
International Nuclear Information System (INIS)
Wang Yue; Wang Jian-Guo; Chen Zai-Gao
2015-01-01
Based on conformal construction of physical model in a three-dimensional Cartesian grid, an integral-based conformal convolutional perfectly matched layer (CPML) is given for solving the truncation problem of the open port when the enlarged cell technique conformal finite-difference time-domain (ECT-CFDTD) method is used to simulate the wave propagation inside a perfect electric conductor (PEC) waveguide. The algorithm has the same numerical stability as the ECT-CFDTD method. For the long-time propagation problems of an evanescent wave in a waveguide, several numerical simulations are performed to analyze the reflection error by sweeping the constitutive parameters of the integral-based conformal CPML. Our numerical results show that the integral-based conformal CPML can be used to efficiently truncate the open port of the waveguide. (paper)
Gyrya, V.; Lipnikov, K.
2017-11-01
We present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, we observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.
Performance Improvements for Coarse Mesh Finite Difference Acceleration L3:RTM.PRT.P13.02
International Nuclear Information System (INIS)
Collins, Benjamin S.; Hamilton, Steven P.; Stimpson, Shane; Yee, Ben; Larsen, Edward W.; Kochunas, Brendan
2016-01-01
The development of VERA-CS in recent years has focused on developing the capability to simulate multiple cycles of operating commercial nuclear power plants. Now that these capabilities have advanced to the point where it is being deployed to users, the focus is on improving the computational performance of various components in VERA-CS. In this work, the focus is on the Coarse Mesh Finite Difference (CMFD) solution in MPACT. CMFD serves multiple purposes in the 2D/1D solution methodology. First, it is a natural mechanism to tie together the radial MOC transport and the axial SP3 solution. Because the CMFD system solves the multigroup three-dimensional core in one system, it pulls together the global response of the system. In addition, the CMFD solution provides a framework to accelerate the convergence of the eigenvalue problem.
Colera, Manuel; Pérez-Saborid, Miguel
2017-09-01
A finite differences scheme is proposed in this work to compute in the time domain the compressible, subsonic, unsteady flow past an aerodynamic airfoil using the linearized potential theory. It improves and extends the original method proposed in this journal by Hariharan, Ping and Scott [1] by considering: (i) a non-uniform mesh, (ii) an implicit time integration algorithm, (iii) a vectorized implementation and (iv) the coupled airfoil dynamics and fluid dynamic loads. First, we have formulated the method for cases in which the airfoil motion is given. The scheme has been tested on well known problems in unsteady aerodynamics -such as the response to a sudden change of the angle of attack and to a harmonic motion of the airfoil- and has been proved to be more accurate and efficient than other finite differences and vortex-lattice methods found in the literature. Secondly, we have coupled our method to the equations governing the airfoil dynamics in order to numerically solve problems where the airfoil motion is unknown a priori as happens, for example, in the cases of the flutter and the divergence of a typical section of a wing or of a flexible panel. Apparently, this is the first self-consistent and easy-to-implement numerical analysis in the time domain of the compressible, linearized coupled dynamics of the (generally flexible) airfoil-fluid system carried out in the literature. The results for the particular case of a rigid airfoil show excellent agreement with those reported by other authors, whereas those obtained for the case of a cantilevered flexible airfoil in compressible flow seem to be original or, at least, not well-known.
International Nuclear Information System (INIS)
Ford, Patrick J.; Beeson, Sterling R.; Krompholz, Hermann G.; Neuber, Andreas A.
2012-01-01
A finite-difference algorithm was developed to calculate several RF breakdown parameters, for example, the formative delay time that is observed between the initial application of a RF field to a dielectric surface and the formation of field-induced plasma interrupting the RF power flow. The analysis is focused on the surface being exposed to a background gas pressure above 50 Torr. The finite-difference algorithm provides numerical solutions to partial differential equations with high resolution in the time domain, making it suitable for simulating the time evolving interaction of microwaves with plasma; in lieu of direct particle tracking, a macroscopic electron density is used to model growth and transport. This approach is presented as an alternative to particle-in-cell methods due to its low complexity and runtime leading to more efficient analysis for a simulation of a microsecond scale pulse. The effect and development of the plasma is modeled in the simulation using scaling laws for ionization rates, momentum transfer collision rates, and diffusion coefficients, as a function of electric field, gas type and pressure. The incorporation of plasma material into the simulation involves using the Z-transform to derive a time-domain algorithm from the complex frequency-dependent permittivity of plasma. Therefore, the effect of the developing plasma on the instantaneous microwave field is calculated. Simulation results are compared with power measurements using an apparatus designed to facilitate surface flashover across a polycarbonate boundary in a controlled N 2 , air, or argon environment at pressures exceeding 50 Torr.
Reimer, Ashton S.; Cheviakov, Alexei F.
2013-03-01
A Matlab-based finite-difference numerical solver for the Poisson equation for a rectangle and a disk in two dimensions, and a spherical domain in three dimensions, is presented. The solver is optimized for handling an arbitrary combination of Dirichlet and Neumann boundary conditions, and allows for full user control of mesh refinement. The solver routines utilize effective and parallelized sparse vector and matrix operations. Computations exhibit high speeds, numerical stability with respect to mesh size and mesh refinement, and acceptable error values even on desktop computers. Catalogue identifier: AENQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3.0 No. of lines in distributed program, including test data, etc.: 102793 No. of bytes in distributed program, including test data, etc.: 369378 Distribution format: tar.gz Programming language: Matlab 2010a. Computer: PC, Macintosh. Operating system: Windows, OSX, Linux. RAM: 8 GB (8, 589, 934, 592 bytes) Classification: 4.3. Nature of problem: To solve the Poisson problem in a standard domain with “patchy surface”-type (strongly heterogeneous) Neumann/Dirichlet boundary conditions. Solution method: Finite difference with mesh refinement. Restrictions: Spherical domain in 3D; rectangular domain or a disk in 2D. Unusual features: Choice between mldivide/iterative solver for the solution of large system of linear algebraic equations that arise. Full user control of Neumann/Dirichlet boundary conditions and mesh refinement. Running time: Depending on the number of points taken and the geometry of the domain, the routine may take from less than a second to several hours to execute.
Effects of Different Angles of the Traction Table on Lumbar Spine Ligaments: A Finite Element Study.
Farajpour, Hekmat; Jamshidi, Nima
2017-12-01
The traction bed is a noninvasive device for treating lower back pain caused by herniated intervertebral discs. In this study, we investigated the impact of the traction bed on the lower back as a means of increasing the disc height and creating a gap between facet joints. Computed tomography (CT) images were obtained from a female volunteer and a three-dimensional (3D) model was created using software package MIMICs 17.0. Afterwards, the 3D model was analyzed in an analytical software (Abaqus 6.14). The study was conducted under the following traction loads: 25%, 45%, 55%, and 85% of the whole body weight in different angles. Results indicated that the loading angle in the L3-4 area had 36.8%, 57.4%, 55.32%, 49.8%, and 52.15% effect on the anterior longitudinal ligament, posterior longitudinal ligament, intertransverse ligament, interspinous ligament, and supraspinous ligament, respectively. The respective values for the L4-5 area were 32.3%, 10.6%, 53.4%, 56.58%, and 57.35%. Also, the body weight had 63.2%, 42.6%, 44.68%, 50.2%, and 47.85% effect on the anterior longitudinal ligament, posterior longitudinal ligament, intertransverse ligament, interspinous ligament, and supraspinous ligament, respectively. The respective values for the L4-5 area were 67.7%, 89.4%, 46.6%, 43.42% and 42.65%. The authenticity of results was checked by comparing with the experimental data. The results show that traction beds are highly effective for disc movement and lower back pain relief. Also, an optimal angle for traction can be obtained in a 3D model analysis using CT or magnetic resonance imaging images. The optimal angle would be different for different patients and thus should be determined based on the decreased height of the intervertebral disc, weight and height of patients.
Simulation for light extraction in light emitting diode using finite domain time difference method
International Nuclear Information System (INIS)
Hong, Jun Hee; Park, Si Hyun
2008-01-01
InGaN based LEDs are indispensable to traffic light, full color displays, back lights in liquid crystals, and general lighting. The demand for high efficiency LEDs is on the increase. Recently we have reported the improvement of the light extraction efficiency of InGaN based LED. In this paper we show suitable a three dimensional (3 D)FDTD simulation method for LED simulation and we apply our FDTD simulation to our PNS LED structures, comparing the simulation results with the experimental results. For real FDTD simulation, we first must consider the spatial and temporal grid size. In order to obtain an accurate result, the spatial grid size must be so small that the feature of the field can be resolved. We computed the field power at each time at the surface 0.3mm away from the surface between GaN and air and integrate over surface. The calculations were conducted for the PNS LEDs employing the different height of SiO_2 columns, that is, h=160nm, h=350nm, h=550nm, h=750nm, and h=950nm. Simulation results according to different height is shown in Fig. 1(a,b). All simulation curves follow rough trend that it increases with column height and reaches the maximum at about 600nm height and then decreases with height. And this is a consistent with the trend from our experiments. Our FDTD simulation gives a possibility for design of LED structures of high extraction efficiency
International Nuclear Information System (INIS)
Aghababa Mohammad Pourmahmood
2012-01-01
The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers. (general)
Investigation of a natural convection in a small slot using a finite difference method
International Nuclear Information System (INIS)
Schira, P.; Guenther, C.; Mueller, U.
1984-07-01
Experimental results by Koster who studied natural convection processes in slender Hele-Shaw cells are simulated with an existing two-dimensional natural convection code. This investigation yields the following results: The basic model of the calculations, which assumes a constant temperature across the gap (smallest extent of the Hele-Shaw cell) and thus without heat exchange with the Plexiglas windows, leads to an underestimation of the experimentally obtained critical Rayleigh numbers (onset of convection, onset of oscillatory convection) by one order of magnitude and an overestimation of the nondimensional period compared to experimental findings. Another version of the code, which permits heat exchange with the windows reveals an overestimation of the critical Rayleigh numbers and smaller dimensionless periods than the experiments. By these two different approaches a twoside bounding the Koster's experiments are achieved. As the modified version overestimates the real heat transfer from and to the windows it may be concluded that using a suitably adapted heat transfer coefficient for the thermal coupling of the fluid and the windows numerical simulation would also reproduce quantitatively the results of Koster. The reason for the break down of the steady flow solution and the onset of transient flow was studied numerically by examining a model proposed by Howard. At this time no really satisfying answer to this question is available. (orig./GL) [de
Directory of Open Access Journals (Sweden)
Nagihan Guven
2018-01-01
Full Text Available Objective. The purpose of this study was to test different restoration combinations used for constructing fractured endodontically treated incisors by reattaching their fractured fragments. Methods. Seven types of 3-D FEM mathematical root canal-filled models were generated, simulating cases of (OB reattaching fractured fragments; (CrPL reattaching fractured fragments + ceramic palatinal laminate; (CmPL reattaching fractured fragments + composite palatinal laminate; (CM reattaching fractured fragments + coronal 1/3 of the root was filled using core material; (BP reattaching fractured fragments + glass fiber post; (CP composite resin restoration + glass fiber post; and (OC composite resin restoration. A 100-N static oblique force was applied to the simulated teeth with 135° on the node at 2 mm above the cingulum to analyze the stress distribution at the tooth. Results. For enamel tissue, the highest stress values were observed in model BP, and the lowest stress values were observed in model CmPL. For dentine tissue, the highest stress concentrations were observed around the fracture line for all models. Conclusions. Reattachment of fractured fragments by bonding may be preferred as a restoration option for endodontically treated incisors; also, palatinal laminate decreases the stress values at tooth tissues, especially at the enamel and the fracture line.
CUDA GPU based full-Stokes finite difference modelling of glaciers
Brædstrup, C. F.; Egholm, D. L.
2012-04-01
Many have stressed the limitations of using the shallow shelf and shallow ice approximations when modelling ice streams or surging glaciers. Using a full-stokes approach requires either large amounts of computer power or time and is therefore seldom an option for most glaciologists. Recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists. Our full-stokes ice sheet model implements a Red-Black Gauss-Seidel iterative linear solver to solve the full stokes equations. This technique has proven very effective when applied to the stokes equation in geodynamics problems, and should therefore also preform well in glaciological flow probems. The Gauss-Seidel iterator is known to be robust but several other linear solvers have a much faster convergence. To aid convergence, the solver uses a multigrid approach where values are interpolated and extrapolated between different grid resolutions to minimize the short wavelength errors efficiently. This reduces the iteration count by several orders of magnitude. The run-time is further reduced by using the GPGPU technology where each card has up to 448 cores. Researchers utilizing the GPGPU technique in other areas have reported between 2 - 11 times speedup compared to multicore CPU implementations on similar problems. The goal of these initial investigations into the possible usage of GPGPU technology in glacial modelling is to apply the enhanced resolution of a full-stokes solver to ice streams and surging glaciers. This is a area of growing interest because ice streams are the main drainage conjugates for large ice sheets. It is therefore crucial to understand this streaming behavior and it's impact up-ice.
Directory of Open Access Journals (Sweden)
E. A. Levchuk
2018-01-01
Full Text Available Numerical modeling of electronic state evolution due to non-uniform external electric field in the structure metal-insulator-semiconductor with solitary donor center is carried out. Considering a nanometer disc-shaped gate as a source of the electric field, the problem for the Laplace equation in multilayered medium is solved numerically to determine the distribution of the gate potential. The energy spectrum of a bound electron is calculated from the problem for the stationary Schrödinger equation. Finite difference schemes are constructed to solve both the problems. Difference scheme for the Schrödinger equation takes into account cusp condition for the wave function at the donor location. To solve the problem for the Laplace equation, asymptotic boundary conditions for approximating the external field potential at large distances from the gate in different layers are suggested. These conditions allow to reduce the calculation domain for the electrostatic problem essentially. The effect of the boundary conditions on the accuracy of calculating the potential and energies is investigated. Using the developed difference schemes, the dependences of the energy spectrum of the bound electron on the gate potential are calculated, and the values of critical potential at which the wave function of the electron is relocated are determined. It has been found on the basis of calculation results, that governing parameter for the description of electronic behavior is the potential difference between the donor and semiconductor surface. It has been shown that critical potential difference does not depend on dielectric thickness and permittivity.
Energy Technology Data Exchange (ETDEWEB)
Pereira, Valmir; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear
2002-07-01
The objective of this work is the obtention of the mathematical adjoint flux, having as its support the nodal expansion method (NEM) for coarse mesh problems. Since there are difficulties to evaluate this flux by using NEM. directly, a coarse mesh finite difference program was developed to obtain this adjoint flux. The coarse mesh finite difference formulation (DFMG) adopted uses results of the direct calculation (node average flux and node face averaged currents) obtained by NEM. These quantities (flux and currents) are used to obtain the correction factors which modify the classical finite differences formulation . Since the DFMG formulation is also capable of calculating the direct flux it was also tested to obtain this flux and it was verified that it was able to reproduce with good accuracy both the flux and the currents obtained via NEM. In this way, only matrix transposition is needed to calculate the mathematical adjoint flux. (author)
Moriyama, Eduardo H.; Zangaro, Renato A.; Lobo, Paulo D. d. C.; Villaverde, Antonio G. J. B.; Watanabe-Sei, Ii; Pacheco, Marcos T. T.; Otsuka, Daniel K.
2002-06-01
Thermal damage in dental pulp during Nd:YAG laser irradiation have been studied by several researchers; but due to dentin inhomogeneous structure, laser interaction with dentin in the hypersensitivity treatment are not fully understood. In this work, heat distribution profile on human dentine samples irradiated with Nd:YAG laser was simulated at surface and subjacent layers. Calculations were carried out using the Crank-Nicolson's finite difference method. Sixteen dentin samples with 1,5 mm of thickness were evenly distributed into four groups and irradiated with Nd:YAG laser pulses, according to the following scheme: (I) 1 pulse of 900 mJ, (II) 2 pulses of 450 mJ, (III) 3 pulses of 300 mJ, (IV) 6 pulses of 150 mJ; corresponding to a total laser energy of 900 mJ. The pulse interval was 300ms, the pulse duration of 900 ms and irradiated surface area of 0,005 mm2. Laser induced morphological changes in dentin were observed for all the irradiated samples. The heat distribution throughout the dentin layer, from the external dentin surface to the pulpal chamber wall, was calculated for each case, in order to obtain further information about the pulsed Nd:YAG laser-oral hard tissue interaction. The simulation showed significant differences in the final temperature at the pulpal chamber, depending on the exposition time and the energy contained in the laser pulse.
Zhu, D.; Zhu, H.; Luo, Y.; Chen, X.
2008-12-01
We use a new finite difference method (FDM) and the slip-weakening law to model the rupture dynamics of a non-planar fault embedded in a 3-D elastic media with free surface. The new FDM, based on boundary- conforming grid, sets up the mapping equations between the curvilinear coordinate and the Cartesian coordinate and transforms irregular physical space to regular computational space; it also employs a higher- order non-staggered DRP/opt MacCormack scheme which is of low dispersion and low dissipation so that the high accuracy and stability of our rupture modeling are guaranteed. Compared with the previous methods, not only we can compute the spontaneous rupture of an arbitrarily shaped fault, but also can model the influence of the surface topography on the rupture process of earthquake. In order to verify the feasibility of this method, we compared our results and other previous results, and found out they matched perfectly. Thanks to the boundary-conforming FDM, problems such as dynamic rupture with arbitrary dip, strike and rake over an arbitrary curved plane can be handled; and supershear or subshear rupture can be simulated with different parameters such as the initial stresses and the critical slip displacement Dc. Besides, our rupture modeling is economical to be implemented owing to its high efficiency and does not suffer from displacement leakage. With the help of inversion data of rupture by field observations, this method is convenient to model rupture processes and seismograms of natural earthquakes.
Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut
2017-03-01
This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.
Aguirre, E. E.; Karchewski, B.
2017-12-01
DC resistivity surveying is a geophysical method that quantifies the electrical properties of the subsurface of the earth by applying a source current between two electrodes and measuring potential differences between electrodes at known distances from the source. Analytical solutions for a homogeneous half-space and simple subsurface models are well known, as the former is used to define the concept of apparent resistivity. However, in situ properties are heterogeneous meaning that simple analytical models are only an approximation, and ignoring such heterogeneity can lead to misinterpretation of survey results costing time and money. The present study examines the extent to which random variations in electrical properties (i.e. electrical conductivity) affect potential difference readings and therefore apparent resistivities, relative to an assumed homogeneous subsurface model. We simulate the DC resistivity survey using a Finite Difference (FD) approximation of an appropriate simplification of Maxwell's equations implemented in Matlab. Electrical resistivity values at each node in the simulation were defined as random variables with a given mean and variance, and are assumed to follow a log-normal distribution. The Monte Carlo analysis for a given variance of electrical resistivity was performed until the mean and variance in potential difference measured at the surface converged. Finally, we used the simulation results to examine the relationship between variance in resistivity and variation in surface potential difference (or apparent resistivity) relative to a homogeneous half-space model. For relatively low values of standard deviation in the material properties (<10% of mean), we observed a linear correlation between variance of resistivity and variance in apparent resistivity.
A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...
Directory of Open Access Journals (Sweden)
Richasanty Septima S
2017-03-01
Full Text Available The research in this thesis was done to examine the model of traffic flow of volcanic disaster evacuation path for uphill and downhill roads. The assessment was focused on the area of disaster evacuation path from the Pante Raya Bener Meriah intersection to Takengon. This model is assessed for two different types of time when which a disaster occurs; the disaster occurred at night and the disaster occurred during the day, especially during peak hours (working hours. The model was developed with attention to the exixtence of inflow and outflow along the evacuation route. Furthermore, the model obtained is solved numerically by using finite difference method. The chosen approach of this method is upwind scheme with time and space steps using forward difference and backward difference. The solution of this model in the form of simulated vehicle density along evacuation pathways. The research conducted is in the form of a model of traffic flow on evacuation paths and restricted to the inflow and outflow without alternative path as well as the conditions of the road which are uphill and downhill, showed a high density of vehicles either at night or during the day. Uphill road conditions resulted in decreased vehicle speed and vehicle density will increase, while downhill road conditions resulted in increased vehicle speed and vehicle density will decrease, meaning that the road conditions which are uphill and downhill will greatly affect the process of evacuation. Degree vehicles of evacuation efficiency occuring at night without an alternative pathway produces a high efficiency so that it can be interpreted that the evacuation process in the evening was successful and runs better than the evacuation process during the day, and this is caused by the existence of vehicles on the road evacuation process started thus affecting the efficiency levels.
International Nuclear Information System (INIS)
O'Dell, R.D.; Stepanek, J.; Wagner, M.R.
1983-01-01
The aim of the present work is to compare and discuss the three of the most advanced two dimensional transport methods, the finite difference and nodal discrete ordinates and surface flux method, incorporated into the transport codes TWODANT, TWOTRAN-NODAL, MULTIMEDIUM and SURCU. For intercomparison the eigenvalue and the neutron flux distribution are calculated using these codes in the LWR pool reactor benchmark problem. Additionally the results are compared with some results obtained by French collision probability transport codes MARSYAS and TRIDENT. Because the transport solution of this benchmark problem is close to its diffusion solution some results obtained by the finite element diffusion code FINELM and the finite difference diffusion code DIFF-2D are included
International Nuclear Information System (INIS)
Garcia-Herranz, Nuria; Cabellos, Oscar; Aragones, Jose M.; Ahnert, Carol
2003-01-01
In order to take into account in a more effective and accurate way the intranodal heterogeneities in coarse-mesh finite-difference (CMFD) methods, a new equivalent parameter generation methodology has been developed and tested. This methodology accounts for the dependence of the nodal homogeneized two-group cross sections and nodal coupling factors, with interface flux discontinuity (IFD) factors that account for heterogeneities on the flux-spectrum and burnup intranodal distributions as well as on neighbor effects.The methodology has been implemented in an analytic CMFD method, rigorously obtained for homogeneous nodes with transverse leakage and generalized now for heterogeneous nodes by including IFD heterogeneity factors. When intranodal mesh node heterogeneity vanishes, the heterogeneous solution tends to the analytic homogeneous nodal solution. On the other hand, when intranodal heterogeneity increases, a high accuracy is maintained since the linear and nonlinear feedbacks on equivalent parameters have been shown to be as a very effective way of accounting for heterogeneity effects in two-group multidimensional coarse-mesh diffusion calculations
International Nuclear Information System (INIS)
Fujii, A; Hayashi, S; Fujii, S; Yanagi, K
2014-01-01
This paper deals with the functional performance of optical surface texture measuring instruments on the market. It is well known that their height response curves against certain referential geometry are not always identical to each other. So, a more precise study on the optical instrument's characteristics is greatly needed. Firstly, we developed a new simulation tool using a finite-difference time-domain technique, which enables the prediction of the height response curve against the fundamental surface geometry in the case of the confocal laser scanning microscope. Secondly, by utilizing this new simulation tool, measurement results, including outliers, were compared with the analytical simulation results. The comparison showed the consistency, which indicates that necessary conditions of surface measurement standards for verifying the instrument performance can be established. Consequently, we suggest that the maximum measurable slope angle must be added to evaluation subjects as significant metrological characteristics of measuring instruments, along with the lateral period limit. Finally, we propose a procedure to determine the lateral period limit in an ISO standard. (paper)
Zarrati, Simindokht; Heidari, Fatemeh; Kashani, Jamal
2015-01-01
Objectives: This finite element method study aimed to compare the amount of stress on an isolated mandibular second premolar in two conventional reciprocal parallel interface designs of removable partial dentures (RPDs) and the same RPD abutment tooth (not isolated). Materials and Methods: A Kennedy Class 1, modification 1 RPD framework was simulated on a 3D model of mandible with three different designs: an isolated tooth with a mesial rest, an isolated tooth with mesial and distal rests and an abutment with a mesial rest (which was not isolated); 26 N occlusal forces were exerted bilaterally on the first molar sites. Stress on the abutment teeth was analyzed using Cosmos Works 2009 Software. Results: In all designs, the abutment tooth stress concentration was located in the buccal alveolar crest. In the first model, the von Mises stress distribution in the contact area of I-bar clasp and cervical portion of the tooth was 19 MPa and the maximum stress was 30 MPa. In the second model, the maximum von Mises stress distribution was 15 MPa in the cervical of the tooth. In the third model, the maximum von Mises stress was located in the cervical of the tooth and the distal proximal plate. Conclusion: We recommend using both mesial and distal rests on the distal abutment teeth of distal extension RPDs. The abutment of an extension base RPD, which is not isolated in presence of its neighboring more anterior tooth, may have a better biomechanical prognosis. PMID:26884772
Kumar, A.; Rudy, D. H.; Drummond, J. P.; Harris, J. E.
1982-01-01
Several two- and three-dimensional external and internal flow problems solved on the STAR-100 and CYBER-203 vector processing computers are described. The flow field was described by the full Navier-Stokes equations which were then solved by explicit finite-difference algorithms. Problem results and computer system requirements are presented. Program organization and data base structure for three-dimensional computer codes which will eliminate or improve on page faulting, are discussed. Storage requirements for three-dimensional codes are reduced by calculating transformation metric data in each step. As a result, in-core grid points were increased in number by 50% to 150,000, with a 10% execution time increase. An assessment of current and future machine requirements shows that even on the CYBER-205 computer only a few problems can be solved realistically. Estimates reveal that the present situation is more storage limited than compute rate limited, but advancements in both storage and speed are essential to realistically calculate three-dimensional flow.
Clay, M. P.; Yeung, P. K.; Buaria, D.; Gotoh, T.
2017-11-01
Turbulent mixing at high Schmidt number is a multiscale problem which places demanding requirements on direct numerical simulations to resolve fluctuations down the to Batchelor scale. We use a dual-grid, dual-scheme and dual-communicator approach where velocity and scalar fields are computed by separate groups of parallel processes, the latter using a combined compact finite difference (CCD) scheme on finer grid with a static 3-D domain decomposition free of the communication overhead of memory transposes. A high degree of scalability is achieved for a 81923 scalar field at Schmidt number 512 in turbulence with a modest inertial range, by overlapping communication with computation whenever possible. On the Cray XE6 partition of Blue Waters, use of a dedicated thread for communication combined with OpenMP locks and nested parallelism reduces CCD timings by 34% compared to an MPI baseline. The code has been further optimized for the 27-petaflops Cray XK7 machine Titan using GPUs as accelerators with the latest OpenMP 4.5 directives, giving 2.7X speedup compared to CPU-only execution at the largest problem size. Supported by NSF Grant ACI-1036170, the NCSA Blue Waters Project with subaward via UIUC, and a DOE INCITE allocation at ORNL.
A novel 2.5D finite difference scheme for simulations of resistivity logging in anisotropic media
Zeng, Shubin; Chen, Fangzhou; Li, Dawei; Chen, Ji; Chen, Jiefu
2018-03-01
The objective of this study is to develop a method to model 3D resistivity well logging problems in 2D formation with anisotropy, known as 2.5D modeling. The traditional 1D forward modeling extensively used in practice lacks the capability of modeling 2D formation. A 2.5D finite difference method (FDM) solving all the electric and magnetic field components simultaneously is proposed. Compared to other previous 2.5D FDM schemes, this method is more straightforward in modeling fully anisotropic media and easy to be implemented. Fourier transform is essential to this FDM scheme, and by employing Gauss-Legendre (GL) quadrature rule the computational time of this step can be greatly reduced. In the numerical examples, we first demonstrate the validity of the FDM scheme with GL rule by comparing with 1D forward modeling for layered anisotropic problems, and then we model a complicated 2D formation case and find that the proposed 2.5D FD scheme is much more efficient than 3D numerical methods.
Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.
1992-01-01
Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.
Zarrati, Simindokht; Bahrami, Mehran; Heidari, Fatemeh; Kashani, Jamal
2015-06-01
This finite element method study aimed to compare the amount of stress on an isolated mandibular second premolar in two conventional reciprocal parallel interface designs of removable partial dentures (RPDs) and the same RPD abutment tooth (not isolated). A Kennedy Class 1, modification 1 RPD framework was simulated on a 3D model of mandible with three different designs: an isolated tooth with a mesial rest, an isolated tooth with mesial and distal rests and an abutment with a mesial rest (which was not isolated); 26 N occlusal forces were exerted bilaterally on the first molar sites. Stress on the abutment teeth was analyzed using Cosmos Works 2009 Software. In all designs, the abutment tooth stress concentration was located in the buccal alveolar crest. In the first model, the von Mises stress distribution in the contact area of I-bar clasp and cervical portion of the tooth was 19 MPa and the maximum stress was 30 MPa. In the second model, the maximum von Mises stress distribution was 15 MPa in the cervical of the tooth. In the third model, the maximum von Mises stress was located in the cervical of the tooth and the distal proximal plate. We recommend using both mesial and distal rests on the distal abutment teeth of distal extension RPDs. The abutment of an extension base RPD, which is not isolated in presence of its neighboring more anterior tooth, may have a better biomechanical prognosis.
Sun, Qiang; Wu, Guo Xiong
2013-03-01
A mathematical model and a numerical solution procedure are developed to simulate flow field through a 3D permeable vessel with multibranches embedded in a solid tumour. The model is based on Poisseuille's law for the description of the flow through the vessels, Darcy's law for the fluid field inside the tumour interstitium, and Starling's law for the flux transmitted across the vascular walls. The solution procedure is based on a coupled method, in which the finite difference method is used for the flow in the vessels and the boundary element method is used for the flow in the tumour. When vessels meet each other at a junction, the pressure continuity and mass conservation are imposed at the junction. Three typical representative structures within the tumour vasculature, symmetrical dichotomous branching, asymmetrical bifurcation with uneven radius of daughter vessels and trifurcation, are investigated in detail as case studies. These results have demonstrated the features of tumour flow environment by the pressure distributions and flow velocity field. Copyright © 2012 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Lee, Jungpyo; Cappelli, Mark A
2008-01-01
In this paper, we present finite difference time domain (FDTD) simulations of millimetre-wave propagation through the near-field plasma plume of low power Hall thrusters. The simulations are intended to address potential issues (collisions, magnetic fields) that may affect the validity of simple theory used for phase shift determination in the recent measurements of plasma density using microwave interferometry (Cappelli et al 2006 J. Phys. D: Appl. Phys. 39 4582). One-dimensional plane wave FDTD simulations indicate that plasma non-uniformities along the direction of wave propagation have only a minor effect on the phase shifts estimated from collisionless, non-magnetized wave propagation through a path-length averaged plasma slab. Three-dimensional FDTD simulations that also account for electron collisions and magnetic fields indicate that the departure from the use of usual simple models is no more than about 15%, well within the limits of uncertainty in the experimental measurements taken within the near field of these plasma sources
Kim, Jae Wook
2013-05-01
This paper proposes a novel systematic approach for the parallelization of pentadiagonal compact finite-difference schemes and filters based on domain decomposition. The proposed approach allows a pentadiagonal banded matrix system to be split into quasi-disjoint subsystems by using a linear-algebraic transformation technique. As a result the inversion of pentadiagonal matrices can be implemented within each subdomain in an independent manner subject to a conventional halo-exchange process. The proposed matrix transformation leads to new subdomain boundary (SB) compact schemes and filters that require three halo terms to exchange with neighboring subdomains. The internode communication overhead in the present approach is equivalent to that of standard explicit schemes and filters based on seven-point discretization stencils. The new SB compact schemes and filters demand additional arithmetic operations compared to the original serial ones. However, it is shown that the additional cost becomes sufficiently low by choosing optimal sizes of their discretization stencils. Compared to earlier published results, the proposed SB compact schemes and filters successfully reduce parallelization artifacts arising from subdomain boundaries to a level sufficiently negligible for sophisticated aeroacoustic simulations without degrading parallel efficiency. The overall performance and parallel efficiency of the proposed approach are demonstrated by stringent benchmark tests.
Kiessling, Jonas
2014-05-06
Option prices in exponential Lévy models solve certain partial integro-differential equations. This work focuses on developing novel, computable error approximations for a finite difference scheme that is suitable for solving such PIDEs. The scheme was introduced in (Cont and Voltchkova, SIAM J. Numer. Anal. 43(4):1596-1626, 2005). The main results of this work are new estimates of the dominating error terms, namely the time and space discretisation errors. In addition, the leading order terms of the error estimates are determined in a form that is more amenable to computations. The payoff is only assumed to satisfy an exponential growth condition, it is not assumed to be Lipschitz continuous as in previous works. If the underlying Lévy process has infinite jump activity, then the jumps smaller than some (Formula presented.) are approximated by diffusion. The resulting diffusion approximation error is also estimated, with leading order term in computable form, as well as the dependence of the time and space discretisation errors on this approximation. Consequently, it is possible to determine how to jointly choose the space and time grid sizes and the cut off parameter (Formula presented.). © 2014 Springer Science+Business Media Dordrecht.
Xu, Nuo; Lei, Xue; Yang, Xiaoli; Li, Xinhui; Ge, Zhenlin
2018-04-01
Objective: to compare canine tooth stress distribution condition during maxillary canine tooth distalization by different accessories of bracket-free invisible orthodontics technology after removal of maxillary first premolar, and provide basis for clinical design of invisible orthodontics technology. Method: CBCT scanning image of a patient with individual normal occlusion was adopted, Mimics, Geomagic and ProlE software were used for establishing three-dimensional models of maxilla, maxillary dentition, parodontium, invisible orthodontics appliance and accessories, ANSYS WORKBENCH was utilized as finite element analysis tools for analyzing stress distribution and movement pattern of canine tooth and parodontium when canine tooth was equipped with power arm and vertical rectangle accessory. Meanwhile, canine tooth none-accessory design group was regarded as a control. Result: teeth had even bistal surface stress distribution in the power arm group; stress was concentrated on distal tooth neck, and the stress was gradually deviated to mesial-labial side and distal lingual side in vertical rectangle group and none-accessory group. Conclusion: teeth tend to move as a whole in the Power arm group, vertical rectangle group has lower tooth gradient compared with the none-accessory group, teeth are inclined for movement in the none-accessory group, and canine teeth tend to rotate to the distal lingual side.
Chao, Guo-Shan; Sung, Kung-Bin
2010-02-01
Backscattered light spectra have been used to extract size distribution of cell nuclei in epithelial tissues for noninvasive detection of precancerous lesions. In existing experimental studies, size estimation is achieved by assuming nuclei as homogeneous spheres or spheroids and fitting the measured data with models based on Mie theory. However, the validity of simplifying nuclei as homogeneous spheres has not been thoroughly examined. In this study, we investigate the spectral characteristics of backscattering from models of spheroidal nuclei under plane wave illumination using three-dimensional finite-difference time-domain (FDTD) simulation. A modulated Gaussian pulse is used to obtain wavelength dependent scattering intensity with a single FDTD run. The simulated model of nuclei consists of a nucleolus and randomly distributed chromatin condensation in homogeneous cytoplasm and nucleoplasm. The results show that backscattering spectra from spheroidal nuclei have similar oscillating patterns to those from homogeneous spheres with the diameter equal to the projective length of the spheroidal nucleus along the propagation direction. The strength of backscattering is enhanced in heterogeneous spheroids as compared to homogeneous spheroids. The degree of which backscattering spectra of heterogeneous nuclei deviate from Mie theory is highly dependent on the distribution of chromatin/nucleolus but not sensitive to nucleolar size, refractive index fluctuation or chromatin density.
Miura, Shoko; Kasahara, Shin; Yamauchi, Shinobu; Egusa, Hiroshi
2017-06-01
The purpose of this study were: to perform stress analyses using three-dimensional finite element analysis methods; to analyze the mechanical stress of different framework designs; and to investigate framework designs that will provide for the long-term stability of both cantilevered fixed partial dentures (FPDs) and abutment teeth. An analysis model was prepared for three units of cantilevered FPDs that assume a missing mandibular first molar. Four types of framework design (Design 1, basic type; Design 2, framework width expanded buccolingually by 2 mm; Design 3, framework height expanded by 0.5 mm to the occlusal surface side from the end abutment to the connector area; and Design 4, a combination of Designs 2 and 3) were created. Two types of framework material (yttrium-oxide partially stabilized zirconia and a high precious noble metal gold alloy) and two types of abutment material (dentin and brass) were used. In the framework designs, Design 1 exhibited the highest maximum principal stress value for both zirconia and gold alloy. In the abutment tooth, Design 3 exhibited the highest maximum principal stress value for all abutment teeth. In the present study, Design 4 (the design with expanded framework height and framework width) could contribute to preventing the concentration of stress and protecting abutment teeth. © 2017 Eur J Oral Sci.
Iterative methods for 3D implicit finite-difference migration using the complex Padé approximation
International Nuclear Information System (INIS)
Costa, Carlos A N; Campos, Itamara S; Costa, Jessé C; Neto, Francisco A; Schleicher, Jörg; Novais, Amélia
2013-01-01
Conventional implementations of 3D finite-difference (FD) migration use splitting techniques to accelerate performance and save computational cost. However, such techniques are plagued with numerical anisotropy that jeopardises the correct positioning of dipping reflectors in the directions not used for the operator splitting. We implement 3D downward continuation FD migration without splitting using a complex Padé approximation. In this way, the numerical anisotropy is eliminated at the expense of a computationally more intensive solution of a large-band linear system. We compare the performance of the iterative stabilized biconjugate gradient (BICGSTAB) and that of the multifrontal massively parallel direct solver (MUMPS). It turns out that the use of the complex Padé approximation not only stabilizes the solution, but also acts as an effective preconditioner for the BICGSTAB algorithm, reducing the number of iterations as compared to the implementation using the real Padé expansion. As a consequence, the iterative BICGSTAB method is more efficient than the direct MUMPS method when solving a single term in the Padé expansion. The results of both algorithms, here evaluated by computing the migration impulse response in the SEG/EAGE salt model, are of comparable quality. (paper)
An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation
Zhan, Ge
2013-02-19
The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations. © 2013 Sinopec Geophysical Research Institute.
Energy Technology Data Exchange (ETDEWEB)
Oh, Jae-Yong, E-mail: tylor@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedeok-daero 1045, Yuseong, Daejeon 305-353 (Korea, Republic of); Koo, Yang-Hyun; Lee, Byung-Ho; Tahk, Young-Wook [Korea Atomic Energy Research Institute, Daedeok-daero 1045, Yuseong, Daejeon 305-353 (Korea, Republic of)
2011-07-15
This paper evaluated the effects of porosity on the effective thermal conductivity of UO{sub 2} fuel by combining the Potts model and the finite difference method (FDM). Two types of microstructures representing irradiated UO{sub 2} microstructures were simulated by the Potts model in the three dimensional cubic system. One represented very small intragranular bubbles and a few intergranular bubbles under a low temperature condition. The other represented large intergranular bubbles under a high temperature or annealing condition. For the simulated microstructures, the effective thermal conductivities were determined by FDM calculation of the temperature distributions under steady state condition. They were compared with an experimental equation and the effect of bubble morphology was investigated by fitting a porosity shape factor in the Maxwell-Eucken equation. The simulation results showed a good agreement with an experimental equation and demonstrated the capability of the Potts model to provide information on microstructure for calculating the effective thermal conductivity of UO{sub 2} fuel.
An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation
International Nuclear Information System (INIS)
Zhan, Ge; Pestana, Reynam C; Stoffa, Paul L
2013-01-01
The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward–backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations. (paper)
Directory of Open Access Journals (Sweden)
Zohreh Hedayati
2016-10-01
Full Text Available Abstract Background Nowadays, mini screws are used in orthodontic tooth movement to obtain maximum or absolute anchorage. They have gained popularity among orthodontists for en masse retraction of anterior teeth after first premolar extraction in maximum anchorage cases. The purpose of this study was to determine the type of anterior tooth movement during the time when force was applied from different mini screw placements to the anterior power arm with various heights. Methods A finite element method was used for modeling maxillary teeth and bone structure. Brackets, wire, and hooks were also designed for modeling. Two appropriate positions for mini screw in the mesial and distal of the second premolar were designed as fixed nodes. Forces were applied from the mini screw to four different levels of anterior hook height: 0, 3, 6, and 9 mm. Initial tooth movement in eight different conditions was analyzed and calculated with ANSYS software. Results Rotation of anterior dentition was decreased with a longer anterior power arm and the mesial placement of the mini screw. Bodily movements occurred with the 9-mm height of the power arm in both mini screw positions. Intrusion or extrusion of the anterior teeth segment depended on the level of the mini screw and the edge of the power arm on the Z axis. Conclusions According to the findings of this study, the best control in the sagittal plane during anterior en masse retraction was achieved by mesial placement of the mini screw and the 9-mm height of the anterior power arm. Where control in the vertical plane was concerned, distal placement of the mini screw with the 6-mm power arm height had minimum adverse effect on anterior dentition.
Directory of Open Access Journals (Sweden)
Julián A García-Grajales
Full Text Available With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite--explicit and implicit--were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon
Energy Technology Data Exchange (ETDEWEB)
Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado
1997-10-01
The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.
DEFF Research Database (Denmark)
Celestinos, Adrian; Nielsen, Sofus Birkedal
2008-01-01
Small- and medium-size rectangular rooms have a strong influence on the low-frequency performance of loudspeakers. A simulation program based on the finite-difference time-domain (FDTD) method is introduced to analyze the sound field produced by loudspeakers in rectangular rooms at low frequencies...
de Souza, Fernando Isquierdo; Poi, Wilson Roberto; da Silva, Vanessa Ferreira; Martini, Ana Paula; Melo, Regis Alexandre da Cunha; Panzarini, Sonia Regina; Rocha, Eduardo Passos
2015-06-01
The aim was to evaluate the biomechanical behavior of the supporting bony structures of replanted teeth and the periodontal ligament (PDL) of adjacent teeth when orthodontic wires with different mechanical properties are applied, with three-dimensional finite element analysis. Based on tomographic and microtomographic data, a three-dimensional model of the anterior maxilla with the corresponding teeth (tooth 13-tooth 23) was generated to simulate avulsion and replantation of the tooth 21. The teeth were splinted with orthodontic wire (Ø 0.8 mm) and composite resin. The elastic modulus of the three orthodontic wires used, that is, steel wire (FA), titanium-molybdenum wire (FTM), and nitinol wire (FN) were 200 GPa, 84 GPa, and 52 GPa, respectively. An oblique load (100 N) was applied at an angle of 45° on the incisal edge of the replanted tooth and was analyzed using Ansys Workbench software. The maximum (σmax) and minimum (σmin) principal stresses generated in the PDL, cortical and alveolar bones, and the modified von Mises (σvM) values for the orthodontic wires were obtained. With regard to the cortical bone and PDL, the highest σmin and σmax values for FTM, FN, and FA were checked. With regard to the alveolar bone, σmax and σmin values were highest for FA, followed by FTM and FN. The σvM values of the orthodontic wires followed the order of rigidity of the alloys, that is, FA > FTM > FN. The biomechanical behavior of the analyzed structures with regard to all the three patterns of flexibility was similar. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
Simindokht Zarrati
2015-11-01
Full Text Available Objectives: This finite element method study aimed to compare the amount of stress on an isolated mandibular second premolar in two conventional reciprocal parallel interface designs of removable partial dentures (RPDs and the same RPD abutment tooth (not isolated.Materials and Methods: A Kennedy Class 1, modification 1 RPD framework was simulated on a 3D model of mandible with three different designs: an isolated tooth with a mesial rest, an isolated tooth with mesial and distal rests and an abutment with a mesial rest (which was not isolated; 26 N occlusal forces were exerted bilaterally on the first molar sites. Stress on the abutment teeth was analyzed using Cosmos Works 2009 Software.Results: In all designs, the abutment tooth stress concentration was located in the buccal alveolar crest. In the first model, the von Mises stress distribution in the contact area of I-bar clasp and cervical portion of the tooth was 19 MPa and the maximum stress was 30 MPa. In the second model, the maximum von Mises stress distribution was 15 MPa in the cervical of the tooth. In the third model, the maximum von Mises stress was located in the cervical of the tooth and the distal proximal plate.Conclusion: We recommend using both mesial and distal rests on the distal abutment teeth of distal extension RPDs. The abutment of an extension base RPD, which is not isolated in presence of its neighboring more anterior tooth, may have a better biomechanical prognosis.
Coco, Armando; Russo, Giovanni
2018-05-01
In this paper we propose a second-order accurate numerical method to solve elliptic problems with discontinuous coefficients (with general non-homogeneous jumps in the solution and its gradient) in 2D and 3D. The method consists of a finite-difference method on a Cartesian grid in which complex geometries (boundaries and interfaces) are embedded, and is second order accurate in the solution and the gradient itself. In order to avoid the drop in accuracy caused by the discontinuity of the coefficients across the interface, two numerical values are assigned on grid points that are close to the interface: a real value, that represents the numerical solution on that grid point, and a ghost value, that represents the numerical solution extrapolated from the other side of the interface, obtained by enforcing the assigned non-homogeneous jump conditions on the solution and its flux. The method is also extended to the case of matrix coefficient. The linear system arising from the discretization is solved by an efficient multigrid approach. Unlike the 1D case, grid points are not necessarily aligned with the normal derivative and therefore suitable stencils must be chosen to discretize interface conditions in order to achieve second order accuracy in the solution and its gradient. A proper treatment of the interface conditions will allow the multigrid to attain the optimal convergence factor, comparable with the one obtained by Local Fourier Analysis for rectangular domains. The method is robust enough to handle large jump in the coefficients: order of accuracy, monotonicity of the errors and good convergence factor are maintained by the scheme.
Bao, X.; Shen, Y.; Wang, N.
2017-12-01
Accurate estimation of the source moment is important for discriminating underground explosions from earthquakes and other seismic sources. In this study, we invert for the full moment tensors of the recent seismic events (since 2016) at the Democratic People's Republic of Korea (PRRK) Punggye-ri test site. We use waveform data from broadband seismic stations located in China, Korea, and Japan in the inversion. Using a non-staggered-grid, finite-difference algorithm, we calculate the strain Green's tensors (SGT) based on one-dimensional (1D) and three-dimensional (3D) Earth models. Taking advantage of the source-receiver reciprocity, a SGT database pre-calculated and stored for the Punggye-ri test site is used in inversion for the source mechanism of each event. With the source locations estimated from cross-correlation using regional Pn and Pn-coda waveforms, we obtain the optimal source mechanism that best fits synthetics to the observed waveforms of both body and surface waves. The moment solutions of the first three events (2016-01-06, 2016-09-09, and 2017-09-03) show dominant isotropic components, as expected from explosions, though there are also notable non-isotropic components. The last event ( 8 minutes after the mb6.3 explosion in 2017) contained mainly implosive component, suggesting a collapse following the explosion. The solutions from the 3D model can better fit observed waveforms than the corresponding solutions from the 1D model. The uncertainty in the resulting moment solution is influenced by heterogeneities not resolved by the Earth model according to the waveform misfit. Using the moment solutions, we predict the peak ground acceleration at the Punggye-ri test site and compare the prediction with corresponding InSAR and other satellite images.
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Liu, J.
2010-01-01
Love-wave propagation has been a topic of interest to crustal, earthquake, and engineering seismologists for many years because it is independent of Poisson's ratio and more sensitive to shear (S)-wave velocity changes and layer thickness changes than are Rayleigh waves. It is well known that Love-wave generation requires the existence of a low S-wave velocity layer in a multilayered earth model. In order to study numerically the propagation of Love waves in a layered earth model and dispersion characteristics for near-surface applications, we simulate high-frequency (>5 Hz) Love waves by the staggered-grid finite-difference (FD) method. The air-earth boundary (the shear stress above the free surface) is treated using the stress-imaging technique. We use a two-layer model to demonstrate the accuracy of the staggered-grid modeling scheme. We also simulate four-layer models including a low-velocity layer (LVL) or a high-velocity layer (HVL) to analyze dispersive energy characteristics for near-surface applications. Results demonstrate that: (1) the staggered-grid FD code and stress-imaging technique are suitable for treating the free-surface boundary conditions for Love-wave modeling, (2) Love-wave inversion should be treated with extra care when a LVL exists because of a lack of LVL information in dispersions aggravating uncertainties in the inversion procedure, and (3) energy of high modes in a low-frequency range is very weak, so that it is difficult to estimate the cutoff frequency accurately, and "mode-crossing" occurs between the second higher and third higher modes when a HVL exists. ?? 2010 Birkh??user / Springer Basel AG.
International Nuclear Information System (INIS)
Kadri, M.
1983-01-01
The time dependent heat conduction equation in the x-y Cartesian geometry is formulated in terms of a nine-point finite difference relation using a Taylor series expansion technique. The accuracy of the nine-point formulation over the five-point formulation has been tested and evaluated for various reactor fuel-cladding plate configurations using a computer program. The results have been checked against analytical solutions for various model problems. The following cases were considered in the steady-state condition: (a) The thermal conductivity and the heat generation were uniform. (b) The thermal conductivity was constant, the heat generation variable. (c) The thermal conductivity varied linearly with the temperature, the heat generation was uniform. (d) Both thermal conductivity and heat generation vary. In case (a), approximately, for the same accuracy, 85% fewer grid points were needed for the nine-point relation which has a 14% higher convergence rate as compared to the five-point relation. In case (b), on the average, 84% fewer grid points were needed for the nine-point relation which has a 65% higher convergence rate as compared to the five-point relation. In case (c) and (d), there is significant accuracy (91% higher than the five-point relation) for the nine-point relation when a worse grid was used. The numerical solution of the nine-point formula in the time dependent case was also more accurate and converges faster than the numerical solution of the five-point formula for all comparative tests related to heat conduction problems in a nuclear fuel element
Filardi, Vincenzo; Simona, Portaro; Cacciola, Giorgio; Bertino, Salvatore; Soliera, Luigi; Barbanera, Andrea; Pisani, Alessandro; Milardi, Demetrio; Alessia, Bramanti
2017-06-01
In humans, vertical posture acquisition caused several changes in bones and muscles which can be assumed as verticalization. Pelvis, femur, and vertebral column gain an extension position which decreases muscular work by paravertebral muscles in the latter. It's widely known that six different morphological categories exist; each category differs from the others by pelvic parameters and vertebral column curvatures. Both values depend on the Pelvic Incidence, calculated as the angle between the axes passing through the rotation centre of the two femur heads and the vertical axis passing through the superior plate of the sacrum. The aim of this study is to evaluate the distribution of stress and the resulting strain along the axial skeleton using finite element analysis. The use of this computational method allows performing different analyses investigating how different bony geometries and skeletal structures can behavior under specific loading conditions. A computerized tomography (CT) of artificial bones, carried on at 1.5 mm of distance along sagittal, coronal and axial planes with the knee at 0° flexion (accuracy 0.5 mm), was used to obtain geometrical data of the model developed. Lines were imported into a commercial code (Hypermesh by Altair ® ) in order to interpolate main surfaces and create the solid version of the model. In particular six different models were created according Roussoly's classification, by arranging geometrical position of the skeletal components. Loading conditions were obtained by applying muscular forces components to T1 till to L5, according to a reference model (Daniel M. 2011), and a fixed constrain was imposed on the lower part of the femurs. Materials were assumed as elastic with an Elastic modulus of 15 GPa, a Shear Modulus of 7 GPa for bony parts, and an Elastic modulus of 6 MPa, a Shear Modulus of 3 MPa for cartilaginous parts. Six different simulations have been carried out in order to evaluate the mechanical behavior
Sman, van der R.G.M.
2006-01-01
In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the
A new time–space domain high-order finite-difference method for the acoustic wave equation
Liu, Yang; Sen, Mrinal K.
2009-01-01
A new unified methodology was proposed in Finkelstein and Kastner (2007) [39] to derive spatial finite-difference (FD) coefficients in the joint time-space domain to reduce numerical dispersion. The key idea of this method is that the dispersion relation is completely satisfied at several designated frequencies. We develop this new time-space domain FD method further for 1D, 2D and 3D acoustic wave modeling using a plane wave theory and the Taylor series expansion. New spatial FD coefficients are frequency independent though they lead to a frequency dependent numerical solution. We prove that the modeling accuracy is 2nd-order when the conventional (2 M)th-order space domain FD and the 2nd-order time domain FD stencils are directly used to solve the acoustic wave equation. However, under the same discretization, the new 1D method can reach (2 M)th-order accuracy and is always stable. The 2D method can reach (2 M)th-order accuracy along eight directions and has better stability. Similarly, the 3D method can reach (2 M)th-order accuracy along 48 directions and also has better stability than the conventional FD method. The advantages of the new method are also demonstrated by the results of dispersion analysis and numerical modeling of acoustic wave equation for homogeneous and inhomogeneous acoustic models. In addition, we study the influence of the FD stencil length on numerical modeling for 1D inhomogeneous media, and derive an optimal FD stencil length required to balance the accuracy and efficiency of modeling. A new time-space domain high-order staggered-grid FD method for the 1D acoustic wave equation with variable densities is also developed, which has similar advantages demonstrated by dispersion analysis, stability analysis and modeling experiments. The methodology presented in this paper can be easily extended to solve similar partial difference equations arising in other fields of science and engineering. © 2009 Elsevier Inc.
A new time–space domain high-order finite-difference method for the acoustic wave equation
Liu, Yang
2009-12-01
A new unified methodology was proposed in Finkelstein and Kastner (2007) [39] to derive spatial finite-difference (FD) coefficients in the joint time-space domain to reduce numerical dispersion. The key idea of this method is that the dispersion relation is completely satisfied at several designated frequencies. We develop this new time-space domain FD method further for 1D, 2D and 3D acoustic wave modeling using a plane wave theory and the Taylor series expansion. New spatial FD coefficients are frequency independent though they lead to a frequency dependent numerical solution. We prove that the modeling accuracy is 2nd-order when the conventional (2 M)th-order space domain FD and the 2nd-order time domain FD stencils are directly used to solve the acoustic wave equation. However, under the same discretization, the new 1D method can reach (2 M)th-order accuracy and is always stable. The 2D method can reach (2 M)th-order accuracy along eight directions and has better stability. Similarly, the 3D method can reach (2 M)th-order accuracy along 48 directions and also has better stability than the conventional FD method. The advantages of the new method are also demonstrated by the results of dispersion analysis and numerical modeling of acoustic wave equation for homogeneous and inhomogeneous acoustic models. In addition, we study the influence of the FD stencil length on numerical modeling for 1D inhomogeneous media, and derive an optimal FD stencil length required to balance the accuracy and efficiency of modeling. A new time-space domain high-order staggered-grid FD method for the 1D acoustic wave equation with variable densities is also developed, which has similar advantages demonstrated by dispersion analysis, stability analysis and modeling experiments. The methodology presented in this paper can be easily extended to solve similar partial difference equations arising in other fields of science and engineering. © 2009 Elsevier Inc.
Wakamatu, S.; Kawakata, H.; Hirano, S.
2017-12-01
Observation and analysis of infrasonic waves are important for volcanology because they could be associated with mechanisms of volcanic tremors and earthquakes (Sakai et al., 2000). Around the Hakone volcano area, Japan, infrasonic waves had been observed many times in 2015 (Yukutake et al., 2016, JpGU). In the area, seismometers have been installed more than microphones, so that analysis of seismograms may also contribute to understanding some characteristics of the infrasonic waves. In this study, we focused on the infrasonic waves on July 1, 2015, at the area and discussed their propagation. We analyzed the vertical component of seven seismograms and two infrasound records; instruments for these data have been installed within 5 km from the vent emerged in the June 2015 eruption(HSRI, 2015). We summarized distances of the observation points from the vent and appearance of the signals in the seismograms and the microphone records in Table 1. We confirmed that, when the OWD microphone(Fig1) observed the infrasonic waves, seismometers of the OWD and the KIN surface seismic stations(Fig1) recorded pulse-like signals repeatedly while the other five buried seismometers did not. At the same time, the NNT microphone(Fig1) recorded no more than unclear signals despite the shorter distance to the vent than that of the KIN station. We found that the appearance of pulse-like signals at the KIN seismic station usually 10-11 seconds delay after the appearance at the OWD seismic station. The distance between these two stations is 3.5km, so that the signals in seismograms could represent propagation of the infrasonic waves rather than the seismic waves. If so, however, the infrasound propagation could be influenced by the topography of the area because the signals are unclear in the NNT microphone record.To validate the above interpretation, we simulated the diffraction of the infrasonic waves due to the topography. We executed a 3-D finite-difference calculation by
International Nuclear Information System (INIS)
Koltenbah, B.E.C.; Parazzoli, Claudio G.; Greegor, Robert B.; Dowell, David H.
2002-01-01
Recent interest in advanced laser light sources has stimulated development of accelerator systems of intermediate beam energy, 100-200 MeV, and high charge, 1-10 nC, for high power FEL applications and high energy, 1-2 GeV, high charge, SASE-FEL applications. The current generation of beam transport codes which were developed for high-energy, low-charge beams with low self-fields are inadequate to address this energy and charge regime, and better computational tools are required to accurately calculate self-fields. To that end, we have developed a new version of PARMELA, named PARMELA B and written in Fortran 95, which includes a coherent synchrotron radiation (CSR) routine and an improved, generalized space charge (SC) routine. An electron bunch is simulated by a collection of macro-particles, which traverses a series of beam line elements. At each time step through the calculation, the momentum of each particle is updated due to the presence of external and self-fields. The self-fields are due to CSR and SC. For the CSR calculations, the macro-particles are further combined into macro-particle-bins that follow the central trajectory of the bend. The energy change through the time step is calculated from expressions derived from the Lienard-Wiechart formulae, and from this energy change the particle's momentum is updated. For the SC calculations, we maintain the same rest-frame-electrostatic approach of the original PARMELA; however, we employ a finite difference Poisson equation solver instead of the symmetrical ring algorithm of the original code. In this way, we relax the symmetry assumptions in the original code. This method is based upon standard numerical procedures and conserves momentum to first order. The SC computational grid is adaptive and conforms to the size of the pulse as it evolves through the calculation. We provide descriptions of these two algorithms, validation comparisons with other CSR and SC methods, and a limited comparison with
Syed, S. A.; Chiappetta, L. M.
1985-01-01
A methodological evaluation for two-finite differencing schemes for computer-aided gas turbine design is presented. The two computational schemes include; a Bounded Skewed Finite Differencing Scheme (BSUDS); and a Quadratic Upwind Differencing Scheme (QSDS). In the evaluation, the derivations of the schemes were incorporated into two-dimensional and three-dimensional versions of the Teaching Axisymmetric Characteristics Heuristically (TEACH) computer code. Assessments were made according to performance criteria for the solution of problems of turbulent, laminar, and coannular turbulent flow. The specific performance criteria used in the evaluation were simplicity, accuracy, and computational economy. It is found that the BSUDS scheme performed better with respect to the criteria than the QUDS. Some of the reasons for the more successful performance BSUDS are discussed.
International Nuclear Information System (INIS)
Runca, E.; Melli, P.; Sardei, F.
1985-01-01
A finite-difference scheme and a Galerkin scheme are compared with respect to a very accurate solution describing time-dependent advection and diffusion of air pollutants from a line source in an atmosphere vertically stratified and limited by an inversion layer. The accurate solution was achieved by applying the finite-difference scheme on a very refined grid with a very small time step. The grid size and time step were defined according to stability and accuracy criteria discussed in the text. It is found that for the problem considered the two methods can be considered equally accurate. However, the Galerkin method gives a better approximation in the vicinity of the source. This was assumed to be partly due to the different way the source term is taken into account in the two methods. Improvement of the accuracy of the finite-difference scheme was achieved by approximating, at every step, the contribution of the source term by a Gaussian puff moving and diffusing with the velocity and diffusivity of the source location, instead of utilizing a stepwise function for the numerical approximation of the delta function representing the source term
Energy Technology Data Exchange (ETDEWEB)
Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others
2016-09-15
Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.
Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E
2013-12-01
In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Nakra Mohajer, Soukaina; El Harouny, El Hassan; Ibral, Asmaa; El Khamkhami, Jamal
2016-01-01
Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.
El-Amin, Mohamed
2011-05-14
In this paper, a finite difference scheme is developed to solve the unsteady problem of combined heat and mass transfer from an isothermal curved surface to a porous medium saturated by a non-Newtonian fluid. The curved surface is kept at constant temperature and the power-law model is used to model the non-Newtonian fluid. The explicit finite difference method is used to solve simultaneously the equations of momentum, energy and concentration. The consistency of the explicit scheme is examined and the stability conditions are determined for each equation. Boundary layer and Boussinesq approximations have been incorporated. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, temperature and concentration profiles are shown graphically. It is found that as time approaches infinity, the values of wall shear, heat transfer coefficient and concentration gradient at the wall, which are entered in tables, approach the steady state values.
International Nuclear Information System (INIS)
Priimak, Dmitri
2014-01-01
We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques
Energy Technology Data Exchange (ETDEWEB)
Priimak, Dmitri
2014-12-01
We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques.
International Nuclear Information System (INIS)
Gal'perin, Y.M.; Kozub, V.I.; Spivak, B.Z.
1981-01-01
The stability of the nonequilibrium states of a superconductor with a finite difference between the populations of the electron- and hole-like spectral branches is investigated. It is shown that an instability similar to the Cooper instability of a normal metal arises at a sufficiently large value of the imbalance. This eliminates the imbalance within quantum-mechanical (nonkinetic) time periods. The consistency of the allowance for the imbalance in the nonequilibrium Ginzburg-Landau equations is discussed
International Nuclear Information System (INIS)
Uusitupa, T M; Ilvonen, S A; Laakso, I M; Nikoskinen, K I
2008-01-01
In this paper, the anatomically realistic body model Zubal is exposed to a plane wave. A finite-difference time-domain (FDTD) method is used to obtain field data for specific-absorption-rate (SAR) computation. It is investigated how the FDTD resolution, power-loss computation method and positioning of the material voxels in the FDTD grid affect the SAR results. The results enable one to estimate the effects due to certain fundamental choices made in the SAR simulation
Energy Technology Data Exchange (ETDEWEB)
Sasaki, Y [Kyushu University, Fukuoka (Japan). Faculty of Engineering
1997-05-27
To enhance the reliability of electromagnetic/magnetotelluric (MT) survey, calculation results of finite-element methods (FEMs) and finite difference methods (FDMs) were compared. Accuracy of individual methods and convergence of repitition solution were examined. As a result of the investigation, it was found that appropriate accuracy can be obtained from the edge FEM and FDM for the example of vertical magnetic dipole, and that the best accuracy can be obtained from the FDM among four methods for the example of MT survey. It was revealed that the ICBCG (incomplete Cholesky bi-conjugate gradient) method is an excellent method as a solution method of simultaneous equations from the viewpoint of accuracy and calculation time. For the joint FEM, solutions of SOR method converged for both the examples. It was concluded that the cause of error is not due to the error of numerical calculation, but due to the consideration without discontinuity of electric field. The conditions of coefficient matrix increased with decreasing the frequency, which resulted in the unstable numerical calculation. It would be required to incorporate the constraint in a certain form. 4 refs., 12 figs.
Aravena, J.; Dussaillant, A. R.
2006-12-01
Source control is the fundamental principle behind sustainable management of stormwater. Rain gardens are an infiltration practice that provides volume and water quality control, recharge, and multiple landscape, ecological and economic potential benefits. The fulfillment of these objectives requires understanding their behavior during events as well as long term, and tools for their design. We have developed a model based on Richards equation coupled to a surface water balance, solved with a 2D finite volume Fortran code which allows alternating upper boundary conditions, including ponding, which is not present in available 2D models. Also, it can simulate non homogeneous water input, heterogeneous soil (layered or more complex geometries), and surface irregularities -e.g. terracing-, so as to estimate infiltration and recharge. The algorithm is conservative; being an advantage compared to available finite difference and finite element methods. We will present performance comparisons to known models, to experimental data from a bioretention cell, which receives roof water to its surface depression planted with native species in an organic-rich root zone soil layer (underlain by a high conductivity lower layer that, while providing inter-event storage, percolates water readily), as well as long term simulations for different rain garden configurations. Recharge predictions for different climates show significant increases from natural recharge, and that the optimal area ratio (raingarden vs. contributing impervious area) reduces from 20% (humid) to 5% (dry).
Schultz, A.
2010-12-01
describe our ongoing efforts to achieve massive parallelization on a novel hybrid GPU testbed machine currently configured with 12 Intel Westmere Xeon CPU cores (or 24 parallel computational threads) with 96 GB DDR3 system memory, 4 GPU subsystems which in aggregate contain 960 NVidia Tesla GPU cores with 16 GB dedicated DDR3 GPU memory, and a second interleved bank of 4 GPU subsystems containing in aggregate 1792 NVidia Fermi GPU cores with 12 GB dedicated DDR5 GPU memory. We are applying domain decomposition methods to a modified version of Weiss' (2001) 3D frequency domain full physics EM finite difference code, an open source GPL licensed f90 code available for download from www.OpenEM.org. This will be the core of a new hybrid 3D inversion that parallelizes frequencies across CPUs and individual forward solutions across GPUs. We describe progress made in modifying the code to use direct solvers in GPU cores dedicated to each small subdomain, iteratively improving the solution by matching adjacent subdomain boundary solutions, rather than iterative Krylov space sparse solvers as currently applied to the whole domain.
Yu, Guojun
2012-10-01
In this article, comparative studies on computational accuracies and convergence rates of triangular and quadrilateral meshes are carried out in the frame work of the finite-volume method. By theoretical analysis, we conclude that the number of triangular cells needs to be 4/3 times that of quadrilateral cells to obtain similar accuracy. The conclusion is verified by a number of numerical examples. In addition, the convergence rates of the triangular meshes are found to be slower than those of the quadrilateral meshes when the same accuracy is obtained with these two mesh types. © 2012 Taylor and Francis Group, LLC.
Yu, Guojun; Yu, Bo; Sun, Shuyu; Tao, Wenquan
2012-01-01
In this article, comparative studies on computational accuracies and convergence rates of triangular and quadrilateral meshes are carried out in the frame work of the finite-volume method. By theoretical analysis, we conclude that the number of triangular cells needs to be 4/3 times that of quadrilateral cells to obtain similar accuracy. The conclusion is verified by a number of numerical examples. In addition, the convergence rates of the triangular meshes are found to be slower than those of the quadrilateral meshes when the same accuracy is obtained with these two mesh types. © 2012 Taylor and Francis Group, LLC.
Directory of Open Access Journals (Sweden)
S. A. Kaschenko
2014-01-01
Full Text Available We study the dynamics of finite-difference approximation on spatial variables of a logistic equation with delay and diffusion. It is assumed that the diffusion coefficient is small and the Malthusian coefficient is large. The question of the existence and asymptotic behavior of attractors was studied with special asymptotic methods. It is shown that there is a rich array of different types of attractors in the phase space: leading centers, spiral waves, etc. The main asymptotic characteristics of all solutions from the corresponding attractors are adduced in this work. Typical graphics of wave fronts motion of different structures are represented in the article.
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Merritt, M.L.
1993-01-01
The simulation of the transport of injected freshwater in a thin brackish aquifer, overlain and underlain by confining layers containing more saline water, is shown to be influenced by the choice of the finite-difference approximation method, the algorithm for representing vertical advective and dispersive fluxes, and the values assigned to parametric coefficients that specify the degree of vertical dispersion and molecular diffusion that occurs. Computed potable water recovery efficiencies will differ depending upon the choice of algorithm and approximation method, as will dispersion coefficients estimated based on the calibration of simulations to match measured data. A comparison of centered and backward finite-difference approximation methods shows that substantially different transition zones between injected and native waters are depicted by the different methods, and computed recovery efficiencies vary greatly. Standard and experimental algorithms and a variety of values for molecular diffusivity, transverse dispersivity, and vertical scaling factor were compared in simulations of freshwater storage in a thin brackish aquifer. Computed recovery efficiencies vary considerably, and appreciable differences are observed in the distribution of injected freshwater in the various cases tested. The results demonstrate both a qualitatively different description of transport using the experimental algorithms and the interrelated influences of molecular diffusion and transverse dispersion on simulated recovery efficiency. When simulating natural aquifer flow in cross-section, flushing of the aquifer occurred for all tested coefficient choices using both standard and experimental algorithms. ?? 1993.
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1977-11-01
The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P 1 ) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently
Energy Technology Data Exchange (ETDEWEB)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1977-11-01
The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P/sub 1/) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently.
Etilé, Fabrice; Sharma, Anurag
2015-09-01
This study compares the impact of sugar-sweetened beverages (SSBs) tax between moderate and high consumers in Australia. The key methodological contribution is that price response heterogeneity is identified while controlling for censoring of consumption at zero and endogeneity of expenditure by using a finite mixture instrumental variable Tobit model. The SSB price elasticity estimates show a decreasing trend across increasing consumption quantiles, from -2.3 at the median to -0.2 at the 95th quantile. Although high consumers of SSBs have a less elastic demand for SSBs, their very high consumption levels imply that a tax would achieve higher reduction in consumption and higher health gains. Our results also suggest that an SSB tax would represent a small fiscal burden for consumers whatever their pre-policy level of consumption, and that an excise tax should be preferred to an ad valorem tax. Copyright © 2015 John Wiley & Sons, Ltd.
Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.
1992-01-01
A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1975-10-01
The computer code block VENTURE, designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P 1 ) in up to three-dimensional geometry is described. A variety of types of problems may be solved: the usual eigenvalue problem, a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations, or an indirect criticality search on nuclide concentrations, or on dimensions. First-order perturbation analysis capability is available at the macroscopic cross section level
Energy Technology Data Exchange (ETDEWEB)
Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id [Physics Study Program, University of Mataram, Jln. Majapahit 62 Mataram, NTB (Indonesia)
2016-04-19
We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.
International Nuclear Information System (INIS)
Aruchunan, E.
2015-01-01
In this paper, we have examined the effectiveness of the quarter-sweep iteration concept on conjugate gradient normal residual (CGNR) iterative method by using composite Simpson's (CS) and finite difference (FD) discretization schemes in solving Fredholm integro-differential equations. For comparison purposes, Gauss- Seidel (GS) and the standard or full- and half-sweep CGNR methods namely FSCGNR and HSCGNR are also presented. To validate the efficacy of the proposed method, several analyses were carried out such as computational complexity and percentage reduction on the proposed and existing methods. (author)
The overlapped radial basis function-finite difference (RBF-FD) method: A generalization of RBF-FD
Shankar, Varun
2017-08-01
We present a generalization of the RBF-FD method that computes RBF-FD weights in finite-sized neighborhoods around the centers of RBF-FD stencils by introducing an overlap parameter δ ∈ (0 , 1 ] such that δ = 1 recovers the standard RBF-FD method and δ = 0 results in a full decoupling of stencils. We provide experimental evidence to support this generalization, and develop an automatic stabilization procedure based on local Lebesgue functions for the stable selection of stencil weights over a wide range of δ values. We provide an a priori estimate for the speedup of our method over RBF-FD that serves as a good predictor for the true speedup. We apply our method to parabolic partial differential equations with time-dependent inhomogeneous boundary conditions - Neumann in 2D, and Dirichlet in 3D. Our results show that our method can achieve as high as a 60× speedup in 3D over existing RBF-FD methods in the task of forming differentiation matrices.
Directory of Open Access Journals (Sweden)
AHMED W. AL-ZAND
2017-01-01
Full Text Available Nonlinear finite element (FE models are prepared to investigate the behaviour of concrete-filled steel tube (CFST beams strengthened by carbon fibre reinforced polymer (CFRP sheets. The beams are strengthened from the bottom side only by varied sheet lengths (full and partial beam lengths and then subjected to ultimate flexural loads. Three surface interaction techniques are used to implement the bonding behaviour between the steel tube and the CFRP sheet, namely, full tie interaction (TI, cohesive element (CE and cohesive behaviour (CB techniques using ABAQUS software. Results of the comparison between the FE analysis and existing experimental study confirm that the FE models with the TI technique could be applicable for beams strengthened by CFRP sheets with a full wrapping length; the technique could not accurately implement the CFRP delamination failure, which occurred for beams with a partial wrapping length. Meanwhile, the FE models with the CE and CB techniques are applicable in the implementation of both CFRP failures (rapture and delamination for both full and partial wrapping lengths, respectively. Where, the ultimate loads' ratios achieved by the FE models using TI, CE and CB techniques about 1.122, 1.047 and 1.045, respectively, comparing to the results of existing experimental tests.
Directory of Open Access Journals (Sweden)
Leandro Ferreira Friedrich
Full Text Available Abstract Fiber-matrix interface performance has a great influence on the mechanical properties of fiber reinforced composite. This influence is mainly presented during fiber pullout from the matrix. As fiber pullout process consists of fiber debonding stage and pullout stage which involve complex contact problem, numerical modeling is a best way to investigate the interface influence. Although many numerical research works have been conducted, practical and effective technique suitable for continuous modeling of fiber pullout process is still scarce. The reason is in that numerical divergence frequently happens, leading to the modeling interruption. By interacting the popular finite element program ANSYS with the MATLAB, we proposed continuous modeling technique and realized modeling of fiber pullout from cement matrix with desired interface mechanical performance. For debonding process, we used interface elements with cohesive surface traction and exponential failure behavior. For pullout process, we switched interface elements to spring elements with variable stiffness, which is related to the interface shear stress as a function of the interface slip displacement. For both processes, the results obtained are very good in comparison with other numerical or analytical models and experimental tests. We suggest using the present technique to model toughening achieved by randomly distributed fibers.
Directory of Open Access Journals (Sweden)
van Jonbergen Hans-Peter W
2012-06-01
Full Text Available Abstract Background Patellofemoral joint replacement is a successful treatment option for isolated patellofemoral osteoarthritis. However, results of later conversion to total knee replacement may be compromised by periprosthetic bone loss. Previous clinical studies have demonstrated a decrease in distal femoral bone mineral density after patellofemoral joint replacement. It is unclear whether this is due to periprosthetic stress shielding. The main objective of the current study was to evaluate the stress shielding effect of prosthetic replacement with 2 different patellofemoral prosthetic designs and with a total knee prosthesis. Methods We developed a finite element model of an intact patellofemoral joint, and finite element models of patellofemoral joint replacement with a Journey PFJ prosthesis, a Richards II prosthesis, and a Genesis II total knee prosthesis. For each of these 4 finite element models, the average Von Mises stress in 2 clinically relevant regions of interest were evaluated during a simulated squatting movement until 120 degrees of flexion. Results During deep knee flexion, in the anterior region of interest, the average Von Mises stress with the Journey PFJ design was comparable to the physiological knee, while reduced by almost 25% for both the Richards II design and the Genesis II total knee joint replacement design. The average Von Mises stress in the supracondylar region of interest was similar for both patellofemoral prosthetic designs and the physiological model, with slightly lower stress for the Genesis II design. Conclusions Patellofemoral joint replacement results in periprosthetic stress-shielding, although to a smaller degree than in total knee replacement. Specific patellofemoral prosthetic design properties may result in differences in femoral stress shielding.
2012-01-01
Background Patellofemoral joint replacement is a successful treatment option for isolated patellofemoral osteoarthritis. However, results of later conversion to total knee replacement may be compromised by periprosthetic bone loss. Previous clinical studies have demonstrated a decrease in distal femoral bone mineral density after patellofemoral joint replacement. It is unclear whether this is due to periprosthetic stress shielding. The main objective of the current study was to evaluate the stress shielding effect of prosthetic replacement with 2 different patellofemoral prosthetic designs and with a total knee prosthesis. Methods We developed a finite element model of an intact patellofemoral joint, and finite element models of patellofemoral joint replacement with a Journey PFJ prosthesis, a Richards II prosthesis, and a Genesis II total knee prosthesis. For each of these 4 finite element models, the average Von Mises stress in 2 clinically relevant regions of interest were evaluated during a simulated squatting movement until 120 degrees of flexion. Results During deep knee flexion, in the anterior region of interest, the average Von Mises stress with the Journey PFJ design was comparable to the physiological knee, while reduced by almost 25% for both the Richards II design and the Genesis II total knee joint replacement design. The average Von Mises stress in the supracondylar region of interest was similar for both patellofemoral prosthetic designs and the physiological model, with slightly lower stress for the Genesis II design. Conclusions Patellofemoral joint replacement results in periprosthetic stress-shielding, although to a smaller degree than in total knee replacement. Specific patellofemoral prosthetic design properties may result in differences in femoral stress shielding. PMID:22704638
Settle, Sean O.
2013-01-01
The primary aim of this paper is to answer the question, What are the highest-order five- or nine-point compact finite difference schemes? To answer this question, we present several simple derivations of finite difference schemes for the one- and two-dimensional Poisson equation on uniform, quasi-uniform, and nonuniform face-to-face hyperrectangular grids and directly prove the existence or nonexistence of their highest-order local accuracies. Our derivations are unique in that we do not make any initial assumptions on stencil symmetries or weights. For the one-dimensional problem, the derivation using the three-point stencil on both uniform and nonuniform grids yields a scheme with arbitrarily high-order local accuracy. However, for the two-dimensional problem, the derivation using the corresponding five-point stencil on uniform and quasi-uniform grids yields a scheme with at most second-order local accuracy, and on nonuniform grids yields at most first-order local accuracy. When expanding the five-point stencil to the nine-point stencil, the derivation using the nine-point stencil on uniform grids yields at most sixth-order local accuracy, but on quasi- and nonuniform grids yields at most fourth- and third-order local accuracy, respectively. © 2013 Society for Industrial and Applied Mathematics.
Nikolskiy, V. P.; Stegailov, V. V.
2018-01-01
Metal nanoparticles (NPs) serve as important tools for many modern technologies. However, the proper microscopic models of the interaction between ultrashort laser pulses and metal NPs are currently not very well developed in many cases. One part of the problem is the description of the warm dense matter that is formed in NPs after intense irradiation. Another part of the problem is the description of the electromagnetic waves around NPs. Description of wave propagation requires the solution of Maxwell’s equations and the finite-difference time-domain (FDTD) method is the classic approach for solving them. There are many commercial and free implementations of FDTD, including the open source software that supports graphics processing unit (GPU) acceleration. In this report we present the results on the FDTD calculations for different cases of the interaction between ultrashort laser pulses and metal nanoparticles. Following our previous results, we analyze the efficiency of the GPU acceleration of the FDTD algorithm.
Directory of Open Access Journals (Sweden)
Huang J
2015-02-01
Full Text Available Jane Huang,1 Eiichi Uchio,1 Satoru Goto2 1Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, 2Nihon ESI KK Technical Division, Tokyo, Japan Purpose: To determine the biomechanical response of an impacting airbag on eyes with different axial lengths with transsclerally fixated posterior chamber intraocular lens (PC IOL.Materials and methods: Simulations in a model human eye were performed with a computer using a finite element analysis program created by Nihon, ESI Group. The airbag was set to be deployed at five different velocities and to impact on eyes with three different axial lengths. These eyes were set to have transsclerally fixated PC IOL by a 10-0 polypropylene possessing a tensile force limit of 0.16 N according to the United States Pharmacopeia XXII.Results: The corneoscleral opening was observed at a speed of 40 m/second or more in all model eyes. Eyes with the longest axial length of 25.85 mm had the greatest extent of deformity at any given impact velocity. The impact force exceeded the tensile force of 10-0 polypropylene at an impact velocity of 60 m/second in all eyes, causing breakage of the suture. Conclusion: Eyes with transsclerally fixated PC IOL could rupture from airbag impact at high velocities. Eyes with long axial lengths experienced a greater deformity upon airbag impact due to a thinner eye wall. Further basic research on the biomechanical response for assessing eye injuries could help in developing a better airbag and in the further understanding of ocular traumas. Keywords: airbag, ocular trauma, computer simulation, transsclerally fixated posterior chamber intraocular lens, finite element analysis
International Nuclear Information System (INIS)
Alfrink, B.J.
1981-08-01
The report treats the computation of turbulent recirculating flow in dredged trenches. The mathematical model consists of the full two-dimensional unsteady Reynolds equations, formulated in primitive variables. Turbulence closure is obtained by means of a two-equation (k - epsilon) model. The numerical technique is based on the use of curvilinear finite differences in space and of fractional steps in time. A procedure is proposed to apply the model for varying roughness circumstances. The value of the Von Karman constant can be determined from geometric information. Afterwards, only the c 1 -constant is adapted by means of a degenerated epsilon-equation. The report describes an extensive sensitivity study for the inlet conditions and the empirical constants. Ultimately, the results of the mathematical model are very satisfactory. Compared with laboratory experiments, the recirculation length is only underpredicted with 10%
International Nuclear Information System (INIS)
Cohilis, P.; Wouters, P.; L'Heureux, D.
1992-01-01
This paper concerns the use of a numerical code, based on the finite difference method, for the evaluation of 222 Rn mitigation strategies in dwellings. It is supposed that 222 Rn transport from soil into a dwelling occurs mainly by pressure-driven air flow. The program calculates the pressure fields under the buildings, supposing a laminar air flow in the soil and adopting the steady-state condition. The simple data structure of the code allows one to describe even complex configurations in an easy way. Clear alphanumerical and graphical outputs are delivered. The calculations presented in the paper illustrate the possibilities of the program. An interesting consequence of the linear assumption implicit in the equations of the model is considered, and a comparison with laboratory measurements is presented. (author)
International Nuclear Information System (INIS)
Civalek, Oemer
2005-01-01
The nonlinear dynamic response of doubly curved shallow shells resting on Winkler-Pasternak elastic foundation has been studied for step and sinusoidal loadings. Dynamic analogues of Von Karman-Donnel type shell equations are used. Clamped immovable and simply supported immovable boundary conditions are considered. The governing nonlinear partial differential equations of the shell are discretized in space and time domains using the harmonic differential quadrature (HDQ) and finite differences (FD) methods, respectively. The accuracy of the proposed HDQ-FD coupled methodology is demonstrated by numerical examples. The shear parameter G of the Pasternak foundation and the stiffness parameter K of the Winkler foundation have been found to have a significant influence on the dynamic response of the shell. It is concluded from the present study that the HDQ-FD methodolgy is a simple, efficient, and accurate method for the nonlinear analysis of doubly curved shallow shells resting on two-parameter elastic foundation
DEFF Research Database (Denmark)
Yoon, Daeung; Zhdanov, Michael; Mattsson, Johan
2016-01-01
One of the major problems in the modeling and inversion of marine controlled-source electromagnetic (CSEM) data is related to the need for accurate representation of very complex geoelectrical models typical for marine environment. At the same time, the corresponding forward-modeling algorithms...... should be powerful and fast enough to be suitable for repeated use in hundreds of iterations of the inversion and for multiple transmitter/receiver positions. To this end, we have developed a novel 3D modeling and inversion approach, which combines the advantages of the finite-difference (FD......) and integral-equation (IE) methods. In the framework of this approach, we have solved Maxwell’s equations for anomalous electric fields using the FD approximation on a staggered grid. Once the unknown electric fields in the computation domain of the FD method are computed, the electric and magnetic fields...
Energy Technology Data Exchange (ETDEWEB)
Dias, Gleide A.N.; Silva, Jadir C.; Rocha, Paula F.; Costa, Jorge L. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Geologia]. E-mail: gleidalencar@hotmail.com.br; jadir@geologia.ufrj.br; ferrucio@acd.ufrj.br; jotalc@yahoo.com.br
2003-07-01
Presently the oil industry has shown the importance of defining the structural framework of reservoirs. This study intends to contribute for the solution of this problem, using synthetic models in order to evaluate the electromagnetic signal due to a certain target. Use was made of an algorithm, which is based in the Finite Difference Time Domain Methods (FDTD). The simulated results of this survey found the best parameters for the chosen frequencies. In the present study there were simulated polarization, geometry and constitutive parameters (dielectric permittivity and electric conductivity). The results, using frequencies of 50 and 100 MHz, show clearly the effects of the electromagnetic waves attenuation and their problems related with signal resolution of targets in depth. (author)
Kitamura, Kyoko; Sakai, Kyosuke; Noda, Susumu
2011-07-18
Radially polarized focused beams have attracted a great deal of attention because of their unique properties characterized by the longitudinal field. Although this longitudinal field is strongly confined to the beam axis, the energy flow, i.e., the Poynting vector, has null intensity on the axis. Hence, the interaction of the focused beam and matter has thus far been unclear. We analyzed the interactions between the focused beam and a subwavelength metal block placed at the center of the focus using three-dimensional finite-difference time-domain (FDTD) calculation. We found that most of the Poynting energy propagates through to the far-field, and that a strong enhancement of the electric field appeared on the metal surface. This enhancement is attributed to the constructive interference of the symmetric electric field and the coupling to the surface plasmon mode.
International Nuclear Information System (INIS)
Su Xiaoxing; Zhang Chuanzeng; Ma Tianxue; Wang Yuesheng
2012-01-01
When three-dimensional (3D) phononic band structures are calculated by using the finite difference time domain (FDTD) method with a relatively small number of iterations, the results can be effectively improved by post-processing the FDTD time series (FDTD-TS) based on the filter diagonalization method (FDM), instead of the classical fast Fourier transform. In this paper, we propose a way to further improve the performance of the FDM-based post-processing method by introducing a relatively large number of observing points to record the FDTD-TS. To this end, the existing scheme of FDTD-TS preprocessing is modified. With the new preprocessing scheme, the processing efficiency of a single FDTD-TS can be improved significantly, and thus the entire post-processing method can have sufficiently high efficiency even when a relatively large number of observing points are used. The feasibility of the proposed method for improvement is verified by the numerical results.
Velivelli, A. C.; Bryden, K. M.
2006-03-01
Lattice Boltzmann methods are gaining recognition in the field of computational fluid dynamics due to their computational efficiency. In order to quantify the computational efficiency and accuracy of the lattice Boltzmann method, it is compared with efficient traditional finite difference methods such as the alternating direction implicit scheme. The lattice Boltzmann algorithm implemented in previous studies does not approach peak performance for simulations where the data involved in computation per time step is more than the cache size. Due to this, data is obtained from the main memory and this access is much slower than access to cache memory. Using a cache-optimized lattice Boltzmann algorithm, this paper takes into account the full computational strength of the lattice Boltzmann method. The com parison is performed on both a single processor and multiple processors.
Energy Technology Data Exchange (ETDEWEB)
Bourke, J.D. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia); Chantler, C.T., E-mail: chantler@physics.unimelb.edu.a [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)
2010-07-21
X-ray Absorption Fine Structure (XAFS) is calculated for copper using the cluster based Finite Difference Method for Near-Edge Structure (FDMNES). This approach is conventionally used to produce high accuracy XAFS theory in the near edge region, however, we demonstrate that it can be readily extended to encompass an energy range of more than 1.5 keV (k{approx}20A{sup -1}) from the K absorption edge. Such calculations require extensions to FDMNES to account for thermal effects, in addition to broadening effects due to inelastic processes. Extended calculations beyond the range of near-edge structure also require consideration of technical constraints such as cluster sizes and densities. We find that with our approach, we are able to produce accurate theory ranging from the absorption edge to the smooth atom-like region at high energies, with a single consistent model that is free from any fitting parameters.
International Nuclear Information System (INIS)
Bourke, J.D.; Chantler, C.T.
2010-01-01
X-ray Absorption Fine Structure (XAFS) is calculated for copper using the cluster based Finite Difference Method for Near-Edge Structure (FDMNES). This approach is conventionally used to produce high accuracy XAFS theory in the near edge region, however, we demonstrate that it can be readily extended to encompass an energy range of more than 1.5 keV (k∼20A -1 ) from the K absorption edge. Such calculations require extensions to FDMNES to account for thermal effects, in addition to broadening effects due to inelastic processes. Extended calculations beyond the range of near-edge structure also require consideration of technical constraints such as cluster sizes and densities. We find that with our approach, we are able to produce accurate theory ranging from the absorption edge to the smooth atom-like region at high energies, with a single consistent model that is free from any fitting parameters.
Turovets, Sergei; Volkov, Vasily; Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D
2014-01-01
The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique.
International Nuclear Information System (INIS)
Li, Fei; Yu, Peicheng; Xu, Xinlu; Fiuza, Frederico; Decyk, Viktor K.
2017-01-01
In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1^ direction). We show that this eliminates the main NCI modes with moderate |k_1|, while keeps additional main NCI modes well outside the range of physical interest with higher |k_1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1^ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.
Lee, Cheng-Hung; Shih, Cheng-Min; Huang, Kui-Chou; Chen, Kun-Hui; Hung, Li-Kun; Su, Kuo-Chih
2016-11-01
Clinical implantation of clavicle hook plates is often used as a treatment for acromioclavicular joint dislocation. However, it is not uncommon to find patients that have developed acromion osteolysis or had peri-implant fracture after hook plate fixation. With the aim of preventing complications or fixation failure caused by implantation of inappropriate clavicle hook plates, the present study investigated the biomechanics of clavicle hook plates made of different materials and with different hook depths in treating acromioclavicular joint dislocation, using finite element analysis (FEA). This study established four parts using computer models: the clavicle, acromion, clavicle hook plate, and screws, and these established models were used for FEA. Moreover, implantations of clavicle hook plates made of different materials (stainless steel and titanium alloy) and with different depths (12, 15, and 18 mm) in patients with acromioclavicular joint dislocation were simulated in the biomechanical analysis. The results indicate that deeper implantation of the clavicle hook plate reduces stress on the clavicle, and also reduces the force applied to the acromion by the clavicle hook plate. Even though a clavicle hook plate made of titanium alloy (a material with a lower Young's modulus) reduces the force applied to the acromion by the clavicle hook plate, slightly higher stress on the clavicle may occur. The results obtained in this study provide a better reference for orthopedic surgeons in choosing different clavicle hook plates for surgery. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Pacheco, Ariel Adriano Reyes; Saga, Armando Yukio; de Lima, Key Fonseca; Paese, Victor Nissen; Tanaka, Orlando M
2016-01-01
By using the finite element method (FEM), this study aimed to evaluate the effect of different corticotomy formats on the distribution and magnitude of stress on the periodontal ligament (PDL) during retraction of the maxillary canine. A geometric model of the left hemi-jaw was created from computed tomography scan images of a dry human skull and loads were administered during distalization movement of the canine. Three trials were performed: (1) without corticotomy, (2) box-shaped corticotomy and perforations in the cortical bone of the canine (CVC) and (3) CVC and circular-shaped corticotomy in the cortical bone of the edentulous space of the first premolar. There was no difference in stress distribution among the different corticotomy formats. Different corticotomy formats used to accelerate orthodontic tooth movement did not affect stress distribution in the PDL during canine retraction. From a mechanical perspective, the present study showed that the stress distribution on the PDL during canine retraction was similar in all the corticotomy formats. When using the Andrews T2 bracket, the PDL presented the highest levels of stress in the middle third of the PDL, suggesting that the force was near the center of resistance. Also, as bone weakening by corticotomies did not influence stress distribution, the surgical procedure could be simplified to a less aggressive one, focusing more on inflammatory cellular stimulation than on bone resistance. A simpler surgical act could also be performed by most orthodontists in their practices, enhancing postoperative response and reducing patient costs.
Energy Technology Data Exchange (ETDEWEB)
Noguchi, K; Endo, M [Waseda University, Tokyo (Japan). School of Science and Engineering
1997-10-22
Study is made on the theory of three-dimensional modelling of TDEM (Time Domain Electromagnetic) method based on the theory of Wang and Hohmann. A difference scheme is built and investigation is conducted about calculation accuracy with attention paid especially to space and time division, and the obtained optimum value is compared with the analytical solution for a homogeneous medium. As the result, it becomes possible to have a high-accuracy TDEM response thanks to the obtained optimum parameter. In an example, a response is determined in the case of a high-resistivity body in presence near the ground surface. Calculation is performed under the given conditions of a medium 100 ohm/m in resistivity, anomalous bodies 200, 500, 1000, 2000,5000, and 10,000 ohm/m in resistivity, respectively, and a distance in the direction of depth of 20m. The result indicates that it is possible to estimate the effect of the ground surface terrain on a TDEM response. Since the effect of the ground surface terrain emerges at the initial part of a response, it is inferred that consideration of terrain is mandatory in building a model if it is for interpreting the subsurface structure in detail. 5 refs., 7 figs.
Directory of Open Access Journals (Sweden)
Carlos Henrique Lauro
2013-01-01
Full Text Available The heat generated in the cutting zone with high-speed drilling causes damage in the machined part. The heat can affect the dimensions of the hole considering its diameter. Moreover, the heat reduces tool life of uncoated and coated tools. This paper shows experimental tests with high-speed drilling in hardened steel. Drilling was performed on AISI H13 steel with dimensions of 100 × 40 × 14 mm and 52 HRC. The work pieces were drilled with coated drills (TiAlN. A flooded lubricant system and the minimal quantity of lubricant (MQL were applied to investigate the ability to remove heat from the cutting zone and to compare with dry tests. FEM was applied to define the heat flow and the coefficient of convection for the cooling systems. A steepest descent method was employed to minimize the difference between empirical and simulation data. The results showed that the simulation technique used to find values for heat flow and the coefficient of convection were close to the literature reference. In addition, the adjustment errors of the simulated temperature curves were less than 10% when compared with trial curves. Furthermore, the MQL showed a capability of cooling 3.5 times higher than that of the flooded system.
International Nuclear Information System (INIS)
Shen, W.
2012-01-01
Recent assessment results indicate that the coarse-mesh finite-difference method (FDM) gives consistently smaller percent differences in channel powers than the fine-mesh FDM when compared to the reference MCNP solution for CANDU-type reactors. However, there is an impression that the fine-mesh FDM should always give more accurate results than the coarse-mesh FDM in theory. To answer the question if the better performance of the coarse-mesh FDM for CANDU-type reactors was just a coincidence (cancellation of errors) or caused by the use of heavy water or the use of lattice-homogenized cross sections for the cluster fuel geometry in the diffusion calculation, three benchmark problems were set up with three different fuel lattices: CANDU, HWR and PWR. These benchmark problems were then used to analyze the root cause of the better performance of the coarse-mesh FDM for CANDU-type reactors. The analyses confirm that the better performance of the coarse-mesh FDM for CANDU-type reactors is mainly caused by the use of lattice-homogenized cross sections for the sub-meshes of the cluster fuel geometry in the diffusion calculation. Based on the analyses, it is recommended to use 2 x 2 coarse-mesh FDM to analyze CANDU-type reactors when lattice-homogenized cross sections are used in the core analysis. (authors)
Energy Technology Data Exchange (ETDEWEB)
Shen, W. [Candu Energy Inc., 2285 Speakman Dr., Mississauga, ON L5B 1K (Canada)
2012-07-01
Recent assessment results indicate that the coarse-mesh finite-difference method (FDM) gives consistently smaller percent differences in channel powers than the fine-mesh FDM when compared to the reference MCNP solution for CANDU-type reactors. However, there is an impression that the fine-mesh FDM should always give more accurate results than the coarse-mesh FDM in theory. To answer the question if the better performance of the coarse-mesh FDM for CANDU-type reactors was just a coincidence (cancellation of errors) or caused by the use of heavy water or the use of lattice-homogenized cross sections for the cluster fuel geometry in the diffusion calculation, three benchmark problems were set up with three different fuel lattices: CANDU, HWR and PWR. These benchmark problems were then used to analyze the root cause of the better performance of the coarse-mesh FDM for CANDU-type reactors. The analyses confirm that the better performance of the coarse-mesh FDM for CANDU-type reactors is mainly caused by the use of lattice-homogenized cross sections for the sub-meshes of the cluster fuel geometry in the diffusion calculation. Based on the analyses, it is recommended to use 2 x 2 coarse-mesh FDM to analyze CANDU-type reactors when lattice-homogenized cross sections are used in the core analysis. (authors)
Directory of Open Access Journals (Sweden)
Yu Shi
2017-02-01
Full Text Available We introduce a finite-difference frequency-domain algorithm for coupled acousto-optic simulations. First-principles acousto-optic simulation in time domain has been challenging due to the fact that the acoustic and optical frequencies differ by many orders of magnitude. We bypass this difficulty by formulating the interactions between the optical and acoustic waves rigorously as a system of coupled nonlinear equations in frequency domain. This approach is particularly suited for on-chip devices that are based on a variety of acousto-optic interactions such as the stimulated Brillouin scattering. We validate our algorithm by simulating a stimulated Brillouin scattering process in a suspended waveguide structure and find excellent agreement with coupled-mode theory. We further provide an example of a simulation for a compact on-chip resonator device that greatly enhances the effect of stimulated Brillouin scattering. Our algorithm should facilitate the design of nanophotonic on-chip devices for the harnessing of photon-phonon interactions.
Finite flavour groups of fermions
International Nuclear Information System (INIS)
Grimus, Walter; Ludl, Patrick Otto
2012-01-01
We present an overview of the theory of finite groups, with regard to their application as flavour symmetries in particle physics. In a general part, we discuss useful theorems concerning group structure, conjugacy classes, representations and character tables. In a specialized part, we attempt to give a fairly comprehensive review of finite subgroups of SO(3) and SU(3), in which we apply and illustrate the general theory. Moreover, we also provide a concise description of the symmetric and alternating groups and comment on the relationship between finite subgroups of U(3) and finite subgroups of SU(3). Although in this review we give a detailed description of a wide range of finite groups, the main focus is on the methods which allow the exploration of their different aspects. (topical review)
Leamer, Micah J.
2004-01-01
Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS
Locally Finite Root Supersystems
Yousofzadeh, Malihe
2013-01-01
We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.
International Nuclear Information System (INIS)
Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.
2012-01-01
Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.
Directory of Open Access Journals (Sweden)
Roberto Rojas
2013-03-01
Full Text Available The applicability of the immersed boundary-finite difference lattice Boltzmann method (IB-FDLBM to high Reynolds number flows about a circular cylinder is examined. Two-dimensional simulations of flows past a stationary circular cylinder are carried out for a wide range of the Reynolds number, Re, i.e., 1 ≤ Re ≤ 1×105. An immersed boundary-lattice Boltzmann method (IB-LBM is also used for comparison. Then free-falling circular cylinders are simulated to demonstrate the feasibility of predicting moving particles at high Reynolds numbers. The main conclusions obtained are as follows: (1 steady and unsteady flows about a stationary cylinder are well predicted with IB-LBM and IB-FDLBM, provided that the spatial resolution is high enough to satisfy the conditions of numerical stability, (2 high spatial resolution is required for stable IB-LBM simulation of high Reynolds number flows, (3 IB-FDLBM can stably simulate flows at very high Reynolds numbers without increasing the spatial resolution, (4 IB-FDLBM gives reasonable predictions of the drag coefficient for 1 ≤ Re ≤ 1×105, and (5 IB-FDLBM gives accurate predictions for the motion of free-falling cylinders at intermediate Reynolds numbers.
El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi
2018-05-01
Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.
International Nuclear Information System (INIS)
Lee, Deokjung; Downar, Thomas J.; Kim, Yonghee
2004-01-01
An innovative hybrid spatial discretization method is proposed to improve the computational efficiency of pin-wise heterogeneous three-dimensional light water reactor (LWR) core neutronics analysis. The newly developed method employs the standard finite difference method in the x and y directions and the well-known nodal methods [nodal expansion method (NEM) and analytic nodal method (ANM) as needed] in the z direction. Four variants of the hybrid method are investigated depending on the axial nodal methodologies: HYBRID A, NEM with the conventional quadratic transverse leakage; HYBRID B, the conventional NEM method except that the transverse-leakage shapes are obtained from a fine-mesh local problem (FMLP) around the control rod tip; HYBRID C, the same as HYBRID B except that ANM with a high-order transverse leakage obtained from the FMLP is used in the vicinity of the control rod tip; and HYBRID D, the same as HYBRID C except that the transverse leakage is determined using the buckling approximation instead of the FMLP around the control rod tip. Benchmark calculations demonstrate that all the hybrid algorithms are consistent and stable and that the HYBRID C method provides the best numerical performance in the case of rodded LWR problems with pin-wise homogenized cross sections
Cai, Xiaohui; Liu, Yang; Ren, Zhiming
2018-06-01
Reverse-time migration (RTM) is a powerful tool for imaging geologically complex structures such as steep-dip and subsalt. However, its implementation is quite computationally expensive. Recently, as a low-cost solution, the graphic processing unit (GPU) was introduced to improve the efficiency of RTM. In the paper, we develop three ameliorative strategies to implement RTM on GPU card. First, given the high accuracy and efficiency of the adaptive optimal finite-difference (FD) method based on least squares (LS) on central processing unit (CPU), we study the optimal LS-based FD method on GPU. Second, we develop the CPU-based hybrid absorbing boundary condition (ABC) to the GPU-based one by addressing two issues of the former when introduced to GPU card: time-consuming and chaotic threads. Third, for large-scale data, the combinatorial strategy for optimal checkpointing and efficient boundary storage is introduced for the trade-off between memory and recomputation. To save the time of communication between host and disk, the portable operating system interface (POSIX) thread is utilized to create the other CPU core at the checkpoints. Applications of the three strategies on GPU with the compute unified device architecture (CUDA) programming language in RTM demonstrate their efficiency and validity.
Energy Technology Data Exchange (ETDEWEB)
Kinefuchi, K. [Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Funaki, I.; Shimada, T.; Abe, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)
2012-10-15
Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.
Kumari, Babita; Adlakha, Neeru
2015-02-01
Thermoregulation is a complex mechanism regulating heat production within the body (chemical thermoregulation) and heat exchange between the body and the environment (physical thermoregulation) in such a way that the heat exchange is balanced and deep body temperatures are relatively stable. The external heat transfer mechanisms are radiation, conduction, convection and evaporation. The physical activity causes thermal stress and poses challenges for this thermoregulation. In this paper, a model has been developed to study temperature distribution in SST regions of human limbs immediately after physical exercise under cold climate. It is assumed that the subject is doing exercise initially and comes to rest at time t = 0. The human limb is assumed to be of cylindrical shape. The peripheral region of limb is divided into three natural components namely epidermis, dermis and subdermal tissues (SST). Appropriate boundary conditions have been framed based on the physical conditions of the problem. Finite difference has been employed for time, radial and angular variables. The numerical results have been used to obtain temperature profiles in the SST region immediately after continuous exercise for a two-dimensional unsteady state case. The results have been used to analyze the thermal stress in relation to light, moderate and vigorous intensity exercise.
Institute of Scientific and Technical Information of China (English)
Yirang YUAN; Qing YANG; Changfeng LI; Tongjun SUN
2017-01-01
Transient behavior of three-dimensional semiconductor device with heat conduction is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions.The electric potential is defined by an elliptic equation and it appears in the following three equations via the electric field intensity.The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation.A mixed finite volume element approximation,keeping physical conservation law,is used to get numerical values of the electric potential and the accuracy is improved one order.Two concentrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences.This method can overcome numerical oscillation,dispersion and decreases computational complexity.Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened.An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations.This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.
Tay, Wei Choon; Tan, Eng Leong
2014-07-01
In this paper, we have proposed a pentadiagonal alternating-direction-implicit (Penta-ADI) finite-difference time-domain (FDTD) method for the two-dimensional Schrödinger equation. Through the separation of complex wave function into real and imaginary parts, a pentadiagonal system of equations for the ADI method is obtained, which results in our Penta-ADI method. The Penta-ADI method is further simplified into pentadiagonal fundamental ADI (Penta-FADI) method, which has matrix-operator-free right-hand-sides (RHS), leading to the simplest and most concise update equations. As the Penta-FADI method involves five stencils in the left-hand-sides (LHS) of the pentadiagonal update equations, special treatments that are required for the implementation of the Dirichlet's boundary conditions will be discussed. Using the Penta-FADI method, a significantly higher efficiency gain can be achieved over the conventional Tri-ADI method, which involves a tridiagonal system of equations.
International Nuclear Information System (INIS)
Su Xiaoxing; Ma Tianxue; Wang Yuesheng
2011-01-01
If the band structure of a three-dimensional (3D) phononic crystal (PNC) is calculated by using the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT)-based postprocessing method, good results can only be ensured by a sufficiently large number of FDTD iterations. On a common computer platform, the total computation time will be very long. To overcome this difficulty, an excellent harmonic inversion algorithm called the filter diagonalization method (FDM) can be used in the postprocessing to reduce the number of FDTD iterations. However, the low efficiency of the FDM, which occurs when a relatively long time series is given, does not necessarily ensure an effective reduction of the total computation time. In this paper, a postprocessing method based on the FDM is proposed. The main procedure of the method is designed considering the aim to make the time spent on the method itself far less than the corresponding time spent on the FDTD iterations. To this end, the FDTD time series is preprocessed to be shortened significantly before the FDM frequency extraction. The preprocessing procedure is performed with the filter and decimation operations, which are widely used in narrow-band signal processing. Numerical results for a typical 3D solid PNC system show that the proposed postprocessing method can be used to effectively reduce the total computation time of the FDTD calculation of 3D phononic band structures.
Energy Technology Data Exchange (ETDEWEB)
Riley, D.J.; Turner, C.D.
1991-01-01
The Hybrid Thin-Slot Algorithm (HTSA) integrates a transient integral-equation solution for an aperture in an infinite plane into a finite-difference time-domain (FDTD) code. The technique was introduced for linear apertures and was extended to include wall loss and lossy internal gaskets. A general implementation for arbitrary thin slots is briefly described here. The 3-D FDTD-code TSAR was selected for the implementation. The HTSA does not provide universal solutions to the narrow slot problem, but has merits appropriate for particular applications. The HTSA is restricted to planar slots, but can solve the important case that both the width and depth of the slot are narrow compared to the FDTD spatial cell. IN addition, the HTSA is not bound to the FDTD discrete spatial and time increments, and therefore, high-resolution solutions for the slot physics are possible. The implementation of the HTSA into TSAR is based upon a slot data file'' that includes the cell indices where the desired slots are exist within the FDTD mesh. For an HTSA-defined slot, the wall region local to the slot is shorted, and therefore, to change the slot's topology simply requires altering the file to include the desired cells. 7 refs.
Yang, Lei; Yan, Hongyong; Liu, Hong
2017-03-01
Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.
Márquez, Andrés; Francés, Jorge; Martínez, Francisco J.; Gallego, Sergi; Álvarez, Mariela L.; Calzado, Eva M.; Pascual, Inmaculada; Beléndez, Augusto
2018-03-01
Simplified analytical models with predictive capability enable simpler and faster optimization of the performance in applications of complex photonic devices. We recently demonstrated the most simplified analytical model still showing predictive capability for parallel-aligned liquid crystal on silicon (PA-LCoS) devices, which provides the voltage-dependent retardance for a very wide range of incidence angles and any wavelength in the visible. We further show that the proposed model is not only phenomenological but also physically meaningful, since two of its parameters provide the correct values for important internal properties of these devices related to the birefringence, cell gap, and director profile. Therefore, the proposed model can be used as a means to inspect internal physical properties of the cell. As an innovation, we also show the applicability of the split-field finite-difference time-domain (SF-FDTD) technique for phase-shift and retardance evaluation of PA-LCoS devices under oblique incidence. As a simplified model for PA-LCoS devices, we also consider the exact description of homogeneous birefringent slabs. However, we show that, despite its higher degree of simplification, the proposed model is more robust, providing unambiguous and physically meaningful solutions when fitting its parameters.
Lu, Ying-juan; Chang, Shao-hai; Ye, Jian-tao; Ye, Yu-shan; Yu, Yan-song
2015-01-01
Stress on the bone surrounding dental micro-implants affects implant success. To compare the stress on the bone surrounding a micro-implant after application of a single force (SF) of 200 g or a composite force (CF) of 200 g and 6 N.mm torque. Finite element models were developed for micro-implant diameters of 1.2, 1.6, and 2.0 mm, and lengths of 6, 8, 10, and 12 mm and either a SF or CF was applied. The maximum equivalent stress (Max EQS) of the bone surrounding the micro-implant was determined, and the relationships among type of force, diameter, and length were evaluated. The Max EQS of the CF exceeded that of the SF (Pimplant diameter, but not to implant length. The larger CF led to greater instability of the micro-implant and the effect was most pronounced at an implant diameter of 1.2 mm. The use of implant diameters of 1.6 mm and 2.0 mm produced no significant difference in implant stability when either a CF or SF was applied. When considering the use of an implant to perform three-dimensional control on the teeth, the implant diameter chosen should be > 1.2 mm.
Yamaguchi, Satoshi; Yamanishi, Yasufumi; Machado, Lucas S; Matsumoto, Shuji; Tovar, Nick; Coelho, Paulo G; Thompson, Van P; Imazato, Satoshi
2018-01-01
The aim of this study was to evaluate fatigue resistance of dental fixtures with two different fixture-abutment connections by in vitro fatigue testing and in silico three-dimensional finite element analysis (3D FEA) using original computer-aided design (CAD) models. Dental implant fixtures with external connection (EX) or internal connection (IN) abutments were fabricated from original CAD models using grade IV titanium and step-stress accelerated life testing was performed. Fatigue cycles and loads were assessed by Weibull analysis, and fatigue cracking was observed by micro-computed tomography and a stereomicroscope with high dynamic range software. Using the same CAD models, displacement vectors of implant components were also analyzed by 3D FEA. Angles of the fractured line occurring at fixture platforms in vitro and of displacement vectors corresponding to the fractured line in silico were compared by two-way ANOVA. Fatigue testing showed significantly greater reliability for IN than EX (pimplant fixture platforms. FEA demonstrated that crack lines of both implant systems in vitro were observed in the same direction as displacement vectors of the implant fixtures in silico. In silico displacement vectors in the implant fixture are insightful for geometric development of dental implants to reduce complex interactions leading to fatigue failure. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Su Xiaoxing [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Ma Tianxue; Wang Yuesheng, E-mail: xxsu@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)
2011-10-15
If the band structure of a three-dimensional (3D) phononic crystal (PNC) is calculated by using the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT)-based postprocessing method, good results can only be ensured by a sufficiently large number of FDTD iterations. On a common computer platform, the total computation time will be very long. To overcome this difficulty, an excellent harmonic inversion algorithm called the filter diagonalization method (FDM) can be used in the postprocessing to reduce the number of FDTD iterations. However, the low efficiency of the FDM, which occurs when a relatively long time series is given, does not necessarily ensure an effective reduction of the total computation time. In this paper, a postprocessing method based on the FDM is proposed. The main procedure of the method is designed considering the aim to make the time spent on the method itself far less than the corresponding time spent on the FDTD iterations. To this end, the FDTD time series is preprocessed to be shortened significantly before the FDM frequency extraction. The preprocessing procedure is performed with the filter and decimation operations, which are widely used in narrow-band signal processing. Numerical results for a typical 3D solid PNC system show that the proposed postprocessing method can be used to effectively reduce the total computation time of the FDTD calculation of 3D phononic band structures.
Aunmeungtong, W; Khongkhunthian, P; Rungsiyakull, P
2016-01-01
Finite Element Analysis (FEA) has been used for prediction of stress and strain between dental implant components and bone in the implant design process. Purpose of this study was to characterize and analyze stress and strain distribution occurring in bone and implants and to compare stress and strain of three different implant designs. Three different mini dental implant designs were included in this study: 1. a mini dental implant with an internal implant-abutment connection (MDIi); 2. a mini dental implant with an external implant-abutment connection (MDIe); 3. a single piece mini dental implant (MDIs). All implant designs were scanned using micro-CT scans. The imaging details of the implants were used to simulate models for FEA. An artificial bone volume of 9×9 mm in size was constructed and each implant was placed separately at the center of each bone model. All bone-implant models were simulatively loaded under an axial compressive force of 100 N and a 45-degree force of 100 N loading at the top of the implants using computer software to evaluate stress and strain distribution. There was no difference in stress or strain between the three implant designs. The stress and strain occurring in all three mini dental implant designs were mainly localized at the cortical bone around the bone-implant interface. Oblique 45° loading caused increased deformation, magnitude and distribution of stress and strain in all implant models. Within the limits of this study, the average stress and strain in bone and implant models with MDIi were similar to those with MDIe and MDIs. The oblique 45° load played an important role in dramatically increased average stress and strain in all bone-implant models. Mini dental implants with external or internal connections have similar stress distribution to single piece mini dental implants. In clinical situations, the three types of mini dental implant should exhibit the same behavior to chewing force.
Directory of Open Access Journals (Sweden)
Sebastián Otero G
2008-06-01
representa su capacidad de incorporar en el análisis el valor de la flexibilidad operativa del proyecto.In the past few years, real options, an extension of financial derivatives, have arisen as an alternative to traditional valuation methods, such as net present value (NPV. The key attribute of real options is that they take into consideration the uncertainty and flexibility involved in investment valuation. This article provides an overview of the finite difference method, by presenting an application to the real options valuation. The empirical section of the article, which makes use of the implicit finite difference method (IFD, analyzes the options of waiting, abandoning, contracting, expanding and switching, by valuing all the options involved and their possible combinations. The results are compared with those of the NPV method and the binomial tree with a logarithmic transformation (BTLT. Both methods (IFD and BTLT yield similar results, being both greater than those provided by the NPV. This difference comes to no surprise as it represents the value of the flexibility associated to an investment opportunity.
Hirakawa, E. T.; Pitarka, A.; Mellors, R. J.
2015-12-01
Evan Hirakawa, Arben Pitarka, and Robert Mellors One challenging task in explosion seismology is development of physical models for explaining the generation of S-waves during underground explosions. Pitarka et al. (2015) used finite difference simulations of SPE-3 (part of Source Physics Experiment, SPE, an ongoing series of underground chemical explosions at the Nevada National Security Site) and found that while a large component of shear motion was generated directly at the source, additional scattering from heterogeneous velocity structure and topography are necessary to better match the data. Large-scale features in the velocity model used in the SPE simulations are well constrained, however, small-scale heterogeneity is poorly constrained. In our study we used a stochastic representation of small-scale variability in order to produce additional high-frequency scattering. Two methods for generating the distributions of random scatterers are tested. The first is done in the spatial domain by essentially smoothing a set of random numbers over an ellipsoidal volume using a Gaussian weighting function. The second method consists of filtering a set of random numbers in the wavenumber domain to obtain a set of heterogeneities with a desired statistical distribution (Frankel and Clayton, 1986). This method is capable of generating distributions with either Gaussian or von Karman autocorrelation functions. The key parameters that affect scattering are the correlation length, the standard deviation of velocity for the heterogeneities, and the Hurst exponent, which is only present in the von Karman media. Overall, we find that shorter correlation lengths as well as higher standard deviations result in increased tangential motion in the frequency band of interest (0 - 10 Hz). This occurs partially through S-wave refraction, but mostly by P-S and Rg-S waves conversions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
Gómez, Sandra L; Montoya, Yesid; Garcia, Nora L; Virgen, Ana L; Botero, Javier E
2016-09-01
The aim of this study was to compare frictional resistance among conventional, passive and active selfligating brackets using Finite Elements Analysis (FEA). Seventynine (79) slide tests were performed by combining an upper first bicuspid conventional bracket, 0.018" stainless steel wires and 0.010" ligature by means of an INSTRON 3345 load system to obtain average maximum static frictional resistance (MSFR). This value was compared to the FR (frictional resistance) obtained by simulation of a slide of the same combination by FEA following conventional bracket modeling by means of Computer Aided Design (CAD). Once the FEA was validated, bracket CADs were designed (upper right first bicuspid conventional, active and passive selfligating bracket) and bracket properties calculated. MSFR was compared among conventional, active and passive selfligating brackets with different alloys and archwire cross sections such as 0.018", 0.019" x 0.025"and 0.020" x 0.020". Passive selfligating brackets had the lowest MSFR, followed by conventional brackets and active selfligating brackets. In conventional brackets, a 0.018" archwire produced a linear pattern of stress with maximum concentration at the center. Conversely, stress in 0.020 x 0.020" and 0.019 x 0.025" archwires was distributed across the width of the slot. The highest normal forces were 1.53 N for the 0.018" archwire, 4.85 N for the 0.020 x 0.020" archwire and 8.18 N for the 0.019 x 0.025" archwire. Passive selfligating brackets presented less frictional resistance than conventional and active selfligating brackets. Regardless of bracket type, greater contact area between the slot and the archwire and the spring clip increased frictional resistance. Sociedad Argentina de Pediatría.
Zurek, B.; Burnett, W. A.; deMartin, B.
2017-12-01
Ground motion models (GMMs) have historically been used as input in the development of probabilistic seismic hazard analysis (PSHA) and as an engineering tool to assess risk in building design. Generally these equations are developed from empirical analysis of observations that come from fairly complete catalogs of seismic events. One of the challenges when doing a PSHA analysis in a region where earthquakes are anthropogenically induced is that the catalog of observations is not complete enough to come up with a set of equations to cover all expected outcomes. For example, PSHA analysis at the Groningen gas field, an area of known induced seismicity, requires estimates of ground motions from tremors up to a maximum magnitude of 6.5 ML. Of the roughly 1300 recordable earthquakes the maximum observed magnitude to date has been 3.6ML. This paper is part of a broader study where we use a deterministic finite-difference wave-form modeling tool to compliment the traditional development of GMMs. Of particular interest is the sensitivity of the GMM's to uncertainty in the rupture process and how this scales to larger magnitude events that have not been observed. A kinematic fault rupture model is introduced to our waveform simulations to test the sensitivity of the GMMs to variability in the fault rupture process that is physically consistent with observations. These tests will aid in constraining the degree of variability in modeled ground motions due to a realistic range of fault parameters and properties. From this study it is our conclusion that in order to properly capture the uncertainty of the GMMs with magnitude up-scaling one needs to address the impact of uncertainty in the near field (risk. Further, by investigating and constraining the range of fault rupture scenarios and earthquake magnitudes on ground motion models, hazard and risk analysis in regions with incomplete earthquake catalogs, such as the Groningen gas field, can be better understood.
Saavedra, Sebastian
2012-07-01
The mathematical model that has been recognized to have the more accurate approximation to the physical laws govern subsurface hydrocarbon flow in reservoirs is the Compositional Model. The features of this model are adequate to describe not only the performance of a multiphase system but also to represent the transport of chemical species in a porous medium. Its importance relies not only on its current relevance to simulate petroleum extraction processes, such as, Primary, Secondary, and Enhanced Oil Recovery Process (EOR) processes but also, in the recent years, carbon dioxide (CO2) sequestration. The purpose of this study is to investigate the subsurface compositional flow under isothermal conditions for several oil well cases. While simultaneously addressing computational implementation finesses to contribute to the efficiency of the algorithm. This study provides the theoretical framework and computational implementation subtleties of an IMplicit Pressure Explicit Composition (IMPEC)-Volume-balance (VB), two-phase, equation-of-state, approach to model isothermal compositional flow based on the finite difference scheme. The developed model neglects capillary effects and diffusion. From the phase equilibrium premise, the model accounts for volumetric performances of the phases, compressibility of the phases, and composition-dependent viscosities. The Equation of State (EoS) employed to approximate the hydrocarbons behaviour is the Peng Robinson Equation of State (PR-EOS). Various numerical examples were simulated. The numerical results captured the complex physics involved, i.e., compositional, gravitational, phase-splitting, viscosity and relative permeability effects. Regarding the numerical scheme, a phase-volumetric-flux estimation eases the calculation of phase velocities by naturally fitting to phase-upstream-upwinding. And contributes to a faster computation and an efficient programming development.
AUNMEUNGTONG, W.; KHONGKHUNTHIAN, P.; RUNGSIYAKULL, P.
2016-01-01
SUMMARY Finite Element Analysis (FEA) has been used for prediction of stress and strain between dental implant components and bone in the implant design process. Purpose Purpose of this study was to characterize and analyze stress and strain distribution occurring in bone and implants and to compare stress and strain of three different implant designs. Materials and methods Three different mini dental implant designs were included in this study: 1. a mini dental implant with an internal implant-abutment connection (MDIi); 2. a mini dental implant with an external implant-abutment connection (MDIe); 3. a single piece mini dental implant (MDIs). All implant designs were scanned using micro-CT scans. The imaging details of the implants were used to simulate models for FEA. An artificial bone volume of 9×9 mm in size was constructed and each implant was placed separately at the center of each bone model. All bone-implant models were simulatively loaded under an axial compressive force of 100 N and a 45-degree force of 100 N loading at the top of the implants using computer software to evaluate stress and strain distribution. Results There was no difference in stress or strain between the three implant designs. The stress and strain occurring in all three mini dental implant designs were mainly localized at the cortical bone around the bone-implant interface. Oblique 45° loading caused increased deformation, magnitude and distribution of stress and strain in all implant models. Conclusions Within the limits of this study, the average stress and strain in bone and implant models with MDIi were similar to those with MDIe and MDIs. The oblique 45° load played an important role in dramatically increased average stress and strain in all bone-implant models. Clinical implications Mini dental implants with external or internal connections have similar stress distribution to single piece mini dental implants. In clinical situations, the three types of mini dental implant
Directory of Open Access Journals (Sweden)
M.H.R. Ghoreishy
2008-02-01
Full Text Available This research work is devoted to the footprint analysis of a steel-belted radial tyre (185/65R14 under vertical static load using finite element method. Two models have been developed in which in the first model the tread patterns were replaced by simple ribs while the second model was consisted of details of the tread blocks. Linear elastic and hyper elastic (Arruda-Boyce material models were selected to describe the mechanical behavior of the reinforcing and rubbery parts, respectively. The above two finite element models of the tyre were analyzed under inflation pressure and vertical static loads. The second model (with detailed tread patterns was analyzed with and without friction effect between tread and contact surfaces. In every stage of the analysis, the results were compared with the experimental data to confirm the accuracy and applicability of the model. Results showed that neglecting the tread pattern design not only reduces the computational cost and effort but also the differences between computed deformations do not show significant changes. However, more complicated variables such as shape and area of the footprint zone and contact pressure are affected considerably by the finite element model selected for the tread blocks. In addition, inclusion of friction even in static state changes these variables significantly.
Energy Technology Data Exchange (ETDEWEB)
Grant, C R [Comision Nacional de Energia Atomica, San Martin (Argentina). Unidad de Actividad Reactores y Centrales Nucleares
1997-12-31
The reactor code PUMA, developed in CNEA, simulates nuclear reactors discretizing space in finite difference elements. Core representation is performed by means a cylindrical mesh, but the reactor channels are arranged in an hexagonal lattice. That is why a mapping using volume intersections must be used. This spatial treatment is the reason of an overestimation of the control rod reactivity values, which must be adjusted modifying the incremental cross sections. Also, a not very good treatment of the continuity conditions between core and reflector leads to an overestimation of channel power of the peripherical fuel elements between 5 to 8 per cent. Another code, DELFIN, developed also in CNEA, treats the spatial discretization using heterogeneous finite elements, allowing a correct treatment of the continuity of fluxes and current among elements and a more realistic representation of the hexagonal lattice of the reactor. A comparison between results obtained using both methods in done in this paper. (author). 4 refs., 3 figs.
International Nuclear Information System (INIS)
Acharya, B.S.; Douglas, M.R.
2006-06-01
We present evidence that the number of string/M theory vacua consistent with experiments is finite. We do this both by explicit analysis of infinite sequences of vacua and by applying various mathematical finiteness theorems. (author)
Nilpotent -local finite groups
Cantarero, José; Scherer, Jérôme; Viruel, Antonio
2014-10-01
We provide characterizations of -nilpotency for fusion systems and -local finite groups that are inspired by known result for finite groups. In particular, we generalize criteria by Atiyah, Brunetti, Frobenius, Quillen, Stammbach and Tate.
International Nuclear Information System (INIS)
Lee, Byeong Hae
1992-02-01
This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.
Alabdulmohsin, Ibrahim M.
2018-01-01
In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.
Alabdulmohsin, Ibrahim M.
2018-03-07
In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.
Kurtz, L. A.; Smith, R. E.; Parks, C. L.; Boney, L. R.
1978-01-01
Steady state solutions to two time dependent partial differential systems have been obtained by the Method of Lines (MOL) and compared to those obtained by efficient standard finite difference methods: (1) Burger's equation over a finite space domain by a forward time central space explicit method, and (2) the stream function - vorticity form of viscous incompressible fluid flow in a square cavity by an alternating direction implicit (ADI) method. The standard techniques were far more computationally efficient when applicable. In the second example, converged solutions at very high Reynolds numbers were obtained by MOL, whereas solution by ADI was either unattainable or impractical. With regard to 'set up' time, solution by MOL is an attractive alternative to techniques with complicated algorithms, as much of the programming difficulty is eliminated.
FINITE ELEMENT ANALYSIS OF STRUCTURES
Directory of Open Access Journals (Sweden)
PECINGINA OLIMPIA-MIOARA
2015-05-01
Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.
Çelik Köycü, Berrak; İmirzalıoğlu, Pervin
2017-07-01
Daily consumption of food and drink creates rapid temperature changes in the oral cavity. Heat transfer and thermal stress caused by temperature changes in restored teeth may damage the hard and soft tissue components, resulting in restoration failure. This study evaluates the temperature distribution and related thermal stress on mandibular molar teeth restored via three indirect restorations using three-dimensional (3D) finite element analysis (FEA). A 3D finite element model was constructed of a mandibular first molar and included enamel, dentin, pulp, surrounding bone, and indirect class 2 restorations of type 2 dental gold alloy, ceramic, and composite resin. A transient thermal FEA was performed to investigate the temperature distribution and the resulting thermal stress after simulated temperature changes from 36°C to 4 or 60°C for a 2-second time period. The restoration models had similar temperature distributions at 2 seconds in both the thermal conditions. Compared with 60°C exposure, the 4°C condition resulted in thermal stress values of higher magnitudes. At 4ºC, the highest stress value observed was tensile stress (56 to 57 MPa), whereas at 60°C, the highest stress value observed was compressive stress (42 to 43 MPa). These stresses appeared at the cervical region of the lingual enamel. The thermal stress at the restoration surface and resin cement showed decreasing order of magnitude as follows: composite > gold > ceramic, in both thermal conditions. The properties of the restorative materials do not affect temperature distribution at 2 seconds in restored teeth. The pulpal temperature is below the threshold for vital pulp tissue (42ºC). Temperature changes generate maximum thermal stress at the cervical region of the enamel. With the highest thermal expansion coefficient, composite resin restorations exhibit higher stress patterns than ceramic and gold restorations. © 2015 by the American College of Prosthodontists.
Finite energy electroweak dyon
Energy Technology Data Exchange (ETDEWEB)
Kimm, Kyoungtae [Seoul National University, Faculty of Liberal Education, Seoul (Korea, Republic of); Yoon, J.H. [Konkuk University, Department of Physics, College of Natural Sciences, Seoul (Korea, Republic of); Cho, Y.M. [Konkuk University, Administration Building 310-4, Seoul (Korea, Republic of); Seoul National University, School of Physics and Astronomy, Seoul (Korea, Republic of)
2015-02-01
The latest MoEDAL experiment at LHC to detect the electroweak monopole makes the theoretical prediction of the monopole mass an urgent issue. We discuss three different ways to estimate the mass of the electroweak monopole. We first present the dimensional and scaling arguments which indicate the monopole mass to be around 4 to 10 TeV. To justify this we construct finite energy analytic dyon solutions which could be viewed as the regularized Cho-Maison dyon, modifying the coupling strength at short distance. Our result demonstrates that a genuine electroweak monopole whose mass scale is much smaller than the grand unification scale can exist, which can actually be detected at the present LHC. (orig.)
International Nuclear Information System (INIS)
Tonks, M.R.; Williamson, R.; Masson, R.
2015-01-01
The Finite Element Method (FEM) is a numerical technique for finding approximate solutions to boundary value problems. While FEM is commonly used to solve solid mechanics equations, it can be applied to a large range of BVPs from many different fields. FEM has been used for reactor fuels modelling for many years. It is most often used for fuel performance modelling at the pellet and pin scale, however, it has also been used to investigate properties of the fuel material, such as thermal conductivity and fission gas release. Recently, the United Stated Department Nuclear Energy Advanced Modelling and Simulation Program has begun using FEM as the basis of the MOOSE-BISON-MARMOT Project that is developing a multi-dimensional, multi-physics fuel performance capability that is massively parallel and will use multi-scale material models to provide a truly predictive modelling capability. (authors)
Fractional finite Fourier transform.
Khare, Kedar; George, Nicholas
2004-07-01
We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)
Gale, David; And Others
Four units make up the contents of this document. The first examines applications of finite mathematics to business and economies. The user is expected to learn the method of optimization in optimal assignment problems. The second module presents applications of difference equations to economics and social sciences, and shows how to: 1) interpret…
Socio-economic applications of finite state mean field games
Gomes, Diogo A.; Machado Velho, Roberto; Wolfram, Marie Therese
2014-01-01
In this paper, we present different applications of finite state mean field games to socio-economic sciences. Examples include paradigm shifts in the scientific community or consumer choice behaviour in the free market. The corresponding finite
Mathew, Anoop; Nagachandran, K S; Vijayalakshmi, Devaki
2016-12-01
In this finite element (FE) study, the stress distribution and displacement pattern was evaluated in the mid-palatal area and around circum-maxillary sutures exerted by bone-borne palatal expander (BBPE) in comparison with conventional HYRAX rapid palatal expander in unilateral cleft lip and palate. Computed tomography scan images of a patient with unilateral cleft palate was used to create a FE model of the maxillary bone along with circum-maxillary sutures. A three-dimensional model of the conventional HYRAX (Hygienic Rapid Expander) expander and custom-made BBPE was created by laser scanning and programmed into the FE model. With the BBPE, the maximum stress was observed at the implant insertion site, whereas with the conventional HYRAX expander, it was at the dentition level. Among the circum-maxillary sutures, the zygomaticomaxillary suture experienced maximum stress followed by the zygomaticotemporal and nasomaxillary sutures. Displacement in the X-axis (transverse) was highest on the cleft side, and in the Y-axis (antero-posterior), it was highest in the posterior region in the BBPE. The total displacement was observed maximum in the mid-palatal cleft area in the BBPE, and it produced true skeletal expansion at the alveolar level without any dental tipping when compared with the conventional HYRAX expander.
Directory of Open Access Journals (Sweden)
Anoop Mathew
2016-11-01
Full Text Available Abstract Background In this finite element (FE study, the stress distribution and displacement pattern was evaluated in the mid-palatal area and around circum-maxillary sutures exerted by bone-borne palatal expander (BBPE in comparison with conventional HYRAX rapid palatal expander in unilateral cleft lip and palate. Methods Computed tomography scan images of a patient with unilateral cleft palate was used to create a FE model of the maxillary bone along with circum-maxillary sutures. A three-dimensional model of the conventional HYRAX (Hygienic Rapid Expander expander and custom-made BBPE was created by laser scanning and programmed into the FE model. Results With the BBPE, the maximum stress was observed at the implant insertion site, whereas with the conventional HYRAX expander, it was at the dentition level. Among the circum-maxillary sutures, the zygomaticomaxillary suture experienced maximum stress followed by the zygomaticotemporal and nasomaxillary sutures. Displacement in the X-axis (transverse was highest on the cleft side, and in the Y-axis (antero-posterior, it was highest in the posterior region in the BBPE. Conclusions The total displacement was observed maximum in the mid-palatal cleft area in the BBPE, and it produced true skeletal expansion at the alveolar level without any dental tipping when compared with the conventional HYRAX expander.