WorldWideScience

Sample records for finite difference discretizations

  1. Finite Mathematics and Discrete Mathematics: Is There a Difference?

    Science.gov (United States)

    Johnson, Marvin L.

    Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…

  2. Flexible Automatic Discretization for Finite Differences: Eliminating the Human Factor

    Science.gov (United States)

    Pranger, Casper

    2017-04-01

    In the geophysical numerical modelling community, finite differences are (in part due to their small footprint) a popular spatial discretization method for PDEs in the regular-shaped continuum that is the earth. However, they rapidly become prone to programming mistakes when physics increase in complexity. To eliminate opportunities for human error, we have designed an automatic discretization algorithm using Wolfram Mathematica, in which the user supplies symbolic PDEs, the number of spatial dimensions, and a choice of symbolic boundary conditions, and the script transforms this information into matrix- and right-hand-side rules ready for use in a C++ code that will accept them. The symbolic PDEs are further used to automatically develop and perform manufactured solution benchmarks, ensuring at all stages physical fidelity while providing pragmatic targets for numerical accuracy. We find that this procedure greatly accelerates code development and provides a great deal of flexibility in ones choice of physics.

  3. Finite Discrete Gabor Analysis

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel

    2007-01-01

    on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite......, discrete Gabor coefficients. Reconstruction of a signal from its Gabor coefficients is done by the use of a so-called dual window. This thesis presents a number of iterative algorithms to compute dual and self-dual windows. The Linear Time Frequency Toolbox is a Matlab/Octave/C toolbox for doing basic...... discrete time/frequency and Gabor analysis. It is intended to be both an educational and a computational tool. The toolbox was developed as part of this Ph.D. project to provide a solid foundation for the field of computational Gabor analysis....

  4. Linear and nonlinear Stability analysis for finite difference discretizations of higher order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrmann, David R.; Bingham, Harry B.; Madsen, Per A.

    2004-01-01

    This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly nonlinear and extremely dispersive water waves. The analysis demonstrates the near-equivalence of classical linear Fourier (von Neumann...

  5. Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells

    Science.gov (United States)

    Deinega, Alexei; John, Sajeev

    2012-10-01

    We introduce a finite difference discretization of semiconductor drift-diffusion equations using cylindrical partial waves. It can be applied to describe the photo-generated current in radial pn-junction nanowire solar cells. We demonstrate that the cylindrically symmetric (l=0) partial wave accurately describes the electronic response of a square lattice of silicon nanowires at normal incidence. We investigate the accuracy of our discretization scheme by using different mesh resolution along the radial direction r and compare with 3D (x, y, z) discretization. We consider both straight nanowires and nanowires with radius modulation along the vertical axis. The charge carrier generation profile inside each nanowire is calculated using an independent finite-difference time-domain simulation.

  6. Isotropic finite-difference discretization of stochastic conservation laws preserving detailed balance

    Science.gov (United States)

    Banerjee, Mahan Raj; Succi, Sauro; Ansumali, Santosh; Adhikari, R.

    2017-10-01

    The dynamics of thermally fluctuating conserved order parameters are described by stochastic conservation laws. Thermal equilibrium in such systems requires the dissipative and stochastic components of the flux to be related by detailed balance. Preserving this relation in spatial and temporal discretization is necessary to obtain solutions that have fidelity to the continuum. Here, we propose a finite-difference discretization that preserves the detailed balance on the lattice, has a spatial error that is isotropic to leading order in lattice spacing, and can be integrated accurately in time using a delayed difference method. We benchmark the method for model B dynamics with a φ4 Landau free energy and obtain excellent agreement with the analytical results.

  7. Finite discrete field theory

    International Nuclear Information System (INIS)

    Souza, Manoelito M. de

    1997-01-01

    We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)

  8. Finite strain discrete dislocation plasticity

    NARCIS (Netherlands)

    Deshpande, VS; Needleman, A; Van der Giessen, E

    2003-01-01

    A framework for carrying out finite deformation discrete dislocation plasticity calculations is presented. The discrete dislocations are presumed to be adequately represented by the singular linear elastic fields so that the large deformations near dislocation cores are not modeled. The finite

  9. Linear and non-linear stability analysis for finite difference discretizations of high-order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.

    2004-01-01

    This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly non-linear and extremely dispersive water waves. The analysis demonstrates the near-equivalence of classical linear Fourier (von Neumann...

  10. Linear and non-linear stability analysis for finite difference discretizations of high-order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.

    2004-01-01

    This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly non-linear and extremely dispersive water waves. The analysis demonstrates the near-equivalence of classical linear Fourier (von Neuman...

  11. Discrete mechanics Based on Finite Element Methods

    OpenAIRE

    Chen, Jing-bo; Guo, Han-Ying; Wu, Ke

    2002-01-01

    Discrete Mechanics based on finite element methods is presented in this paper. We also explore the relationship between this discrete mechanics and Veselov discrete mechanics. High order discretizations are constructed in terms of high order interpolations.

  12. SBP-SAT finite difference discretization of acoustic wave equations on staggered block-wise uniform grids

    KAUST Repository

    Gao, Longfei

    2018-02-16

    We consider the numerical simulation of the acoustic wave equations arising from seismic applications, for which staggered grid finite difference methods are popular choices due to their simplicity and efficiency. We relax the uniform grid restriction on finite difference methods and allow the grids to be block-wise uniform with nonconforming interfaces. In doing so, variations in the wave speeds of the subterranean media can be accounted for more efficiently. Staggered grid finite difference operators satisfying the summation-by-parts (SBP) property are devised to approximate the spatial derivatives appearing in the acoustic wave equation. These operators are applied within each block independently. The coupling between blocks is achieved through simultaneous approximation terms (SATs), which impose the interface condition weakly, i.e., by penalty. Ratio of the grid spacing of neighboring blocks is allowed to be rational number, for which specially designed interpolation formulas are presented. These interpolation formulas constitute key pieces of the simultaneous approximation terms. The overall discretization is shown to be energy-conserving and examined on test cases of both theoretical and practical interests, delivering accurate and stable simulation results.

  13. Intercomparison of the finite difference and nodal discrete ordinates and surface flux transport methods for a LWR pool-reactor benchmark problem in X-Y geometry

    International Nuclear Information System (INIS)

    O'Dell, R.D.; Stepanek, J.; Wagner, M.R.

    1983-01-01

    The aim of the present work is to compare and discuss the three of the most advanced two dimensional transport methods, the finite difference and nodal discrete ordinates and surface flux method, incorporated into the transport codes TWODANT, TWOTRAN-NODAL, MULTIMEDIUM and SURCU. For intercomparison the eigenvalue and the neutron flux distribution are calculated using these codes in the LWR pool reactor benchmark problem. Additionally the results are compared with some results obtained by French collision probability transport codes MARSYAS and TRIDENT. Because the transport solution of this benchmark problem is close to its diffusion solution some results obtained by the finite element diffusion code FINELM and the finite difference diffusion code DIFF-2D are included

  14. A cell-local finite difference discretization of the low-order quasidiffusion equations for neutral particle transport on unstructured quadrilateral meshes

    Science.gov (United States)

    Wieselquist, William A.; Anistratov, Dmitriy Y.; Morel, Jim E.

    2014-09-01

    We present a quasidiffusion (QD) method for solving neutral particle transport problems in Cartesian XY geometry on unstructured quadrilateral meshes, including local refinement capability. Neutral particle transport problems are central to many applications including nuclear reactor design, radiation safety, astrophysics, medical imaging, radiotherapy, nuclear fuel transport/storage, shielding design, and oil well-logging. The primary development is a new discretization of the low-order QD (LOQD) equations based on cell-local finite differences. The accuracy of the LOQD equations depends on proper calculation of special non-linear QD (Eddington) factors from a transport solution. In order to completely define the new QD method, a proper discretization of the transport problem is also presented. The transport equation is discretized by a conservative method of short characteristics with a novel linear approximation of the scattering source term and monotonic, parabolic representation of the angular flux on incoming faces. Analytic and numerical tests are used to test the accuracy and spatial convergence of the non-linear method. All tests exhibit O(h2) convergence of the scalar flux on orthogonal, random, and multi-level meshes.

  15. Discrete phase space based on finite fields

    International Nuclear Information System (INIS)

    Gibbons, Kathleen S.; Hoffman, Matthew J.; Wootters, William K.

    2004-01-01

    The original Wigner function provides a way of representing in phase space the quantum states of systems with continuous degrees of freedom. Wigner functions have also been developed for discrete quantum systems, one popular version being defined on a 2Nx2N discrete phase space for a system with N orthogonal states. Here we investigate an alternative class of discrete Wigner functions, in which the field of real numbers that labels the axes of continuous phase space is replaced by a finite field having N elements. There exists such a field if and only if N is a power of a prime; so our formulation can be applied directly only to systems for which the state-space dimension takes such a value. Though this condition may seem limiting, we note that any quantum computer based on qubits meets the condition and can thus be accommodated within our scheme. The geometry of our NxN phase space also leads naturally to a method of constructing a complete set of N+1 mutually unbiased bases for the state space

  16. Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion

    Science.gov (United States)

    Wu, Guo-Cheng; Baleanu, Dumitru; Zeng, Sheng-Da

    2018-04-01

    This study investigates finite-time stability of Caputo delta fractional difference equations. A generalized Gronwall inequality is given on a finite time domain. A finite-time stability criterion is proposed for fractional differential equations. Then the idea is extended to the discrete fractional case. A linear fractional difference equation with constant delays is considered and finite-time stable conditions are provided. One example is numerically illustrated to support the theoretical result.

  17. Finite Volumes Discretization of Topology Optimization Problems

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter

    , FVMs represent a standard method of discretization within engineering communities dealing with computational uid dy- namics, transport, and convection-reaction problems. Among various avours of FVMs, cell based approaches, where all variables are associated only with cell centers, are particularly...... computations is done using nite element methods (FEMs). Despite some limited recent eorts [1, 2], we have only started to develop our understanding of the interplay between the control in the coecients and FVMs. Recent advances in discrete functional analysis allow us to analyze convergence of FVM...... of the induced parametrization of the design space that allows optimization algorithms to eciently explore it, and the ease of integration with existing computational codes in a variety of application areas, the simplicity and eciency of sensitivity analyses|all stemming from the use of the same grid throughout...

  18. Vertical discretization with finite elements for a global hydrostatic model on the cubed sphere

    Science.gov (United States)

    Yi, Tae-Hyeong; Park, Ja-Rin

    2017-06-01

    A formulation of Galerkin finite element with basis-spline functions on a hybrid sigma-pressure coordinate is presented to discretize the vertical terms of global Eulerian hydrostatic equations employed in a numerical weather prediction system, which is horizontally discretized with high-order spectral elements on a cubed sphere grid. This replaces the vertical discretization of conventional central finite difference that is first-order accurate in non-uniform grids and causes numerical instability in advection-dominant flows. Therefore, a model remains in the framework of Galerkin finite elements for both the horizontal and vertical spatial terms. The basis-spline functions, obtained from the de-Boor algorithm, are employed to derive both the vertical derivative and integral operators, since Eulerian advection terms are involved. These operators are used to discretize the vertical terms of the prognostic and diagnostic equations. To verify the vertical discretization schemes and compare their performance, various two- and three-dimensional idealized cases and a hindcast case with full physics are performed in terms of accuracy and stability. It was shown that the vertical finite element with the cubic basis-spline function is more accurate and stable than that of the vertical finite difference, as indicated by faster residual convergence, fewer statistical errors, and reduction in computational mode. This leads to the general conclusion that the overall performance of a global hydrostatic model might be significantly improved with the vertical finite element.

  19. A Piecewise Bi-Linear Discontinuous Finite Element Spatial Discretization of the Sn Transport Equation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, T S; Chang, J H; Warsa, J S; Adams, M L

    2010-12-22

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.

  20. A comprehensive model combining Laplace-transform finite-difference and boundary-element method for the flow behavior of a two-zone system with discrete fracture network

    Science.gov (United States)

    Jia, Pin; Cheng, Linsong; Huang, Shijun; Xu, Zhongyi; Xue, Yongchao; Cao, Renyi; Ding, Guanyang

    2017-08-01

    This paper provides a comprehensive model for the flow behavior of a two-zone system with discrete fracture network. The discrete fracture network within the inner zone is represented explicitly by fracture segments. The Laplace-transform finite-difference method is used to numerically model discrete fracture network flow, with sufficient flexibility to consider arbitrary fracture geometries and conductivity distributions. Boundary-element method and line-source functions in the Laplace domain are employed to derive a semi-analytical flow solution for the two-zone system. By imposing the continuity of flux and pressure on discrete fracture surfaces, the semi-analytical two-zone system flow model and the numerical fracture flow model are coupled dynamically. The main advantage of the approach occurring in the Laplace domain is that simulation can be done with nodes only for discrete fractures and elements for boundaries and at predetermined, discrete times. Thus, stability and convergence problems caused by time discretization are avoided and the burden of gridding and computation is decreased without loss of important fracture characteristics. The model is validated by comparison with the results from an analytical solution and a fully numerical solution. Flow regime analysis shows that a two-zone system with discrete fracture network may develop six flow regimes: fracture linear flow, bilinear flow, inner zone linear flow, inner zone pseudosteady-state flow, outer zone pseudoradial flow and outer zone boundary-dominated flow. Especially, local solutions for the inner-zone linear flow have the same form with that of a finite conductivity planar fracture and can be correlated with the total length of discrete fractures and an intercept term. In the inner zone pseudosteady-state flow period, the discrete fractures, along with the boundary of the inner zone, will act as virtual closed boundaries, due to the pressure interference caused by fracture network and the

  1. Comparison of different precondtioners for nonsymmtric finite volume element methods

    Energy Technology Data Exchange (ETDEWEB)

    Mishev, I.D.

    1996-12-31

    We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.

  2. Finite element discretization of Darcy's equations with pressure dependent porosity

    KAUST Repository

    Girault, Vivette

    2010-02-23

    We consider the flow of a viscous incompressible fluid through a rigid homogeneous porous medium. The permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a finite element discretization of this problem and, in the case where the dependence on the pressure is bounded from above and below, we prove its convergence to the solution and propose an algorithm to solve the discrete system. In the case where the dependence on the pressure is exponential, we propose a splitting scheme which involves solving two linear systems, but parts of the analysis of this method are still heuristic. Numerical tests are presented, which illustrate the introduced methods. © 2010 EDP Sciences, SMAI.

  3. Finite-Element-Based Discretization and Regularization Strategies for 3D Inverse Electrocardiography

    Science.gov (United States)

    Wang, Dafang; Kirby, Robert M.; Johnson, Chris R.

    2011-01-01

    We consider the inverse electrocardiographic problem of computing epicardial potentials from a body-surface potential map. We study how to improve numerical approximation of the inverse problem when the finite element method is used. Being ill-posed, the inverse problem requires different discretization strategies from its corresponding forward problem. We propose refinement guidelines that specifically address the ill-posedness of the problem. The resulting guidelines necessitate the use of hybrid finite elements composed of tetrahedra and prism elements. Also in order to maintain consistent numerical quality when the inverse problem is discretized into different scales, we propose a new family of regularizers using the variational principle underlying finite element methods. These variational-formed regularizers serve as an alternative to the traditional Tikhonov regularizers, but preserves the L2 norm and thereby achieves consistent regularization in multi-scale simulations. The variational formulation also enables a simple construction of the discrete gradient operator over irregular meshes, which is difficult to define in traditional discretization schemes. We validated our hybrid element technique and the variational regularizers by simulations on a realistic 3D torso/heart model with empirical heart data. Results show that discretization based on our proposed strategies mitigates the ill-conditioning and improves the inverse solution, and that the variational formulation may benefit a broader range of potential-based bioelectric problems. PMID:21382763

  4. Exact Finite Differences. The Derivative on Non Uniformly Spaced Partitions

    Directory of Open Access Journals (Sweden)

    Armando Martínez-Pérez

    2017-10-01

    Full Text Available We define a finite-differences derivative operation, on a non uniformly spaced partition, which has the exponential function as an exact eigenvector. We discuss some properties of this operator and we propose a definition for the components of a finite-differences momentum operator. This allows us to perform exact discrete calculations.

  5. A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2012-01-01

    The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex

  6. Nonparametric Identification and Estimation of Finite Mixture Models of Dynamic Discrete Choices

    OpenAIRE

    Hiroyuki Kasahara; Katsumi Shimotsu

    2006-01-01

    In dynamic discrete choice analysis, controlling for unobserved heterogeneity is an important issue, and finite mixture models provide flexible ways to account for unobserved heterogeneity. This paper studies nonparametric identifiability of type probabilities and type-specific component distributions in finite mixture models of dynamic discrete choices. We derive sufficient conditions for nonparametric identification for various finite mixture models of dynamic discrete choices used in appli...

  7. Modelling discrete longitudinal data using acyclic probabilistic finite automata

    DEFF Research Database (Denmark)

    Anantharama Ankinakatte, Smitha; Edwards, David

    2015-01-01

    to minimize a penalized likelihood criterion such as AIC or BIC is described. This algorithm is compared to one implemented in Beagle, a widely used program for processing genomic data, both in terms of rate of convergence to the true model as the sample size increases, and a goodness-of-fit measure assessed...... using cross-validation. The comparisons are based on three data sets, two from molecular genetics and one from social science. The proposed algorithm performs at least as well as the algorithm in Beagle in both respects......Acyclic probabilistic finite automata (APFA) constitute a rich family of models for discrete longitudinal data. An APFA may be represented as a directed multigraph, and embodies a set of context-specific conditional independence relations that may be read off the graph. A model selection algorithm...

  8. Interpolation of the discrete logarithm in a finite field of characteristic two by Boolean functions

    DEFF Research Database (Denmark)

    Brandstaetter, Nina; Lange, Tanja; Winterhof, Arne

    2005-01-01

    We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic.......We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic....

  9. Hamiltonian Finite Element Discretization for Nonlinear Free Surface WaterWaves

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; Brink, Freekjan; Iszak, Ferenc

    2017-01-01

    A novel finite element discretization for nonlinear potential flow water waves is presented. Starting from Luke’s Lagrangian formulation we prove that an appropriate finite element discretization preserves the Hamiltonian structure of the potential flow water waveequations, even on general

  10. Mixed finite element - discontinuous finite volume element discretization of a general class of multicontinuum models

    Science.gov (United States)

    Ruiz-Baier, Ricardo; Lunati, Ivan

    2016-10-01

    We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation

  11. Finite element, discontinuous Galerkin, and finite difference evolution schemes in spacetime

    International Nuclear Information System (INIS)

    Zumbusch, G

    2009-01-01

    Numerical schemes for Einstein's vacuum equation are developed. Einstein's equation in harmonic gauge is second-order symmetric hyperbolic. It is discretized in four-dimensional spacetime by finite differences, finite elements and interior penalty discontinuous Galerkin methods, the latter being related to Regge calculus. The schemes are split into space and time and new time-stepping schemes for wave equations are derived. The methods are evaluated for linear and nonlinear test problems of the Apples-with-Apples collection.

  12. An implicit finite-difference operator for the Helmholtz equation

    KAUST Repository

    Chu, Chunlei

    2012-07-01

    We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.

  13. Finite-dimensional reductions of the discrete Toda chain

    Science.gov (United States)

    Kazakova, T. G.

    2004-08-01

    The problem of construction of integrable boundary conditions for the discrete Toda chain is considered. The restricted chains for properly chosen closure conditions are reduced to the well-known discrete Painlevé equations dPIII, dPV, dPVI. Lax representations for these discrete Painlevé equations are found.

  14. Implicit finite-difference simulations of seismic wave propagation

    KAUST Repository

    Chu, Chunlei

    2012-03-01

    We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.

  15. Finite difference techniques for nonlinear hyperbolic conservation laws

    International Nuclear Information System (INIS)

    Sanders, R.

    1985-01-01

    The present study is concerned with numerical approximations to the initial value problem for nonlinear systems of conservative laws. Attention is given to the development of a class of conservation form finite difference schemes which are based on the finite volume method (i.e., the method of averages). These schemes do not fit into the classical framework of conservation form schemes discussed by Lax and Wendroff (1960). The finite volume schemes are specifically intended to approximate solutions of multidimensional problems in the absence of rectangular geometries. In addition, the development is reported of different schemes which utilize the finite volume approach for time discretization. Particular attention is given to local time discretization and moving spatial grids. 17 references

  16. Nonlinear acceleration of a continuous finite element discretization of the self-adjoint angular flux form of the transport equation

    International Nuclear Information System (INIS)

    Sanchez, Richard; Rabiti, Cristian; Wang, Yaqi

    2013-01-01

    Nonlinear acceleration of a continuous finite element (CFE) discretization of the transport equation requires a modification of the transport solution in order to achieve local conservation, a condition used in nonlinear acceleration to define the stopping criterion. In this work we implement a coarse-mesh finite difference acceleration for a CFE discretization of the second-order self-adjoint angular flux (SAAF) form of the transport equation and use a postprocessing to enforce local conservation. Numerical results are given for one-group source calculations of one-dimensional slabs. We also give a novel formal derivation of the boundary conditions for the SAAF. (authors)

  17. A projective variety with discrete, non-finitely generated automorphism group

    OpenAIRE

    Lesieutre, John

    2016-01-01

    We construct a projective variety with discrete, non-finitely generated automorphism group. As an application, we show that there exists a complex projective variety with infinitely many non-isomorphic real forms.

  18. Discrete wavelet transforms over finite sets which are translation invariant

    NARCIS (Netherlands)

    L. Kamstra

    2001-01-01

    textabstractThe discrete wavelet transform was originally a linear operator that works on signals that are modeled as functions from the integers into the real or complex numbers. However, many signals have discrete function values. This paper builds on two recent developments: the extension of

  19. Neural Network Based Finite-Time Stabilization for Discrete-Time Markov Jump Nonlinear Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2013-01-01

    Full Text Available This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabilization of the closed-loop system. A numerical example is illustrated to verify the efficiency of the proposed technique.

  20. Bit-string physics a finite and discrete approach to natural philosophy

    CERN Document Server

    Noyes, H Pierre

    2001-01-01

    We could be on the threshold of a scientific revolution. Quantum mechanics is based on unique, finite, and discrete events. General relativity assumes a continuous, curved space-time. Reconciling the two remains the most fundamental unsolved scientific problem left over from the last century. The papers of H Pierre Noyes collected in this volume reflect one attempt to achieve that unification by replacing the continuum with the bit-string events of computer science. Three principles are used: physics can determine whether two quantities are the same or different; measurement can tell something

  1. High-order finite-difference methods for Poisson's equation

    NARCIS (Netherlands)

    van Linde, Hendrik Jan

    1971-01-01

    In this thesis finite-difference approximations to the three boundary value problems for Poisson’s equation are given, with discretization errors of O(H^3) for the mixed boundary value problem, O(H^3 |ln(h)| for the Neumann problem and O(H^4)for the Dirichlet problem respectively . First an operator

  2. A flexible nonlinear diffusion acceleration method for the SN transport equations discretized with discontinuous finite elements

    Science.gov (United States)

    Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick; Ortensi, Javier; Baker, Benjamin; Laboure, Vincent; Wang, Congjian; DeHart, Mark; Martineau, Richard

    2017-06-01

    This work presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the SN transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form is based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. While NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in

  3. Convergence analysis for finite element discretizations of highly indefinite problems

    OpenAIRE

    Asieh, P

    2012-01-01

    Helmholtz problem appears in many areas for example in the context of inverse and scattering problems. This problem is solved numerically and the challenge is that the solutions become highly oscillatory. As a consequence the numerical discretization has to be adapted to resolve these oscillations. Galerkin methods are well established to solve elliptic problems - however for Helmholtz problems they suffer from the indefiniteness of the equation, more precisely, the stability of the discrete...

  4. A discrete finite element modelling and measurements for powder compaction

    International Nuclear Information System (INIS)

    Choi, J L; Gethin, D T

    2009-01-01

    An experimental investigation into friction between powder and a target surface together with numerical modelling of compaction and friction processes at a micro-scale are presented in this paper. The experimental work explores friction mechanisms by using an extended sliding plate apparatus operating at low load while sliding over a long distance. Tests were conducted for copper and 316 steel with variation in loads, surface finish and its orientation. The behaviours of the static and dynamic friction were identified highlighting the important influence of particle size, particle shape, material response and surface topography. The results also highlighted that under light loading the friction coefficient remains at a level lower than that derived from experiments on equipment having a wider dynamic range and this is attributed to the enhanced sensitivity of the measurement equipment. The results also suggest that friction variation with sliding distance is a consequence of damage, rather than presentation of an uncontaminated target sliding surface. The complete experimental cycle was modelled numerically using a combined discrete and finite element scheme enabling exploration of mechanisms that are defined at the particle level. Using compaction as the starting point, a number of simulation factors and process parameters were investigated. Comparisons were made with previously published work, showing reasonable agreement and the simulations were then used to explore the process response to the range of particle scale factors. Models comprising regular packing of round particles exhibited stiff response with high initial density. Models with random packing were explored and were found to reflect trends that are more closely aligned with experimental observation, including rearrangement, followed by compaction under a regime of elastic then plastic deformation. Numerical modelling of the compaction stage was extended to account for the shearing stage of the

  5. Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space.

    Science.gov (United States)

    Bause, Markus; Radu, Florin A; Köcher, Uwe

    2017-01-01

    Variational time discretization schemes are getting of increasing importance for the accurate numerical approximation of transient phenomena. The applicability and value of mixed finite element methods in space for simulating transport processes have been demonstrated in a wide class of works. We consider a family of continuous Galerkin-Petrov time discretization schemes that is combined with a mixed finite element approximation of the spatial variables. The existence and uniqueness of the semidiscrete approximation and of the fully discrete solution are established. For this, the Banach-Nečas-Babuška theorem is applied in a non-standard way. Error estimates with explicit rates of convergence are proved for the scalar and vector-valued variable. An optimal order estimate in space and time is proved by duality techniques for the scalar variable. The convergence rates are analyzed and illustrated by numerical experiments, also on stochastically perturbed meshes.

  6. Finite element and finite difference methods in electromagnetic scattering

    CERN Document Server

    Morgan, MA

    2013-01-01

    This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca

  7. Finite-Difference Algorithms For Computing Sound Waves

    Science.gov (United States)

    Davis, Sanford

    1993-01-01

    Governing equations considered as matrix system. Method variant of method described in "Scheme for Finite-Difference Computations of Waves" (ARC-12970). Present method begins with matrix-vector formulation of fundamental equations, involving first-order partial derivatives of primitive variables with respect to space and time. Particular matrix formulation places time and spatial coordinates on equal footing, so governing equations considered as matrix system and treated as unit. Spatial and temporal discretizations not treated separately as in other finite-difference methods, instead treated together by linking spatial-grid interval and time step via common scale factor related to speed of sound.

  8. Chaos in discrete fractional difference equations

    Indian Academy of Sciences (India)

    2016-09-07

    Sep 7, 2016 ... logistics map and discrete sine map [14,15]. In this paper, we analyse numerically the chaotic behaviour of three maps viz., discrete tent map, discrete 2x(mod1) map and discrete Gauss map. Study of these maps is important as they are standard one-dimensional maps, well known to show characteristic ...

  9. Multi-scale simulation method with coupled finite/discrete element model and its application

    Science.gov (United States)

    Fang, Xiwu; Liu, Zhenyu; Tan, Jianrong; Qiu, Chan; Chen, Fengbei

    2013-07-01

    The existing research on continuous structure is usually analyzed with finite element method (FEM) and granular medium with discrete element method (DEM), but there are few researches on the coupling interaction between continuous structure and discrete medium. To the issue of this coupling interaction, a multi-scale simulation method with coupled finite/discrete element model is put forward, in their respective domains of discrete and finite elements, the nodes follow force law and motion law of their own method, and on the their interaction interface, the touch type between discrete and finite elements is distinguished as two types: full touch and partial touch, the interaction force between them is calculated with linear elastic model. For full touch, the contact force is proportional to the overlap distance between discrete element and finite element patch. For partial touch, first the finite element patch is extended on all sides indefinitely to be a complete plane, the full contact force can be obtained with the touch type between discrete element and plane being viewed as full touch, then the full overlap area between them and the actual overlap area between discrete element and finite element patch are computed, the actual contact force is obtained by scaling the full contact force with a factor η which is determined by the ratio of the actual overlap area to the full overlap area. The contact force is equivalent to the finite element nodes and the force and displacement on the nodes can be computed, so the ideal simulation results can be got. This method has been used to simulate the cutter disk of the earth pressure balance shield machine (EPBSM) made in North Heavy Industry (NHI) with its excavation diameter of 6.28 m cutting and digging the sandy clay layer. The simulation results show that as the gradual increase of excavating depth of the cutter head, the maximum stress occurs at the roots of cutters on the cutter head, while for the soil, the

  10. Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1985-01-01

    Advantages and disadvantages of modern discrete-ordinates finite-element methods for the solution of radiative transfer problems in meteorology, climatology, and remote sensing applications are evaluated. After the common basis of the formulation of radiative transfer problems in the fields of neutron transport and atmospheric optics is established, the essential features of the discrete-ordinates finite-element method are described including the limitations of the method and their remedies. Numerical results are presented for 1-D and 2-D atmospheric radiative transfer problems where integral as well as angular dependent quantities are compared with published results from other calculations and with measured data. These comparisons provide a verification of the discrete-ordinates results for a wide spectrum of cases with varying degrees of absorption, scattering, and anisotropic phase functions. Accuracy and computational speed are also discussed. Since practically all discrete-ordinates codes offer a builtin adjoint capability, the general concept of the adjoint method is described and illustrated by sample problems. Our general conclusion is that the strengths of the discrete-ordinates finite-element method outweight its weaknesses. We demonstrate that existing general-purpose discrete-ordinates codes can provide a powerful tool to analyze radiative transfer problems through the atmosphere, especially when 2-D geometries must be considered

  11. Flux-corrected transport techniques applied to the radiation transport equation discretized with continuous finite elements

    Science.gov (United States)

    Hansel, Joshua E.; Ragusa, Jean C.

    2018-02-01

    The Flux-Corrected Transport (FCT) algorithm is applied to the unsteady and steady-state particle transport equation. The proposed FCT method employs the following: (1) a low-order, positivity-preserving scheme, based on the application of M-matrix properties, (2) a high-order scheme based on the entropy viscosity method introduced by Guermond [1], and (3) local, discrete solution bounds derived from the integral transport equation. The resulting scheme is second-order accurate in space, enforces an entropy inequality, mitigates the formation of spurious oscillations, and guarantees the absence of negativities. Space discretization is achieved using continuous finite elements. Time discretizations for unsteady problems include theta schemes such as explicit and implicit Euler, and strong-stability preserving Runge-Kutta (SSPRK) methods. The developed FCT scheme is shown to be robust with explicit time discretizations but may require damping in the nonlinear iterations for steady-state and implicit time discretizations.

  12. Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter

    2011-01-01

    We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal......, whereas the convergence of the coefficients happens only with respect to the "volumetric" Lebesgue measure. Additionally, depending on whether the stationarity conditions are stated for the discretized or the original continuous problem, two distinct concepts of stationarity at a discrete level arise. We...... provide characterizations of limit points, with respect to FV mesh size, of globally optimal solutions and two types of stationary points to the discretized problems. We illustrate the practical behaviour of our cell-based FV discretization algorithm on a numerical example....

  13. Non Standard Finite Difference Scheme for Mutualistic Interaction Description

    OpenAIRE

    Gabbriellini, Gianluca

    2012-01-01

    One of the more interesting themes of the mathematical ecology is the description of the mutualistic interaction between two interacting species. Based on continuous-time model developed by Holland and DeAngelis 2009 for consumer-resource mutualism description, this work deals with the application of the Mickens Non Standard Finite Difference method to transform the continuous-time scheme into a discrete-time one. It has been proved that the Mickens scheme is dynamically consistent with the o...

  14. A Piecewise Linear Finite Element Discretization of the Diffusion Equation for Arbitrary Polyhedral Grids

    International Nuclear Information System (INIS)

    Bailey, T S; Adams, M L; Yang, B; Zika, M R

    2005-01-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids

  15. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    International Nuclear Information System (INIS)

    Bailey, T.S.; Adams, M.L.; Yang, B.; Zika, M.R.

    2005-01-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2-dimensional) or polyhedral (3-dimensional) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids. (authors)

  16. Guaranteed Cost Finite-Time Control of Discrete-Time Positive Impulsive Switched Systems

    Directory of Open Access Journals (Sweden)

    Leipo Liu

    2018-01-01

    Full Text Available This paper considers the guaranteed cost finite-time boundedness of discrete-time positive impulsive switched systems. Firstly, the definition of guaranteed cost finite-time boundedness is introduced. By using the multiple linear copositive Lyapunov function (MLCLF and average dwell time (ADT approach, a state feedback controller is designed and sufficient conditions are obtained to guarantee that the corresponding closed-loop system is guaranteed cost finite-time boundedness (GCFTB. Such conditions can be solved by linear programming. Finally, a numerical example is provided to show the effectiveness of the proposed method.

  17. Stochastic ℋ∞ Finite-Time Control of Discrete-Time Systems with Packet Loss

    Directory of Open Access Journals (Sweden)

    Yingqi Zhang

    2012-01-01

    Full Text Available This paper investigates the stochastic finite-time stabilization and ℋ∞ control problem for one family of linear discrete-time systems over networks with packet loss, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, the dynamic model description studied is given, which, if the packet dropout is assumed to be a discrete-time homogenous Markov process, the class of discrete-time linear systems with packet loss can be regarded as Markovian jump systems. Based on Lyapunov function approach, sufficient conditions are established for the resulting closed-loop discrete-time system with Markovian jumps to be stochastic ℋ∞ finite-time boundedness and then state feedback controllers are designed to guarantee stochastic ℋ∞ finite-time stabilization of the class of stochastic systems. The stochastic ℋ∞ finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the robust stochastic stabilization of the class of linear systems with packet loss. Finally, simulation examples are presented to illustrate the validity of the developed scheme.

  18. The invariance of current energy fourier spectrum of discrete real signals on finite intervals

    Directory of Open Access Journals (Sweden)

    Ponomarev V. A.

    2014-02-01

    Full Text Available Digital spectral analysis of signals based on DFT has a number of advantages. However, the transition from analog to digital methods and techniques is accompanied by a number of undesirable effects. Signals in each subject area usually have their own specifics. Therefore, it is necessary to study these effects in applications of spectral Fourier analysis. Such research is important for three reasons. Firstly, DFT properties are accurate, have their own specificity and significantly differ from the properties of the Fourier transform of continuous signals. Secondly, signals in each subject area have their own specificity. Thirdly, researchers often have prevailing knowledge in some particular domain, rather than in the field of digital signal processing techniques. As a result, in practice, some of the processes and effects arising in applications of digital spectral analysis, unfortunately, escape the attention of researchers which can result in erroneous conclusions. The paper deals with the problems of measuring Fourier spectrum of signals in the base of discrete exponential functions. Methods and algorithms of sliding measurements of energy Fourier spectrum of signals on finite intervals were described. The invariance of current energy Fourier spectrum to moving discrete real signals (which are not periodic were investigated. The authors identify a new effect of digital spectral analysis — the effect of non-invariance of the current energy Fourier spectrum. Theoretical and practical results of analysis of invariance of current energy Fourier spectrum of tonal components are shown. The conducted studies allow us: — to see in a new light the measurement results on finite intervals of current Fourier spectrum and the current energy Fourier spectra of signals; give a numerical estimate of the non-invariance of the current energy Fourier spectrum of real tonal components. — to increase the effectiveness of digital spectral analysis in its

  19. Hybrid Discrete Element - Finite Element Simulation for Railway Bridge-Track Interaction

    Science.gov (United States)

    Kaewunruen, S.; Mirza, O.

    2017-10-01

    At the transition zone or sometimes called ‘bridge end’ or ‘bridge approach’, the stiffness difference between plain track and track over bridge often causes aggravated impact loading due to uneven train movement onto the area. The differential track settlement over the transition has been a classical problem in railway networks, especially for the aging rail infrastructures around the world. This problem is also additionally worsened by the fact that the construction practice over the area is difficult, resulting in a poor compaction of formation and subgrade. This paper presents an advanced hybrid simulation using coupled discrete elements and finite elements to investigate dynamic interaction at the transition zone. The goal is to evaluate the dynamic stresses and to better understand the impact dynamics redistribution at the bridge end. An existing bridge ‘Salt Pan Creek Railway Bridge’, located between Revesby and Kingsgrove, has been chosen for detailed investigation. The Salt Pan Bridge currently demonstrates crushing of the ballast causing significant deformation and damage. Thus, it’s imperative to assess the behaviours of the ballast under dynamic loads. This can be achieved by modelling the nonlinear interactions between the steel rail and sleeper, and sleeper to ballast. The continuum solid elements of track components have been modelled using finite element approach, while the granular media (i.e. ballast) have been simulated by discrete element method. The hybrid DE/FE model demonstrates that ballast experiences significant stresses at the contacts between the sleeper and concrete section. These overburden stress exists in the regions below the outer rails, identify fouling and permanent deformation of the ballast.

  20. An implicit finite element method for discrete dynamic fracture

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, Jobie M. [Colorado State Univ., Fort Collins, CO (United States)

    1999-12-01

    A method for modeling the discrete fracture of two-dimensional linear elastic structures with a distribution of small cracks subject to dynamic conditions has been developed. The foundation for this numerical model is a plane element formulated from the Hu-Washizu energy principle. The distribution of small cracks is incorporated into the numerical model by including a small crack at each element interface. The additional strain field in an element adjacent to this crack is treated as an externally applied strain field in the Hu-Washizu energy principle. The resulting stiffness matrix is that of a standard plane element. The resulting load vector is that of a standard plane element with an additional term that includes the externally applied strain field. Except for the crack strain field equations, all terms of the stiffness matrix and load vector are integrated symbolically in Maple V so that fully integrated plane stress and plane strain elements are constructed. The crack strain field equations are integrated numerically. The modeling of dynamic behavior of simple structures was demonstrated within acceptable engineering accuracy. In the model of axial and transverse vibration of a beam and the breathing mode of vibration of a thin ring, the dynamic characteristics were shown to be within expected limits. The models dominated by tensile forces (the axially loaded beam and the pressurized ring) were within 0.5% of the theoretical values while the shear dominated model (the transversely loaded beam) is within 5% of the calculated theoretical value. The constant strain field of the tensile problems can be modeled exactly by the numerical model. The numerical results should therefore, be exact. The discrepancies can be accounted for by errors in the calculation of frequency from the numerical results. The linear strain field of the transverse model must be modeled by a series of constant strain elements. This is an approximation to the true strain field, so some

  1. Finite element discretization of non-linear diffusion equations with thermal fluctuations.

    Science.gov (United States)

    de la Torre, J A; Español, Pep; Donev, Aleksandar

    2015-03-07

    We present a finite element discretization of a non-linear diffusion equation used in the field of critical phenomena and, more recently, in the context of dynamic density functional theory. The discretized equation preserves the structure of the continuum equation. Specifically, it conserves the total number of particles and fulfills an H-theorem as the original partial differential equation. The discretization proposed suggests a particular definition of the discrete hydrodynamic variables in microscopic terms. These variables are then used to obtain, with the theory of coarse-graining, their dynamic equations for both averages and fluctuations. The hydrodynamic variables defined in this way lead to microscopically derived hydrodynamic equations that have a natural interpretation in terms of discretization of continuum equations. Also, the theory of coarse-graining allows to discuss the introduction of thermal fluctuations in a physically sensible way. The methodology proposed for the introduction of thermal fluctuations in finite element methods is general and valid for both regular and irregular grids in arbitrary dimensions. We focus here on simulations of the Ginzburg-Landau free energy functional using both regular and irregular 1D grids. Convergence of the numerical results is obtained for the static and dynamic structure factors as the resolution of the grid is increased.

  2. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    International Nuclear Information System (INIS)

    Bailey, Teresa S.; Adams, Marvin L.; Yang, Brian; Zika, Michael R.

    2008-01-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids

  3. Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental methods

    Czech Academy of Sciences Publication Activity Database

    Fiala, Zdeněk

    2015-01-01

    Roč. 226, č. 1 (2015), s. 17-35 ISSN 0001-5970 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : solid mechanics * finite deformations * evolution equation of Lie-type * time-discrete integration Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 1.694, year: 2015 http://link.springer.com/article/10.1007%2Fs00707-014-1162-9#page-1

  4. Finiteness of the discrete spectrum of the three-particle Schroedinger operator

    International Nuclear Information System (INIS)

    Abdullaev, Janikul I.; Khalkhujaev, Axmad, M.

    2001-08-01

    We analyse the spectrum of the three-particle Schroedinger operator with pair contact and three-particle interactions on the neighboring nodes on a three-dimensional lattice. We show that the essential spectrum of this operator is the union of two segments, one of which coincides with the spectrum of an unperturbed operator and the other called two-particle branch. We will prove finiteness of the discrete spectrum of the Schroedinger operator at all parameter values of the problem. (author)

  5. Combining finite element and finite difference methods for isotropic elastic wave simulations in an energy-conserving manner

    KAUST Repository

    Gao, Longfei

    2018-02-22

    We consider numerical simulation of the isotropic elastic wave equations arising from seismic applications with non-trivial land topography. The more flexible finite element method is applied to the shallow region of the simulation domain to account for the topography, and combined with the more efficient finite difference method that is applied to the deep region of the simulation domain. We demonstrate that these two discretization methods, albeit starting from different formulations of the elastic wave equation, can be joined together smoothly via weakly imposed interface conditions. Discrete energy analysis is employed to derive the proper interface treatment, leading to an overall discretization that is energy-conserving. Numerical examples are presented to demonstrate the efficacy of the proposed interface treatment.

  6. Application of the control volume mixed finite element method to a triangular discretization

    Science.gov (United States)

    Naff, R.L.

    2012-01-01

    A two-dimensional control volume mixed finite element method is applied to the elliptic equation. Discretization of the computational domain is based in triangular elements. Shape functions and test functions are formulated on the basis of an equilateral reference triangle with unit edges. A pressure support based on the linear interpolation of elemental edge pressures is used in this formulation. Comparisons are made between results from the standard mixed finite element method and this control volume mixed finite element method. Published 2011. This article is a US Government work and is in the public domain in the USA. ?? 2012 John Wiley & Sons, Ltd. This article is a US Government work and is in the public domain in the USA.

  7. Chaos in discrete fractional difference equations

    Indian Academy of Sciences (India)

    2016-09-07

    Sep 7, 2016 ... tions in the mathematical modelling of real-world phenomena with memory effects. In the present paper, the chaotic behaviour of ... tives allow us to deal comfortably with memory effects in dynamical systems [2]. Discrete ..... House, Reading, Connecticut, USA, 2006). [6] F Mainardi, Fractional calculus and ...

  8. Electron–phonon coupling from finite differences

    Science.gov (United States)

    Monserrat, Bartomeu

    2018-02-01

    The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron–phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron–phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron–phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron–phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron–phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron–phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron–phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron–phonon interaction.

  9. A consistent method for finite volume discretization of body forces on collocated grids applied to flow through an actuator disk

    DEFF Research Database (Denmark)

    Troldborg, Niels; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2015-01-01

    This paper describes a consistent algorithm for eliminating the numerical wiggles appearing when solving the finite volume discretized Navier-Stokes equations with discrete body forces in a collocated grid arrangement. The proposed method is a modification of the Rhie-Chow algorithm where the for...

  10. Resolution of the Generalized Eigenvalue Problem in the Neutron Diffusion Equation Discretized by the Finite Volume Method

    Directory of Open Access Journals (Sweden)

    Álvaro Bernal

    2014-01-01

    Full Text Available Numerical methods are usually required to solve the neutron diffusion equation applied to nuclear reactors due to its heterogeneous nature. The most popular numerical techniques are the Finite Difference Method (FDM, the Coarse Mesh Finite Difference Method (CFMD, the Nodal Expansion Method (NEM, and the Nodal Collocation Method (NCM, used virtually in all neutronic diffusion codes, which give accurate results in structured meshes. However, the application of these methods in unstructured meshes to deal with complex geometries is not straightforward and it may cause problems of stability and convergence of the solution. By contrast, the Finite Element Method (FEM and the Finite Volume Method (FVM are easily applied to unstructured meshes. On the one hand, the FEM can be accurate for smoothly varying functions. On the other hand, the FVM is typically used in the transport equations due to the conservation of the transported quantity within the volume. In this paper, the FVM algorithm implemented in the ARB Partial Differential Equations solver has been used to discretize the neutron diffusion equation to obtain the matrices of the generalized eigenvalue problem, which has been solved by means of the SLEPc library.

  11. Finite difference order doubling in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Killingbeck, John P [Mathematics Centre, University of Hull, Hull HU6 7RX (United Kingdom); Jolicard, Georges [Universite de Franche-Comte, Institut Utinam (UMR CNRS 6213), Observatoire de Besancon, 41 bis Avenue de l' Observatoire, BP1615, 25010 Besancon cedex (France)

    2008-03-28

    An order doubling process previously used to obtain eighth-order eigenvalues from the fourth-order Numerov method is applied to the perturbed oscillator in two dimensions. A simple method of obtaining high order finite difference operators is reported and an odd parity boundary condition is found to be effective in facilitating the smooth operation of the order doubling process.

  12. Modeling seismic wave propagation using staggered-grid mimetic finite differences

    Directory of Open Access Journals (Sweden)

    Freysimar Solano-Feo

    2017-04-01

    Full Text Available Mimetic finite difference (MFD approximations of continuous gradient and divergence operators satisfy a discrete version of the Gauss-Divergence theorem on staggered grids. On the mimetic approximation of this integral conservation principle, an unique boundary flux operator is introduced that also intervenes on the discretization of a given boundary value problem (BVP. In this work, we present a second-order MFD scheme for seismic wave propagation on staggered grids that discretized free surface and absorbing boundary conditions (ABC with same accuracy order. This scheme is time explicit after coupling a central three-level finite difference (FD stencil for numerical integration. Here, we briefly discuss the convergence properties of this scheme and show its higher accuracy on a challenging test when compared to a traditional FD method. Preliminary applications to 2-D seismic scenarios are also presented and show the potential of the mimetic finite difference method.

  13. A Piecewise Linear Discontinuous Finite Element Spatial Discretization of the Transport Equation in 2D Cylindrical Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, T S; Adams, M L; Chang, J H

    2008-10-01

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional cylindrical (RZ) geometry for arbitrary polygonal meshes. This discretization is a discontinuous finite element method that utilizes the piecewise linear basis functions developed by Stone and Adams. We describe an asymptotic analysis that shows this method to be accurate for many problems in the thick diffusion limit on arbitrary polygons, allowing this method to be applied to radiative transfer problems with these types of meshes. We also present numerical results for multiple problems on quadrilateral grids and compare these results to the well-known bi-linear discontinuous finite element method.

  14. Finite-Time Stability Analysis of Discrete-Time Linear Singular Systems

    Directory of Open Access Journals (Sweden)

    Songlin Wo

    2014-01-01

    Full Text Available The finite-time stability (FTS problem of discrete-time linear singular systems (DTLSS is considered in this paper. A necessary and sufficient condition for FTS is obtained, which can be expressed in terms of matrix inequalities. Then, another form of the necessary and sufficient condition for FTS is also given by using matrix-null space technology. In order to solve the stability problem expediently, a sufficient condition for FTS is given via linear matrix inequality (LMI approach; this condition can be expressed in terms of LMIs. Finally, an illustrating example is also given to show the effectiveness of the proposed method.

  15. A hybrid finite-volume and finite difference scheme for depth-integrated non-hydrostatic model

    Science.gov (United States)

    Yin, Jing; Sun, Jia-wen; Wang, Xing-gang; Yu, Yong-hai; Sun, Zhao-chen

    2017-06-01

    A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into hydrostatic and non-hydrostatic parts. The first part is solved by using the finite volume conservative discretization method, whilst the latter is considered by solving discretized Poisson-type equations with the finite difference method. The second-order accuracy, both in time and space, of the finite volume scheme is achieved by using an explicit predictor-correction step and linear construction of variable state in cells. The fluxes across the cell faces are computed in a Godunov-based manner by using MUSTA scheme. Slope and flux limiting technique is used to equip the algorithm with total variation dimensioning property for shock capturing purpose. Wave breaking is treated as a shock by switching off the non-hydrostatic pressure in the steep wave front locally. The model deals with moving wet/dry front in a simple way. Numerical experiments are conducted to verify the proposed model.

  16. ComPASS : a tool for distributed parallel finite volume discretizations on general unstructured polyhedral meshes

    Directory of Open Access Journals (Sweden)

    Dalissier E.

    2013-12-01

    Full Text Available The objective of the ComPASS project is to develop a parallel multiphase Darcy flow simulator adapted to general unstructured polyhedral meshes (in a general sense with possibly non planar faces and to the parallelization of advanced finite volume discretizations with various choices of the degrees of freedom such as cell centres, vertices, or face centres. The main targeted applications are the simulation of CO2 geological storage, nuclear waste repository and reservoir simulations. The CEMRACS 2012 summer school devoted to high performance computing has been an ideal framework to start this collaborative project. This paper describes what has been achieved during the four weeks of the CEMRACS project which has been focusing on the implementation of basic features of the code such as the distributed unstructured polyhedral mesh, the synchronization of the degrees of freedom, and the connection to scientific libraries including the partitioner METIS, the visualization tool PARAVIEW, and the parallel linear solver library PETSc. The parallel efficiency of this first version of the ComPASS code has been validated on a toy parabolic problem using the Vertex Approximate Gradient finite volume spatial discretization with both cell and vertex degrees of freedom, combined with an Euler implicit time integration.

  17. A structure-preserving split finite element discretization of the split 1D linear shallow-water equations

    Science.gov (United States)

    Bauer, Werner; Behrens, Jörn

    2017-04-01

    We present a locally conservative, low-order finite element (FE) discretization of the covariant 1D linear shallow-water equations written in split form (cf. tet{[1]}). The introduction of additional differential forms (DF) that build pairs with the original ones permits a splitting of these equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star. Our novel discretization framework conserves this geometrical structure, in particular it provides for all DFs proper FE spaces such that the differential operators (here gradient and divergence) hold in strong form. The discrete topological equations simply follow by trivial projections onto piecewise constant FE spaces without need to partially integrate. The discrete Hodge-stars operators, representing the discretized metric equations, are realized by nontrivial Galerkin projections (GP). Here they follow by projections onto either a piecewise constant (GP0) or a piecewise linear (GP1) space. Our framework thus provides essentially three different schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the same discrete dispersion relation and similar second-order convergence rates as the conventional P1-P1 FE scheme that approximates both velocity and height variables by piecewise linear spaces. The split scheme that applies both GP1 and GP0 is stable and shares the dispersion relation of the conventional P1-P0 FE scheme that approximates the velocity by a piecewise linear and the height by a piecewise constant space with corresponding second- and first-order convergence rates. Exhibiting for both velocity and height fields second-order convergence rates, we might consider the split GP1-GP0 scheme though as stable versions of the conventional P1-P1 FE scheme. For the split scheme applying twice GP0, we are not aware of a corresponding conventional formulation to compare with. Though exhibiting larger

  18. Elementary introduction to finite difference equations

    International Nuclear Information System (INIS)

    White, J.W.

    1976-01-01

    An elementary description is given of the basic vocabulary and concepts associated with finite difference modeling. The material discussed is biased toward the types of large computer programs used at the Lawrence Livermore Laboratory. Particular attention is focused on truncation error and how it can be affected by zoning patterns. The principle of convergence is discussed, and convergence as a tool for improving calculational accuracy and efficiency is emphasized

  19. A spatial discretization of the MHD equations based on the finite volume - spectral method

    International Nuclear Information System (INIS)

    Miyoshi, Takahiro

    2000-05-01

    Based on the finite volume - spectral method, we present new discretization formulae for the spatial differential operators in the full system of the compressible MHD equations. In this approach, the cell-centered finite volume method is adopted in a bounded plane (poloidal plane), while the spectral method is applied to the differential with respect to the periodic direction perpendicular to the poloidal plane (toroidal direction). Here, an unstructured grid system composed of the arbitrary triangular elements is utilized for constructing the cell-centered finite volume method. In order to maintain the divergence free constraint of the magnetic field numerically, only the poloidal component of the rotation is defined at three edges of the triangular element. This poloidal component is evaluated under the assumption that the toroidal component of the operated vector times the radius, RA φ , is linearly distributed in the element. The present method will be applied to the nonlinear MHD dynamics in an realistic torus geometry without the numerical singularities. (author)

  20. Evaluation and optimization of footwear comfort parameters using finite element analysis and a discrete optimization algorithm

    Science.gov (United States)

    Papagiannis, P.; Azariadis, P.; Papanikos, P.

    2017-10-01

    Footwear is subject to bending and torsion deformations that affect comfort perception. Following review of Finite Element Analysis studies of sole rigidity and comfort, a three-dimensional, linear multi-material finite element sole model for quasi-static bending and torsion simulation, overcoming boundary and optimisation limitations, is described. Common footwear materials properties and boundary conditions from gait biomechanics are used. The use of normalised strain energy for product benchmarking is demonstrated along with comfort level determination through strain energy density stratification. Sensitivity of strain energy against material thickness is greater for bending than for torsion, with results of both deformations showing positive correlation. Optimization for a targeted performance level and given layer thickness is demonstrated with bending simulations sufficing for overall comfort assessment. An algorithm for comfort optimization w.r.t. bending is presented, based on a discrete approach with thickness values set in line with practical manufacturing accuracy. This work illustrates the potential of the developed finite element analysis applications to offer viable and proven aids to modern footwear sole design assessment and optimization.

  1. The calculation of rectangular plates on elastic foundation the finite difference method

    Science.gov (United States)

    Komlev, A. A.; Makeev, S. A.

    2018-01-01

    The article describes the main advantages and disadvantages existing in the present time of calculation methods for plates on elastic Foundation. Consider automation of the calculation of rectangular plates on elastic basis by finite difference method, on the basis of which received automatic design algorithms. Conducted research of discretization on the accuracy of the calculations. The comparison of the results of strain and effort obtained by the finite element method and the proposed method.

  2. Discrete Weighted Pseudo Asymptotic Periodicity of Second Order Difference Equations

    Directory of Open Access Journals (Sweden)

    Zhinan Xia

    2014-01-01

    Full Text Available We define the concept of discrete weighted pseudo-S-asymptotically periodic function and prove some basic results including composition theorem. We investigate the existence, and uniqueness of discrete weighted pseudo-S-asymptotically periodic solution to nonautonomous semilinear difference equations. Furthermore, an application to scalar second order difference equations is given. The working tools are based on the exponential dichotomy theory and fixed point theorem.

  3. Accurate and efficient implementation of the von Neumann representation for laser pulses with discrete and finite spectra

    International Nuclear Information System (INIS)

    Dimler, Frank; Fechner, Susanne; Rodenberg, Alexander; Brixner, Tobias; Tannor, David J

    2009-01-01

    We recently introduced the von Neumann picture, a joint time-frequency representation, for describing ultrashort laser pulses. The method exploits a discrete phase-space lattice of nonorthogonal Gaussians to represent the pulses; an arbitrary pulse shape can be represented on this lattice in a one-to-one manner. Although the representation was originally defined for signals with an infinite continuous spectrum, it can be adapted to signals with discrete and finite spectrum with great computational savings, provided that discretization and truncation effects are handled with care. In this paper, we present three methods that avoid loss of accuracy due to these effects. The approach has immediate application to the representation and manipulation of femtosecond laser pulses produced by a liquid-crystal mask with a discrete and finite number of pixels.

  4. Discretization of 3d gravity in different polarizations

    Science.gov (United States)

    Dupuis, Maïté; Freidel, Laurent; Girelli, Florian

    2017-10-01

    We study the discretization of three-dimensional gravity with Λ =0 following the loop quantum gravity framework. In the process, we realize that different choices of polarization are possible. This allows us to introduce a new discretization based on the triad as opposed to the connection as in the standard loop quantum gravity framework. We also identify the classical nontrivial symmetries of discrete gravity, namely the Drinfeld double, given in terms of momentum maps. Another choice of polarization is given by the Chern-Simons formulation of gravity. Our framework also provides a new discretization scheme of Chern-Simons, which keeps track of the link between the continuum variables and the discrete ones. We show how the Poisson bracket we recover between the Chern-Simons holonomies allows us to recover the Goldman bracket. There is also a transparent link between the discrete Chern-Simons formulation and the discretization of gravity based on the connection (loop gravity) or triad variables (dual loop gravity).

  5. Study of the radiation transport in two-dimensional medium using discrete ordinates and finite elements

    International Nuclear Information System (INIS)

    Nunes, Rogerio Chaffin

    2002-01-01

    The transport equation defined in a medium with axial symmetry is angularly approached by a method of discrete ordinates and the system of partial differential equations obtained like this is solved by the method of the finite elements. The variational formulation for the system of differential equations of 2nd order with generalized Neumann boundary conditions (3rd type) it is approximated with triangular elements of 1st order. This work investigates the sensibility of the incoming flux and the absorption properties and scattering of the medium. Various non homogeneity types were investigated inside the medium. Various simulations involving the influence of the incoming flux, of the outgoing flux and of the material properties of the medium in the mapping of 'Dirichlet-Neumann' will be presented. (author)

  6. Discrete- and finite-bandwidth-frequency distributions in nonlinear stability applications

    Science.gov (United States)

    Kuehl, Joseph J.

    2017-02-01

    A new "wave packet" formulation of the parabolized stability equations method is presented. This method accounts for the influence of finite-bandwidth-frequency distributions on nonlinear stability calculations. The methodology is motivated by convolution integrals and is found to appropriately represent nonlinear energy transfer between primary modes and harmonics, in particular nonlinear feedback, via a "nonlinear coupling coefficient." It is found that traditional discrete mode formulations overestimate nonlinear feedback by approximately 70%. This results in smaller maximum disturbance amplitudes than those observed experimentally. The new formulation corrects this overestimation, accounts for the generation of side lobes responsible for spectral broadening, and results in disturbance representation more consistent with the experiment than traditional formulations. A Mach 6 flared-cone example is presented.

  7. A robust and efficient finite volume scheme for the discretization of diffusive flux on extremely skewed meshes in complex geometries

    Science.gov (United States)

    Traoré, Philippe; Ahipo, Yves Marcel; Louste, Christophe

    2009-08-01

    In this paper an improved finite volume scheme to discretize diffusive flux on a non-orthogonal mesh is proposed. This approach, based on an iterative technique initially suggested by Khosla [P.K. Khosla, S.G. Rubin, A diagonally dominant second-order accurate implicit scheme, Computers and Fluids 2 (1974) 207-209] and known as deferred correction, has been intensively utilized by Muzaferija [S. Muzaferija, Adaptative finite volume method for flow prediction using unstructured meshes and multigrid approach, Ph.D. Thesis, Imperial College, 1994] and later Fergizer and Peric [J.H. Fergizer, M. Peric, Computational Methods for Fluid Dynamics, Springer, 2002] to deal with the non-orthogonality of the control volumes. Using a more suitable decomposition of the normal gradient, our scheme gives accurate solutions in geometries where the basic idea of Muzaferija fails. First the performances of both schemes are compared for a Poisson problem solved in quadrangular domains where control volumes are increasingly skewed in order to test their robustness and efficiency. It is shown that convergence properties and the accuracy order of the solution are not degraded even on extremely skewed mesh. Next, the very stable behavior of the method is successfully demonstrated on a randomly distorted grid as well as on an anisotropically distorted one. Finally we compare the solution obtained for quadrilateral control volumes to the ones obtained with a finite element code and with an unstructured version of our finite volume code for triangular control volumes. No differences can be observed between the different solutions, which demonstrates the effectiveness of our approach.

  8. Integral and finite difference inequalities and applications

    CERN Document Server

    Pachpatte, B G

    2006-01-01

    The monograph is written with a view to provide basic tools for researchers working in Mathematical Analysis and Applications, concentrating on differential, integral and finite difference equations. It contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools and will be a valuable source for a long time to come. It is self-contained and thus should be useful for those who are interested in learning or applying the inequalities with explicit estimates in their studies.- Contains a variety of inequalities discovered which find numero

  9. Some remarks on multilevel algorithms for finite difference discretizationson sparse grids

    NARCIS (Netherlands)

    F. Sprengel

    1999-01-01

    textabstractIn this paper, we propose some algorithms to solve the system of linear equations arising from the finite difference discretization on sparse grids. For this, we will use the multilevel structure of the sparse grid space or its full grid subspaces, respectively.

  10. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Purdue Univ., West Lafayette, IN (United States)

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  11. Abstract Level Parallelization of Finite Difference Methods

    Directory of Open Access Journals (Sweden)

    Edwin Vollebregt

    1997-01-01

    Full Text Available A formalism is proposed for describing finite difference calculations in an abstract way. The formalism consists of index sets and stencils, for characterizing the structure of sets of data items and interactions between data items (“neighbouring relations”. The formalism provides a means for lifting programming to a more abstract level. This simplifies the tasks of performance analysis and verification of correctness, and opens the way for automaticcode generation. The notation is particularly useful in parallelization, for the systematic construction of parallel programs in a process/channel programming paradigm (e.g., message passing. This is important because message passing, unfortunately, still is the only approach that leads to acceptable performance for many more unstructured or irregular problems on parallel computers that have non-uniform memory access times. It will be shown that the use of index sets and stencils greatly simplifies the determination of which data must be exchanged between different computing processes.

  12. Finite-difference modelling of anisotropic wave scattering in discrete ...

    Indian Academy of Sciences (India)

    A M Ekanem

    2018-04-05

    Apr 5, 2018 ... fractured hydrocarbon reservoirs to complement the use of other seismic attributes. Despite the con- certed effort in research and development related to seismic characterization of fractured reservoirs using anisotropic wave scattering, pragmatic uti- lization of this attribute in geophysical exploration.

  13. Finite-difference modelling of anisotropic wave scattering in discrete ...

    Indian Academy of Sciences (India)

    2

    attribute in geophysical exploration is still restricted perhaps as a result of the ambiguity in its. 51 quantification and difficulty in its interpretation in terms of rock properties (Jeng et al., 1999,. 52. MacBeth, 1999; Rongrong et al., 2006). Thus, the task of using anisotropic wave scattering for fracture. 53 prediction in the Earth's ...

  14. Finite-difference modelling of anisotropic wave scattering in discrete ...

    Indian Academy of Sciences (India)

    2

    cells containing equivalent anisotropic medium by the use of the linear slip equivalent model. Our. 16 results show ...... frequency regression predicted by equation (21) can be distorted by the effects of multiple scattering. 337 ..... other seismic attributes, at least for the relatively simple geometries of subsurface structure. 449.

  15. Fracture Failure of Reinforced Concrete Slabs Subjected to Blast Loading Using the Combined Finite-Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Z. M. Jaini

    Full Text Available Abstract Numerical modeling of fracture failure is challenging due to various issues in the constitutive law and the transition of continuum to discrete bodies. Therefore, this study presents the application of the combined finite-discrete element method to investigate the fracture failure of reinforced concrete slabs subjected to blast loading. In numerical modeling, the interaction of non-uniform blast loading on the concrete slab was modeled using the incorporation of the finite element method with a crack rotating approach and the discrete element method to model crack, fracture onset and its post-failures. A time varying pressure-time history based on the mapping method was adopted to define blast loading. The Mohr-Coulomb with Rankine cut-off and von-Mises criteria were applied for concrete and steel reinforcement respectively. The results of scabbing, spalling and fracture show a reliable prediction of damage and fracture.

  16. Determination of finite-difference weights using scaled binomial windows

    KAUST Repository

    Chu, Chunlei

    2012-05-01

    The finite-difference method evaluates a derivative through a weighted summation of function values from neighboring grid nodes. Conventional finite-difference weights can be calculated either from Taylor series expansions or by Lagrange interpolation polynomials. The finite-difference method can be interpreted as a truncated convolutional counterpart of the pseudospectral method in the space domain. For this reason, we also can derive finite-difference operators by truncating the convolution series of the pseudospectral method. Various truncation windows can be employed for this purpose and they result in finite-difference operators with different dispersion properties. We found that there exists two families of scaled binomial windows that can be used to derive conventional finite-difference operators analytically. With a minor change, these scaled binomial windows can also be used to derive optimized finite-difference operators with enhanced dispersion properties. © 2012 Society of Exploration Geophysicists.

  17. A parallel adaptive finite difference algorithm for petroleum reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Hai Minh

    2005-07-01

    Adaptive finite differential for problems arising in simulation of flow in porous medium applications are considered. Such methods have been proven useful for overcoming limitations of computational resources and improving the resolution of the numerical solutions to a wide range of problems. By local refinement of the computational mesh where it is needed to improve the accuracy of solutions, yields better solution resolution representing more efficient use of computational resources than is possible with traditional fixed-grid approaches. In this thesis, we propose a parallel adaptive cell-centered finite difference (PAFD) method for black-oil reservoir simulation models. This is an extension of the adaptive mesh refinement (AMR) methodology first developed by Berger and Oliger (1984) for the hyperbolic problem. Our algorithm is fully adaptive in time and space through the use of subcycling, in which finer grids are advanced at smaller time steps than the coarser ones. When coarse and fine grids reach the same advanced time level, they are synchronized to ensure that the global solution is conservative and satisfy the divergence constraint across all levels of refinement. The material in this thesis is subdivided in to three overall parts. First we explain the methodology and intricacies of AFD scheme. Then we extend a finite differential cell-centered approximation discretization to a multilevel hierarchy of refined grids, and finally we are employing the algorithm on parallel computer. The results in this work show that the approach presented is robust, and stable, thus demonstrating the increased solution accuracy due to local refinement and reduced computing resource consumption. (Author)

  18. Finite-element discretization of 3D energy-transport equations for semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gadau, Stephan

    2007-07-01

    In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and

  19. Perfectly Matched Layer for the Wave Equation Finite Difference Time Domain Method

    Science.gov (United States)

    Miyazaki, Yutaka; Tsuchiya, Takao

    2012-07-01

    The perfectly matched layer (PML) is introduced into the wave equation finite difference time domain (WE-FDTD) method. The WE-FDTD method is a finite difference method in which the wave equation is directly discretized on the basis of the central differences. The required memory of the WE-FDTD method is less than that of the standard FDTD method because no particle velocity is stored in the memory. In this study, the WE-FDTD method is first combined with the standard FDTD method. Then, Berenger's PML is combined with the WE-FDTD method. Some numerical demonstrations are given for the two- and three-dimensional sound fields.

  20. Finite-difference schemes for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: es@cwi.nl [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  1. Quantum-Enhanced Reinforcement Learning for Finite-Episode Games with Discrete State Spaces

    Directory of Open Access Journals (Sweden)

    Florian Neukart

    2018-02-01

    Full Text Available Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum annealing machines produced by D-Wave Systems [1], have been subject to multiple analyses in research, with the aim of characterizing the technology's usefulness for optimization and sampling tasks [2–16]. Here, we present a way to partially embed both Monte Carlo policy iteration for finding an optimal policy on random observations, as well as how to embed n sub-optimal state-value functions for approximating an improved state-value function given a policy for finite horizon games with discrete state spaces on a D-Wave 2000Q quantum processing unit (QPU. We explain how both problems can be expressed as a quadratic unconstrained binary optimization (QUBO problem, and show that quantum-enhanced Monte Carlo policy evaluation allows for finding equivalent or better state-value functions for a given policy with the same number episodes compared to a purely classical Monte Carlo algorithm. Additionally, we describe a quantum-classical policy learning algorithm. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of the QPU, and not to prove supremacy over every existing classical policy evaluation algorithm.

  2. Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method

    Directory of Open Access Journals (Sweden)

    Qi Zhao

    2014-12-01

    Full Text Available Hydraulic fracturing (HF technique has been extensively used for the exploitation of unconventional oil and gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formations by fluid injection, which creates an interconnected fracture network and increases the hydrocarbon production. Meanwhile, microseismic (MS monitoring is one of the most effective approaches to evaluate such stimulation process. In this paper, the combined finite-discrete element method (FDEM is adopted to numerically simulate HF and associated MS. Several post-processing tools, including frequency-magnitude distribution (b-value, fractal dimension (D-value, and seismic events clustering, are utilized to interpret numerical results. A non-parametric clustering algorithm designed specifically for FDEM is used to reduce the mesh dependency and extract more realistic seismic information. Simulation results indicated that at the local scale, the HF process tends to propagate following the rock mass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to the maximum in-situ stress.

  3. Quantum-enhanced reinforcement learning for finite-episode games with discrete state spaces

    Science.gov (United States)

    Neukart, Florian; Von Dollen, David; Seidel, Christian; Compostella, Gabriele

    2017-12-01

    Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum annealing machines produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology's usefulness for optimization and sampling tasks. Here, we present a way to partially embed both Monte Carlo policy iteration for finding an optimal policy on random observations, as well as how to embed n sub-optimal state-value functions for approximating an improved state-value function given a policy for finite horizon games with discrete state spaces on a D-Wave 2000Q quantum processing unit (QPU). We explain how both problems can be expressed as a quadratic unconstrained binary optimization (QUBO) problem, and show that quantum-enhanced Monte Carlo policy evaluation allows for finding equivalent or better state-value functions for a given policy with the same number episodes compared to a purely classical Monte Carlo algorithm. Additionally, we describe a quantum-classical policy learning algorithm. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of the QPU, and not to prove supremacy over every existing classical policy evaluation algorithm.

  4. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    Science.gov (United States)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  5. High-order Finite Difference Solution of Euler Equations for Nonlinear Water Waves

    DEFF Research Database (Denmark)

    Christiansen, Torben Robert Bilgrav; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    implicitly, at the end of each time stage, by constructing the pressure from a discrete Poisson equation, derived from the discrete continuity and momentum equations and taking the time-dependent physical domain into account. An efficient preconditionedDefect Correction (DC) solution of the discrete Poisson......The incompressible Euler equations are solved with a free surface, the position of which is captured by applying an Eulerian kinematic boundary condition. The solution strategy follows that of [1, 2], applying a coordinate-transformation to obtain a time-constant spatial computational domain which...... is discretized using arbitrary-order finite difference schemes on a staggered grid with one optional stretching in each coordinate direction. The momentum equations and kinematic free surface condition are integrated in time using the classic fourth-order Runge-Kutta scheme. Mass conservation is satisfied...

  6. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.

    2006-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)

  7. Iterative solutions of finite difference diffusion equations

    International Nuclear Information System (INIS)

    Menon, S.V.G.; Khandekar, D.C.; Trasi, M.S.

    1981-01-01

    The heterogeneous arrangement of materials and the three-dimensional character of the reactor physics problems encountered in the design and operation of nuclear reactors makes it necessary to use numerical methods for solution of the neutron diffusion equations which are based on the linear Boltzmann equation. The commonly used numerical method for this purpose is the finite difference method. It converts the diffusion equations to a system of algebraic equations. In practice, the size of this resulting algebraic system is so large that the iterative methods have to be used. Most frequently used iterative methods are discussed. They include : (1) basic iterative methods for one-group problems, (2) iterative methods for eigenvalue problems, and (3) iterative methods which use variable acceleration parameters. Application of Chebyshev theorem to iterative methods is discussed. The extension of the above iterative methods to multigroup neutron diffusion equations is also considered. These methods are applicable to elliptic boundary value problems in reactor design studies in particular, and to elliptic partial differential equations in general. Solution of sample problems is included to illustrate their applications. The subject matter is presented in as simple a manner as possible. However, a working knowledge of matrix theory is presupposed. (M.G.B.)

  8. Implementation of Generalized Modes in a 3D Finite Difference Based Seakeeping Model

    DEFF Research Database (Denmark)

    Andersen, Matilde H.; Amini Afshar, Mostafa; Bingham, Harry B.

    This work is an extension of the finite difference potential flow solver OceanWave3D-Seakeepingdeveloped by Afshar (2014) to include generalized modes. The continuity equation is solvedusing a fourth-order centered finite difference scheme which requires that the entire fluid domainis discretized...... to the sparse nature of the coefficient matrix. Thesolver is built using the open source framework Overture which consists of C++ libraries forsolving partial differential equations on overlapping grids and has a built-in overlapping gridgenerator Ogen....

  9. High-resolution finite-difference algorithms for conservation laws

    International Nuclear Information System (INIS)

    Towers, J.D.

    1987-01-01

    A new class of Total Variation Decreasing (TVD) schemes for 2-dimensional scalar conservation laws is constructed using either flux-limited or slope-limited numerical fluxes. The schemes are proven to have formal second-order accuracy in regions where neither u/sub x/ nor y/sub y/ vanishes. A new class of high-resolution large-time-step TVD schemes is constructed by adding flux-limited correction terms to the first-order accurate large-time-step version of the Engquist-Osher scheme. The use of the transport-collapse operator in place of the exact solution operator for the construction of difference schemes is studied. The production of spurious extrema by difference schemes is studied. A simple condition guaranteeing the nonproduction of spurious extrema is derived. A sufficient class of entropy inequalities for a conservation law with a flux having a single inflection point is presented. Finite-difference schemes satisfying a discrete version of each entropy inequality are only first-order accurate

  10. ABOUT SOLUTION OF MULTIPOINT BOUNDARY PROBLEMS OF TWO-DIMENSIONAL STRUCTURAL ANALYSIS WITH THE USE OF COMBINED APPLICATION OF FINITE ELEMENT METHOD AND DISCRETE-CONTINUAL FINITE ELEMENT METHOD PART 2: SPECIAL ASPECTS OF FINITE ELEMENT APPROXIMATION

    Directory of Open Access Journals (Sweden)

    Pavel A. Akimov

    2017-12-01

    Full Text Available As is well known, the formulation of a multipoint boundary problem involves three main components: a description of the domain occupied by the structure and the corresponding subdomains; description of the conditions inside the domain and inside the corresponding subdomains, the description of the conditions on the boundary of the domain, conditions on the boundaries between subdomains. This paper is a continuation of another work published earlier, in which the formulation and general principles of the approximation of the multipoint boundary problem of a static analysis of deep beam on the basis of the joint application of the finite element method and the discrete-continual finite element method were considered. It should be noted that the approximation within the fragments of a domain that have regular physical-geometric parameters along one of the directions is expedient to be carried out on the basis of the discrete-continual finite element method (DCFEM, and for the approximation of all other fragments it is necessary to use the standard finite element method (FEM. In the present publication, the formulas for the computing of displacements partial derivatives of displacements, strains and stresses within the finite element model (both within the finite element and the corresponding nodal values (with the use of averaging are presented. Boundary conditions between subdomains (respectively, discrete models and discrete-continual models and typical conditions such as “hinged support”, “free edge”, “perfect contact” (twelve basic (basic variants are available are under consideration as well. Governing formulas for computing of elements of the corresponding matrices of coefficients and vectors of the right-hand sides are given for each variant. All formulas are fully adapted for algorithmic implementation.

  11. Finite difference applied to the reconstruction method of the nuclear power density distribution

    International Nuclear Information System (INIS)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2016-01-01

    Highlights: • A method for reconstruction of the power density distribution is presented. • The method uses discretization by finite differences of 2D neutrons diffusion equation. • The discretization is performed homogeneous meshes with dimensions of a fuel cell. • The discretization is combined with flux distributions on the four node surfaces. • The maximum errors in reconstruction occur in the peripheral water region. - Abstract: In this reconstruction method the two-dimensional (2D) neutron diffusion equation is discretized by finite differences, employed to two energy groups (2G) and meshes with fuel-pin cell dimensions. The Nodal Expansion Method (NEM) makes use of surface discontinuity factors of the node and provides for reconstruction method the effective multiplication factor of the problem and the four surface average fluxes in homogeneous nodes with size of a fuel assembly (FA). The reconstruction process combines the discretized 2D diffusion equation by finite differences with fluxes distribution on four surfaces of the nodes. These distributions are obtained for each surfaces from a fourth order one-dimensional (1D) polynomial expansion with five coefficients to be determined. The conditions necessary for coefficients determination are three average fluxes on consecutive surfaces of the three nodes and two fluxes in corners between these three surface fluxes. Corner fluxes of the node are determined using a third order 1D polynomial expansion with four coefficients. This reconstruction method uses heterogeneous nuclear parameters directly providing the heterogeneous neutron flux distribution and the detailed nuclear power density distribution within the FAs. The results obtained with this method has good accuracy and efficiency when compared with reference values.

  12. Fourth order compact finite difference method for solving singularly ...

    African Journals Online (AJOL)

    A numerical method based on finite difference scheme with uniform mesh is presented for solving singularly perturbed two-point boundary value problems of 1D reaction-diffusion equations. First, the derivatives of the given differential equation is replaced by the finite difference approximations and then, solved by using ...

  13. Finite difference computing with exponential decay models

    CERN Document Server

    Langtangen, Hans Petter

    2016-01-01

    This text provides a very simple, initial introduction to the complete scientific computing pipeline: models, discretization, algorithms, programming, verification, and visualization. The pedagogical strategy is to use one case study – an ordinary differential equation describing exponential decay processes – to illustrate fundamental concepts in mathematics and computer science. The book is easy to read and only requires a command of one-variable calculus and some very basic knowledge about computer programming. Contrary to similar texts on numerical methods and programming, this text has a much stronger focus on implementation and teaches testing and software engineering in particular. .

  14. Wielandt method applied to the diffusion equations discretized by finite element nodal methods

    International Nuclear Information System (INIS)

    Mugica R, A.; Valle G, E. del

    2003-01-01

    Nowadays the numerical methods of solution to the diffusion equation by means of algorithms and computer programs result so extensive due to the great number of routines and calculations that should carry out, this rebounds directly in the execution times of this programs, being obtained results in relatively long times. This work shows the application of an acceleration method of the convergence of the classic method of those powers that it reduces notably the number of necessary iterations for to obtain reliable results, what means that the compute times they see reduced in great measure. This method is known in the literature like Wielandt method and it has incorporated to a computer program that is based on the discretization of the neutron diffusion equations in plate geometry and stationary state by polynomial nodal methods. In this work the neutron diffusion equations are described for several energy groups and their discretization by means of those called physical nodal methods, being illustrated in particular the quadratic case. It is described a model problem widely described in the literature which is solved for the physical nodal grade schemes 1, 2, 3 and 4 in three different ways: to) with the classic method of the powers, b) method of the powers with the Wielandt acceleration and c) method of the powers with the Wielandt modified acceleration. The results for the model problem as well as for two additional problems known as benchmark problems are reported. Such acceleration method can also be implemented to problems of different geometry to the proposal in this work, besides being possible to extend their application to problems in 2 or 3 dimensions. (Author)

  15. Theoretical formulation of finite-dimensional discrete phase spaces: II. On the uncertainty principle for Schwinger unitary operators

    Energy Technology Data Exchange (ETDEWEB)

    Marchiolli, M.A., E-mail: marcelo_march@bol.com.br [Avenida General Osório 414, Centro, 14.870-100 Jaboticabal, SP (Brazil); Mendonça, P.E.M.F., E-mail: pmendonca@gmail.com [Academia da Força Aérea, C.P. 970, 13.643-970 Pirassununga, SP (Brazil)

    2013-09-15

    We introduce a self-consistent theoretical framework associated with the Schwinger unitary operators whose basic mathematical rules embrace a new uncertainty principle that generalizes and strengthens the Massar–Spindel inequality. Among other remarkable virtues, this quantum-algebraic approach exhibits a sound connection with the Wiener–Khinchin theorem for signal processing, which permits us to determine an effective tighter bound that not only imposes a new subtle set of restrictions upon the selective process of signals and wavelet bases, but also represents an important complement for property testing of unitary operators. Moreover, we establish a hierarchy of tighter bounds, which interpolates between the tightest bound and the Massar–Spindel inequality, as well as its respective link with the discrete Weyl function and tomographic reconstructions of finite quantum states. We also show how the Harper Hamiltonian and discrete Fourier operators can be combined to construct finite ground states which yield the tightest bound of a given finite-dimensional state vector space. Such results touch on some fundamental questions inherent to quantum mechanics and their implications in quantum information theory. -- Highlights: •Conception of a quantum-algebraic framework embracing a new uncertainty principle for unitary operators. •Determination of new restrictions upon the selective process of signals and wavelet bases. •Demonstration of looser bounds interpolating between the tightest bound and the Massar–Spindel inequality. •Construction of finite ground states properly describing the tightest bound. •Establishment of an important connection with the discrete Weyl function.

  16. Numerical modeling of the dynamic behavior of structures under impact with a discrete elements / finite elements coupling

    International Nuclear Information System (INIS)

    Rousseau, J.

    2009-07-01

    That study focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. Then, a particular interaction, between concrete and steel elements, was developed for the simulation of reinforced concrete. The discrete elements method was validated on quasi-static and dynamic tests carried out on small samples of concrete and reinforced concrete. Finally, discrete elements were used to simulate impacts on reinforced concrete slabs in order to confront the results with experimental tests. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. An existing method for 3D finite elements was extended to shells. This new method was then validated on many quasi-static and dynamic tests. The proposed approach is then applied to an impact on a concrete structure in order to validate the coupled method and compare computation times. (author)

  17. Generalized finite-difference time-domain schemes for solving nonlinear Schrodinger equations

    Science.gov (United States)

    Moxley, Frederick Ira, III

    The nonlinear Schrodinger equation (NLSE) is one of the most widely applicable equations in physical science, and characterizes nonlinear dispersive waves, optics, water waves, and the dynamics of molecules. The NLSE satisfies many mathematical conservation laws. Moreover, due to the nonlinearity, the NLSE often requires a numerical solution, which also satisfies the conservation laws. Some of the more popular numerical methods for solving the NLSE include the finite difference, finite element, and spectral methods such as the pseudospectral, split-step with Fourier transform, and integrating factor coupled with a Fourier transform. With regard to the finite difference and finite element methods, higher-order accurate and stable schemes are often required to solve a large-scale linear system. Conversely, spectral methods via Fourier transforms for space discretization coupled with Runge-Kutta methods for time stepping become too complex when applied to multidimensional problems. One of the most prevalent challenges in developing these numerical schemes is that they satisfy the conservation laws. The objective of this dissertation was to develop a higher-order accurate and simple finite difference scheme for solving the NLSE. First, the wave function was split into real and imaginary components and then substituted into the NLSE to obtain coupled equations. These components were then approximated using higher-order Taylor series expansions in time, where the derivatives in time were replaced by the derivatives in space via the coupled equations. Finally, the derivatives in space were approximated using higher-order accurate finite difference approximations. As such, an explicit and higher order accurate finite difference scheme for solving the NLSE was obtained. This scheme is called the explicit generalized finite-difference time-domain (explicit G-FDTD). For purposes of completeness, an implicit G-FDTD scheme for solving the NLSE was also developed. In this

  18. Discrete coherent states and probability distributions in finite-dimensional spaces

    Energy Technology Data Exchange (ETDEWEB)

    Galetti, D.; Marchiolli, M.A.

    1995-06-01

    Operator bases are discussed in connection with the construction of phase space representatives of operators in finite-dimensional spaces and their properties are presented. It is also shown how these operator bases allow for the construction of a finite harmonic oscillator-like coherent state. Creation and annihilation operators for the Fock finite-dimensional space are discussed and their expressions in terms of the operator bases are explicitly written. The relevant finite-dimensional probability distributions are obtained and their limiting behavior for an infinite-dimensional space are calculated which agree with the well know results. (author). 20 refs, 2 figs.

  19. A generalized nodal finite element formalism for discrete ordinates equations in slab geometry Part I: Theory in the continuous moment case

    International Nuclear Information System (INIS)

    Hennart, J.P.; Valle, E. del.

    1995-01-01

    A generalized nodal finite element formalism is presented, which covers virtually all known finit difference approximation to the discrete ordinates equations in slab geometry. This paper (Part 1) presents the theory of the so called open-quotes continuous moment methodsclose quotes, which include such well-known methods as the open-quotes diamond differenceclose quotes and the open-quotes characteristicclose quotes schemes. In a second paper (hereafter referred to as Part II), the authors will present the theory of the open-quotes discontinuous moment methodsclose quotes, consisting in particular of the open-quotes linear discontinuousclose quotes scheme as well as of an entire new class of schemes. Corresponding numerical results are available for all these schemes and will be presented in a third paper (Part III). 12 refs

  20. Implicit time-dependent finite different algorithm for quench simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1994-12-01

    A magnet in a fusion machine has many difficulties in its application because of requirement of a large operating current, high operating field and high breakdown voltage. A cable-in-conduit (CIC) conductor is the best candidate to overcome these difficulties. However, there remained uncertainty in a quench event in the cable-in-conduit conductor because of a difficulty to analyze a fluid dynamics equation. Several scientists, then, developed the numerical code for the quench simulation. However, most of them were based on an explicit time-dependent finite difference scheme. In this scheme, a discrete time increment is strictly restricted by CFL (Courant-Friedrichs-Lewy) condition. Therefore, long CPU time was consumed for the quench simulation. Authors, then, developed a new quench simulation code, POCHI1, which is based on an implicit time dependent scheme. In POCHI1, the fluid dynamics equation is linearlized according to a procedure applied by Beam and Warming and then, a tridiagonal system can be offered. Therefore, no iteration is necessary to solve the fluid dynamics equation. This leads great reduction of the CPU time. Also, POCHI1 can cope with non-linear boundary condition. In this study, comparison with experimental results was carried out. The normal zone propagation behavior was investigated in two samples of CIC conductors which had different hydraulic diameters. The measured and simulated normal zone propagation length showed relatively good agreement. However, the behavior of the normal voltage shows a little disagreement. These results indicate necessity to improve the treatment of the heat transfer coefficient in the turbulent flow region and the electric resistivity of the copper stabilizer in high temperature and high field region. (author).

  1. Implicit time-dependent finite different algorithm for quench simulation

    International Nuclear Information System (INIS)

    Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi

    1994-12-01

    A magnet in a fusion machine has many difficulties in its application because of requirement of a large operating current, high operating field and high breakdown voltage. A cable-in-conduit (CIC) conductor is the best candidate to overcome these difficulties. However, there remained uncertainty in a quench event in the cable-in-conduit conductor because of a difficulty to analyze a fluid dynamics equation. Several scientists, then, developed the numerical code for the quench simulation. However, most of them were based on an explicit time-dependent finite difference scheme. In this scheme, a discrete time increment is strictly restricted by CFL (Courant-Friedrichs-Lewy) condition. Therefore, long CPU time was consumed for the quench simulation. Authors, then, developed a new quench simulation code, POCHI1, which is based on an implicit time dependent scheme. In POCHI1, the fluid dynamics equation is linearlized according to a procedure applied by Beam and Warming and then, a tridiagonal system can be offered. Therefore, no iteration is necessary to solve the fluid dynamics equation. This leads great reduction of the CPU time. Also, POCHI1 can cope with non-linear boundary condition. In this study, comparison with experimental results was carried out. The normal zone propagation behavior was investigated in two samples of CIC conductors which had different hydraulic diameters. The measured and simulated normal zone propagation length showed relatively good agreement. However, the behavior of the normal voltage shows a little disagreement. These results indicate necessity to improve the treatment of the heat transfer coefficient in the turbulent flow region and the electric resistivity of the copper stabilizer in high temperature and high field region. (author)

  2. Discrete Maximum Principle for Higher-Order Finite Elements in 1D

    Czech Academy of Sciences Publication Activity Database

    Vejchodský, Tomáš; Šolín, Pavel

    2007-01-01

    Roč. 76, č. 260 (2007), s. 1833-1846 ISSN 0025-5718 R&D Projects: GA ČR GP201/04/P021 Institutional research plan: CEZ:AV0Z10190503; CEZ:AV0Z20760514 Keywords : discrete maximum principle * discrete Grren´s function * higher-order elements Subject RIV: BA - General Mathematics Impact factor: 1.230, year: 2007

  3. Finite element modelling of the mechanics of discrete carbon nanotubes filled with ZnS and comparison with experimental observations

    KAUST Repository

    Monteiro, André O.

    2013-09-25

    The mechanical response to a uniaxial compressive force of a single carbon nanotube (CNT) filled (or partially-filled) with ZnS has been modelled. A semi-empirical approach based on the finite element method was used whereby modelling outcomes were closely matched to experimental observations. This is the first example of the use of the continuum approach to model the mechanical behaviour of discrete filled CNTs. In contrast to more computationally demanding methods such as density functional theory or molecular dynamics, our approach provides a viable and expedite alternative to model the mechanics of filled multi-walled CNTs. © 2013 Springer Science+Business Media New York.

  4. Semianalytical analysis of shear walls with the use of discrete-continual finite element method. Part 1: Mathematical foundations

    Directory of Open Access Journals (Sweden)

    Akimov Pavel

    2016-01-01

    Full Text Available The distinctive paper is devoted to the two-dimensional semi-analytical solution of boundary problems of analysis of shear walls with the use of discrete-continual finite element method (DCFEM. This approach allows obtaining the exact analytical solution in one direction (so-called “basic” direction, also decrease the size of the problem to one-dimensional common finite element analysis. The resulting multipoint boundary problem for the first-order system of ordinary differential equations with piecewise constant coefficients is solved analytically. The proposed method is rather efficient for evaluation of the boundary effect (such as the stress field near the concentrated force. DCFEM also has a completely computer-oriented algorithm, computational stability, optimal conditionality of resultant system and it is applicable for the various loads at an arbitrary point or a region of the wall.

  5. A Moving Mesh Finite Difference Method for Non-Monotone Solutions of Non-Equilibrium Equations in Porous Media

    NARCIS (Netherlands)

    Zhang, Hong; Zegeling, Paul Andries

    2017-01-01

    An adaptive moving mesh finite difference method is presented to solve two types of equations with dynamic capillary pressure effect in porous media. One is the non-equilibrium Richards Equation and the other is the modified Buckley-Leverett equation. The governing equations are discretized with an

  6. The representation of absorbers in finite difference diffusion codes

    International Nuclear Information System (INIS)

    Buckler, A.N.; Tyror, J.G.

    1963-10-01

    In this paper we present a new method of representing absorbers in finite difference codes utilising the analytical flux solution in the vicinity of the absorbers. Taking an idealised reactor model, numerical comparisons are made between the finite difference eigenvalues and fluxes and results obtained from a purely analytical treatment of control rods in a reactor (the Codd-Rennie method), and agreement is found to be encouraging. The method has been coded for the IBM7090. (author)

  7. A new Eulerian-Lagrangian finite element simulator for solute transport in discrete fracture-matrix systems

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.; Karasaki, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1996-07-01

    Fracture network simulators have extensively been used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful fracture network simulator with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The fracture network simulator used in TRIPOLY features a mixed Lagrangian-Eulerian solution scheme for the transport in fractures, combined with an adaptive gridding technique to account for sharp concentration fronts. The fracture-matrix interaction is calculated with an efficient method which has been successfully used in the past for dual-porosity models. Discrete fractures and matrix blocks are treated as two different systems, and the interaction is modeled by introducing sink/source terms in both systems. It is assumed that diffusive transport in the matrix can be approximated as a one-dimensional process, perpendicular to the adjacent fracture surfaces. A direct solution scheme is employed to solve the coupled fracture and matrix equations. The newly developed combination of the fracture network simulator and the fracture-matrix interaction module allows for detailed studies of spreading processes in fractured porous rock. The authors present a sample application which demonstrate the codes ability of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size and shape.

  8. Comparison between a finite difference model (PUMA) and a finite element model (DELFIN) for simulation of the reactor of the atomic power plant of Atucha I

    International Nuclear Information System (INIS)

    Grant, C.R.

    1996-01-01

    The reactor code PUMA, developed in CNEA, simulates nuclear reactors discretizing space in finite difference elements. Core representation is performed by means a cylindrical mesh, but the reactor channels are arranged in an hexagonal lattice. That is why a mapping using volume intersections must be used. This spatial treatment is the reason of an overestimation of the control rod reactivity values, which must be adjusted modifying the incremental cross sections. Also, a not very good treatment of the continuity conditions between core and reflector leads to an overestimation of channel power of the peripherical fuel elements between 5 to 8 per cent. Another code, DELFIN, developed also in CNEA, treats the spatial discretization using heterogeneous finite elements, allowing a correct treatment of the continuity of fluxes and current among elements and a more realistic representation of the hexagonal lattice of the reactor. A comparison between results obtained using both methods in done in this paper. (author). 4 refs., 3 figs

  9. An outgoing energy flux boundary condition for finite difference ICRP antenna models

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, D.B.; Carter, M.D.

    1992-11-01

    For antennas at the ion cyclotron range of frequencies (ICRF) modeling in vacuum can now be carried out to a high level of detail such that shaping of the current straps, isolating septa, and discrete Faraday shield structures can be included. An efficient approach would be to solve for the fields in the vacuum region near the antenna in three dimensions by finite methods and to match this solution at the plasma-vacuum interface to a solution obtained in the plasma region in one dimension by Fourier methods. This approach has been difficult to carry out because boundary conditions must be imposed at the edge of the finite difference grid on a point-by-point basis, whereas the condition for outgoing energy flux into the plasma is known only in terms of the Fourier transform of the plasma fields. A technique is presented by which a boundary condition can be imposed on the computational grid of a three-dimensional finite difference, or finite element, code by constraining the discrete Fourier transform of the fields at the boundary points to satisfy an outgoing energy flux condition appropriate for the plasma. The boundary condition at a specific grid point appears as a coupling to other grid points on the boundary, with weighting determined by a kemel calctdated from the plasma surface impedance matrix for the various plasma Fourier modes. This boundary condition has been implemented in a finite difference solution of a simple problem in two dimensions, which can also be solved directly by Fourier transformation. Results are presented, and it is shown that the proposed boundary condition does enforce outgoing energy flux and yields the same solution as is obtained by Fourier methods.

  10. Bounded H∞ synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon.

    Science.gov (United States)

    Shen, Bo; Wang, Zidong; Liu, Xiaohui

    2011-01-01

    In this paper, new synchronization and state estimation problems are considered for an array of coupled discrete time-varying stochastic complex networks over a finite horizon. A novel concept of bounded H(∞) synchronization is proposed to handle the time-varying nature of the complex networks. Such a concept captures the transient behavior of the time-varying complex network over a finite horizon, where the degree of bounded synchronization is quantified in terms of the H(∞)-norm. A general sector-like nonlinear function is employed to describe the nonlinearities existing in the network. By utilizing a time-varying real-valued function and the Kronecker product, criteria are established that ensure the bounded H(∞) synchronization in terms of a set of recursive linear matrix inequalities (RLMIs), where the RLMIs can be computed recursively by employing available MATLAB toolboxes. The bounded H(∞) state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that, over a finite horizon, the dynamics of the estimation error is guaranteed to be bounded with a given disturbance attenuation level. Again, an RLMI approach is developed for the state estimation problem. Finally, two simulation examples are exploited to show the effectiveness of the results derived in this paper.

  11. Performance prediction of finite-difference solvers for different computer architectures

    Science.gov (United States)

    Louboutin, Mathias; Lange, Michael; Herrmann, Felix J.; Kukreja, Navjot; Gorman, Gerard

    2017-08-01

    The life-cycle of a partial differential equation (PDE) solver is often characterized by three development phases: the development of a stable numerical discretization; development of a correct (verified) implementation; and the optimization of the implementation for different computer architectures. Often it is only after significant time and effort has been invested that the performance bottlenecks of a PDE solver are fully understood, and the precise details varies between different computer architectures. One way to mitigate this issue is to establish a reliable performance model that allows a numerical analyst to make reliable predictions of how well a numerical method would perform on a given computer architecture, before embarking upon potentially long and expensive implementation and optimization phases. The availability of a reliable performance model also saves developer effort as it both informs the developer on what kind of optimisations are beneficial, and when the maximum expected performance has been reached and optimisation work should stop. We show how discretization of a wave-equation can be theoretically studied to understand the performance limitations of the method on modern computer architectures. We focus on the roofline model, now broadly used in the high-performance computing community, which considers the achievable performance in terms of the peak memory bandwidth and peak floating point performance of a computer with respect to algorithmic choices. A first principles analysis of operational intensity for key time-stepping finite-difference algorithms is presented. With this information available at the time of algorithm design, the expected performance on target computer systems can be used as a driver for algorithm design.

  12. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.

  13. Least-squares finite element discretizations of neutron transport equations in 3 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Manteuffel, T.A [Univ. of Colorado, Boulder, CO (United States); Ressel, K.J. [Interdisciplinary Project Center for Supercomputing, Zurich (Switzerland); Starkes, G. [Universtaet Karlsruhe (Germany)

    1996-12-31

    The least-squares finite element framework to the neutron transport equation introduced in is based on the minimization of a least-squares functional applied to the properly scaled neutron transport equation. Here we report on some practical aspects of this approach for neutron transport calculations in three space dimensions. The systems of partial differential equations resulting from a P{sub 1} and P{sub 2} approximation of the angular dependence are derived. In the diffusive limit, the system is essentially a Poisson equation for zeroth moment and has a divergence structure for the set of moments of order 1. One of the key features of the least-squares approach is that it produces a posteriori error bounds. We report on the numerical results obtained for the minimum of the least-squares functional augmented by an additional boundary term using trilinear finite elements on a uniform tesselation into cubes.

  14. Additive Schwarz preconditioner for the finite volume element discretization of symmetric elliptic problems

    Czech Academy of Sciences Publication Activity Database

    Marcinkowski, L.; Rahman, T.; Loneland, A.; Valdman, Jan

    2016-01-01

    Roč. 56, č. 3 (2016), s. 967-993 ISSN 0006-3835 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:67985556 Keywords : Domain decomposition * Additive Schwarz method * Finite volume element * GMRES Subject RIV: BA - General Mathematics Impact factor: 1.670, year: 2016 http://library.utia.cas.cz/separaty/2015/MTR/valdman-0447835.pdf

  15. A finite-difference method for the variable coefficient Poisson equation on hierarchical Cartesian meshes

    Science.gov (United States)

    Raeli, Alice; Bergmann, Michel; Iollo, Angelo

    2018-02-01

    We consider problems governed by a linear elliptic equation with varying coefficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. We present a compact finite-difference scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel data structure. The main idea is to optimize the truncation error of the discretization scheme as a function of the local grid configuration to achieve second-order accuracy. Numerical illustrations are presented in two and three-dimensional configurations.

  16. Numerical Simulations of Stably Stratified Fluid Flow Using Compact Finite-Difference Schemes

    Science.gov (United States)

    Bodnár, T.; Fraunié, Ph.; Kozel, K.

    2010-09-01

    The aim of this paper is to present the class of high order compact schemes in the context of numerical simulation of stratified flow. The numerical schemes presented here are based on the approach outlined in Lele [1]. The numerical model presented in this contribution is based on the solution of the Boussinesq approximation by a finite-difference scheme. The numerical scheme itself follows the principle of semi-discretization, with high order compact discretization in space, while the time integration is carried out by suitable Runge-Kutta time-stepping scheme. In the case presented here the steady flow was considered and thus the artificial compressibility method was used to resolve the pressure from the modified continuity equation. The test case used to demonstrate the capabilities of the selected model consists of the flow of stably stratified fluid over low, smooth hill.

  17. Discrete-ordinates quadrature sets based on linear discontinuous finite elements

    International Nuclear Information System (INIS)

    Jarrell, Joshua J.; Adams, Marvin L.

    2011-01-01

    We describe new quadrature sets based on linear discontinuous nite element (LDFE) basis functions de ned on the unit sphere. We describe the construction of these sets, demonstrate the accuracy with which they integrate polynomials in the direction cosines, and demonstrate their performance on a set of test problems. We develop the new quadrature sets by dividing the faces of a regular octahedron into equilateral triangles and projecting these onto 'spherical triangles' on the surface of the unit sphere. We choose four quadrature points per triangle and de ne LDFE interpolating basis functions in the direction cosines. A quadrature point's weight is the integral of its basis function over its triangle. Variations in the locations of the four points produce variations in the quadrature sets. The equilateral triangles can be subdivided recursively to create ner quadrature sets, including locally re ned sets that are suitable for use in adaptive algorithms. We analyze a simple one-cell problem and a more complex skewed-duct problem and compare our LDFE quadrature sets to those normally used in the neutral particle discrete-ordinate eld such as level symmetric, Gauss- Chebyshev, and Quadruple Range (QR) sets. The LDFE and QR sets show fourth-order convergence in the simple problem, while the other sets exhibit second or lower order. The LDFE sets exhibit more accurate solutions for the scalar flux in both problems and are not limited by mathematical complexity or by negativity of the discrete-ordinate weights. The same is true for results from other test problems that are not shown here. We conclude that the new LDFE quadrature sets are a promising option for discrete-ordinates transport calculations. However, we note that further studies are needed, especially in problems with highly anisotropic scattering, before the utility of these sets is fully determined. (author)

  18. Nonstandard Finite Difference Method Applied to a Linear Pharmacokinetics Model

    Directory of Open Access Journals (Sweden)

    Oluwaseun Egbelowo

    2017-05-01

    Full Text Available We extend the nonstandard finite difference method of solution to the study of pharmacokinetic–pharmacodynamic models. Pharmacokinetic (PK models are commonly used to predict drug concentrations that drive controlled intravenous (I.V. transfers (or infusion and oral transfers while pharmacokinetic and pharmacodynamic (PD interaction models are used to provide predictions of drug concentrations affecting the response of these clinical drugs. We structure a nonstandard finite difference (NSFD scheme for the relevant system of equations which models this pharamcokinetic process. We compare the results obtained to standard methods. The scheme is dynamically consistent and reliable in replicating complex dynamic properties of the relevant continuous models for varying step sizes. This study provides assistance in understanding the long-term behavior of the drug in the system, and validation of the efficiency of the nonstandard finite difference scheme as the method of choice.

  19. Fast solution of Cahn–Hilliard variational inequalities using implicit time discretization and finite elements

    KAUST Repository

    Bosch, Jessica

    2014-04-01

    We consider the efficient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton method combined with a Moreau-Yosida regularization technique for handling the control constraints we show superlinear convergence in function space. At the heart of this method lies the solution of large and sparse linear systems for which we propose the use of preconditioned Krylov subspace solvers using an effective Schur complement approximation. Numerical results illustrate the competitiveness of this approach. © 2014 Elsevier Inc.

  20. Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing.

    Science.gov (United States)

    Scarani, Valerio; Renner, Renato

    2008-05-23

    We derive a bound for the security of quantum key distribution with finite resources under one-way postprocessing, based on a definition of security that is composable and has an operational meaning. While our proof relies on the assumption of collective attacks, unconditional security follows immediately for standard protocols such as Bennett-Brassard 1984 and six-states protocol. For single-qubit implementations of such protocols, we find that the secret key rate becomes positive when at least N approximately 10(5) signals are exchanged and processed. For any other discrete-variable protocol, unconditional security can be obtained using the exponential de Finetti theorem, but the additional overhead leads to very pessimistic estimates.

  1. Finite difference computing with PDEs a modern software approach

    CERN Document Server

    Langtangen, Hans Petter

    2017-01-01

    This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

  2. A least squares principle unifying finite element, finite difference and nodal methods for diffusion theory

    International Nuclear Information System (INIS)

    Ackroyd, R.T.

    1987-01-01

    A least squares principle is described which uses a penalty function treatment of boundary and interface conditions. Appropriate choices of the trial functions and vectors employed in a dual representation of an approximate solution established complementary principles for the diffusion equation. A geometrical interpretation of the principles provides weighted residual methods for diffusion theory, thus establishing a unification of least squares, variational and weighted residual methods. The complementary principles are used with either a trial function for the flux or a trial vector for the current to establish for regular meshes a connection between finite element, finite difference and nodal methods, which can be exact if the mesh pitches are chosen appropriately. Whereas the coefficients in the usual nodal equations have to be determined iteratively, those derived via the complementary principles are given explicitly in terms of the data. For the further development of the connection between finite element, finite difference and nodal methods, some hybrid variational methods are described which employ both a trial function and a trial vector. (author)

  3. Numerical Analysis of Block Caving-Induced Instability in Large Open Pit Slopes: A Finite Element/Discrete Element Approach

    Science.gov (United States)

    Vyazmensky, Alexander; Stead, D.; Elmo, D.; Moss, A.

    2010-02-01

    This paper addresses one of the most challenging problems in mining rock engineering—the interaction between block cave mining and a large overlying open pit. The finite element modeling/discrete element modeling (FEM/DEM) approach was utilized in the analysis of block caving-induced step-path failure development in a large open pit slope. The analysis indicated that there is a threshold percentage of critical intact rock bridges along a step-path failure plane that may ensure the stability of an open pit throughout caving operations. Transition from open pit to underground mining at Palabora mine presents an important example of a pit wall instability triggered by caving. Using combined FEM/DEM-DFN (discrete fracture network) modeling, it was possible to investigate the formation of a basal failure surface within an open pit slope as a direct result of cave mining. The modeling of Palabora highlighted the importance of rock mass tensile strength and its influence on caving-induced slope response.

  4. Discrete memory schemes for finite strain thermoplasticity and application to shape memory alloys

    International Nuclear Information System (INIS)

    Favier, D.; Guelin, P.; Pegon, P.; Nowacki, W.K.

    1987-01-01

    A theory of finite strain plasticity has been proposed: The scheme of pure hysteresis with mixed transport has been extended to the case of non-rotational kinematics. Secondly, the simple shear case has been studied, taking into account Drucker's recent analysis regarding the 'appropriate simple idealizations for finite plasticity'. Illustrations are provided for general stress/strain paths. Also a new theory of isotropic hyperelasticity has been proposed. The 'reversible' relative Cauchy stress tensor (of type (1,1) and weight one) is defined in the dragged along coordinates as a tensorial isotropic function of the Almansi tensor and of its invariants (through the partial derivatives of the actual scalar density of elastic energy per unit extent of dragged along coordinates). The correspondance between strain and stress paths is then defined in a general form which is particularly convenient for the study of first order effects, limit behaviours, coupling and second order effects. Illustrations are provided. The addition of the pure hysteresis stress contribution σ a and of the reversible contribution σ rev leads to a scheme of 'superelasticity' departure to obtain a provisional scheme of shape memory effects. Some remarks are given regarding some of the possible generalizations of the scheme. (orig./GL)

  5. Comparing finite elements and finite differences for developing diffusive models of glioma growth.

    Science.gov (United States)

    Roniotis, Alexandros; Marias, Kostas; Sakkalis, Vangelis; Stamatakos, Georgios; Zervakis, Michalis

    2010-01-01

    Glioma is the most aggressive type of brain tumor. Several mathematical models have been developed during the last two decades, towards simulating the mechanisms that govern the development of glioma. The most common models use the diffusion-reaction equation (DRE) for simulating the spatiotemporal variation of tumor cell concentration. The proposed diffusive models have mainly used finite differences (FDs) or finite elements (FEs) for the approximation of the solution of the partial differential DRE. This paper presents experimental results on the comparison of the FEs and FDs, especially focused on the glioma model case. It is studied how the different meshes of brain can affect computational consistency, simulation time and efficiency of the model. The experiments have been studied on a test case, for which there is a known algebraic expression of the solution. Thus, it is possible to calculate the error that the different models yield.

  6. Different radiation impedance models for finite porous materials

    DEFF Research Database (Denmark)

    Nolan, Melanie; Jeong, Cheol-Ho; Brunskog, Jonas

    2015-01-01

    The Sabine absorption coefficients of finite absorbers are measured in a reverberation chamber according to the international standard ISO 354. They vary with the specimen size essentially due to diffraction at the specimen edges, which can be seen as the radiation impedance differing from the in...

  7. Alternating Direction Implicit Finite Difference Time Domain Acoustic ...

    African Journals Online (AJOL)

    A time domain numerical technique is presented for the modelling of acoustic wave phenomena. The technique is an adaptation of the alternating direction implicit finite difference time domain method. The stability condition for the algorithm is given. Simple illustrations of propagation in an infinite homogeneous medium are ...

  8. Finite difference simulation of biological chromium (VI) reduction in ...

    African Journals Online (AJOL)

    For the first time, the performance of a simulated barrier was evaluated internally in porous media using a finite difference approach. Parameters in the model were optimised at transient-state and under near steady-state conditions with respect to biomass and effluent Cr(VI) concentration respectively. The best fitting model ...

  9. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moczo, P.; Kristek, J.; Pazak, P.; Balazovjech, M.; Moczo, P.; Kristek, J.; Galis, M.

    2007-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite difference (FD), finite-element (FE), and hybrid FD-FE methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. We present alternative formulations of equation of motion for a smooth elastic continuum. We then develop alternative formulations for a canonical problem with a welded material interface and free surface. We continue with a model of an earthquake source. We complete the general theoretical introduction by a chapter on the constitutive laws for elastic and viscoelastic media, and brief review of strong formulations of the equation of motion. What follows is a block of chapters on the finite-difference and finite-element methods. We develop FD targets for the free surface and welded material interface. We then present various FD schemes for a smooth continuum, free surface, and welded interface. We focus on the staggered-grid and mainly optimally-accurate FD schemes. We also present alternative formulations of the FE method. We include the FD and FE implementations of the traction-at-split-nodes method for simulation of dynamic rupture propagation. The FD modeling is applied to the model of the deep sedimentary Grenoble basin, France. The FD and FE methods are combined in the hybrid FD-FE method. The hybrid

  10. Towards the development of a fully coupled arterial-venous 1D model: suitability of using a 1D finite volume method with staggered spatial discretization

    CSIR Research Space (South Africa)

    Bogaers, Alfred EJ

    2012-07-01

    Full Text Available In this paper we outline the development of a 1D finite volume model to solve for blood flow through the arterial system. The model is based on a staggered spatial discretization which leads to a stable solution scheme. This scheme can accurately...

  11. A Parametric Finite-Element Model for Evaluating Segmented Mirrors with Discrete, Edgewise Connectivity

    Science.gov (United States)

    Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip

    2011-01-01

    Since future astrophysics missions require space telescopes with apertures of at least 10 meters, there is a need for on-orbit assembly methods that decouple the size of the primary mirror from the choice of launch vehicle. One option is to connect the segments edgewise using mechanisms analogous to damped springs. To evaluate the feasibility of this approach, a parametric ANSYS model that calculates the mode shapes, natural frequencies, and disturbance response of such a mirror, as well as of the equivalent monolithic mirror, has been developed. This model constructs a mirror using rings of hexagonal segments that are either connected continuously along the edges (to form a monolith) or at discrete locations corresponding to the mechanism locations (to form a segmented mirror). As an example, this paper presents the case of a mirror whose segments are connected edgewise by mechanisms analogous to a set of four collocated single-degree-of-freedom damped springs. The results of a set of parameter studies suggest that such mechanisms can be used to create a 15-m segmented mirror that behaves similarly to a monolith, although fully predicting the segmented mirror performance would require incorporating measured mechanism properties into the model. Keywords: segmented mirror, edgewise connectivity, space telescope

  12. About solution of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method and discrete-continual finite element method. part 1: formulation of the problem and general principles of approximation

    Directory of Open Access Journals (Sweden)

    Lyakhovich Leonid

    2017-01-01

    Full Text Available This paper is devoted to formulation and general principles of approximation of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method (FEM discrete-continual finite element method (DCFEM. The field of application of DCFEM comprises structures with regular physical and geometrical parameters in some dimension (“basic” dimension. DCFEM presupposes finite element approximation for non-basic dimension while in the basic dimension problem remains continual. DCFEM is based on analytical solutions of resulting multipoint boundary problems for systems of ordinary differential equations with piecewise-constant coefficients.

  13. Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation.

    Science.gov (United States)

    Spanos, P; Elsbernd, P; Ward, B; Koenck, T

    2013-06-28

    This paper reviews and enhances numerical models for determining thermal, elastic and electrical properties of carbon nanotube-reinforced polymer composites. For the determination of the effective stress-strain curve and thermal conductivity of the composite material, finite-element analysis (FEA), in conjunction with the embedded fibre method (EFM), is used. Variable nanotube geometry, alignment and waviness are taken into account. First, a random morphology of a user-defined volume fraction of nanotubes is generated, and their properties are incorporated into the polymer matrix using the EFM. Next, incremental and iterative FEA approaches are used for the determination of the nonlinear properties of the nanocomposite. For the determination of the electrical properties, a spanning network identification algorithm is used. First, a realistic nanotube morphology is generated from input parameters defined by the user. The spanning network algorithm then determines the connectivity between nanotubes in a representative volume element. Then, interconnected nanotube networks are converted to equivalent resistor circuits. Finally, Kirchhoff's current law is used in conjunction with FEA to solve for the voltages and currents in the system and thus calculate the effective electrical conductivity of the nanocomposite. The model accounts for electrical transport mechanisms such as electron hopping and simultaneously calculates percolation probability, identifies the backbone and determines the effective conductivity. Monte Carlo analysis of 500 random microstructures is performed to capture the stochastic nature of the fibre generation and to derive statistically reliable results. The models are validated by comparison with various experimental datasets reported in the recent literature.

  14. Numerical stability of finite difference algorithms for electrochemical kinetic simulations: Matrix stability analysis of the classic explicit, fully implicit and Crank-Nicolson methods and typical problems involving mixed boundary conditions

    DEFF Research Database (Denmark)

    Bieniasz, Leslaw K.; Østerby, Ole; Britz, Dieter

    1995-01-01

    The stepwise numerical stability of the classic explicit, fully implicit and Crank-Nicolson finite difference discretizations of example diffusional initial boundary value problems from electrochemical kinetics has been investigated using the matrix method of stability analysis. Special attention...

  15. Enhanced finite difference scheme for the neutron diffusion equation using the importance function

    International Nuclear Information System (INIS)

    Vagheian, Mehran; Vosoughi, Naser; Gharib, Morteza

    2016-01-01

    Highlights: • An enhanced finite difference scheme for the neutron diffusion equation is proposed. • A seven-step algorithm is considered based on the importance function. • Mesh points are distributed through entire reactor core with respect to the importance function. • The results all proved that the proposed algorithm is highly efficient. - Abstract: Mesh point positions in Finite Difference Method (FDM) of discretization for the neutron diffusion equation can remarkably affect the averaged neutron fluxes as well as the effective multiplication factor. In this study, by aid of improving the mesh point positions, an enhanced finite difference scheme for the neutron diffusion equation is proposed based on the neutron importance function. In order to determine the neutron importance function, the adjoint (backward) neutron diffusion calculations are performed in the same procedure as for the forward calculations. Considering the neutron importance function, the mesh points can be improved through the entire reactor core. Accordingly, in regions with greater neutron importance, density of mesh elements is higher than that in regions with less importance. The forward calculations are then performed for both of the uniform and improved non-uniform mesh point distributions and the results (the neutron fluxes along with the corresponding eigenvalues) for the two cases are compared with each other. The results are benchmarked against the reference values (with fine meshes) for Kang and Rod Bundle BWR benchmark problems. These benchmark cases revealed that the improved non-uniform mesh point distribution is highly efficient.

  16. Nonstandard Finite Difference Variational Integrators for Multisymplectic PDEs

    Directory of Open Access Journals (Sweden)

    Cuicui Liao

    2012-01-01

    discretization and a square discretization, respectively. These methods are naturally multisymplectic. Their discrete multisymplectic structures are presented by the multisymplectic form formulas. The convergence of the discretization schemes is discussed. The effectiveness and efficiency of the proposed methods are verified by the numerical experiments.

  17. A finite difference scheme for a degenerated diffusion equation arising in microbial ecology

    Directory of Open Access Journals (Sweden)

    Hermann J. Eberl

    2007-02-01

    Full Text Available A finite difference scheme is presented for a density-dependent diffusion equation that arises in the mathematical modelling of bacterial biofilms. The peculiarity of the underlying model is that it shows degeneracy as the dependent variable vanishes, as well as a singularity as the dependent variable approaches its a priori known upper bound. The first property leads to a finite speed of interface propagation if the initial data have compact support, while the second one introduces counter-acting super diffusion. This squeezing property of this model leads to steep gradients at the interface. Moving interface problems of this kind are known to be problematic for classical numerical methods and introduce non-physical and non-mathematical solutions. The proposed method is developed to address this observation. The central idea is a non-local (in time representation of the diffusion operator. It can be shown that the proposed method is free of oscillations at the interface, that the discrete interface satisfies a discrete version of the continuous interface condition and that the effect of interface smearing is quantitatively small.

  18. The discrete ordinate method in association with the finite-volume method in non-structured mesh; Methode des ordonnees discretes associee a la methode des volumes finis en maillage non structure

    Energy Technology Data Exchange (ETDEWEB)

    Le Dez, V.; Lallemand, M. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France); Sakami, M.; Charette, A. [Quebec Univ., Chicoutimi, PQ (Canada). Dept. des Sciences Appliquees

    1996-12-31

    The description of an efficient method of radiant heat transfer field determination in a grey semi-transparent environment included in a 2-D polygonal cavity with surface boundaries that reflect the radiation in a purely diffusive manner is proposed, at the equilibrium and in radiation-conduction coupling situation. The technique uses simultaneously the finite-volume method in non-structured triangular mesh, the discrete ordinate method and the ray shooting method. The main mathematical developments and comparative results with the discrete ordinate method in orthogonal curvilinear coordinates are included. (J.S.) 10 refs.

  19. Integral equations with difference kernels on finite intervals

    CERN Document Server

    Sakhnovich, Lev A

    2015-01-01

    This book focuses on solving integral equations with difference kernels on finite intervals. The corresponding problem on the semiaxis was previously solved by N. Wiener–E. Hopf and by M.G. Krein. The problem on finite intervals, though significantly more difficult, may be solved using our method of operator identities. This method is also actively employed in inverse spectral problems, operator factorization and nonlinear integral equations. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Kac problems on stable processes. In this second edition these results are extensively generalized and include the case of all Levy processes. We present the convolution expression for the well-known Ito formula of the generator operator, a convolution expression that has proven to be fruitful...

  20. Finite-Difference Frequency-Domain Method in Nanophotonics

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra

    is often indispensable. This thesis presents the development of rigorous finite-difference method, a very general tool to solve Maxwell’s equations in arbitrary geometries in three dimensions, with an emphasis on the frequency-domain formulation. Enhanced performance of the perfectly matched layers...... is obtained through free space squeezing technique, and nonuniform orthogonal grids are built to greatly improve the accuracy of simulations of highly heterogeneous nanostructures. Examples of the use of the finite-difference frequency-domain method in this thesis range from simulating localized modes...... in a three-dimensional photonic-crystal membrane-based cavity, a quasi-one-dimensional nanobeam cavity and arrays of side-coupled nanobeam cavities, to modeling light propagation through metal films with single or periodically arranged multiple subwavelength slits....

  1. Mimetic finite difference method for the stokes problem on polygonal meshes

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, K [Los Alamos National Laboratory; Beirao Da Veiga, L [DIPARTIMENTO DI MATE; Gyrya, V [PENNSYLVANIA STATE UNIV; Manzini, G [ISTIUTO DI MATEMATICA

    2009-01-01

    Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.

  2. A fluid discontinuity tracking methodology for finite difference thermal-hydraulic simulation

    International Nuclear Information System (INIS)

    Zavisca, M.J.; Doster, J.M.

    1995-01-01

    Finite difference schemes currently applied to the modeling of two-phase flows in flow networks exhibit difficulties in properly simulating certain spatial and temporal discontinuities. These discontinuities include points along the one-dimensional flow axis where density and other thermophysical properties become discontinuous or experience rapid state domain changes. A methodology for treating spatial and temporal discontinuities is presented. This methodology consists of three main features: (a) subnode time-averaged donoring of thermodynamic properties, (b) a variable pressure-at-discontinuity staggered mesh discretization, and (c) a variable point state equation linearization. The proposed scheme is similar in form to standard semi-implicit, staggered mesh discretizations, requires little extra overhead, and results in substantially improved accuracy and code execution times. Comparisons are made with standard time and spatial discretizations, as well as with two simpler alternate methods for recognizing and tracking discontinuities. The first of these attempts is to adjust the time-step size such that the fluid discontinuity arrives at a node boundary, or a change in fluid state occurs precisely at the end of a time advancement. The second attempts to redistribute mass and energy to correct for improperly donored values when a discontinuity crosses a node boundary during a time step. Neither of these alternatives proved adequate

  3. Solving wave equation using finite differences and Taylor series

    Science.gov (United States)

    Nečasová, Gabriela; Kocina, Filip; Veigend, Petr; Chaloupka, Jan; Šátek, Václav; Kunovský, Jiří

    2017-07-01

    The paper deals with the numerical solution of partial differential equations (PDEs), especially wave equation. Two methods are used to obtain numerical solution of the wave equation. The Finite Difference Method (FDM) is used for transformation of wave equation to the system of ordinary differential equations (ODEs), different types of difference formulas are used. The influence of arithmetic to higher order difference formulas is also presented. The Modern Taylor Series Method (MTSM) allows to solve ODEs numerically with extremely high precision. An important feature of this method is an automatic integration order setting, i.e. using as many Taylor series terms as the defined accuracy requires.

  4. A finite difference method for free boundary problems

    KAUST Repository

    Fornberg, Bengt

    2010-04-01

    Fornberg and Meyer-Spasche proposed some time ago a simple strategy to correct finite difference schemes in the presence of a free boundary that cuts across a Cartesian grid. We show here how this procedure can be combined with a minimax-based optimization procedure to rapidly solve a wide range of elliptic-type free boundary value problems. © 2009 Elsevier B.V. All rights reserved.

  5. Optimized Finite-Difference Coefficients for Hydroacoustic Modeling

    Science.gov (United States)

    Preston, L. A.

    2014-12-01

    Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Finite

    Directory of Open Access Journals (Sweden)

    W.R. Azzam

    2015-08-01

    Full Text Available This paper reports the application of using a skirted foundation system to study the behavior of foundations with structural skirts adjacent to a sand slope and subjected to earthquake loading. The effect of the adopted skirts to safeguard foundation and slope from collapse is studied. The skirts effect on controlling horizontal soil movement and decreasing pore water pressure beneath foundations and beside the slopes during earthquake is investigated. This technique is investigated numerically using finite element analysis. A four story reinforced concrete building that rests on a raft foundation is idealized as a two-dimensional model with and without skirts. A two dimensional plain strain program PLAXIS, (dynamic version is adopted. A series of models for the problem under investigation were run under different skirt depths and lactation from the slope crest. The effect of subgrade relative density and skirts thickness is also discussed. Nodal displacement and element strains were analyzed for the foundation with and without skirts and at different studied parameters. The research results showed a great effectiveness in increasing the overall stability of the slope and foundation. The confined soil footing system by such skirts reduced the foundation acceleration therefore it can be tended to damping element and relieved the transmitted disturbance to the adjacent slope. This technique can be considered as a good method to control the slope deformation and decrease the slope acceleration during earthquakes.

  7. Simplified Qualitative Discrete Numerical Model to Determine Cracking Pattern in Brittle Materials by Means of Finite Element Method

    Directory of Open Access Journals (Sweden)

    J. Ochoa-Avendaño

    2017-01-01

    Full Text Available This paper presents the formulation, implementation, and validation of a simplified qualitative model to determine the crack path of solids considering static loads, infinitesimal strain, and plane stress condition. This model is based on finite element method with a special meshing technique, where nonlinear link elements are included between the faces of the linear triangular elements. The stiffness loss of some link elements represents the crack opening. Three experimental tests of bending beams are simulated, where the cracking pattern calculated with the proposed numerical model is similar to experimental result. The advantages of the proposed model compared to discrete crack approaches with interface elements can be the implementation simplicity, the numerical stability, and the very low computational cost. The simulation with greater values of the initial stiffness of the link elements does not affect the discontinuity path and the stability of the numerical solution. The exploded mesh procedure presented in this model avoids a complex nonlinear analysis and regenerative or adaptive meshes.

  8. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  9. A finite difference model for cMUT devices.

    Science.gov (United States)

    Certon, Dominique; Teston, Franck; Patat, Frédéric

    2005-12-01

    A finite difference method was implemented to simulate capacitive micromachined ultrasonic transducers (cMUTs) and compared to models described in the literature such as finite element methods. Similar results were obtained. It was found that one master curve described the clamped capacitance. We introduced normalized capacitance versus normalized bias voltage and metallization rate, independent of layer thickness, gap height, and size membrane, leading to the determination of a coupling factor master curve. We present here calculations and measurements of electrical impedance for cMUTs. An electromechanical equivalent circuit was used to perform simulations. Our experimental measurements confirmed the theoretical results in terms of resonance, anti-resonance frequencies, clamped capacitance, and electromechanical coupling factor. Due to inhomogeneity of the tested element array and strong parasitic capacitance between cells, the maximum coupling coefficient value achieved was 0.27. Good agreement with theory was obtained for all findings.

  10. Comparison of finite difference and finite element methods for simulating two-dimensional scattering of elastic waves

    NARCIS (Netherlands)

    Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger Karl

    2008-01-01

    Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve

  11. Nonlinear Delay Discrete Inequalities and Their Applications to Volterra Type Difference Equations

    Directory of Open Access Journals (Sweden)

    Yu Wu

    2010-01-01

    Full Text Available Delay discrete inequalities with more than one nonlinear term are discussed, which generalize some known results and can be used in the analysis of various problems in the theory of certain classes of discrete equations. Application examples to show boundedness and uniqueness of solutions of a Volterra type difference equation are also given.

  12. A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids

    NARCIS (Netherlands)

    Pesch, L.; van der Vegt, Jacobus J.W.

    2008-01-01

    Using the generalized variable formulation of the Euler equations of fluid dynamics, we develop a numerical method that is capable of simulating the flow of fluids with widely differing thermodynamic behavior: ideal and real gases can be treated with the same method as an incompressible fluid. The

  13. Characterizing the influence of stress-induced microcracks on the laboratory strength and fracture development in brittle rocks using a finite-discrete element method-micro discrete fracture network FDEM-μDFN approach

    Directory of Open Access Journals (Sweden)

    Pooya Hamdi

    2015-12-01

    Full Text Available Heterogeneity is an inherent component of rock and may be present in different forms including mineral heterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks are usually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stress-induced microcracking increases with depth and in-situ stress. Laboratory results indicate that the physical properties of rocks such as strength, deformability, P-wave velocity and permeability are influenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks using the proposed micro discrete fracture network (μDFN approach. The characteristics of the microcracks required to create μDFN models are obtained through image analyses of thin sections of Lac du Bonnet granite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial, triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data. The FDEM-μDFN models indicate that micro-heterogeneity has a profound influence on both the mechanical behavior and resultant fracture pattern. An increase in the microcrack intensity leads to a reduction in the strength of the sample and changes the character of the rock strength envelope. Spalling and axial splitting dominate the failure mode at low confinement while shear failure is the dominant failure mode at high confinement. Numerical results from simulated compression tests show that microcracking reduces the cohesive component of strength alone, and the frictional strength component remains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced by the presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. The importance of microcrack heterogeneity in

  14. Modeling Simultaneous Multiple Fracturing Using the Combined Finite-Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Quansheng Liu

    2018-01-01

    Full Text Available Simultaneous multiple fracturing is a key technology to facilitate the production of shale oil/gas. When multiple hydraulic fractures propagate simultaneously, there is an interaction effect among these propagating hydraulic fractures, known as the stress-shadow effect, which has a significant impact on the fracture geometry. Understanding and controlling the propagation of simultaneous multiple hydraulic fractures and the interaction effects between multiple fractures are critical to optimizing oil/gas production. In this paper, the FDEM simulator and a fluid simulator are linked, named FDEM-Fluid, to handle hydromechanical-fracture coupling problems and investigate the simultaneous multiple hydraulic fracturing mechanism. The fractures propagation and the deformation of solid phase are solved by FDEM; meanwhile the fluid flow in the fractures is modeled using the principle of parallel-plate flow model. Several tests are carried out to validate the application of FDEM-Fluid in hydraulic fracturing simulation. Then, this FDEM-Fluid is used to investigate simultaneous multiple fractures treatment. Fractures repel each other when multiple fractures propagate from a single horizontal well, while the nearby fractures in different horizontal wells attract each other when multiple fractures propagate from multiple parallel horizontal wells. The in situ stress also has a significant impact on the fracture geometry.

  15. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  16. Mimetic Finite Differences for Flow in Fractures from Microseismic Data

    KAUST Repository

    Al-Hinai, Omar

    2015-01-01

    We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD\\'s ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.

  17. SURF: a subroutine code to draw the axonometric projection of a surface generated by a scalar function over a discretized plane domain using finite element computations

    International Nuclear Information System (INIS)

    Giuliani, Giovanni; Giuliani, Silvano.

    1980-01-01

    The FORTRAN IV subroutine SURF has been designed to help visualising the results of Finite Element computations. It drawns the axonometric projection of a surface generated in 3-dimensional space by a scalar function over a discretized plane domain. The most important characteristic of the routine is to remove the hidden lines and in this way it enables a clear vision of the details of the generated surface

  18. An energy-stable finite-difference scheme for the binary fluid-surfactant system

    Science.gov (United States)

    Gu, Shuting; Zhang, Hui; Zhang, Zhengru

    2014-08-01

    We present an unconditionally energy stable finite-difference scheme for the binary fluid-surfactant system. The proposed method is based on the convex splitting of the energy functional with two variables. Here are two distinct features: (i) the convex splitting energy method is applied to energy functional with two variables, and (ii) the stability issue is related to the decay of the corresponding energy. The full discrete scheme leads to a decoupled system including a linear sub-system and a nonlinear sub-system. Algebraic multigrid and Newton-multigrid methods are adopted to solve the linear and nonlinear systems, respectively. Numerical experiments are shown to verify the stability of such a scheme.

  19. Pencil: Finite-difference Code for Compressible Hydrodynamic Flows

    Science.gov (United States)

    Brandenburg, Axel; Dobler, Wolfgang

    2010-10-01

    The Pencil code is a high-order finite-difference code for compressible hydrodynamic flows with magnetic fields. It is highly modular and can easily be adapted to different types of problems. The code runs efficiently under MPI on massively parallel shared- or distributed-memory computers, like e.g. large Beowulf clusters. The Pencil code is primarily designed to deal with weakly compressible turbulent flows. To achieve good parallelization, explicit (as opposed to compact) finite differences are used. Typical scientific targets include driven MHD turbulence in a periodic box, convection in a slab with non-periodic upper and lower boundaries, a convective star embedded in a fully nonperiodic box, accretion disc turbulence in the shearing sheet approximation, self-gravity, non-local radiation transfer, dust particle evolution with feedback on the gas, etc. A range of artificial viscosity and diffusion schemes can be invoked to deal with supersonic flows. For direct simulations regular viscosity and diffusion is being used. The code is written in well-commented Fortran90.

  20. The computer algebra approach of the finite difference methods for PDEs

    International Nuclear Information System (INIS)

    Liu Ruxun.

    1990-01-01

    In this paper, a first attempt has been made to realize the computer algebra construction of the finite difference methods or the finite difference schemes for constant coefficient partial differential equations. (author). 9 refs, 2 tabs

  1. Semianalytical analysis of shear walls with the use of discrete-continual finite element method. Part 2: Numerical examples, future development

    Directory of Open Access Journals (Sweden)

    Akimov Pavel

    2016-01-01

    Full Text Available The distinctive paper is devoted to the two-dimensional semi-analytical solution of boundary problems of analysis of shear walls with the use of discrete-continual finite element method (DCFEM. This approach allows obtaining the exact analytical solution in one direction (so-called “basic” direction, also decrease the size of the problem to one-dimensional common finite element analysis. Two numerical examples of structural analysis with the use of DCFEM are considered, conventional finite element method (FEM is used for verification purposes. The presented examples show some of the advantages of the suggested approach to semianalytical analysis of the shear wall. Future development of DCFEM, particularly associated with multigrid approach, is under consideration as well.

  2. Divergence correction schemes in finite difference method for 3D tensor CSAMT in axial anisotropic media

    Science.gov (United States)

    Wang, Kunpeng; Tan, Handong; Zhang, Zhiyong; Li, Zhiqiang; Cao, Meng

    2017-05-01

    Resistivity anisotropy and full-tensor controlled-source audio-frequency magnetotellurics (CSAMT) have gradually become hot research topics. However, much of the current anisotropy research for tensor CSAMT only focuses on the one-dimensional (1D) solution. As the subsurface is rarely 1D, it is necessary to study three-dimensional (3D) model response. The staggered-grid finite difference method is an effective simulation method for 3D electromagnetic forward modelling. Previous studies have suggested using the divergence correction to constrain the iterative process when using a staggered-grid finite difference model so as to accelerate the 3D forward speed and enhance the computational accuracy. However, the traditional divergence correction method was developed assuming an isotropic medium. This paper improves the traditional isotropic divergence correction method and derivation process to meet the tensor CSAMT requirements for anisotropy using the volume integral of the divergence equation. This method is more intuitive, enabling a simple derivation of a discrete equation and then calculation of coefficients related to the anisotropic divergence correction equation. We validate the result of our 3D computational results by comparing them to the results computed using an anisotropic, controlled-source 2.5D program. The 3D resistivity anisotropy model allows us to evaluate the consequences of using the divergence correction at different frequencies and for two orthogonal finite length sources. Our results show that the divergence correction plays an important role in 3D tensor CSAMT resistivity anisotropy research and offers a solid foundation for inversion of CSAMT data collected over an anisotropic body.

  3. Development and application of a third order scheme of finite differences centered in mesh

    International Nuclear Information System (INIS)

    Delfin L, A.; Alonso V, G.; Valle G, E. del

    2003-01-01

    In this work the development of a third order scheme of finite differences centered in mesh is presented and it is applied in the numerical solution of those diffusion equations in multi groups in stationary state and X Y geometry. Originally this scheme was developed by Hennart and del Valle for the monoenergetic diffusion equation with a well-known source and they show that the one scheme is of third order when comparing the numerical solution with the analytical solution of a model problem using several mesh refinements and boundary conditions. The scheme by them developed it also introduces the application of numeric quadratures to evaluate the rigidity matrices and of mass that its appear when making use of the finite elements method of Galerkin. One of the used quadratures is the open quadrature of 4 points, no-standard, of Newton-Cotes to evaluate in approximate form the elements of the rigidity matrices. The other quadrature is that of 3 points of Radau that it is used to evaluate the elements of all the mass matrices. One of the objectives of these quadratures are to eliminate the couplings among the Legendre moments 0 and 1 associated to the left and right faces as those associated to the inferior and superior faces of each cell of the discretization. The other objective is to satisfy the particles balance in weighed form in each cell. In this work it expands such development to multiplicative means considering several energy groups. There are described diverse details inherent to the technique, particularly those that refer to the simplification of the algebraic systems that appear due to the space discretization. Numerical results for several test problems are presented and are compared with those obtained with other nodal techniques. (Author)

  4. Acoustic, finite-difference, time-domain technique development

    International Nuclear Information System (INIS)

    Kunz, K.

    1994-01-01

    A close analog exists between the behavior of sound waves in an ideal gas and the radiated waves of electromagnetics. This analog has been exploited to obtain an acoustic, finite-difference, time-domain (AFDTD) technique capable of treating small signal vibrations in elastic media, such as air, water, and metal, with the important feature of bending motion included in the behavior of the metal. This bending motion is particularly important when the metal is formed into sheets or plates. Bending motion does not have an analog in electromagnetics, but can be readily appended to the acoustic treatment since it appears as a single additional term in the force equation for plate motion, which is otherwise analogous to the electromagnetic wave equation. The AFDTD technique has been implemented in a code architecture that duplicates the electromagnetic, finite-difference, time-domain technique code. The main difference in the implementation is the form of the first-order coupled differential equations obtained from the wave equation. The gradient of pressure and divergence of velocity appear in these equations in the place of curls of the electric and magnetic fields. Other small changes exist as well, but the codes are essentially interchangeable. The pre- and post-processing for model construction and response-data evaluation of the electromagnetic code, in the form of the TSAR code at Lawrence Livermore National Laboratory, can be used for the acoustic version. A variety of applications is possible, pending validation of the bending phenomenon. The applications include acoustic-radiation-pattern predictions for a submerged object; mine detection analysis; structural noise analysis for cars; acoustic barrier analysis; and symphonic hall/auditorium predictions and speaker enclosure modeling

  5. High-order finite difference methods for earthquake rupture dynamics in complex geometries

    Science.gov (United States)

    O'Reilly, O.; Kozdon, J. E.; Dunham, E. M.; Nordström, J.

    2010-12-01

    In this work we continue our development of high-order summation-by-parts (SBP) finite difference methods for earthquake rupture dynamics. SBP methods use centered spatial differences in the interior and one-sided differences near the boundary. The transition to one-sided differences is done in a particular manner that permits one to provably maintain stability and accuracy. In many methods the boundary conditions are strongly enforced by modifying the difference operator at the boundary so that the solution there exactly satisfies the boundary condition. Though conceptually straightforward, this approach can introduce instabilities. In contrast, when boundary conditions are enforced weakly by adding a penalty term to the spatial discretization, it is possible to prove that the method is strictly stable, dissipating energy slightly faster than the continuous problem (with the additional dissipation vanishing under grid refinement). Another benefit of SBP operators is their built-in inner product which, if correctly constructed, can be interpreted as a quadrature operator. Thus, important integrated quantities such as the total mechanical energy in the system, the energy dissipation rate along faults, and the radiated energy flux through exterior boundaries can be rigorously calculated. These numerically integrated quantities converge to their true values with the same order of accuracy as the difference approximation. Though standard SBP methods are based on uniform Cartesian grids, it is possible to use the methods for problems with nonplanar faults, free surface topography, and branching faults through the use of coordinate transforms. Recently, it has also been shown how second-order SBP methods can be extended to unstructured grids. Due to the SBP character of both the finite difference and node-centered finite volume method they can be used together in a stable and accurate way. Inclusion of these techniques will be important for problems that have regions

  6. A Comparison of Vibroacoustic Response of Isotropic Plate with Attached Discrete Patches and Point Masses Having Different Thickness Variation with Different Taper Ratios

    Directory of Open Access Journals (Sweden)

    Bipin Kumar

    2016-01-01

    Full Text Available A comparison of sound radiation behavior of plate in air medium with attached discrete patches/point masses having different thickness variations with different taper ratio of 0.3, 0.6, and 0.9 is analysed. Finite element method is used to find the vibration characteristics while Rayleigh integral is used to predict the sound radiation characteristics. Minimum peak sound power level obtained is at a taper ratio of 0.6 with parabolic increasing-decreasing thickness variation for plate with four discrete patches. At higher taper ratio, linearly increasing-decreasing thickness variation is another alternative for minimum peak sound power level suppression with discrete patches. It is found that, in low frequency range, average radiation efficiency remains almost the same, but near first peak, four patches or four point masses cause increase in average radiation efficiency; that is, redistribution of point masses/patches does have effect on average radiation efficiency at a given taper ratio.

  7. Discretization effects in the finite element simulation of seismic waves in elastic and elastic-plastic media

    NARCIS (Netherlands)

    Watanabe, Kohei; Pisano, F.; Jeremi, Boris

    2016-01-01

    Presented here is a numerical investigation that (re-)appraises standard rules for space/time discretization in seismic wave propagation analyses. Although the issue is almost off the table of research, situations are often encountered where (established) discretization criteria are not observed and

  8. A parallel finite-difference method for computational aerodynamics

    International Nuclear Information System (INIS)

    Swisshelm, J.M.

    1989-01-01

    A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed. 14 refs

  9. Computational electrodynamics the finite-difference time-domain method

    CERN Document Server

    Taflove, Allen

    2005-01-01

    This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers engineers the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. The method helps practitioners design antennas, wireless communications devices, high-speed digital and microwave circuits, and integrated optical devices with unsurpassed efficiency. There has been considerable advancement in FDTD computational technology over the past few years, and the third edition brings professionals the very latest details with entirely new chapters on important techniques, major updates on key topics, and new discussions on emerging areas such as nanophotonics. What's more, to supplement the third edition, the authors have created a Web site with solutions to problems, downloadable graphics and videos, and updates, making this new edition the ideal textbook on the subject as well.

  10. Finite-difference modeling of commercial aircraft using TSAR

    Energy Technology Data Exchange (ETDEWEB)

    Pennock, S.T.; Poggio, A.J.

    1994-11-15

    Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.

  11. Visualization of elastic wavefields computed with a finite difference code

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S. [Lawrence Livermore National Lab., CA (United States); Harris, D.

    1994-11-15

    The authors have developed a finite difference elastic propagation model to simulate seismic wave propagation through geophysically complex regions. To facilitate debugging and to assist seismologists in interpreting the seismograms generated by the code, they have developed an X Windows interface that permits viewing of successive temporal snapshots of the (2D) wavefield as they are calculated. The authors present a brief video displaying the generation of seismic waves by an explosive source on a continent, which propagate to the edge of the continent then convert to two types of acoustic waves. This sample calculation was part of an effort to study the potential of offshore hydroacoustic systems to monitor seismic events occurring onshore.

  12. Parallel finite-difference time-domain method

    CERN Document Server

    Yu, Wenhua

    2006-01-01

    The finite-difference time-domain (FTDT) method has revolutionized antenna design and electromagnetics engineering. This book raises the FDTD method to the next level by empowering it with the vast capabilities of parallel computing. It shows engineers how to exploit the natural parallel properties of FDTD to improve the existing FDTD method and to efficiently solve more complex and large problem sets. Professionals learn how to apply open source software to develop parallel software and hardware to run FDTD in parallel for their projects. The book features hands-on examples that illustrate the power of parallel FDTD and presents practical strategies for carrying out parallel FDTD. This detailed resource provides instructions on downloading, installing, and setting up the required open source software on either Windows or Linux systems, and includes a handy tutorial on parallel programming.

  13. Second order accurate finite difference approximations for the transonic small disturbance equation and the full potential equation

    Science.gov (United States)

    Mostrel, M. M.

    1988-01-01

    New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.

  14. Acoustic Wave Propagation Modeling by a Two-dimensional Finite-difference Summation-by-parts Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petersson, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examples and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.

  15. Finite differences versus finite elements in slab geometry, even-parity transport theory

    International Nuclear Information System (INIS)

    Miller, W.F. Jr.; Noh, T.

    1993-01-01

    There continues to be considerable interest in the application of the even-parity transport equation to problems of radiation transfer and neutron transport. The motivation for this interest arises from several potential advantages of this equation when compared with the more traditional first-order form of the equation. First, assuming that the scalar flux is of primary interest, the angular domain under consideration is one-half of that required for the first-order equation. Thus, for the same degree of accuracy, one would hopefully require substantiably fewer unknown values of the dependent variable to be determined. Secondly, the elliptic-like nature of the set of even-parity equations should allow certain parallel computer architectures to be used more readily. In a recent paper, it was shown that for neutron transport applications in slab geometry, finite differencing the even-parity equation on the cell edges yields algebraic equations with numerical properties that are superior to the traditional diamond difference approach. Specifically, a positive, second-order method with a rapidly convergent iteration approach emerged from cell-edge differencing. Additionally, for radiation transfer problems that are optically thick, it was shown that cell-edge differencing demonstrates better behavior than does diamond-differencing. However, some problems in accuracy could occur due to vacuum boundaries as well as at interfaces between very different types of material regions. These problems emerge from a boundary-layer analysis of the so called open-quotes thickclose quotes diffusion limit. For neutronics calculations, which are the subject of this paper, however, the open-quotes thickclose quotes diffusion limit analysis has little applicability, and the cell-edge differencing derived previously seems to have considerable promise. 13 refs., 2 figs., 3 tabs

  16. A finite difference method for a two-point boundary value problem with a Caputo fractional derivative

    OpenAIRE

    Stynes, Martin; Gracia, José Luis

    2013-01-01

    A two-point boundary value problem whose highest-order term is a Caputo fractional derivative of order $\\delta \\in (1,2)$ is considered. Al-Refai's comparison principle is improved and modified to fit our problem. Sharp a priori bounds on derivatives of the solution $u$ of the boundary value problem are established, showing that $u''(x)$ may be unbounded at the interval endpoint $x=0$. These bounds and a discrete comparison principle are used to prove pointwise convergence of a finite differe...

  17. Solving the nonlinear Schrödinger equation using cubic B-spline interpolation and finite difference methods

    Science.gov (United States)

    Ahmad, Azhar; Azmi, Amirah; Majid, Ahmad Abd.; Hamid, Nur Nadiah Abd

    2017-08-01

    In this paper, Nonlinear Schrödinger (NLS) equation with Neumann boundary conditions is solved using finite difference method (FDM) and cubic B-spline interpolation method (CuBSIM). First, the approach is based on the FDM applied on the time and space discretization with the help of theta-weighted method. However, our main interest is the second approach, whereby FDM is applied on the time discretization and cubic B-spline is utilized as an interpolation function in the space dimension with the same help of theta-weighted method. The CuBSIM is shown to be stable by using von Neumann stability analysis. The proposed method is tested on a test problem with single soliton motion of the NLS equation. The accuracy of the numerical results is measured by the Euclidean-norm and infinity-norm. CuBSIM is found to produce more accurate results than the FDM.

  18. On Long-Time Instabilities in Staggered Finite Difference Simulations of the Seismic Acoustic Wave Equations on Discontinuous Grids

    KAUST Repository

    Gao, Longfei

    2017-10-26

    We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application settings. Analysis of this algebraic problem leads to better understanding of the cause of the instability and provides guidance for its treatment. Specifically, we use the concept of discrete energy to derive the proper solution transfer operators and design an effective way to damp the unstable solution modes. Our investigation shows that the interpolation operators need to be matched with their companion restriction operators in order to properly couple the coarse and fine grids. Moreover, to provide effective damping, specially designed diffusive terms are introduced to the equations at designated locations and discretized with specially designed schemes. These techniques are applied to simulations in practical settings and are shown to lead to superior results in terms of both stability and accuracy.

  19. Discrete SLn-connections and self-adjoint difference operators on 2-dimensional manifolds

    Science.gov (United States)

    Grinevich, P. G.; Novikov, S. P.

    2013-10-01

    The programme of discretization of famous completely integrable systems and associated linear operators was launched in the 1990s. In particular, the properties of second-order difference operators on triangulated manifolds and equilateral triangular lattices have been studied by Novikov and Dynnikov since 1996. This study included Laplace transformations, new discretizations of complex analysis, and new discretizations of GLn-connections on triangulated n-dimensional manifolds. A general theory of discrete GLn-connections 'of rank one' has been developed (see the Introduction for definitions). The problem of distinguishing the subclass of SLn-connections (and unimodular SLn+/- -connections, which satisfy detA = +/-1) has not been solved. In the present paper it is shown that these connections play an important role (which is similar to the role of magnetic fields in the continuous case) in the theory of self-adjoint Schrödinger difference operators on equilateral triangular lattices in ℝ2. In Appendix 1 a complete characterization is given of unimodular SLn+/- -connections of rank 1 for all n > 1, thus correcting a mistake (it was wrongly claimed that they reduce to a canonical connection for n > 2). With the help of a communication from Korepanov, a complete clarification is provided of how the classical theory of electrical circuits and star-triangle transformations is connected with the discrete Laplace transformations on triangular lattices. Bibliography: 29 titles.

  20. A hybrid finite-difference and analytic element groundwater model

    Science.gov (United States)

    Haitjema, Henk M.; Feinstein, Daniel T.; Hunt, Randall J.; Gusyev, Maksym

    2010-01-01

    Regional finite-difference models tend to have large cell sizes, often on the order of 1–2 km on a side. Although the regional flow patterns in deeper formations may be adequately represented by such a model, the intricate surface water and groundwater interactions in the shallower layers are not. Several stream reaches and nearby wells may occur in a single cell, precluding any meaningful modeling of the surface water and groundwater interactions between the individual features. We propose to replace the upper MODFLOW layer or layers, in which the surface water and groundwater interactions occur, by an analytic element model (GFLOW) that does not employ a model grid; instead, it represents wells and surface waters directly by the use of point-sinks and line-sinks. For many practical cases it suffices to provide GFLOW with the vertical leakage rates calculated in the original coarse MODFLOW model in order to obtain a good representation of surface water and groundwater interactions. However, when the combined transmissivities in the deeper (MODFLOW) layers dominate, the accuracy of the GFLOW solution diminishes. For those cases, an iterative coupling procedure, whereby the leakages between the GFLOW and MODFLOW model are updated, appreciably improves the overall solution, albeit at considerable computational cost. The coupled GFLOW–MODFLOW model is applicable to relatively large areas, in many cases to the entire model domain, thus forming an attractive alternative to local grid refinement or inset models.

  1. Finite difference method and algebraic polynomial interpolation for numerically solving Poisson's equation over arbitrary domains

    Directory of Open Access Journals (Sweden)

    Tsugio Fukuchi

    2014-06-01

    Full Text Available The finite difference method (FDM based on Cartesian coordinate systems can be applied to numerical analyses over any complex domain. A complex domain is usually taken to mean that the geometry of an immersed body in a fluid is complex; here, it means simply an analytical domain of arbitrary configuration. In such an approach, we do not need to treat the outer and inner boundaries differently in numerical calculations; both are treated in the same way. Using a method that adopts algebraic polynomial interpolations in the calculation around near-wall elements, all the calculations over irregular domains reduce to those over regular domains. Discretization of the space differential in the FDM is usually derived using the Taylor series expansion; however, if we use the polynomial interpolation systematically, exceptional advantages are gained in deriving high-order differences. In using the polynomial interpolations, we can numerically solve the Poisson equation freely over any complex domain. Only a particular type of partial differential equation, Poisson's equations, is treated; however, the arguments put forward have wider generality in numerical calculations using the FDM.

  2. Staggered-Grid Finite Difference Method with Variable-Order Accuracy for Porous Media

    Directory of Open Access Journals (Sweden)

    Jinghuai Gao

    2013-01-01

    Full Text Available The numerical modeling of wave field in porous media generally requires more computation time than that of acoustic or elastic media. Usually used finite difference methods adopt finite difference operators with fixed-order accuracy to calculate space derivatives for a heterogeneous medium. A finite difference scheme with variable-order accuracy for acoustic wave equation has been proposed to reduce the computation time. In this paper, we develop this scheme for wave equations in porous media based on dispersion relation with high-order staggered-grid finite difference (SFD method. High-order finite difference operators are adopted for low-velocity regions, and low-order finite difference operators are adopted for high-velocity regions. Dispersion analysis and modeling results demonstrate that the proposed SFD method can decrease computational costs without reducing accuracy.

  3. Modelling of fluid-solid interactions using an adaptive mesh fluid model coupled with a combined finite-discrete element model

    Science.gov (United States)

    Viré, Axelle; Xiang, Jiansheng; Milthaler, Frank; Farrell, Patrick Emmet; Piggott, Matthew David; Latham, John-Paul; Pavlidis, Dimitrios; Pain, Christopher Charles

    2012-12-01

    Fluid-structure interactions are modelled by coupling the finite element fluid/ocean model `Fluidity-ICOM' with a combined finite-discrete element solid model `Y3D'. Because separate meshes are used for the fluids and solids, the present method is flexible in terms of discretisation schemes used for each material. Also, it can tackle multiple solids impacting on one another, without having ill-posed problems in the resolution of the fluid's equations. Importantly, the proposed approach ensures that Newton's third law is satisfied at the discrete level. This is done by first computing the action-reaction force on a supermesh, i.e. a function superspace of the fluid and solid meshes, and then projecting it to both meshes to use it as a source term in the fluid and solid equations. This paper demonstrates the properties of spatial conservation and accuracy of the method for a sphere immersed in a fluid, with prescribed fluid and solid velocities. While spatial conservation is shown to be independent of the mesh resolutions, accuracy requires fine resolutions in both fluid and solid meshes. It is further highlighted that unstructured meshes adapted to the solid concentration field reduce the numerical errors, in comparison with uniformly structured meshes with the same number of elements. The method is verified on flow past a falling sphere. Its potential for ocean applications is further shown through the simulation of vortex-induced vibrations of two cylinders and the flow past two flexible fibres.

  4. Discretization of time series data.

    Science.gov (United States)

    Dimitrova, Elena S; Licona, M Paola Vera; McGee, John; Laubenbacher, Reinhard

    2010-06-01

    An increasing number of algorithms for biochemical network inference from experimental data require discrete data as input. For example, dynamic Bayesian network methods and methods that use the framework of finite dynamical systems, such as Boolean networks, all take discrete input. Experimental data, however, are typically continuous and represented by computer floating point numbers. The translation from continuous to discrete data is crucial in preserving the variable dependencies and thus has a significant impact on the performance of the network inference algorithms. We compare the performance of two such algorithms that use discrete data using several different discretization algorithms. One of the inference methods uses a dynamic Bayesian network framework, the other-a time-and state-discrete dynamical system framework. The discretization algorithms are quantile, interval discretization, and a new algorithm introduced in this article, SSD. SSD is especially designed for short time series data and is capable of determining the optimal number of discretization states. The experiments show that both inference methods perform better with SSD than with the other methods. In addition, SSD is demonstrated to preserve the dynamic features of the time series, as well as to be robust to noise in the experimental data. A C++ implementation of SSD is available from the authors at http://polymath.vbi.vt.edu/discretization .

  5. A finite-difference contrast source inversion method

    International Nuclear Information System (INIS)

    Abubakar, A; Hu, W; Habashy, T M; Van den Berg, P M

    2008-01-01

    We present a contrast source inversion (CSI) algorithm using a finite-difference (FD) approach as its backbone for reconstructing the unknown material properties of inhomogeneous objects embedded in a known inhomogeneous background medium. Unlike the CSI method using the integral equation (IE) approach, the FD-CSI method can readily employ an arbitrary inhomogeneous medium as its background. The ability to use an inhomogeneous background medium has made this algorithm very suitable to be used in through-wall imaging and time-lapse inversion applications. Similar to the IE-CSI algorithm the unknown contrast sources and contrast function are updated alternately to reconstruct the unknown objects without requiring the solution of the full forward problem at each iteration step in the optimization process. The FD solver is formulated in the frequency domain and it is equipped with a perfectly matched layer (PML) absorbing boundary condition. The FD operator used in the FD-CSI method is only dependent on the background medium and the frequency of operation, thus it does not change throughout the inversion process. Therefore, at least for the two-dimensional (2D) configurations, where the size of the stiffness matrix is manageable, the FD stiffness matrix can be inverted using a non-iterative inversion matrix approach such as a Gauss elimination method for the sparse matrix. In this case, an LU decomposition needs to be done only once and can then be reused for multiple source positions and in successive iterations of the inversion. Numerical experiments show that this FD-CSI algorithm has an excellent performance for inverting inhomogeneous objects embedded in an inhomogeneous background medium

  6. A finite difference method for off-fault plasticity throughout the earthquake cycle

    Science.gov (United States)

    Erickson, Brittany A.; Dunham, Eric M.; Khosravifar, Arash

    2017-12-01

    We have developed an efficient computational framework for simulating multiple earthquake cycles with off-fault plasticity. The method is developed for the classical antiplane problem of a vertical strike-slip fault governed by rate-and-state friction, with inertial effects captured through the radiation-damping approximation. Both rate-independent plasticity and viscoplasticity are considered, where stresses are constrained by a Drucker-Prager yield condition. The off-fault volume is discretized using finite differences and tectonic loading is imposed by displacing the remote side boundaries at a constant rate. Time-stepping combines an adaptive Runge-Kutta method with an incremental solution process which makes use of an elastoplastic tangent stiffness tensor and the return-mapping algorithm. Solutions are verified by convergence tests and comparison to a finite element solution. We quantify how viscosity, isotropic hardening, and cohesion affect the magnitude and off-fault extent of plastic strain that develops over many ruptures. If hardening is included, plastic strain saturates after the first event and the response during subsequent ruptures is effectively elastic. For viscoplasticity without hardening, however, successive ruptures continue to generate additional plastic strain. In all cases, coseismic slip in the shallow sub-surface is diminished compared to slip accumulated at depth during interseismic loading. The evolution of this slip deficit with each subsequent event, however, is dictated by the plasticity model. Integration of the off-fault plastic strain from the viscoplastic model reveals that a significant amount of tectonic offset is accommodated by inelastic deformation ( ∼ 0.1 m per rupture, or ∼ 10% of the tectonic deformation budget).

  7. A finite difference, multipoint flux numerical approach to flow in porous media: Numerical examples

    KAUST Repository

    Osman, Hossam Omar

    2012-06-17

    It is clear that none of the current available numerical schemes which may be adopted to solve transport phenomena in porous media fulfill all the required robustness conditions. That is while the finite difference methods are the simplest of all, they face several difficulties in complex geometries and anisotropic media. On the other hand, while finite element methods are well suited to complex geometries and can deal with anisotropic media, they are more involved in coding and usually require more execution time. Therefore, in this work we try to combine some features of the finite element technique, namely its ability to work with anisotropic media with the finite difference approach. We reduce the multipoint flux, mixed finite element technique through some quadrature rules to an equivalent cell-centered finite difference approximation. We show examples on using this technique to single-phase flow in anisotropic porous media.

  8. Data assimilation method for fractured reservoirs using mimetic finite differences and ensemble Kalman filter

    KAUST Repository

    Ping, Jing

    2017-05-19

    Optimal management of subsurface processes requires the characterization of the uncertainty in reservoir description and reservoir performance prediction. For fractured reservoirs, the location and orientation of fractures are crucial for predicting production characteristics. With the help of accurate and comprehensive knowledge of fracture distributions, early water/CO 2 breakthrough can be prevented and sweep efficiency can be improved. However, since the rock property fields are highly non-Gaussian in this case, it is a challenge to estimate fracture distributions by conventional history matching approaches. In this work, a method that combines vector-based level-set parameterization technique and ensemble Kalman filter (EnKF) for estimating fracture distributions is presented. Performing the necessary forward modeling is particularly challenging. In addition to the large number of forward models needed, each model is used for sampling of randomly located fractures. Conventional mesh generation for such systems would be time consuming if possible at all. For these reasons, we rely on a novel polyhedral mesh method using the mimetic finite difference (MFD) method. A discrete fracture model is adopted that maintains the full geometry of the fracture network. By using a cut-cell paradigm, a computational mesh for the matrix can be generated quickly and reliably. In this research, we apply this workflow on 2D two-phase fractured reservoirs. The combination of MFD approach, level-set parameterization, and EnKF provides an effective solution to address the challenges in the history matching problem of highly non-Gaussian fractured reservoirs.

  9. An Efficient Explicit Finite-Difference Scheme for Simulating Coupled Biomass Growth on Nutritive Substrates

    Directory of Open Access Journals (Sweden)

    G. F. Sun

    2015-01-01

    Full Text Available A novel explicit finite-difference (FD method is presented to simulate the positive and bounded development process of a microbial colony subjected to a substrate of nutrients, which is governed by a nonlinear parabolic partial differential equations (PDE system. Our explicit FD scheme is uniquely designed in such a way that it transfers the nonlinear terms in the original PDE into discrete sets of linear ones in the algebraic equation system that can be solved very efficiently, while ensuring the stability and the boundedness of the solution. This is achieved through (1 a proper design of intertwined FD approximations for the diffusion function term in both time and spatial variations and (2 the control of the time-step through establishing theoretical stability criteria. A detailed theoretical stability analysis is conducted to reveal that our FD method is indeed stable. Our examples verified the fact that the numerical solution can be ensured nonnegative and bounded to simulate the actual physics. Numerical examples have also been presented to demonstrate the efficiency of the proposed scheme. The present scheme is applicable for solving similar systems of PDEs in the investigation of the dynamics of biological films.

  10. Calculation of electrical potentials on the surface of a realistic head model by finite differences

    International Nuclear Information System (INIS)

    Lemieux, L.; McBride, A.; Hand, J.W.

    1996-01-01

    We present a method for the calculation of electrical potentials at the surface of realistic head models from a point dipole generator based on a 3D finite-difference algorithm. The model was validated by comparing calculated values with those obtained algebraically for a three-shell spherical model. For a 1.25 mm cubic grid size, the mean error was 4.9% for a superficial dipole (3.75 mm from the inner surface of the skull) pointing in the radial direction. The effect of generator discretization and node spacing on the accuracy of the model was studied. Three values of the node spacing were considered: 1, 1.25 and 1.5 mm. The mean relative errors were 4.2, 6.3 and 9.3%, respectively. The quality of the approximation of a point dipole by an array of nodes in a spherical neighbourhood did not depend significantly on the number of nodes used. The application of the method to a conduction model derived from MRI data is demonstrated. (author)

  11. Finite-difference modeling of Bragg fibers with ultrathin cladding layers via adaptive coordinate transformation

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry; Lægsgaard, Jesper; Bang, Ole

    As an alternative to the finite-element analysis or subgridding, coordinate transformation is used to “stretch” the fine-structured cladding of a Bragg fiber, and then the fullvector, equidistant-grid finite-difference computations of the modal structure are performed.......As an alternative to the finite-element analysis or subgridding, coordinate transformation is used to “stretch” the fine-structured cladding of a Bragg fiber, and then the fullvector, equidistant-grid finite-difference computations of the modal structure are performed....

  12. On the Robustness and Prospects of Adaptive BDDC Methods for Finite Element Discretizations of Elliptic PDEs with High-Contrast Coefficients

    KAUST Repository

    Zampini, Stefano

    2016-06-02

    Balancing Domain Decomposition by Constraints (BDDC) methods have proven to be powerful preconditioners for large and sparse linear systems arising from the finite element discretization of elliptic PDEs. Condition number bounds can be theoretically established that are independent of the number of subdomains of the decomposition. The core of the methods resides in the design of a larger and partially discontinuous finite element space that allows for fast application of the preconditioner, where Cholesky factorizations of the subdomain finite element problems are additively combined with a coarse, global solver. Multilevel and highly-scalable algorithms can be obtained by replacing the coarse Cholesky solver with a coarse BDDC preconditioner. BDDC methods have the remarkable ability to control the condition number, since the coarse space of the preconditioner can be adaptively enriched at the cost of solving local eigenproblems. The proper identification of these eigenproblems extends the robustness of the methods to any heterogeneity in the distribution of the coefficients of the PDEs, not only when the coefficients jumps align with the subdomain boundaries or when the high contrast regions are confined to lie in the interior of the subdomains. The specific adaptive technique considered in this paper does not depend upon any interaction of discretization and partition; it relies purely on algebraic operations. Coarse space adaptation in BDDC methods has attractive algorithmic properties, since the technique enhances the concurrency and the arithmetic intensity of the preconditioning step of the sparse implicit solver with the aim of controlling the number of iterations of the Krylov method in a black-box fashion, thus reducing the number of global synchronization steps and matrix vector multiplications needed by the iterative solver; data movement and memory bound kernels in the solve phase can be thus limited at the expense of extra local ops during the setup of

  13. Accurate finite difference beam propagation method for complex integrated optical structures

    DEFF Research Database (Denmark)

    Rasmussen, Thomas; Povlsen, Jørn Hedegaard; Bjarklev, Anders Overgaard

    1993-01-01

    A simple and effective finite-difference beam propagation method in a z-varying nonuniform mesh is developed. The accuracy and computation time for this method are compared with a standard finite-difference method for both the 3-D and 2-D versions...

  14. Finite-Time Synchronization of Chaotic Systems with Different Dimension and Secure Communication

    Directory of Open Access Journals (Sweden)

    Shouquan Pang

    2016-01-01

    Full Text Available Finite-time synchronization of chaotic systems with different dimension and secure communication is investigated. It is rigorously proven that global finite-time synchronization can be achieved between three-dimension Lorenz chaotic system and four-dimension Lorenz hyperchaotic system which have certain parameters or uncertain parameters. The electronic circuits of finite-time synchronization using Multisim 12 are designed to verify our conclusion. And the application to the secure communications is also analyzed and discussed.

  15. Discrete Mixed Petrov-Galerkin Finite Element Method for a Fourth-Order Two-Point Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    L. Jones Tarcius Doss

    2012-01-01

    Full Text Available A quadrature-based mixed Petrov-Galerkin finite element method is applied to a fourth-order linear ordinary differential equation. After employing a splitting technique, a cubic spline trial space and a piecewise linear test space are considered in the method. The integrals are then replaced by the Gauss quadrature rule in the formulation itself. Optimal order a priori error estimates are obtained without any restriction on the mesh.

  16. Finite elements and approximation

    CERN Document Server

    Zienkiewicz, O C

    2006-01-01

    A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o

  17. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    Science.gov (United States)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  18. A finite difference treatment of differential equation systems with widely differing time constants

    International Nuclear Information System (INIS)

    Dalton, G.R.; Gamble, M.T.

    1983-01-01

    A consistent method of solving systems of coupled time-dependent differential equations with vastly divergent time constants has been developed. This method is directly applicable to finite difference techniques of solutions using matrix algebra. Application to systems of isotope burnup and buildup equations with time constants ranging from minutes to millions of years demonstrates the utility of the method. Similarity to the prompt jump method of reactor kinetics indicates applicability to a wider range of positive as well as negative time constant systems

  19. Application of compact finite-difference schemes to simulations of stably stratified fluid flows

    Czech Academy of Sciences Publication Activity Database

    Bodnár, Tomáš; Beneš, L.; Fraunie, P.; Kozel, Karel

    2012-01-01

    Roč. 219, č. 7 (2012), s. 3336-3353 ISSN 0096-3003 Institutional support: RVO:61388998 Keywords : stratification * finite-difference * finite-volume * Runge-Kutta Subject RIV: BA - General Mathematics Impact factor: 1.349, year: 2012 http://www.sciencedirect.com/science/article/pii/S0096300311010988

  20. A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction-Diffusion Equations on Surfaces.

    Science.gov (United States)

    Shankar, Varun; Wright, Grady B; Kirby, Robert M; Fogelson, Aaron L

    2016-06-01

    In this paper, we present a method based on Radial Basis Function (RBF)-generated Finite Differences (FD) for numerically solving diffusion and reaction-diffusion equations (PDEs) on closed surfaces embedded in ℝ d . Our method uses a method-of-lines formulation, in which surface derivatives that appear in the PDEs are approximated locally using RBF interpolation. The method requires only scattered nodes representing the surface and normal vectors at those scattered nodes. All computations use only extrinsic coordinates, thereby avoiding coordinate distortions and singularities. We also present an optimization procedure that allows for the stabilization of the discrete differential operators generated by our RBF-FD method by selecting shape parameters for each stencil that correspond to a global target condition number. We show the convergence of our method on two surfaces for different stencil sizes, and present applications to nonlinear PDEs simulated both on implicit/parametric surfaces and more general surfaces represented by point clouds.

  1. Approximation of eigenvalues of some unbounded self-adjoint discrete Jacobi matrices by eigenvalues of finite submatrices

    Directory of Open Access Journals (Sweden)

    Maria Malejki

    2007-01-01

    Full Text Available We investigate the problem of approximation of eigenvalues of some self-adjoint operator in the Hilbert space \\(l^2(\\mathbb{N}\\ by eigenvalues of suitably chosen principal finite submatrices of an infinite Jacobi matrix that defines the operator considered. We assume the Jacobi operator is bounded from below with compact resolvent. In our research we estimate the asymptotics (with \\(n\\to \\infty\\ of the joint error of approximation for the first \\(n\\ eigenvalues and eigenvectors of the operator by the eigenvalues and eigenvectors of the finite submatrix of order \\(n \\times n\\. The method applied in our research is based on the Rayleigh-Ritz method and Volkmer's results included in [H. Volkmer, Error Estimates for Rayleigh-Ritz Approximations of Eigenvalues and Eigenfunctions of the Mathieu and Spheroidal Wave Equation, Constr. Approx. 20 (2004, 39-54]. We extend the method to cover a class of infinite symmetric Jacobi matrices with three diagonals satisfying some polynomial growth estimates.

  2. Residual Z{sub 2} symmetries and leptonic mixing patterns from finite discrete subgroups of U(3)

    Energy Technology Data Exchange (ETDEWEB)

    Joshipura, Anjan S. [Physical Research Laboratory,Navarangpura, Ahmedabad 380 009 (India); Patel, Ketan M. [Indian Institute of Science Education and Research, Mohali,Knowledge City, Sector 81, S A S Nagar, Manauli 140 306 (India)

    2017-01-30

    We study embedding of non-commuting Z{sub 2} and Z{sub m}, m≥3 symmetries in discrete subgroups (DSG) of U(3) and analytically work out the mixing patterns implied by the assumption that Z{sub 2} and Z{sub m} describe the residual symmetries of the neutrino and the charged lepton mass matrices respectively. Both Z{sub 2} and Z{sub m} are assumed to be subgroups of a larger discrete symmetry group G{sub f} possessing three dimensional faithful irreducible representation. The residual symmetries predict the magnitude of a column of the leptonic mixing matrix U{sub PMNS} which are studied here assuming G{sub f} as the DSG of SU(3) designated as type C and D and large number of DSG of U(3) which are not in SU(3). These include the known group series Σ(3n{sup 3}), T{sub n}(m), Δ(3n{sup 2},m), Δ(6n{sup 2},m) and Δ{sup ′}(6n{sup 2},j,k). It is shown that the predictions for a column of |U{sub PMNS}| in these group series and the C and D types of groups are all contained in the predictions of the Δ(6N{sup 2}) groups for some integer N. The Δ(6N{sup 2}) groups therefore represent a sufficient set of G{sub f} to obtain predictions of the residual symmetries Z{sub 2} and Z{sub m}.

  3. Finite difference analysis of an advance core pre-reinforcement system for Toulon's south tube

    Directory of Open Access Journals (Sweden)

    Fethi Kitchah

    2016-10-01

    Full Text Available The stability of shallow tunnels excavated in full face has been a major challenge to the scientific community for a long time. In recent years, new techniques based on the installation of a pre-reinforcement system ahead of the tunnel face were developed to control the deformations and surface settlements induced by the excavation and to ensure the sustainability of the tunnel in the long term. In this paper, a finite difference numerical simulation was conducted to study the behaviors and effects of two pre-reinforcement systems, i.e. the face bolting and the umbrella arch system installed in a section of southern Toulon tunnel in France. For this purpose, two approaches were taken and compared: a two-dimensional (2D approach based on the convergence–confinement method, and a three-dimensional (3D approach taking into account the complete modeling of the tunnel. A 2D numerical back-analysis was performed to identify the geomechanical parameters that offer satisfactory agreement with the measurement results. The limit of this method lies in the exact choice of the stress relaxation ratio λ. To overcome this uncertainty, a 3D model was developed, which permitted to study the influence of different pre-support systems on the reaction of ground mass. Both 2D and 3D numerical approaches have been fitted to measurements recorded in a section of the Toulon tunnel and the very satisfactory correspondence has allowed validating the simulations. The results show that the 3D numerical analysis with a full discretization of the inclusions seems unquestionably the most reliable approach.

  4. On equivalence of discrete-discrete and continuum-discrete design sensitivity analysis

    Science.gov (United States)

    Choi, Kyung K.; Twu, Sung-Ling

    1989-01-01

    Developments in design sensitivity analysis (DSA) method have been made using two fundamentally different approaches as shown. In the first approach, a discretized structural finite element model is used to carry out DSA. There are three different methods in the discrete DSA approach: finite difference, semi-analytical, and analytical methods. The finite difference method is a popular one due to its simplicity, but a serious shortcoming of the method is the uncertainty in the choice of a perturbation step size of design variables. In the semi-analytical method, the derivatives of stiffness matrix is computed by finite differences, whereas in the analytical method, the derivatives are obtained analytically. For the shape design variable, computation of analytical derivative of stiffness matrix is quite costly. Because of this, the semi-analytical method is a popular choice in discrete shape DSA approach. However, recently, Barthelemy and Haftka presented that the semi-analytical method can have serious accuracy problems for shape design variables in structures modeled by beam, plate, truss, frame, and solid elements. They found that accuracy problems occur even for a simple cantilever beam. In the second approach, a continuum model of the structure is used to carry out DSA.

  5. Combined finite difference-lumped modelling of fluid loaded Cmut arrays

    Science.gov (United States)

    Meynier, Cyril; Teston, Franck; Jeanne, Edgard; Bernard, Jean Edouard; Certon, Dominique

    2010-01-01

    This paper describes a model based on mixed finite-difference - lumped modeling to compute the frequency response of cMUTs in array element. Electrical impedance and laser interferometry measurements are presented and compared with theory.

  6. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.

    Science.gov (United States)

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-10-16

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.

  7. A non-linear constrained optimization technique for the mimetic finite difference method

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Svyatskiy, Daniil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bertolazzi, Enrico [Univ. of Trento (Italy); Frego, Marco [Univ. of Trento (Italy)

    2014-09-30

    This is a strategy for the construction of monotone schemes in the framework of the mimetic finite difference method for the approximation of diffusion problems on unstructured polygonal and polyhedral meshes.

  8. Anti-Diffusive Finite Difference WENO Methods for Shallow Water with Transport of Pollutant

    National Research Council Canada - National Science Library

    Xu, Zhengfu; Shu, Chi-Wang

    2006-01-01

    In this paper, we further explore and apply our recent anti-diffusive flux corrected high order finite difference WENO schemes for conservation laws to compute the Saint-Venant system of shallow water...

  9. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources

    Science.gov (United States)

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  10. Consumers’ Preference for Sweet Peppers with different Process Attributes: A Discrete Choice Experiment in Taiwan

    Directory of Open Access Journals (Sweden)

    Ching-Hua Yeh

    2016-08-01

    Full Text Available Based on an online discrete choice experiment (DCE this study investigates the relative importance of food label information (country of origin, production methods, chemical residue testing (CRT and price for Taiwanese consumers’ in their purchase of sweet peppers. Results show that respondents focus mostly on the COO labeling during their sweet-pepper shopping, followed by price. Information concerning CRT results and production methods are of less importance. Our findings also indicate that interaction between attributes matter and that preference for attribute levels differs depending on socioeconomic characteristics.

  11. Discrete Curvatures and Discrete Minimal Surfaces

    KAUST Repository

    Sun, Xiang

    2012-06-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.

  12. Estimation of Interchannel Time Difference in Frequency Subbands Based on Nonuniform Discrete Fourier Transform

    Directory of Open Access Journals (Sweden)

    Qiu Bo

    2008-01-01

    Full Text Available Binaural cue coding (BCC is an efficient technique for spatial audio rendering by using the side information such as interchannel level difference (ICLD, interchannel time difference (ICTD, and interchannel correlation (ICC. Of the side information, the ICTD plays an important role to the auditory spatial image. However, inaccurate estimation of the ICTD may lead to the audio quality degradation. In this paper, we develop a novel ICTD estimation algorithm based on the nonuniform discrete Fourier transform (NDFT and integrate it with the BCC approach to improve the decoded auditory image. Furthermore, a new subjective assessment method is proposed for the evaluation of auditory image widths of decoded signals. The test results demonstrate that the NDFT-based scheme can achieve much wider and more externalized auditory image than the existing BCC scheme based on the discrete Fourier transform (DFT. It is found that the present technique, regardless of the image width, does not deteriorate the sound quality at the decoder compared to the traditional scheme without ICTD estimation.

  13. A proton therapy model using discrete difference equations with an example of treating hepatocellular carcinoma.

    Science.gov (United States)

    Bodine, Erin N; Monia, K Lars

    2017-08-01

    Proton therapy is a type of radiation therapy used to treat cancer. It provides more localized particle exposure than other types of radiotherapy (e.g., x-ray and electron) thus reducing damage to tissue surrounding a tumor and reducing unwanted side effects. We have developed a novel discrete difference equation model of the spatial and temporal dynamics of cancer and healthy cells before, during, and after the application of a proton therapy treatment course. Specifically, the model simulates the growth and diffusion of the cancer and healthy cells in and surrounding a tumor over one spatial dimension (tissue depth) and the treatment of the tumor with discrete bursts of proton radiation. We demonstrate how to use data from in vitro and clinical studies to parameterize the model. Specifically, we use data from studies of Hepatocellular carcinoma, a common form of liver cancer. Using the parameterized model we compare the ability of different clinically used treatment courses to control the tumor. Our results show that treatment courses which use conformal proton therapy (targeting the tumor from multiple angles) provides better control of the tumor while using lower treatment doses than a non-conformal treatment course, and thus should be recommend for use when feasible.

  14. Fitted-Stable Finite Difference Method for Singularly Perturbed Two ...

    African Journals Online (AJOL)

    A fitted-stable central difference method is presented for solving singularly perturbed two point boundary value problems with the boundary layer at one end (left or right) of the interval. A fitting factor is introduced in second order stable central difference scheme (SCD Method) and its value is obtained using the theory of ...

  15. Stress Wave Propagation in Cracked Geological Solids Using Finite Difference Scheme

    Science.gov (United States)

    Kakavas, P. A.; Kalapodis, N. A.

    The aim of this study is the numerical computation of the wave propagation in crack geological solids. The finite difference method was applied to solve the differential equations involved in the problem. Since the problem is symmetric, we prefer to use this technique instead of the finite element method and/or boundary elements technique. A comparison of the numerical results with analytical solutions is provided.

  16. A finite element study on stress distribution of two different attachment designs under implant supported overdenture

    OpenAIRE

    El-Anwar, Mohamed I.; Yousief, Salah A.; Soliman, Tarek A.; Saleh, Mahmoud M.; Omar, Wael S.

    2015-01-01

    Objective: This study aimed to evaluate stress patterns generated within implant-supported mandibular overdentures retained by two different attachment types: ball and socket and locator attachments. Materials and methods: Commercial CAD/CAM and finite element analysis software packages were utilized to construct two 3D finite element models for the two attachment types. Unilateral masticatory compressive loads of 50, 100, and 150 N were applied vertically to the overdentures, parallel to ...

  17. Numerical solution of the state-delayed optimal control problems by a fast and accurate finite difference θ-method

    Science.gov (United States)

    Hajipour, Mojtaba; Jajarmi, Amin

    2018-02-01

    Using the Pontryagin's maximum principle for a time-delayed optimal control problem results in a system of coupled two-point boundary-value problems (BVPs) involving both time-advance and time-delay arguments. The analytical solution of this advance-delay two-point BVP is extremely difficult, if not impossible. This paper provides a discrete general form of the numerical solution for the derived advance-delay system by applying a finite difference θ-method. This method is also implemented for the infinite-time horizon time-delayed optimal control problems by using a piecewise version of the θ-method. A matrix formulation and the error analysis of the suggested technique are provided. The new scheme is accurate, fast and very effective for the optimal control of linear and nonlinear time-delay systems. Various types of finite- and infinite-time horizon problems are included to demonstrate the accuracy, validity and applicability of the new technique.

  18. Wing-Body Aeroelasticity Using Finite-Difference Fluid/Finite-Element Structural Equations on Parallel Computers

    Science.gov (United States)

    Byun, Chansup; Guruswamy, Guru P.; Kutler, Paul (Technical Monitor)

    1994-01-01

    In recent years significant advances have been made for parallel computers in both hardware and software. Now parallel computers have become viable tools in computational mechanics. Many application codes developed on conventional computers have been modified to benefit from parallel computers. Significant speedups in some areas have been achieved by parallel computations. For single-discipline use of both fluid dynamics and structural dynamics, computations have been made on wing-body configurations using parallel computers. However, only a limited amount of work has been completed in combining these two disciplines for multidisciplinary applications. The prime reason is the increased level of complication associated with a multidisciplinary approach. In this work, procedures to compute aeroelasticity on parallel computers using direct coupling of fluid and structural equations will be investigated for wing-body configurations. The parallel computer selected for computations is an Intel iPSC/860 computer which is a distributed-memory, multiple-instruction, multiple data (MIMD) computer with 128 processors. In this study, the computational efficiency issues of parallel integration of both fluid and structural equations will be investigated in detail. The fluid and structural domains will be modeled using finite-difference and finite-element approaches, respectively. Results from the parallel computer will be compared with those from the conventional computers using a single processor. This study will provide an efficient computational tool for the aeroelastic analysis of wing-body structures on MIMD type parallel computers.

  19. Finite-Horizon Near-Optimal Output Feedback Neural Network Control of Quantized Nonlinear Discrete-Time Systems With Input Constraint.

    Science.gov (United States)

    Xu, Hao; Zhao, Qiming; Jagannathan, Sarangapani

    2015-08-01

    The output feedback-based near-optimal regulation of uncertain and quantized nonlinear discrete-time systems in affine form with control constraint over finite horizon is addressed in this paper. First, the effect of input constraint is handled using a nonquadratic cost functional. Next, a neural network (NN)-based Luenberger observer is proposed to reconstruct both the system states and the control coefficient matrix so that a separate identifier is not needed. Then, approximate dynamic programming-based actor-critic framework is utilized to approximate the time-varying solution of the Hamilton-Jacobi-Bellman using NNs with constant weights and time-dependent activation functions. A new error term is defined and incorporated in the NN update law so that the terminal constraint error is also minimized over time. Finally, a novel dynamic quantizer for the control inputs with adaptive step size is designed to eliminate the quantization error overtime, thus overcoming the drawback of the traditional uniform quantizer. The proposed scheme functions in a forward-in-time manner without offline training phase. Lyapunov analysis is used to investigate the stability. Simulation results are given to show the effectiveness and feasibility of the proposed method.

  20. An investigation of Newton-Krylov algorithms for solving incompressible and low Mach number compressible fluid flow and heat transfer problems using finite volume discretization

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, P.R.

    1995-10-01

    Fully coupled, Newton-Krylov algorithms are investigated for solving strongly coupled, nonlinear systems of partial differential equations arising in the field of computational fluid dynamics. Primitive variable forms of the steady incompressible and compressible Navier-Stokes and energy equations that describe the flow of a laminar Newtonian fluid in two-dimensions are specifically considered. Numerical solutions are obtained by first integrating over discrete finite volumes that compose the computational mesh. The resulting system of nonlinear algebraic equations are linearized using Newton`s method. Preconditioned Krylov subspace based iterative algorithms then solve these linear systems on each Newton iteration. Selected Krylov algorithms include the Arnoldi-based Generalized Minimal RESidual (GMRES) algorithm, and the Lanczos-based Conjugate Gradients Squared (CGS), Bi-CGSTAB, and Transpose-Free Quasi-Minimal Residual (TFQMR) algorithms. Both Incomplete Lower-Upper (ILU) factorization and domain-based additive and multiplicative Schwarz preconditioning strategies are studied. Numerical techniques such as mesh sequencing, adaptive damping, pseudo-transient relaxation, and parameter continuation are used to improve the solution efficiency, while algorithm implementation is simplified using a numerical Jacobian evaluation. The capabilities of standard Newton-Krylov algorithms are demonstrated via solutions to both incompressible and compressible flow problems. Incompressible flow problems include natural convection in an enclosed cavity, and mixed/forced convection past a backward facing step.

  1. Convergence of Crank-Nicolson-Galerkin discrete scheme for ...

    African Journals Online (AJOL)

    We studied the maximum-norm error estimate for the Galerkin finite element discretization in time of a stochastic wave equation by the Crank-Nicolson time stepping finite difference method. The error estimate was obtained by using the notions of rational function and resolvent estimates.

  2. ORIGINAL ARTICLE Fitted-Stable Finite Difference Method for ...

    African Journals Online (AJOL)

    Gemechis

    A fitted-stable central difference method is presented for solving singularly perturbed two point boundary value problems with the ..... Approximating the converted error term, which have the stabilizing effect (Choo and. Schultz, 1993), in Eq. (8) by using the ... is the local truncation error. Introducing the fitting factor σ into Eq.

  3. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    This cavity was restored with three different materials (Group I: Resin composite, Group II: Glass ionomer cement, and Group III: Amalgam). Loads of 400 N were applied at an angle of 90° to the longitudinal axis of the tooth on the restorative material at 5 and 55°C temperatures. Von Mises and thermal stress distributions.

  4. Preferences for managing symptoms of differing severity: a discrete choice experiment.

    Science.gov (United States)

    Rennie, Lisa; Porteous, Terry; Ryan, Mandy

    2012-12-01

    To design cost-effective health services it is important to understand why people adopt particular symptom management strategies. To establish the relative importance of factors that influence decision making when managing symptoms of differing severity, to establish how people trade between these factors, and to estimate the monetary value placed on different management types. Discrete choice experiment. UK online research panel. Successive members of an online panel were invited to participate until 480 discrete choice experiment questionnaires were completed. Relative preferences for managing three symptom scenarios of varying severity were measured. Symptom management was described by three characteristics (management type, availability, and cost). Preferences for ways of managing symptoms were measured by using conditional logit analysis. A total of 98.5% of the completed questionnaires were valid (473 of 480 respondents). People preferred to manage minor symptoms by self-care or by visiting a pharmacy and were willing to pay £21.58 and £19.06, respectively, to do so. For managing moderately severe symptoms, people preferred to consult a general practitioner and were willing to pay £34.86 for this option. People preferred to manage potentially very severe symptoms by consulting a general practitioner and were willing to pay £73.08 to do so. Respondents were willing to trade between management types; options less preferred became more attractive when waiting time and cost were reduced. People value self-care, supported self-care, and general practitioner consultation differently depending on the type of symptoms. Manipulating costs to users and waiting times for different services could allow policymakers to influence the services people choose when managing symptoms. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  5. Compatible Spatial Discretizations for Partial Differential Equations

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Douglas, N, ed.

    2004-11-25

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical

  6. Quarter-Sweep Iteration Concept on Conjugate Gradient Normal Residual Method via Second Order Quadrature - Finite Difference Schemes for Solving Fredholm Integro-Differential Equations

    International Nuclear Information System (INIS)

    Aruchunan, E.

    2015-01-01

    In this paper, we have examined the effectiveness of the quarter-sweep iteration concept on conjugate gradient normal residual (CGNR) iterative method by using composite Simpson's (CS) and finite difference (FD) discretization schemes in solving Fredholm integro-differential equations. For comparison purposes, Gauss- Seidel (GS) and the standard or full- and half-sweep CGNR methods namely FSCGNR and HSCGNR are also presented. To validate the efficacy of the proposed method, several analyses were carried out such as computational complexity and percentage reduction on the proposed and existing methods. (author)

  7. Numerical stability of the Saul'yev finite difference algorithms for electrochemical kinetic simulations: Matrix stability analysis for an example problem involving mixed boundary conditions

    DEFF Research Database (Denmark)

    Bieniasz, Leslaw K.; Østerby, Ole; Britz, Dieter

    1995-01-01

    The stepwise numerical stability of the Saul'yev finite difference discretization of an example diffusional initial boundary value problem from electrochemical kinetics has been investigated using the matrix method of stability analysis. Special attention has been paid to the effect...... of unconditional stability of the Saul'yev algorithms, reported in the literature, the left-right variant of the Saul'yev algorithm becomes unstable for large values of the dimensionless diffusion parameter λ = δt/h2, under mixed boundary conditions. This limitation is not, however, severe for most practical...

  8. Solving the nonlinear Schrödinger equation using cubic B-spline interpolation and finite difference methods on dual solitons

    Science.gov (United States)

    Ahmad, Azhar; Azmi, Amirah; Majid, Ahmad Abd.; Hamid, Nur Nadiah Abd

    2017-04-01

    In this paper, Nonlinear Schrödinger (NLS) equation with Neumann boundary conditions is solved using cubic B-spline interpolation method (CuBSIM) and finite difference method (FDM). Firstly, FDM is applied on the time discretization and cubic B-spline is utilized as an interpolation function in the space dimension with the help of theta-weighted method. The second approach is based on the FDM applied on the time and space discretization with the help of theta-weighted method. The CuBSIM is shown to be stable by using von Neumann stability analysis. The proposed method is tested on the interaction of the dual solitons of the NLS equation. The accuracy of the numerical results is measured by the Euclidean-norm and infinity-norm. CuBSIM is found to produce more accurate results than the FDM.

  9. A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation

    KAUST Repository

    Wu, Zedong

    2018-04-05

    Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is is highly accurate and efficient.

  10. Formulation of coarse mesh finite difference to calculate mathematical adjoint flux

    International Nuclear Information System (INIS)

    Pereira, Valmir; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2002-01-01

    The objective of this work is the obtention of the mathematical adjoint flux, having as its support the nodal expansion method (NEM) for coarse mesh problems. Since there are difficulties to evaluate this flux by using NEM. directly, a coarse mesh finite difference program was developed to obtain this adjoint flux. The coarse mesh finite difference formulation (DFMG) adopted uses results of the direct calculation (node average flux and node face averaged currents) obtained by NEM. These quantities (flux and currents) are used to obtain the correction factors which modify the classical finite differences formulation . Since the DFMG formulation is also capable of calculating the direct flux it was also tested to obtain this flux and it was verified that it was able to reproduce with good accuracy both the flux and the currents obtained via NEM. In this way, only matrix transposition is needed to calculate the mathematical adjoint flux. (author)

  11. Accuracy of finite-difference modeling of seismic waves : Simulation versus laboratory measurements

    Science.gov (United States)

    Arntsen, B.

    2017-12-01

    The finite-difference technique for numerical modeling of seismic waves is still important and for some areas extensively used.For exploration purposes is finite-difference simulation at the core of both traditional imaging techniques such as reverse-time migration and more elaborate Full-Waveform Inversion techniques.The accuracy and fidelity of finite-difference simulation of seismic waves are hard to quantify and meaningfully error analysis is really onlyeasily available for simplistic media. A possible alternative to theoretical error analysis is provided by comparing finite-difference simulated data with laboratory data created using a scale model. The advantage of this approach is the accurate knowledge of the model, within measurement precision, and the location of sources and receivers.We use a model made of PVC immersed in water and containing horizontal and tilted interfaces together with several spherical objects to generateultrasonic pressure reflection measurements. The physical dimensions of the model is of the order of a meter, which after scaling represents a model with dimensions of the order of 10 kilometer and frequencies in the range of one to thirty hertz.We find that for plane horizontal interfaces the laboratory data can be reproduced by the finite-difference scheme with relatively small error, but for steeply tilted interfaces the error increases. For spherical interfaces the discrepancy between laboratory data and simulated data is sometimes much more severe, to the extent that it is not possible to simulate reflections from parts of highly curved bodies. The results are important in view of the fact that finite-difference modeling is often at the core of imaging and inversion algorithms tackling complicatedgeological areas with highly curved interfaces.

  12. 222 Rn study throughout different seismotectonical areas: comparison between different techniques for discrete monitoring

    Directory of Open Access Journals (Sweden)

    L. Pizzino

    2000-06-01

    Full Text Available n the frame of the geochemical monitoring of seismicity mainly aimed at deepening the relationships between active seismotectonics and fluid geochemistry, i.e. earthquake prediction, a 222 Rn study was accomplished. It is addressed to inter-calibrate in diverse tectonic settings different methods to measure radon in groundwater: Alpha Scintillation Method using Lucas Cells (ASM-LCC and Gamma Spectrometry Method (GSM, adopting both the Charcoal Trap Method (CTM by Active Charcoals Canisters (ACC and the Beaker Marinelli (BM sampling devices. The intercalibration occurred on the field as well as in the laboratory, to finally select the best-fitting to gather radon information in each situation. Three Italian areas were selected to verify radon behavior and background concentration in different seismotectonical, geo-structural and lithological settings: ancient metamorphosed rocks – quiescent faults (Eastern Alps, carbonate foreland – active faults (Gargano and quiescent volcanic structure overlapping a carbonate basement – swarm seismic activity (Colli Albani. The high radon concentration variability and the factors affecting radon behavior in groundwater (i.e. carrier gases presence, convection along fault systems, lithology influence, etc. strongly constrain the measurement method to be adopted. The results point out apparently that the ASM-LCC method may be useful for expeditious and quick response of groundwater radon concentration during geochemical surveys aimed at grossly detecting the presence of tectonic structures, the deepening of circulation or the peculiar geological features linked to the presence of U-Th minerals. This method is not reliable for accurate measurements, while the GSM methods showed low standard deviation (higher precision with respect ASM-LCC and accurate radon measurements. Finally, a customized DINCE Standard Radiactive Source (DSRS was set up, and first used for the efficient estimation of the ING available

  13. Finite Difference Methods for Option Pricing under Lévy Processes: Wiener-Hopf Factorization Approach

    OpenAIRE

    Kudryavtsev, Oleg

    2013-01-01

    In the paper, we consider the problem of pricing options in wide classes of Lévy processes. We propose a general approach to the numerical methods based on a finite difference approximation for the generalized Black-Scholes equation. The goal of the paper is to incorporate the Wiener-Hopf factorization into finite difference methods for pricing options in Lévy models with jumps. The method is applicable for pricing barrier and American options. The pricing problem is reduced to the sequence o...

  14. Numerical solution of a diffusion problem by exponentially fitted finite difference methods.

    Science.gov (United States)

    D'Ambrosio, Raffaele; Paternoster, Beatrice

    2014-01-01

    This paper is focused on the accurate and efficient solution of partial differential differential equations modelling a diffusion problem by means of exponentially fitted finite difference numerical methods. After constructing and analysing special purpose finite differences for the approximation of second order partial derivatives, we employed them in the numerical solution of a diffusion equation with mixed boundary conditions. Numerical experiments reveal that a special purpose integration, both in space and in time, is more accurate and efficient than that gained by employing a general purpose solver.

  15. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics

    CERN Document Server

    Gedney, Stephen

    2011-01-01

    Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to p

  16. Numerical Simulation on Seismic Response of the Filled Joint under High Amplitude Stress Waves Using Finite-Discrete Element Method (FDEM).

    Science.gov (United States)

    Huang, Xiaolin; Zhao, Qi; Qi, Shengwen; Xia, Kaiwen; Grasselli, Giovanni; Chen, Xuguang

    2016-12-27

    This paper numerically investigates the seismic response of the filled joint under high amplitude stress waves using the combined finite-discrete element method (FDEM). A thin layer of independent polygonal particles are used to simulate the joint fillings. Each particle is meshed using the Delaunay triangulation scheme and can be crushed when the load exceeds its strength. The propagation of the 1D longitude wave through a single filled joint is studied, considering the influences of the joint thickness and the characteristics of the incident wave, such as the amplitude and frequency. The results show that the filled particles under high amplitude stress waves mainly experience three deformation stages: (i) initial compaction stage; (ii) crushing stage; and (iii) crushing and compaction stage. In the initial compaction stage and crushing and compaction stage, compaction dominates the mechanical behavior of the joint, and the particle area distribution curve varies little. In these stages, the transmission coefficient increases with the increase of the amplitude, i.e., peak particle velocity (PPV), of the incident wave. On the other hand, in the crushing stage, particle crushing plays the dominant role. The particle size distribution curve changes abruptly with the PPV due to the fragments created by the crushing process. This process consumes part of wave energy and reduces the stiffness of the filled joint. The transmission coefficient decreases with increasing PPV in this stage because of the increased amount of energy consumed by crushing. Moreover, with the increase of the frequency of the incident wave, the transmission coefficient decreases and fewer particles can be crushed. Under the same incident wave, the transmission coefficient decreases when the filled thickness increases and the filled particles become more difficult to be crushed.

  17. Numerical Simulation on Seismic Response of the Filled Joint under High Amplitude Stress Waves Using Finite-Discrete Element Method (FDEM

    Directory of Open Access Journals (Sweden)

    Xiaolin Huang

    2016-12-01

    Full Text Available This paper numerically investigates the seismic response of the filled joint under high amplitude stress waves using the combined finite-discrete element method (FDEM. A thin layer of independent polygonal particles are used to simulate the joint fillings. Each particle is meshed using the Delaunay triangulation scheme and can be crushed when the load exceeds its strength. The propagation of the 1D longitude wave through a single filled joint is studied, considering the influences of the joint thickness and the characteristics of the incident wave, such as the amplitude and frequency. The results show that the filled particles under high amplitude stress waves mainly experience three deformation stages: (i initial compaction stage; (ii crushing stage; and (iii crushing and compaction stage. In the initial compaction stage and crushing and compaction stage, compaction dominates the mechanical behavior of the joint, and the particle area distribution curve varies little. In these stages, the transmission coefficient increases with the increase of the amplitude, i.e., peak particle velocity (PPV, of the incident wave. On the other hand, in the crushing stage, particle crushing plays the dominant role. The particle size distribution curve changes abruptly with the PPV due to the fragments created by the crushing process. This process consumes part of wave energy and reduces the stiffness of the filled joint. The transmission coefficient decreases with increasing PPV in this stage because of the increased amount of energy consumed by crushing. Moreover, with the increase of the frequency of the incident wave, the transmission coefficient decreases and fewer particles can be crushed. Under the same incident wave, the transmission coefficient decreases when the filled thickness increases and the filled particles become more difficult to be crushed.

  18. ANALYSIS OF NON-CIRCULAR MEMBERS SUBJECTED TO TWISTING LOADS: A FINITE DIFFERENCE APPROACH

    Directory of Open Access Journals (Sweden)

    Chaitanya Goteti

    2015-09-01

    Full Text Available Abstract Many torque carrying members have circular sections such as shafts. However, there are certain structural members like automotive chassis frames, cross members and machine frames which are often subjected to twisting loads and their cross sections are non circular. several methods were developed to analyze such sections such as Saint Venant’s semi inverse method, Prandtl’s elastic membrane analogy...etc. In this paper, the second order partial differential stress function equation for non-circular torsional members is applied on a rectangular section for different b/h (height /width of section values and the solutions for maximum torsional shear stress are found by employing second order finite difference method. The results are compared to the results obtained from commercial finite element software (ANSYS 10 and by direct solution of the stress function equation using analytical correlations available for rectangular sections. The results obtained by different approaches are in close congruence with a percentage deviation of only 3.22. It is observed that, in implementing second order finite difference scheme, the error in estimating stress is proportional to S2. Where “S” is the grid size.   Keywords: Non-Circular Section, Prandtl’s stress function, Finite difference scheme, Grid size

  19. Comparison of the calculated neutron noise using finite differences and the Analytical Nodal Method

    International Nuclear Information System (INIS)

    Larsson, Viktor; Demazière, Christophe

    2012-01-01

    Highlights: ► Numerical neutron noise calculations for a commercial PWR. ► Comparison using finite differences and the Analytical Nodal Method. ► Little gain for the higher cost of more advanced methods. ► Finite difference adequate for neutron noise calculations. - Abstract: In this paper, a comparison of the calculated neutron noise, i.e. the fluctuation of the neutron flux around its average value assuming that all processes are stationary, is conducted, where the neutron noise is calculated using finite differences alone and with finite differences where the Analytical Nodal Method is used to correct the neutron currents, respectively. It is seen that the lower the frequency of the noise source, the larger difference between the two solutions. The main conclusion from this work is that the gain of calculating the neutron noise using the more sophisticated Analytical Nodal Method compared to the increase of the corresponding computational burden is too little to motivate the use of the ANM.

  20. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model.

    Science.gov (United States)

    Ackleh, Azmy S; Chellamuthu, Vinodh K; Ito, Kazufumi

    2015-04-01

    We study a quasilinear hierarchically size-structured population model presented in [4]. In this model the growth, mortality and reproduction rates are assumed to depend on a function of the population density. In [4] we showed that solutions to this model can become singular (measure-valued) in finite time even if all the individual parameters are smooth. Therefore, in this paper we develop a first order finite difference scheme to compute these measure-valued solutions. Convergence analysis for this method is provided. We also develop a high resolution second order scheme to compute the measure-valued solution of the model and perform a comparative study between the two schemes.

  1. Finite-difference time domain solution of light scattering by arbitrarily shaped particles and surfaces

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Sun, Wenbo

    2012-01-01

    This chapter reviews the fundamental methods and some of the applications of the three-dimensional (3D) finite-difference time-domain (FDTD) technique for the modeling of light scattering by arbitrarily shaped dielectric particles and surfaces. The emphasis is on the details of the FDTD algorithm...

  2. The finite-difference time-domain method for electromagnetics with Matlab simulations

    CERN Document Server

    Elsherbeni, Atef Z

    2016-01-01

    This book introduces the powerful Finite-Difference Time-Domain method to students and interested researchers and readers. An effective introduction is accomplished using a step-by-step process that builds competence and confidence in developing complete working codes for the design and analysis of various antennas and microwave devices.

  3. On a Stable and Consistent Finite Difference Scheme for a Time ...

    African Journals Online (AJOL)

    In this paper, a stable and consistent criterion to an explicit finite difference scheme for a time-dependent Schrodinger wave equation (TDSWE) was presented. This paper is a departure from the well-established time independent Schrodinger Wave Equation (SWE). To develop the stability criterion for the scheme, the ...

  4. Stability of finite difference schemes for generalized von Foerster equations with renewal

    Directory of Open Access Journals (Sweden)

    Henryk Leszczyński

    2014-01-01

    Full Text Available We consider a von Foerster-type equation describing the dynamics of a population with the production of offsprings given by the renewal condition. We construct a finite difference scheme for this problem and give sufficient conditions for its stability with respect to \\(l^1\\ and \\(l^\\infty\\ norms.

  5. Numerical solution method of nonlinear guided modes with a finite difference complex axis beam propagation method

    NARCIS (Netherlands)

    Wijnands, F.H.G.M.; Wijnands, Frank; Hoekstra, Hugo; Krijnen, Gijsbertus J.M.; de Ridder, R.M.

    A method to construct modal fields for an arbitrary one- or two-dimensional intensity dependent refractive index structure is described. An arbitrary starting field is propagated along an imaginary axis using the Finite Difference Beam Propagation Method (FDBPM) based upon the Slowly Varying

  6. Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments

    DEFF Research Database (Denmark)

    Larsen, Casper; Cooke, David G.; Jepsen, Peter Uhd

    2011-01-01

    In this paper we report on the numerical analysis of a time-resolved terahertz (THz) spectroscopy experiment using a modified finite-difference time-domain method. Using this method, we show that ultrafast carrier dynamics can be extracted with a time resolution smaller than the duration of the THz...

  7. Development of a multigrid finite difference solver for benchmark permeability analysis

    NARCIS (Netherlands)

    Loendersloot, Richard; Grouve, Wouter Johannes Bernardus; Akkerman, Remko; de Boer, Andries; Michaud, V.

    2010-01-01

    A finite difference solver, dedicated to flow around fibre architectures is currently being developed. The complexity of the internal geometry of textile reinforcements results in extreme computation times, or inaccurate solutions. A compromise between the two is found by implementing a multigrid

  8. On the representation of functions and finite difference operators on adaptive sparse grids

    NARCIS (Netherlands)

    P.W. Hemker (Piet); F. Sprengel

    1999-01-01

    textabstractIn this paper we describe methods to approximate functions and differential operators on adaptive sparse grids. We distinguish between several representations of a function on the sparse grid, and we describe how finite difference (FD) operators can be applied to these representations.

  9. A nine-point finite difference scheme for one-dimensional wave equation

    Science.gov (United States)

    Szyszka, Barbara

    2017-07-01

    The paper is devoted to an implicit finite difference method (FDM) for solving initial-boundary value problems (IBVP) for one-dimensional wave equation. The second-order derivatives in the wave equation have been approximated at the four intermediate points, as a consequence, an implicit nine-point difference scheme has been obtained. Von Neumann stability analysis has been conducted and we have demonstrated, that the presented difference scheme is unconditionally stable.

  10. A New Accurate Finite-Difference Scheme Based on the Optimally Accurate Operators and Boundary-Condition Consistent Material Parameterization

    Science.gov (United States)

    Kristek, J.; Moczo, P.; Galis, M.

    2005-12-01

    Geller and Takeuchi (1995) developed optimally accurate finite-difference (FD) operators. The operators minimize the error of the numerical solution of the discretized equation of motion. The criterion for obtaining the optimally accurate operators requires that the leading term of the truncation error of the discretized homogeneous (without body-force term) equation of motion (that is if operand is an eigenfunction and frequency is equal to eigenfrequency) is zero. Consequently, the optimally accurate operators satisfy (up to the leading term of the truncation error) homogeneous equation of motion. The grid dispersion of an optimally accurate FD scheme is significantly smaller than that of a standard FD scheme. A heterogeneous FD scheme cannot be anything else than a FD approximation to the heterogeneous formulation of the equation of motion (the same form of the equation for a point away from a material discontinuity and a point at the material discontinuity). If an optimally accurate FD scheme for heterogeneous media is to be obtained, the optimally accurate operators have to be applied to the heterogeneous formulation of the equation of motion. Moczo et al. (2002) found a heterogeneous formulation and developed a FD scheme based on standard staggered-grid 4th-order operators. The scheme is capable to sense both smooth material heterogeneity and material discontinuity at any position in a spatial grid. We present a new FD scheme that combines optimally accurate operators of Geller and Takeuchi (1995) with a material parameterization of Moczo et al. (2002). Models of a single material discontinuity, interior constant-velocity layer, and interior layer with the velocity gradient were calculated with the new scheme, conventional-operator scheme and analytically. Numerical results clearly isolate and demonstrate effects of the boundary and grid dispersion. The results demonstrate significant accuracy improvement compared to previous FD schemes.

  11. Broadband ground motion simulation using a paralleled hybrid approach of Frequency Wavenumber and Finite Difference method

    Science.gov (United States)

    Chen, M.; Wei, S.

    2016-12-01

    The serious damage of Mexico City caused by the 1985 Michoacan earthquake 400 km away indicates that urban areas may be affected by remote earthquakes. To asses earthquake risk of urban areas imposed by distant earthquakes, we developed a hybrid Frequency Wavenumber (FK) and Finite Difference (FD) code implemented with MPI, since the computation of seismic wave propagation from a distant earthquake using a single numerical method (e.g. Finite Difference, Finite Element or Spectral Element) is very expensive. In our approach, we compute the incident wave field (ud) at the boundaries of the excitation box, which surrounding the local structure, using a paralleled FK method (Zhu and Rivera, 2002), and compute the total wave field (u) within the excitation box using a parallelled 2D FD method. We apply perfectly matched layer (PML) absorbing condition to the diffracted wave field (u-ud). Compared to previous Generalized Ray Theory and Finite Difference (Wen and Helmberger, 1998), Frequency Wavenumber and Spectral Element (Tong et al., 2014), and Direct Solution Method and Spectral Element hybrid method (Monteiller et al., 2013), our absorbing boundary condition dramatically suppress the numerical noise. The MPI implementation of our method can greatly speed up the calculation. Besides, our hybrid method also has a potential use in high resolution array imaging similar to Tong et al. (2014).

  12. High‐order rotated staggered finite difference modeling of 3D elastic wave propagation in general anisotropic media

    KAUST Repository

    Chu, Chunlei

    2009-01-01

    We analyze the dispersion properties and stability conditions of the high‐order convolutional finite difference operators and compare them with the conventional finite difference schemes. We observe that the convolutional finite difference method has better dispersion properties and becomes more efficient than the conventional finite difference method with the increasing order of accuracy. This makes the high‐order convolutional operator a good choice for anisotropic elastic wave simulations on rotated staggered grids since its enhanced dispersion properties can help to suppress the numerical dispersion error that is inherent in the rotated staggered grid structure and its efficiency can help us tackle 3D problems cost‐effectively.

  13. The Pairing Matrix in Discrete Electromagnetism On the Geometry of Discrete de Rham Currents

    CERN Document Server

    Auchmann, B

    2007-01-01

    We introduce pairing matrices on simplicial cell complexes in discrete electromagnetism as a means to avoid the explicit construction of a topologically dual complex. Interestingly, the Finite Element Method with first-order Whitney elements – when it is looked upon from a cell-method perspective – features pairing matrices and thus an implicitly defined dual mesh. We show that the pairing matrix can be used to construct discrete energy products. In this exercise we find that different formalisms lead to equivalent matrix representations. Discrete de Rham currents are an elegant way to subsume these geometrically equivalent but formally distinct ways of defining energy-products.

  14. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-09-01

    Full Text Available Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare with the results from the analytical method, the result from Laplace transform finite difference method turns out to be accurate. The influence factors are analyzed, including fractal dimension, fractal index, skin factor, well bore storage coefficient, energy storage ratio, interporosity flow coefficient and the adsorption factor. The calculating error of Laplace transform difference method is small. Laplace transform difference method has advantages in well-test application since any moment simulation does not rely on other moment results and space grid.

  15. On the Stability of the Finite Difference based Lattice Boltzmann Method

    KAUST Repository

    El-Amin, Mohamed

    2013-06-01

    This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.

  16. Different-Level Simultaneous Minimization Scheme for Fault Tolerance of Redundant Manipulator Aided with Discrete-Time Recurrent Neural Network.

    Science.gov (United States)

    Jin, Long; Liao, Bolin; Liu, Mei; Xiao, Lin; Guo, Dongsheng; Yan, Xiaogang

    2017-01-01

    By incorporating the physical constraints in joint space, a different-level simultaneous minimization scheme, which takes both the robot kinematics and robot dynamics into account, is presented and investigated for fault-tolerant motion planning of redundant manipulator in this paper. The scheme is reformulated as a quadratic program (QP) with equality and bound constraints, which is then solved by a discrete-time recurrent neural network. Simulative verifications based on a six-link planar redundant robot manipulator substantiate the efficacy and accuracy of the presented acceleration fault-tolerant scheme, the resultant QP and the corresponding discrete-time recurrent neural network.

  17. Finite difference numerical methods for boundary control problems governed by hyperbolic partial differential equations

    Science.gov (United States)

    Chen, G.; Zheng, Q.; Coleman, M.; Weerakoon, S.

    1983-01-01

    This paper briefly reviews convergent finite difference schemes for hyperbolic initial boundary value problems and their applications to boundary control systems of hyperbolic type which arise in the modelling of vibrations. These difference schemes are combined with the primal and the dual approaches to compute the optimal control in the unconstrained case, as well as the case when the control is subject to inequality constraints. Some of the preliminary numerical results are also presented.

  18. Optimally Accurate Second-Order Time-Domain Finite-Difference Scheme for Acoustic, Electromagnetic, and Elastic Wave Modeling

    Directory of Open Access Journals (Sweden)

    C. Bommaraju

    2005-01-01

    Full Text Available Numerical methods are extremely useful in solving real-life problems with complex materials and geometries. However, numerical methods in the time domain suffer from artificial numerical dispersion. Standard numerical techniques which are second-order in space and time, like the conventional Finite Difference 3-point (FD3 method, Finite-Difference Time-Domain (FDTD method, and Finite Integration Technique (FIT provide estimates of the error of discretized numerical operators rather than the error of the numerical solutions computed using these operators. Here optimally accurate time-domain FD operators which are second-order in time as well as in space are derived. Optimal accuracy means the greatest attainable accuracy for a particular type of scheme, e.g., second-order FD, for some particular grid spacing. The modified operators lead to an implicit scheme. Using the first order Born approximation, this implicit scheme is transformed into a two step explicit scheme, namely predictor-corrector scheme. The stability condition (maximum time step for a given spatial grid interval for the various modified schemes is roughly equal to that for the corresponding conventional scheme. The modified FD scheme (FDM attains reduction of numerical dispersion almost by a factor of 40 in 1-D case, compared to the FD3, FDTD, and FIT. The CPU time for the FDM scheme is twice of that required by the FD3 method. The simulated synthetic data for a 2-D P-SV (elastodynamics problem computed using the modified scheme are 30 times more accurate than synthetics computed using a conventional scheme, at a cost of only 3.5 times as much CPU time. The FDM is of particular interest in the modeling of large scale (spatial dimension is more or equal to one thousand wave lengths or observation time interval is very high compared to reference time step wave propagation and scattering problems, for instance, in ultrasonic antenna and synthetic scattering data modeling for Non

  19. Stability and non-standard finite difference method of the generalized Chua's circuit

    KAUST Repository

    Radwan, Ahmed G.

    2011-08-01

    In this paper, we develop a framework to obtain approximate numerical solutions of the fractional-order Chua\\'s circuit with Memristor using a non-standard finite difference method. Chaotic response is obtained with fractional-order elements as well as integer-order elements. Stability analysis and the condition of oscillation for the integer-order system are discussed. In addition, the stability analyses for different fractional-order cases are investigated showing a great sensitivity to small order changes indicating the poles\\' locations inside the physical s-plane. The GrnwaldLetnikov method is used to approximate the fractional derivatives. Numerical results are presented graphically and reveal that the non-standard finite difference scheme is an effective and convenient method to solve fractional-order chaotic systems, and to validate their stability. © 2011 Elsevier Ltd. All rights reserved.

  20. Modeling and Simulation of Hamburger Cooking Process Using Finite Difference and CFD Methods

    Directory of Open Access Journals (Sweden)

    J. Sargolzaei

    2011-01-01

    Full Text Available Unsteady-state heat transfer in hamburger cooking process was modeled using one dimensional finite difference (FD and three dimensional computational fluid dynamic (CFD models. A double-sided cooking system was designed to study the effect of pressure and oven temperature on the cooking process. Three different oven temperatures (114, 152, 204°C and three different pressures (20, 332, 570 pa were selected and 9 experiments were performed. Applying pressure to hamburger increases the contact area of hamburger with heating plate and hence the heat transfer rate to the hamburger was increased and caused the weight loss due to water evaporation and decreasing cooking time, while increasing oven temperature led to increasing weight loss and decreasing cooking time. CFD predicted results were in good agreement with the experimental results than the finite difference (FD ones. But considering the long time needed for CFD model to simulate the cooking process (about 1 hour, using the finite difference model would be more economic.

  1. Three-dimensional viscoelastic time-domain finite-difference seismic modelling using the staggered Adams-Bashforth time integrator

    Science.gov (United States)

    Bohlen, Thomas; Wittkamp, Florian

    2016-03-01

    We analyse the performance of a higher order accurate staggered viscoelastic time-domain finite-difference method, in which the staggered Adams-Bashforth (ABS) third-order and fourth-order accurate time integrators are used for temporal discretization. ABS is a multistep method that uses previously calculated wavefields to increase the order of accuracy in time. The analysis shows that the numerical dispersion is much lower than that of the widely used second-order leapfrog method. Numerical dissipation is introduced by the ABS method which is significantly smaller for fourth-order than third-order accuracy. In 1-D and 3-D simulation experiments, we verify the convincing improvements of simulation accuracy of the fourth-order ABS method. In a realistic elastic 3-D scenario, the computing time reduces by a factor of approximately 2.4, whereas the memory requirements increase by approximately a factor of 2.2. The ABS method thus provides an alternative strategy to increase the simulation accuracy in time by investing computer memory instead of computing time.

  2. Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation

    Science.gov (United States)

    Baskaran, Arvind; Hu, Zhengzheng; Lowengrub, John S.; Wang, Cheng; Wise, Steven M.; Zhou, Peng

    2013-10-01

    In this paper we present two unconditionally energy stable finite difference schemes for the modified phase field crystal (MPFC) equation, a sixth-order nonlinear damped wave equation, of which the purely parabolic phase field crystal (PFC) model can be viewed as a special case. The first is a convex splitting scheme based on an appropriate decomposition of the discrete energy and is first order accurate in time and second order accurate in space. The second is a new, fully second-order scheme that also respects the convex splitting of the energy. Both schemes are nonlinear but may be formulated from the gradients of strictly convex, coercive functionals. Thus, both are uniquely solvable regardless of the time and space step sizes. The schemes are solved by efficient nonlinear multigrid methods. Numerical results are presented demonstrating the accuracy, energy stability, efficiency, and practical utility of the schemes. In particular, we show that our multigrid solvers enjoy optimal, or nearly optimal complexity in the solution of the nonlinear schemes.

  3. Spectrum of Discrete Second-Order Difference Operator with Sign-Changing Weight and Its Applications

    Directory of Open Access Journals (Sweden)

    Ruyun Ma

    2014-01-01

    Full Text Available Let T>1 be an integer, and let=1,2,…,T. We discuss the spectrum of discrete linear second-order eigenvalue problems Δ2ut-1+λmtut=0, t∈,  u0=uT+1=0, where λ≠0 is a parameter, m:→ℝ changes sign and mt≠0 on . At last, as an application of this spectrum result, we show the existence of sign-changing solutions of discrete nonlinear second-order problems by using bifurcate technique.

  4. Convergence Property of Response Matrix Method for Various Finite-Difference Formulations Used in the Nonlinear Acceleration Method

    International Nuclear Information System (INIS)

    Yamamoto, Akio

    2005-01-01

    Convergence properties were investigated for the response matrix method with various finite-difference formulations that can be utilized in the nonlinear acceleration method. The nonlinear acceleration method is commonly used for the diffusion calculation with the advanced nodal method or the transport calculation with the method of characteristics. Efficiency of the nonlinear acceleration method depends on convergences on two different levels, i.e., those of the finite-difference calculation and the correction factor. This paper focuses on the former topic, i.e., the convergence property of finite-difference calculations using the response matrix method. Though various finite-difference formulations can be used in the nonlinear acceleration method, systematic analysis of the convergence property for the finite-difference calculation has not been carried out so far. The spectral radius of iteration matrixes was estimated for the various finite-difference calculations assuming the response matrix method with the red-black sweep. From the calculation results, numerical stability of the various finite-difference formulations was clarified, and a favorable form of the finite-difference formulation for the nonlinear iteration was recommended. The result of this paper will be useful for implementation of the nonlinear acceleration scheme with the response matrix method

  5. Discrete mechanics

    CERN Document Server

    Caltagirone, Jean-Paul

    2014-01-01

    This book presents the fundamental principles of mechanics to re-establish the equations of Discrete Mechanics. It introduces physics and thermodynamics associated to the physical modeling.  The development and the complementarity of sciences lead to review today the old concepts that were the basis for the development of continuum mechanics. The differential geometry is used to review the conservation laws of mechanics. For instance, this formalism requires a different location of vector and scalar quantities in space. The equations of Discrete Mechanics form a system of equations where the H

  6. The Incorporation of Truncated Fourier Series into Finite Difference Approximations of Structural Stability Equations

    Science.gov (United States)

    Hannah, S. R.; Palazotto, A. N.

    1978-01-01

    A new trigonometric approach to the finite difference calculus was applied to the problem of beam buckling as represented by virtual work and equilibrium equations. The trigonometric functions were varied by adjusting a wavelength parameter in the approximating Fourier series. Values of the critical force obtained from the modified approach for beams with a variety of boundary conditions were compared to results using the conventional finite difference method. The trigonometric approach produced significantly more accurate approximations for the critical force than the conventional approach for a relatively wide range in values of the wavelength parameter; and the optimizing value of the wavelength parameter corresponded to the half-wavelength of the buckled mode shape. It was found from a modal analysis that the most accurate solutions are obtained when the approximating function closely represents the actual displacement function and matches the actual boundary conditions.

  7. THE SOLUTION OF THE CABLE EQUATIONS BY MEANS OF FINITE DIFFERENCE TIME DOMAIN METHOD

    Directory of Open Access Journals (Sweden)

    Patsiuk V.I.

    2010-04-01

    Full Text Available The analysis and comparison of accuracy of numerical solutions received by Finite Difference Time Domain (FDTD method and Godunov's method at the solution of the cable equations is carried out. It is demonstrated, that at sudden short circuits and at transition to idling mode in numerical solutions received by means of FDTD method for long lines with the distributed parameters appear strong nonphysical oscillations. It is shown, that the settlement scheme offered by authors on the basis of Godunov's method is deprived these lacks and provides high accuracy for the numerical solutions received at the analysis of dynamic modes in long lines, caused by sudden short circuits and line transitions in an idling mode. Key words: cable equations, finite difference time domain method, Godunov’s scheme.

  8. Implementation of compact finite-difference method to parabolized Navier-Stokes equations

    International Nuclear Information System (INIS)

    Esfahanian, V.; Hejranfar, K.; Darian, H.M.

    2005-01-01

    The numerical simulation of the Parabolized Navier-Stokes (PNS) equations for supersonic/hypersonic flow field is obtained by using the fourth-order compact finite-difference method. The PNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming. A shock fitting procedure is utilized to obtain the accurate solution in the vicinity of the shock. The computations are performed for hypersonic axisymmetric flow over a blunt cone. The present results for the flow field along with those of the second-order method are presented and accuracy analysis is performed to insure the fourth-order accuracy of the method. (author)

  9. Application of the finite-difference approximation to electrostatic problems in gaseous proportional counters

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.; Urbanczyk, K.M.

    1975-01-01

    The basic principles of the finite-difference approximation applied to the solution of electrostatic field distributions in gaseous proportional counters are given. Using this method, complicated two-dimensional electrostatic problems may be solved, taking into account any number of anodes, each with its own radius, and any cathode shape. A general formula for introducing the anode radii into the calculations is derived and a method of obtaining extremely accurate (up to 0.1%) solutions is developed. Several examples of potential and absolute field distributions for single rectangular and multiwire proportional counters are calculated and compared with exact results according to Tomitani, in order to discuss in detail errors of the finite-difference approximation. (author)

  10. Accuracy of finite-difference harmonic frequencies in density functional theory.

    Science.gov (United States)

    Liu, Kuan-Yu; Liu, Jie; Herbert, John M

    2017-07-15

    Analytic Hessians are often viewed as essential for the calculation of accurate harmonic frequencies, but the implementation of analytic second derivatives is nontrivial and solution of the requisite coupled-perturbed equations engenders a sizable memory footprint for large systems, given that these equations are not required for energy and gradient calculations in density functional theory. Here, we benchmark the alternative approach to harmonic frequencies based on finite differences of analytic first derivatives, a procedure that is amenable to large-scale parallelization. Not only for absolute frequencies but also for isotopic and conformer-dependent frequency shifts in flexible molecules, we find that the finite-difference approach exhibits mean errors numbers. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Linear finite-difference bond graph model of an ionic polymer actuator

    Science.gov (United States)

    Bentefrit, M.; Grondel, S.; Soyer, C.; Fannir, A.; Cattan, E.; Madden, J. D.; Nguyen, T. M. G.; Plesse, C.; Vidal, F.

    2017-09-01

    With the recent growing interest for soft actuation, many new types of ionic polymers working in air have been developed. Due to the interrelated mechanical, electrical, and chemical properties which greatly influence the characteristics of such actuators, their behavior is complex and difficult to understand, predict and optimize. In light of this challenge, an original linear multiphysics finite difference bond graph model was derived to characterize this ionic actuation. This finite difference scheme was divided into two coupled subparts, each related to a specific physical, electrochemical or mechanical domain, and then converted into a bond graph model as this language is particularly suited for systems from multiple energy domains. Simulations were then conducted and a good agreement with the experimental results was obtained. Furthermore, an analysis of the power efficiency of such actuators as a function of space and time was proposed and allowed to evaluate their performance.

  12. Single-cone finite difference scheme for the (2+1)D Dirac von Neumann equation

    Science.gov (United States)

    Pötz, Walter; Schreilechner, Magdalena

    2017-11-01

    An explicit finite difference scheme is presented for the von Neumann equation for (2+1)D Dirac fermions. It is founded upon a staggered space-time grid which ensures a single-cone energy dispersion and performs the time-derivative in one sweep using a three-step leap-frog procedure. It enables a space-time-resolved numerical treatment of the mixed-state dynamics of Dirac fermions within the effective single-particle density matrix formalism. Energy-momentum dispersion, stability and convergence properties are derived. Elementary numerical tests to demonstrate stability properties use parameters which pertain to topological insulator surface states. A method for the simulation of charge injection from an electric contact is presented and tested numerically. Potential extensions of the scheme to a Dirac-Lindblad equation, real-space-time Green's function formulations, and higher-order finite-difference schemes are discussed.

  13. Numerical study of water diffusion in biological tissues using an improved finite difference method

    International Nuclear Information System (INIS)

    Xu Junzhong; Does, Mark D; Gore, John C

    2007-01-01

    An improved finite difference (FD) method has been developed in order to calculate the behaviour of the nuclear magnetic resonance signal variations caused by water diffusion in biological tissues more accurately and efficiently. The algorithm converts the conventional image-based finite difference method into a convenient matrix-based approach and includes a revised periodic boundary condition which eliminates the edge effects caused by artificial boundaries in conventional FD methods. Simulated results for some modelled tissues are consistent with analytical solutions for commonly used diffusion-weighted pulse sequences, whereas the improved FD method shows improved efficiency and accuracy. A tightly coupled parallel computing approach was also developed to implement the FD methods to enable large-scale simulations of realistic biological tissues. The potential applications of the improved FD method for understanding diffusion in tissues are also discussed. (note)

  14. Five-point form of the nodal diffusion method and comparison with finite-difference

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1988-01-01

    Nodal Methods have been derived, implemented and numerically tested for several problems in physics and engineering. In the field of nuclear engineering, many nodal formalisms have been used for the neutron diffusion equation, all yielding results which were far more computationally efficient than conventional Finite Difference (FD) and Finite Element (FE) methods. However, not much effort has been devoted to theoretically comparing nodal and FD methods in order to explain the very high accuracy of the former. In this summary we outline the derivation of a simple five-point form for the lowest order nodal method and compare it to the traditional five-point, edge-centered FD scheme. The effect of the observed differences on the accuracy of the respective methods is established by considering a simple test problem. It must be emphasized that the nodal five-point scheme derived here is mathematically equivalent to previously derived lowest order nodal methods. 7 refs., 1 tab

  15. Convergence of finite differences schemes for viscous and inviscid conservation laws with rough coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Karlsen, Kenneth Hvistendal; Risebro, Nils Henrik

    2000-09-01

    We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a ''rough'' coefficient function k(x). we show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, k' is in BV, thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion equations as well as new convergence results for their finite difference approximations. In the inviscid case, we also provide a rate of convergence. Our convergence proofs are based on deriving a series of a priori estimates and using a general L{sup p} compactness criterion. (author)

  16. Efficient finite difference solutions to the time-dependent Schroedinger equation

    International Nuclear Information System (INIS)

    Nash, P.L.; Chen, L.Y.

    1997-01-01

    The matrix elements of the exponential of a finite difference realization of the one-dimensional Laplacian are found exactly. This matrix is used to formulate an efficient algorithm for the numerical solution to the time-dependent quantum mechanical scattering of a single particle from a time-independent potential in one-space and one-time dimension. The method generalizes to high spatial dimensions, as well as to multiparticle problems. 8 refs

  17. TRUMP3-JR: a finite difference computer program for nonlinear heat conduction problems

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1984-02-01

    Computer program TRUMP3-JR is a revised version of TRUMP3 which is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Pre- and post-processings for input data generation and graphical representations of calculation results of TRUMP3 are avaiable in TRUMP3-JR. The calculation equations, program descriptions and user's instruction are presented. A sample problem is described to demonstrate the use of the program. (author)

  18. Explicit finite difference predictor and convex corrector with applications to hyperbolic partial differential equations

    Science.gov (United States)

    Dey, C.; Dey, S. K.

    1983-01-01

    An explicit finite difference scheme consisting of a predictor and a corrector has been developed and applied to solve some hyperbolic partial differential equations (PDEs). The corrector is a convex-type function which is applied at each time level and at each mesh point. It consists of a parameter which may be estimated such that for larger time steps the algorithm should remain stable and generate a fast speed of convergence to the steady-state solution. Some examples have been given.

  19. Option Pricing under Risk-Minimization Criterion in an Incomplete Market with the Finite Difference Method

    Directory of Open Access Journals (Sweden)

    Xinfeng Ruan

    2013-01-01

    Full Text Available We study option pricing with risk-minimization criterion in an incomplete market where the dynamics of the risky underlying asset is governed by a jump diffusion equation with stochastic volatility. We obtain the Radon-Nikodym derivative for the minimal martingale measure and a partial integro-differential equation (PIDE of European option. The finite difference method is employed to compute the European option valuation of PIDE.

  20. Generalized energy and potential enstrophy conserving finite difference schemes for the shallow water equations

    Science.gov (United States)

    Abramopoulos, Frank

    1988-01-01

    The conditions under which finite difference schemes for the shallow water equations can conserve both total energy and potential enstrophy are considered. A method of deriving such schemes using operator formalism is developed. Several such schemes are derived for the A-, B- and C-grids. The derived schemes include second-order schemes and pseudo-fourth-order schemes. The simplest B-grid pseudo-fourth-order schemes are presented.

  1. Hexagonal vs. Rectilinear Grids for Explicit Finite Difference Schemes for the Two-dimensional Wave Equation

    OpenAIRE

    Hamilton, Brian; Bilbao, Stefan

    2013-01-01

    Finite difference schemes for the 2-D wave equation operating on hexagonal grids and the accompanyingnumerical dispersion properties have received little attention in comparison to schemes operating on rectilinear grids. This paper considers the hexagonal tiling of the wavenumber plane in order to show that thehexagonal grid is a more natural choice to emulate the isotropy of the Laplacian operator and the wave equation. Performance of the 7-point scheme on a hexagonal grid is better than pre...

  2. Collocation and finite difference-collocation methods for the solution of nonlinear Klein-Gordon equation

    Science.gov (United States)

    Lakestani, Mehrdad; Dehghan, Mehdi

    2010-08-01

    Two numerical techniques based on the finite difference and collocation methods are presented for the solution of nonlinear Klein-Gordon equation. The operational matrix of derivative for the cubic B-spline scaling functions is presented and is utilized to reduce the solution of nonlinear Klein-Gordon equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new techniques.

  3. A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection

    Science.gov (United States)

    Korpusik, Adam

    2017-02-01

    We present a nonstandard finite difference scheme for a basic model of cellular immune response to viral infection. The main advantage of this approach is that it preserves the essential qualitative features of the original continuous model (non-negativity and boundedness of the solution, equilibria and their stability conditions), while being easy to implement. All of the qualitative features are preserved independently of the chosen step-size. Numerical simulations of our approach and comparison with other conventional simulation methods are presented.

  4. Performance analysis of a finite radon transform in OFDM system under different channel models

    Energy Technology Data Exchange (ETDEWEB)

    Dawood, Sameer A.; Anuar, M. S.; Fayadh, Rashid A. [School of Computer and Communication Engineering, Universiti Malaysia Perlis (UniMAP) Pauh Putra, 02000 Arau, Parlis (Malaysia); Malek, F.; Abdullah, Farrah Salwani [School of Electrical System Engineering, Universiti Malaysia Perlis (UniMAP) Pauh Putra, 02000 Arau, Parlis (Malaysia)

    2015-05-15

    In this paper, a class of discrete Radon transforms namely Finite Radon Transform (FRAT) was proposed as a modulation technique in the realization of Orthogonal Frequency Division Multiplexing (OFDM). The proposed FRAT operates as a data mapper in the OFDM transceiver instead of the conventional phase shift mapping and quadrature amplitude mapping that are usually used with the standard OFDM based on Fast Fourier Transform (FFT), by the way that ensure increasing the orthogonality of the system. The Fourier domain approach was found here to be the more suitable way for obtaining the forward and inverse FRAT. This structure resulted in a more suitable realization of conventional FFT- OFDM. It was shown that this application increases the orthogonality significantly in this case due to the use of Inverse Fast Fourier Transform (IFFT) twice, namely, in the data mapping and in the sub-carrier modulation also due to the use of an efficient algorithm in determining the FRAT coefficients called the optimal ordering method. The proposed approach was tested and compared with conventional OFDM, for additive white Gaussian noise (AWGN) channel, flat fading channel, and multi-path frequency selective fading channel. The obtained results showed that the proposed system has improved the bit error rate (BER) performance by reducing inter-symbol interference (ISI) and inter-carrier interference (ICI), comparing with conventional OFDM system.

  5. Performance analysis of a finite radon transform in OFDM system under different channel models

    International Nuclear Information System (INIS)

    Dawood, Sameer A.; Anuar, M. S.; Fayadh, Rashid A.; Malek, F.; Abdullah, Farrah Salwani

    2015-01-01

    In this paper, a class of discrete Radon transforms namely Finite Radon Transform (FRAT) was proposed as a modulation technique in the realization of Orthogonal Frequency Division Multiplexing (OFDM). The proposed FRAT operates as a data mapper in the OFDM transceiver instead of the conventional phase shift mapping and quadrature amplitude mapping that are usually used with the standard OFDM based on Fast Fourier Transform (FFT), by the way that ensure increasing the orthogonality of the system. The Fourier domain approach was found here to be the more suitable way for obtaining the forward and inverse FRAT. This structure resulted in a more suitable realization of conventional FFT- OFDM. It was shown that this application increases the orthogonality significantly in this case due to the use of Inverse Fast Fourier Transform (IFFT) twice, namely, in the data mapping and in the sub-carrier modulation also due to the use of an efficient algorithm in determining the FRAT coefficients called the optimal ordering method. The proposed approach was tested and compared with conventional OFDM, for additive white Gaussian noise (AWGN) channel, flat fading channel, and multi-path frequency selective fading channel. The obtained results showed that the proposed system has improved the bit error rate (BER) performance by reducing inter-symbol interference (ISI) and inter-carrier interference (ICI), comparing with conventional OFDM system

  6. Rotational degree-of-freedom synthesis: An optimised finite difference method for non-exact data

    Science.gov (United States)

    Gibbons, T. J.; Öztürk, E.; Sims, N. D.

    2018-01-01

    Measuring the rotational dynamic behaviour of a structure is important for many areas of dynamics such as passive vibration control, acoustics, and model updating. Specialist and dedicated equipment is often needed, unless the rotational degree-of-freedom is synthesised based upon translational data. However, this involves numerically differentiating the translational mode shapes to approximate the rotational modes, for example using a finite difference algorithm. A key challenge with this approach is choosing the measurement spacing between the data points, an issue which has often been overlooked in the published literature. The present contribution will for the first time prove that the use of a finite difference approach can be unstable when using non-exact measured data and a small measurement spacing, for beam-like structures. Then, a generalised analytical error analysis is used to propose an optimised measurement spacing, which balances the numerical error of the finite difference equation with the propagation error from the perturbed data. The approach is demonstrated using both numerical and experimental investigations. It is shown that by obtaining a small number of test measurements it is possible to optimise the measurement accuracy, without any further assumptions on the boundary conditions of the structure.

  7. Direct Calculation of Permeability by High-Accurate Finite Difference and Numerical Integration Methods

    KAUST Repository

    Wang, Yi

    2016-07-21

    Velocity of fluid flow in underground porous media is 6~12 orders of magnitudes lower than that in pipelines. If numerical errors are not carefully controlled in this kind of simulations, high distortion of the final results may occur [1-4]. To fit the high accuracy demands of fluid flow simulations in porous media, traditional finite difference methods and numerical integration methods are discussed and corresponding high-accurate methods are developed. When applied to the direct calculation of full-tensor permeability for underground flow, the high-accurate finite difference method is confirmed to have numerical error as low as 10-5% while the high-accurate numerical integration method has numerical error around 0%. Thus, the approach combining the high-accurate finite difference and numerical integration methods is a reliable way to efficiently determine the characteristics of general full-tensor permeability such as maximum and minimum permeability components, principal direction and anisotropic ratio. Copyright © Global-Science Press 2016.

  8. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    International Nuclear Information System (INIS)

    Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi

    2015-01-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap

  9. Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites

    Science.gov (United States)

    Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.

    2018-04-01

    Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.

  10. An essay on discrete foundations for physics

    International Nuclear Information System (INIS)

    Noyes, H.P.; McGoveran, D.O.

    1988-01-01

    We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non- uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs

  11. An essay on discrete foundations for physics

    International Nuclear Information System (INIS)

    Noyes, H.P.; McGoveran, D.O.

    1988-07-01

    We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non-uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs

  12. An essay on discrete foundations for physics

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.; McGoveran, D.O.

    1988-07-01

    We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non-uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.

  13. An essay on discrete foundations for physics

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.; McGoveran, D.O.

    1988-10-05

    We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non- uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.

  14. Energy Stability Analysis of Some Fully Discrete Numerical Schemes for Incompressible Navier–Stokes Equations on Staggered Grids

    KAUST Repository

    Chen, Huangxin

    2017-09-01

    In this paper we consider the energy stability estimates for some fully discrete schemes which both consider time and spatial discretizations for the incompressible Navier–Stokes equations. We focus on three kinds of fully discrete schemes, i.e., the linear implicit scheme for time discretization with the finite difference method (FDM) on staggered grids for spatial discretization, pressure-correction schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations, and pressure-stabilization schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations. The energy stability estimates are obtained for the above each fully discrete scheme. The upwind scheme is used in the discretization of the convection term which plays an important role in the design of unconditionally stable discrete schemes. Numerical results are given to verify the theoretical analysis.

  15. Application of the finite-element method and the eigenmode expansion method to investigate the periodic and spectral characteristic of discrete phase-shift fiber Bragg grating

    Science.gov (United States)

    He, Yue-Jing; Hung, Wei-Chih; Syu, Cheng-Jyun

    2017-12-01

    The finite-element method (FEM) and eigenmode expansion method (EEM) were adopted to analyze the guided modes and spectrum of phase-shift fiber Bragg grating at five phase-shift degrees (including zero, 1/4π, 1/2π, 3/4π, and π). In previous studies on optical fiber grating, conventional coupled-mode theory was crucial. This theory contains abstruse knowledge about physics and complex computational processes, and thus is challenging for users. Therefore, a numerical simulation method was coupled with a simple and rigorous design procedure to help beginners and users to overcome difficulty in entering the field; in addition, graphical simulation results were presented. To reduce the difference between the simulated context and the actual context, a perfectly matched layer and perfectly reflecting boundary were added to the FEM and the EEM. When the FEM was used for grid cutting, the object meshing method and the boundary meshing method proposed in this study were used to effectively enhance computational accuracy and substantially reduce the time required for simulation. In summary, users can use the simulation results in this study to easily and rapidly design an optical fiber communication system and optical sensors with spectral characteristics.

  16. An a posteriori error analysis for a coupled continuum pipe-flow/Darcy model in Karst aquifers: anisotropic and isotropic discretizations

    OpenAIRE

    Houedanou, Koffi Wilfrid

    2017-01-01

    This paper presents an a posteriori error analysis for a coupled continuum pipe-flow/Darcy model in karst aquifers. We consider a unified anisotropic finite element discretization (i.e. elements with very large aspect ratio). Our analysis covers two-dimensional domains, conforming and nonconforming discretizations as well as different elements. Many examples of finite elements that are covered by analysis are presented. From the finite element solution, the error estimators are constructed an...

  17. Optimization of Dengue Epidemics: A Test Case with Different Discretization Schemes

    Science.gov (United States)

    Rodrigues, Helena Sofia; Monteiro, M. Teresa T.; Torres, Delfim F. M.

    2009-09-01

    The incidence of Dengue epidemiologic disease has grown in recent decades. In this paper an application of optimal control in Dengue epidemics is presented. The mathematical model includes the dynamic of Dengue mosquito, the affected persons, the people's motivation to combat the mosquito and the inherent social cost of the disease, such as cost with ill individuals, educations and sanitary campaigns. The dynamic model presents a set of nonlinear ordinary differential equations. The problem was discretized through Euler and Runge Kutta schemes, and solved using nonlinear optimization packages. The computational results as well as the main conclusions are shown.

  18. A Fourth Order Accurate Discretization for the Laplace and Heat Equations on Arbitrary Domains, with Applications to the Stefan Problem

    National Research Council Canada - National Science Library

    Gibou, Frederic; Fedkiw, Ronald

    2004-01-01

    In this paper, the authors first describe a fourth order accurate finite difference discretization for both the Laplace equation and the heat equation with Dirichlet boundary conditions on irregular domains...

  19. High-order Finite Difference Solution of Euler Equations for Nonlinear Water Waves

    DEFF Research Database (Denmark)

    Christiansen, Torben Robert Bilgrav; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    The incompressible Euler equations are solved with a free surface, the position of which is captured by applying an Eulerian kinematic boundary condition. The solution strategy follows that of [1, 2], applying a coordinate-transformation to obtain a time-constant spatial computational domain which...... with a two-dimensional implementation of the model are compared with highly accurate stream function solutions to the nonlinear wave problem, which show the approximately expected convergence rates and a clear advantage of using high-order finite difference schemes in combination with the Euler equations....

  20. An improved finite-difference beam propagation method and its application in arrayed waveguide grating

    Science.gov (United States)

    Liu, Xin; Liu, De-ming; Wu, Wei

    2008-11-01

    Finite-Difference Beam Propagation Method (FD-BPM) in conventional is modified, according to more accurate Helmholtz equation, a new arithmetic is advanced. By using the new arithmetic and the old arithmetic in calculating slab waveguide and calculate the parameter which scales the precision of the method and the calculating time, we prove that the accuracy of the new arithmetic is improved without affecting time performance. At last we calculate the transmission mode in the AWG by the new method to show the practical value of the modified arithmetic.

  1. High-order finite difference solution for 3D nonlinear wave-structure interaction

    DEFF Research Database (Denmark)

    Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2010-01-01

    This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme...... OceanWave3D presented in [1, 2]. A nonlinear decomposition of the solution into incident and scattered fields is used to increase the efficiency of the wave-structure interaction problem resolution. Application of the method to the diffraction of nonlinear waves around a fixed, bottom mounted circular...

  2. Finite difference schemes for a nonlinear black-scholes model with transaction cost and volatility risk

    DEFF Research Database (Denmark)

    Mashayekhi, Sima; Hugger, Jens

    2015-01-01

    Several nonlinear Black-Scholes models have been proposed to take transaction cost, large investor performance and illiquid markets into account. One of the most comprehensive models introduced by Barles and Soner in [4] considers transaction cost in the hedging strategy and risk from an illiquid...... market. In this paper, we compare several finite difference methods for the solution of this model with respect to precision and order of convergence within a computationally feasible domain allowing at most 200 space steps and 10000 time steps. We conclude that standard explicit Euler comes out...

  3. A multigrid algorithm for the cell-centered finite difference scheme

    Science.gov (United States)

    Ewing, Richard E.; Shen, Jian

    1993-01-01

    In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.

  4. Accuracy of spectral and finite difference schemes in 2D advection problems

    DEFF Research Database (Denmark)

    Naulin, V.; Nielsen, A.H.

    2003-01-01

    In this paper we investigate the accuracy of two numerical procedures commonly used to solve 2D advection problems: spectral and finite difference (FD) schemes. These schemes are widely used, simulating, e.g., neutral and plasma flows. FD schemes have long been considered fast, relatively easy...... that the accuracy of FD schemes can be significantly improved if one is careful in choosing an appropriate FD scheme that reflects conservation properties of the nonlinear terms and in setting up the grid in accordance with the problem....

  5. Scattering analysis of periodic structures using finite-difference time-domain

    CERN Document Server

    ElMahgoub, Khaled; Elsherbeni, Atef Z

    2012-01-01

    Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algor

  6. Calculating modes of quantum wire systems using a finite difference technique

    Directory of Open Access Journals (Sweden)

    T Mardani

    2013-03-01

    Full Text Available  In this paper, the Schrodinger equation for a quantum wire is solved using a finite difference approach. A new aspect in this work is plotting wave function on cross section of rectangular cross-sectional wire in two dimensions, periodically. It is found that the correct eigen energies occur when wave functions have a complete symmetry. If the value of eigen energy has a small increase or decrease in neighborhood of the correct energy the symmetry will be destroyed and aperturbation value at the first of wave function will be observed. In addition, the demand on computer memory varies linearly with the size of the system under investigation.

  7. Implicit finite difference solution for time-fractional diffusion equations using AOR method

    International Nuclear Information System (INIS)

    Sunarto, A; Sulaiman, J; Saudi, A

    2014-01-01

    In this paper, we derive an implicit finite difference approximation equation of the one-dimensional linear time fractional diffusion equations, based on the Caputo's time fractional derivative. Then this approximation equation leads the corresponding system of linear equation, which is large scale and sparse. Due to the characteristics of the coefficient matrix, we use the Accelerated Over-Relaxation (AOR) iterative method for solving the generated linear system. One example of the problem is presented to illustrate the effectiveness of AOR method. The numerical results of this study show that the proposed iterative method is superior compared with the existing one weighted parameter iterative method.

  8. Finite Difference Time-Domain Modelling of Metamaterials: GPU Implementation of Cylindrical Cloak

    Directory of Open Access Journals (Sweden)

    A. Dawood

    2013-08-01

    Full Text Available Finite difference time-domain (FDTD technique can be used to model metamaterials by treating them as dispersive material. Drude or Lorentz model can be incorporated into the standard FDTD algorithm for modelling negative permittivity and permeability. FDTD algorithm is readily parallelisable and can take advantage of GPU acceleration to achieve speed-ups of 5x-50x depending on hardware setup. Metamaterial scattering problems are implemented using dispersive FDTD technique on GPU resulting in performance gain of 10x-15x compared to conventional CPU implementation.

  9. A 3D Finite-Difference BiCG Iterative Solver with the Fourier-Jacobi Preconditioner for the Anisotropic EIT/EEG Forward Problem

    Directory of Open Access Journals (Sweden)

    Sergei Turovets

    2014-01-01

    Full Text Available The Electrical Impedance Tomography (EIT and electroencephalography (EEG forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG- type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique.

  10. Geometrically nonlinear dynamic analysis of doubly curved isotropic shells resting on elastic foundation by a combination of harmonic differential quadrature-finite difference methods

    International Nuclear Information System (INIS)

    Civalek, Oemer

    2005-01-01

    The nonlinear dynamic response of doubly curved shallow shells resting on Winkler-Pasternak elastic foundation has been studied for step and sinusoidal loadings. Dynamic analogues of Von Karman-Donnel type shell equations are used. Clamped immovable and simply supported immovable boundary conditions are considered. The governing nonlinear partial differential equations of the shell are discretized in space and time domains using the harmonic differential quadrature (HDQ) and finite differences (FD) methods, respectively. The accuracy of the proposed HDQ-FD coupled methodology is demonstrated by numerical examples. The shear parameter G of the Pasternak foundation and the stiffness parameter K of the Winkler foundation have been found to have a significant influence on the dynamic response of the shell. It is concluded from the present study that the HDQ-FD methodolgy is a simple, efficient, and accurate method for the nonlinear analysis of doubly curved shallow shells resting on two-parameter elastic foundation

  11. A finite difference method for space fractional differential equations with variable diffusivity coefficient

    KAUST Repository

    Mustapha, K.

    2017-06-03

    Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.

  12. High-order asynchrony-tolerant finite difference schemes for partial differential equations

    Science.gov (United States)

    Aditya, Konduri; Donzis, Diego A.

    2017-12-01

    Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.

  13. Transient analysis of printed lines using finite-difference time-domain method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Shahid [Thomas Jefferson National Accelerator Facility, 12050 Jefferson Avenue, Suite 704, Newport News, VA, 23606, USA

    2012-03-29

    Comprehensive studies of ultra-wideband pulses and electromagnetic coupling on printed coupled lines have been performed using full-wave 3D finite-difference time-domain analysis. Effects of unequal phase velocities of coupled modes, coupling between line traces, and the frequency dispersion on the waveform fidelity and crosstalk have been investigated in detail. To discriminate the contributions of different mechanisms into pulse evolution, single and coupled microstrip lines without (ϵr = 1) and with (ϵr > 1) dielectric substrates have been examined. To consistently compare the performance of the coupled lines with substrates of different permittivities and transients of different characteristic times, a generic metric similar to the electrical wavelength has been introduced. The features of pulse propagation on coupled lines with layered and pedestal substrates and on the irregular traces have been explored. Finally, physical interpretations of the simulation results are discussed in the paper.

  14. Evaluation of explicit finite-difference techniques for LMFBR safety analysis

    International Nuclear Information System (INIS)

    Bernstein, D.; Golden, R.D.; Gross, M.B.; Hofmann, R.

    1976-01-01

    In the past few years, the use of explicit finite-difference (EFD) and finite-element computer programs for reactor safety calculations has steadily increased. One of the major areas of application has been for the analysis of hypothetical core disruptive accidents in liquid metal fast breeder reactors. Most of these EFD codes were derived to varying degrees from the same roots, but the codes are large and have progressed rapidly, so there may be substantial differences among them in spite of a common ancestry. When this fact is coupled with the complexity of HCDA calculations, it is not possible to assure that independent calculations of an HCDA will produce substantially the same results. Given the extreme importance of nuclear safety, it is essential to be sure that HCDA analyses are correct, and additional code validation is therefore desirable. A comparative evaluation of HCDA computational techniques is being performed under an ERDA-sponsored program called APRICOT (Analysis of PRImary COntainment Transients). The philosophy, calculations, and preliminary results from this program are described in this paper

  15. A coarse-mesh nodal method-diffusive-mesh finite difference method

    International Nuclear Information System (INIS)

    Joo, H.; Nichols, W.R.

    1994-01-01

    Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper

  16. Finite difference methods for option pricing under Lévy processes: Wiener-Hopf factorization approach.

    Science.gov (United States)

    Kudryavtsev, Oleg

    2013-01-01

    In the paper, we consider the problem of pricing options in wide classes of Lévy processes. We propose a general approach to the numerical methods based on a finite difference approximation for the generalized Black-Scholes equation. The goal of the paper is to incorporate the Wiener-Hopf factorization into finite difference methods for pricing options in Lévy models with jumps. The method is applicable for pricing barrier and American options. The pricing problem is reduced to the sequence of linear algebraic systems with a dense Toeplitz matrix; then the Wiener-Hopf factorization method is applied. We give an important probabilistic interpretation based on the infinitely divisible distributions theory to the Laurent operators in the correspondent factorization identity. Notice that our algorithm has the same complexity as the ones which use the explicit-implicit scheme, with a tridiagonal matrix. However, our method is more accurate. We support the advantage of the new method in terms of accuracy and convergence by using numerical experiments.

  17. Customized finite difference Maxwell solver for elimination of numerical Cherenkov instability in EM-PIC code

    Science.gov (United States)

    Yu, Peicheng; Li, Fei; Dalichaouch, Thamine; Fiuza, Frederico; Decyk, Viktor; Davidson, Asher; Tableman, Adam; An, Weiming; Tsung, Frank; Fonseca, Ricardo; Lu, Wei; Vieira, Jorge; Silva, Luis; Mori, Warren

    2016-10-01

    we present a finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm, which is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1& circ; direction). We show that this eliminates the main NCI modes with moderate | k1 | , while keeps additional main NCI modes well outside the range of physical interest with higher | k1 | . These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1& circ; which typically has many more cells than other directions for the problems of interest.

  18. A fast referenceless PRFS-based MR thermometry by phase finite difference.

    Science.gov (United States)

    Zou, Chao; Shen, Huan; He, Mengyue; Tie, Changjun; Chung, Yiu-Cho; Liu, Xin

    2013-08-21

    Proton resonance frequency shift-based MR thermometry is a promising temperature monitoring approach for thermotherapy but its accuracy is vulnerable to inter-scan motion. Model-based referenceless thermometry has been proposed to address this problem but phase unwrapping is usually needed before the model fitting process. In this paper, a referenceless MR thermometry method using phase finite difference that avoids the time consuming phase unwrapping procedure is proposed. Unlike the previously proposed phase gradient technique, the use of finite difference in the new method reduces the fitting error resulting from the ringing artifacts associated with phase discontinuity in the calculation of the phase gradient image. The new method takes into account the values at the perimeter of the region of interest because of their direct relevance to the extrapolated baseline phase of the region of interest (where temperature increase takes place). In simulation study, in vivo and ex vivo experiments, the new method has a root-mean-square temperature error of 0.35 °C, 1.02 °C and 1.73 °C compared to 0.83 °C, 2.81 °C, and 3.76 °C from the phase gradient method, respectively. The method also demonstrated a slightly higher, albeit small, temperature accuracy than the original referenceless MR thermometry method. The proposed method is computationally efficient (~0.1 s per image), making it very suitable for the real time temperature monitoring.

  19. A Proposed Stochastic Finite Difference Approach Based on Homogenous Chaos Expansion

    Directory of Open Access Journals (Sweden)

    O. H. Galal

    2013-01-01

    Full Text Available This paper proposes a stochastic finite difference approach, based on homogenous chaos expansion (SFDHC. The said approach can handle time dependent nonlinear as well as linear systems with deterministic or stochastic initial and boundary conditions. In this approach, included stochastic parameters are modeled as second-order stochastic processes and are expanded using Karhunen-Loève expansion, while the response function is approximated using homogenous chaos expansion. Galerkin projection is used in converting the original stochastic partial differential equation (PDE into a set of coupled deterministic partial differential equations and then solved using finite difference method. Two well-known equations were used for efficiency validation of the method proposed. First one being the linear diffusion equation with stochastic parameter and the second is the nonlinear Burger's equation with stochastic parameter and stochastic initial and boundary conditions. In both of these examples, the probability distribution function of the response manifested close conformity to the results obtained from Monte Carlo simulation with optimized computational cost.

  20. A fast referenceless PRFS-based MR thermometry by phase finite difference

    Science.gov (United States)

    Zou, Chao; Shen, Huan; He, Mengyue; Tie, Changjun; Chung, Yiu-Cho; Liu, Xin

    2013-08-01

    Proton resonance frequency shift-based MR thermometry is a promising temperature monitoring approach for thermotherapy but its accuracy is vulnerable to inter-scan motion. Model-based referenceless thermometry has been proposed to address this problem but phase unwrapping is usually needed before the model fitting process. In this paper, a referenceless MR thermometry method using phase finite difference that avoids the time consuming phase unwrapping procedure is proposed. Unlike the previously proposed phase gradient technique, the use of finite difference in the new method reduces the fitting error resulting from the ringing artifacts associated with phase discontinuity in the calculation of the phase gradient image. The new method takes into account the values at the perimeter of the region of interest because of their direct relevance to the extrapolated baseline phase of the region of interest (where temperature increase takes place). In simulation study, in vivo and ex vivo experiments, the new method has a root-mean-square temperature error of 0.35 °C, 1.02 °C and 1.73 °C compared to 0.83 °C, 2.81 °C, and 3.76 °C from the phase gradient method, respectively. The method also demonstrated a slightly higher, albeit small, temperature accuracy than the original referenceless MR thermometry method. The proposed method is computationally efficient (∼0.1 s per image), making it very suitable for the real time temperature monitoring.

  1. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

    Science.gov (United States)

    2015-01-01

    PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns. PMID:26816578

  2. Investigation of finite difference recession computation techniques applied to a nonlinear recession problem

    Energy Technology Data Exchange (ETDEWEB)

    Randall, J D

    1978-03-01

    This report presents comparisons of results of five implicit and explicit finite difference recession computation techniques with results from a more accurate ''benchmark'' solution applied to a simple one-dimensional nonlinear ablation problem. In the comparison problem a semi-infinite solid is subjected to a constant heat flux at its surface and the rate of recession is controlled by the solid material's latent heat of fusion. All thermal properties are assumed constant. The five finite difference methods include three front node dropping schemes, a back node dropping scheme, and a method in which the ablation problem is embedded in an inverse heat conduction problem and no nodes are dropped. Constancy of thermal properties and the semiinfinite and one-dimensional nature of the problem at hand are not necessary assumptions in applying the methods studied to more general problems. The best of the methods studied will be incorporated into APL's Standard Heat Transfer Program.

  3. A discrete element model for soil-sweep interaction in three different soils

    DEFF Research Database (Denmark)

    Chen, Y; Munkholm, Lars Juhl; Nyord, Tavs

    2013-01-01

    was developed to simulate a slurry injection tool (a sweep) and its interaction with soil using Particle Flow Code in Three Dimensions (PFC3D). In the model, spherical particles with bonds and viscous damping between particles were used to simulate agricultural soil aggregates and their cohesive behaviours......Soil–tool interactions are at the centre of many agricultural field operations, including slurry injection. Understanding of soil–tool interaction behaviours (soil cutting forces and soil disturbance) is important for designing high performance injection tools. A discrete element model....... The calibrated model was validated using the soil disturbance characteristics measured in those three soils. The simulations agreed well with the measurements with relative errors below 10% in most cases....

  4. LaMEM: a Massively Parallel Staggered-Grid Finite-Difference Code for Thermo-Mechanical Modeling of Lithospheric Deformation with Visco-Elasto-Plastic Rheologies

    Science.gov (United States)

    Kaus, B.; Popov, A.

    2014-12-01

    The complexity of lithospheric rheology and the necessity to resolve the deformation patterns near the free surface (faults and folds) sufficiently well places a great demand on a stable and scalable modeling tool that is capable of efficiently handling nonlinearities. Our code LaMEM (Lithosphere and Mantle Evolution Model) is an attempt to satisfy this demand. The code utilizes a stable and numerically inexpensive finite difference discretization with the spatial staggering of velocity, pressure, and temperature unknowns (a so-called staggered grid). As a time discretization method the forward Euler, or a combination of the predictor-corrector and the fourth-order Runge-Kutta can be chosen. Elastic stresses are rotated on the markers, which are also used to track all relevant material properties and solution history fields. The Newtonian nonlinear iteration, however, is handled at the level of the grid points to avoid spurious averaging between markers and grid. Such an arrangement required us to develop a non-standard discretization of the effective strain-rate second invariant. Important feature of the code is its ability to handle stress-free and open-box boundary conditions, in which empty cells are simply eliminated from the discretization, which also solves the biggest problem of the sticky-air approach - namely large viscosity jumps near the free surface. We currently support an arbitrary combination of linear elastic, nonlinear viscous with multiple creep mechanisms, and plastic rheologies based on either a depth-dependent von Mises or pressure-dependent Drucker-Prager yield criteria.LaMEM is being developed as an inherently parallel code. Structurally all its parts are based on the building blocks provided by PETSc library. These include Jacobian-Free Newton-Krylov nonlinear solvers with convergence globalization techniques (line search), equipped with different linear preconditioners. We have also implemented the coupled velocity-pressure multigrid

  5. A finite element study on stress distribution of two different attachment designs under implant supported overdenture.

    Science.gov (United States)

    El-Anwar, Mohamed I; Yousief, Salah A; Soliman, Tarek A; Saleh, Mahmoud M; Omar, Wael S

    2015-10-01

    This study aimed to evaluate stress patterns generated within implant-supported mandibular overdentures retained by two different attachment types: ball and socket and locator attachments. Commercial CAD/CAM and finite element analysis software packages were utilized to construct two 3D finite element models for the two attachment types. Unilateral masticatory compressive loads of 50, 100, and 150 N were applied vertically to the overdentures, parallel to the longitudinal axes of the implants. Loads were directed toward the central fossa in the molar region of each overdenture, that linear static analysis was carried out to find the generated stresses and deformation on each part of the studied model. According to FEA results the ball attachment neck is highly stressed in comparison to the locator one. On the other hand mucosa and cortical bone received less stresses under ball and socket attachment. Locator and ball and socket attachments induce equivalent stresses on bone surrounding implants. Locator attachment performance was superior to that of the ball and socket attachment in the implants, nylon caps, and overdenture. Locator attachments are highly recommended and can increase the interval between successive maintenance sessions.

  6. Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs

    International Nuclear Information System (INIS)

    Bollig, Evan F.; Flyer, Natasha; Erlebacher, Gordon

    2012-01-01

    This paper presents parallelization strategies for the radial basis function-finite difference (RBF-FD) method. As a generalized finite differencing scheme, the RBF-FD method functions without the need for underlying meshes to structure nodes. It offers high-order accuracy approximation and scales as O(N) per time step, with N being with the total number of nodes. To our knowledge, this is the first implementation of the RBF-FD method to leverage GPU accelerators for the solution of PDEs. Additionally, this implementation is the first to span both multiple CPUs and multiple GPUs. OpenCL kernels target the GPUs and inter-processor communication and synchronization is managed by the Message Passing Interface (MPI). We verify our implementation of the RBF-FD method with two hyperbolic PDEs on the sphere, and demonstrate up to 9x speedup on a commodity GPU with unoptimized kernel implementations. On a high performance cluster, the method achieves up to 7x speedup for the maximum problem size of 27,556 nodes.

  7. Finite element modelling of Plantar Fascia response during running on different surface types

    Science.gov (United States)

    Razak, A. H. A.; Basaruddin, K. S.; Salleh, A. F.; Rusli, W. M. R.; Hashim, M. S. M.; Daud, R.

    2017-10-01

    Plantar fascia is a ligament found in human foot structure located beneath the skin of human foot that functioning to stabilize longitudinal arch of human foot during standing and normal gait. To perform direct experiment on plantar fascia seems very difficult since the structure located underneath the soft tissue. The aim of this study is to develop a finite element (FE) model of foot with plantar fascia and investigate the effect of the surface hardness on biomechanical response of plantar fascia during running. The plantar fascia model was developed using Solidworks 2015 according to the bone structure of foot model that was obtained from Turbosquid database. Boundary conditions were set out based on the data obtained from experiment of ground reaction force response during running on different surface hardness. The finite element analysis was performed using Ansys 14. The results found that the peak of stress and strain distribution were occur on the insertion of plantar fascia to bone especially on calcaneal area. Plantar fascia became stiffer with increment of Young’s modulus value and was able to resist more loads. Strain of plantar fascia was decreased when Young’s modulus increased with the same amount of loading.

  8. Solving Elliptical Equations in 3D by Means of an Adaptive Refinement in Generalized Finite Differences

    Directory of Open Access Journals (Sweden)

    Luis Gavete

    2018-01-01

    Full Text Available We apply a 3D adaptive refinement procedure using meshless generalized finite difference method for solving elliptic partial differential equations. This adaptive refinement, based on an octree structure, allows adding nodes in a regular way in order to obtain smooth transitions with different nodal densities in the model. For this purpose, we define an error indicator as stop condition of the refinement, a criterion for choosing nodes with the highest errors, and a limit for the number of nodes to be added in each adaptive stage. This kind of equations often appears in engineering problems such as simulation of heat conduction, electrical potential, seepage through porous media, or irrotational flow of fluids. The numerical results show the high accuracy obtained.

  9. SHTP-E, a computer implementation of the finite-difference embedding method of ablation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Randall, J D

    1978-05-01

    PL/I procedures have been developed that use finite-difference techniques to analyze ablation problems by embedding them in inverse-heat-conduction problems with no moving boundaries. The procedures form a set of subroutines that can be called from a problem-oriented main program written by the user. The procedures include provisions for one-, two-, or three-dimensional conduction, parallel modes of heat transfer, thermal contact, choices of implicit and explicit difference techniques, temperature-dependent and directional thermal properties, radiation relief, aerodynamic heating, chemical ablation, and material removal from combinations of flat, cylindrical, and spherical surfaces. This report is meant to serve as a source of underlying theory not covered elsewhere and as a user's manual for the PL/I procedures. Also included are useful debugging aids and external identifiers, a directory of Applied Physics Laboratory computer libraries pertaining to the PL/I procedures, and an illustrative problem as an example.

  10. Finite Element Analysis of Increasing Column Section and CFRP Reinforcement Method under Different Axial Compression Ratio

    Science.gov (United States)

    Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang

    2017-11-01

    Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.

  11. Comparison of finite element and finite difference methods for 2D and 3D calculations with Monte Carlo method results for idealized cases of a heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Carlos; Marconi, Javier; Serra, Oscar [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)]. E-mail: grant@cnea.gov.ar; Mollerach, Ricardo; Fink, Jose [Nucleoelectrica Argentina S.A., Buenos Aires (Argentina)]. E-mail: RMollerach@na-sa.com.ar; JFink@na-sa.com.ar

    2005-07-01

    Nowadays, the increased calculation capacity of modern computers allows us to evaluate the 2D and 3D flux and power distribution of nuclear reactor in a reasonable amount of time using a Monte Carlo method. This method gives results that can be considered the most reliable evaluation of flux and power distribution with a great amount of detail. This is the reason why these results can be considered as benchmark cases that can be used for the validation of other methods. For this purpose, idealized models were calculated using Monte Carlo (code MCNP5) for the ATUCHA I reactor. 2D and 3D cases with and without control rods and channels without fuel element were analyzed. All of them were modeled using a finite element code (DELFIN) and a finite difference code (PUMA). In both cases two energy groups were use. (author)

  12. On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.

    Science.gov (United States)

    Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2011-11-01

    Most implicit solvation models require the definition of a molecular surface as the interface that separates the solute in atomic detail from the solvent approximated as a continuous medium. Commonly used surface definitions include the solvent accessible surface (SAS), the solvent excluded surface (SES), and the van der Waals surface. In this study, we present an efficient numerical algorithm to compute the SES and SAS areas to facilitate the applications of finite-difference Poisson-Boltzmann methods in biomolecular simulations. Different from previous numerical approaches, our algorithm is physics-inspired and intimately coupled to the finite-difference Poisson-Boltzmann methods to fully take advantage of its existing data structures. Our analysis shows that the algorithm can achieve very good agreement with the analytical method in the calculation of the SES and SAS areas. Specifically, in our comprehensive test of 1,555 molecules, the average unsigned relative error is 0.27% in the SES area calculations and 1.05% in the SAS area calculations at the grid spacing of 1/2Å. In addition, a systematic correction analysis can be used to improve the accuracy for the coarse-grid SES area calculations, with the average unsigned relative error in the SES areas reduced to 0.13%. These validation studies indicate that the proposed algorithm can be applied to biomolecules over a broad range of sizes and structures. Finally, the numerical algorithm can also be adapted to evaluate the surface integral of either a vector field or a scalar field defined on the molecular surface for additional solvation energetics and force calculations.

  13. The use of the Finite Element method for the earthquakes modelling in different geodynamic environments

    Science.gov (United States)

    Castaldo, Raffaele; Tizzani, Pietro

    2016-04-01

    Many numerical models have been developed to simulate the deformation and stress changes associated to the faulting process. This aspect is an important topic in fracture mechanism. In the proposed study, we investigate the impact of the deep fault geometry and tectonic setting on the co-seismic ground deformation pattern associated to different earthquake phenomena. We exploit the impact of the structural-geological data in Finite Element environment through an optimization procedure. In this framework, we model the failure processes in a physical mechanical scenario to evaluate the kinematics associated to the Mw 6.1 L'Aquila 2009 earthquake (Italy), the Mw 5.9 Ferrara and Mw 5.8 Mirandola 2012 earthquake (Italy) and the Mw 8.3 Gorkha 2015 earthquake (Nepal). These seismic events are representative of different tectonic scenario: the normal, the reverse and thrust faulting processes, respectively. In order to simulate the kinematic of the analyzed natural phenomena, we assume, under the plane stress approximation (is defined to be a state of stress in which the normal stress, sz, and the shear stress sxz and syz, directed perpendicular to x-y plane are assumed to be zero), the linear elastic behavior of the involved media. The performed finite element procedure consist of through two stages: (i) compacting under the weight of the rock successions (gravity loading), the deformation model reaches a stable equilibrium; (ii) the co-seismic stage simulates, through a distributed slip along the active fault, the released stresses. To constrain the models solution, we exploit the DInSAR deformation velocity maps retrieved by satellite data acquired by old and new generation sensors, as ENVISAT, RADARSAT-2 and SENTINEL 1A, encompassing the studied earthquakes. More specifically, we first generate 2D several forward mechanical models, then, we compare these with the recorded ground deformation fields, in order to select the best boundaries setting and parameters. Finally

  14. A hybrid finite difference and integral equation method for modeling and inversion of marine CSEM data

    DEFF Research Database (Denmark)

    Yoon, Daeung; Zhdanov, Michael; Cai, Hongzhu

    2015-01-01

    One of the major problems in the modeling and inversion of marine controlled source electromagnetic (MCSEM) data is related to the need for accurate representation of very complex geoelectrical models typical for marine environment. At the same time, the corresponding forward modeling algorithms...... should be powerful and fast enough to be suitable for repeated use in hundreds of iterations of the inversion and for multiple transmitter/receiver positions. To this end, we have developed a novel 3D modeling and inversion approach, which combines the advantages of the finite difference (FD......) and integral equation (IE) methods. In the framework of this approach, we solve the Maxwell's equations for anomalous electric fields using the FD approximation on a staggered grid. Once the unknown electric fields in the computation domain of the FD method are computed, the electric and magnetic fields...

  15. Simulation of acoustic streaming by means of the finite-difference time-domain method

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2012-01-01

    Numerical simulations of acoustic streaming generated by a standing wave in a narrow twodimensional cavity are presented. In this case, acoustic streaming arises from the viscous boundary layers set up at the surfaces of the walls. It is known that streaming vortices inside the boundary layer have...... directions of rotation that are opposite to those of the outer streaming vortices (Rayleigh streaming). The general objective of the work described in this paper has been to study the extent to which it is possible to simulate both the outer streaming vortices and the inner boundary layer vortices using...... the finite-difference time-domain method. To simplify the problem, thermal effects are not considered. The motivation of the described investigation has been the possibility of using the numerical method to study acoustic streaming, particularly under non-steady conditions. Results are discussed for channels...

  16. An unsteady finite-difference scheme for 3-D incompressible Navier-Stokes equations

    Science.gov (United States)

    Shin, Byeong R.; Ikohagi, Toshiaki; Daiguji, Hisaaki

    An implicit finite-difference SMAC scheme is developed for solving unsteady 3D incompressible Navier-Stokes equations in general curvilinear coordinates. The time-dependent momentum equations of contravariant velocity components are solved by the approximate-factorization method and the Newton iterative method. Alternatively, an elliptic equation in pressure derived by decoupling the continuity equation from the momentum equations is solved by the Chebyshev SLOR method using a staggered mesh system. An unsteady 3D duct flow over a backward-facing step is computed and presented at a high Reynolds number. The present scheme is found to be robust on supercomputing for the unsteady flow simulation of long time runs.

  17. CASKETSS-HEAT: a finite difference computer program for nonlinear heat conduction problems

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1988-12-01

    A heat conduction program CASKETSS-HEAT has been developed. CASKETSS-HEAT is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Main features of CASKETSS-HEAT are as follows. (1) One, two and three-dimensional geometries for heat conduction calculation are available. (2) Convection and radiation heat transfer of boundry can be specified. (3) Phase change and chemical change can be treated. (4) Finned surface heat transfer can be treated easily. (5) Data memory allocation in the program is variable according to problem size. (6) The program is a compatible heat transfer analysis program to the stress analysis program SAP4 and SAP5. (7) Pre- and post-processing for input data generation and graphic representation of calculation results are available. In the paper, brief illustration of calculation method, input data and sample calculation are presented. (author)

  18. An improved finite difference method for fixed-bed multicomponent sorption

    International Nuclear Information System (INIS)

    Sun, L.M.; Meunier, F.

    1991-01-01

    This paper reports on a new computational procedure based on the finite difference methods developed to solve the coupled partial differential equations describing nonisothermal and nonequilibrium sorption of multiple adsorbate systems on a fixed bed that contains bidispersed pellets. In this numerical method, a solution-adaptive gridding technique (SAG) is applied in combination with a four-point quadratic upstream differencing scheme to satisfactorily resolve very sharp concentration and temperature variations occurring in the case of small dispersing effects. Furthermore, the method resorts to a noniterative implicit procedure for solving the coupling between the column transport equations and the adsorption kinetics inside the pellets, which may be particularly efficient when the particle kinetics are highly stiff

  19. Representation of boundary conditions in thermal reactor global analysis by diffusion theory employing finite difference approximation

    International Nuclear Information System (INIS)

    Paul, O.P.K.

    1978-01-01

    An approach to simulate the flux vanishing boundary condition in solving the two group coupled neutron diffusion equations in three dimensions (x, y, z) employed to calculate the flux distribution and keff of the reactor is summarised. This is of particular interest when the flux vanishing boundary in x, y, z directions is not an integral multiple of the mesh spacings in these directions. The method assumes the flux to be negative, hypothetically at the mesh points lying outside the boundary and thus the finite difference formalism for Laplacian operator, taking into account six neighbours of a mesh point in a square mesh arrangement, is expressed in a general form so as to account for the boundary mesh points of the system. This approach has been incorporated in a three dimensional diffusion code similar to TAPPS23 and has been used for IRT-2000 reactor and the results are quite satisfactory. (author)

  20. A coupled boundary element-finite difference solution of the elliptic modified mild slope equation

    DEFF Research Database (Denmark)

    Naserizadeh, R.; Bingham, Harry B.; Noorzad, A.

    2011-01-01

    The modified mild slope equation of [5] is solved using a combination of the boundary element method (BEM) and the finite difference method (FDM). The exterior domain of constant depth and infinite horizontal extent is solved by a BEM using linear or quadratic elements. The interior domain...... with variable depth is solved by a flexible order of accuracy FDM in boundary-fitted curvilinear coordinates. The two solutions are matched along the common boundary of two methods (the BEM boundary) to ensure continuity of value and normal flux. Convergence of the individual methods is shown and the combined...... solution is tested against several test cases. Results for refraction and diffraction of waves from submerged bottom mounted obstacles compare well with experimental measurements and other computed results from the literature....

  1. FDiff3: a finite-difference solver for facilitating understanding of heat conduction and numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Russell, M.B. [University of Hertfordshire, Hatfield (United Kingdom). Department of Aerospace, Automotive and Design Engineering; Probert, S.D. [Cranfield University, Bedfordshire (United Kingdom). School of Engineering

    2004-12-01

    The growing requirement for energy thrift and hence the increasing emphasis on 'low-purchased-energy' designs are stimulating the need for more accurate insights into the thermal behaviours of buildings and their components. This better understanding is preferably achieved, rather than by using 'closed software' or teaching the relevant mathematics outside heat-transfer lessons, but from embedding the pertinent tutoring while dealing with heat-transfer problems using an open-source code approach. Hence a finite-difference software program (FDiff3) has been composed to show the principles of numerical analysis as well as improve the undergraduates' perception of transient conduction. The pedagogic approach behind the development, its present capabilities and applications to sample test-cases are discussed. (author)

  2. Dispersive finite-difference time-domain (FDTD) analysis of the elliptic cylindrical cloak

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. Y.; Ahn, D. [University of Seoul, Seoul (Korea, Republic of)

    2012-05-15

    A dispersive full-wave finite-difference time-domain (FDTD) model is used to calculate the performance of elliptic cylindrical cloaking devices. The permittivity and the permeability tensors for the cloaking structure are derived by using an effective medium approach in general relativity. The elliptic cylindrical invisibility devices are found to show imperfect cloaking, and the cloaking performance is found to depend on the polarization of the incident waves, the direction of the propagation of those waves, the semi-focal distances and the loss tangents of the meta-material. When the semifocal distance of the elliptic cylinder decreases, the performance of the cloaking becomes very good, with neither noticeable scatterings nor field penetrations. For a larger semi-focal distance, only the TM wave with a specific propagation direction shows good cloaking performance. Realistic cloaking materials with loss still show a cloak that is working, but attenuated back-scattering waves exist.

  3. Thermal Analysis of Ball screw Systems by Explicit Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Min, Bog Ki [Hanyang Univ., Seoul (Korea, Republic of); Park, Chun Hong; Chung, Sung Chong [KIMM, Daejeon (Korea, Republic of)

    2016-01-15

    Friction generated from balls and grooves incurs temperature rise in the ball screw system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ball screw shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ball screw. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.

  4. Two-dimensional finite difference time domain inverse scattering scheme for a perfectly conducting cylinder

    Science.gov (United States)

    Chen, Chien-Hung; Chiu, Chien-Ching; Sun, Chi-Hsien; Chang, Wan-Ling

    2011-01-01

    This paper reports a two-dimensional time-domain inverse scattering algorithm based upon the finite-difference time domain method (FDTD) for determining the shape of a perfectly conducting cylinder. FDTD is used to solve the scattering electromagnetic wave of a perfectly conducting cylinder. The inverse problem is resolved by an optimization approach and the global searching scheme asynchronous particle swarm optimization is then employed to search the parameter space. By properly processing the scattered field, some electromagnetic properties can be reconstructed. A set of representative numerical results is presented to demonstrate that the proposed approach is able to efficiently reconstruct the electromagnetic properties of metallic scatterer even when the initial guess is far away from the exact one. In addition, the effects of Gaussian noises on imaging reconstruction are also investigated.

  5. The analysis of reactively loaded microstrip antennas by finite difference time domain modelling

    Science.gov (United States)

    Hilton, G. S.; Beach, M. A.; Railton, C. J.

    1990-01-01

    In recent years, much interest has been shown in the use of printed circuit antennas in mobile satellite and communications terminals at microwave frequencies. Although such antennas have many advantages in weight and profile size over more conventional reflector/horn configurations, they do, however, suffer from an inherently narrow bandwidth. A way of optimizing the bandwidth of such antennas by an electronic tuning technique using a loaded probe mounted within the antenna structure is examined, and the resulting far-field radiation patterns are shown. Simulation results from a 2D finite difference time domain (FDTD) model for a rectangular microstrip antenna loaded with shorting pins are given and compared to results obtained with an actual antenna. It is hoped that this work will result in a design package for the analysis of microstrip patch antenna elements.

  6. Analysis and modeling of different topologies for linear switched reluctance motor using finite element method

    Directory of Open Access Journals (Sweden)

    Babak Ganji

    2016-09-01

    Full Text Available In the present paper, an electromagnetic simulation model is introduced for the conventional type of linear switched reluctance motor (LSRM in which the dynamic characteristics of the motor are predicted precisely by carrying out 2D finite element (FE transient analysis using ANSYS FE package. The simulation model is created totally in ANSYS parametric design language (APDL as a parametric model and it can be used easily for different designs of the conventional LSRMs. Introducing linear switched reluctance motor with segmental translator as a new type of LSRM, performance principles and design criteria are presented for two various topologies of this motor. Carrying out 2D FE transient analysis, dynamic characteristics of these two motors are predicted and compared to those obtained for the conventional LSRM.

  7. Resistance and Stress Finite Element Analysis of Different Types of Fixation for Mandibular Orthognathic Surgery.

    Science.gov (United States)

    Stringhini, Diego José; Sommerfeld, Ricardo; Uetanabaro, Lucas Caetano; Leonardi, Denise Piotto; Araújo, Melissa Rodrigues; Rebellato, Nelson Luís Barbosa; Costa, Delson João da; Scariot, Rafaela

    2016-01-01

    The aim of this study was to evaluate the stress and dislodgement resistance by finite element analysis of different types of fixation in mandibular orthognathic surgery. A 3D solid finite element model of a hemi-mandible was obtained. A bilateral sagittal split osteotomy was simulated and the distal segment was advanced 5 mm forward. After the adjustment and superimposing of segments, 9 different types of osteosynthesis with 2.0 miniplates and screws were simulated: A, one 4-hole conventional straight miniplate; B, one 4-hole locking straight miniplate; C, one 4-hole conventional miniplate and one bicortical screw; D, one 4-hole locking miniplate and 1 bicortical screws; E, one 6-hole conventional straight miniplate; F, one 6-hole locking miniplate; G, two 4-hole conventional straight miniplates; H, two 4-hole locking straight miniplates; and I, 3 bicortical screws in an inverted-L pattern. In each model, forces simulating the masticatory muscles were applied. The values of stress in the plates and screws were checked. The dislodgement resistance was checked at the proximal segment since the distal segment was stable because of the screen at the occlusal tooth. The regions with the lowest and highest displacement were measured. The offset between the osteotomized segments was verified by millimeter intervals. Inverted-L with bicortical screws was the model that had the lowest dislodgment and the model with the lowest tension was the one with two conventional plates. The results suggest that the tension was better distributed in the locking miniplates, but the locking screws presented higher concentration of tension.

  8. Three-dimensional finite element analysis of different implant configurations for a mandibular fixed prosthesis.

    Science.gov (United States)

    Fazi, Giovanni; Tellini, Simone; Vangi, Dario; Branchi, Roberto

    2011-01-01

    The distribution of stresses in bone, implants, and prosthesis were analyzed via three-dimensional finite element modeling in different implant configurations for a fixed implant-supported prosthesis in an edentulous mandible. A finite element model was created with data obtained from computed tomographic scans of a human mandible. Anisotropic characteristics for cortical and cancellous bone were incorporated into the model. Six different configurations of intraforaminal implants were tested, with the number of implants varying from three to five and the distal implants inserted either parallel to the other implants or tilted distally by 17 or 34 degrees. A prosthetic structure connecting the implants was designed, with 20-mm posterior cantilevers for the parallel implant configurations, and a load of 200 N was applied to the distal portion of the cantilevers. Stresses were measured at the level of the implant, the prosthetic structure, and the bone. Bone-level stresses were analyzed at the implant-bone interface, at the external cortical bone surface, distal to the terminal implant, and in the cancellous bone along the implant body. A three-parallel-implant configuration resulted in higher stress in the implant and bone than configurations with four or five parallel implants. Configurations with the distal implants tilted resulted in a more favorable stress distribution at all levels. In parallel-implant configurations for fixed implant-supported mandibular prostheses, four and five implants resulted in similar stress distribution in the bone, framework, and implants. A distribution of four implants with the distal implants tilted 34 degrees (ie, the "All-on-Four" configuration) resulted in a favorable reduction of stresses in the bone, framework, and implants.

  9. Computing the demagnetizing tensor for finite difference micromagnetic simulations via numerical integration

    International Nuclear Information System (INIS)

    Chernyshenko, Dmitri; Fangohr, Hans

    2015-01-01

    In the finite difference method which is commonly used in computational micromagnetics, the demagnetizing field is usually computed as a convolution of the magnetization vector field with the demagnetizing tensor that describes the magnetostatic field of a cuboidal cell with constant magnetization. An analytical expression for the demagnetizing tensor is available, however at distances far from the cuboidal cell, the numerical evaluation of the analytical expression can be very inaccurate. Due to this large-distance inaccuracy numerical packages such as OOMMF compute the demagnetizing tensor using the explicit formula at distances close to the originating cell, but at distances far from the originating cell a formula based on an asymptotic expansion has to be used. In this work, we describe a method to calculate the demagnetizing field by numerical evaluation of the multidimensional integral in the demagnetizing tensor terms using a sparse grid integration scheme. This method improves the accuracy of computation at intermediate distances from the origin. We compute and report the accuracy of (i) the numerical evaluation of the exact tensor expression which is best for short distances, (ii) the asymptotic expansion best suited for large distances, and (iii) the new method based on numerical integration, which is superior to methods (i) and (ii) for intermediate distances. For all three methods, we show the measurements of accuracy and execution time as a function of distance, for calculations using single precision (4-byte) and double precision (8-byte) floating point arithmetic. We make recommendations for the choice of scheme order and integrating coefficients for the numerical integration method (iii). - Highlights: • We study the accuracy of demagnetization in finite difference micromagnetics. • We introduce a new sparse integration method to compute the tensor more accurately. • Newell, sparse integration and asymptotic method are compared for all ranges

  10. Theoretical Basics of Teaching Discrete Mathematics

    Directory of Open Access Journals (Sweden)

    Y. A. Perminov

    2012-01-01

    Full Text Available  The paper deals with the research findings concerning the process of mastering the theoretical basics of discrete mathematics by the students of vocational pedagogic profile. The methodological analysis is based on the subject and functions of the modern discrete mathematics and its role in mathematical modeling and computing. The modern discrete mathematics (i.e. mathematics of the finite type structures plays the important role in modernization of vocational training. It is especially rele- vant to training students for vocational pedagogic qualifications, as in the future they will be responsible for training the middle and the senior level specialists in engineer- ing and technical spheres. Nowadays in different industries, there arise the problems which require for their solving both continual – based on the classical mathematical methods – and discrete modeling. The teaching course of discrete mathematics for the future vocational teachers should be relevant to the target qualification and aimed at mastering the mathematical modeling, systems of computer mathematics and computer technologies. The author emphasizes the fundamental role of mastering the language of algebraic and serial structures, as well as the logical, algorithmic, combinatory schemes dominating in dis- crete mathematics. The guidelines for selecting the content of the course in discrete mathematics are specified. The theoretical findings of the research can be put into practice whilst developing curricula and working programs for bachelors and masters’ training. 

  11. Ablative Thermal Response Analysis Using the Finite Element Method

    Science.gov (United States)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  12. A comparison of the lattice discrete particle method to the finite-element method and the K&C material model for simulating the static and dynamic response of concrete.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jovanca J.; Bishop, Joseph E.

    2013-11-01

    This report summarizes the work performed by the graduate student Jovanca Smith during a summer internship in the summer of 2012 with the aid of mentor Joe Bishop. The projects were a two-part endeavor that focused on the use of the numerical model called the Lattice Discrete Particle Model (LDPM). The LDPM is a discrete meso-scale model currently used at Northwestern University and the ERDC to model the heterogeneous quasi-brittle material, concrete. In the first part of the project, LDPM was compared to the Karagozian and Case Concrete Model (K&C) used in Presto, an explicit dynamics finite-element code, developed at Sandia National Laboratories. In order to make this comparison, a series of quasi-static numerical experiments were performed, namely unconfined uniaxial compression tests on four varied cube specimen sizes, three-point bending notched experiments on three proportional specimen sizes, and six triaxial compression tests on a cylindrical specimen. The second part of this project focused on the application of LDPM to simulate projectile perforation on an ultra high performance concrete called CORTUF. This application illustrates the strengths of LDPM over traditional continuum models.

  13. A new time–space domain high-order finite-difference method for the acoustic wave equation

    KAUST Repository

    Liu, Yang

    2009-12-01

    A new unified methodology was proposed in Finkelstein and Kastner (2007) [39] to derive spatial finite-difference (FD) coefficients in the joint time-space domain to reduce numerical dispersion. The key idea of this method is that the dispersion relation is completely satisfied at several designated frequencies. We develop this new time-space domain FD method further for 1D, 2D and 3D acoustic wave modeling using a plane wave theory and the Taylor series expansion. New spatial FD coefficients are frequency independent though they lead to a frequency dependent numerical solution. We prove that the modeling accuracy is 2nd-order when the conventional (2 M)th-order space domain FD and the 2nd-order time domain FD stencils are directly used to solve the acoustic wave equation. However, under the same discretization, the new 1D method can reach (2 M)th-order accuracy and is always stable. The 2D method can reach (2 M)th-order accuracy along eight directions and has better stability. Similarly, the 3D method can reach (2 M)th-order accuracy along 48 directions and also has better stability than the conventional FD method. The advantages of the new method are also demonstrated by the results of dispersion analysis and numerical modeling of acoustic wave equation for homogeneous and inhomogeneous acoustic models. In addition, we study the influence of the FD stencil length on numerical modeling for 1D inhomogeneous media, and derive an optimal FD stencil length required to balance the accuracy and efficiency of modeling. A new time-space domain high-order staggered-grid FD method for the 1D acoustic wave equation with variable densities is also developed, which has similar advantages demonstrated by dispersion analysis, stability analysis and modeling experiments. The methodology presented in this paper can be easily extended to solve similar partial difference equations arising in other fields of science and engineering. © 2009 Elsevier Inc.

  14. Finite element stress analysis of edentulous mandibles with different bone types supporting multiple-implant superstructures.

    Science.gov (United States)

    de Almeida, Ericka Oliverira; Rocha, Eduardo Passos; Freitas, Amilcar Chagas; Freitas, Manoel Martin

    2010-01-01

    The purpose of this study was to evaluate the influence of different types of bone on the stress distribution in the mandibular bone supporting a prefabricated bar-type implant prosthesis using three-dimensional finite element analysis. Four finite element models (M) of a completely edentulous mandibular arch were built. The bone types varied from type 1 to type 4 (M1, M2, M3, M4). The arch was restored using a prefabricated bar system supported by four interforaminal implants for the protocol prosthesis. Computer software was used to determine the stress fields. Three unilateral posterior loads (L) of 150 N were exerted on the prosthesis: L1, perpendicular to the prefabricated bar; L2, oblique (30 degrees) in the buccolingual direction; and L3, oblique (30 degrees) in the linguobuccal direction. The maximum principal stress (Omax) and the maximum principal strain (Emax) were obtained for cortical and trabecular bone. Types 3 and 4 bone showed the highest smax (MPa) in the cortical bone (19.9 and 18.2 for L1, 34.6 and 31.3 for L2, and 3.88 and 24.4 for L3, respectively). The maximum principal strain (Emax) was observed in type 4 cortical bone for all loads (1.80 for L1, 2.4 for L2, and 2.36 for L3). The cortical bone in M3 and M4 showed the highest stress concentration in the axial and buccolingual loading conditions. Bone types 1 and 2 showed the lowest stress concentrations. For the linguobuccal loading condition, the cortical bone in M4 showed the highest stress concentration, followed by bone types 3, 2, and 1. Cortical bone in M4 showed the highest strain for all loading conditions. The bone type might not be the only decisive factor to influence the stress distribution the bone supporting an implant prosthesis anchored by a prefabricated bar.

  15. Different geometric patterns of pacifiers compared on the basis of finite element analysis.

    Science.gov (United States)

    Levrini, L; Merlo, P; Paracchini, L

    2007-12-01

    This study was carried out with the purpose to show on a virtual model of oral cavity the mechanical behaviour of different kinds of pacifiers with different pressure levels that can be likened to a condition of rest and deglutition. Three different types of dummies, orthodontic- (A), cherry- (B) and drop- (C) shaped from an anatomical point of view, were inserted between the palate and the tongue in a virtual system by means of a finite element simulation. The palatal structure was recreated through tridimensional laser scanning, while the tongue structure was reconstructed by a software suitable for reproducing solids. Also the image of the pacifiers was developed by computer-aided scanning and reproduction. Suitable constraints were inserted and high and low pressure levels were exerted on these systems. FEA simulation allowed us to distribute the strain on the palate according to the different geometrical structures of the objects. Dummy A shows a more uniform and wider crosswise stress distribution with also a lesser load on the anterior palatal crest. Dummy B and C, on the contrary, show a more dot-like behaviour inducing a higher stress due to contact on restricted points. The characteristics of dummy A, although they have not been clinically investigated yet, seem to be the fittest ones to guarantee the maintenance of the transversal diameters of the premaxilla and reduce the risk of open bite.

  16. A Coupled Finite Difference and Moving Least Squares Simulation of Violent Breaking Wave Impact

    DEFF Research Database (Denmark)

    Lindberg, Ole; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    feature of this model is a generalized finite point set method which is applied to the solution of the Poisson equation on an unstructured point distribution. The presented finite point set method is generalized to arbitrary order of approximation. The two models are applied to simulation of steep...

  17. A generalization of Fatou’s lemma for extended real-valued functions on σ-finite measure spaces: with an application to infinite-horizon optimization in discrete time

    Directory of Open Access Journals (Sweden)

    Takashi Kamihigashi

    2017-01-01

    Full Text Available Abstract Given a sequence { f n } n ∈ N $\\{f_{n}\\}_{n \\in \\mathbb {N}}$ of measurable functions on a σ-finite measure space such that the integral of each f n $f_{n}$ as well as that of lim sup n ↑ ∞ f n $\\limsup_{n \\uparrow\\infty} f_{n}$ exists in R ‾ $\\overline{\\mathbb {R}}$ , we provide a sufficient condition for the following inequality to hold: lim sup n ↑ ∞ ∫ f n d μ ≤ ∫ lim sup n ↑ ∞ f n d μ . $$ \\limsup_{n \\uparrow\\infty} \\int f_{n} \\,d\\mu\\leq \\int\\limsup_{n \\uparrow\\infty} f_{n} \\,d\\mu. $$ Our condition is considerably weaker than sufficient conditions known in the literature such as uniform integrability (in the case of a finite measure and equi-integrability. As an application, we obtain a new result on the existence of an optimal path for deterministic infinite-horizon optimization problems in discrete time.

  18. Anatomically discrete sex differences in neuroplasticity in zebra finches as reflected by perineuronal nets

    NARCIS (Netherlands)

    Cornez, Gilles; ter Haar, Sita M; Cornil, Charlotte A; Balthazart, Jacques

    2015-01-01

    Large morphological sex differences in the vertebrate brain were initially identified in song control nuclei of oscines. Besides gross differences between volumes of nuclei in males and females, sex differences also concern the size and dendritic arborization of neurons and various neurochemical

  19. Discrete q-derivatives and symmetries of q-difference equations

    Energy Technology Data Exchange (ETDEWEB)

    Levi, D [Dipartimento di Fisica, Universita Roma Tre and INFN-Sezione di Roma Tre, Via della Vasca Navale 84, 00146 Rome (Italy); Negro, J [Departamento de FIsica Teorica, Universidad de Valladolid, E-47011, Valladolid (Spain); Olmo, M A del [Departamento de FIsica Teorica, Universidad de Valladolid, E-47011, Valladolid (Spain)

    2004-03-12

    In this paper we extend the umbral calculus, developed to deal with difference equations on uniform lattices, to q-difference equations. We show that many properties considered for shift invariant difference operators satisfying the umbral calculus can be implemented to the case of the q-difference operators. This q-umbral calculus can be used to provide solutions to linear q-difference equations and q-differential delay equations. To illustrate the method, we will apply the obtained results to the construction of symmetry solutions for the q-heat equation.

  20. Calculated Low-Speed Steady and Time-Dependent Aerodynamic Derivatives for Several Different Wings Using a Discrete Vortex Method

    Science.gov (United States)

    Riley, Donald R.

    2016-01-01

    Calculated numerical values for some aerodynamic terms and stability Derivatives for several different wings in unseparated inviscid incompressible flow were made using a discrete vortex method involving a limited number of horseshoe vortices. Both longitudinal and lateral-directional derivatives were calculated for steady conditions as well as for sinusoidal oscillatory motions. Variables included the number of vortices used and the rotation axis/moment center chordwise location. Frequencies considered were limited to the range of interest to vehicle dynamic stability (kb <.24 ). Comparisons of some calculated numerical results with experimental wind-tunnel measurements were in reasonable agreement in the low angle-of-attack range considering the differences existing between the mathematical representation and experimental wind-tunnel models tested. Of particular interest was the presence of induced drag for the oscillatory condition.

  1. Finite-difference theory for sound propagation in a lined duct with uniform flow using the wave envelope concept

    Science.gov (United States)

    Baumeister, K. J.

    1977-01-01

    Finite difference equations are derived for sound propagation in a two dimensional, straight, soft wall duct with a uniform flow by using the wave envelope concept. This concept reduces the required number of finite difference grid points by one to two orders of magnitude depending on the length of the duct and the frequency of the sound. The governing acoustic difference equations in complex notation are derived. An exit condition is developed that allows a duct of finite length to simulate the wave propagation in an infinitely long duct. Sample calculations presented for a plane wave incident upon the acoustic liner show the numerical theory to be in good agreement with closed form analytical theory. Complete pressure and velocity printouts are given to some sample problems and can be used to debug and check future computer programs.

  2. Observed seismic and infrasonic signals around the Hakone volcano -Discussion based on a finite-difference calculation-

    Science.gov (United States)

    Wakamatu, S.; Kawakata, H.; Hirano, S.

    2017-12-01

    Observation and analysis of infrasonic waves are important for volcanology because they could be associated with mechanisms of volcanic tremors and earthquakes (Sakai et al., 2000). Around the Hakone volcano area, Japan, infrasonic waves had been observed many times in 2015 (Yukutake et al., 2016, JpGU). In the area, seismometers have been installed more than microphones, so that analysis of seismograms may also contribute to understanding some characteristics of the infrasonic waves. In this study, we focused on the infrasonic waves on July 1, 2015, at the area and discussed their propagation. We analyzed the vertical component of seven seismograms and two infrasound records; instruments for these data have been installed within 5 km from the vent emerged in the June 2015 eruption(HSRI, 2015). We summarized distances of the observation points from the vent and appearance of the signals in the seismograms and the microphone records in Table 1. We confirmed that, when the OWD microphone(Fig1) observed the infrasonic waves, seismometers of the OWD and the KIN surface seismic stations(Fig1) recorded pulse-like signals repeatedly while the other five buried seismometers did not. At the same time, the NNT microphone(Fig1) recorded no more than unclear signals despite the shorter distance to the vent than that of the KIN station. We found that the appearance of pulse-like signals at the KIN seismic station usually 10-11 seconds delay after the appearance at the OWD seismic station. The distance between these two stations is 3.5km, so that the signals in seismograms could represent propagation of the infrasonic waves rather than the seismic waves. If so, however, the infrasound propagation could be influenced by the topography of the area because the signals are unclear in the NNT microphone record.To validate the above interpretation, we simulated the diffraction of the infrasonic waves due to the topography. We executed a 3-D finite-difference calculation by

  3. Differences in preferences for rural job postings between nursing students and practicing nurses: evidence from a discrete choice experiment in Lao People?s Democratic Republic

    OpenAIRE

    Rockers, Peter C; Jaskiewicz, Wanda; Kruk, Margaret E; Phathammavong, Outavong; Vangkonevilay, Phouthone; Paphassarang, Chanthakhath; Phachanh, Inpong Thong; Wurts, Laura; Tulenko, Kate

    2013-01-01

    Background: A discrete choice experiment was conducted to investigate preferences for job characteristics among nursing students and practicing nurses to determine how these groups vary in their respective preferences and to understand whether differing policies may be appropriate for each group. Methods: Participating students and workers were administered a discrete choice experiment that elicited preferences for attributes of potential job postings. Job attributes included salary, duration...

  4. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis.

    Science.gov (United States)

    Bozkaya, Dincer; Muftu, Sinan; Muftu, Ali

    2004-12-01

    The external contour of an implant and the magnitude of occlusal loading can have significant effects on the load transfer characteristics and may result in different bone failure rates for different implant systems. The goal of this study was to investigate the effects of external geometry and occlusal load magnitude on bone failure modes for 5 commercially available dental implant systems. Five different implant systems; Ankylos, Astra, Bicon, ITI, and Nobel Biocare, comparable in size, but different in thread profile and crest module shapes, were compared using the finite element method. Type II bone quality was approximated and complete osseous integration was assumed. Occlusal loads of varying magnitudes (0 to 2000 N) were applied on the abutments supporting single tooth restorations at 11.3 degrees from the vertical axis with a 1-mm offset. Total overloaded bone area, where tensile and compressive normal stresses fell outside of the recommended limits of 100 and 170 MPa, respectively, was investigated for different load levels. For moderate levels of occlusal loads up to 300 N, the compact bone was not overloaded by any of the implant systems. At the extreme end of the occlusal load range (1000 N or more) the overloading characteristics of implants may be dependent on geometric shape. In general, overloading occurs near the superior region of compact bone, in compression, and it is primarily caused by the normal and lateral components of the occlusal load. At the region of intersection of compact and trabecular bone, overloading occurs in tension due to the vertical component of the occlusal load. For excessive forces greater than 1000 N, the overloaded areas of the bone varied considerably among 5 different implants systems evaluated.

  5. Memory-optimized shift operator alternating direction implicit finite difference time domain method for plasma

    Science.gov (United States)

    Song, Wanjun; Zhang, Hou

    2017-11-01

    Through introducing the alternating direction implicit (ADI) technique and the memory-optimized algorithm to the shift operator (SO) finite difference time domain (FDTD) method, the memory-optimized SO-ADI FDTD for nonmagnetized collisional plasma is proposed and the corresponding formulae of the proposed method for programming are deduced. In order to further the computational efficiency, the iteration method rather than Gauss elimination method is employed to solve the equation set in the derivation of the formulae. Complicated transformations and convolutions are avoided in the proposed method compared with the Z transforms (ZT) ADI FDTD method and the piecewise linear JE recursive convolution (PLJERC) ADI FDTD method. The numerical dispersion of the SO-ADI FDTD method with different plasma frequencies and electron collision frequencies is analyzed and the appropriate ratio of grid size to the minimum wavelength is given. The accuracy of the proposed method is validated by the reflection coefficient test on a nonmagnetized collisional plasma sheet. The testing results show that the proposed method is advantageous for improving computational efficiency and saving computer memory. The reflection coefficient of a perfect electric conductor (PEC) sheet covered by multilayer plasma and the RCS of the objects coated by plasma are calculated by the proposed method and the simulation results are analyzed.

  6. Finite difference method for inner-layer equations in the resistive MagnetoHydroDynamic stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tokuda, Shinji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Watanabe, Tomoko

    1996-08-01

    The matching problem in resistive MagnetoHydroDynamic stability analysis by the asymptotic matching method has been reformulated as an initial-boundary value problem for the inner-layer equations describing the plasma dynamics in the thin layer around a rational surface. The third boundary conditions at boundaries of a finite interval are imposed on the inner layer equations in the formulation instead of asymptotic conditions at infinities. The finite difference method for this problem has been applied to model equations whose solutions are known in a closed form. It has been shown that the initial value problem and the associated eigenvalue problem for the model equations can be solved by the finite difference method with numerical stability. The formulation presented here enables the asymptotic matching method to be a practical method for the resistive MHD stability analysis. (author)

  7. Cell-Averaged discretization for incompressible Navier-Stokes with embedded boundaries and locally refined Cartesian meshes: a high-order finite volume approach

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Johansen, Hans; Graves, Dan; Martin, Dan; Colella, Phillip; Applied Numerical Algorithms Group Team

    2017-11-01

    We present a consistent cell-averaged discretization for incompressible Navier-Stokes equations on complex domains using embedded boundaries. The embedded boundary is allowed to freely cut the locally-refined background Cartesian grid. Implicit-function representation is used for the embedded boundary, which allows us to convert the required geometric moments in the Taylor series expansion (upto arbitrary order) of polynomials into an algebraic problem in lower dimensions. The computed geometric moments are then used to construct stencils for various operators like the Laplacian, divergence, gradient, etc., by solving a least-squares system locally. We also construct the inter-level data-transfer operators like prolongation and restriction for multi grid solvers using the same least-squares system approach. This allows us to retain high-order of accuracy near coarse-fine interface and near embedded boundaries. Canonical problems like Taylor-Green vortex flow and flow past bluff bodies will be presented to demonstrate the proposed method. U.S. Department of Energy, Office of Science, ASCR (Award Number DE-AC02-05CH11231).

  8. The transient response for different types of erodable surface thermocouples using finite element analysis

    Directory of Open Access Journals (Sweden)

    Mohammed Hussein

    2007-01-01

    Full Text Available The transient response of erodable surface thermocouples has been numerically assessed by using a two dimensional finite element analysis. Four types of base metal erodable surface thermocouples have been examined in this study, included type-K (alumel-chromel, type-E (chromel-constantan, type-T (copper-constantan, and type-J (iron-constantan with 50 mm thick- ness for each. The practical importance of these types of thermocouples is to be used in internal combustion engine studies and aerodynamics experiments. The step heat flux was applied at the surface of the thermocouple model. The heat flux from the measurements of the surface temperature can be commonly identified by assuming that the heat transfer within these devices is one-dimensional. The surface temperature histories at different positions along the thermocouple are presented. The normalized surface temperature histories at the center of the thermocouple for different types at different response time are also depicted. The thermocouple response to different heat flux variations were considered by using a square heat flux with 2 ms width, a sinusoidal surface heat flux variation width 10 ms period and repeated heat flux variation with 2 ms width. The present results demonstrate that the two dimensional transient heat conduction effects have a significant influence on the surface temperature history measurements made with these devices. It was observed that the surface temperature history and the transient response for thermocouple type-E are higher than that for other types due to the thermal properties of this thermocouple. It was concluded that the thermal properties of the surrounding material do have an impact, but the properties of the thermocouple and the insulation materials also make an important contribution to the net response.

  9. A finite-difference frequency-domain code for electromagnetic induction tomography

    International Nuclear Information System (INIS)

    Berryman, J.G.; Buettner, H.M.; Champagne, N.J.II.; Grant, J.B.; Sharpe, R.M.

    1998-01-01

    We are developing a new 3D code for application to electromagnetic induction tomography and applications to environmental imaging problems. We have used the finite-difference frequency- domain formulation of Beilenhoff et al. (1992) and the anisotropic PML (perfectly matched layer) approach (Berenger, 1994) to specify boundary conditions following Wu et al. (1997). PML deals with the fact that the computations must be done in a finite domain even though the real problem is effectively of infinite extent. The resulting formulas for the forward solver reduce to a problem of the form Ax = y, where A is a non-Hermitian matrix with real values off the diagonal and complex values along its diagonal. The matrix A may be either symmetric or nonsymmetric depending on details of the boundary conditions chosen (i.e., the particular PML used in the application). The basic equation must be solved for the vector x (which represents field quantities such as electric and magnetic fields) with the vector y determined by the boundary conditions and transmitter location. Of the many forward solvers that could be used for this system, relatively few have been thoroughly tested for the type of matrix encountered in our problem. Our studies of the stability characteristics of the Bi-CG algorithm raised questions about its reliability and uniform accuracy for this application. We have found the stability characteristics of Bi-CGSTAB [an alternative developed by van der Vorst (1992) for such problems] to be entirely adequate for our application, whereas the standard Bi-CG was quite inadequate. We have also done extensive validation of our code using semi-analytical results as well as other codes. The new code is written in Fortran and is designed to be easily parallelized, but we have not yet tested this feature of the code. An adjoint method is being developed for solving the inverse problem for conductivity imaging (for mapping underground plumes), and this approach, when ready, will

  10. Unsteady streamflow simulation using a linear implicit finite-difference model

    Science.gov (United States)

    Land, Larry F.

    1978-01-01

    A computer program for simulating one-dimensional subcritical, gradually varied, unsteady flow in a stream has been developed and documented. Given upstream and downstream boundary conditions and channel geometry data, roughness coefficients, stage, and discharge can be calculated anywhere within the reach as a function of time. The program uses a linear implicit finite-difference technique that discritizes the partial differential equations. Then it arranges the coefficients of the continuity and momentum equations into a pentadiagonal matrix for solution. Because it is a reasonable compromise between computational accuracy, speed and ease of use,the technique is one of the most commonly used. The upstream boundary condition is a depth hydrograph. However, options also allow the boundary condition to be discharge or water-surface elevation. The downstream boundary condition is a depth which may be constant, self-setting, or unsteady. The reach may be divided into uneven increments and the cross sections may be nonprismatic and may vary from one to the other. Tributary and lateral inflow may enter the reach. The digital model will simulate such common problems as (1) flood waves, (2) releases from dams, and (3) channels where storage is a consideration. It may also supply the needed flow information for mass-transport simulation. (Woodard-USGS)

  11. Finite difference solution of the time dependent neutron group diffusion equations

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Henry, A.F.

    1975-08-01

    In this thesis two unrelated topics of reactor physics are examined: the prompt jump approximation and alternating direction checkerboard methods. In the prompt jump approximation it is assumed that the prompt and delayed neutrons in a nuclear reactor may be described mathematically as being instantaneously in equilibrium with each other. This approximation is applied to the spatially dependent neutron diffusion theory reactor kinetics model. Alternating direction checkerboard methods are a family of finite difference alternating direction methods which may be used to solve the multigroup, multidimension, time-dependent neutron diffusion equations. The reactor mesh grid is not swept line by line or point by point as in implicit or explicit alternating direction methods; instead, the reactor mesh grid may be thought of as a checkerboard in which all the ''red squares'' and '' black squares'' are treated successively. Two members of this family of methods, the ADC and NSADC methods, are at least as good as other alternating direction methods. It has been found that the accuracy of implicit and explicit alternating direction methods can be greatly improved by the application of an exponential transformation. This transformation is incompatible with checkerboard methods. Therefore, a new formulation of the exponential transformation has been developed which is compatible with checkerboard methods and at least as good as the former transformation for other alternating direction methods

  12. A Finite-Difference Solution of Solute Transport through a Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    B. Godongwana

    2015-01-01

    Full Text Available The current paper presents a theoretical analysis of the transport of solutes through a fixed-film membrane bioreactor (MBR, immobilised with an active biocatalyst. The dimensionless convection-diffusion equation with variable coefficients was solved analytically and numerically for concentration profiles of the solutes through the MBR. The analytical solution makes use of regular perturbation and accounts for radial convective flow as well as axial diffusion of the substrate species. The Michaelis-Menten (or Monod rate equation was assumed for the sink term, and the perturbation was extended up to second-order. In the analytical solution only the first-order limit of the Michaelis-Menten equation was considered; hence the linearized equation was solved. In the numerical solution, however, this restriction was lifted. The solution of the nonlinear, elliptic, partial differential equation was based on an implicit finite-difference method (FDM. An upwind scheme was employed for numerical stability. The resulting algebraic equations were solved simultaneously using the multivariate Newton-Raphson iteration method. The solution allows for the evaluation of the effect on the concentration profiles of (i the radial and axial convective velocity, (ii the convective mass transfer rates, (iii the reaction rates, (iv the fraction retentate, and (v the aspect ratio.

  13. A comparison between different finite elements for elastic and aero-elastic analyses

    Directory of Open Access Journals (Sweden)

    Mohamed Mahran

    2017-11-01

    Full Text Available In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element’s strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.

  14. M2Di: MATLAB 2D Stokes solvers using the Finite Difference method

    Science.gov (United States)

    Räss, Ludovic; Duretz, Thibault; Schmalholz, Stefan; Podladchikov, Yury

    2017-04-01

    The study of coupled processes in Earth Sciences leads to the development of multiphysics modelling tools. Mechanical solvers represent the essential ingredient of any of these tools such that their performance and robustness is generally dictated by that of the mechanical solver. Here, we present M2Di, a collection of MATLAB routines designed for studying 2D linear and power law incompressible viscous flow using Finite Difference discretisation. The scripts are written in a concise vectorised MATLAB fashion and rely on fast and robust linear and non-linear solvers (Picard and Newton iterations). As a result, time to solution of 22 seconds for linear viscous flow with 104 viscosity jump on 10002 grid points can be achieved on a standard personal computer. We will present a numerous example of applications that span from high resolution crystal-melt dynamics, deformation of heterogeneous power law viscous fluids, instantaneous mantle flow patterns in cylindrical coordinates, and calculation of pressure gradients around inclusions using variable grid spacing. We use analytical solution for linear viscous flow with highly variable viscosity to validate the linear flow solver. Validation of the non-linear solver is achieved by comparing numerical solution to analytic and benchmark solutions of power law viscous folding and necking. The M2Di codes are open source and can hence be used for research or educational purposes.

  15. A comparison between different finite elements for elastic and aero-elastic analyses.

    Science.gov (United States)

    Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani

    2017-11-01

    In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.

  16. Accelerated cardiac cine MRI using locally low rank and finite difference constraints.

    Science.gov (United States)

    Miao, Xin; Lingala, Sajan Goud; Guo, Yi; Jao, Terrence; Usman, Muhammad; Prieto, Claudia; Nayak, Krishna S

    2016-07-01

    To evaluate the potential value of combining multiple constraints for highly accelerated cardiac cine MRI. A locally low rank (LLR) constraint and a temporal finite difference (FD) constraint were combined to reconstruct cardiac cine data from highly undersampled measurements. Retrospectively undersampled 2D Cartesian reconstructions were quantitatively evaluated against fully-sampled data using normalized root mean square error, structural similarity index (SSIM) and high frequency error norm (HFEN). This method was also applied to 2D golden-angle radial real-time imaging to facilitate single breath-hold whole-heart cine (12 short-axis slices, 9-13s single breath hold). Reconstruction was compared against state-of-the-art constrained reconstruction methods: LLR, FD, and k-t SLR. At 10 to 60 spokes/frame, LLR+FD better preserved fine structures and depicted myocardial motion with reduced spatio-temporal blurring in comparison to existing methods. LLR yielded higher SSIM ranking than FD; FD had higher HFEN ranking than LLR. LLR+FD combined the complimentary advantages of the two, and ranked the highest in all metrics for all retrospective undersampled cases. Single breath-hold multi-slice cardiac cine with prospective undersampling was enabled with in-plane spatio-temporal resolutions of 2×2mm(2) and 40ms. Highly accelerated cardiac cine is enabled by the combination of 2D undersampling and the synergistic use of LLR and FD constraints. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Exploring a coarse-grained distributive strategy for finite-difference Poisson-Boltzmann calculations.

    Science.gov (United States)

    Hsieh, Meng-Juei; Luo, Ray

    2011-08-01

    We have implemented and evaluated a coarse-grained distributive method for finite-difference Poisson-Boltzmann (FDPB) calculations of large biomolecular systems. This method is based on the electrostatic focusing principle of decomposing a large fine-grid FDPB calculation into multiple independent FDPB calculations, each of which focuses on only a small and a specific portion (block) of the large fine grid. We first analyzed the impact of the focusing approximation upon the accuracy of the numerical reaction field energies and found that a reasonable relative accuracy of 10(-3) can be achieved when the buffering space is set to be 16 grid points and the block dimension is set to be at least (1/6)(3) of the fine-grid dimension, as in the one-block focusing method. The impact upon efficiency of the use of buffering space to maintain enough accuracy was also studied. It was found that an "optimal" multi-block dimension exists for a given computer hardware setup, and this dimension is more or less independent of the solute geometries. A parallel version of the distributive focusing method was also implemented. Given the proper settings, the distributive method was able to achieve respectable parallel efficiency with tested biomolecular systems on a loosely connected computer cluster.

  18. Design and development of an air humidifier using finite difference method for a solar desalination plant

    Science.gov (United States)

    Chiranjeevi, C.; Srinivas, T.

    2017-11-01

    Humidifier is an important component in air humidification-dehumidification desalination plant for fresh water production. Liquid to air flow rate ratio is optimization is reported for an industrial cooling towers but for an air humidifier it is not addressed. The current work is focused on the design and analysis of an air humidifier for solar desalination plant to maximize the yield with better humidification, using finite difference method (FDM). The outlet conditions of air from the humidifier are theoretically predicted by FDM with the given inlet conditions, which will be further used in the design calculation of the humidifier. Hot water to air flow rate ratio and inlet hot water temperature are identified as key operating parameters to evaluate the humidifier performance. The maximum and optimal values of mass flow rate ratio of water to air are found to be 2.15 and 1.5 respectively using packing function and Merkel Integral. The height of humidifier is constrained to 1.5 m and the diameter of the humidifier is found as 0.28m. The performance of humidifier and outlet conditions of air are simulated using FDM and compared with experimental results. The obtained results are within an agreeable range of deviation.

  19. An extended Finite Variable Difference Method with application to QUICK scheme. Optimized QUICK

    International Nuclear Information System (INIS)

    Sakai, Katsuhiro

    1996-01-01

    A Finite Variable Difference Method (FVDM) proposed previously by the author for locally exact numerical schemes is extended so as to be applicable to polynomial expansion schemes. This extended FVDM is applied to the QUICK scheme. The optimum differencing points are analytically derived in terms of mesh Reynolds numbers so that the variance of the numerical solution is minimized under the condition that roots of the resulting characteristic equation are nonnegative to insure the numerical stability. This optimized scheme coincides with the original QUICK scheme at Rm=8/3, which is the critical value of its stability, and complements a stable scheme for Rm greater than 8/3. This optimization improves the numerical solution for the steady and unsteady convection-diffusion equations without numerical oscillations. In the same manner as the previous result for the locally exact numerical schemes, it has been made clear based on the extended FVDM that optimum differencing points from the view point of numerical stability and accuracy exist for the polynomial expansion schemes. (author)

  20. Wavelet-based adaptation methodology combined with finite difference WENO to solve ideal magnetohydrodynamics

    Science.gov (United States)

    Do, Seongju; Li, Haojun; Kang, Myungjoo

    2017-06-01

    In this paper, we present an accurate and efficient wavelet-based adaptive weighted essentially non-oscillatory (WENO) scheme for hydrodynamics and ideal magnetohydrodynamics (MHD) equations arising from the hyperbolic conservation systems. The proposed method works with the finite difference weighted essentially non-oscillatory (FD-WENO) method in space and the third order total variation diminishing (TVD) Runge-Kutta (RK) method in time. The philosophy of this work is to use the lifted interpolating wavelets as not only detector for singularities but also interpolator. Especially, flexible interpolations can be performed by an inverse wavelet transformation. When the divergence cleaning method introducing auxiliary scalar field ψ is applied to the base numerical schemes for imposing divergence-free condition to the magnetic field in a MHD equation, the approximations to derivatives of ψ require the neighboring points. Moreover, the fifth order WENO interpolation requires large stencil to reconstruct high order polynomial. In such cases, an efficient interpolation method is necessary. The adaptive spatial differentiation method is considered as well as the adaptation of grid resolutions. In order to avoid the heavy computation of FD-WENO, in the smooth regions fixed stencil approximation without computing the non-linear WENO weights is used, and the characteristic decomposition method is replaced by a component-wise approach. Numerical results demonstrate that with the adaptive method we are able to resolve the solutions that agree well with the solution of the corresponding fine grid.

  1. Improved stiffness confinement method within the coarse mesh finite difference framework for efficient spatial kinetics calculation

    International Nuclear Information System (INIS)

    Park, Beom Woo; Joo, Han Gyu

    2015-01-01

    Highlights: • The stiffness confinement method is combined with multigroup CMFD with SENM nodal kernel. • The systematic methods for determining the shape and amplitude frequencies are established. • Eigenvalue problems instead of fixed source problems are solved in the transient calculation. • It is demonstrated that much larger time step sizes can be used with the SCM–CMFD method. - Abstract: An improved Stiffness Confinement Method (SCM) is formulated within the framework of the coarse mesh finite difference (CMFD) formulation for efficient multigroup spatial kinetics calculation. The algorithm for searching for the amplitude frequency that makes the dynamic eigenvalue unity is developed in a systematic way along with the methods for determining the shape and precursor frequencies. A nodal calculation scheme is established within the CMFD framework to incorporate the cross section changes due to thermal feedback and dynamic frequency update. The conditional nodal update scheme is employed such that the transient calculation is performed mostly with the CMFD formulation and the CMFD parameters are conditionally updated by intermittent nodal calculations. A quadratic representation of amplitude frequency is introduced as another improvement. The performance of the improved SCM within the CMFD framework is assessed by comparing the solution accuracy and computing times for the NEACRP control rod ejection benchmark problems with those obtained with the Crank–Nicholson method with exponential transform (CNET). It is demonstrated that the improved SCM is beneficial for large time step size calculations with stability and accuracy enhancement

  2. Investigation of an upwind finite element flux-split algorithm for the steady compressible Euler equations

    Science.gov (United States)

    Lamarche, L.; Degrez, G.; Prince, A.

    A method is described that combines the geometric flexibility of finite element methodology with recent developments of high-resolution finite difference schemes for hyperbolic systems of equations. It is proposed to use the standard weighted residual approach to set up the discrete equations. Upwinding is then achieved via a modified quadrature rule. The Gaussian point is chosen to match the finite difference discretization on a model scalar equation. The extension to systems of equations is then obtained following the flux-splitting approach suggested by Steger and Warming (1981) and Van Leer (1982).

  3. Discretization of Gene Expression Data Unmasks Molecular Subgroups Recurring in Different Human Cancer Types.

    Directory of Open Access Journals (Sweden)

    Manfred Beleut

    Full Text Available Despite the individually different molecular alterations in tumors, the malignancy associated biological traits are strikingly similar. Results of a previous study using renal cell carcinoma (RCC as a model pointed towards cancer-related features, which could be visualized as three groups by microarray based gene expression analysis. In this study, we used a mathematic model to verify the presence of these groups in RCC as well as in other cancer types. We developed an algorithm for gene-expression deviation profiling for analyzing gene expression data of a total of 8397 patients with 13 different cancer types and normal tissues. We revealed three common Cancer Transcriptomic Profiles (CTPs which recurred in all investigated tumors. Additionally, CTPs remained robust regardless of the functions or numbers of genes analyzed. CTPs may represent common genetic fingerprints, which potentially reflect the closely related biological traits of human cancers.

  4. Maximum Likelihood-Based Iterated Divided Difference Filter for Nonlinear Systems from Discrete Noisy Measurements

    Science.gov (United States)

    Wang, Changyuan; Zhang, Jing; Mu, Jing

    2012-01-01

    A new filter named the maximum likelihood-based iterated divided difference filter (MLIDDF) is developed to improve the low state estimation accuracy of nonlinear state estimation due to large initial estimation errors and nonlinearity of measurement equations. The MLIDDF algorithm is derivative-free and implemented only by calculating the functional evaluations. The MLIDDF algorithm involves the use of the iteration measurement update and the current measurement, and the iteration termination criterion based on maximum likelihood is introduced in the measurement update step, so the MLIDDF is guaranteed to produce a sequence estimate that moves up the maximum likelihood surface. In a simulation, its performance is compared against that of the unscented Kalman filter (UKF), divided difference filter (DDF), iterated unscented Kalman filter (IUKF) and iterated divided difference filter (IDDF) both using a traditional iteration strategy. Simulation results demonstrate that the accumulated mean-square root error for the MLIDDF algorithm in position is reduced by 63% compared to that of UKF and DDF algorithms, and by 7% compared to that of IUKF and IDDF algorithms. The new algorithm thus has better state estimation accuracy and a fast convergence rate. PMID:23012525

  5. New 2D adaptive mesh refinement algorithm based on conservative finite-differences with staggered grid

    Science.gov (United States)

    Gerya, T.; Duretz, T.; May, D. A.

    2012-04-01

    We present new 2D adaptive mesh refinement (AMR) algorithm based on stress-conservative finite-differences formulated for non-uniform rectangular staggered grid. The refinement approach is based on a repetitive cell splitting organized via a quad-tree construction (every parent cell is split into 4 daughter cells of equal size). Irrespective of the level of resolution every cell has 5 staggered nodes (2 horizontal velocities, 2 vertical velocities and 1 pressure) for which respective governing equations, boundary conditions and interpolation equations are formulated. The connectivity of the grid is achieved via cross-indexing of grid cells and basic nodal points located in their corners: four corner nodes are indexed for every cell and up to 4 surrounding cells are indexed for every node. The accuracy of the approach depends critically on the formulation of the stencil used at the "hanging" velocity nodes located at the boundaries between different levels of resolution. Most accurate results are obtained for the scheme based on the volume flux balance across the resolution boundary combined with stress-based interpolation of velocity orthogonal to the boundary. We tested this new approach with a number of 2D variable viscosity analytical solutions. Our tests demonstrate that the adaptive staggered grid formulation has convergence properties similar to those obtained in case of a standard, non-adaptive staggered grid formulation. This convergence is also achieved when resolution boundary crosses sharp viscosity contrast interfaces. The convergence rates measured are found to be insensitive to scenarios when the transition in grid resolution crosses sharp viscosity contrast interfaces. We compared various grid refinement strategies based on distribution of different field variables such as viscosity, density and velocity. According to these tests the refinement allows for significant (0.5-1 order of magnitude) increase in the computational accuracy at the same

  6. An effective comparison involving a novel spectral approach and finite difference method for the Schrödinger equation involving the Riesz fractional derivative in the quantum field theory

    Science.gov (United States)

    Patra, Asim

    2018-03-01

    This paper displays the approach of the time-splitting Fourier spectral (TSFS) technique for the linear Riesz fractional Schrödinger equation (RFSE) in the semi-classical regime. The splitting technique is shown to be unconditionally stable. Further a suitable implicit finite difference discretization of second order has been manifested for the RFSE where the Riesz derivative has been discretized via an approach of fractional centered difference. Moreover the stability analysis for the implicit scheme has also been presented here via von Neumann analysis. The L2-norm and L^{∞}-norm errors are calculated for \\vert u(x,t)\\vert2, Re(u(x,t)) and Im(u(x,t)) for various cases. The results obtained by the methods are further tabulated for the absolute errors for \\vert u(x,t)\\vert2. Furthermore the graphs are depicted showing comparison of \\vert u(x,t)\\vert2 by both techniques. The derivatives are taken here in the context of the Riesz fractional sense. Apart from that, the comparative study put forth in the following section via tables and graphs between the implicit second-order finite difference method (IFDM) and the TSFS method is for the purpose of investigating the efficiency of the results obtained. Moreover the stability analysis of the presented techniques manifesting their unconditional stability makes the proposed approach more competing and accurate.

  7. A New Approach for the Statistical Thermodynamic Theory of the Nonextensive Systems Confined in Different Finite Traps

    Science.gov (United States)

    Tang, Hui-Yi; Wang, Jian-Hui; Ma, Yong-Li

    2014-06-01

    For a small system at a low temperature, thermal fluctuation and quantum effect play important roles in quantum thermodynamics. Starting from micro-canonical ensemble, we generalize the Boltzmann-Gibbs statistical factor from infinite to finite systems, no matter the interactions between particles are considered or not. This generalized factor, similar to Tsallis's q-form as a power-law distribution, has the restriction of finite energy spectrum and includes the nonextensivities of the small systems. We derive the exact expression for distribution of average particle numbers in the interacting classical and quantum nonextensive systems within a generalized canonical ensemble. This expression in the almost independent or elementary excitation quantum finite systems is similar to the corresponding ones obtained from the conventional grand-canonical ensemble. In the reconstruction for the statistical theory of the small systems, we present the entropy of the equilibrium systems and equation of total thermal energy. When we investigate the thermodynamics for the interacting nonextensive systems, we obtain the system-bath heat exchange and "uncompensated heat" which are in the thermodynamical level and independent on the detail of the system-bath coupling. For ideal finite systems, with different traps and boundary conditions, we calculate some thermodynamic quantities, such as the specific heat, entropy, and equation of state, etc. Particularly at low temperatures for the small systems, we predict some novel behaviors in the quantum thermodynamics, including internal entropy production, heat exchanges between the system and its surroundings and finite-size effects on the free energy.

  8. Biomechanical evaluation of different abutment-implant connections - A nonlinear finite element analysis

    Science.gov (United States)

    Ishak, Muhammad Ikman; Shafi, Aisyah Ahmad; Rosli, M. U.; Khor, C. Y.; Zakaria, M. S.; Rahim, Wan Mohd Faizal Wan Abd; Jamalludin, Mohd Riduan

    2017-09-01

    The success of dental implant surgery is majorly dependent on the stability of prosthesis to anchor to implant body as well as the integration of implant body to bone. The attachment between dental implant body and abutment plays a vital role in attributing to the stability of dental implant system. A good connection between implant body cavity to abutment may minimize the complications of abutment loosening and implant fractures as widely reported in clinical findings. The aim of this paper is to investigate the effect of different abutment-implant connections on stress dispersion within the abutment and implant bodies as well as displacement of implant body via three-dimensional (3-D) finite element analysis (FEA). A 3-D model of mandible was reconstructed from computed tomography (CT) image datasets using an image-processing software with the selected region of interest was the left side covering the second premolar, first molar and second molar regions. The bone was modelled as compact (cortical) and porous (cancellous) structures. Besides, three implant bodies and three generic models of abutment with different types of connections - tapered interference fit (TIF), tapered integrated screwed-in (TIS) and screw retention (SR) were created using computer-aided design (CAD) software and all models were then analysed via 3D FEA software. Occlusal forces of 114.6 N, 17.2 N and 23.4 N were applied in the axial, lingual and mesio-distal directions, respectively, on the top surface of first molar crown. All planes of the mandibular bone model were rigidly fixed. The result exhibited that abutment with TIS connection produced the most favourable stress and displacement outcomes as compared to other attachment types. This is due to the existence of integrated screw at the bottom portion of tapered abutment which increases the motion resistance.

  9. Use of the finite-difference time-domain method in electromagnetic dosimetry

    International Nuclear Information System (INIS)

    Sullivan, D.M.

    1987-01-01

    Although there are acceptable methods for calculating whole body electromagnetic absorption, no completely acceptable method for calculating the local specific absorption rate (SAR) at points within the body has been developed. Frequency domain methods, such as the method of moments (MoM) have achieved some success; however, the MoM requires computer storage on the order of (3N) 2 , and computation time on the order of (3N) 3 where N is the number of cells. The finite-difference time-domain (FDTD) method has been employed extensively in calculating the scattering from metallic objects, and recently is seeing some use in calculating the interaction of EM fields with complex, lossy dielectric bodies. Since the FDTD method has storage and time requirements proportional to N, it presents an attractive alternative to calculating SAR distribution in large bodies. This dissertation describes the FDTD method and evaluates it by comparing its results with analytic solutions in 2 and 3 dimensions. The results obtained demonstrate that the FDTD method is capable of calculating internal SAR distribution with acceptable accuracy. The construction of a data base to provide detailed, inhomogeneous man models for use with the FDTD method is described. Using this construction method, a model of 40,000 1.31 cm. cells is developed for use at 350 MHz, and another model consisting of 5000 2.62 cm. cells is developed for use at 100 MHz. To add more realism to the problem, a ground plane is added to the FDTD software. The needed changes to the software are described, along with a test which confirms its accuracy. Using the CRAY II supercomputer, SAR distributions in human models are calculated using incident frequencies of 100 MHz and 350 MHz for three different cases: (1) A homogeneous man model in free space, (2) an inhomogeneous man model in free space, and (3) an inhomogeneous man model standing on a ground plane

  10. Discrete Dynamical Modeling of Influenza Virus Infection Suggests Age-Dependent Differences in Immunity.

    Science.gov (United States)

    Keef, Ericka; Zhang, Li Ang; Swigon, David; Urbano, Alisa; Ermentrout, G Bard; Matuszewski, Michael; Toapanta, Franklin R; Ross, Ted M; Parker, Robert S; Clermont, Gilles

    2017-12-01

    intrahost immune response to influenza virus infection. The model is fit to experimental data for young and old mice infected with influenza virus. We generated distinct sets of rules for each age group to capture the temporal differences seen in the immune responses of these mice. These rules describe a network of interactions leading to either clearance of the virus or death of the host, depending on the initial dosage of the virus. Our models clearly demonstrate differences in these two age groups, particularly in the innate immune responses. Copyright © 2017 American Society for Microbiology.

  11. Positivity for Convective Semi-discretizations

    KAUST Repository

    Fekete, Imre

    2017-04-19

    We propose a technique for investigating stability properties like positivity and forward invariance of an interval for method-of-lines discretizations, and apply the technique to study positivity preservation for a class of TVD semi-discretizations of 1D scalar hyperbolic conservation laws. This technique is a generalization of the approach suggested in Khalsaraei (J Comput Appl Math 235(1): 137–143, 2010). We give more relaxed conditions on the time-step for positivity preservation for slope-limited semi-discretizations integrated in time with explicit Runge–Kutta methods. We show that the step-size restrictions derived are sharp in a certain sense, and that many higher-order explicit Runge–Kutta methods, including the classical 4th-order method and all non-confluent methods with a negative Butcher coefficient, cannot generally maintain positivity for these semi-discretizations under any positive step size. We also apply the proposed technique to centered finite difference discretizations of scalar hyperbolic and parabolic problems.

  12. A new fitted operator finite difference method to solve systems of ...

    African Journals Online (AJOL)

    In this paper, we design and analyze a robust FOFDM to solve a system of coupled singularly perturbed parabolic reaction-diffusion equations. We use the backward Euler method for the semi-discretization in time. An FOFDM is then developed to solve the resulting set of boundary value problems. The proposed method is ...

  13. A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation Un esquema de elementos finitos completamente discreto para la ecuación de Derrida-Lebowitz-Speer-Spohn

    Directory of Open Access Journals (Sweden)

    Jorge Mauricio Ruiz Vera

    2013-03-01

    Full Text Available The Derrida-Lebowitz-Speer-Spohn (DLSS equation is a fourth order in space non-linear evolution equation. This equation arises in the study of interface fluctuations in spin systems and quantum semiconductor modelling. In this paper, we present a positive preserving finite element discrtization for a coupled-equation approach to the DLSS equation. Using the available information about the physical phenomena, we are able to set the corresponding boundary conditions for the coupled system. We prove existence of a global in time discrete solution by fixed point argument. Numerical results illustrate the quantum character of the equation. Finally a test of order of convergence of the proposed discretization scheme is presented.La ecuación de Derrida-Lebowitz-Speer-Spohn (DLSS es una ecuación de evolución no lineal de cuarto orden. Esta aparece en el estudio de las fluctuaciones de interface de sistemas de espín y en la modelación de semicoductores cuánticos.  En este artículo, se presenta una discretización por elementos finitos para una formulación exponencial de la ecuación DLSS abordada como un sistema acoplado de ecuaciones. Usando la información disponible acerca del fenómeno físico, se establecen las condiciones de contorno para el sistema acoplado. Se demuestra la existencia de la solución discreta global en el tiempo via un  argumento de punto fijo. Los resultados numéricos ilustran el carácter cuántico de la ecuación. Finalmente se presenta un test del orden de convergencia de la discretización porpuesta.

  14. Finite-difference approach to solving operator equations of motion in quantum theory

    International Nuclear Information System (INIS)

    Moncrief, V.

    1983-01-01

    We study the application of the ''leapfrog'' method of finite differencing to the approximate solution of operator equations of motion in quantum theory. We show that, for a wide class of linear and nonlinear systems, the leapfrog differencing scheme is exactly unitary. The method is sufficiently general to apply to many-particle systems with arbitrary potential forces and to lattice-regulated nonlinear sigma models and non-Abelian gauge theories. In contrast to the recent proposal of Bender and Sharp (which is based on the finite-elements method) our approach is explicit rather than implicit and, in the case of lattice-regulated field theories, has a lattice analog of microcausality. For systems with finitely many degrees of freedom and self-adjoint Hamiltonians, we show that our approximate solutions converge to the exact solutions in the limit in which the time step tends to zero

  15. Stress analysis of an agitated particle bed with different particle aspect ratios by the discrete element method

    Directory of Open Access Journals (Sweden)

    Goh Wei Pin

    2017-01-01

    Full Text Available The size distribution, shape and aspect ratio of particles are the common factors that affect their packing in a particle bed. Agitated powder beds are commonly used in the process industry for various applications. The stresses arising as a result of shearing the bed could result in undesirable particle breakage with adverse impact on manufacturability. We report on our work on analysing the stress distribution within an agitated particle bed with several particle aspect ratios by the Discrete Element Method (DEM. Rounded cylinders with different aspect ratios are generated and incorporated into the DEM simulation. The void fraction of the packing of the static and agitated beds with different particle aspect ratios is analysed. Principal and deviatoric stresses are quantified in the regions of interest along the agitating impeller blade for different cases of particle aspect ratios. The relationship between the particle aspect ratio and the stress distribution of the bed over the regions of interest is then established and will be presented.

  16. Discrete rough set analysis of two different soil-behavior-induced landslides in National Shei-Pa Park, Taiwan

    Directory of Open Access Journals (Sweden)

    Shih-Hsun Chang

    2015-11-01

    Full Text Available The governing factors that influence landslide occurrences are complicated by the different soil conditions at various sites. To resolve the problem, this study focused on spatial information technology to collect data and information on geology. GIS, remote sensing and digital elevation model (DEM were used in combination to extract the attribute values of the surface material in the vast study area of Shei-Pa National Park, Taiwan. The factors influencing landslides were collected and quantification values computed. The major soil component of loam and gravel in the Shei-Pa area resulted in different landslide problems. The major factors were successfully extracted from the influencing factors. Finally, the discrete rough set (DRS classifier was used as a tool to find the threshold of each attribute contributing to landslide occurrence, based upon the knowledge database. This rule-based knowledge database provides an effective and urgent system to manage landslides. NDVI (Normalized Difference Vegetation Index, VI (Vegetation Index, elevation, and distance from the road are the four major influencing factors for landslide occurrence. The landslide hazard potential diagrams (landslide susceptibility maps were drawn and a rational accuracy rate of landslide was calculated. This study thus offers a systematic solution to the investigation of landslide disasters.

  17. Comparison of discrete ordinate and Monte Carlo simulations of polarized radiative transfer in two coupled slabs with different refractive indices.

    Science.gov (United States)

    Cohen, D; Stamnes, S; Tanikawa, T; Sommersten, E R; Stamnes, J J; Lotsberg, J K; Stamnes, K

    2013-04-22

    A comparison is presented of two different methods for polarized radiative transfer in coupled media consisting of two adjacent slabs with different refractive indices, each slab being a stratified medium with no change in optical properties except in the direction of stratification. One of the methods is based on solving the integro-differential radiative transfer equation for the two coupled slabs using the discrete ordinate approximation. The other method is based on probabilistic and statistical concepts and simulates the propagation of polarized light using the Monte Carlo approach. The emphasis is on non-Rayleigh scattering for particles in the Mie regime. Comparisons with benchmark results available for a slab with constant refractive index show that both methods reproduce these benchmark results when the refractive index is set to be the same in the two slabs. Computed results for test cases with coupling (different refractive indices in the two slabs) show that the two methods produce essentially identical results for identical input in terms of absorption and scattering coefficients and scattering phase matrices.

  18. Pressure transient analysis in single and two-phase water by finite difference methods

    International Nuclear Information System (INIS)

    Berry, G.F.; Daley, J.G.

    1977-01-01

    An important consideration in the design of LMFBR steam generators is the possibility of leakage from a steam generator water tube. The ensuing sodium/water reaction will be largely controlled by the amount of water available at the leak site, thus analysis methods treating this event must have the capability of accurately modeling pressure transients through all states of water occurring in a steam generator, whether single or two-phase. The equation systems of the present model consist of the conservation equations together with an equation of state for one-dimensional homogeneous flow. These equations are then solved using finite difference techniques with phase considerations and non-equilibrium effects being treated through the equation of state. The basis for water property computation is Keenan's 'fundamental equation of state' which is applicable to single-phase water at pressures less than 1000 bars and temperatures less than 1300 0 C. This provides formulations allowing computation of any water property to any desired precision. Two-phase properties are constructed from values on the saturation line. The use of formulations permits the direct calculation of any thermodynamic property (or property derivative) to great precision while requiring very little computer storage, but does involve considerable computation time. For this reason an optional calculation scheme based on the method of 'transfinite interpolation' is included to give rapid computation in selected regions with decreased precision. The conservation equations were solved using the second order Lax-Wendroff scheme which includes wall friction, allows the formation of shocks and locally supersonic flow. Computational boundary conditions were found from a method-of-characteristics solution at the reservoir and receiver ends. The local characteristics were used to interpolate data from inside the pipe to the boundary

  19. Digital Discretion

    DEFF Research Database (Denmark)

    Busch, Peter Andre; Zinner Henriksen, Helle

    2018-01-01

    discretion is suggested to reduce this footprint by influencing or replacing their discretionary practices using ICT. What is less researched is whether digital discretion can cause changes in public policy outcomes, and under what conditions such changes can occur. Using the concept of public service values......This study reviews 44 peer-reviewed articles on digital discretion published in the period from 1998 to January 2017. Street-level bureaucrats have traditionally had a wide ability to exercise discretion stirring debate since they can add their personal footprint on public policies. Digital......, we suggest that digital discretion can strengthen ethical and democratic values but weaken professional and relational values. Furthermore, we conclude that contextual factors such as considerations made by policy makers on the macro-level and the degree of professionalization of street...

  20. A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids

    Science.gov (United States)

    Feng, Wenqiang; Guo, Zhenlin; Lowengrub, John S.; Wise, Steven M.

    2018-01-01

    We present a mass-conservative full approximation storage (FAS) multigrid solver for cell-centered finite difference methods on block-structured, locally cartesian grids. The algorithm is essentially a standard adaptive FAS (AFAS) scheme, but with a simple modification that comes in the form of a mass-conservative correction to the coarse-level force. This correction is facilitated by the creation of a zombie variable, analogous to a ghost variable, but defined on the coarse grid and lying under the fine grid refinement patch. We show that a number of different types of fine-level ghost cell interpolation strategies could be used in our framework, including low-order linear interpolation. In our approach, the smoother, prolongation, and restriction operations need never be aware of the mass conservation conditions at the coarse-fine interface. To maintain global mass conservation, we need only modify the usual FAS algorithm by correcting the coarse-level force function at points adjacent to the coarse-fine interface. We demonstrate through simulations that the solver converges geometrically, at a rate that is h-independent, and we show the generality of the solver, applying it to several nonlinear, time-dependent, and multi-dimensional problems. In several tests, we show that second-order asymptotic (h → 0) convergence is observed for the discretizations, provided that (1) at least linear interpolation of the ghost variables is employed, and (2) the mass conservation corrections are applied to the coarse-level force term.

  1. Boundary Control of Linear Evolution PDEs - Continuous and Discrete

    DEFF Research Database (Denmark)

    Rasmussen, Jan Marthedal

    2004-01-01

    - and exact controllability. We will consider discrete systems with a viewpoint similar to that used for the continuous systems. Most importantly, we study what is required of a discretization scheme in order for computed control functions to converge to the true, continuous, control function. Examples exist...... for convergent discretization schemes for which divergence of the computed controls occur. We dig deeper for three specific cases: The heat equation, the wave equation, and a linear system of thermoelasticity. Different aspects of the theory are exemplified through these case studies. We finally consider how...... erential equations. This field has mostly concerned engineers and others with practical applications in mind. This thesis makes an attempt to bridge the two research areas. More specifically, we make finite dimensional approximations to certain evolution PDEs, and analyze how properties of the discrete...

  2. Plasmonic Resonances for Spectroscopy Applications using 3D Finite-Difference Time-Domain Models

    Science.gov (United States)

    Ravi, Aruna

    Tuning plasmonic extinction resonances of sub-wavelength scale structures is essential to achieve maximum sensitivity and accuracy. These resonances can be controlled with careful design of nanoparticle geometries and incident wave attributes. In the first part of this dissertation, plasmonically enhanced effects on hexagonal-arrays of metal nanoparticles, metal-hole arrays (micro-mesh), and linear-arrays of metal nanorings are analyzed using three-dimensional Finite-Difference Time-Domain (3D-FDTD) simulations. The effect of particle size, lattice spacing, and lack of monodispersity of a self-assembled, hexagonal array layer of silver (Ag) nanoparticles on the extinction resonance is investigated to help determine optimal design specifications for efficient organic solar power harvesting. The enhancement of transmission resonances using plasmonic thin metal films with arrays of holes which enable recording of scatter-free infrared (IR) transmission spectra of individual particles is also explored. This method is quantitative, non-destructive and helps in better understanding the interaction of light with sub-wavelength particles. Next, plasmonically enhanced effects on linear arrays of gold (Au) rings are studied. Simulations employing 3D-FDTD can be used to determine the set of geometrical parameters to attain localized surface plasmon resonance (LSPR). The shifts in resonances due to changes in the effective dielectric of the structure are investigated, which is useful in sensing applications. Computational models enrich experimental studies. In the second part of this dissertation, the effect of particle size, shape and orientation on the IR spectra is investigated using 3D-FDTD and Mie-Bruggeman models. This computational analysis is extended to include clusters of particles of mixed composition. The prediction of extinction and absorption spectra of single particles of mixed composition helps in interpreting their physical properties and predict chemical

  3. 3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media

    Science.gov (United States)

    Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.

    2003-12-01

    Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented

  4. Neutrino mass and mixing with discrete symmetry

    Science.gov (United States)

    King, Stephen F.; Luhn, Christoph

    2013-05-01

    This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A4, S4 and Δ(96).

  5. Inverse Interpolation: The Rate of Enzymatic Reaction based Finite differences, Formulas for obtaining intermediate values of Temperature, Substrate Concentration, Enzyme Concentration and their Estimation of Errors

    OpenAIRE

    Nizam Uddin

    2013-01-01

    Inverse interpolation is the process of finding the values of the argument corresponding to a given value of the function when the latter is intermediate between two tabulated values. The finite differences are differences between the values of the function or the difference between the past differences. Finite differences are forward difference, backward difference and divide difference. Temperature, concentration of substrate, concentration of enzyme and other factors are affected the rate ...

  6. Differences in Waiting List Prioritization Preferences of Occupational Therapists, Elderly People, and Persons With Disabilities: A Discrete Choice Experiment.

    Science.gov (United States)

    Raymond, Marie-Hélène; Demers, Louise; Feldman, Debbie Ehrmann

    2018-01-01

    To compare the preferences of occupational therapists, elderly people, and adults with disabilities regarding prioritization criteria for occupational therapy waiting lists in home care. Discrete choice experiment survey. Survey mailed to occupational therapists working in home care and community-dwelling elderly or disabled persons. A sample (N=714) of home-based occupational therapists (n=241), elderly persons from a bank of research participants (n=226), and adults with physical disabilities recruited through community organizations (n=247). Not applicable. The dependent variable was whether the referral scenario was prioritized or not in each question. The results were analyzed through logistic regression using conditional logit models. Prioritization preferences differed between groups (Ppeople who had a few falls (odds ratio vs no falls, 48.7), whereas elderly people and adults with disabilities most strongly prioritized people who were unable to enter and exit the home (odds ratio vs no difficulty entering and exiting the home, 30.8 for elderly people and 16.8 for persons with disabilities.) CONCLUSIONS: Our results highlight the gap between the priorities of home-based occupational therapists and their target clientele. Although further inquiry is needed to inform priority setting, the findings emphasize the importance of public or patient involvement in decisions on waiting list prioritization. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. A comparative performance study of a photovoltaic concentrator system with discrete mirror and continuos profile for two different absorber shapes

    Energy Technology Data Exchange (ETDEWEB)

    H, Saiful; Rezau, K.M [University of Dhaka, Dhaka (Bangladesh)

    2000-07-01

    Profiles of parabolic concentrators of discrete mirror and continuos surface mirror have been designed for combined electrical thermal photovoltaic systems. In the design the changes of concentration ratio, effect of reflection, angle of incidence over the absorber have been taken into account for maximum energy collection. The performances of the system are studied for solar cells of modified grid finger for illuminations from 1-10 sun. The local concentration ratio (LCR) distribution over the absorbers for both the concentrator, the optical efficiency, thermal efficiency, electrical and thermal power output and overall efficiency have been evaluated for different values of beam radiation concentration ratio and focal distance. [Spanish] Se han disenado perfiles de concentradores parabolicos de espejo discreto y de superficie continua para sistemas fotovoltaicos combinados electricos y termicos. En el diseno los cambios de la proporcion de concentracion, del efecto de la reflexion, del angulo de incidencia sobre el observador se han tenido en cuenta para una maxima recoleccion de energia. Los rendimientos del sistema se han estudiado para celdas solares de parrilla modificada para iluminaciones solares de 1-10. Han sido evaluados para diferentes valores de la proporcion de la concentracion de la radiacion en el rayo y la distancia focal la proporcion de concentracion local (LCR) de la distribucion en los absorbedores, para el concentrador la eficiencia optica, la eficiencia termica, electrica, la produccion de energia termica y electrica y la eficiencia total.

  8. Depropagation and propagation simulation of the acoustic waves by using finite differences operators; Simulacao da propagacao e depropagacao de ondas acusticas usando operadores de diferencas finitas

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Marco A.B.; Santos, Roberto H.M. dos; Silva, Marcelo S. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Centro de Pesquisa em Geofisica e Geologia

    2004-07-01

    The numerical simulation of shot gathers over a (2D) velocity field, which corresponds to a model of Atlantic continental shelf, at the continental break area, using a typical model of the Brazilian Atlantic coast, suggested by PETROBRAS. The finite difference technique (FD) is used to solve the second derivatives in time and space of the acoustic wave equation, using fourth order operators to solve the spatial derivatives and second order operators to solve the time derivative. It is applied an explicitly scheme to calculate the pressure field values at a future instant. The use of rectangular mesh helps to generate data less noisy, since we can control better the numerical dispersion. The source functions (wavelets), as the first and the second derivatives of the gaussian function, are proper to generate synthetic seismograms with the FD method, because they allow an easy discretization. On the forward modeling, which is the simulation of wave fields, allows to control the stability limit of the method, wherever be the given velocity field, just employing compatible small values of the sample rate. The algorithm developed here, which uses only the FD technique, is able to perform the forward modeling, saving the image times, which can be used latter to perform the retropropagation of the wave field and thus migrate the source-gathers the reverse time extrapolation is able to test the used velocity model, and detect determine errors up to 5% on the used velocity model. (author)

  9. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

    OpenAIRE

    Ha, Seung-Ryong

    2015-01-01

    PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimens...

  10. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...

  11. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...

  12. DIF3D: a code to solve one-, two-, and three-dimensional finite-difference diffusion theory problems

    International Nuclear Information System (INIS)

    Derstine, K.L.

    1984-04-01

    The mathematical development and numerical solution of the finite-difference equations are summarized. The report provides a guide for user application and details the programming structure of DIF3D. Guidelines are included for implementing the DIF3D export package on several large scale computers. Optimized iteration methods for the solution of large-scale fast-reactor finite-difference diffusion theory calculations are presented, along with their theoretical basis. The computational and data management considerations that went into their formulation are discussed. The methods utilized include a variant of the Chebyshev acceleration technique applied to the outer fission source iterations and an optimized block successive overrelaxation method for the within-group iterations. A nodal solution option intended for analysis of LMFBR designs in two- and three-dimensional hexagonal geometries is incorporated in the DIF3D package and is documented in a companion report, ANL-83-1

  13. Single-cone finite-difference schemes for the (2+1)-dimensional Dirac equation in general electromagnetic textures

    Science.gov (United States)

    Pötz, Walter

    2017-11-01

    A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation laws and stability properties of the formal scheme are identified by comparison with the scheme for zero vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical for topological insulator surfaces.

  14. An interactive algorithm for identifying multiattribute measurable value functions based on finite-order independence of structural difference

    International Nuclear Information System (INIS)

    Tamura, Hiroyuki; Hikita, Shiro

    1985-01-01

    In this paper, we develop an interactive algorithm for identifying multiattribute measurable value functions based on the concept of finite-order independence of structural difference. This concept includes Dyer and Sarin's weak difference independence as special cases. The algorithm developed is composed of four major parts: 1) formulation of the problem 2) assessment of normalized conditional value functions and structural difference functions 3) assessment of corner values 4) assessment of the order of independence of structural difference and selection of the model. A hypothetical numerical example of a trade-off analysis for siting a nuclear power plant is included. (author)

  15. Assessing patient preferences for the delivery of different community-based models of care using a discrete choice experiment.

    Science.gov (United States)

    Dixon, Simon; Nancarrow, Susan A; Enderby, Pamela M; Moran, Anna M; Parker, Stuart G

    2015-10-01

    To assess patient preferences for different models of care defined by location of care, frequency of care and principal carer within community-based health-care services for older people. Discrete choice experiment administered within a face-to-face interview. An intermediate care service in a large city within the United Kingdom. The projected sample size was calculated to be 200; however, 77 patients were recruited to the study. The subjects had recently been discharged from hospital and were living at home and were receiving short-term care by a publicly funded intermediate care service. Not applicable. The degree of preference, measured using single utility score, for individual service characteristics presented within a series of potential care packages. Location of care was the dominant service characteristics with care at home being the strongly stated preference when compared with outpatient care (0.003), hospital care (<0.001) and nursing home care (<0.001) relative to home care, although this was less pronounced among less sick patients. Additionally, the respondents indicated a dislike for very frequent care contacts. No particular type of professional carer background was universally preferred but, unsurprisingly, there was evidence that sick patients showed a preference for nurse-led care. Patients have clear preferences for the location for their care and were able to state preferences between different care packages when their ideal service was not available. Service providers can use this information to assess which models of care are most preferred within resource constraints. © 2013 Crown copyright. Health Expectations © 2013 John Wiley & Sons Ltd.

  16. An algorithm for a valved brass instrument synthesis environment using finite-difference time-domain methods with performance optimisation

    OpenAIRE

    Harrison, Reginald L.; Bilbao, Stefan; Perry, James

    2015-01-01

    This paper presents a physical modelling sound synthesis environment for the production of valved brass instrument sounds. The governing equations of the system are solved using finite-difference time-domain (FDTD) methods and the environment is implemented in the C programming language. Users of the environment can create their own custom instruments and are able to control player parameters such as lip frequency, mouth pressure and valve openings through the use of instrument and score file...

  17. Benders decomposition for discrete material optimization in laminate design with local failure criteria

    DEFF Research Database (Denmark)

    Munoz, Eduardo; Stolpe, Mathias; Bendsøe, Martin P.

    2009-01-01

    in any discrete angle optimization design, or material selection problems. The mathematical modeling of this problem is more general than the one of standard topology optimization. When considering only two material candidates with a considerable difference in stiffness, it corresponds exactly...... to a topology optimization problem. The problem is modeled as a discrete design problem coming from a finite element discretization of the continuum problem. This discretization is made of shell or plate elements. For each element (selection domain), only one of the material candidates must be selected...... of the relaxed master problem and the current best compliance (weight) found get close enough with respect to certain tolerance. The method is investigated by computational means, using the finite element method to solve the analysis problems, and a commercial branch and cut method for solving the relaxed master...

  18. Evaluation of Temperature and Stress Distribution on 2 Different Post Systems Using 3-Dimensional Finite Element Analysis.

    Science.gov (United States)

    Değer, Yalçın; Adigüzel, Özkan; Yiğit Özer, Senem; Kaya, Sadullah; Seyfioğlu Polat, Zelal; Bozyel, Bejna

    2015-11-29

    BACKGROUND The mouth is exposed to thermal irritation from hot and cold food and drinks. Thermal changes in the oral cavity produce expansions and contractions in tooth structures and restorative materials. The aim of this study was to investigate the effect of temperature and stress distribution on 2 different post systems using the 3-dimensional (3D) finite element method. MATERIAL AND METHODS The 3D finite element model shows a labio-lingual cross-sectional view of the endodontically treated upper right central incisor and supporting periodontal ligament with bone structures. Stainless steel and glass fiber post systems with different physical and thermal properties were modelled in the tooth restored with composite core and ceramic crown. We placed 100 N static vertical occlusal loading onto the center of the incisal surface of the tooth. Thermal loads of 0°C and 65°C were applied on the model for 5 s. Temperature and thermal stresses were determined on the labio-lingual section of the model at 6 different points. RESULTS The distribution of stress, including thermal stress values, was calculated using 3D finite element analysis. The stainless steel post system produced more temperature and thermal stresses on the restorative materials, tooth structures, and posts than did the glass fiber reinforced composite posts. CONCLUSIONS Thermal changes generated stresses in the restorative materials, tooth, and supporting structures.

  19. New non-structured discretizations for fluid flows with reinforced incompressibility

    International Nuclear Information System (INIS)

    Heib, S.

    2003-01-01

    This work deals with the discretization of Stokes and Navier-Stokes equations modeling the flow of incompressible fluids on 2-D or 3-D non-structured meshes. Triangles and tetrahedrons are used for 2-D and 3-D meshes, respectively. The developments and calculations are performed with the code Priceles (fast CEA-EdF industrial platform for large Eddy simulation). This code allows to perform simulations both on structured and non-structured meshes. A finite-volume resolution method is used: a finite difference volume (FDV) method is used for the structured meshes and a finite element volume (FEV) method is used for the non-structured meshes. The finite element used in the beginning of this work has several defects. Starting from this situation, the discretization is improved by adding modifications to this element and the new elements introduced are analyzed theoretically. In parallel to these analyses, the new discretizations are implemented in order to test them numerically and to confirm the theoretical analyses. The first chapter presents the physical and mathematical modeling used in this work. The second chapter treats of the discretization of Stokes equations and presents the FEV resolution method. Chapter 3 presents a first attempt of improvement of this finite element and leads to the proposal of a new element which is presented in details. The problem encountered with the new discretization leads to a modification presented in chapter 4. This new discretization gives all the expected convergence results and sometimes shows super-convergence properties. Chapter 5 deals with the study and discretization of the Navier-Stokes equations. The study of the filtered Navier-Stokes equations, used for large Eddy simulations, requires to give a particular attention to the discretization of the diffusive terms. Then, the convective terms are considered. The effects of the convective terms in the initial discretization and in the improved method are compared. The use of

  20. Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods

    Science.gov (United States)

    DeBonis, James R.

    2013-01-01

    A computational fluid dynamics code that solves the compressible Navier-Stokes equations was applied to the Taylor-Green vortex problem to examine the code s ability to accurately simulate the vortex decay and subsequent turbulence. The code, WRLES (Wave Resolving Large-Eddy Simulation), uses explicit central-differencing to compute the spatial derivatives and explicit Low Dispersion Runge-Kutta methods for the temporal discretization. The flow was first studied and characterized using Bogey & Bailley s 13-point dispersion relation preserving (DRP) scheme. The kinetic energy dissipation rate, computed both directly and from the enstrophy field, vorticity contours, and the energy spectra are examined. Results are in excellent agreement with a reference solution obtained using a spectral method and provide insight into computations of turbulent flows. In addition the following studies were performed: a comparison of 4th-, 8th-, 12th- and DRP spatial differencing schemes, the effect of the solution filtering on the results, the effect of large-eddy simulation sub-grid scale models, and the effect of high-order discretization of the viscous terms.

  1. On stability and monotonicity requirements of finite difference approximations of stochastic conservation laws with random viscosity

    KAUST Repository

    Pettersson, Per

    2013-05-01

    The stochastic Galerkin and collocation methods are used to solve an advection-diffusion equation with uncertain and spatially varying viscosity. We investigate well-posedness, monotonicity and stability for the extended system resulting from the Galerkin projection of the advection-diffusion equation onto the stochastic basis functions. High-order summation-by-parts operators and weak imposition of boundary conditions are used to prove stability of the semi-discrete system.It is essential that the eigenvalues of the resulting viscosity matrix of the stochastic Galerkin system are positive and we investigate conditions for this to hold. When the viscosity matrix is diagonalizable, stochastic Galerkin and stochastic collocation are similar in terms of computational cost, and for some cases the accuracy is higher for stochastic Galerkin provided that monotonicity requirements are met. We also investigate the total spatial operator of the semi-discretized system and its impact on the convergence to steady-state. © 2013 Elsevier B.V.

  2. Foundations of a discrete physics

    International Nuclear Information System (INIS)

    McGoveran, D.; Noyes, P.

    1988-01-01

    Starting from the principles of finiteness, discreteness, finite computability and absolute nonuniqueness, we develop the ordering operator calculus, a strictly constructive mathematical system having the empirical properties required by quantum mechanical and special relativistic phenomena. We show how to construct discrete distance functions, and both rectangular and spherical coordinate systems(with a discrete version of ''π''). The richest discrete space constructible without a preferred axis and preserving translational and rotational invariance is shown to be a discrete 3-space with the usual symmetries. We introduce a local ordering parameter with local (proper) time-like properties and universal ordering parameters with global (cosmological) time-like properties. Constructed ''attribute velocities'' connect ensembles with attributes that are invariant as the appropriate time-like parameter increases. For each such attribute, we show how to construct attribute velocities which must satisfy the '' relativistic Doppler shift'' and the ''relativistic velocity composition law,'' as well as the Lorentz transformations. By construction, these velocities have finite maximum and minimum values. In the space of all attributes, the minimum of these maximum velocities will predominate in all multiple attribute computations, and hence can be identified as a fundamental limiting velocity, General commutation relations are constructed which under the physical interpretation are shown to reduce to the usual quantum mechanical commutation relations. 50 refs., 18 figs

  3. SU-E-J-243: Reproducibility of Radiomics Features Through Different Voxel Discretization Levels in F18-FDG PET Images of Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Altazi, B; Fernandez, D; Zhang, G; Biagioli, M; Moros, E; Moffitt, H. Lee [Cancer Center, Tampa, FL, University of South Florida, Tampa, FL (United States)

    2015-06-15

    Purpose: Site-specific investigations of the role of Radiomics in cancer diagnosis and therapy are needed. We report of the reproducibility of quantitative image features over different discrete voxel levels in PET/CT images of cervical cancer. Methods: Our dataset consisted of the pretreatment PET/CT scans from a cohort of 76 patients diagnosed with cervical cancer, FIGO stage IB-IVA, age range 31–76 years, treated with external beam radiation therapy to a dose range between 45–50.4 Gy (median dose: 45 Gy), concurrent cisplatin chemotherapy and MRI-based Brachytherapy to a dose of 20–30 Gy (median total dose: 28 Gy). Two board certified radiation oncologists delineated Metabolic Tumor volume (MTV) for each patient. Radiomics features were extracted based on 32, 64, 128 and 256 discretization levels (DL). The 64 level was chosen to be the reference DL. Features were calculated based on Co-occurrence (COM), Gray Level Size Zone (GLSZM) and Run-Length (RLM) matrices. Mean Percentage Differences (Δ) of features for discrete levels were determined. Normality distribution of Δ was tested using Kolomogorov - Smirnov test. Bland-Altman test was used to investigate differences between feature values measured on different DL. The mean, standard deviation and upper/lower value limits for each pair of DL were calculated. Interclass Correlation Coefficient (ICC) analysis was performed to examine the reliability of repeated measures within the context of the test re-test format. Results: 3 global and 5 regional features out of 48 features showed distribution not significantly different from a normal one. The reproducible features passed the normality test. Only 5 reproducible results were reliable, ICC range 0.7 – 0.99. Conclusion: Most of the radiomics features tested showed sensitivity to voxel level discretization between (32 – 256). Only 4 GLSZM, 3 COM and 1 RLM showed insensitivity towards mentioned discrete levels.

  4. Investigation of different cage designs and mechano-regulation algorithms in the lumbar interbody fusion process - a finite element analysis.

    Science.gov (United States)

    Postigo, Sergio; Schmidt, Hendrik; Rohlmann, Antonius; Putzier, Michael; Simón, Antonio; Duda, Georg; Checa, Sara

    2014-04-11

    Lumbar interbody fusion cages are commonly used to treat painful spinal degeneration and instability by achieving bony fusion. Many different cage designs exist, however the effect of cage morphology and material properties on the fusion process remains largely unknown. This finite element model study aims to investigate the influence of different cage designs on bone fusion using two mechano-regulation algorithms of tissue formation. It could be observed that different cages play a distinct key role in the mechanical conditions within the fusion region and therefore regulate the time course of the fusion process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Analysis of the cartilage proteome from three different mouse models of genetic skeletal diseases reveals common and discrete disease signatures

    Directory of Open Access Journals (Sweden)

    Peter A. Bell

    2013-06-01

    Pseudoachondroplasia and multiple epiphyseal dysplasia are genetic skeletal diseases resulting from mutations in cartilage structural proteins. Electron microscopy and immunohistochemistry previously showed that the appearance of the cartilage extracellular matrix (ECM in targeted mouse models of these diseases is disrupted; however, the precise changes in ECM organization and the pathological consequences remain unknown. Our aim was to determine the effects of matrilin-3 and COMP mutations on the composition and extractability of ECM components to inform how these detrimental changes might influence cartilage organization and degeneration. Cartilage was sequentially extracted using increasing denaturants and the extraction profiles of specific proteins determined using SDS-PAGE/Western blotting. Furthermore, the relative composition of protein pools was determined using mass spectrometry for a non-biased semi-quantitative analysis. Western blotting revealed changes in the extraction of matrilins, COMP and collagen IX in mutant cartilage. Mass spectrometry confirmed quantitative changes in the extraction of structural and non-structural ECM proteins, including proteins with roles in cellular processes such as protein folding and trafficking. In particular, genotype-specific differences in the extraction of collagens XII and XIV and tenascins C and X were identified; interestingly, increased expression of several of these genes has recently been implicated in susceptibility and/or progression of murine osteoarthritis. We demonstrated that mutation of matrilin-3 and COMP caused changes in the extractability of other cartilage proteins and that proteomic analyses of Matn3 V194D, Comp T585M and Comp DelD469 mouse models revealed both common and discrete disease signatures that provide novel insight into skeletal disease mechanisms and cartilage degradation.

  6. Lectures on discrete geometry

    CERN Document Server

    2002-01-01

    Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...

  7. A Modified Equation Approach to Selecting a Nonstandard Finite Difference Scheme Applied to the Regularized Long Wave Equation

    Directory of Open Access Journals (Sweden)

    E. Momoniat

    2014-01-01

    Full Text Available Two nonstandard finite difference schemes are derived to solve the regularized long wave equation. The criteria for choosing the “best” nonstandard approximation to the nonlinear term in the regularized long wave equation come from considering the modified equation. The two “best” nonstandard numerical schemes are shown to preserve conserved quantities when compared to an implicit scheme in which the nonlinear term is approximated in the usual way. Comparisons to the single solitary wave solution show significantly better results, measured in the L2 and L∞ norms, when compared to results obtained using a Petrov-Galerkin finite element method and a splitted quadratic B-spline collocation method. The growth in the error when simulating the single solitary wave solution using the two “best” nonstandard numerical schemes is shown to be linear implying the nonstandard finite difference schemes are conservative. The formation of an undular bore for both steep and shallow initial profiles is captured without the formation of numerical instabilities.

  8. Degree distribution in discrete case

    International Nuclear Information System (INIS)

    Wang, Li-Na; Chen, Bin; Yan, Zai-Zai

    2011-01-01

    Vertex degree of many network models and real-life networks is limited to non-negative integer. By means of measure and integral, the relation of the degree distribution and the cumulative degree distribution in discrete case is analyzed. The degree distribution, obtained by the differential of its cumulative, is only suitable for continuous case or discrete case with constant degree change. When degree change is not a constant but proportional to degree itself, power-law degree distribution and its cumulative have the same exponent and the mean value is finite for power-law exponent greater than 1. -- Highlights: → Degree change is the crux for using the cumulative degree distribution method. → It suits for discrete case with constant degree change. → If degree change is proportional to degree, power-law degree distribution and its cumulative have the same exponent. → In addition, the mean value is finite for power-law exponent greater than 1.

  9. Different Finite Durations of Anticoagulation and Outcomes following Idiopathic Venous Thromboembolism: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Aaron B. Holley

    2010-01-01

    Full Text Available Introduction. Controversy remains over the optimal length of anticoagulation following idiopathic venous thromboembolism. We sought to determine if a longer, finite course of anticoagulation offered additional benefit over a short course in the initial treatment of the first episode of idiopathic venous thromboembolism. Data Extraction. Rates of deep venous thrombosis, pulmonary embolism, combined venous thromboembolism, major bleeding, and mortality were extracted from prospective trials enrolling patients with first time, idiopathic venous thromboembolism. Data was pooled using random effects meta-regression. Results. Ten trials, with a total of 3225 patients, met inclusion criteria. For each additional month of initial anticoagulation, once therapy was stopped, recurrent venous thromboembolism (0.03 (95% CI: −0.28 to 0.35; =.24, mortality (−0.10 (95% CI: −0.24 to 0.04; =.15, and major bleeding (−0.01 (95% CI: −0.05 to 0.02; =.44 rates measured in percent per patient years, did not significantly change. Conclusions: Patients with an initial idiopathic venous thromboembolism should be treated with 3 to 6 months of secondary prophylaxis with vitamin K antagonists. At that time, a decision between continuing with indefinite therapy can be made, but there is no benefit to a longer (but finite course of therapy.

  10. Finite element bending behaviour of discretely delaminated ...

    African Journals Online (AJOL)

    Laminated composites are increasingly getting used in civil engineering structural components including shell structural units due to their light weight, high specific strength and stiffness properties. One of the major causes of failure in these laminated composites is delamination resulting from the interlaminar debonding ...

  11. Finite element bending behaviour of discretely delaminated ...

    African Journals Online (AJOL)

    user

    R can be obtained from partial derivatives of surface equation. ( , ). z f x y. = and yx ..... layered symmetric shells, cross ply shell shows less deflection values than the angle ply one. Table 4. .... to conclude regarding the relative behaviour of antisymmetric and symmetric stacking orders for delaminated shells. 4.1.3 Effect of ...

  12. Discrete Pearson distributions

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, K.O. [Oak Ridge National Lab., TN (United States); Shenton, L.R. [Georgia Univ., Athens, GA (United States); Kastenbaum, M.A. [Kastenbaum (M.A.), Basye, VA (United States)

    1991-11-01

    These distributions are generated by a first order recursive scheme which equates the ratio of successive probabilities to the ratio of two corresponding quadratics. The use of a linearized form of this model will produce equations in the unknowns matched by an appropriate set of moments (assumed to exist). Given the moments we may find valid solutions. These are two cases; (1) distributions defined on the non-negative integers (finite or infinite) and (2) distributions defined on negative integers as well. For (1), given the first four moments, it is possible to set this up as equations of finite or infinite degree in the probability of a zero occurrence, the sth component being a product of s ratios of linear forms in this probability in general. For (2) the equation for the zero probability is purely linear but may involve slowly converging series; here a particular case is the discrete normal. Regions of validity are being studied. 11 refs.

  13. Discrete fractional calculus

    CERN Document Server

    Goodrich, Christopher

    2015-01-01

    This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...

  14. Territorial discretion

    Directory of Open Access Journals (Sweden)

    Augusto Hernández Vidal

    2011-12-01

    Full Text Available In order to strengthen the concept of municipal autonomy, this essay proposes an extensive interpretation of administrative discretion. Discretion is the exercise of free judgment given by law to authorities for performing official acts. This legislative technique seems to be suitable whenever the legislative is intended to legislate over the essential core of municipal autonomy. This way, an eventual abuse of that autonomy could be avoided, for the disproportional restriction of the local faculty to oversee the local issues. This alternative is presented as a tool to provide with dynamism the performing of administrative activities as well, aiming to assimilate public administration new practices.

  15. Discrete mechanics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1985-01-01

    This paper reviews the role of time throughout all phases of mechanics: classical mechanics, non-relativistic quantum mechanics, and relativistic quantum theory. As an example of the relativistic quantum field theory, the case of a massless scalar field interacting with an arbitrary external current is discussed. The comparison between the new discrete theory and the usual continuum formalism is presented. An example is given of a two-dimensional random lattice and its duel. The author notes that there is no evidence that the discrete mechanics is more appropriate than the usual continuum mechanics

  16. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able....... Having completed this the student is able to carry out the following: Expressions and sets: Define a set; define a logic expression; negate a logic expression; combine logic expressions; construct a truth table for a logic expression; apply reduction rules for logic expressions. Apply these concepts...

  17. Development of the software Conden 1.0 in finite differences to model electrostatics problems 2D

    Directory of Open Access Journals (Sweden)

    Wilson Rodríguez Calderón

    2004-01-01

    Full Text Available The present work consists on the development and implementation of the finite differences method for over-relaxation adapted to irregular meshes to determine the influence of the air frontiers on the potencial values and field electricians, calculated inside a badges parallel condenser, using GID like a pre/post-process platform and Fortran like a programming language of the calculation motor of differences Conden 1.0. The problem domain is constituted by two rectangles that represent the condenser and the air layer that covers it, divided in rectangular meshes no standardize.

  18. Discrete torsion

    International Nuclear Information System (INIS)

    Sharpe, Eric

    2003-01-01

    In this article we explain discrete torsion. Put simply, discrete torsion is the choice of orbifold group action on the B field. We derive the classification H 2 (Γ,U(1)), the twisted sector phases appearing in string loop partition functions, Douglas's description of discrete torsion for D-branes in terms of a projective representation of the orbifold group, and outline how the results of Vafa and Witten fit into this framework. In addition, we observe that additional degrees of freedom (known as shift orbifolds) appear in describing orbifold group actions on B fields, in addition to those classified by H 2 (Γ,U(1)), and explain how these degrees of freedom appear in terms of twisted sector contributions to partition functions and in terms of orbifold actions on D-brane worldvolumes. This paper represents a technically simplified version of prior papers by the author on discrete torsion. We repeat here technically simplified versions of results from those papers, and have included some new material

  19. Computer Simulation and Experimental Study of Deformation in a Radial Tire under Different Static Loads Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Mir Hamid Reza Ghoreishy

    2014-10-01

    Full Text Available This research work is devoted to the simulation of a steel-belted radial tire under different static loads. The nonlinear finite element calculations were performed using the MSC.MARC code, installed on a computer system equipped with a parallel processing technology. Hybrid elements in conjunction with two hyperelastic models, namely Marlow and Yeoh, and rebar layer implemented in surface elements were used for the modeling of rubbery and reinforcing parts, respectively. Linear elastic material models were also used for the modeling of the reinforcing elements including steel cord in belts, polyester cord in carcass and nylon cord in cap ply section. Two-dimensional axisymmetric elements were used for the modeling of rim-mounting and inflation and three-dimensional models were developed for the application of the radial, tangential, lateral and torsional loads. Different finite element models were developed, in which both linear and quadratic elements were used in conjunction with different mesh densities in order to find the optimum finite element model. Based on the results of the load deflection (displacement data, the tire stiffness under radial, tangential, lateral and torsional loads were calculated and compared with their corresponding experimentally measured values. The comparison was verified by the accuracy of the measured radial stiffness. However, due to the neglecting of the stiffness in shear and bending modes in cord-rubber composites, modeled with rebar layer methodology, the difference between computed values and real data are not small enough so that a more robust material models and element formulation are required to be developed.

  20. Quantifying public preferences for different bowel preparation options prior to screening CT colonography: a discrete choice experiment.

    Science.gov (United States)

    Ghanouni, Alex; Halligan, Steve; Taylor, Stuart A; Boone, Darren; Plumb, Andrew; Stoffel, Sandro; Morris, Stephen; Yao, Guiqing Lily; Zhu, Shihua; Lilford, Richard; Wardle, Jane; von Wagner, Christian

    2014-04-03

    CT colonography (CTC) may be an acceptable test for colorectal cancer screening but bowel preparation can be a barrier to uptake. This study tested the hypothesis that prospective screening invitees would prefer full-laxative preparation with higher sensitivity and specificity for polyps, despite greater burden, over less burdensome reduced-laxative or non-laxative alternatives with lower sensitivity and specificity. Discrete choice experiment. Online, web-based survey. 2819 adults (45-54 years) from the UK responded to an online invitation to take part in a cancer screening study. Quota sampling ensured that the sample reflected key demographics of the target population and had no relevant bowel disease or medical qualifications. The analysis comprised 607 participants. After receiving information about screening and CTC, participants completed 3-4 choice scenarios. Scenarios showed two hypothetical forms of CTC with different permutations of three attributes: preparation, sensitivity and specificity for polyps. Participants considered the trade-offs in each scenario and stated their preferred test (or chose neither). Preparation and sensitivity for polyps were both significant predictors of preferences (coefficients: -3.834 to -6.346 for preparation, 0.207-0.257 for sensitivity; p<0.0005). These attributes predicted preferences to a similar extent. Realistic specificity values were non-significant (-0.002 to 0.025; p=0.953). Contrary to our hypothesis, probabilities of selecting tests were similar for realistic forms of full-laxative, reduced-laxative and non-laxative preparations (0.362-0.421). However, they were substantially higher for hypothetical improved forms of reduced-laxative or non-laxative preparations with better sensitivity for polyps (0.584-0.837). Uptake of CTC following non-laxative or reduced-laxative preparations is unlikely to be greater than following full-laxative preparation as perceived gains from reduced burden may be diminished by

  1. Discrete Flavour Symmetries from the Heisenberg Group

    CERN Document Server

    Floratos, E.G.

    2016-01-01

    Non-abelian discrete symmetries are of particular importance in model building. They are mainly invoked to explain the various fermion mass hierarchies and forbid dangerous superpotential terms. In string models they are usually associated to the geometry of the compactification manifold and more particularly to the magnetised branes in toroidal compactifications. Motivated by these facts, in this note we propose a unified framework to construct representations of finite discrete family groups based on the automorphisms of the discrete and finite Heisenberg group. We focus in particular in the $PSL_2(p)$ groups which contain the phenomenologically interesting cases.

  2. Object-Oriented Implementation of the Finite-Difference Time-Domain Method in Parallel Computing Environment

    Science.gov (United States)

    Chun, Kyungwon; Kim, Huioon; Hong, Hyunpyo; Chung, Youngjoo

    GMES which stands for GIST Maxwell's Equations Solver is a Python package for a Finite-Difference Time-Domain (FDTD) simulation. The FDTD method widely used for electromagnetic simulations is an algorithm to solve the Maxwell's equations. GMES follows Object-Oriented Programming (OOP) paradigm for the good maintainability and usability. With the several optimization techniques along with parallel computing environment, we could make the fast and interactive implementation. Execution speed has been tested in a single host and Beowulf class cluster. GMES is open source and available on the web (http://www.sf.net/projects/gmes).

  3. A convergent 2D finite-difference scheme for the Dirac-Poisson system and the simulation of graphene

    KAUST Repository

    Brinkman, Daniel

    2014-01-01

    We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac-Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac-Poisson system where potentials act as beam splitters or Veselago lenses. © 2013 Elsevier Inc.

  4. Double-grid finite-difference frequency-domain (DG-FDFD) method for scattering from chiral objects

    CERN Document Server

    Alkan, Erdogan; Elsherbeni, Atef

    2013-01-01

    This book presents the application of the overlapping grids approach to solve chiral material problems using the FDFD method. Due to the two grids being used in the technique, we will name this method as Double-Grid Finite Difference Frequency-Domain (DG-FDFD) method. As a result of this new approach the electric and magnetic field components are defined at every node in the computation space. Thus, there is no need to perform averaging during the calculations as in the aforementioned FDFD technique [16]. We formulate general 3D frequency-domain numerical methods based on double-grid

  5. Perfectly matched layer method in the finite-difference time-domain and frequency-domain calculations

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry; Lavrinenko, Andrei

    2007-01-01

    A complex-coordinate method known under the guise of the perfectly matched layer (PML) method for treating unbounded domains in computational electrodynamics is related to similar techniques in fluid dynamics and classical quantum theory. It may also find use in electronic-structure finite......-difference simulations. Straightforward transfer of the PML formulation to other fields does not seem feasible, however, since it is a unique feature of electrodynamics - the natural invariance - that allows analytic trick of complex coordinate scaling to be represented as pure modification of local material parameters...

  6. Optimization study of the explicit finite-difference method for quasi-static thermomechanical simulations. Final report

    International Nuclear Information System (INIS)

    Maxwell, D.E.; Hofmann, R.; Wahi, K.K.

    1978-03-01

    The developments presented make it economically feasible to use a time-explicit numerical code to perform thermomechanical simulations of quasi-static systems that incorporate physically small source regions (or centers of activity) in a relatively large space. A nuclear waste repository in a geological medium is an example of such a system. The technique developed make it possible to eliminate two major restrictions that explicit-finite difference codes generally have that can considerably limit their efficiency. The technique is a time-step optimization method called pseudo-time steps (PTS). This report describes the motivation, derivation, and implementation of the PTS method

  7. Tridimensional finite element analysis of teeth movement induced by different headgear forces.

    Science.gov (United States)

    Maruo, Ivan Toshio; Maruo, Hiroshi; Saga, Armando Yukio; de Oliveira, Dauro Douglas; Argenta, Marco André; Tanaka, Orlando Motohiro

    2016-12-01

    This study aimed to simulate the actions of low-pull (LP), high-pull (HP), and combined pull (CP) headgears (HGs) and to analyze tooth movement tendencies through finite element analysis. Tomographic slices of a human maxilla with complete permanent dentition were processed by reconstruction software, and the triangular surface mesh was converted into non-uniform rational B-spline (NURBS) curves. An HG facial bow was also modulated in 3D. The teeth and bone were considered to have isotropic and linear behavior, whereas the periodontal ligament was considered to have non-linear and hyperelastic behavior. Data regarding the application points, directions and magnitudes of forces were obtained from the literature and from a dolichofacial patient with class II, division 1 malocclusion, who was treated with a CP HG. The CP HG promoted 37.1 to 41.1 %, and the HP HG promoted 19.1 to 31.9 % of LP distalization. The HP HG presented the highest intrusion, and the LP HG presented the highest extrusion of the first molar. The LP HG contracted the distal side, and the HP and CP HGs contracted the lingual and distobuccal roots of the second molar to a lesser degree. The LP HG promotes the greatest distalization, followed by the CP and HP HGs; the LP HG causes greater extrusion of the first molar, and the HP HG causes greater intrusion of the first molar. The LP HG causes greater contraction of the second molar than the HP HG.

  8. A fully discrete energy stable scheme for a phase filed moving contact line model with variable densities and viscosities

    KAUST Repository

    Zhu, Guangpu

    2018-01-26

    In this paper, a fully discrete scheme which considers temporal and spatial discretizations is presented for the coupled Cahn-Hilliard equation in conserved form with the dynamic contact line condition and the Navier-Stokes equation with the generalized Navier boundary condition. Variable densities and viscosities are incorporated in this model. A rigorous proof of energy stability is provided for the fully discrete scheme based on a semi-implicit temporal discretization and a finite difference method on the staggered grids for the spatial discretization. A splitting method based on the pressure stabilization is implemented to solve the Navier-Stokes equation, while the stabilization approach is also used for the Cahn-Hilliard equation. Numerical results in both 2-D and 3-D demonstrate the accuracy, efficiency and decaying property of discrete energy of the proposed scheme.

  9. Exact solutions of the nonlinear differential—difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G'/G)-expansion method

    Science.gov (United States)

    Saïdou, Abdoulkary; Alidou, Mohamadou; Ousmanou, Dafounansou; Serge Yamigno, Doka

    2014-12-01

    We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete (G'/G)-expansion method, we solve the nonlinear differential—difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions.

  10. Wielandt method applied to the diffusion equations discretized by finite element nodal methods; Metodo de Wielandt aplicado a las ecuaciones de difusion discretizadas por metodos nodales de elemento finito

    Energy Technology Data Exchange (ETDEWEB)

    Mugica R, A.; Valle G, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: mugica@esfm.ipn.mx

    2003-07-01

    Nowadays the numerical methods of solution to the diffusion equation by means of algorithms and computer programs result so extensive due to the great number of routines and calculations that should carry out, this rebounds directly in the execution times of this programs, being obtained results in relatively long times. This work shows the application of an acceleration method of the convergence of the classic method of those powers that it reduces notably the number of necessary iterations for to obtain reliable results, what means that the compute times they see reduced in great measure. This method is known in the literature like Wielandt method and it has incorporated to a computer program that is based on the discretization of the neutron diffusion equations in plate geometry and stationary state by polynomial nodal methods. In this work the neutron diffusion equations are described for several energy groups and their discretization by means of those called physical nodal methods, being illustrated in particular the quadratic case. It is described a model problem widely described in the literature which is solved for the physical nodal grade schemes 1, 2, 3 and 4 in three different ways: to) with the classic method of the powers, b) method of the powers with the Wielandt acceleration and c) method of the powers with the Wielandt modified acceleration. The results for the model problem as well as for two additional problems known as benchmark problems are reported. Such acceleration method can also be implemented to problems of different geometry to the proposal in this work, besides being possible to extend their application to problems in 2 or 3 dimensions. (Author)

  11. An Analysis Technique/Automated Tool for Comparing and Tracking Analysis Modes of Different Finite Element Models

    Science.gov (United States)

    Towner, Robert L.; Band, Jonathan L.

    2012-01-01

    An analysis technique was developed to compare and track mode shapes for different Finite Element Models. The technique may be applied to a variety of structural dynamics analyses, including model reduction validation (comparing unreduced and reduced models), mode tracking for various parametric analyses (e.g., launch vehicle model dispersion analysis to identify sensitivities to modal gain for Guidance, Navigation, and Control), comparing models of different mesh fidelity (e.g., a coarse model for a preliminary analysis compared to a higher-fidelity model for a detailed analysis) and mode tracking for a structure with properties that change over time (e.g., a launch vehicle from liftoff through end-of-burn, with propellant being expended during the flight). Mode shapes for different models are compared and tracked using several numerical indicators, including traditional Cross-Orthogonality and Modal Assurance Criteria approaches, as well as numerical indicators obtained by comparing modal strain energy and kinetic energy distributions. This analysis technique has been used to reliably identify correlated mode shapes for complex Finite Element Models that would otherwise be difficult to compare using traditional techniques. This improved approach also utilizes an adaptive mode tracking algorithm that allows for automated tracking when working with complex models and/or comparing a large group of models.

  12. Hybrid lattice Boltzmann finite difference simulation of mixed convection flows in a lid-driven square cavity

    Energy Technology Data Exchange (ETDEWEB)

    Bettaibi, Soufiene, E-mail: Bettaibisoufiene@gmail.com [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia); Kuznik, Frédéric [INSA-Lyon, CETHIL, F-69621 Villeurbanne (France); Université de Lyon, CNRS, UMR5008, F-69622 Villeurbanne (France); Sediki, Ezeddine [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia)

    2014-06-27

    Highlights: • Mixed convection heat transfer in 2D lid-driven cavity is studied numerically. • Hybrid scheme with multiple relaxation time lattice Boltzmann method is used to obtain the velocity field. • Finite difference method is used to compute the temperature. • Effect of both Richardson and Reynolds numbers for mixed convection is studied. - Abstract: Mixed convection heat transfer in two-dimensional lid-driven rectangular cavity filled with air (Pr=0.71) is studied numerically. A hybrid scheme with multiple relaxation time lattice Boltzmann method (MRT-LBM) is used to obtain the velocity field while the temperature field is deduced from energy balance equation by using the finite difference method (FDM). The main objective of this work is to investigate the model effectiveness for mixed convection flow simulation. Results are presented in terms of streamlines, isotherms and Nusselt numbers. Excellent agreement is obtained between our results and previous works. The different comparisons demonstrate the robustness and the accuracy of our proposed approach.

  13. Model for describing plasmonic nanolasers using Maxwell-Liouville equations with finite-difference time-domain calculations

    Science.gov (United States)

    Trivedi, Dhara J.; Wang, Danqing; Odom, Teri W.; Schatz, George C.

    2017-11-01

    We present a theoretical study of lasing action when plasmonic metallic structures that show lattice plasmon resonances are embedded in a gain medium. Our model combines classical electrodynamics for arrays of gold nanoparticles with a four-level quantum Liouville model of the laser dye photophysics. A numerical solution was implemented using finite-difference time-domain calculations coupled with a finite-difference solution to the Liouville equation. A particular focus of this work is the influence of dephasing in the quantum dynamics on the emission intensity at the threshold for lasing. We find that dephasing in the quantum system leads to reduced lasing emission, but with little effect on the long-term population inversion. Both electronic and vibrational dephasing is considered, but only electronic dephasing is significant, with the fully dephased result appearing for dephasing times comparable to plasmon dephasing (˜10 fs) while fully coherent results involve >100 ps dephasing times as determined by the rate of stimulated emission. There are factor-of-2 differences between the Maxwell-Liouville results (greater emission intensities and narrower widths) compared to the corresponding results of rate-equation models of the dye states, which indicates the importance of using the Maxwell-Liouville approach in modeling these systems. We also examine rate-equation models with and without constraints arising from the Pauli exclusion principle, and we find relatively small effects.

  14. International Conference eXtended Discretization MethodS

    CERN Document Server

    Benvenuti, Elena

    2016-01-01

    This book gathers selected contributions on emerging research work presented at the International Conference eXtended Discretization MethodS (X-DMS), held in Ferrara in September 2015. It highlights the most relevant advances made at the international level in the context of expanding classical discretization methods, like finite elements, to the numerical analysis of a variety of physical problems. The improvements are intended to achieve higher computational efficiency and to account for special features of the solution directly in the approximation space and/or in the discretization procedure. The methods described include, among others, partition of unity methods (meshfree, XFEM, GFEM), virtual element methods, fictitious domain methods, and special techniques for static and evolving interfaces. The uniting feature of all contributions is the direct link between computational methodologies and their application to different engineering areas.

  15. Finite-time generalized function matrix projective lag synchronization of coupled dynamical networks with different dimensions via the double power function nonlinear feedback control method

    International Nuclear Information System (INIS)

    Dai, Hao; Si, Gangquan; Jia, Lixin; Zhang, Yanbin

    2014-01-01

    This paper investigates the problem of finite-time generalized function matrix projective lag synchronization between two different coupled dynamical networks with different dimensions of network nodes. The double power function nonlinear feedback control method is proposed in this paper to guarantee that the state trajectories of the response network converge to the state trajectories of the drive network according to a function matrix in a given finite time. Furthermore, in comparison with the traditional nonlinear feedback control method, the new method improves the synchronization efficiency, and shortens the finite synchronization time. Numerical simulation results are presented to illustrate the effectiveness of this method. (papers)

  16. Rehabilitation of the atrophic mandible with short implants in different positions: A finite elements study.

    Science.gov (United States)

    Peixoto, Hugo E; Camati, Paulo R; Faot, Fernanda; Sotto-Maior, Bruno S; Martinez, Elizabeth F; Peruzzo, Daiane C

    2017-11-01

    The aim of this study was to analyze whether the use of inclined short implants without lower transcortical involvement (test model - SI), thus preserving the mandibular lower cortical bone, could optimize stress distribution. Six identical atrophic mandible models were created featuring 8mm of height at the symphysis. Two study factors were evaluated: implant length and angulation. Implant length was represented either by short implants (7mm) with preservation of the mandibular lower cortical bone or standard implants (9mm) with a bicortical approach and 3 possible implant positioning configurations: 4 distally-inclined implants at 45° (experimental model), all-on-four, 4 vertical implants. All tridimensional (3D) models were analyzed using the Finite Element Method (FEM) and the Ansys Workbench software. The maximum stress on the bone at the cervical region of the implants in the experimental model was 132MPa and transcortical involvement with implant inclination yielded higher values (171MPa). Regarding von Mises stress on the retaining screw of the prosthesis, 61MPa was recorded for the experimental model while upright implants had the highest values (223MPa). At the acrylic base, 4MPa was recorded for the experimental model whereas models with upright implants showed the highest stress values (11MPa). Rehabilitation of severely resorbed mandibles with 4 short implants placed distally at 45°, without lower transcortical involvement, were biomechanically more favorable, generating lower stress peaks, than the models with short implants on an all-on-four, or on an upright configuration, with or without lower transcortical involvement. Copyright © 2017. Published by Elsevier B.V.

  17. Numerical simulation of temperature distribution using finite difference equations and estimation of the grain size during friction stir processing

    International Nuclear Information System (INIS)

    Arora, H.S.; Singh, H.; Dhindaw, B.K.

    2012-01-01

    Highlights: ► Magnesium alloy AE42 was friction stir processed under different cooling conditions. ► Heat flow model was developed using finite difference heat equations. ► Generalized MATLAB code was developed for solving heat flow model. ► Regression equation for estimation of grain size was developed. - Abstract: The present investigation is aimed at developing a heat flow model to simulate temperature history during friction stir processing (FSP). A new approach of developing implicit form of finite difference heat equations solved using MATLAB code was used. A magnesium based alloy AE42 was friction stir processed (FSPed) at different FSP parameters and cooling conditions. Temperature history was continuously recorded in the nugget zone during FSP using data acquisition system and k type thermocouples. The developed code was validated at different FSP parameters and cooling conditions during FSP experimentation. The temperature history at different locations in the nugget zone at different instants of time was further utilized for the estimation of grain growth rate and final average grain size of the FSPed specimen. A regression equation relating the final grain size, maximum temperature during FSP and the cooling rate was developed. The metallurgical characterization was done using optical microscopy, SEM, and FIB-SIM analysis. The simulated temperature profiles and final average grain size were found to be in good agreement with the experimental results. The presence of fine precipitate particles generated in situ in the investigated magnesium alloy also contributed in the evolution of fine grain structure through Zener pining effect at the grain boundaries.

  18. Cell-vertex discretization of shallow water equations on mixed unstructured meshes

    Science.gov (United States)

    Danilov, Sergey; Androsov, Alexey

    2015-04-01

    Finite-volume discretizations can be formulated on unstructured meshes composed of different polygons. A staggered cell-vertex finite-volume discretization, keeping the velocity degrees of freedom on cell centroids and scalar degrees of freedom on vertices, presents one possible choice. Its performance is analyzed on mixed meshes composed of triangles and quads. Although triangular meshes are most flexible geometrically, quads are more efficient numerically and do not support spurious inertial modes of the triangular cell-vertex discretization. Mixed meshes composed of triangles and quads combine benefits of both. In particular, triangular transitional zones can be used to join quadrilateral meshes of differing resolution, i. e., to provide smooth nesting of a fine mesh into a coarse one. Based on a set of examples involving shallow water equations it is shown that mixed meshes offer a viable approach provided some background biharmonic viscosity (or the biharmonic filter) is used to stabilize the triangular part of the mesh.

  19. [The finite element analysis of stress distribution in different size of MO cavities restored with composite resin inlays].

    Science.gov (United States)

    Zhang, Long; Lu, Yi; Yang, Bo-song; Guo, Yan; Li, Fang-ping

    2015-04-01

    To explore the effect of different depth and width of meiso-occlusal (Class II) cavity type on the tooth tissue resistance stress after restoration with composite resin inlays. The 3-D finite element model of mandibular first molar with meiso-occlusal (Class II) cavity restored with composite resin inlay was established by using CBCT scanning and reverse engineering software Mimics, Geomagic Studio, and finite element analysis software ANSYS. Comparative analysis of restoration with different depth and width meiso-occlusal (Class II) cavity under the same load of perpendicular and 45° deviation was explored, and finally the main stress and Von-mises stress changed as well as stress distribution were analyzed. The main stress was located in the gingival wall opposite to the inlay, while the major stress concentration area of the tooth was distributed near the canal at the bottom of the cavity. With the increase of the depth and width, the main stress and Von-mises stress distribution areas of tooth were getting larger. The Von-mises stress of tooth was influenced by the width variation of the cavity, while that depth change of cavity was affected by Von Mises stress of the inlay. With the increase of the depth and width of the cavity as well as lateral loading force, the peak stress of tooth with inlays increased and the distribution of stress concentration is modified after meiso-occlusal (Class II) cavity being inlayed with composite resin.

  20. Pricing derivatives under Lévy models modern finite-difference and pseudo-differential operators approach

    CERN Document Server

    Itkin, Andrey

    2017-01-01

    This monograph presents a novel numerical approach to solving partial integro-differential equations arising in asset pricing models with jumps, which greatly exceeds the efficiency of existing approaches. The method, based on pseudo-differential operators and several original contributions to the theory of finite-difference schemes, is new as applied to the Lévy processes in finance, and is herein presented for the first time in a single volume. The results within, developed in a series of research papers, are collected and arranged together with the necessary background material from Lévy processes, the modern theory of finite-difference schemes, the theory of M-matrices and EM-matrices, etc., thus forming a self-contained work that gives the reader a smooth introduction to the subject. For readers with no knowledge of finance, a short explanation of the main financial terms and notions used in the book is given in the glossary. The latter part of the book demonstrates the efficacy of the method by solvin...

  1. Comparison of five different fixation techniques of sagittal split ramus osteotomy using three-dimensional finite elements analysis.

    Science.gov (United States)

    Sato, F R L; Asprino, L; Noritomi, P Y; da Silva, J V L; de Moraes, M

    2012-08-01

    The aim of this study was to compare the mechanical stress over hemimandible substrate and hardware after sagittal split ramus osteotomy (SSRO) fixed with five different techniques using three-dimensional (3D) finite element analysis. A 3D finite element model of a hemimandible was created and a 5mm advancement SSRO was simulated on a computer model. The model was fixed with five different techniques: 3 linear 60° screw arrangement; 3 linear 90° screw arrangement; 3 inverted L screw arrangement; 1 conventional miniplate; and 1 locking miniplate with four monocortical screws. Load was applied until 3mm displacement was reached and the results were compared with previous mechanical and photoelastic tests, thus analysing the mechanical stresses developed in the proximity of miniplates and screws and within the fixation system itself. The maximum principal stress values demonstrate a lower mechanical stress rate in bone and in the fixation system with the inverted L arrangement, followed by the linear 90° and linear 60° arrangements. The locking miniplate/screw system presented lower maximum principal stress and better stress distribution compared with the conventional system. Under the conditions tested, the reversed L arrangement provided the most favourable stress dissipation behaviour. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  2. Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies

    KAUST Repository

    Gerke, Kirill M.

    2018-01-17

    Permeability is one of the fundamental properties of porous media and is required for large-scale Darcian fluid flow and mass transport models. Whilst permeability can be measured directly at a range of scales, there are increasing opportunities to evaluate permeability from pore-scale fluid flow simulations. We introduce the free software Finite-Difference Method Stokes Solver (FDMSS) that solves Stokes equation using a finite-difference method (FDM) directly on voxelized 3D pore geometries (i.e. without meshing). Based on explicit convergence studies, validation on sphere packings with analytically known permeabilities, and comparison against lattice-Boltzmann and other published FDM studies, we conclude that FDMSS provides a computationally efficient and accurate basis for single-phase pore-scale flow simulations. By implementing an efficient parallelization and code optimization scheme, permeability inferences can now be made from 3D images of up to 109 voxels using modern desktop computers. Case studies demonstrate the broad applicability of the FDMSS software for both natural and artificial porous media.

  3. Three-Dimensional Finite Difference Simulation of Ground Motions from the August 24, 2014 South Napa Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Arthur J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Dreger, Douglas S. [Univ. of California, Berkeley, CA (United States); Pitarka, Arben [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    We performed three-dimensional (3D) anelastic ground motion simulations of the South Napa earthquake to investigate the performance of different finite rupture models and the effects of 3D structure on the observed wavefield. We considered rupture models reported by Dreger et al. (2015), Ji et al., (2015), Wei et al. (2015) and Melgar et al. (2015). We used the SW4 anelastic finite difference code developed at Lawrence Livermore National Laboratory (Petersson and Sjogreen, 2013) and distributed by the Computational Infrastructure for Geodynamics. This code can compute the seismic response for fully 3D sub-surface models, including surface topography and linear anelasticity. We use the 3D geologic/seismic model of the San Francisco Bay Area developed by the United States Geological Survey (Aagaard et al., 2008, 2010). Evaluation of earlier versions of this model indicated that the structure can reproduce main features of observed waveforms from moderate earthquakes (Rodgers et al., 2008; Kim et al., 2010). Simulations were performed for a domain covering local distances (< 25 km) and resolution providing simulated ground motions valid to 1 Hz.

  4. Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media

    Science.gov (United States)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.

    2013-12-01

    Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common

  5. Finite element modeling of stress distribution in intervertebral spacers of different surface geometries.

    Science.gov (United States)

    Lee, Jae Hyup; Baek, Myong-Hyun; Kim, Young Eun; Seo, Jun-Hyuk; Song, Dong Ryul; Ryu, Hyun-Seung; Lee, Choon-Ki; Chang, Bong-Soon

    2013-11-01

    Intervertebral disc spacers using bioactive ceramics have been used to treat degenerative spinal disease. Tooth-shaped spacers are commonly used to prevent migration, but there is a possibility of fracture when inserted or after insertion. Intervertebral disc spacers with either an isosceles triangle-shaped tooth (T1) or a right triangle-shaped tooth (T2) were used as a control group. The design factors for the experimental group were modified to prevent fractures induced by stress concentration, and the surfaces of the spacers were designed as either an isosceles triangle-shaped valley (V1) or a right triangle-shaped valley (V2). Linear analysis using finite element model (FEM) was performed, and Von Mises stress distribution was calculated by applying 1000 N of uniformly distributed load. Samples of the V2 design were made with bioactive glass-ceramics (BGS-7) and evaluated for compressive strength, fatigue degree, and impact strength. Von Mises stress was highest at the first tooth from the posterior side for the control group and at the center for the experimental group. Compared with the control group, the experimental group showed 18.4% and 82.5% reduction (V1 vs. T1 and V2 vs. T2, respectively) in the maximum stress at the bottom of the valleys. The FEM analysis revealed that the V2 design had the most even load distribution. The V2 samples with bioactive glass-ceramics were evaluated for compressive strength, and all six samples were not fractured up to 24 000 N. However, the average impact strength was 19.42 kN, suggesting that momentary force caused damage at a lower load than compression with a steady speed. The BGS-7 intervertebral disc spacer with V2 design was not fractured during the fatigue test at maximum pressure of 8000 N, R ≥10, 5 Hz, and 5 million cycles. These data confirm that the BGS-7 spacer with the V2 design may be clinically applicable. Collectively, the modified surface geometry of the experimental group significantly lowered Von

  6. Analysis of Different Positions of Fiber-Reinforced Composite Retainers versus Multistrand Wire Retainers Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Arezoo Jahanbin

    2014-01-01

    Full Text Available Background. The aim of this study was to evaluate root displacement of the lower incisors fixed with FRC in different positions versus FSW retainers using the finite element method. Materials and Methods. 3D finite element models were designed for a mandibular anterior segment: Model 1: flexible spiral wire bonded to the lingual teeth surfaces, Model 2: FRC bonded to the upper third of lingual teeth surfaces, and Model 3: FRC bonded to the middle third. FE analysis was performed for three models and then tooth displacements were evaluated. Results. In contrast to lateral incisors and canines, the FSW retainer caused the central teeth to move more than the teeth bonded with FRC in both loadings. Comparison between Models 2 and 3 (in vertical loading showed that FRC retainers that bonded at the upper third of lingual teeth surfaces made central and canine teeth move less than FRC retainers bonded at the middle third; however, for lateral teeth it was the opposite. Conclusion. FRC retainers bonded at the upper third of lingual teeth surfaces make central and canine teeth move less than FRC retainers bonded at the middle third in vertical loading; however, for lateral teeth it was the opposite.

  7. Analysis of Different Positions of Fiber-Reinforced Composite Retainers versus Multistrand Wire Retainers Using the Finite Element Method.

    Science.gov (United States)

    Jahanbin, Arezoo; Abtahi, Mostafa; Heravi, Farzin; Hoseini, Mohsen; Shafaee, Hooman

    2014-01-01

    Background. The aim of this study was to evaluate root displacement of the lower incisors fixed with FRC in different positions versus FSW retainers using the finite element method. Materials and Methods. 3D finite element models were designed for a mandibular anterior segment: Model 1: flexible spiral wire bonded to the lingual teeth surfaces, Model 2: FRC bonded to the upper third of lingual teeth surfaces, and Model 3: FRC bonded to the middle third. FE analysis was performed for three models and then tooth displacements were evaluated. Results. In contrast to lateral incisors and canines, the FSW retainer caused the central teeth to move more than the teeth bonded with FRC in both loadings. Comparison between Models 2 and 3 (in vertical loading) showed that FRC retainers that bonded at the upper third of lingual teeth surfaces made central and canine teeth move less than FRC retainers bonded at the middle third; however, for lateral teeth it was the opposite. Conclusion. FRC retainers bonded at the upper third of lingual teeth surfaces make central and canine teeth move less than FRC retainers bonded at the middle third in vertical loading; however, for lateral teeth it was the opposite.

  8. Implant-retained mandibular bar-supported overlay dentures: a finite element stress analysis of four different bar heights.

    Science.gov (United States)

    Rismanchian, Mansoor; Dakhilalian, Mansour; Bajoghli, Farshad; Ghasemi, Ehsan; Sadr-Eshkevari, Pooyan

    2012-04-01

    Proper stress distribution on dental implants is necessary in bar-retained implant overlay dentures. We aimed to comparatively assess this stress distribution according to different bar heights using finite element models. A three-dimensional (3D) computer model of mandible with 2 implants (ITI, 4.1 mm diameter and 12 mm length) in canine areas and an overlying implant-supported bar-retained overlay denture were simulated with 0-, 1-, 2-, and 3-mm bar heights using ABAQUS software. A vertical force was applied to the left first molar and gradually increased from 0 to 50 N. The resultant stress distribution was evaluated. Bars of 1 and 2 mm in height transferred the least stress to the implants (3.882 and 3.896 MPa, respectively). The 0-mm height of the bar connection transferred the highest stress value (4.277 MPa). The amount of stress transferred by 3-mm heights of the bar connection was greater than that of 1- and 2-mm bar connections and smaller than that of 0-mm bar connection (4.165 kgN). This 3D finite element analysis study suggested that the use of Dolder bar attachment with 1- and 2-mm heights could be associated with appropriate stress distribution for implant-retained overlay dentures.

  9. A Finite Difference Solution of a Simply Supported Beam of Orthotropic Composite Materials Using Displacement Potential Formulation

    Directory of Open Access Journals (Sweden)

    S. K. Deb Nath

    2014-01-01

    Full Text Available Here an efficient displacement potential formulation based finite difference technique is used to solve the elastic field of a simply supported beam of orthotropic composite materials. A simply supported beam made of orthotropic composite material under uniformly distributed loading is considered and its elastic behaviors under such loading conditions are analyzed considering plane stress condition. The solutions of the problem satisfy the force equilibrium conditions as well as boundary conditions. For understanding the elastic behavior of a simply supported beam, the displacement and stress components of some important sections of the beam are shown graphically. Effects of different orthotropic composite materials on the solutions are also analyzed. Besides, at a particular section of the beam, the comparative analysis of the elastic field is carried out by using the FDM and FEM methods.

  10. Development and application of a third order scheme of finite differences centered in mesh; Desarrollo y aplicacion de un esquema de tercer orden de diferencias finitas centradas en malla

    Energy Technology Data Exchange (ETDEWEB)

    Delfin L, A.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: adl@nuclear.inin.mx

    2003-07-01

    In this work the development of a third order scheme of finite differences centered in mesh is presented and it is applied in the numerical solution of those diffusion equations in multi groups in stationary state and X Y geometry. Originally this scheme was developed by Hennart and del Valle for the monoenergetic diffusion equation with a well-known source and they show that the one scheme is of third order when comparing the numerical solution with the analytical solution of a model problem using several mesh refinements and boundary conditions. The scheme by them developed it also introduces the application of numeric quadratures to evaluate the rigidity matrices and of mass that its appear when making use of the finite elements method of Galerkin. One of the used quadratures is the open quadrature of 4 points, no-standard, of Newton-Cotes to evaluate in approximate form the elements of the rigidity matrices. The other quadrature is that of 3 points of Radau that it is used to evaluate the elements of all the mass matrices. One of the objectives of these quadratures are to eliminate the couplings among the Legendre moments 0 and 1 associated to the left and right faces as those associated to the inferior and superior faces of each cell of the discretization. The other objective is to satisfy the particles balance in weighed form in each cell. In this work it expands such development to multiplicative means considering several energy groups. There are described diverse details inherent to the technique, particularly those that refer to the simplification of the algebraic systems that appear due to the space discretization. Numerical results for several test problems are presented and are compared with those obtained with other nodal techniques. (Author)

  11. Discrete optimization

    CERN Document Server

    Parker, R Gary

    1988-01-01

    This book treats the fundamental issues and algorithmic strategies emerging as the core of the discipline of discrete optimization in a comprehensive and rigorous fashion. Following an introductory chapter on computational complexity, the basic algorithmic results for the two major models of polynomial algorithms are introduced--models using matroids and linear programming. Further chapters treat the major non-polynomial algorithms: branch-and-bound and cutting planes. The text concludes with a chapter on heuristic algorithms.Several appendixes are included which review the fundamental ideas o

  12. Mimetic Discretization of Vector-valued Diffusion Problems

    DEFF Research Database (Denmark)

    Olesen, Kennet

    relations are based on universal physical laws and if these are not represented correctly by the numerical scheme, the wrong physics are being solved for. General schemes like the Finite Difference Method (FDM) and the Finite Element Method (FEM) approximate the solution of all the involved Partial...... Differential Equations (PDEs) and thereby locally lack the discrete conservation of the invariants. The reason is the absence of geometrical considerations in these methods. The FDM and the FEM expand the physical quantities from points, but how can conservation of e.g. mass be correctly simulated when...... gradient-, curl- and divergence operators are derived based on geometrical considerations on finite domains, and by introducing geometry into the numerical scheme these operators can be replicated exactly. To incorporate the geometry into the PDEs the field of differential geometry is applied, which has...

  13. On modified finite difference method to obtain the electron energy distribution functions in Langmuir probes

    Science.gov (United States)

    Kang, Hyun-Ju; Choi, Hyeok; Kim, Jae-Hyun; Lee, Se-Hun; Yoo, Tae-Ho; Chung, Chin-Wook

    2016-06-01

    A modified central difference method (MCDM) is proposed to obtain the electron energy distribution functions (EEDFs) in single Langmuir probes. Numerical calculation of the EEDF with MCDM is simple and has less noise. This method provides the second derivatives at a given point as the weighted average of second order central difference derivatives calculated at different voltage intervals, weighting each by the square of the interval. In this paper, the EEDFs obtained from MCDM are compared to those calculated via the averaged central difference method. It is found that MCDM effectively suppresses the noises in the EEDF, while the same number of points are used to calculate of the second derivative.

  14. On modified finite difference method to obtain the electron energy distribution functions in Langmuir probes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun-Ju; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Choi, Hyeok; Kim, Jae-Hyun; Lee, Se-Hun; Yoo, Tae-Ho [Seoul Science High School, 63, Hyehwa-ro, Jongno-gu, Seoul 110-530 (Korea, Republic of)

    2016-06-15

    A modified central difference method (MCDM) is proposed to obtain the electron energy distribution functions (EEDFs) in single Langmuir probes. Numerical calculation of the EEDF with MCDM is simple and has less noise. This method provides the second derivatives at a given point as the weighted average of second order central difference derivatives calculated at different voltage intervals, weighting each by the square of the interval. In this paper, the EEDFs obtained from MCDM are compared to those calculated via the averaged central difference method. It is found that MCDM effectively suppresses the noises in the EEDF, while the same number of points are used to calculate of the second derivative.

  15. The Galerkin finite element method for a multi-term time-fractional diffusion equation

    KAUST Repository

    Jin, Bangti

    2015-01-01

    © 2014 The Authors. We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite difference discretization of the time-fractional derivatives, and discuss its stability and error estimate. Extensive numerical experiments for one- and two-dimensional problems confirm the theoretical convergence rates.

  16. Biomechanical effects of different vertebral heights after augmentation of osteoporotic vertebral compression fracture: a three-dimensional finite element analysis.

    Science.gov (United States)

    Zhao, Wen-Tao; Qin, Da-Ping; Zhang, Xiao-Gang; Wang, Zhi-Peng; Tong, Zun

    2018-02-08

    Clinical results have shown that different vertebral heights have been restored post-augmentation of osteoporotic vertebral compression fractures (OVCFs) and the treatment results are consistent. However, no significant results regarding biomechanical effects post-augmentation have been found with different types of vertebral deformity or vertebral heights by biomechanical analysis. Therefore, the present study aimed to investigate the biomechanical effects between different vertebral heights of OVCFs before and after augmentation using three-dimensional finite element analysis. Four patients with OVCFs of T12 underwent computed tomography (CT) of the T11-L1 levels. The CT images were reconstructed as simulated three-dimensional finite-element models of the T11-L1 levels (before and after the T12 vertebra was augmented with cement). Four different kinds of vertebral height models included Genant semi-quantitative grades 0, 1, 2, and 3, which simulated unilateral augmentation. These models were assumed to represent vertical compression and flexion, left flexion, and right flexion loads, and the von Mises stresses of the T12 vertebral body were assessed under different vertebral heights before and after bone cement augmentation. Data showed that the von Mises stresses significantly increased under four loads of OVCFs of the T12 vertebral body before the operation from grade 0 to grade 3 vertebral heights. The maximum stress of grade 3 vertebral height pre-augmentation was produced at approximately 200%, and at more than 200% for grade 0. The von Mises stresses were significantly different between different vertebral heights preoperatively. The von Mises stresses of the T12 vertebral body significantly decreased in four different loads and at different vertebral body heights (grades 0-3) after augmentation. There was no significant difference between the von Mises stresses of grade 0, 1, and 3 vertebral heights postoperatively. The von Mises stress significantly

  17. Finite-time rotation number: A fast indicator for chaotic dynamical structures

    Energy Technology Data Exchange (ETDEWEB)

    Szezech, J.D., E-mail: jds98@fisica.ufpr.br [Instituto de Física, Universidade de São Paulo, 5315-970, São Paulo, São Paulo (Brazil); Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84033-240, Ponta Grossa, Paraná (Brazil); Schelin, A.B., E-mail: schelin@if.usp.br [Instituto de Física, Universidade de São Paulo, 5315-970, São Paulo, São Paulo (Brazil); Departamento de Física, Universidade Tecnológica Federal do Paraná, 80230-901, Curitiba, Paraná (Brazil); Caldas, I.L., E-mail: ibere@if.usp.br [Instituto de Física, Universidade de São Paulo, 5315-970, São Paulo, São Paulo (Brazil); Lopes, S.R., E-mail: lopes@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, Paraná (Brazil); Morrison, P.J., E-mail: morrison@physics.utexas.edu [Department of Physics, The University of Texas at Austin, Austin, TX 78712 (United States); Viana, R.L., E-mail: rlv640@gmail.com [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, Paraná (Brazil)

    2013-02-04

    Lagrangian coherent structures are effective barriers, sticky regions, that separate chaotic phase space regions of different dynamical behavior. The usual way to detect such structures is by calculating finite-time Lyapunov exponents. We show that similar results can be obtained for time-periodic systems by calculating finite-time rotation numbers, which are faster to compute. We illustrate our claim by considering examples of continuous- and discrete-time dynamical systems of physical interest.

  18. Influence of Regional Difference in Bone Mineral Density on Hip Fracture Site in Elderly Females by Finite Element Analysis.

    Science.gov (United States)

    Lin, Z L; Li, P F; Pang, Z H; Zheng, X H; Huang, F; Xu, H H; Li, Q L

    2015-11-01

    Hip fracture is a kind of osteoporotic fractures in elderly patients. Its important monitoring indicator is to measure bone mineral density (BMD) using DXA. The stress characteristics and material distribution in different parts of the bones can be well simulated by three-dimensional finite element analysis. Our previous studies have demonstrated a linear positive correlation between clinical BMD and the density of three-dimensional finite element model of the femur. However, the correlation between the density variation between intertrochanteric region and collum femoris region of the model and the fracture site has not been studied yet. The present study intends to investigate whether the regional difference in the density of three-dimensional finite element model of the femur can be used to predict hip fracture site in elderly females. The CT data of both hip joints were collected from 16 cases of elderly female patients with hip fractures. Mimics 15.01 software was used to reconstruct the model of proximal femur on the healthy side. Ten kinds of material properties were assigned. In Abaqus 6.12 software, the collum femoris region and intertrochanteric region were, respectively, drawn for calculating the corresponding regional density of the model, followed by prediction of hip fracture site and final comparison with factual fracture site. The intertrochanteric region/collum femoris region density was [(1.20 ± 0.02) × 10(6)] on the fracture site and [(1.22 ± 0.03) × 10(6)] on the non-fracture site, and the difference was statistically significant (P = 0.03). Among 16 established models of proximal femur on the healthy side, 14 models were consistent with the actual fracture sites, one model was inconsistent, and one model was unpredictable, with the coincidence rate of 87.5 %. The intertrochanteric region or collum femoris region with lower BMD is more prone to hip fracture of the type on the corresponding site.

  19. Biomechanical Effects of Platform Switching in Two Different Implant Systems: A Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Mahasti Sahabi

    2013-01-01

    Full Text Available Aims: The purpose of this study was to determine the influence of platform switching on stress distribution of two different implant systems, using three-dimensional (3D finite element models.Methods: Six 3D finite element models were created to replicate two different implant systems with peri-implant bone tissue, in which six different implant-abutment configurations were represented: model XiVE-a: 3.8-mm-diameter implant and 3.8-mm-diameter abutment; model XiVE-b (platform-switching model: 4.5-mm-diameter implant and 3.8-mm-diameter abutment; model XiVE-c: 4.5-mm-diameter implant and 4.5-mm-diameter abutment; model 3i-a: 4.0-mm-diameter implant and 4.1-mm-diameter abutment; model 3i-b (platform-switching model: 5.0-mm-diameter implant and 4.1-mm-diameter abutment; model 3i-c: 5.0-mm-diameter implant and 5.0-mm-diameter abutment. Axial and oblique loads of 100 were applied to all models.Results: While the pattern of stress distribution was similar for both loading situations, oblique loading resulted in higher intensity and greater distribution of stress than axial loading in both cortical bone and abutment-implant interface. Stress distribution at peri-implant bone was almost identical with similar magnitudes for all six models. In both implant systems, platform switching models demonstrated lower maximum von Mises stress in cortical bone than conventional models. However, in both implant systems and under both loading situation, platform switching models showed higher stresses at the abutment-implant interface than conventional models.Conclusion: In both implant systems, platform switching design reduced the stress concentration in the crestal bone and shifted it towards the area of implant-abutment interface

  20. Full-Wave Analysis of Traveling-Wave Field-Effect Transistors Using Finite-Difference Time-Domain Method

    Directory of Open Access Journals (Sweden)

    Koichi Narahara

    2012-01-01

    Full Text Available Nonlinear transmission lines, which define transmission lines periodically loaded with nonlinear devices such as varactors, diodes, and transistors, are modeled in the framework of finite-difference time-domain (FDTD method. Originally, some root-finding routine is needed to evaluate the contributions of nonlinear device currents appropriately to the temporally advanced electrical fields. Arbitrary nonlinear transmission lines contain large amount of nonlinear devices; therefore, it costs too much time to complete calculations. To reduce the calculation time, we recently developed a simple model of diodes to eliminate root-finding routines in an FDTD solver. Approximating the diode current-voltage relation by a piecewise-linear function, an extended Ampere's law is solved in a closed form for the time-advanced electrical fields. In this paper, we newly develop an FDTD model of field-effect transistors (FETs, together with several numerical examples that demonstrate pulse-shortening phenomena in a traveling-wave FET.