WorldWideScience

Sample records for finite difference calculations

  1. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  2. Temperature Calculation of Annular Fuel Pellet by Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Sik; Bang, Je Geon; Kim, Dae Ho; Kim, Sun Ki; Lim, Ik Sung; Song, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    KAERI has started an innovative fuel development project for applying dual-cooled annular fuel to existing PWR reactor. In fuel design, fuel temperature is the most important factor which can affect nuclear fuel integrity and safety. Many models and methodologies, which can calculate temperature distribution in a fuel pellet have been proposed. However, due to the geometrical characteristics and cooling condition differences between existing solid type fuel and dual-cooled annular fuel, current fuel temperature calculation models can not be applied directly. Therefore, the new heat conduction model of fuel pellet was established. In general, fuel pellet temperature is calculated by FDM(Finite Difference Method) or FEM(Finite Element Method), because, temperature dependency of fuel thermal conductivity and spatial dependency heat generation in the pellet due to the self-shielding should be considered. In our study, FDM is adopted due to high exactness and short calculation time.

  3. Peculiarities of cyclotron magnetic system calculation with the finite difference method using two-dimensional approximation

    International Nuclear Information System (INIS)

    Shtromberger, N.L.

    1989-01-01

    To design a cyclotron magnetic system the legitimacy of two-dimensional approximations application is discussed. In all the calculations the finite difference method is used, and the linearization method with further use of the gradient conjugation method is used to solve the set of finite-difference equations. 3 refs.; 5 figs

  4. Finite differences with exponential filtering in the calculation of reactivity

    International Nuclear Information System (INIS)

    Suescun Diaz, Daniel; Senra Martinez, Aquilino

    2010-01-01

    A formulation for the calculation of reactivity using a recursive process is presented in this paper, as well as the treatment to reduce noise intensity that is found in the nuclear power signal. Using the history of nuclear power considered as the memory of such power and the filter exponentially adjusted with the least squares method, it is possible to reduce the nuclear power fluctuations without causing attenuation for the calculation of reactivity and with a smaller delay than that for low-pass filter of first order delay filter. (orig.)

  5. Finite differences with exponential filtering in the calculation of reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Suescun Diaz, Daniel; Senra Martinez, Aquilino [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). COPPE - Programa de Engenharia Nuclear

    2010-08-15

    A formulation for the calculation of reactivity using a recursive process is presented in this paper, as well as the treatment to reduce noise intensity that is found in the nuclear power signal. Using the history of nuclear power considered as the memory of such power and the filter exponentially adjusted with the least squares method, it is possible to reduce the nuclear power fluctuations without causing attenuation for the calculation of reactivity and with a smaller delay than that for low-pass filter of first order delay filter. (orig.)

  6. Mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods

    International Nuclear Information System (INIS)

    Baker, A.R.

    1982-07-01

    A study has been performed of mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods. As the objective was to illuminate the issues, the study was performed for a 1D slab model of a reactor with one neutron-energy group for which analytical solutions were possible. A computer code SLAB was specially written to perform the finite-difference and finite-element calculations and also to obtain the analytical solutions. The standard finite-difference equations were obtained by starting with an expansion of the neutron current in powers of the mesh size, h, and keeping terms as far as h 2 . It was confirmed that these equations led to the well-known result that the criticality parameter varied with the square of the mesh size. An improved form of the finite-difference equations was obtained by continuing the expansion for the neutron current as far as the term in h 4 . In this case, the critical parameter varied as the fourth power of the mesh size. The finite-element solutions for 2 and 3 nodes per element revealed that the criticality parameter varied as the square and fourth power of the mesh size, respectively. Numerical results are presented for a bare reactive core of uniform composition with 2 zones of different uniform mesh and for a reactive core with an absorptive reflector. (author)

  7. Formulation of coarse mesh finite difference to calculate mathematical adjoint flux

    International Nuclear Information System (INIS)

    Pereira, Valmir; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2002-01-01

    The objective of this work is the obtention of the mathematical adjoint flux, having as its support the nodal expansion method (NEM) for coarse mesh problems. Since there are difficulties to evaluate this flux by using NEM. directly, a coarse mesh finite difference program was developed to obtain this adjoint flux. The coarse mesh finite difference formulation (DFMG) adopted uses results of the direct calculation (node average flux and node face averaged currents) obtained by NEM. These quantities (flux and currents) are used to obtain the correction factors which modify the classical finite differences formulation . Since the DFMG formulation is also capable of calculating the direct flux it was also tested to obtain this flux and it was verified that it was able to reproduce with good accuracy both the flux and the currents obtained via NEM. In this way, only matrix transposition is needed to calculate the mathematical adjoint flux. (author)

  8. Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method

    International Nuclear Information System (INIS)

    Xu Qi; Yu Ganglin; Wang Kan; Sun Jialong

    2014-01-01

    In this paper, the adaptability of the neutron diffusion numerical algorithm on GPUs was studied, and a GPU-accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. The IAEA 3D PWR benchmark problem was calculated in the numerical test. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. (authors)

  9. The Dirac Equation in the algebraic approximation. VII. A comparison of molecular finite difference and finite basis set calculations using distributed Gaussian basis sets

    NARCIS (Netherlands)

    Quiney, H. M.; Glushkov, V. N.; Wilson, S.; Sabin,; Brandas, E

    2001-01-01

    A comparison is made of the accuracy achieved in finite difference and finite basis set approximations to the Dirac equation for the ground state of the hydrogen molecular ion. The finite basis set calculations are carried out using a distributed basis set of Gaussian functions the exponents and

  10. Direct Calculation of Permeability by High-Accurate Finite Difference and Numerical Integration Methods

    KAUST Repository

    Wang, Yi

    2016-07-21

    Velocity of fluid flow in underground porous media is 6~12 orders of magnitudes lower than that in pipelines. If numerical errors are not carefully controlled in this kind of simulations, high distortion of the final results may occur [1-4]. To fit the high accuracy demands of fluid flow simulations in porous media, traditional finite difference methods and numerical integration methods are discussed and corresponding high-accurate methods are developed. When applied to the direct calculation of full-tensor permeability for underground flow, the high-accurate finite difference method is confirmed to have numerical error as low as 10-5% while the high-accurate numerical integration method has numerical error around 0%. Thus, the approach combining the high-accurate finite difference and numerical integration methods is a reliable way to efficiently determine the characteristics of general full-tensor permeability such as maximum and minimum permeability components, principal direction and anisotropic ratio. Copyright © Global-Science Press 2016.

  11. Improved stiffness confinement method within the coarse mesh finite difference framework for efficient spatial kinetics calculation

    International Nuclear Information System (INIS)

    Park, Beom Woo; Joo, Han Gyu

    2015-01-01

    Highlights: • The stiffness confinement method is combined with multigroup CMFD with SENM nodal kernel. • The systematic methods for determining the shape and amplitude frequencies are established. • Eigenvalue problems instead of fixed source problems are solved in the transient calculation. • It is demonstrated that much larger time step sizes can be used with the SCM–CMFD method. - Abstract: An improved Stiffness Confinement Method (SCM) is formulated within the framework of the coarse mesh finite difference (CMFD) formulation for efficient multigroup spatial kinetics calculation. The algorithm for searching for the amplitude frequency that makes the dynamic eigenvalue unity is developed in a systematic way along with the methods for determining the shape and precursor frequencies. A nodal calculation scheme is established within the CMFD framework to incorporate the cross section changes due to thermal feedback and dynamic frequency update. The conditional nodal update scheme is employed such that the transient calculation is performed mostly with the CMFD formulation and the CMFD parameters are conditionally updated by intermittent nodal calculations. A quadratic representation of amplitude frequency is introduced as another improvement. The performance of the improved SCM within the CMFD framework is assessed by comparing the solution accuracy and computing times for the NEACRP control rod ejection benchmark problems with those obtained with the Crank–Nicholson method with exponential transform (CNET). It is demonstrated that the improved SCM is beneficial for large time step size calculations with stability and accuracy enhancement

  12. Finite difference method calculations of X-ray absorption fine structure for copper

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, J.D. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia); Chantler, C.T. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)]. E-mail: chantler@physics.unimelb.edu.au; Witte, C. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)

    2007-01-15

    The finite difference method is extended to calculate X-ray absorption fine structure (XAFS) for solid state copper. These extensions include the incorporation of a Monte Carlo frozen phonon technique to simulate the effect of thermal vibrations under a correlated Debye-Waller model, and the inclusion of broadening effects from inelastic processes. Spectra are obtained over an energy range in excess of 300 eV above the K absorption edge-more than twice the greatest energy range previously reported for a solid state calculation using this method. We find this method is highly sensitive to values of the photoelectron inelastic mean free path, allowing us to probe the accuracy of current models of this parameter, particularly at low energies. We therefore find that experimental data for the photoelectron inelastic mean free path can be obtained by this method. Our results compare favourably with high precision measurements of the X-ray mass attenuation coefficient for copper, reaching agreement to within 3%, and improving previous results using the finite difference method by an order of magnitude.

  13. Comparison of SAR calculation algorithms for the finite-difference time-domain method

    International Nuclear Information System (INIS)

    Laakso, Ilkka; Uusitupa, Tero; Ilvonen, Sami

    2010-01-01

    Finite-difference time-domain (FDTD) simulations of specific-absorption rate (SAR) have several uncertainty factors. For example, significantly varying SAR values may result from the use of different algorithms for determining the SAR from the FDTD electric field. The objective of this paper is to rigorously study the divergence of SAR values due to different SAR calculation algorithms and to examine if some SAR calculation algorithm should be preferred over others. For this purpose, numerical FDTD results are compared to analytical solutions in a one-dimensional layered model and a three-dimensional spherical object. Additionally, the implications of SAR calculation algorithms for dosimetry of anatomically realistic whole-body models are studied. The results show that the trapezium algorithm-based on the trapezium integration rule-is always conservative compared to the analytic solution, making it a good choice for worst-case exposure assessment. In contrast, the mid-ordinate algorithm-named after the mid-ordinate integration rule-usually underestimates the analytic SAR. The linear algorithm-which is approximately a weighted average of the two-seems to be the most accurate choice overall, typically giving the best fit with the shape of the analytic SAR distribution. For anatomically realistic models, the whole-body SAR difference between different algorithms is relatively independent of the used body model, incident direction and polarization of the plane wave. The main factors affecting the difference are cell size and frequency. The choice of the SAR calculation algorithm is an important simulation parameter in high-frequency FDTD SAR calculations, and it should be explained to allow intercomparison of the results between different studies. (note)

  14. Eulerian finite-difference calculations of explosions in partially water-filled overstrong cylindrical containment vessels

    International Nuclear Information System (INIS)

    Thompson, S.L.; Herrmann, W.

    1977-01-01

    Calculations, using the two-dimensional Eulerian finite-difference code CSQ, were performed for the problem of a small spherical high-explosive charge detonated in a closed heavy-walled cylindrical container partially filled with water. Data from corresponding experiments, specifically performed to validate codes used for hypothetical core disruptive accidents of liquid metal fast breeder reactors, are available in the literature. The calculations were performed specifically to test whether Eulerian methods could handle this type of problem, to determine whether water cavitation, which plays a large role in the loadings on the roof of the containment vessel, could be described adequately by an equilibrium liquid-vapor mixed phase model, and to investigate the trade-off between accuracy and cost of the calculations by using different sizes of computational meshes. Comparison of the experimental and computational data shows that the Eulerian method can handle the problem with ease, giving good predictions of wall and floor loadings. While roof loadings are qualitatively correct, peak impulse appears to be affected by numerical resolution and is underestimated somewhat

  15. Anisotropic constitutive equation for use in finite difference wave propagation calculations. [Incorporation into TOODY code

    Energy Technology Data Exchange (ETDEWEB)

    Swegle, J.W.; Hicks, D.L.

    1979-05-01

    An anisotropic constitutive relation was incorporated into the Lagrangian finite-difference wavecode TOODY. The details of the implementation of the constitutive relation in the wavecode and an example of its use are discussed. 4 figures, 1 table.

  16. Calculation of electrical potentials on the surface of a realistic head model by finite differences

    International Nuclear Information System (INIS)

    Lemieux, L.; McBride, A.; Hand, J.W.

    1996-01-01

    We present a method for the calculation of electrical potentials at the surface of realistic head models from a point dipole generator based on a 3D finite-difference algorithm. The model was validated by comparing calculated values with those obtained algebraically for a three-shell spherical model. For a 1.25 mm cubic grid size, the mean error was 4.9% for a superficial dipole (3.75 mm from the inner surface of the skull) pointing in the radial direction. The effect of generator discretization and node spacing on the accuracy of the model was studied. Three values of the node spacing were considered: 1, 1.25 and 1.5 mm. The mean relative errors were 4.2, 6.3 and 9.3%, respectively. The quality of the approximation of a point dipole by an array of nodes in a spherical neighbourhood did not depend significantly on the number of nodes used. The application of the method to a conduction model derived from MRI data is demonstrated. (author)

  17. Calculating modes of quantum wire systems using a finite difference technique

    Directory of Open Access Journals (Sweden)

    T Mardani

    2013-03-01

    Full Text Available  In this paper, the Schrodinger equation for a quantum wire is solved using a finite difference approach. A new aspect in this work is plotting wave function on cross section of rectangular cross-sectional wire in two dimensions, periodically. It is found that the correct eigen energies occur when wave functions have a complete symmetry. If the value of eigen energy has a small increase or decrease in neighborhood of the correct energy the symmetry will be destroyed and aperturbation value at the first of wave function will be observed. In addition, the demand on computer memory varies linearly with the size of the system under investigation.

  18. Calculation of large ion densities under HVdc transmission lines by the finite difference method

    International Nuclear Information System (INIS)

    Suda, Tomotaka; Sunaga, Yoshitaka

    1995-01-01

    A calculation method for large ion densities (charged aerosols) under HVdc transmission lines was developed considering both the charging mechanism of aerosols by small ions and the drifting process by wind. Large ion densities calculated by this method agreed well with the ones measured under the Shiobara HVdc test line on the lateral profiles at ground level up to about 70m downwind from the line. Measured values decreased more quickly than calculated ones farther downwind from the line. Considering the effect of point discharge from ground cover (earth corona) improved the agreement in the farther downwind region

  19. THE USE OF THE FINITE DIFFERENCE METHOD FOR CALCULATION OF ELECTRONIC STATES IN MIS-STRUCTURE WITH SINGLE DONOR 1

    Directory of Open Access Journals (Sweden)

    E. A. Levchuk

    2018-01-01

    Full Text Available Numerical modeling of electronic state evolution due to non-uniform external electric field in the structure metal-insulator-semiconductor with solitary donor center is carried out. Considering a nanometer disc-shaped gate as a source of the electric field, the problem for the Laplace equation in multilayered medium is solved numerically to determine the distribution of the gate potential. The energy spectrum of a bound electron is calculated from the problem for the stationary Schrödinger equation. Finite difference schemes are constructed to solve both the problems. Difference scheme for the Schrödinger equation takes into account cusp condition for the wave function at the donor location. To solve the problem for the Laplace equation, asymptotic boundary conditions for approximating the external field potential at large distances from the gate in different layers are suggested. These conditions allow to reduce the calculation domain for the electrostatic problem essentially. The effect of the boundary conditions on the accuracy of calculating the potential and energies is investigated. Using the developed difference schemes, the dependences of the energy spectrum of the bound electron on the gate potential are calculated, and the values of critical potential at which the wave function of the electron is relocated are determined. It has been found on the basis of calculation results, that governing parameter for the description of electronic behavior is the potential difference between the donor and semiconductor surface. It has been shown that critical potential difference does not depend on dielectric thickness and permittivity.

  20. Finite Difference Calculation of an Inviscid Transonic Flow over Oscillating Airfoils,

    Science.gov (United States)

    1980-10-01

    8217 processing results based on: W , withn c’rapns, etc, were preparec. 1Ihese programs wer,< wr it tvfl iP. theO odk ! for a FACOM2 _075 :cmptr wit- array...and numbers of mesh images used in the calculation in each are shown collectively in Table I. The numbers of the figures showing the results of the...pressure .. ... a 6 distributions - odk - A. -0.0 0. 1.0 EXERIMfNT iM O. 745 ____P_____%d ____ I TIJOEM0I1 OZ-8*KA7M OT "NSITI0N STRIP &6=0.5" AN II"UX

  1. Analytic Coarse-Mesh Finite-Difference Method Generalized for Heterogeneous Multidimensional Two-Group Diffusion Calculations

    International Nuclear Information System (INIS)

    Garcia-Herranz, Nuria; Cabellos, Oscar; Aragones, Jose M.; Ahnert, Carol

    2003-01-01

    In order to take into account in a more effective and accurate way the intranodal heterogeneities in coarse-mesh finite-difference (CMFD) methods, a new equivalent parameter generation methodology has been developed and tested. This methodology accounts for the dependence of the nodal homogeneized two-group cross sections and nodal coupling factors, with interface flux discontinuity (IFD) factors that account for heterogeneities on the flux-spectrum and burnup intranodal distributions as well as on neighbor effects.The methodology has been implemented in an analytic CMFD method, rigorously obtained for homogeneous nodes with transverse leakage and generalized now for heterogeneous nodes by including IFD heterogeneity factors. When intranodal mesh node heterogeneity vanishes, the heterogeneous solution tends to the analytic homogeneous nodal solution. On the other hand, when intranodal heterogeneity increases, a high accuracy is maintained since the linear and nonlinear feedbacks on equivalent parameters have been shown to be as a very effective way of accounting for heterogeneity effects in two-group multidimensional coarse-mesh diffusion calculations

  2. Formulation of coarse mesh finite difference to calculate mathematical adjoint flux; Formulacao de diferencas finitas de malha grossa para calculo do fluxo adjunto matematico

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Valmir; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    The objective of this work is the obtention of the mathematical adjoint flux, having as its support the nodal expansion method (NEM) for coarse mesh problems. Since there are difficulties to evaluate this flux by using NEM. directly, a coarse mesh finite difference program was developed to obtain this adjoint flux. The coarse mesh finite difference formulation (DFMG) adopted uses results of the direct calculation (node average flux and node face averaged currents) obtained by NEM. These quantities (flux and currents) are used to obtain the correction factors which modify the classical finite differences formulation . Since the DFMG formulation is also capable of calculating the direct flux it was also tested to obtain this flux and it was verified that it was able to reproduce with good accuracy both the flux and the currents obtained via NEM. In this way, only matrix transposition is needed to calculate the mathematical adjoint flux. (author)

  3. Observed seismic and infrasonic signals around the Hakone volcano -Discussion based on a finite-difference calculation-

    Science.gov (United States)

    Wakamatu, S.; Kawakata, H.; Hirano, S.

    2017-12-01

    Observation and analysis of infrasonic waves are important for volcanology because they could be associated with mechanisms of volcanic tremors and earthquakes (Sakai et al., 2000). Around the Hakone volcano area, Japan, infrasonic waves had been observed many times in 2015 (Yukutake et al., 2016, JpGU). In the area, seismometers have been installed more than microphones, so that analysis of seismograms may also contribute to understanding some characteristics of the infrasonic waves. In this study, we focused on the infrasonic waves on July 1, 2015, at the area and discussed their propagation. We analyzed the vertical component of seven seismograms and two infrasound records; instruments for these data have been installed within 5 km from the vent emerged in the June 2015 eruption(HSRI, 2015). We summarized distances of the observation points from the vent and appearance of the signals in the seismograms and the microphone records in Table 1. We confirmed that, when the OWD microphone(Fig1) observed the infrasonic waves, seismometers of the OWD and the KIN surface seismic stations(Fig1) recorded pulse-like signals repeatedly while the other five buried seismometers did not. At the same time, the NNT microphone(Fig1) recorded no more than unclear signals despite the shorter distance to the vent than that of the KIN station. We found that the appearance of pulse-like signals at the KIN seismic station usually 10-11 seconds delay after the appearance at the OWD seismic station. The distance between these two stations is 3.5km, so that the signals in seismograms could represent propagation of the infrasonic waves rather than the seismic waves. If so, however, the infrasound propagation could be influenced by the topography of the area because the signals are unclear in the NNT microphone record.To validate the above interpretation, we simulated the diffraction of the infrasonic waves due to the topography. We executed a 3-D finite-difference calculation by

  4. Perfectly matched layer method in the finite-difference time-domain and frequency-domain calculations

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry; Lavrinenko, Andrei

    2007-01-01

    A complex-coordinate method known under the guise of the perfectly matched layer (PML) method for treating unbounded domains in computational electrodynamics is related to similar techniques in fluid dynamics and classical quantum theory. It may also find use in electronic-structure finite......-difference simulations. Straightforward transfer of the PML formulation to other fields does not seem feasible, however, since it is a unique feature of electrodynamics - the natural invariance - that allows analytic trick of complex coordinate scaling to be represented as pure modification of local material parameters...

  5. Selfconsistent calculations at finite temperatures

    International Nuclear Information System (INIS)

    Brack, M.; Quentin, P.

    1975-01-01

    Calculations have been done for the spherical nuclei 40 Ca, 208 Pb and the hypothetical superheavy nucleus with Z=114, A=298, as well as for the deformed nucleus 168 Yb. The temperature T was varied from zero up to 5 MeV. For T>3 MeV, some numerical problems arise in connection with the optimization of the basis when calculating deformed nuclei. However, at these high temperatures the occupation numbers in the continuum are sufficiently large so that the nucleus starts evaporating particles and no equilibrium state can be described. Results are obtained for excitation energies and entropies. (Auth.)

  6. Mimetic finite difference method

    Science.gov (United States)

    Lipnikov, Konstantin; Manzini, Gianmarco; Shashkov, Mikhail

    2014-01-01

    The mimetic finite difference (MFD) method mimics fundamental properties of mathematical and physical systems including conservation laws, symmetry and positivity of solutions, duality and self-adjointness of differential operators, and exact mathematical identities of the vector and tensor calculus. This article is the first comprehensive review of the 50-year long history of the mimetic methodology and describes in a systematic way the major mimetic ideas and their relevance to academic and real-life problems. The supporting applications include diffusion, electromagnetics, fluid flow, and Lagrangian hydrodynamics problems. The article provides enough details to build various discrete operators on unstructured polygonal and polyhedral meshes and summarizes the major convergence results for the mimetic approximations. Most of these theoretical results, which are presented here as lemmas, propositions and theorems, are either original or an extension of existing results to a more general formulation using polyhedral meshes. Finally, flexibility and extensibility of the mimetic methodology are shown by deriving higher-order approximations, enforcing discrete maximum principles for diffusion problems, and ensuring the numerical stability for saddle-point systems.

  7. Finite difference methods for reducing numerical diffusion in TEACH-type calculations. [Teaching Elliptic Axisymmetric Characteristics Heuristically

    Science.gov (United States)

    Syed, S. A.; Chiappetta, L. M.

    1985-01-01

    A methodological evaluation for two-finite differencing schemes for computer-aided gas turbine design is presented. The two computational schemes include; a Bounded Skewed Finite Differencing Scheme (BSUDS); and a Quadratic Upwind Differencing Scheme (QSDS). In the evaluation, the derivations of the schemes were incorporated into two-dimensional and three-dimensional versions of the Teaching Axisymmetric Characteristics Heuristically (TEACH) computer code. Assessments were made according to performance criteria for the solution of problems of turbulent, laminar, and coannular turbulent flow. The specific performance criteria used in the evaluation were simplicity, accuracy, and computational economy. It is found that the BSUDS scheme performed better with respect to the criteria than the QUDS. Some of the reasons for the more successful performance BSUDS are discussed.

  8. Finite difference method calculations of long-range X-ray absorption fine structure for copper over k{approx}20A{sup -1}

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, J.D. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia); Chantler, C.T., E-mail: chantler@physics.unimelb.edu.a [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)

    2010-07-21

    X-ray Absorption Fine Structure (XAFS) is calculated for copper using the cluster based Finite Difference Method for Near-Edge Structure (FDMNES). This approach is conventionally used to produce high accuracy XAFS theory in the near edge region, however, we demonstrate that it can be readily extended to encompass an energy range of more than 1.5 keV (k{approx}20A{sup -1}) from the K absorption edge. Such calculations require extensions to FDMNES to account for thermal effects, in addition to broadening effects due to inelastic processes. Extended calculations beyond the range of near-edge structure also require consideration of technical constraints such as cluster sizes and densities. We find that with our approach, we are able to produce accurate theory ranging from the absorption edge to the smooth atom-like region at high energies, with a single consistent model that is free from any fitting parameters.

  9. Finite difference method calculations of long-range X-ray absorption fine structure for copper over k∼20A-1

    International Nuclear Information System (INIS)

    Bourke, J.D.; Chantler, C.T.

    2010-01-01

    X-ray Absorption Fine Structure (XAFS) is calculated for copper using the cluster based Finite Difference Method for Near-Edge Structure (FDMNES). This approach is conventionally used to produce high accuracy XAFS theory in the near edge region, however, we demonstrate that it can be readily extended to encompass an energy range of more than 1.5 keV (k∼20A -1 ) from the K absorption edge. Such calculations require extensions to FDMNES to account for thermal effects, in addition to broadening effects due to inelastic processes. Extended calculations beyond the range of near-edge structure also require consideration of technical constraints such as cluster sizes and densities. We find that with our approach, we are able to produce accurate theory ranging from the absorption edge to the smooth atom-like region at high energies, with a single consistent model that is free from any fitting parameters.

  10. A high-order finite-difference linear seakeeping solver tool for calculation of added resistance in waves

    DEFF Research Database (Denmark)

    Amini Afshar, Mostafa; Bingham, Harry B.; Read, Robert

    During recent years a computational strategy has been developed at the Technical University of Denmark for numerical simulation of water wave problems based on the high-order nite-dierence method, [2],[4]. These methods exhibit a linear scaling of the computational eort as the number of grid points...... increases. This understanding is being applied to develop a tool for predicting the added resistance (drift force) of ships in ocean waves. We expect that the optimal scaling properties of this solver will allow us to make a convincing demonstration of convergence of the added resistance calculations based...... on both near-eld and far-eld methods. The solver has been written inside a C++ library known as Overture [3], which can be used to solve partial dierential equations on overlapping grids based on the high-order nite-dierence method. The resulting code is able to solve, in the time domain, the linearised...

  11. An improvement of the filter diagonalization-based post-processing method applied to finite difference time domain calculations of three-dimensional phononic band structures

    International Nuclear Information System (INIS)

    Su Xiaoxing; Zhang Chuanzeng; Ma Tianxue; Wang Yuesheng

    2012-01-01

    When three-dimensional (3D) phononic band structures are calculated by using the finite difference time domain (FDTD) method with a relatively small number of iterations, the results can be effectively improved by post-processing the FDTD time series (FDTD-TS) based on the filter diagonalization method (FDM), instead of the classical fast Fourier transform. In this paper, we propose a way to further improve the performance of the FDM-based post-processing method by introducing a relatively large number of observing points to record the FDTD-TS. To this end, the existing scheme of FDTD-TS preprocessing is modified. With the new preprocessing scheme, the processing efficiency of a single FDTD-TS can be improved significantly, and thus the entire post-processing method can have sufficiently high efficiency even when a relatively large number of observing points are used. The feasibility of the proposed method for improvement is verified by the numerical results.

  12. Finite difference time domain calculation of three-dimensional phononic band structures using a postprocessing method based on the filter diagonalization

    International Nuclear Information System (INIS)

    Su Xiaoxing; Ma Tianxue; Wang Yuesheng

    2011-01-01

    If the band structure of a three-dimensional (3D) phononic crystal (PNC) is calculated by using the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT)-based postprocessing method, good results can only be ensured by a sufficiently large number of FDTD iterations. On a common computer platform, the total computation time will be very long. To overcome this difficulty, an excellent harmonic inversion algorithm called the filter diagonalization method (FDM) can be used in the postprocessing to reduce the number of FDTD iterations. However, the low efficiency of the FDM, which occurs when a relatively long time series is given, does not necessarily ensure an effective reduction of the total computation time. In this paper, a postprocessing method based on the FDM is proposed. The main procedure of the method is designed considering the aim to make the time spent on the method itself far less than the corresponding time spent on the FDTD iterations. To this end, the FDTD time series is preprocessed to be shortened significantly before the FDM frequency extraction. The preprocessing procedure is performed with the filter and decimation operations, which are widely used in narrow-band signal processing. Numerical results for a typical 3D solid PNC system show that the proposed postprocessing method can be used to effectively reduce the total computation time of the FDTD calculation of 3D phononic band structures.

  13. Finite difference time domain calculation of three-dimensional phononic band structures using a postprocessing method based on the filter diagonalization

    Energy Technology Data Exchange (ETDEWEB)

    Su Xiaoxing [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Ma Tianxue; Wang Yuesheng, E-mail: xxsu@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)

    2011-10-15

    If the band structure of a three-dimensional (3D) phononic crystal (PNC) is calculated by using the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT)-based postprocessing method, good results can only be ensured by a sufficiently large number of FDTD iterations. On a common computer platform, the total computation time will be very long. To overcome this difficulty, an excellent harmonic inversion algorithm called the filter diagonalization method (FDM) can be used in the postprocessing to reduce the number of FDTD iterations. However, the low efficiency of the FDM, which occurs when a relatively long time series is given, does not necessarily ensure an effective reduction of the total computation time. In this paper, a postprocessing method based on the FDM is proposed. The main procedure of the method is designed considering the aim to make the time spent on the method itself far less than the corresponding time spent on the FDTD iterations. To this end, the FDTD time series is preprocessed to be shortened significantly before the FDM frequency extraction. The preprocessing procedure is performed with the filter and decimation operations, which are widely used in narrow-band signal processing. Numerical results for a typical 3D solid PNC system show that the proposed postprocessing method can be used to effectively reduce the total computation time of the FDTD calculation of 3D phononic band structures.

  14. Electron-phonon coupling from finite differences

    Science.gov (United States)

    Monserrat, Bartomeu

    2018-02-01

    The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.

  15. A Nodal and Finite Difference Hybrid Method for Pin-by-Pin Heterogeneous Three-Dimensional Light Water Reactor Diffusion Calculations

    International Nuclear Information System (INIS)

    Lee, Deokjung; Downar, Thomas J.; Kim, Yonghee

    2004-01-01

    An innovative hybrid spatial discretization method is proposed to improve the computational efficiency of pin-wise heterogeneous three-dimensional light water reactor (LWR) core neutronics analysis. The newly developed method employs the standard finite difference method in the x and y directions and the well-known nodal methods [nodal expansion method (NEM) and analytic nodal method (ANM) as needed] in the z direction. Four variants of the hybrid method are investigated depending on the axial nodal methodologies: HYBRID A, NEM with the conventional quadratic transverse leakage; HYBRID B, the conventional NEM method except that the transverse-leakage shapes are obtained from a fine-mesh local problem (FMLP) around the control rod tip; HYBRID C, the same as HYBRID B except that ANM with a high-order transverse leakage obtained from the FMLP is used in the vicinity of the control rod tip; and HYBRID D, the same as HYBRID C except that the transverse leakage is determined using the buckling approximation instead of the FMLP around the control rod tip. Benchmark calculations demonstrate that all the hybrid algorithms are consistent and stable and that the HYBRID C method provides the best numerical performance in the case of rodded LWR problems with pin-wise homogenized cross sections

  16. Elementary introduction to finite difference equations

    International Nuclear Information System (INIS)

    White, J.W.

    1976-01-01

    An elementary description is given of the basic vocabulary and concepts associated with finite difference modeling. The material discussed is biased toward the types of large computer programs used at the Lawrence Livermore Laboratory. Particular attention is focused on truncation error and how it can be affected by zoning patterns. The principle of convergence is discussed, and convergence as a tool for improving calculational accuracy and efficiency is emphasized

  17. Determination of finite-difference weights using scaled binomial windows

    KAUST Repository

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    The finite-difference method evaluates a derivative through a weighted summation of function values from neighboring grid nodes. Conventional finite-difference weights can be calculated either from Taylor series expansions or by Lagrange interpolation polynomials. The finite-difference method can be interpreted as a truncated convolutional counterpart of the pseudospectral method in the space domain. For this reason, we also can derive finite-difference operators by truncating the convolution series of the pseudospectral method. Various truncation windows can be employed for this purpose and they result in finite-difference operators with different dispersion properties. We found that there exists two families of scaled binomial windows that can be used to derive conventional finite-difference operators analytically. With a minor change, these scaled binomial windows can also be used to derive optimized finite-difference operators with enhanced dispersion properties. © 2012 Society of Exploration Geophysicists.

  18. Determination of finite-difference weights using scaled binomial windows

    KAUST Repository

    Chu, Chunlei

    2012-05-01

    The finite-difference method evaluates a derivative through a weighted summation of function values from neighboring grid nodes. Conventional finite-difference weights can be calculated either from Taylor series expansions or by Lagrange interpolation polynomials. The finite-difference method can be interpreted as a truncated convolutional counterpart of the pseudospectral method in the space domain. For this reason, we also can derive finite-difference operators by truncating the convolution series of the pseudospectral method. Various truncation windows can be employed for this purpose and they result in finite-difference operators with different dispersion properties. We found that there exists two families of scaled binomial windows that can be used to derive conventional finite-difference operators analytically. With a minor change, these scaled binomial windows can also be used to derive optimized finite-difference operators with enhanced dispersion properties. © 2012 Society of Exploration Geophysicists.

  19. A finite element calculation of flux pumping

    Science.gov (United States)

    Campbell, A. M.

    2017-12-01

    A flux pump is not only a fascinating example of the power of Faraday’s concept of flux lines, but also an attractive way of powering superconducting magnets without large electronic power supplies. However it is not possible to do this in HTS by driving a part of the superconductor normal, it must be done by exceeding the local critical density. The picture of a magnet pulling flux lines through the material is attractive, but as there is no direct contact between flux lines in the magnet and vortices, unless the gap between them is comparable to the coherence length, the process must be explicable in terms of classical electromagnetism and a nonlinear V-I characteristic. In this paper a simple 2D model of a flux pump is used to determine the pumping behaviour from first principles and the geometry. It is analysed with finite element software using the A formulation and FlexPDE. A thin magnet is passed across one or more superconductors connected to a load, which is a large rectangular loop. This means that the self and mutual inductances can be calculated explicitly. A wide strip, a narrow strip and two conductors are considered. Also an analytic circuit model is analysed. In all cases the critical state model is used, so the flux flow resistivity and dynamic resistivity are not directly involved, although an effective resistivity appears when J c is exceeded. In most of the cases considered here is a large gap between the theory and the experiments. In particular the maximum flux transferred to the load area is always less than the flux of the magnet. Also once the threshold needed for pumping is exceeded the flux in the load saturates within a few cycles. However the analytic circuit model allows a simple modification to allow for the large reduction in I c when the magnet is over a conductor. This not only changes the direction of the pumped flux but leads to much more effective pumping.

  20. Exact Finite Differences. The Derivative on Non Uniformly Spaced Partitions

    Directory of Open Access Journals (Sweden)

    Armando Martínez-Pérez

    2017-10-01

    Full Text Available We define a finite-differences derivative operation, on a non uniformly spaced partition, which has the exponential function as an exact eigenvector. We discuss some properties of this operator and we propose a definition for the components of a finite-differences momentum operator. This allows us to perform exact discrete calculations.

  1. Finite element and finite difference methods in electromagnetic scattering

    CERN Document Server

    Morgan, MA

    2013-01-01

    This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca

  2. Efficient Finite Element Calculation of Nγ

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars; Krabbenhøft, K.

    2007-01-01

    This paper deals with the computational aspects of the Mohr-Coulomb material model, in particular the calculation of the bearing capacity factor Nγfor a strip and a circular footing.......This paper deals with the computational aspects of the Mohr-Coulomb material model, in particular the calculation of the bearing capacity factor Nγfor a strip and a circular footing....

  3. Finite volume thermal-hydraulics and neutronics coupled calculations - 15300

    International Nuclear Information System (INIS)

    Araujo Silva, V.; Campagnole dos Santos, A.A.; Mesquit, A.Z.; Bernal, A.; Miro, R.; Verdu, G.; Pereira, C.

    2015-01-01

    The computational power available nowadays allows the coupling of neutronics and thermal-hydraulics codes for reactor studies. The present methodology foresees at least one constraint to the separated codes in order to perform coupled calculations: both codes must use the same geometry, however, meshes can be different for each code as long as the internal surfaces stays the same. Using the finite volume technique, a 3D diffusion nodal code was implemented to deal with neutron transport. This code can handle non-structured meshes which allows for complicated geometries calculations and therefore more flexibility. A computational fluid dynamics (CFD) code was used in order to obtain the same level of details for the thermal hydraulics calculations. The chosen code is OpenFOAM, an open-source CFD tool. Changes in OpenFOAM allow simple coupled calculations of a PWR fuel rod with neutron transport code. OpenFOAM sends coolant density information and fuel temperature to the neutron transport code that sends back power information. A mapping function is used to average values when one node in one side corresponds to many nodes in the other side. Data is exchanged between codes by library calls. As the results of a fuel rod calculations progress, more complicated and processing demanding geometries will be simulated, aiming to the simulation of a real scale PWR fuel assembly

  4. Hualien forced vibration calculation with a finite element model

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.; Nedelec, M.; Duretz, Ch.

    1995-01-01

    The forced vibration tests of the Hualien mock-up were useful to validate finite element models developed for soil-structure interaction. In this paper the two sets of tests with and without backfill were analysed. the methods used are based on finite element modeling for the soil. Two approaches were considered: calculation of soil impedance followed by the calculation of the transfer functions with a model taking into account the superstructure and the impedance; direct calculation of the soil-structure transfer functions, with the soil and the structure being represented in the same model by finite elements. Blind predictions and post-test calculations are presented and compared with the test results. (author). 4 refs., 8 figs., 2 tabs

  5. Abstract Level Parallelization of Finite Difference Methods

    Directory of Open Access Journals (Sweden)

    Edwin Vollebregt

    1997-01-01

    Full Text Available A formalism is proposed for describing finite difference calculations in an abstract way. The formalism consists of index sets and stencils, for characterizing the structure of sets of data items and interactions between data items (“neighbouring relations”. The formalism provides a means for lifting programming to a more abstract level. This simplifies the tasks of performance analysis and verification of correctness, and opens the way for automaticcode generation. The notation is particularly useful in parallelization, for the systematic construction of parallel programs in a process/channel programming paradigm (e.g., message passing. This is important because message passing, unfortunately, still is the only approach that leads to acceptable performance for many more unstructured or irregular problems on parallel computers that have non-uniform memory access times. It will be shown that the use of index sets and stencils greatly simplifies the determination of which data must be exchanged between different computing processes.

  6. Group foliation of finite difference equations

    Science.gov (United States)

    Thompson, Robert; Valiquette, Francis

    2018-06-01

    Using the theory of equivariant moving frames, a group foliation method for invariant finite difference equations is developed. This method is analogous to the group foliation of differential equations and uses the symmetry group of the equation to decompose the solution process into two steps, called resolving and reconstruction. Our constructions are performed algorithmically and symbolically by making use of discrete recurrence relations among joint invariants. Applications to invariant finite difference equations that approximate differential equations are given.

  7. Calculation of thermodynamic properties of finite Bose-Einstein systems

    NARCIS (Netherlands)

    Borrmann, P.; Harting, J.D.R.; Mülken, O.; Hilf, E.

    1999-01-01

    We derive an exact recursion formula for the calculation of thermodynamic functions of finite systems obeying Bose-Einstein statistics. The formula is applicable for canonical systems where the particles can be treated as noninteracting in some approximation, e.g., like Bose-Einstein condensates in

  8. A finite element method for SSI time history calculation

    International Nuclear Information System (INIS)

    Ni, X.; Gantenbein, F.; Petit, M.

    1989-01-01

    The method which is proposed is based on a finite element modelization for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method is presented, then applications are given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior are described

  9. A finite element method for SSI time history calculations

    International Nuclear Information System (INIS)

    Ni, X.M.; Gantenbein, F.; Petit, M.

    1989-01-01

    The method which is proposed is based on a finite element modelisation for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method will be presented, then applications will be given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior will be described

  10. Implicit and fully implicit exponential finite difference methods

    Indian Academy of Sciences (India)

    Burgers' equation; exponential finite difference method; implicit exponential finite difference method; ... This paper describes two new techniques which give improved exponential finite difference solutions of Burgers' equation. ... Current Issue

  11. Finite element calculation of stress induced heating of superconductors

    International Nuclear Information System (INIS)

    Akin, J.E.; Moazed, A.

    1976-01-01

    This research is concerned with the calculation of the amount of heat generated due to the development of mechanical stresses in superconducting composites. An emperical equation is used to define the amount of stress-induced heat generation per unit volume. The equation relates the maximum applied stress and the experimental measured hysteresis loop of the composite stress-strain diagram. It is utilized in a finite element program to calculate the total stress-induced heat generation for the superconductor. An example analysis of a solenoid indicates that the stress-induced heating can be of the same order of magnitude as eddy current effects

  12. Trajectory Calculator for Finite-Radius Cutter on a Lathe

    Science.gov (United States)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan

    2009-01-01

    A computer program calculates the two-dimensional trajectory (radial vs. axial position) of a finite-radius-of-curvature cutting tool on a lathe so as to cut a workpiece to a piecewise-continuous, analytically defined surface of revolution. (In the original intended application, the tool is a diamond cutter, and the workpiece is made of a crystalline material and is to be formed into an optical resonator disk.) The program also calculates an optimum cutting speed as F/L, where F is a material-dependent empirical factor and L is the effective instantaneous length of the cutting edge.

  13. Finite Difference Schemes as Algebraic Correspondences between Layers

    Science.gov (United States)

    Malykh, Mikhail; Sevastianov, Leonid

    2018-02-01

    For some differential equations, especially for Riccati equation, new finite difference schemes are suggested. These schemes define protective correspondences between the layers. Calculation using these schemes can be extended to the area beyond movable singularities of exact solution without any error accumulation.

  14. Hybrid finite difference/finite element immersed boundary method.

    Science.gov (United States)

    E Griffith, Boyce; Luo, Xiaoyu

    2017-12-01

    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International  Journal  for  Numerical  Methods  in  Biomedical  Engineering Published by John Wiley & Sons Ltd.

  15. Finite difference order doubling in two dimensions

    International Nuclear Information System (INIS)

    Killingbeck, John P; Jolicard, Georges

    2008-01-01

    An order doubling process previously used to obtain eighth-order eigenvalues from the fourth-order Numerov method is applied to the perturbed oscillator in two dimensions. A simple method of obtaining high order finite difference operators is reported and an odd parity boundary condition is found to be effective in facilitating the smooth operation of the order doubling process

  16. Electric field calculations in brain stimulation based on finite elements

    DEFF Research Database (Denmark)

    Windhoff, Mirko; Opitz, Alexander; Thielscher, Axel

    2013-01-01

    The need for realistic electric field calculations in human noninvasive brain stimulation is undisputed to more accurately determine the affected brain areas. However, using numerical techniques such as the finite element method (FEM) is methodologically complex, starting with the creation...... of accurate head models to the integration of the models in the numerical calculations. These problems substantially limit a more widespread application of numerical methods in brain stimulation up to now. We introduce an optimized processing pipeline allowing for the automatic generation of individualized...... the successful usage of the pipeline in six subjects, including field calculations for transcranial magnetic stimulation and transcranial direct current stimulation. The quality of the head volume meshes is validated both in terms of capturing the underlying anatomy and of the well-shapedness of the mesh...

  17. On high-order perturbative calculations at finite density

    CERN Document Server

    Ghisoiu, Ioan; Kurkela, Aleksi; Romatschke, Paul; Säppi, Matias; Vuorinen, Aleksi

    2017-01-01

    We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes. Applications of these rules will be discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.

  18. On high-order perturbative calculations at finite density

    Energy Technology Data Exchange (ETDEWEB)

    Ghişoiu, Ioan, E-mail: ioan.ghisoiu@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Gorda, Tyler, E-mail: tyler.gorda@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Department of Physics, University of Colorado Boulder, Boulder, CO (United States); Kurkela, Aleksi, E-mail: aleksi.kurkela@cern.ch [Theoretical Physics Department, CERN, Geneva (Switzerland); Faculty of Science and Technology, University of Stavanger, Stavanger (Norway); Romatschke, Paul, E-mail: paul.romatschke@colorado.edu [Department of Physics, University of Colorado Boulder, Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado, Boulder, CO (United States); Säppi, Matias, E-mail: matias.sappi@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Vuorinen, Aleksi, E-mail: aleksi.vuorinen@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland)

    2017-02-15

    We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes — a result reminiscent of a previously proposed “naive real-time formalism” for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.

  19. Efficient Finite Element Models for Calculation of the No-load losses of the Transformer

    Directory of Open Access Journals (Sweden)

    Kamran Dawood

    2017-10-01

    Full Text Available Different transformer models are examined for the calculation of the no-load losses using finite element analysis. Two-dimensional and three-dimensional finite element analyses are used for the simulation of the transformer. Results of the finite element method are also compared with the experimental results. The Result shows that 3-dimensional provide high accuracy as compared to the 2 dimensional full and half model. However, the 2-dimensional half model is the less time-consuming method as compared to the 3 and 2-dimensional full model. Simulation time duration taken by the different models of the transformer is also compared. The difference between the 3-dimensional finite element method and experimental results are less than 3%. These numerical methods can help transformer designers to minimize the development of the prototype transformers.

  20. Calculation of reactivity using a finite impulse response filter

    Energy Technology Data Exchange (ETDEWEB)

    Suescun Diaz, Daniel [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914, RJ (Brazil); Senra Martinez, Aquilino [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914, RJ (Brazil)], E-mail: aquilino@lmp.ufrj.br; Carvalho Da Silva, Fernando [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914, RJ (Brazil)

    2008-03-15

    A new formulation is presented in this paper to solve the inverse kinetics equation. This method is based on the Laplace transform of the point kinetics equations, resulting in an expression equivalent to the inverse kinetics equation as a function of the power history. Reactivity can be written in terms of the summation of convolution with response to impulse, characteristic of a linear system. For its digital form the Z-transform is used, which is the discrete version of the Laplace transform. This new method of reactivity calculation has very special features, amongst which it can be pointed out that the linear part is characterized by a filter named finite impulse response (FIR). The FIR filter will always be, stable and non-varying in time, and, apart from this, it can be implemented in the non-recursive form. This type of implementation does not require feedback, allowing the calculation of reactivity in a continuous way.

  1. Lloyd's formula in multiple-scattering calculations with finite temperature

    International Nuclear Information System (INIS)

    Zeller, Rudolf

    2005-01-01

    Lloyd's formula is an elegant tool to calculate the number of states directly from the imaginary part of the logarithm of the Korringa-Kohn-Rostoker (KKR) determinant. It is shown how this formula can be used at finite electronic temperatures and how the difficult problem to determine the physically significant correct phase of the complex logarithm can be circumvented by working with the single-valued real part of the logarithm. The approach is based on contour integrations in the complex energy plane and exploits the analytical properties of the KKR Green function and the Fermi-Dirac function. It leads to rather accurate results, which is illustrated by a local-density functional calculation of the temperature dependence of the intrinsic Fermi level in zinc-blende GaN

  2. Integral and finite difference inequalities and applications

    CERN Document Server

    Pachpatte, B G

    2006-01-01

    The monograph is written with a view to provide basic tools for researchers working in Mathematical Analysis and Applications, concentrating on differential, integral and finite difference equations. It contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools and will be a valuable source for a long time to come. It is self-contained and thus should be useful for those who are interested in learning or applying the inequalities with explicit estimates in their studies.- Contains a variety of inequalities discovered which find numero

  3. Proton recoil spectra in spherical proportional counters calculated with finite element and Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Benmosbah, M. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Groetz, J.E. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: jegroetz@univ-fcomte.fr; Crovisier, P. [Service de Protection contre les Rayonnements, CEA Valduc, 21120 Is/Tille (France); Asselineau, B. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN, Cadarache BP3, 13115 St Paul-lez-Durance (France); Truffert, H.; Cadiou, A. [AREVA NC, Etablissement de la Hague, DQSSE/PR/E/D, 50444 Beaumont-Hague Cedex (France)

    2008-08-11

    Proton recoil spectra were calculated for various spherical proportional counters using Monte Carlo simulation combined with the finite element method. Electric field lines and strength were calculated by defining an appropriate mesh and solving the Laplace equation with the associated boundary conditions, taking into account the geometry of every counter. Thus, different regions were defined in the counter with various coefficients for the energy deposition in the Monte Carlo transport code MCNPX. Results from the calculations are in good agreement with measurements for three different gas pressures at various neutron energies.

  4. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Purdue Univ., West Lafayette, IN (United States)

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  5. A finite element formulation for perturbation theory calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Kaluc, S.

    2004-01-01

    Full text: When the introduced change in the configuration of a nuclear system is neutronically not too significant, the use of the perturbation theory approximation ('the perturbation theory method' or PTM) is usually considered as an alternative to the recalculation of the effective multiplication factor (K eff ) of the modified system ('the diffusion theory method' or DTM) for the determination of the ensuing change in reactivity. In the DTM, the change in reactivity due to the introduced change can be calculated by the multigroup diffusion theory by performing two K eff determinations, one for the original and one for the modified system. The accuracy of this method is only limited by the approximations inherent in the multigroup diffusion theory and the numerical method employed for its solution. The error stemming from the numerical approximation can be nearly eliminated by utilizing a fine enough spatial mesh ad an 'exact' solution is nearly possible. Its basic disadvantage relative to the PTM is the necessity of a new K eff calculation for every change in the configuration no matter how small. On the other hand, if we use PTM, with an only one-time calculation of the flux and the adjoint flux of the original system, the change in reactivity due to any kind of perturbation can be approximately calculated using the changes in the cross section data in the perturbation theory reactivity formula. The accuracy of the PTM is restricted by the size and location of the induced change. In this work, our aim is to assess the accuracy of PTM relative to the DTM and determine criteria for the justification of its use. For all required solutions of the normal and adjoint multigroup diffusion equations, we choose the finite element method (FEM) as our numerical method and a 1-D cylindrical geometry model. The underlying theory is implemented in our FORTRAN program PERTURB. The validation of PERTURB is carried out via comparisons with analytical solutions for bare and

  6. Ballistic calculation of nonequilibrium Green's function in nanoscale devices using finite element method

    International Nuclear Information System (INIS)

    Kurniawan, O; Bai, P; Li, E

    2009-01-01

    A ballistic calculation of a full quantum mechanical system is presented to study 2D nanoscale devices. The simulation uses the nonequilibrium Green's function (NEGF) approach to calculate the transport properties of the devices. While most available software uses the finite difference discretization technique, our work opts to formulate the NEGF calculation using the finite element method (FEM). In calculating a ballistic device, the FEM gives some advantages. In the FEM, the floating boundary condition for ballistic devices is satisfied naturally. This paper gives a detailed finite element formulation of the NEGF calculation applied to a double-gate MOSFET device with a channel length of 10 nm and a body thickness of 3 nm. The potential, electron density, Fermi functions integrated over the transverse energy, local density of states and the transmission coefficient of the device have been studied. We found that the transmission coefficient is significantly affected by the top of the barrier between the source and the channel, which in turn depends on the gate control. This supports the claim that ballistic devices can be modelled by the transport properties at the top of the barrier. Hence, the full quantum mechanical calculation presented here confirms the theory of ballistic transport in nanoscale devices.

  7. The Laguerre finite difference one-way equation solver

    Science.gov (United States)

    Terekhov, Andrew V.

    2017-05-01

    This paper presents a new finite difference algorithm for solving the 2D one-way wave equation with a preliminary approximation of a pseudo-differential operator by a system of partial differential equations. As opposed to the existing approaches, the integral Laguerre transform instead of Fourier transform is used. After carrying out the approximation of spatial variables it is possible to obtain systems of linear algebraic equations with better computing properties and to reduce computer costs for their solution. High accuracy of calculations is attained at the expense of employing finite difference approximations of higher accuracy order that are based on the dispersion-relationship-preserving method and the Richardson extrapolation in the downward continuation direction. The numerical experiments have verified that as compared to the spectral difference method based on Fourier transform, the new algorithm allows one to calculate wave fields with a higher degree of accuracy and a lower level of numerical noise and artifacts including those for non-smooth velocity models. In the context of solving the geophysical problem the post-stack migration for velocity models of the types Syncline and Sigsbee2A has been carried out. It is shown that the images obtained contain lesser noise and are considerably better focused as compared to those obtained by the known Fourier Finite Difference and Phase-Shift Plus Interpolation methods. There is an opinion that purely finite difference approaches do not allow carrying out the seismic migration procedure with sufficient accuracy, however the results obtained disprove this statement. For the supercomputer implementation it is proposed to use the parallel dichotomy algorithm when solving systems of linear algebraic equations with block-tridiagonal matrices.

  8. Use of heterogeneous finite elements generated by collision probability solutions to calculate a pool reactor core

    International Nuclear Information System (INIS)

    Calabrese, C.R.; Grant, C.R.

    1990-01-01

    This work presents comparisons between measured fluxes obtained by activation of Manganese foils in the light water, enriched uranium research pool reactor RA-2 MTR (Materials Testing Reactors) fuel element) and fluxes calculated by the finite element method FEM using DELFIN code, and describes the heterogeneus finite elements by a set of solutions of the transport equations for several different configurations obtained using the collision probability code HUEMUL. The agreement between calculated and measured fluxes is good, and the advantage of using FEM is showed because to obtain the flux distribution with same detail using an usual diffusion calculation it would be necessary 12000 mesh points against the 2000 points that FEM uses, hence the processing time is reduced in a factor ten. An interesting alternative to use in MTR fuel management is presented. (Author) [es

  9. Bending Moment Calculations for Piles Based on the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-xin Jie

    2013-01-01

    Full Text Available Using the finite element analysis program ABAQUS, a series of calculations on a cantilever beam, pile, and sheet pile wall were made to investigate the bending moment computational methods. The analyses demonstrated that the shear locking is not significant for the passive pile embedded in soil. Therefore, higher-order elements are not always necessary in the computation. The number of grids across the pile section is important for bending moment calculated with stress and less significant for that calculated with displacement. Although computing bending moment with displacement requires fewer grid numbers across the pile section, it sometimes results in variation of the results. For displacement calculation, a pile row can be suitably represented by an equivalent sheet pile wall, whereas the resulting bending moments may be different. Calculated results of bending moment may differ greatly with different grid partitions and computational methods. Therefore, a comparison of results is necessary when performing the analysis.

  10. Finite difference computation of Casimir forces

    International Nuclear Information System (INIS)

    Pinto, Fabrizio

    2016-01-01

    In this Invited paper, we begin by a historical introduction to provide a motivation for the classical problems of interatomic force computation and associated challenges. This analysis will lead us from early theoretical and experimental accomplishments to the integration of these fascinating interactions into the operation of realistic, next-generation micro- and nanodevices both for the advanced metrology of fundamental physical processes and in breakthrough industrial applications. Among several powerful strategies enabling vastly enhanced performance and entirely novel technological capabilities, we shall specifically consider Casimir force time-modulation and the adoption of non-trivial geometries. As to the former, the ability to alter the magnitude and sign of the Casimir force will be recognized as a crucial principle to implement thermodynamical nano-engines. As to the latter, we shall first briefly review various reported computational approaches. We shall then discuss the game-changing discovery, in the last decade, that standard methods of numerical classical electromagnetism can be retooled to formulate the problem of Casimir force computation in arbitrary geometries. This remarkable development will be practically illustrated by showing that such an apparently elementary method as standard finite-differencing can be successfully employed to numerically recover results known from the Lifshitz theory of dispersion forces in the case of interacting parallel-plane slabs. Other geometries will be also be explored and consideration given to the potential of non-standard finite-difference methods. Finally, we shall introduce problems at the computational frontier, such as those including membranes deformed by Casimir forces and the effects of anisotropic materials. Conclusions will highlight the dramatic transition from the enduring perception of this field as an exotic application of quantum electrodynamics to the recent demonstration of a human climbing

  11. A superlinear iteration method for calculation of finite length journal bearing's static equilibrium position

    Science.gov (United States)

    Zhou, Wenjie; Wei, Xuesong; Wang, Leqin; Wu, Guangkuan

    2017-05-01

    Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method-twofold secant method, for the determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by the finite difference method and the inner pressure is obtained by the successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of the secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity was also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of the twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length.

  12. Implementation of structural response sensitivity calculations in a large-scale finite-element analysis system

    Science.gov (United States)

    Giles, G. L.; Rogers, J. L., Jr.

    1982-01-01

    The implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calclating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of the system are also discussed.

  13. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    Science.gov (United States)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  14. Finite Mathematics and Discrete Mathematics: Is There a Difference?

    Science.gov (United States)

    Johnson, Marvin L.

    Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…

  15. Iterative solutions of finite difference diffusion equations

    International Nuclear Information System (INIS)

    Menon, S.V.G.; Khandekar, D.C.; Trasi, M.S.

    1981-01-01

    The heterogeneous arrangement of materials and the three-dimensional character of the reactor physics problems encountered in the design and operation of nuclear reactors makes it necessary to use numerical methods for solution of the neutron diffusion equations which are based on the linear Boltzmann equation. The commonly used numerical method for this purpose is the finite difference method. It converts the diffusion equations to a system of algebraic equations. In practice, the size of this resulting algebraic system is so large that the iterative methods have to be used. Most frequently used iterative methods are discussed. They include : (1) basic iterative methods for one-group problems, (2) iterative methods for eigenvalue problems, and (3) iterative methods which use variable acceleration parameters. Application of Chebyshev theorem to iterative methods is discussed. The extension of the above iterative methods to multigroup neutron diffusion equations is also considered. These methods are applicable to elliptic boundary value problems in reactor design studies in particular, and to elliptic partial differential equations in general. Solution of sample problems is included to illustrate their applications. The subject matter is presented in as simple a manner as possible. However, a working knowledge of matrix theory is presupposed. (M.G.B.)

  16. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.

    2006-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)

  17. A study of the consistent and the lumped source approximations in finite element neutron diffusion calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Azgener, H.A.

    1991-01-01

    In finite element formulations for the solution of the within-group neutron diffusion equation, two different treatments are possible for the group source term: the consistent source approximation (CSA) and the lumped source approximation (LSA). CSA results in intra-group scattering and fission matrices which have the same nondiagonal structure as the global coefficient matrix. This situation might be regarded as a disadvantage, compared to the conventional (i.e. finite difference) methods where the intra-group scattering and fission matrices are diagonal. To overcome this disadvantage, LSA could be used to diagonalize these matrices. LSA is akin to the lumped mass approximation of continuum mechanics. We concentrate on two different aspects of the source approximations. Although it has been reported that LSA does not modify the asymptotic h 2 convergence behaviour for linear elements, the effect of LSA on convergence of higher degree elements has not been investigated. Thus, we would be interested in determining, p, the asymptotic order of convergence, in: Δk |k eff (analytical) -k eff (finite element)| = Ch p (1) for finite element approximations of varying degree (N) with both of the source approximations. Since (1) is valid in the asymptotic limit, we must use ultra-fine meshes and quadruple precision arithmetic. For our order of convergence study, we used infinite cylindrical geometry with azimuthal symmetry. Hence, the effects of singularities remain uninvestigated. The second aspect we dwell on is the performance of LSA in bilinear 3-D finite element calculations, compared to CSA. LSA has been used quite extensively in 1- and 2-D even-parity transport and diffusion calculations. In this work, we will try to assess the relative merits of LSA and CSA in 3-D problems. (author)

  18. Visualization of elastic wavefields computed with a finite difference code

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S. [Lawrence Livermore National Lab., CA (United States); Harris, D.

    1994-11-15

    The authors have developed a finite difference elastic propagation model to simulate seismic wave propagation through geophysically complex regions. To facilitate debugging and to assist seismologists in interpreting the seismograms generated by the code, they have developed an X Windows interface that permits viewing of successive temporal snapshots of the (2D) wavefield as they are calculated. The authors present a brief video displaying the generation of seismic waves by an explosive source on a continent, which propagate to the edge of the continent then convert to two types of acoustic waves. This sample calculation was part of an effort to study the potential of offshore hydroacoustic systems to monitor seismic events occurring onshore.

  19. Finite elements for the thermomechanical calculation of massive structures

    International Nuclear Information System (INIS)

    Argyris, J.H.; Szimmat, J.; Willam, K.J.

    1978-01-01

    The paper examines the fine element analysis of thermal stress and deformation problems in massive structures. To this end compatible idealizations are utilized for heat conduction and static analysis in order to minimize the data transfer. For transient behaviour due to unsteady heat flow and/or inelastics material processes the two computational parts are interwoven in form of an integrated software package for finite element analysis of thermomechanical problems in space and time. (orig.) [de

  20. Discontinuous finite element treatment of duct problems in transport calculations

    International Nuclear Information System (INIS)

    Mirza, A. M.; Qamar, S.

    1998-01-01

    A discontinuous finite element approach is presented to solve the even-parity Boltzmann transport equation for duct problems. Presence of ducts in a system results in the streaming of particles and hence requires the employment of higher order angular approximations to model the angular flux. Conventional schemes based on the use of continuous trial functions require the same order of angular approximations to be used everywhere in the system, resulting in wastage of computational resources. Numerical investigations for the test problems presented in this paper indicate that the discontinuous finite elements eliminate the above problems and leads to computationally efficient and economical methods. They are also found to be more suitable for treating the sharp changes in the angular flux at duct-observer interfaces. The new approach provides a single-pass alternate to extrapolation and interactive schemes which need multiple passes of the solution strategy to acquire convergence. The method has been tested with the help of two case studies, namely straight and dog-leg duct problems. All results have been verified against those obtained from Monte Carlo simulations and K/sup +/ continuous finite element method. (author)

  1. Finite difference time domain analysis of a chiro plasma

    International Nuclear Information System (INIS)

    Torres-Silva, H.; Obligado, A.; Reggiani, N.; Sakanaka, P.H.

    1995-01-01

    The finite difference time-domain (FDTD) method is one of the most widely used computational methods in electromagnetics. Using FDTD, Maxwell's equations are solved directly in the time domain via finite differences and time stepping. The basic approach is relatively easy to understand and is an alternative to the more usual frequency-domain approaches. (author). 5 refs

  2. Mechanical strength calculation of the disk type windings with elastic couplings by the finite element method

    International Nuclear Information System (INIS)

    Sivkova, G.N.; Spirchenko, Yu.V.; Chvartatskij, P.V.

    1981-01-01

    Stressed-deformed state of toroidal field coils of the disc type with elastic couplings of the tokamaks has been investigated with provision for the effect of the central core pliability by means of the two-dimensional version of the finite element method. Numerical solution of the finite element method is performed by means of the ES 1040 computer according to the computer code permitting taking account of boundary conditions of elastic support. The calculation has been performed using as the example the project of T-20 facility coil of the disc type. Consideration of pliability of the central core of the facility inductor is accomplished by the introduction of additional rigidities to the complete matrix of rigidity. Scheme of the structure distretization includes 141 units, 211 elements. The accuracy of solution depends on the reduction accuracy of the volume load to unit forces and on the number of finite elements. Analysis of the solution convergence is performed by the comparison of solutions obtained for three different schemes of the disk discretization without regard for the inductor pliability. The comparative analysis of the results shows that transfer epures for all the three discretization versions practically coincide and stresses differ not more than by 10%. On the whole the above investigation has demonstrated good convergence of the problem solution [ru

  3. Moving magnets in a micromagnetic finite-difference framework

    Science.gov (United States)

    Rissanen, Ilari; Laurson, Lasse

    2018-05-01

    We present a method and an implementation for smooth linear motion in a finite-difference-based micromagnetic simulation code, to be used in simulating magnetic friction and other phenomena involving moving microscale magnets. Our aim is to accurately simulate the magnetization dynamics and relative motion of magnets while retaining high computational speed. To this end, we combine techniques for fast scalar potential calculation and cubic b-spline interpolation, parallelizing them on a graphics processing unit (GPU). The implementation also includes the possibility of explicitly simulating eddy currents in the case of conducting magnets. We test our implementation by providing numerical examples of stick-slip motion of thin films pulled by a spring and the effect of eddy currents on the switching time of magnetic nanocubes.

  4. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice • Jan-Feb 2016 • Vol 19 • Issue 1. Abstract ... Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ... applications for force analysis and assessment of different.

  5. Comparison of different precondtioners for nonsymmtric finite volume element methods

    Energy Technology Data Exchange (ETDEWEB)

    Mishev, I.D.

    1996-12-31

    We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.

  6. Evaluation of Callable Bonds: Finite Difference Methods, Stability and Accuracy.

    OpenAIRE

    Buttler, Hans-Jurg

    1995-01-01

    The purpose of this paper is to evaluate numerically the semi-American callable bond by means of finite difference methods. This study implies three results. First, the numerical error is greater for the callable bond price than for the straight bond price, and too large for real applications Secondly, the numerical accuracy of the callable bond price computed for the relevant range of interest rates depends entirely on the finite difference scheme which is chosen for the boundary points. Thi...

  7. Implicit finite-difference simulations of seismic wave propagation

    KAUST Repository

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.

  8. Implicit finite-difference simulations of seismic wave propagation

    KAUST Repository

    Chu, Chunlei

    2012-03-01

    We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.

  9. Finite difference techniques for nonlinear hyperbolic conservation laws

    International Nuclear Information System (INIS)

    Sanders, R.

    1985-01-01

    The present study is concerned with numerical approximations to the initial value problem for nonlinear systems of conservative laws. Attention is given to the development of a class of conservation form finite difference schemes which are based on the finite volume method (i.e., the method of averages). These schemes do not fit into the classical framework of conservation form schemes discussed by Lax and Wendroff (1960). The finite volume schemes are specifically intended to approximate solutions of multidimensional problems in the absence of rectangular geometries. In addition, the development is reported of different schemes which utilize the finite volume approach for time discretization. Particular attention is given to local time discretization and moving spatial grids. 17 references

  10. Finite element method calculations of GMI in thin films and sandwiched structures: Size and edge effects

    International Nuclear Information System (INIS)

    Garcia-Arribas, A.; Barandiaran, J.M.; Cos, D. de

    2008-01-01

    The impedance values of magnetic thin films and magnetic/conductor/magnetic sandwiched structures with different widths are computed using the finite element method (FEM). The giant magneto-impedance (GMI) is calculated from the difference of the impedance values obtained with high and low permeability of the magnetic material. The results depend considerably on the width of the sample, demonstrating that edge effects are decisive for the GMI performance. It is shown that, besides the usual skin effect that is responsible for GMI, an 'unexpected' increase of the current density takes place at the lateral edge of the sample. In magnetic thin films this effect is dominant when the permeability is low. In the trilayers, it is combined with the lack of shielding of the central conductor at the edge. The resulting effects on GMI are shown to be large for both kinds of samples. The conclusions of this study are of great importance for the successful design of miniaturized GMI devices

  11. Finite-difference schemes for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: es@cwi.nl [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  12. An implicit finite-difference operator for the Helmholtz equation

    KAUST Repository

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.

  13. An implicit finite-difference operator for the Helmholtz equation

    KAUST Repository

    Chu, Chunlei

    2012-07-01

    We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.

  14. Dielectric Response and Born Dynamic Charge of BN Nanotubes from Ab Initio Finite Electric Field Calculations

    Science.gov (United States)

    Guo, Guang-Yu; Ishibashi, Shoji; Tamura, Tomoyuki; Terakura, Kiyoyuki

    2007-03-01

    Since the discovery of carbon nanotubes (CNTs) in 1991 by Iijima, carbon and other nanotubes have attracted considerable interest worldwide because of their unusual properties and also great potentials for technological applications. Though CNTs continue to attract great interest, other nanotubes such as BN nanotubes (BN-NTs) may offer different opportunities that CNTs cannot provide. In this contribution, we present the results of our recent systematic ab initio calculations of the static dielectric constant, electric polarizability, Born dynamical charge, electrostriction coefficient and piezoelectric constant of BN-NTs using the latest crystalline finite electric field theory [1]. [1] I. Souza, J. Iniguez, and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002); P. Umari and A. Pasquarello, Phys. Rev. Lett. 89, 157602 (2002).

  15. Finite element calculation of the interaction energy of shape memory alloy

    International Nuclear Information System (INIS)

    Yang, Seung Yong

    2004-01-01

    Strain energy due to the mechanical interaction between self-accommodation groups of martensitic phase transformation is called interaction energy. Evaluation of the interaction energy should be accurate since the energy appears in constitutive models for predicting the mechanical behavior of shape memory alloy. In this paper, the interaction energy is evaluated in terms of theoretical formulation and explicit finite element calculation. A simple example with two habit plane variants was considered. It was shown that the theoretical formulation assuming elastic interaction between the self-accommodation group and matrix gives larger interaction energy than explicit finite element calculation in which transformation softening is accounted for

  16. On the spectral properties of random finite difference operators

    International Nuclear Information System (INIS)

    Kunz, H.; Souillard, B.

    1980-01-01

    We study a class of random finite difference operators, a typical example of which is the finite difference Schroedinger operator with a random potential which arises in solid state physics in the tight binding approximation. We obtain with probability one, in various situations, the exact location of the spectrum, and criterions for a given part in the spectrum to be pure point or purely continuous, or for the static electric conductivity to vanish. A general formalism is developped which transforms the study of these random operators into that of the asymptotics of a multiple integral constructed from a given recipe. Finally we apply our criterions and formalism to prove that, with probability one, the one-dimensional finite difference Schroedinger operator with a random potential has pure point spectrum and developps no static conductivity. (orig.)

  17. Nonstandard Finite Difference Method Applied to a Linear Pharmacokinetics Model

    Directory of Open Access Journals (Sweden)

    Oluwaseun Egbelowo

    2017-05-01

    Full Text Available We extend the nonstandard finite difference method of solution to the study of pharmacokinetic–pharmacodynamic models. Pharmacokinetic (PK models are commonly used to predict drug concentrations that drive controlled intravenous (I.V. transfers (or infusion and oral transfers while pharmacokinetic and pharmacodynamic (PD interaction models are used to provide predictions of drug concentrations affecting the response of these clinical drugs. We structure a nonstandard finite difference (NSFD scheme for the relevant system of equations which models this pharamcokinetic process. We compare the results obtained to standard methods. The scheme is dynamically consistent and reliable in replicating complex dynamic properties of the relevant continuous models for varying step sizes. This study provides assistance in understanding the long-term behavior of the drug in the system, and validation of the efficiency of the nonstandard finite difference scheme as the method of choice.

  18. A finite different field solver for dipole modes

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1992-08-01

    A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL

  19. Finite differences versus finite elements in slab geometry, even-parity transport theory

    International Nuclear Information System (INIS)

    Miller, W.F. Jr.; Noh, T.

    1993-01-01

    There continues to be considerable interest in the application of the even-parity transport equation to problems of radiation transfer and neutron transport. The motivation for this interest arises from several potential advantages of this equation when compared with the more traditional first-order form of the equation. First, assuming that the scalar flux is of primary interest, the angular domain under consideration is one-half of that required for the first-order equation. Thus, for the same degree of accuracy, one would hopefully require substantiably fewer unknown values of the dependent variable to be determined. Secondly, the elliptic-like nature of the set of even-parity equations should allow certain parallel computer architectures to be used more readily. In a recent paper, it was shown that for neutron transport applications in slab geometry, finite differencing the even-parity equation on the cell edges yields algebraic equations with numerical properties that are superior to the traditional diamond difference approach. Specifically, a positive, second-order method with a rapidly convergent iteration approach emerged from cell-edge differencing. Additionally, for radiation transfer problems that are optically thick, it was shown that cell-edge differencing demonstrates better behavior than does diamond-differencing. However, some problems in accuracy could occur due to vacuum boundaries as well as at interfaces between very different types of material regions. These problems emerge from a boundary-layer analysis of the so called open-quotes thickclose quotes diffusion limit. For neutronics calculations, which are the subject of this paper, however, the open-quotes thickclose quotes diffusion limit analysis has little applicability, and the cell-edge differencing derived previously seems to have considerable promise. 13 refs., 2 figs., 3 tabs

  20. Detent Force Calculations of a PMLSM Using the Finite Element Method

    Science.gov (United States)

    Remy, Ghislain; Krebs, Guillaume; Tounzi, Abdelmounaïm; Barre, Pierre-Jean

    This paper presents a Finite Element Analysis of a Permanent Magnet Linear Synchronous Motor. The aim is to obtain an accurate estimation of the detent force without oversize computation. First, some usual techniques dedicated to the calculation of the forces in electromagnetic devices, such as the Virtual Work Method and the Maxwell Stress Tensor, are described. Some keypoints of the meshing method using a commercial FEM software are presented and used in order to improve the thrust computations. After that, the topology and features of the studied motor are described to highlight specific problems of the modelling process. In the 2D FEM case, new meshing techniques are proposed, according to the force calculations. The FEM results obtained from the different methods are analysed and compared with the experimental ones. Second, using FEM results, a study of the independence of the cogging and the end-effect forces is presented. Particularly, an original approach is suggested in order to compute the cogging force only, using the same mesh for each motion step. Then, the PMLSM geometry is adapted to calculate the end-effect forces only.

  1. Finite difference computing with PDEs a modern software approach

    CERN Document Server

    Langtangen, Hans Petter

    2017-01-01

    This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

  2. Different radiation impedance models for finite porous materials

    DEFF Research Database (Denmark)

    Nolan, Melanie; Jeong, Cheol-Ho; Brunskog, Jonas

    2015-01-01

    The Sabine absorption coefficients of finite absorbers are measured in a reverberation chamber according to the international standard ISO 354. They vary with the specimen size essentially due to diffraction at the specimen edges, which can be seen as the radiation impedance differing from...... the infinite case. Thus, in order to predict the Sabine absorption coefficients of finite porous samples, one can incorporate models of the radiation impedance. In this study, different radiation impedance models are compared with two experimental examples. Thomasson’s model is compared to Rhazi’s method when...

  3. A least squares principle unifying finite element, finite difference and nodal methods for diffusion theory

    International Nuclear Information System (INIS)

    Ackroyd, R.T.

    1987-01-01

    A least squares principle is described which uses a penalty function treatment of boundary and interface conditions. Appropriate choices of the trial functions and vectors employed in a dual representation of an approximate solution established complementary principles for the diffusion equation. A geometrical interpretation of the principles provides weighted residual methods for diffusion theory, thus establishing a unification of least squares, variational and weighted residual methods. The complementary principles are used with either a trial function for the flux or a trial vector for the current to establish for regular meshes a connection between finite element, finite difference and nodal methods, which can be exact if the mesh pitches are chosen appropriately. Whereas the coefficients in the usual nodal equations have to be determined iteratively, those derived via the complementary principles are given explicitly in terms of the data. For the further development of the connection between finite element, finite difference and nodal methods, some hybrid variational methods are described which employ both a trial function and a trial vector. (author)

  4. Calculation of pressure distribution in vacuum systems using a commercial finite element program

    International Nuclear Information System (INIS)

    Howell, J.; Wehrle, B.; Jostlein, H.

    1991-01-01

    The finite element method has proven to be a very useful tool for calculating pressure distributions in complex vacuum systems. A number of finite element programs have been developed for this specific task. For those who do not have access to one of these specialized programs and do not wish to develop their own program, another option is available. Any commercial finite element program with heat transfer analysis capabilities can be used to calculate pressure distributions. The approach uses an analogy between thermal conduction and gas conduction with the quantity temperature substituted for pressure. The thermal analogies for pumps, gas loads and tube conductances are described in detail. The method is illustrated for an example vacuum system. A listing of the ANSYS data input file for this example is included. 2 refs., 4 figs., 1 tab

  5. A finite element method for calculating the 3-dimensional magnetic fields of cyclotron

    International Nuclear Information System (INIS)

    Zhao Xiaofeng

    1986-01-01

    A series of formula of the finite element method (scalar potential) for calculating the three-dimensional magnetic field of the main magnet of a sector focused cyclotron, and the realization method of the periodic boundary conditions in the code are given

  6. A finite element method for a time dependence soil-structure interactions calculations

    International Nuclear Information System (INIS)

    Ni, X.M.; Gantenbein, F.; Petit, M.

    1989-01-01

    The method which is proposed is based on a finite element modelisation for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method will be presented, then applications will be given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior will be described [fr

  7. High-order finite-difference methods for Poisson's equation

    NARCIS (Netherlands)

    van Linde, Hendrik Jan

    1971-01-01

    In this thesis finite-difference approximations to the three boundary value problems for Poisson’s equation are given, with discretization errors of O(H^3) for the mixed boundary value problem, O(H^3 |ln(h)| for the Neumann problem and O(H^4)for the Dirichlet problem respectively . First an operator

  8. Chebyshev Finite Difference Method for Fractional Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Boundary

    2015-09-01

    Full Text Available This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivatives are described in the Caputo sense. Numerical results show that this method is of high accuracy and is more convenient and efficient for solving boundary value problems involving fractional ordinary differential equations. AMS Subject Classification: 34A08 Keywords and Phrases: Chebyshev polynomials, Gauss-Lobatto points, fractional differential equation, finite difference 1. Introduction The idea of a derivative which interpolates between the familiar integer order derivatives was introduced many years ago and has gained increasing importance only in recent years due to the development of mathematical models of a certain situations in engineering, materials science, control theory, polymer modelling etc. For example see [20, 22, 25, 26]. Most fractional order differential equations describing real life situations, in general do not have exact analytical solutions. Several numerical and approximate analytical methods for ordinary differential equation Received: December 2014; Accepted: March 2015 57 Journal of Mathematical Extension Vol. 9, No. 3, (2015, 57-71 ISSN: 1735-8299 URL: http://www.ijmex.com Chebyshev Finite Difference Method for Fractional Boundary Value Problems H. Azizi Taft Branch, Islamic Azad University Abstract. This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivative

  9. Finite difference time domain modelling of particle accelerators

    International Nuclear Information System (INIS)

    Jurgens, T.G.; Harfoush, F.A.

    1989-03-01

    Finite Difference Time Domain (FDTD) modelling has been successfully applied to a wide variety of electromagnetic scattering and interaction problems for many years. Here the method is extended to incorporate the modelling of wake fields in particle accelerators. Algorithmic comparisons are made to existing wake field codes, such as MAFIA T3. 9 refs., 7 figs

  10. A finite difference method for free boundary problems

    KAUST Repository

    Fornberg, Bengt

    2010-01-01

    Fornberg and Meyer-Spasche proposed some time ago a simple strategy to correct finite difference schemes in the presence of a free boundary that cuts across a Cartesian grid. We show here how this procedure can be combined with a minimax

  11. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moczo, P.; Kristek, J.; Pazak, P.; Balazovjech, M.; Moczo, P.; Kristek, J.; Galis, M.

    2007-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite difference (FD), finite-element (FE), and hybrid FD-FE methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. We present alternative formulations of equation of motion for a smooth elastic continuum. We then develop alternative formulations for a canonical problem with a welded material interface and free surface. We continue with a model of an earthquake source. We complete the general theoretical introduction by a chapter on the constitutive laws for elastic and viscoelastic media, and brief review of strong formulations of the equation of motion. What follows is a block of chapters on the finite-difference and finite-element methods. We develop FD targets for the free surface and welded material interface. We then present various FD schemes for a smooth continuum, free surface, and welded interface. We focus on the staggered-grid and mainly optimally-accurate FD schemes. We also present alternative formulations of the FE method. We include the FD and FE implementations of the traction-at-split-nodes method for simulation of dynamic rupture propagation. The FD modeling is applied to the model of the deep sedimentary Grenoble basin, France. The FD and FE methods are combined in the hybrid FD-FE method. The hybrid

  12. TRUMP3-JR: a finite difference computer program for nonlinear heat conduction problems

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1984-02-01

    Computer program TRUMP3-JR is a revised version of TRUMP3 which is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Pre- and post-processings for input data generation and graphical representations of calculation results of TRUMP3 are avaiable in TRUMP3-JR. The calculation equations, program descriptions and user's instruction are presented. A sample problem is described to demonstrate the use of the program. (author)

  13. An h-adaptive finite element solver for the calculations of the electronic structures

    International Nuclear Information System (INIS)

    Bao Gang; Hu Guanghui; Liu Di

    2012-01-01

    In this paper, a framework of using h-adaptive finite element method for the Kohn–Sham equation on the tetrahedron mesh is presented. The Kohn–Sham equation is discretized by the finite element method, and the h-adaptive technique is adopted to optimize the accuracy and the efficiency of the algorithm. The locally optimal block preconditioned conjugate gradient method is employed for solving the generalized eigenvalue problem, and an algebraic multigrid preconditioner is used to accelerate the solver. A variety of numerical experiments demonstrate the effectiveness of our algorithm for both the all-electron and the pseudo-potential calculations.

  14. Multigrid Finite Element Method in Calculation of 3D Homogeneous and Composite Solids

    Directory of Open Access Journals (Sweden)

    A.D. Matveev

    2016-12-01

    Full Text Available In the present paper, a method of multigrid finite elements to calculate elastic three-dimensional homogeneous and composite solids under static loading has been suggested. The method has been developed based on the finite element method algorithms using homogeneous and composite three-dimensional multigrid finite elements (MFE. The procedures for construction of MFE of both rectangular parallelepiped and complex shapes have been shown. The advantages of MFE are that they take into account, following the rules of the microapproach, heterogeneous and microhomogeneous structures of the bodies, describe the three-dimensional stress-strain state (without any simplifying hypotheses in homogeneous and composite solids, as well as generate small dimensional discrete models and numerical solutions with a high accuracy.

  15. Mechanical stress calculations for toroidal field coils by the finite element method

    International Nuclear Information System (INIS)

    Soell, M.; Jandl, O.; Gorenflo, H.

    1976-09-01

    After discussing fundamental relationships of the finite element method, this report describes the calculation steps worked out for mechanical stress calculations in the case of magnetic forces and forces produced by thermal expansion or compression of toroidal field coils using the SOLID SAP IV computer program. The displacement and stress analysis are based on the 20-node isoparametric solid element. The calculation of the nodal forces produced by magnetic body forces are discussed in detail. The computer programs, which can be used generally for mesh generation and determination of the nodal forces, are published elsewhere. (orig.) [de

  16. A finite element computer program for the calculation of the resonant frequencies of anisotropic materials

    International Nuclear Information System (INIS)

    Fleury, W.H.; Rosinger, H.E.; Ritchie, I.G.

    1975-09-01

    A set of computer programs for the calculation of the flexural and torsional resonant frequencies of rectangular section bars of materials of orthotropic or higher symmetry are described. The calculations are used in the experimental determination and verification of the elastic constants of anisotropic materials. The simple finite element technique employed separates the inertial and elastic properties of the beam element into station and field transfer matrices respectively. It includes the Timoshenko beam corrections for flexure and Lekhnitskii's theory for torsion-flexure coupling. The programs also calculate the vibration shapes and surface nodal contours or Chladni figures of the vibration modes. (author)

  17. Transient finite element magnetic field calculation method in the anisotropic magnetic material based on the measured magnetization curves

    International Nuclear Information System (INIS)

    Jesenik, M.; Gorican, V.; Trlep, M.; Hamler, A.; Stumberger, B.

    2006-01-01

    A lot of magnetic materials are anisotropic. In the 3D finite element method calculation, anisotropy of the material is taken into account. Anisotropic magnetic material is described with magnetization curves for different magnetization directions. The 3D transient calculation of the rotational magnetic field in the sample of the round rotational single sheet tester with circular sample considering eddy currents is made and compared with the measurement to verify the correctness of the method and to analyze the magnetic field in the sample

  18. The mimetic finite difference method for elliptic problems

    CERN Document Server

    Veiga, Lourenço Beirão; Manzini, Gianmarco

    2014-01-01

    This book describes the theoretical and computational aspects of the mimetic finite difference method for a wide class of multidimensional elliptic problems, which includes diffusion, advection-diffusion, Stokes, elasticity, magnetostatics and plate bending problems. The modern mimetic discretization technology developed in part by the Authors allows one to solve these equations on unstructured polygonal, polyhedral and generalized polyhedral meshes. The book provides a practical guide for those scientists and engineers that are interested in the computational properties of the mimetic finite difference method such as the accuracy, stability, robustness, and efficiency. Many examples are provided to help the reader to understand and implement this method. This monograph also provides the essential background material and describes basic mathematical tools required to develop further the mimetic discretization technology and to extend it to various applications.

  19. Integral equations with difference kernels on finite intervals

    CERN Document Server

    Sakhnovich, Lev A

    2015-01-01

    This book focuses on solving integral equations with difference kernels on finite intervals. The corresponding problem on the semiaxis was previously solved by N. Wiener–E. Hopf and by M.G. Krein. The problem on finite intervals, though significantly more difficult, may be solved using our method of operator identities. This method is also actively employed in inverse spectral problems, operator factorization and nonlinear integral equations. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Kac problems on stable processes. In this second edition these results are extensively generalized and include the case of all Levy processes. We present the convolution expression for the well-known Ito formula of the generator operator, a convolution expression that has proven to be fruitful...

  20. Finite-Difference Frequency-Domain Method in Nanophotonics

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra

    Optics and photonics are exciting, rapidly developing fields building their success largely on use of more and more elaborate artificially made, nanostructured materials. To further advance our understanding of light-matter interactions in these complicated artificial media, numerical modeling...... is often indispensable. This thesis presents the development of rigorous finite-difference method, a very general tool to solve Maxwell’s equations in arbitrary geometries in three dimensions, with an emphasis on the frequency-domain formulation. Enhanced performance of the perfectly matched layers...... is obtained through free space squeezing technique, and nonuniform orthogonal grids are built to greatly improve the accuracy of simulations of highly heterogeneous nanostructures. Examples of the use of the finite-difference frequency-domain method in this thesis range from simulating localized modes...

  1. Difference equations in massive higher order calculations

    International Nuclear Information System (INIS)

    Bierenbaum, I.; Bluemlein, J.; Klein, S.; Schneider, C.

    2007-07-01

    The calculation of massive 2-loop operator matrix elements, required for the higher order Wilson coefficients for heavy flavor production in deeply inelastic scattering, leads to new types of multiple infinite sums over harmonic sums and related functions, which depend on the Mellin parameter N. We report on the solution of these sums through higher order difference equations using the summation package Sigma. (orig.)

  2. Optimized Finite-Difference Coefficients for Hydroacoustic Modeling

    Science.gov (United States)

    Preston, L. A.

    2014-12-01

    Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. A finite difference method for free boundary problems

    KAUST Repository

    Fornberg, Bengt

    2010-04-01

    Fornberg and Meyer-Spasche proposed some time ago a simple strategy to correct finite difference schemes in the presence of a free boundary that cuts across a Cartesian grid. We show here how this procedure can be combined with a minimax-based optimization procedure to rapidly solve a wide range of elliptic-type free boundary value problems. © 2009 Elsevier B.V. All rights reserved.

  4. Non Standard Finite Difference Scheme for Mutualistic Interaction Description

    OpenAIRE

    Gabbriellini, Gianluca

    2012-01-01

    One of the more interesting themes of the mathematical ecology is the description of the mutualistic interaction between two interacting species. Based on continuous-time model developed by Holland and DeAngelis 2009 for consumer-resource mutualism description, this work deals with the application of the Mickens Non Standard Finite Difference method to transform the continuous-time scheme into a discrete-time one. It has been proved that the Mickens scheme is dynamically consistent with the o...

  5. Pairing mechanism in Bi-O superconductors: A finite-size chain calculation

    International Nuclear Information System (INIS)

    Aligia, A.A.; Nunez Regueiro, M.D.; Gagliano, E.R.

    1989-01-01

    We have studied the pairing mechanism in BiO 3 systems by calculating the binding energy of a pair of holes in finite Bi-O chains, for parameters that simulate three-dimensional behavior. In agreement with previous results using perturbation theory in the hopping t, for covalent Bi-O binding and parameters for which the parent compound has a disproportionate ground state, pairing induced by the presence of biexcitons is obtained for sufficiently large interatomic Coulomb repulsion. The analysis of appropriate correlation functions shows a rapid metallization of the system as t and the number of holes increase. This fact shrinks the region of parameters for which the finite-size calculations can be trusted without further study. The same model for other parameters yields pairing in two other regimes: bipolaronic and magnetic excitonic

  6. FEAST: a two-dimensional non-linear finite element code for calculating stresses

    International Nuclear Information System (INIS)

    Tayal, M.

    1986-06-01

    The computer code FEAST calculates stresses, strains, and displacements. The code is two-dimensional. That is, either plane or axisymmetric calculations can be done. The code models elastic, plastic, creep, and thermal strains and stresses. Cracking can also be simulated. The finite element method is used to solve equations describing the following fundamental laws of mechanics: equilibrium; compatibility; constitutive relations; yield criterion; and flow rule. FEAST combines several unique features that permit large time-steps in even severely non-linear situations. The features include a special formulation for permitting many finite elements to simultaneously cross the boundary from elastic to plastic behaviour; accomodation of large drops in yield-strength due to changes in local temperature and a three-step predictor-corrector method for plastic analyses. These features reduce computing costs. Comparisons against twenty analytical solutions and against experimental measurements show that predictions of FEAST are generally accurate to ± 5%

  7. Reactor calculation in coarse mesh by finite element method applied to matrix response method

    International Nuclear Information System (INIS)

    Nakata, H.

    1982-01-01

    The finite element method is applied to the solution of the modified formulation of the matrix-response method aiming to do reactor calculations in coarse mesh. Good results are obtained with a short running time. The method is applicable to problems where the heterogeneity is predominant and to problems of evolution in coarse meshes where the burnup is variable in one same coarse mesh, making the cross section vary spatially with the evolution. (E.G.) [pt

  8. On the calculation of finite-temperature effects in field theories

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.; Taylor, J.C.

    1991-03-01

    We discuss an alternative method for computing finite-temperature effects in field theories, within the framework of the imaginary-time formalism. Our approach allows for a systematic calculation of the high temperature expansion in terms of Riemann Zeta functions. The imaginary-time result is analytically continued to the complex plane. We are able to obtain the real-time limit of the real and the imaginary parts of the Green functions. (author)

  9. Calculated optical absorption of different perovskite phases

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2015-01-01

    We present calculations of the optical properties of a set of around 80 oxides, oxynitrides, and organometal halide cubic and layered perovskites (Ruddlesden-Popper and Dion-Jacobson phases) with a bandgap in the visible part of the solar spectrum. The calculations show that for different classes...... of perovskites the solar light absorption efficiency varies greatly depending not only on bandgap size and character (direct/indirect) but also on the dipole matrix elements. The oxides exhibit generally a fairly weak absorption efficiency due to indirect bandgaps while the most efficient absorbers are found...... in the classes of oxynitride and organometal halide perovskites with strong direct transitions....

  10. Finite

    Directory of Open Access Journals (Sweden)

    W.R. Azzam

    2015-08-01

    Full Text Available This paper reports the application of using a skirted foundation system to study the behavior of foundations with structural skirts adjacent to a sand slope and subjected to earthquake loading. The effect of the adopted skirts to safeguard foundation and slope from collapse is studied. The skirts effect on controlling horizontal soil movement and decreasing pore water pressure beneath foundations and beside the slopes during earthquake is investigated. This technique is investigated numerically using finite element analysis. A four story reinforced concrete building that rests on a raft foundation is idealized as a two-dimensional model with and without skirts. A two dimensional plain strain program PLAXIS, (dynamic version is adopted. A series of models for the problem under investigation were run under different skirt depths and lactation from the slope crest. The effect of subgrade relative density and skirts thickness is also discussed. Nodal displacement and element strains were analyzed for the foundation with and without skirts and at different studied parameters. The research results showed a great effectiveness in increasing the overall stability of the slope and foundation. The confined soil footing system by such skirts reduced the foundation acceleration therefore it can be tended to damping element and relieved the transmitted disturbance to the adjacent slope. This technique can be considered as a good method to control the slope deformation and decrease the slope acceleration during earthquakes.

  11. A finite element approach to self-consistent field theory calculations of multiblock polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, David M. [Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States); Delaney, Kris; Fredrickson, Glenn H. [Materials Research Laboratory, University of California, Santa Barbara (United States); Ganapathysubramanian, Baskar, E-mail: baskarg@iastate.edu [Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States)

    2017-02-15

    Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibrium polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.

  12. On the stress calculation within phase-field approaches: a model for finite deformations

    Science.gov (United States)

    Schneider, Daniel; Schwab, Felix; Schoof, Ephraim; Reiter, Andreas; Herrmann, Christoph; Selzer, Michael; Böhlke, Thomas; Nestler, Britta

    2017-08-01

    Numerical simulations based on phase-field methods are indispensable in order to investigate interesting and important phenomena in the evolution of microstructures. Microscopic phase transitions are highly affected by mechanical driving forces and therefore the accurate calculation of the stresses in the transition region is essential. We present a method for stress calculations within the phase-field framework, which satisfies the mechanical jump conditions corresponding to sharp interfaces, although the sharp interface is represented as a volumetric region using the phase-field approach. This model is formulated for finite deformations, is independent of constitutive laws, and allows using any type of phase inherent inelastic strains.

  13. A Poisson equation formulation for pressure calculations in penalty finite element models for viscous incompressible flows

    Science.gov (United States)

    Sohn, J. L.; Heinrich, J. C.

    1990-01-01

    The calculation of pressures when the penalty-function approximation is used in finite-element solutions of laminar incompressible flows is addressed. A Poisson equation for the pressure is formulated that involves third derivatives of the velocity field. The second derivatives appearing in the weak formulation of the Poisson equation are calculated from the C0 velocity approximation using a least-squares method. The present scheme is shown to be efficient, free of spurious oscillations, and accurate. Examples of applications are given and compared with results obtained using mixed formulations.

  14. Finite elements for the calculation of turbulent flows in three-dimensional complex geometries

    Science.gov (United States)

    Ruprecht, A.

    A finite element program for the calculation of incompressible turbulent flows is presented. In order to reduce the required storage an iterative algorithm is used which solves the necessary equations sequentially. The state of turbulence is defined by the k-epsilon model. In addition to the standard k-epsilon model, the modification of Bardina et al., taking into account the rotation of the mean flow, is investigated. With this program, the flow in the draft tube of a Kaplan turbine is examined. Calculations are carried out for swirling and nonswirling entrance flow. The results are compared with measurements.

  15. Finite element method used in strength calculations of nuclear power plant pressure vessels

    International Nuclear Information System (INIS)

    Hanulak, E.

    1987-01-01

    A software system based on the use of the finite element method in linear and nonlinear elastomechanics was developed for assessing the strength and service life of steam generators and pressurizers for WWER type nuclear power plants. The individual programs are briefly described. They are written in FORTRAN IV, some modules are in ASSEMBLER. Programs EGUSAP, NEANKO, ROSYNA are designed for the calculation of stress and deformation, programs ROSYNA, NEANKO and NTEPLO are used for the calculation of temperature fields. Programs SPOJ and STATES are used for assessing the strength and service life of screw joints and other nodes of the WWER-440 type steam generators and pressurizers. (Z.M.)

  16. Explicit Finite Difference Methods for the Delay Pseudoparabolic Equations

    Directory of Open Access Journals (Sweden)

    I. Amirali

    2014-01-01

    Full Text Available Finite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used. Based on the method of energy estimates the fully discrete scheme is shown to be absolutely stable and convergent of order two in space and of order one in time. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown.

  17. Thermal buckling comparative analysis using Different FE (Finite Element) tools

    Energy Technology Data Exchange (ETDEWEB)

    Banasiak, Waldemar; Labouriau, Pedro [INTECSEA do Brasil, Rio de Janeiro, RJ (Brazil); Burnett, Christopher [INTECSEA UK, Surrey (United Kingdom); Falepin, Hendrik [Fugro Engineers SA/NV, Brussels (Belgium)

    2009-12-19

    High operational temperature and pressure in offshore pipelines may lead to unexpected lateral movements, sometimes call lateral buckling, which can have serious consequences for the integrity of the pipeline. The phenomenon of lateral buckling in offshore pipelines needs to be analysed in the design phase using FEM. The analysis should take into account many parameters, including operational temperature and pressure, fluid characteristic, seabed profile, soil parameters, coatings of the pipe, free spans etc. The buckling initiation force is sensitive to small changes of any initial geometric out-of-straightness, thus the modeling of the as-laid state of the pipeline is an important part of the design process. Recently some dedicated finite elements programs have been created making modeling of the offshore environment more convenient that has been the case with the use of general purpose finite element software. The present paper aims to compare thermal buckling analysis of sub sea pipeline performed using different finite elements tools, i.e. general purpose programs (ANSYS, ABAQUS) and dedicated software (SAGE Profile 3D) for a single pipeline resting on an the seabed. The analyses considered the pipeline resting on a flat seabed with a small levels of out-of straightness initiating the lateral buckling. The results show the quite good agreement of results of buckling in elastic range and in the conclusions next comparative analyses with sensitivity cases are recommended. (author)

  18. Importance of finite-temperature exchange correlation for warm dense matter calculations.

    Science.gov (United States)

    Karasiev, Valentin V; Calderín, Lázaro; Trickey, S B

    2016-06-01

    The effects of an explicit temperature dependence in the exchange correlation (XC) free-energy functional upon calculated properties of matter in the warm dense regime are investigated. The comparison is between the Karasiev-Sjostrom-Dufty-Trickey (KSDT) finite-temperature local-density approximation (TLDA) XC functional [Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.076403] parametrized from restricted path-integral Monte Carlo data on the homogeneous electron gas (HEG) and the conventional Monte Carlo parametrization ground-state LDA XC [Perdew-Zunger (PZ)] functional evaluated with T-dependent densities. Both Kohn-Sham (KS) and orbital-free density-functional theories are used, depending upon computational resource demands. Compared to the PZ functional, the KSDT functional generally lowers the dc electrical conductivity of low-density Al, yielding improved agreement with experiment. The greatest lowering is about 15% for T=15 kK. Correspondingly, the KS band structure of low-density fcc Al from the KSDT functional exhibits a clear increase in interband separation above the Fermi level compared to the PZ bands. In some density-temperature regimes, the deuterium equations of state obtained from the two XC functionals exhibit pressure differences as large as 4% and a 6% range of differences. However, the hydrogen principal Hugoniot is insensitive to the explicit XC T dependence because of cancellation between the energy and pressure-volume work difference terms in the Rankine-Hugoniot equation. Finally, the temperature at which the HEG becomes unstable is T≥7200 K for the T-dependent XC, a result that the ground-state XC underestimates by about 1000 K.

  19. Accuracy of finite-difference harmonic frequencies in density functional theory.

    Science.gov (United States)

    Liu, Kuan-Yu; Liu, Jie; Herbert, John M

    2017-07-15

    Analytic Hessians are often viewed as essential for the calculation of accurate harmonic frequencies, but the implementation of analytic second derivatives is nontrivial and solution of the requisite coupled-perturbed equations engenders a sizable memory footprint for large systems, given that these equations are not required for energy and gradient calculations in density functional theory. Here, we benchmark the alternative approach to harmonic frequencies based on finite differences of analytic first derivatives, a procedure that is amenable to large-scale parallelization. Not only for absolute frequencies but also for isotopic and conformer-dependent frequency shifts in flexible molecules, we find that the finite-difference approach exhibits mean errors numbers. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. A novel strong tracking finite-difference extended Kalman filter for nonlinear eye tracking

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZuTao; ZHANG JiaShu

    2009-01-01

    Non-Intrusive methods for eye tracking are Important for many applications of vision-based human computer interaction. However, due to the high nonlinearity of eye motion, how to ensure the robust-ness of external interference and accuracy of eye tracking poses the primary obstacle to the integration of eye movements into today's interfaces. In this paper, we present a strong tracking finite-difference extended Kalman filter algorithm, aiming to overcome the difficulty In modeling nonlinear eye tracking. In filtering calculation, strong tracking factor is introduced to modify a priori covariance matrix and im-prove the accuracy of the filter. The filter uses finite-difference method to calculate partial derivatives of nonlinear functions for eye tracking. The latest experimental results show the validity of our method for eye tracking under realistic conditions.

  1. Application of the finite-difference approximation to electrostatic problems in gaseous proportional counters

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.; Urbanczyk, K.M.

    1975-01-01

    The basic principles of the finite-difference approximation applied to the solution of electrostatic field distributions in gaseous proportional counters are given. Using this method, complicated two-dimensional electrostatic problems may be solved, taking into account any number of anodes, each with its own radius, and any cathode shape. A general formula for introducing the anode radii into the calculations is derived and a method of obtaining extremely accurate (up to 0.1%) solutions is developed. Several examples of potential and absolute field distributions for single rectangular and multiwire proportional counters are calculated and compared with exact results according to Tomitani, in order to discuss in detail errors of the finite-difference approximation. (author)

  2. Preliminary research on finite difference method to solve radon field distribution over sandstone-type uranium ore body

    International Nuclear Information System (INIS)

    Li Bihong; Shuang Na; Liu Qingcheng

    2006-01-01

    The principle of finite difference method is introduced, and the radon field distribution over sandstone-type uranium deposit is narrated. The radon field distribution theory equation is established. To solve radon field distribution equation using finite difference algorithm is to provide the value computational method for forward calculation about radon field over sandstone-type uranium mine. Study on 2-D finite difference method on the center of either high anomaly radon fields in view of the character of radon field over sandstone-type uranium provide an algorithm for further research. (authors)

  3. Performance and scalability of finite-difference and finite-element wave-propagation modeling on Intel's Xeon Phi

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2013-01-01

    With the rapid developments in parallel compute architectures, algorithms for seismic modeling and imaging need to be reconsidered in terms of parallelization. The aim of this paper is to compare scalability of seismic modeling algorithms: finite differences, continuous mass-lumped finite elements

  4. Finite difference evolution equations and quantum dynamical semigroups

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Weber, T.

    1983-12-01

    We consider the recently proposed [Bonifacio, Lett. Nuovo Cimento, 37, 481 (1983)] coarse grained description of time evolution for the density operator rho(t) through a finite difference equation with steps tau, and we prove that there exists a generator of the quantum dynamical semigroup type yielding an equation giving a continuous evolution coinciding at all time steps with the one induced by the coarse grained description. The map rho(0)→rho(t) derived in this way takes the standard form originally proposed by Lindblad [Comm. Math. Phys., 48, 119 (1976)], even when the map itself (and, therefore, the corresponding generator) is not bounded. (author)

  5. Finite difference time domain modeling of spiral antennas

    Science.gov (United States)

    Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.

    1992-01-01

    The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.

  6. Mimetic Finite Differences for Flow in Fractures from Microseismic Data

    KAUST Repository

    Al-Hinai, Omar; Srinivasan, Sanjay; Wheeler, Mary F.

    2015-01-01

    We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD's ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.

  7. Mimetic Finite Differences for Flow in Fractures from Microseismic Data

    KAUST Repository

    Al-Hinai, Omar

    2015-01-01

    We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD\\'s ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.

  8. Enhanced finite difference scheme for the neutron diffusion equation using the importance function

    International Nuclear Information System (INIS)

    Vagheian, Mehran; Vosoughi, Naser; Gharib, Morteza

    2016-01-01

    Highlights: • An enhanced finite difference scheme for the neutron diffusion equation is proposed. • A seven-step algorithm is considered based on the importance function. • Mesh points are distributed through entire reactor core with respect to the importance function. • The results all proved that the proposed algorithm is highly efficient. - Abstract: Mesh point positions in Finite Difference Method (FDM) of discretization for the neutron diffusion equation can remarkably affect the averaged neutron fluxes as well as the effective multiplication factor. In this study, by aid of improving the mesh point positions, an enhanced finite difference scheme for the neutron diffusion equation is proposed based on the neutron importance function. In order to determine the neutron importance function, the adjoint (backward) neutron diffusion calculations are performed in the same procedure as for the forward calculations. Considering the neutron importance function, the mesh points can be improved through the entire reactor core. Accordingly, in regions with greater neutron importance, density of mesh elements is higher than that in regions with less importance. The forward calculations are then performed for both of the uniform and improved non-uniform mesh point distributions and the results (the neutron fluxes along with the corresponding eigenvalues) for the two cases are compared with each other. The results are benchmarked against the reference values (with fine meshes) for Kang and Rod Bundle BWR benchmark problems. These benchmark cases revealed that the improved non-uniform mesh point distribution is highly efficient.

  9. On the Stability of the Finite Difference based Lattice Boltzmann Method

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu; Salama, Amgad

    2013-01-01

    This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.

  10. On the Stability of the Finite Difference based Lattice Boltzmann Method

    KAUST Repository

    El-Amin, Mohamed

    2013-06-01

    This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.

  11. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-09-01

    Full Text Available Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare with the results from the analytical method, the result from Laplace transform finite difference method turns out to be accurate. The influence factors are analyzed, including fractal dimension, fractal index, skin factor, well bore storage coefficient, energy storage ratio, interporosity flow coefficient and the adsorption factor. The calculating error of Laplace transform difference method is small. Laplace transform difference method has advantages in well-test application since any moment simulation does not rely on other moment results and space grid.

  12. SPIRIT, Plot of Geometry and Results of 2-D Finite Elements Calculation

    International Nuclear Information System (INIS)

    Lambert, P.

    1977-01-01

    1 - Nature of the physical problem solved: SPIRIT plots the geometry and the results from a 2-D finite elements calculation. 2 - Method of solution: SPIRIT uses the Benson-Lehner graph plotter. The programme will draw each separate element of the mesh according to the description supplied and a complete picture of the mesh is therefore built up. The program can also construct an isothermal distribution using straight lines. Each line is constructed considering each element in isolation. 3 - Restrictions on the complexity of the problem: The program deals only with bodies entirely contained in the first quadrant and the x-coordinates should be less than 20.0

  13. Slope Safety Factor Calculations With Non-Linear Yield Criterion Using Finite Elements

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2006-01-01

    The factor of safety for a slope is calculated with the finite element method using a non-linear yield criterion of the Hoek-Brown type. The parameters of the Hoek-Brown criterion are found from triaxial test data. Parameters of the linear Mohr-Coulomb criterion are calibrated to the same triaxial...... are carried out at much higher stress levels than present in a slope failure, this leads to the conclusion that the use of the non-linear criterion leads to a safer slope design...

  14. A parallel adaptive finite difference algorithm for petroleum reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Hai Minh

    2005-07-01

    Adaptive finite differential for problems arising in simulation of flow in porous medium applications are considered. Such methods have been proven useful for overcoming limitations of computational resources and improving the resolution of the numerical solutions to a wide range of problems. By local refinement of the computational mesh where it is needed to improve the accuracy of solutions, yields better solution resolution representing more efficient use of computational resources than is possible with traditional fixed-grid approaches. In this thesis, we propose a parallel adaptive cell-centered finite difference (PAFD) method for black-oil reservoir simulation models. This is an extension of the adaptive mesh refinement (AMR) methodology first developed by Berger and Oliger (1984) for the hyperbolic problem. Our algorithm is fully adaptive in time and space through the use of subcycling, in which finer grids are advanced at smaller time steps than the coarser ones. When coarse and fine grids reach the same advanced time level, they are synchronized to ensure that the global solution is conservative and satisfy the divergence constraint across all levels of refinement. The material in this thesis is subdivided in to three overall parts. First we explain the methodology and intricacies of AFD scheme. Then we extend a finite differential cell-centered approximation discretization to a multilevel hierarchy of refined grids, and finally we are employing the algorithm on parallel computer. The results in this work show that the approach presented is robust, and stable, thus demonstrating the increased solution accuracy due to local refinement and reduced computing resource consumption. (Author)

  15. Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells

    Science.gov (United States)

    Deinega, Alexei; John, Sajeev

    2012-10-01

    We introduce a finite difference discretization of semiconductor drift-diffusion equations using cylindrical partial waves. It can be applied to describe the photo-generated current in radial pn-junction nanowire solar cells. We demonstrate that the cylindrically symmetric (l=0) partial wave accurately describes the electronic response of a square lattice of silicon nanowires at normal incidence. We investigate the accuracy of our discretization scheme by using different mesh resolution along the radial direction r and compare with 3D (x, y, z) discretization. We consider both straight nanowires and nanowires with radius modulation along the vertical axis. The charge carrier generation profile inside each nanowire is calculated using an independent finite-difference time-domain simulation.

  16. Robust and efficient handling of yield surface discontinuities in elasto-plastic finite element calculations

    DEFF Research Database (Denmark)

    Clausen, Johan Christian; Damkilde, Lars; Andersen, Lars Vabbersgaard

    2015-01-01

    Purpose – The purpose of this paper is to present several methods on how to deal with yield surface discontinuities. The explicit formulations, first presented by Koiter (1953), result in multisingular constitutive matrices which can cause numerical problems in elasto-plastic finite element...... documented in the literature all present “easy” calculation examples, e.g. low friction angles and few elements. The amendments presented in this paper result in robust elasto-plastic computations, making the solution of “hard” problems possible without introducing approximations in the yield surfaces...... calculations. These problems, however, are not documented in previous literature. In this paper an amendment to the Koiter formulation of the constitutive matrices for stress points located on discontinuities is proposed. Design/methodology/approach – First, a review of existing methods of handling yield...

  17. Calculation of foundation response to spatially varying ground motion by finite element method

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.

    1995-01-01

    This paper presents a general method to compute the response of a rigid foundation of arbitrary shape resting on a homogeneous or multilayered elastic soil when subjected to a spatially varying ground motion. The foundation response is calculated from the free-field ground motion and the contact tractions between the foundation and the soil. The spatial variation of ground motion in this study is introduced by a coherence function and the contact tractions are obtained numerically using the Finite Element Method in the process of calculating the dynamic compliance of the foundation. Applications of this method to a massless rigid disc supported on an elastic half space and to that founded on an elastic medium consisting of a layer of constant thickness supported on an elastic half space are described. The numerical results obtained are in very good agreement with analytical solutions published in the literature. (authors). 5 refs., 8 figs

  18. Two-dimensional multigroup finite element calculation of fast reactor in diffusion approximation

    International Nuclear Information System (INIS)

    Schmid, J.

    1986-06-01

    When a linear element of triangular shape is used the actual finite element calculation is relatively simple. Extensive programs for mesh generation were written for easy inputting the configuration of reactors. A number of other programs were written for plotting neutron flux fields in individual groups, the power distribution, spatial plotting of fields, etc. The operation of selected programs, data preparation and operating instructions are described and examples given of data and results. All programs are written in GIER ALGOL. The used method and the developed programs have demonstrated that they are a useful instrument for the calculation of criticality and the distribution of neutron flux and power of both fast and thermal reactors. (J.B.)

  19. Calculation of phonon dispersion in carbon nanotubes using a continuum-atomistic finite element approach

    Directory of Open Access Journals (Sweden)

    Michael J. Leamy

    2011-12-01

    Full Text Available Dispersion calculations are presented for cylindrical carbon nanotubes using a manifold-based continuum-atomistic finite element formulation combined with Bloch analysis. The formulated finite elements allow any (n,m chiral nanotube, or mixed tubes formed by periodically-repeating heterojunctions, to be examined quickly and accurately using only three input parameters (radius, chiral angle, and unit cell length and a trivial structured mesh, thus avoiding the tedious geometry generation and energy minimization tasks associated with ab initio and lattice dynamics-based techniques. A critical assessment of the technique is pursued to determine the validity range of the resulting dispersion calculations, and to identify any dispersion anomalies. Two small anomalies in the dispersion curves are documented, which can be easily identified and therefore rectified. They include difficulty in achieving a zero energy point for the acoustic twisting phonon, and a branch veering in nanotubes with nonzero chiral angle. The twisting mode quickly restores its correct group velocity as wavenumber increases, while the branch veering is associated with a rapid exchange of eigenvectors at the veering point, which also lessens its impact. By taking into account the two noted anomalies, accurate predictions of acoustic and low-frequency optical branches can be achieved out to the midpoint of the first Brillouin zone.

  20. Iterative optimized effective potential and exact exchange calculations at finite temperature

    International Nuclear Information System (INIS)

    Mattsson, Ann Elisabet; Modine, Normand Arthur; Muller, Richard Partain; Desjarlais, Michael Paul; Lippert, Ross A.; Sears, Mark P.; Wright, Alan Francis

    2006-01-01

    We report the implementation of an iterative scheme for calculating the Optimized Effective Potential (OEP). Given an energy functional that depends explicitly on the Kohn-Sham wave functions, and therefore, implicitly on the local effective potential appearing in the Kohn-Sham equations, a gradient-based minimization is used to find the potential that minimizes the energy. Previous work has shown how to find the gradient of such an energy with respect to the effective potential in the zero-temperature limit. We discuss a density-matrix-based derivation of the gradient that generalizes the previous results to the finite temperature regime, and we describe important optimizations used in our implementation. We have applied our OEP approach to the Hartree-Fock energy expression to perform Exact Exchange (EXX) calculations. We report our EXX results for common semiconductors and ordered phases of hydrogen at zero and finite electronic temperatures. We also discuss issues involved in the implementation of forces within the OEP/EXX approach.

  1. Acoustic, finite-difference, time-domain technique development

    International Nuclear Information System (INIS)

    Kunz, K.

    1994-01-01

    A close analog exists between the behavior of sound waves in an ideal gas and the radiated waves of electromagnetics. This analog has been exploited to obtain an acoustic, finite-difference, time-domain (AFDTD) technique capable of treating small signal vibrations in elastic media, such as air, water, and metal, with the important feature of bending motion included in the behavior of the metal. This bending motion is particularly important when the metal is formed into sheets or plates. Bending motion does not have an analog in electromagnetics, but can be readily appended to the acoustic treatment since it appears as a single additional term in the force equation for plate motion, which is otherwise analogous to the electromagnetic wave equation. The AFDTD technique has been implemented in a code architecture that duplicates the electromagnetic, finite-difference, time-domain technique code. The main difference in the implementation is the form of the first-order coupled differential equations obtained from the wave equation. The gradient of pressure and divergence of velocity appear in these equations in the place of curls of the electric and magnetic fields. Other small changes exist as well, but the codes are essentially interchangeable. The pre- and post-processing for model construction and response-data evaluation of the electromagnetic code, in the form of the TSAR code at Lawrence Livermore National Laboratory, can be used for the acoustic version. A variety of applications is possible, pending validation of the bending phenomenon. The applications include acoustic-radiation-pattern predictions for a submerged object; mine detection analysis; structural noise analysis for cars; acoustic barrier analysis; and symphonic hall/auditorium predictions and speaker enclosure modeling

  2. Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method

    Science.gov (United States)

    Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang

    2017-06-01

    Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.

  3. 3-D thermal analysis using finite difference technique with finite element model for improved design of components of rocket engine turbomachines for Space Shuttle Main Engine SSME

    Science.gov (United States)

    Sohn, Kiho D.; Ip, Shek-Se P.

    1988-01-01

    Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.

  4. Computational electrodynamics the finite-difference time-domain method

    CERN Document Server

    Taflove, Allen

    2005-01-01

    This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers engineers the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. The method helps practitioners design antennas, wireless communications devices, high-speed digital and microwave circuits, and integrated optical devices with unsurpassed efficiency. There has been considerable advancement in FDTD computational technology over the past few years, and the third edition brings professionals the very latest details with entirely new chapters on important techniques, major updates on key topics, and new discussions on emerging areas such as nanophotonics. What's more, to supplement the third edition, the authors have created a Web site with solutions to problems, downloadable graphics and videos, and updates, making this new edition the ideal textbook on the subject as well.

  5. A parallel finite-difference method for computational aerodynamics

    International Nuclear Information System (INIS)

    Swisshelm, J.M.

    1989-01-01

    A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed. 14 refs

  6. Finite-difference modeling of commercial aircraft using TSAR

    Energy Technology Data Exchange (ETDEWEB)

    Pennock, S.T.; Poggio, A.J.

    1994-11-15

    Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.

  7. Numerical study of water diffusion in biological tissues using an improved finite difference method

    International Nuclear Information System (INIS)

    Xu Junzhong; Does, Mark D; Gore, John C

    2007-01-01

    An improved finite difference (FD) method has been developed in order to calculate the behaviour of the nuclear magnetic resonance signal variations caused by water diffusion in biological tissues more accurately and efficiently. The algorithm converts the conventional image-based finite difference method into a convenient matrix-based approach and includes a revised periodic boundary condition which eliminates the edge effects caused by artificial boundaries in conventional FD methods. Simulated results for some modelled tissues are consistent with analytical solutions for commonly used diffusion-weighted pulse sequences, whereas the improved FD method shows improved efficiency and accuracy. A tightly coupled parallel computing approach was also developed to implement the FD methods to enable large-scale simulations of realistic biological tissues. The potential applications of the improved FD method for understanding diffusion in tissues are also discussed. (note)

  8. CASKETSS-HEAT: a finite difference computer program for nonlinear heat conduction problems

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1988-12-01

    A heat conduction program CASKETSS-HEAT has been developed. CASKETSS-HEAT is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Main features of CASKETSS-HEAT are as follows. (1) One, two and three-dimensional geometries for heat conduction calculation are available. (2) Convection and radiation heat transfer of boundry can be specified. (3) Phase change and chemical change can be treated. (4) Finned surface heat transfer can be treated easily. (5) Data memory allocation in the program is variable according to problem size. (6) The program is a compatible heat transfer analysis program to the stress analysis program SAP4 and SAP5. (7) Pre- and post-processing for input data generation and graphic representation of calculation results are available. In the paper, brief illustration of calculation method, input data and sample calculation are presented. (author)

  9. Modeling of NiTiHf using finite difference method

    Science.gov (United States)

    Farjam, Nazanin; Mehrabi, Reza; Karaca, Haluk; Mirzaeifar, Reza; Elahinia, Mohammad

    2018-03-01

    NiTiHf is a high temperature and high strength shape memory alloy with transformation temperatures above 100oC. A constitutive model based on Gibbs free energy is developed to predict the behavior of this material. Two different irrecoverable strains including transformation induced plastic strain (TRIP) and viscoplastic strain (VP) are considered when using high temperature shape memory alloys (HTSMAs). The first one happens during transformation at high levels of stress and the second one is related to the creep which is rate-dependent. The developed model is implemented for NiTiHf under uniaxial loading. Finite difference method is utilized to solve the proposed equations. The material parameters in the equations are calibrated from experimental data. Simulation results are captured to investigate the superelastic behavior of NiTiHf. The extracted results are compared with experimental tests of isobaric heating and cooling at different levels of stress and also superelastic tests at different levels of temperature. More results are generated to investigate the capability of the proposed model in the prediction of the irrecoverable strain after full transformation in HTSMAs.

  10. Evaluation of explicit finite-difference techniques for LMFBR safety analysis

    International Nuclear Information System (INIS)

    Bernstein, D.; Golden, R.D.; Gross, M.B.; Hofmann, R.

    1976-01-01

    In the past few years, the use of explicit finite-difference (EFD) and finite-element computer programs for reactor safety calculations has steadily increased. One of the major areas of application has been for the analysis of hypothetical core disruptive accidents in liquid metal fast breeder reactors. Most of these EFD codes were derived to varying degrees from the same roots, but the codes are large and have progressed rapidly, so there may be substantial differences among them in spite of a common ancestry. When this fact is coupled with the complexity of HCDA calculations, it is not possible to assure that independent calculations of an HCDA will produce substantially the same results. Given the extreme importance of nuclear safety, it is essential to be sure that HCDA analyses are correct, and additional code validation is therefore desirable. A comparative evaluation of HCDA computational techniques is being performed under an ERDA-sponsored program called APRICOT (Analysis of PRImary COntainment Transients). The philosophy, calculations, and preliminary results from this program are described in this paper

  11. High-resolution finite-difference algorithms for conservation laws

    International Nuclear Information System (INIS)

    Towers, J.D.

    1987-01-01

    A new class of Total Variation Decreasing (TVD) schemes for 2-dimensional scalar conservation laws is constructed using either flux-limited or slope-limited numerical fluxes. The schemes are proven to have formal second-order accuracy in regions where neither u/sub x/ nor y/sub y/ vanishes. A new class of high-resolution large-time-step TVD schemes is constructed by adding flux-limited correction terms to the first-order accurate large-time-step version of the Engquist-Osher scheme. The use of the transport-collapse operator in place of the exact solution operator for the construction of difference schemes is studied. The production of spurious extrema by difference schemes is studied. A simple condition guaranteeing the nonproduction of spurious extrema is derived. A sufficient class of entropy inequalities for a conservation law with a flux having a single inflection point is presented. Finite-difference schemes satisfying a discrete version of each entropy inequality are only first-order accurate

  12. A two-dimensional discontinuous heterogeneous finite element method for neutron transport calculations

    International Nuclear Information System (INIS)

    Masiello, E.; Sanchez, R.

    2007-01-01

    A discontinuous heterogeneous finite element method is presented and discussed. The method is intended for realistic numerical pin-by-pin lattice calculations when an exact representation of the geometric shape of the pins is made without need for homogenization. The method keeps the advantages of conventional discrete ordinate methods, such as fast execution together with the possibility to deal with a large number of spatial meshes, while minimizing the need for geometric modeling. It also provides a complete factorization in space, angle, and energy for the discretized matrices and minimizes, thus, storage requirements. An angular multigrid acceleration technique has also been developed to speed up the rate of convergence of the inner iterations. A particular aspect of this acceleration is the introduction of boundary restriction and prolongation operators that minimize oscillatory behavior and enhance positivity. Numerical tests are presented that show the high precision of the method and the efficiency of the angular multigrid acceleration. (authors)

  13. Bootstrap calculation of the dynamical quark mass in QCD4 at finite temperature

    International Nuclear Information System (INIS)

    Cabo, A.; Kalashnikov, O.K.; Veliev, E.Kh.

    1988-01-01

    Nonperturbative calculations of the dynamical quark mass m(T) are given in QCD 4 , based on the bootstrap solution of the Schwinger-Dyson equation for the quark Green function at finite temperatures. A closed nonlinear equation is obtained for m(T) whose solution is found under some simplifying assumptions. We used a particular approximation for the effective charge and the nonperturbative expressions of the gluon magnetic and electric masses. The singular behavior of m(T) is established and its parameters are determined numerically. The singularity found is shown to correctly reproduce the chiral phase transition and the temperature limits obtained for m(T) are qualitatively correct. The complete phase diagram of QCD 4 in the (μ,T) plane is briefly discussed. (orig.)

  14. On the calculation of crack propagation behavior in disks and plates using a mixed finite method

    International Nuclear Information System (INIS)

    Fischer, W.

    1991-01-01

    According to the linear theory of elasticity, infinitely high stresses occur in the crack tips of cracked components. Plastic flow initiation or previous damage, however, will limit these stress singularities to an upper maximum stress for all real materials. To permit acquisition of this highly localized material behavior, while avoiding a very high physical nonlinear calculation effort for the evaluation of crack propagation behavior in disks and plates, models essentially based on Dugdale and Barenblatt are used. This involves determining the stress and displacement conditions required for the simulation of crack propagation by means of a mixed finite method introducing the disk cutting forces and plate curvatures or moments as unknown quantities. In addition to pure disk and plate problems, also coupled disk-plate problems are covered, where the coupling, on one hand, is due to the consideration of high deformations. (orig.) With 66 figs., 8 tabs [de

  15. A calculation method for finite depth free-surface green function

    Directory of Open Access Journals (Sweden)

    Yingyi Liu

    2015-03-01

    Full Text Available An improved boundary element method is presented for numerical analysis of hydrodynamic behavior of marine structures. A new algorithm for numerical solution of the finite depth free-surface Green function in three dimensions is developed based on multiple series representations. The whole range of the key parameter R/h is divided into four regions, within which different representation is used to achieve fast convergence. The well-known epsilon algorithm is also adopted to accelerate the convergence. The critical convergence criteria for each representation are investigated and provided. The proposed method is validated by several well-documented benchmark problems.

  16. Finite-difference analysis of shells impacting rigid barriers

    International Nuclear Information System (INIS)

    Pirotin, S.D.; Witmer, E.A.

    1977-01-01

    Nuclear power plants must be protected from the adverse effects of missile impacts. A significant category of missile impact involves deformable structures (pressure vessel components, whipping pipes) striking relatively rigid targets (concrete walls, bumpers) which act as protective devices. The response and interaction of these structures is needed to assess the adequacy of these barriers for protecting vital safety related equipment. The present investigation represents an initial attempt to develop an efficient numerical procedure for predicting the deformations and impact force time-histories of shells which impact upon a rigid target. The general large-deflection equations of motion of the shell are expressed in finite-difference form in space and integrated in time through application of the central-difference temporal operator. The effect of material nonlinearities is treated by a mechanical sublayer material model which handles the strain-hardening, Bauschinger, and strain-rate effects. The general adequacy of this shell treatment has been validated by comparing predictions with the results of various experiments in which structures have been subjected to well-defined transient forcing functions (typically high-explosive impulse loading). The 'new' ingredient addressed in the present study involves an accounting for impact interaction and response of both the target structure and the attacking body. (Auth.)

  17. SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Tian, Z; Song, T; Jia, X; Gu, X; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accounting for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.

  18. A practical implicit finite-difference method: examples from seismic modelling

    International Nuclear Information System (INIS)

    Liu, Yang; Sen, Mrinal K

    2009-01-01

    We derive explicit and new implicit finite-difference formulae for derivatives of arbitrary order with any order of accuracy by the plane wave theory where the finite-difference coefficients are obtained from the Taylor series expansion. The implicit finite-difference formulae are derived from fractional expansion of derivatives which form tridiagonal matrix equations. Our results demonstrate that the accuracy of a (2N + 2)th-order implicit formula is nearly equivalent to that of a (6N + 2)th-order explicit formula for the first-order derivative, and (2N + 2)th-order implicit formula is nearly equivalent to (4N + 2)th-order explicit formula for the second-order derivative. In general, an implicit method is computationally more expensive than an explicit method, due to the requirement of solving large matrix equations. However, the new implicit method only involves solving tridiagonal matrix equations, which is fairly inexpensive. Furthermore, taking advantage of the fact that many repeated calculations of derivatives are performed by the same difference formula, several parts can be precomputed resulting in a fast algorithm. We further demonstrate that a (2N + 2)th-order implicit formulation requires nearly the same memory and computation as a (2N + 4)th-order explicit formulation but attains the accuracy achieved by a (6N + 2)th-order explicit formulation for the first-order derivative and that of a (4N + 2)th-order explicit method for the second-order derivative when additional cost of visiting arrays is not considered. This means that a high-order explicit method may be replaced by an implicit method of the same order resulting in a much improved performance. Our analysis of efficiency and numerical modelling results for acoustic and elastic wave propagation validates the effectiveness and practicality of the implicit finite-difference method

  19. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice. Journal Home ... Von Mises and thermal stress distributions were evaluated. Results: In all ... distribution. Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ...

  20. Finite-difference numerical simulations of underground explosion cavity decoupling

    Science.gov (United States)

    Aldridge, D. F.; Preston, L. A.; Jensen, R. P.

    2012-12-01

    Earth models containing a significant portion of ideal fluid (e.g., air and/or water) are of increasing interest in seismic wave propagation simulations. Examples include a marine model with a thick water layer, and a land model with air overlying a rugged topographic surface. The atmospheric infrasound community is currently interested in coupled seismic-acoustic propagation of low-frequency signals over long ranges (~tens to ~hundreds of kilometers). Also, accurate and efficient numerical treatment of models containing underground air-filled voids (caves, caverns, tunnels, subterranean man-made facilities) is essential. In support of the Source Physics Experiment (SPE) conducted at the Nevada National Security Site (NNSS), we are developing a numerical algorithm for simulating coupled seismic and acoustic wave propagation in mixed solid/fluid media. Solution methodology involves explicit, time-domain, finite-differencing of the elastodynamic velocity-stress partial differential system on a three-dimensional staggered spatial grid. Conditional logic is used to avoid shear stress updating within the fluid zones; this approach leads to computational efficiency gains for models containing a significant proportion of ideal fluid. Numerical stability and accuracy are maintained at air/rock interfaces (where the contrast in mass density is on the order of 1 to 2000) via a finite-difference operator "order switching" formalism. The fourth-order spatial FD operator used throughout the bulk of the earth model is reduced to second-order in the immediate vicinity of a high-contrast interface. Current modeling efforts are oriented toward quantifying the amount of atmospheric infrasound energy generated by various underground seismic sources (explosions and earthquakes). Source depth and orientation, and surface topography play obvious roles. The cavity decoupling problem, where an explosion is detonated within an air-filled void, is of special interest. A point explosion

  1. Calculated optical absorption of different perovskite phases

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, Ivano E. [Center for Atomic-scale Materials Design; Department of Physics; Technical University of Denmark; DK 2800, Kongens Lyngby; Denmark; Thygesen, Kristian S. [Center for Atomic-scale Materials Design; Department of Physics; Technical University of Denmark; DK 2800, Kongens Lyngby; Denmark; Jacobsen, Karsten W. [Center for Atomic-scale Materials Design; Department of Physics; Technical University of Denmark; DK 2800, Kongens Lyngby; Denmark

    2015-01-01

    We present calculations of the optical properties of a set of around 80 oxides, oxynitrides, and organometal halide cubic and layered perovskites (Ruddlesden–Popper and Dion–Jacobson phases) with a bandgap in the visible part of the solar spectrum.

  2. APPLICATION OF FINITE ELEMENT METHOD TAKING INTO ACCOUNT PHYSICAL AND GEOMETRIC NONLINEARITY FOR THE CALCULATION OF PRESTRESSED REINFORCED CONCRETE BEAMS

    Directory of Open Access Journals (Sweden)

    Vladimir P. Agapov

    2017-01-01

    Full Text Available Abstract. Objectives Modern building codes prescribe the calculation of building structures taking into account the nonlinearity of deformation. To achieve this goal, the task is to develop a methodology for calculating prestressed reinforced concrete beams, taking into account physical and geometric nonlinearity. Methods The methodology is based on nonlinear calculation algorithms implemented and tested in the computation complex PRINS (a program for calculating engineering constructions for other types of construction. As a tool for solving this problem, the finite element method is used. Non-linear calculation of constructions is carried out by the PRINS computational complex using the stepwise iterative method. In this case, an equation is constructed and solved at the loading step, using modified Lagrangian coordinates. Results The basic formulas necessary for both the formation and the solution of a system of nonlinear algebraic equations by the stepwise iteration method are given, taking into account the loading, unloading and possible additional loading. A method for simulating prestressing is described by setting the temperature action on the reinforcement and stressing steel rod. Different approaches to accounting for physical and geometric nonlinearity of reinforced concrete beam rods are considered. A calculation example of a flat beam is given, in which the behaviour of the beam is analysed at various stages of its loading up to destruction. Conclusion A program is developed for the calculation of flat and spatially reinforced concrete beams taking into account the nonlinearity of deformation. The program is adapted to the computational complex PRINS and as part of this complex is available to a wide range of engineering, scientific and technical specialists. 

  3. Analysis of multi lobe journal bearings with surface roughness using finite difference method

    Science.gov (United States)

    PhaniRaja Kumar, K.; Bhaskar, SUdaya; Manzoor Hussain, M.

    2018-04-01

    Multi lobe journal bearings are used for high operating speeds and high loads in machines. In this paper symmetrical multi lobe journal bearings are analyzed to find out the effect of surface roughnessduring non linear loading. Using the fourth order RungeKutta method, time transient analysis was performed to calculate and plot the journal centre trajectories. Flow factor method is used to evaluate the roughness and the finite difference method (FDM) is used to predict the pressure distribution over the bearing surface. The Transient analysis is done on the multi lobe journal bearings for threedifferent surface roughness orientations. Longitudinal surface roughness is more effective when compared with isotopic and traverse surface roughness.

  4. Finite difference time domain modeling of light matter interaction in light-propelled microtools

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Aabo, Thomas

    2013-01-01

    save time as it helps optimize the structures prior to fabrication and experiments. In addition to field distributions, optical forces can also be obtained using the Maxwell stress tensor formulation. By calculating the forces on bent waveguides subjected to tailored static light distributions, we...... may trigger highly localized non linear processes in the surface of a cell. Since these functionalities are strongly dependent on design, it is important to use models that can handle complexities and take in little simplifying assumptions about the system. Hence, we use the finite difference time...

  5. An assessment of unstructured grid finite volume schemes for cold gas hypersonic flow calculations

    Directory of Open Access Journals (Sweden)

    João Luiz F. Azevedo

    2009-06-01

    Full Text Available A comparison of five different spatial discretization schemes is performed considering a typical high speed flow application. Flowfields are simulated using the 2-D Euler equations, discretized in a cell-centered finite volume procedure on unstructured triangular meshes. The algorithms studied include a central difference-type scheme, and 1st- and 2nd-order van Leer and Liou flux-vector splitting schemes. These methods are implemented in an efficient, edge-based, unstructured grid procedure which allows for adaptive mesh refinement based on flow property gradients. Details of the unstructured grid implementation of the methods are presented together with a discussion of the data structure and of the adaptive refinement strategy. The application of interest is the cold gas flow through a typical hypersonic inlet. Results for different entrance Mach numbers and mesh topologies are discussed in order to assess the comparative performance of the various spatial discretization schemes.

  6. A novel upwind stabilized discontinuous finite element angular framework for deterministic dose calculations in magnetic fields.

    Science.gov (United States)

    Yang, R; Zelyak, O; Fallone, B G; St-Aubin, J

    2018-01-30

    Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.

  7. A novel upwind stabilized discontinuous finite element angular framework for deterministic dose calculations in magnetic fields

    Science.gov (United States)

    Yang, R.; Zelyak, O.; Fallone, B. G.; St-Aubin, J.

    2018-02-01

    Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.

  8. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    International Nuclear Information System (INIS)

    Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi

    2015-01-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap

  9. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    Energy Technology Data Exchange (ETDEWEB)

    Ibral, Asmaa [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Zouitine, Asmaa [Département de Physique, Ecole Nationale Supérieure d' Enseignement Technique, Université Mohammed V Souissi, B. P. 6207 Rabat-Instituts, Rabat, Royaume du Maroc (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); and others

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  10. A mimetic finite difference method for the Stokes problem with elected edge bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, K [Los Alamos National Laboratory; Berirao, L [DIPARTMENTO DI MATERMATICA

    2009-01-01

    A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this article is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.

  11. Evaluation of finite difference and FFT-based solutions of the transport of intensity equation.

    Science.gov (United States)

    Zhang, Hongbo; Zhou, Wen-Jing; Liu, Ying; Leber, Donald; Banerjee, Partha; Basunia, Mahmudunnabi; Poon, Ting-Chung

    2018-01-01

    A finite difference method is proposed for solving the transport of intensity equation. Simulation results show that although slower than fast Fourier transform (FFT)-based methods, finite difference methods are able to reconstruct the phase with better accuracy due to relaxed assumptions for solving the transport of intensity equation relative to FFT methods. Finite difference methods are also more flexible than FFT methods in dealing with different boundary conditions.

  12. Implicit time-dependent finite different algorithm for quench simulation

    International Nuclear Information System (INIS)

    Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi

    1994-12-01

    A magnet in a fusion machine has many difficulties in its application because of requirement of a large operating current, high operating field and high breakdown voltage. A cable-in-conduit (CIC) conductor is the best candidate to overcome these difficulties. However, there remained uncertainty in a quench event in the cable-in-conduit conductor because of a difficulty to analyze a fluid dynamics equation. Several scientists, then, developed the numerical code for the quench simulation. However, most of them were based on an explicit time-dependent finite difference scheme. In this scheme, a discrete time increment is strictly restricted by CFL (Courant-Friedrichs-Lewy) condition. Therefore, long CPU time was consumed for the quench simulation. Authors, then, developed a new quench simulation code, POCHI1, which is based on an implicit time dependent scheme. In POCHI1, the fluid dynamics equation is linearlized according to a procedure applied by Beam and Warming and then, a tridiagonal system can be offered. Therefore, no iteration is necessary to solve the fluid dynamics equation. This leads great reduction of the CPU time. Also, POCHI1 can cope with non-linear boundary condition. In this study, comparison with experimental results was carried out. The normal zone propagation behavior was investigated in two samples of CIC conductors which had different hydraulic diameters. The measured and simulated normal zone propagation length showed relatively good agreement. However, the behavior of the normal voltage shows a little disagreement. These results indicate necessity to improve the treatment of the heat transfer coefficient in the turbulent flow region and the electric resistivity of the copper stabilizer in high temperature and high field region. (author)

  13. A hybrid finite-volume and finite difference scheme for depth-integrated non-hydrostatic model

    Science.gov (United States)

    Yin, Jing; Sun, Jia-wen; Wang, Xing-gang; Yu, Yong-hai; Sun, Zhao-chen

    2017-06-01

    A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into hydrostatic and non-hydrostatic parts. The first part is solved by using the finite volume conservative discretization method, whilst the latter is considered by solving discretized Poisson-type equations with the finite difference method. The second-order accuracy, both in time and space, of the finite volume scheme is achieved by using an explicit predictor-correction step and linear construction of variable state in cells. The fluxes across the cell faces are computed in a Godunov-based manner by using MUSTA scheme. Slope and flux limiting technique is used to equip the algorithm with total variation dimensioning property for shock capturing purpose. Wave breaking is treated as a shock by switching off the non-hydrostatic pressure in the steep wave front locally. The model deals with moving wet/dry front in a simple way. Numerical experiments are conducted to verify the proposed model.

  14. Microscopic optical potential calculations of finite nuclei with extended skyrme forces

    International Nuclear Information System (INIS)

    Yuan Haiji; Ye Weilei; Gao Qin; Shen Qingbiao

    1986-01-01

    Microscopic optical potential calculations in the Hartree-Fock (HF) approximation with Extended Skyrme forces are investigated. The HF equation is derived from the variation principle and the potential formula of spherical nuclei is obtained by two different ways. Then the calculations for symmetrid nuclei 16 O, 40 Ca and asymmetric nucleus 90 Zr with eight sets of Skyrme force parameters are presented. Our results show that the potential form and variating tendency with incident energy are reasonable and there apparently appears a 'wine-bottle-bottom' shape in the intermediate energy region. Furthermore, our calculations reflect shell effects clearly

  15. A finite-difference contrast source inversion method

    International Nuclear Information System (INIS)

    Abubakar, A; Hu, W; Habashy, T M; Van den Berg, P M

    2008-01-01

    We present a contrast source inversion (CSI) algorithm using a finite-difference (FD) approach as its backbone for reconstructing the unknown material properties of inhomogeneous objects embedded in a known inhomogeneous background medium. Unlike the CSI method using the integral equation (IE) approach, the FD-CSI method can readily employ an arbitrary inhomogeneous medium as its background. The ability to use an inhomogeneous background medium has made this algorithm very suitable to be used in through-wall imaging and time-lapse inversion applications. Similar to the IE-CSI algorithm the unknown contrast sources and contrast function are updated alternately to reconstruct the unknown objects without requiring the solution of the full forward problem at each iteration step in the optimization process. The FD solver is formulated in the frequency domain and it is equipped with a perfectly matched layer (PML) absorbing boundary condition. The FD operator used in the FD-CSI method is only dependent on the background medium and the frequency of operation, thus it does not change throughout the inversion process. Therefore, at least for the two-dimensional (2D) configurations, where the size of the stiffness matrix is manageable, the FD stiffness matrix can be inverted using a non-iterative inversion matrix approach such as a Gauss elimination method for the sparse matrix. In this case, an LU decomposition needs to be done only once and can then be reused for multiple source positions and in successive iterations of the inversion. Numerical experiments show that this FD-CSI algorithm has an excellent performance for inverting inhomogeneous objects embedded in an inhomogeneous background medium

  16. A study of unstable rock failures using finite difference and discrete element methods

    Science.gov (United States)

    Garvey, Ryan J.

    Case histories in mining have long described pillars or faces of rock failing violently with an accompanying rapid ejection of debris and broken material into the working areas of the mine. These unstable failures have resulted in large losses of life and collapses of entire mine panels. Modern mining operations take significant steps to reduce the likelihood of unstable failure, however eliminating their occurrence is difficult in practice. Researchers over several decades have supplemented studies of unstable failures through the application of various numerical methods. The direction of the current research is to extend these methods and to develop improved numerical tools with which to study unstable failures in underground mining layouts. An extensive study is first conducted on the expression of unstable failure in discrete element and finite difference methods. Simulated uniaxial compressive strength tests are run on brittle rock specimens. Stable or unstable loading conditions are applied onto the brittle specimens by a pair of elastic platens with ranging stiffnesses. Determinations of instability are established through stress and strain histories taken for the specimen and the system. Additional numerical tools are then developed for the finite difference method to analyze unstable failure in larger mine models. Instability identifiers are established for assessing the locations and relative magnitudes of unstable failure through measures of rapid dynamic motion. An energy balance is developed which calculates the excess energy released as a result of unstable equilibria in rock systems. These tools are validated through uniaxial and triaxial compressive strength tests and are extended to models of coal pillars and a simplified mining layout. The results of the finite difference simulations reveal that the instability identifiers and excess energy calculations provide a generalized methodology for assessing unstable failures within potentially complex

  17. Calculation of load-bearing capacity of prestressed reinforced concrete trusses by the finite element method

    Science.gov (United States)

    Agapov, Vladimir; Golovanov, Roman; Aidemirov, Kurban

    2017-10-01

    The technique of calculation of prestressed reinforced concrete trusses with taking into account geometrical and physical nonlinearity is considered. As a tool for solving the problem, the finite element method has been chosen. Basic design equations and methods for their solution are given. It is assumed that there are both a prestressed and nonprestressed reinforcement in the bars of the trusses. The prestress is modeled by setting the temperature effect on the reinforcement. The ways of taking into account the physical and geometrical nonlinearity for bars of reinforced concrete trusses are considered. An example of the analysis of a flat truss is given and the behavior of the truss on various stages of its loading up to destruction is analyzed. A program for the analysis of flat and spatial concrete trusses taking into account the nonlinear deformation is developed. The program is adapted to the computational complex PRINS. As a part of this complex it is available to a wide range of engineering, scientific and technical workers

  18. A simple finite-difference scheme for handling topography with the first-order wave equation

    NARCIS (Netherlands)

    Mulder, W.A.; Huiskes, M.J.

    2017-01-01

    One approach to incorporate topography in seismic finite-difference codes is a local modification of the difference operators near the free surface. An earlier paper described an approach for modelling irregular boundaries in a constant-density acoustic finite-difference code, based on the

  19. Relation between Euclidean and real time calculations of Green functions at finite temperature

    International Nuclear Information System (INIS)

    Bochkarev, A.

    1993-01-01

    We find a relation between the semiclassical approximation of the temperature (Matsubara) two-point correlator and the corresponding classical Green function in real time at finite temperature. The anharmonic oscillator at finite temperature is used to illustrate our statement, which is however of rather general origin

  20. Finite difference method and algebraic polynomial interpolation for numerically solving Poisson's equation over arbitrary domains

    Directory of Open Access Journals (Sweden)

    Tsugio Fukuchi

    2014-06-01

    Full Text Available The finite difference method (FDM based on Cartesian coordinate systems can be applied to numerical analyses over any complex domain. A complex domain is usually taken to mean that the geometry of an immersed body in a fluid is complex; here, it means simply an analytical domain of arbitrary configuration. In such an approach, we do not need to treat the outer and inner boundaries differently in numerical calculations; both are treated in the same way. Using a method that adopts algebraic polynomial interpolations in the calculation around near-wall elements, all the calculations over irregular domains reduce to those over regular domains. Discretization of the space differential in the FDM is usually derived using the Taylor series expansion; however, if we use the polynomial interpolation systematically, exceptional advantages are gained in deriving high-order differences. In using the polynomial interpolations, we can numerically solve the Poisson equation freely over any complex domain. Only a particular type of partial differential equation, Poisson's equations, is treated; however, the arguments put forward have wider generality in numerical calculations using the FDM.

  1. A finite difference, multipoint flux numerical approach to flow in porous media: Numerical examples

    KAUST Repository

    Osman, Hossam Omar; Salama, Amgad; Sun, Shuyu; Bao, Kai

    2012-01-01

    It is clear that none of the current available numerical schemes which may be adopted to solve transport phenomena in porous media fulfill all the required robustness conditions. That is while the finite difference methods are the simplest of all, they face several difficulties in complex geometries and anisotropic media. On the other hand, while finite element methods are well suited to complex geometries and can deal with anisotropic media, they are more involved in coding and usually require more execution time. Therefore, in this work we try to combine some features of the finite element technique, namely its ability to work with anisotropic media with the finite difference approach. We reduce the multipoint flux, mixed finite element technique through some quadrature rules to an equivalent cell-centered finite difference approximation. We show examples on using this technique to single-phase flow in anisotropic porous media.

  2. A finite difference, multipoint flux numerical approach to flow in porous media: Numerical examples

    KAUST Repository

    Osman, Hossam Omar

    2012-06-17

    It is clear that none of the current available numerical schemes which may be adopted to solve transport phenomena in porous media fulfill all the required robustness conditions. That is while the finite difference methods are the simplest of all, they face several difficulties in complex geometries and anisotropic media. On the other hand, while finite element methods are well suited to complex geometries and can deal with anisotropic media, they are more involved in coding and usually require more execution time. Therefore, in this work we try to combine some features of the finite element technique, namely its ability to work with anisotropic media with the finite difference approach. We reduce the multipoint flux, mixed finite element technique through some quadrature rules to an equivalent cell-centered finite difference approximation. We show examples on using this technique to single-phase flow in anisotropic porous media.

  3. Run-up on a body in waves and current. Fully nonlinear and finite-order calculations

    DEFF Research Database (Denmark)

    Büchmann, Bjarne; Ferrant, P.; Skourup, J.

    2001-01-01

    Run-up on a large fixed body in waves and current have been calculated using both a fully nonlinear time-domain boundary element model and a finite-order time-domain boundary element model, the latter being correct to second order in the wave steepness and to first-order in the current strength...

  4. Evaluation of interface adhesion of hot-dipped zinc coating on TRIP steel with tensile testing and finite element calculation

    NARCIS (Netherlands)

    Song, G.M.; De Hosson, J.T.M.; Sloof, W.G.; Pei, Y.T.

    In this work, a methodology for the determination of the interface adhesion strength of zinc coating on TRIP steel is present. This method consists of a conventional tensile test in combination with finite element calculation. The relation between the average interface crack length and the applied

  5. DWBA (d,N) Calculations Including Dirac Phenomenological Potentials and an Exact Treatment of Finite-range Effects

    Science.gov (United States)

    Hawk, Eric

    2005-04-01

    An algorithm for the inclusion of both Dirac phenomenological potentials and an exact treatment of finite-range effects within the DWBA is presented. The numerical implementation of this algorithm is used to calculate low-energy deuteron stripping cross sections, analyzing powers, and polarizations. These calculations are compared with experimental data where available. The impact of using several commonly employed nuclear potentials (Reid soft-core, Bonn, Argonne v18) for the internal deuteron wave function is also examined.

  6. Contact Stress Analysis for Gears of Different Helix Angle Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Patil Santosh

    2014-07-01

    Full Text Available The gear contact stress problem has been a great point of interest for many years, but still an extensive research is required to understand the various parameters affecting this stress. Among such parameters, helix angle is one which has played a crucial role in variation of contact stress. Numerous studies have been carried out on spur gear for contact stress variation. Hence, the present work is an attempt to study the contact stresses among the helical gear pairs, under static conditions, by using a 3D finite element method. The helical gear pairs on which the analysis is carried are 0, 5, 15, 25 degree helical gear sets. The Lagrange multiplier algorithm has been used between the contacting pairs to determine the stresses. The helical gear contact stress is evaluated using FE model and results have also been found at different coefficient of friction, varying from 0.0 to 0.3. The FE results have been further compared with the analytical calculations. The analytical calculations are based upon Hertz and AGMA equations, which are modified to include helix angle. The commercial finite element software was used in the study and it was shown that this approach can be applied to gear design efficiently. The contact stress results have shown a decreasing trend, with increase in helix angle.

  7. A simple finite-difference scheme for handling topography with the second-order wave equation

    NARCIS (Netherlands)

    Mulder, W.A.

    2017-01-01

    The presence of topography poses a challenge for seismic modeling with finite-difference codes. The representation of topography by means of an air layer or vacuum often leads to a substantial loss of numerical accuracy. A suitable modification of the finite-difference weights near the free

  8. Preconditioned finite-difference frequency-domain for modelling periodic dielectric structures - comparisons with FDTD

    NARCIS (Netherlands)

    Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.

    2008-01-01

    Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling

  9. Preconditioned finite-difference frequency-domain for modelling periodic dielectric structures : comparisons with FDTD

    NARCIS (Netherlands)

    Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.

    2008-01-01

    Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling

  10. The computation of pressure waves in shock tubes by a finite difference procedure

    International Nuclear Information System (INIS)

    Barbaro, M.

    1988-09-01

    A finite difference solution of one-dimensional unsteady isentropic compressible flow equations is presented. The computer program has been tested by solving some cases of the Riemann shock tube problem. Predictions are in good agreement with those presented by other authors. Some inaccuracies may be attributed to the wave smearing consequent of the finite-difference treatment. (author)

  11. Use of the finite-difference time-domain method in electromagnetic dosimetry

    International Nuclear Information System (INIS)

    Sullivan, D.M.

    1987-01-01

    Although there are acceptable methods for calculating whole body electromagnetic absorption, no completely acceptable method for calculating the local specific absorption rate (SAR) at points within the body has been developed. Frequency domain methods, such as the method of moments (MoM) have achieved some success; however, the MoM requires computer storage on the order of (3N) 2 , and computation time on the order of (3N) 3 where N is the number of cells. The finite-difference time-domain (FDTD) method has been employed extensively in calculating the scattering from metallic objects, and recently is seeing some use in calculating the interaction of EM fields with complex, lossy dielectric bodies. Since the FDTD method has storage and time requirements proportional to N, it presents an attractive alternative to calculating SAR distribution in large bodies. This dissertation describes the FDTD method and evaluates it by comparing its results with analytic solutions in 2 and 3 dimensions. The results obtained demonstrate that the FDTD method is capable of calculating internal SAR distribution with acceptable accuracy. The construction of a data base to provide detailed, inhomogeneous man models for use with the FDTD method is described. Using this construction method, a model of 40,000 1.31 cm. cells is developed for use at 350 MHz, and another model consisting of 5000 2.62 cm. cells is developed for use at 100 MHz. To add more realism to the problem, a ground plane is added to the FDTD software. The needed changes to the software are described, along with a test which confirms its accuracy. Using the CRAY II supercomputer, SAR distributions in human models are calculated using incident frequencies of 100 MHz and 350 MHz for three different cases: (1) A homogeneous man model in free space, (2) an inhomogeneous man model in free space, and (3) an inhomogeneous man model standing on a ground plane

  12. An Explicit Finite Difference scheme for numerical solution of fractional neutron point kinetic equation

    International Nuclear Information System (INIS)

    Saha Ray, S.; Patra, A.

    2012-01-01

    Highlights: ► In this paper fractional neutron point kinetic equation has been analyzed. ► The numerical solution for fractional neutron point kinetic equation is obtained. ► Explicit Finite Difference Method has been applied. ► Supercritical reactivity, critical reactivity and subcritical reactivity analyzed. ► Comparison between fractional and classical neutron density is presented. - Abstract: In the present article, a numerical procedure to efficiently calculate the solution for fractional point kinetics equation in nuclear reactor dynamics is investigated. The Explicit Finite Difference Method is applied to solve the fractional neutron point kinetic equation with the Grunwald–Letnikov (GL) definition (). Fractional Neutron Point Kinetic Model has been analyzed for the dynamic behavior of the neutron motion in which the relaxation time associated with a variation in the neutron flux involves a fractional order acting as exponent of the relaxation time, to obtain the best operation of a nuclear reactor dynamics. Results for neutron dynamic behavior for subcritical reactivity, supercritical reactivity and critical reactivity and also for different values of fractional order have been presented and compared with the classical neutron point kinetic (NPK) equation as well as the results obtained by the learned researchers .

  13. Finite-Time Synchronization of Chaotic Systems with Different Dimension and Secure Communication

    Directory of Open Access Journals (Sweden)

    Shouquan Pang

    2016-01-01

    Full Text Available Finite-time synchronization of chaotic systems with different dimension and secure communication is investigated. It is rigorously proven that global finite-time synchronization can be achieved between three-dimension Lorenz chaotic system and four-dimension Lorenz hyperchaotic system which have certain parameters or uncertain parameters. The electronic circuits of finite-time synchronization using Multisim 12 are designed to verify our conclusion. And the application to the secure communications is also analyzed and discussed.

  14. HEATING-7, Multidimensional Finite-Difference Heat Conduction Analysis

    International Nuclear Information System (INIS)

    2000-01-01

    problems, surface fluxes may be plotted with H7TECPLOT which requires the proprietary software TECPLOT. HEATING 7.3 runs under Windows95 and WindowsNT on PC's. No future modifications are planned for HEATING7. See README.1ST for more information. 2 - Method of solution: Three steady-state solution techniques are available: point-successive over-relaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion.) The solution of the system of equations arising from the implicit techniques is accomplished by point-successive over-relaxation iteration and includes procedures to estimate the optimum acceleration parameter. 3 - Restrictions on the complexity of the problem: All surfaces in a model must be parallel to one of the coordinate axes which makes modeling complex geometries difficult. Transient change of phase problems can only be solved with one of the explicit techniques - an implicit change-of-phase capability has not been implemented

  15. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    Science.gov (United States)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  16. SLIC: an interactive mesh generator for finite element and finite difference application programs

    International Nuclear Information System (INIS)

    Gerhard, M.A.; Greenlaw, R.C.

    1979-01-01

    Computers with extended memory, such as the CDC STAR 100 and the CRAY 1 with mega-word capacities, are greatly enlarging the size of finite element problems which can be solved. The cost of developing and testing large meshes can be prohibitive unless one uses a computer program for mesh generation and plotting. SLIC is an interactive mesh program which builds and plots 2- and 3-D continuum meshes from interactive terminal or disc input. The user inputs coordinates for certain key points and enters commands which complete the description of the geometry. Entire surfaces and volumes are then generated from the geometric skeleton. SLIC allows the user to correct input errors and saves the corrected command list for later reuse. The mesh can be plotted on a video display at any stage of development to evaluate the work in progress. Output is in the form of an input file to a user-selected computer code. Among the available output types are ADINA, SAP4, and NIKE2D. 11 figures

  17. Combining finite element and finite difference methods for isotropic elastic wave simulations in an energy-conserving manner

    KAUST Repository

    Gao, Longfei

    2018-02-22

    We consider numerical simulation of the isotropic elastic wave equations arising from seismic applications with non-trivial land topography. The more flexible finite element method is applied to the shallow region of the simulation domain to account for the topography, and combined with the more efficient finite difference method that is applied to the deep region of the simulation domain. We demonstrate that these two discretization methods, albeit starting from different formulations of the elastic wave equation, can be joined together smoothly via weakly imposed interface conditions. Discrete energy analysis is employed to derive the proper interface treatment, leading to an overall discretization that is energy-conserving. Numerical examples are presented to demonstrate the efficacy of the proposed interface treatment.

  18. Combining finite element and finite difference methods for isotropic elastic wave simulations in an energy-conserving manner

    KAUST Repository

    Gao, Longfei; Keyes, David E.

    2018-01-01

    We consider numerical simulation of the isotropic elastic wave equations arising from seismic applications with non-trivial land topography. The more flexible finite element method is applied to the shallow region of the simulation domain to account for the topography, and combined with the more efficient finite difference method that is applied to the deep region of the simulation domain. We demonstrate that these two discretization methods, albeit starting from different formulations of the elastic wave equation, can be joined together smoothly via weakly imposed interface conditions. Discrete energy analysis is employed to derive the proper interface treatment, leading to an overall discretization that is energy-conserving. Numerical examples are presented to demonstrate the efficacy of the proposed interface treatment.

  19. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters

    Science.gov (United States)

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Rahim Hematiyan, Mohammad; Koontz, Craig; Meigooni, Ali S.

    2015-12-01

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%.

  20. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Hematiyan, Mohammad Rahim; Koontz, Craig; Meigooni, Ali S

    2015-01-01

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost ® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney–Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%. (paper)

  1. Adaptive beamlet-based finite-size pencil beam dose calculation for independent verification of IMRT and VMAT.

    Science.gov (United States)

    Park, Justin C; Li, Jonathan G; Arhjoul, Lahcen; Yan, Guanghua; Lu, Bo; Fan, Qiyong; Liu, Chihray

    2015-04-01

    The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm(2) square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm(2), where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm(2) beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a volumetric modulated arc

  2. Application of compact finite-difference schemes to simulations of stably stratified fluid flows

    Czech Academy of Sciences Publication Activity Database

    Bodnár, Tomáš; Beneš, L.; Fraunie, P.; Kozel, Karel

    2012-01-01

    Roč. 219, č. 7 (2012), s. 3336-3353 ISSN 0096-3003 Institutional support: RVO:61388998 Keywords : stratification * finite- difference * finite-volume * Runge-Kutta Subject RIV: BA - General Mathematics Impact factor: 1.349, year: 2012 http://www.sciencedirect.com/science/article/pii/S0096300311010988

  3. Finite Difference Time Domain (FDTD) Simulations Using Graphics Processors

    National Research Council Canada - National Science Library

    Adams, Samuel; Payne, Jason; Boppana, Rajendra

    2007-01-01

    .... This paper shows how GPUs can be used to greatly speedup FDTD simulations. The main objective is to leverage GPU processing power for FDTD update calculations and complete computationally expensive simulations in reasonable time...

  4. Time-domain finite-difference/finite-element hybrid simulations of radio frequency coils in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wang Shumin; Duyn, Jeff H

    2008-01-01

    A hybrid method that combines the finite-difference time-domain (FDTD) method and the finite-element time-domain (FETD) method is presented for simulating radio-frequency (RF) coils in magnetic resonance imaging. This method applies a high-fidelity FETD method to RF coils, while the human body is modeled with a low-cost FDTD method. Since the FDTD and the FETD methods are applied simultaneously, the dynamic interaction between RF coils and the human body is fully accounted for. In order to simplify the treatment of the highly irregular FDTD/FETD interface, composite elements are proposed. Two examples are provided to demonstrate the validity and effectiveness of the hybrid method in high-field receive-and-transmit coil design. This approach is also applicable to general bio-electromagnetic simulations

  5. Finite difference time domain solution of electromagnetic scattering on the hypercube

    International Nuclear Information System (INIS)

    Calalo, R.H.; Lyons, J.R.; Imbriale, W.A.

    1988-01-01

    Electromagnetic fields interacting with a dielectric or conducting structure produce scattered electromagnetic fields. To model the fields produced by complicated, volumetric structures, the finite difference time domain (FDTD) method employs an iterative solution to Maxwell's time dependent curl equations. Implementations of the FDTD method intensively use memory and perform numerous calculations per time step iteration. The authors have implemented an FDTD code on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. This code allows to solve problems requiring as many as 2,048,000 unit cells on a 32 node Hypercube. For smaller problems, the code produces solutions in a fraction of the time to solve the same problems on sequential computers

  6. Dispersive finite-difference time-domain (FDTD) analysis of the elliptic cylindrical cloak

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. Y.; Ahn, D. [University of Seoul, Seoul (Korea, Republic of)

    2012-05-15

    A dispersive full-wave finite-difference time-domain (FDTD) model is used to calculate the performance of elliptic cylindrical cloaking devices. The permittivity and the permeability tensors for the cloaking structure are derived by using an effective medium approach in general relativity. The elliptic cylindrical invisibility devices are found to show imperfect cloaking, and the cloaking performance is found to depend on the polarization of the incident waves, the direction of the propagation of those waves, the semi-focal distances and the loss tangents of the meta-material. When the semifocal distance of the elliptic cylinder decreases, the performance of the cloaking becomes very good, with neither noticeable scatterings nor field penetrations. For a larger semi-focal distance, only the TM wave with a specific propagation direction shows good cloaking performance. Realistic cloaking materials with loss still show a cloak that is working, but attenuated back-scattering waves exist.

  7. Finite-difference time-domain simulation of thermal noise in open cavities

    International Nuclear Information System (INIS)

    Andreasen, Jonathan; Cao Hui; Taflove, Allen; Kumar, Prem; Cao Changqi

    2008-01-01

    A numerical model based on the finite-difference time-domain (FDTD) method is developed to simulate thermal noise in open cavities owing to output coupling. The absorbing boundary of the FDTD grid is treated as a blackbody, whose thermal radiation penetrates the cavity in the grid. The calculated amount of thermal noise in a one-dimensional dielectric cavity recovers the standard result of the quantum Langevin equation in the Markovian regime. Our FDTD simulation also demonstrates that in the non-Markovian regime the buildup of the intracavity noise field depends on the ratio of the cavity photon lifetime to the coherence time of thermal radiation. The advantage of our numerical method is that the thermal noise is introduced in the time domain without prior knowledge of cavity modes

  8. Representation of boundary conditions in thermal reactor global analysis by diffusion theory employing finite difference approximation

    International Nuclear Information System (INIS)

    Paul, O.P.K.

    1978-01-01

    An approach to simulate the flux vanishing boundary condition in solving the two group coupled neutron diffusion equations in three dimensions (x, y, z) employed to calculate the flux distribution and keff of the reactor is summarised. This is of particular interest when the flux vanishing boundary in x, y, z directions is not an integral multiple of the mesh spacings in these directions. The method assumes the flux to be negative, hypothetically at the mesh points lying outside the boundary and thus the finite difference formalism for Laplacian operator, taking into account six neighbours of a mesh point in a square mesh arrangement, is expressed in a general form so as to account for the boundary mesh points of the system. This approach has been incorporated in a three dimensional diffusion code similar to TAPPS23 and has been used for IRT-2000 reactor and the results are quite satisfactory. (author)

  9. Development of the software Conden 1.0 in finite differences to model electrostatics problems 2D

    Directory of Open Access Journals (Sweden)

    Wilson Rodríguez Calderón

    2004-01-01

    Full Text Available The present work consists on the development and implementation of the finite differences method for over-relaxation adapted to irregular meshes to determine the influence of the air frontiers on the potencial values and field electricians, calculated inside a badges parallel condenser, using GID like a pre/post-process platform and Fortran like a programming language of the calculation motor of differences Conden 1.0. The problem domain is constituted by two rectangles that represent the condenser and the air layer that covers it, divided in rectangular meshes no standardize.

  10. Computing the demagnetizing tensor for finite difference micromagnetic simulations via numerical integration

    International Nuclear Information System (INIS)

    Chernyshenko, Dmitri; Fangohr, Hans

    2015-01-01

    In the finite difference method which is commonly used in computational micromagnetics, the demagnetizing field is usually computed as a convolution of the magnetization vector field with the demagnetizing tensor that describes the magnetostatic field of a cuboidal cell with constant magnetization. An analytical expression for the demagnetizing tensor is available, however at distances far from the cuboidal cell, the numerical evaluation of the analytical expression can be very inaccurate. Due to this large-distance inaccuracy numerical packages such as OOMMF compute the demagnetizing tensor using the explicit formula at distances close to the originating cell, but at distances far from the originating cell a formula based on an asymptotic expansion has to be used. In this work, we describe a method to calculate the demagnetizing field by numerical evaluation of the multidimensional integral in the demagnetizing tensor terms using a sparse grid integration scheme. This method improves the accuracy of computation at intermediate distances from the origin. We compute and report the accuracy of (i) the numerical evaluation of the exact tensor expression which is best for short distances, (ii) the asymptotic expansion best suited for large distances, and (iii) the new method based on numerical integration, which is superior to methods (i) and (ii) for intermediate distances. For all three methods, we show the measurements of accuracy and execution time as a function of distance, for calculations using single precision (4-byte) and double precision (8-byte) floating point arithmetic. We make recommendations for the choice of scheme order and integrating coefficients for the numerical integration method (iii). - Highlights: • We study the accuracy of demagnetization in finite difference micromagnetics. • We introduce a new sparse integration method to compute the tensor more accurately. • Newell, sparse integration and asymptotic method are compared for all ranges

  11. No-load loss calculation of distribution transformers supplied by nonsinusoidal voltage using three-dimensional finite element analysis

    International Nuclear Information System (INIS)

    Yazdani-Asrami, Mohammad; Mirzaie, Mohammad; Shayegani Akmal, Amir Abbas

    2013-01-01

    Transformers are basically designed to operate under nominal voltage, rated frequency and also, pure sinusoidal load current. In recent decade, change in the type of loads and increasing use of power electronic devices with their nonsinusoidal current waveform has distorted the system voltage waveform as well. The losses of transformers include load and no-load losses. No-load loss continuously led to loss of energy in transformers that are connected to the network in all 24 h. With respect to high significance of energy and undesirable impacts of losses on the aging of transformers, the no-load loss is considered as a critical factor. Nowadays, it is necessary to apply a suitable method for calculation of no-load loss in presence of the voltage harmonics and over-excite conditions, especially for distribution transformers, as a result of harmonic increase in the voltage and current in the network and particular applications. In this paper, Finite Element Method (FEM) has been used to simulate nonsinusoidal voltage effects on no-load loss of transformers. Such simulation enables the software to simulate and analyze different electromagnetic parameters such as flux lines, flux density, losses, and etc under different input sources and with high accuracy. In addition, effect of nonsinusoidal voltages on no-load loss has been investigated by a typical experimental transformer using several practical tests. - Highlights: ► FEM has been employed to loss calculation of distribution transformer under distorted voltages. ► This method gives accurate results in comparison with standard or circuit based methods. ► A new version of 3D FEM has been used, this approach is electromagnetic based. ► In literature, FEM always used for study of transformer load loss and most of them based on magneto-static FEM. ► FEM results are validated by experiment for small test transformer

  12. An Exact Implementation Of The Hoek–Brown Criterion For Elasto-Plastic Finite Element Calculations

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2007-01-01

    A simple stress update algorithm for generalised Hoek-Brown plasticity is presented. It is intended for use in elasto-plastic finite element computations and utilises the return mapping concept for computing the stress increment belonging to a given increment in strain at a material point. In the...

  13. On the relationship between some nodal schemes and the finite element method in static diffusion calculations

    International Nuclear Information System (INIS)

    Fedon-Magnaud, C.; Hennart, J.P.; Lautard, J.J.

    1983-03-01

    An unified formulation of non conforming finite elements with quadrature formula and simple nodal scheme is presented. The theoretical convergence is obtained for the previous scheme when the mesh is refined. Numerical tests are provided in order to bear out the theorical results

  14. Neutron Flux Interpolation with Finite Element Method in the Nuclear Fuel Cell Calculation using Collision Probability Method

    International Nuclear Information System (INIS)

    Shafii, M. Ali; Su'ud, Zaki; Waris, Abdul; Kurniasih, Neny; Ariani, Menik; Yulianti, Yanti

    2010-01-01

    Nuclear reactor design and analysis of next-generation reactors require a comprehensive computing which is better to be executed in a high performance computing. Flat flux (FF) approach is a common approach in solving an integral transport equation with collision probability (CP) method. In fact, the neutron flux distribution is not flat, even though the neutron cross section is assumed to be equal in all regions and the neutron source is uniform throughout the nuclear fuel cell. In non-flat flux (NFF) approach, the distribution of neutrons in each region will be different depending on the desired interpolation model selection. In this study, the linear interpolation using Finite Element Method (FEM) has been carried out to be treated the neutron distribution. The CP method is compatible to solve the neutron transport equation for cylindrical geometry, because the angle integration can be done analytically. Distribution of neutrons in each region of can be explained by the NFF approach with FEM and the calculation results are in a good agreement with the result from the SRAC code. In this study, the effects of the mesh on the k eff and other parameters are investigated.

  15. A New Approach for the Statistical Thermodynamic Theory of the Nonextensive Systems Confined in Different Finite Traps

    Science.gov (United States)

    Tang, Hui-Yi; Wang, Jian-Hui; Ma, Yong-Li

    2014-06-01

    For a small system at a low temperature, thermal fluctuation and quantum effect play important roles in quantum thermodynamics. Starting from micro-canonical ensemble, we generalize the Boltzmann-Gibbs statistical factor from infinite to finite systems, no matter the interactions between particles are considered or not. This generalized factor, similar to Tsallis's q-form as a power-law distribution, has the restriction of finite energy spectrum and includes the nonextensivities of the small systems. We derive the exact expression for distribution of average particle numbers in the interacting classical and quantum nonextensive systems within a generalized canonical ensemble. This expression in the almost independent or elementary excitation quantum finite systems is similar to the corresponding ones obtained from the conventional grand-canonical ensemble. In the reconstruction for the statistical theory of the small systems, we present the entropy of the equilibrium systems and equation of total thermal energy. When we investigate the thermodynamics for the interacting nonextensive systems, we obtain the system-bath heat exchange and "uncompensated heat" which are in the thermodynamical level and independent on the detail of the system-bath coupling. For ideal finite systems, with different traps and boundary conditions, we calculate some thermodynamic quantities, such as the specific heat, entropy, and equation of state, etc. Particularly at low temperatures for the small systems, we predict some novel behaviors in the quantum thermodynamics, including internal entropy production, heat exchanges between the system and its surroundings and finite-size effects on the free energy.

  16. Neoclassical resonant-plateau transport calculation in an effectively axisymmetrized tandem mirror with finite end plate resistance

    International Nuclear Information System (INIS)

    Katanuma, I.; Kiwamoto, Y.; Adachi, S.; Inutake, M.; Ishii, K.; Yatsu, K.; Sawada, K.; Miyoshi, S.

    1987-05-01

    Calculations are made for neoclassical resonant-plateau transports in the geometry of the effectively axisymmetrized tandem mirror GAMMA 10 magnetic field, which has minimum B inbord anchors inside the axisymmetric plug/barrier mirror cells. Azimuthal drifts at the local non-axisymmetric regions are included. The radial potential profile is determined by solving selfconsistently the charge neutrality equation. A finite resistance connecting end plate to machine ground provides appropriate boundary conditions on the radial electrostatic potential distribution so that it can be determined uniquely. The calculation is consistent with experimental results of GAMMA 10. (author)

  17. A 3D finite element model to investigate prosthetic interface stresses of different posterior tibial slope.

    Science.gov (United States)

    Shen, Yi; Li, Xiaomiao; Fu, Xiaodong; Wang, Weili

    2015-11-01

    Posterior tibial slope that is created during proximal tibial resection in total knee arthroplasty has emerged as an important factor in the mechanics of the knee joint and the surgical outcome. But the ideal degree of posterior tibial slope for recovery of the knee joint function and preventions of complications remains controversial and should vary in different racial groups. The objective of this paper is to investigate the effects of posterior tibial slope on contact stresses in the tibial polyethylene component of total knee prostheses. Three-dimensional finite element analysis was used to calculate contact stresses in tibial polyethylene component of total knee prostheses subjected to a compressive load. The 3D finite element model of total knee prosthesis was constructed from the images produced by 3D scanning technology. Stresses in tibial polyethylene component were calculated with four different posterior tibial slopes (0°, 3°, 6° and 9°). The 3D finite element model of total knee prosthesis we presented was well validated. We found that the stress distribution in the polythene as evaluated by the distributions of the von Mises stress, the maximum principle stress, the minimum principle stress and the Cpress were more uniform with 3° and 6° posterior tibial slopes than with 0° and 9° posterior tibial slopes. Moreover, the peaks of the above stresses and trends of changes with increasing degree of knee flexion were more ideal with 3° and 6° posterior slopes. The results suggested that the tibial component inclination might be favourable to 7°-10° so far as the stress distribution is concerned. The range of the tibial component inclination also can decrease the wear of polyethylene. Chinese posterior tibial slope is bigger than in the West, and the current domestic use of prostheses is imported from the West, so their demands to tilt back bone cutting can lead to shorten the service life of prostheses; this experiment result is of important

  18. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced

  19. Construction of stable explicit finite-difference schemes for Schroedinger type differential equations

    Science.gov (United States)

    Mickens, Ronald E.

    1989-01-01

    A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.

  20. On the raising and lowering difference operators for eigenvectors of the finite Fourier transform

    International Nuclear Information System (INIS)

    Atakishiyeva, M K; Atakishiyev, N M

    2015-01-01

    We construct explicit forms of raising and lowering difference operators that govern eigenvectors of the finite (discrete) Fourier transform. Some of the algebraic properties of these operators are also examined. (paper)

  1. Stability and non-standard finite difference method of the generalized Chua's circuit

    KAUST Repository

    Radwan, Ahmed G.; Moaddy, K.; Momani, Shaher M.

    2011-01-01

    In this paper, we develop a framework to obtain approximate numerical solutions of the fractional-order Chua's circuit with Memristor using a non-standard finite difference method. Chaotic response is obtained with fractional-order elements as well

  2. Exact Finite-Difference Schemes for d-Dimensional Linear Stochastic Systems with Constant Coefficients

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2013-01-01

    Full Text Available The authors attempt to construct the exact finite-difference schemes for linear stochastic differential equations with constant coefficients. The explicit solutions to Itô and Stratonovich linear stochastic differential equations with constant coefficients are adopted with the view of providing exact finite-difference schemes to solve them. In particular, the authors utilize the exact finite-difference schemes of Stratonovich type linear stochastic differential equations to solve the Kubo oscillator that is widely used in physics. Further, the authors prove that the exact finite-difference schemes can preserve the symplectic structure and first integral of the Kubo oscillator. The authors also use numerical examples to prove the validity of the numerical methods proposed in this paper.

  3. Analytic calculation of finite-population reproductive numbers for direct- and vector-transmitted diseases with homogeneous mixing.

    Science.gov (United States)

    Keegan, Lindsay; Dushoff, Jonathan

    2014-05-01

    The basic reproductive number, R0, provides a foundation for evaluating how various factors affect the incidence of infectious diseases. Recently, it has been suggested that, particularly for vector-transmitted diseases, R0 should be modified to account for the effects of finite host population within a single disease transmission generation. Here, we use a transmission factor approach to calculate such "finite-population reproductive numbers," under the assumption of homogeneous mixing, for both vector-borne and directly transmitted diseases. In the case of vector-borne diseases, we estimate finite-population reproductive numbers for both host-to-host and vector-to-vector generations, assuming that the vector population is effectively infinite. We find simple, interpretable formulas for all three of these quantities. In the direct case, we find that finite-population reproductive numbers diverge from R0 before R0 reaches half of the population size. In the vector-transmitted case, we find that the host-to-host number diverges at even lower values of R0, while the vector-to-vector number diverges very little over realistic parameter ranges.

  4. Finite-size calculations of FQHE states at filling ν = 1/2

    International Nuclear Information System (INIS)

    Fano, G.

    1987-01-01

    The results of numerical calculations, performed in the spherical geometry, of FQHE states of N ≤ 12 electrons on the lowest Landau level at filling ν = 1/2, are presented. The extrapolated value for the energy per particle is -0.469±0.005, in the usual units e 2 /a 0 . Densities and pair correlation functions of the ground states are computed. The pair correlation are 'Wigner-crystal-like', with maxima corresponding to regular polyhedra. For N=4, 8 and 10 it is found that the system presents a broken rotational invariance which generalizes the broken particle-hole symmetry already known in different gauges. Quasi-particles, quasi-holes and the 'exciton' spectrum are computed, and some microscopic wave functions are examined. The quasi-particles and the quasi-holes are not localized; this suggests a possible 'deformability' of the system

  5. Calculation of two-dimensional thermal transients by the finite element method

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da; Barcellos, C.S. de

    1981-01-01

    The linear heat conduction through anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is analysed. It only accepts time-independent boundary conditions and it is possible to have internal heat generation. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. (Author) [pt

  6. Calculation of the equilibrium distribution for a deleterious gene by the finite Fourier transform.

    Science.gov (United States)

    Lange, K

    1982-03-01

    In a population of constant size every deleterious gene eventually attains a stochastic equilibrium between mutation and selection. The individual probabilities of this equilibrium distribution can be computed by an application of the finite Fourier transform to an appropriate branching process formula. Specific numerical examples are discussed for the autosomal dominants, Huntington's chorea and chondrodystrophy, and for the X-linked recessive, Becker's muscular dystrophy.

  7. FINEDAN - an explicit finite-element calculation code for two-dimensional analyses of fast dynamic transients in nuclear reactor technology

    International Nuclear Information System (INIS)

    Adamik, V.; Matejovic, P.

    1989-01-01

    The problems are discussed of nonstationary, nonlinear dynamics of the continuum. A survey is presented of calculation methods in the given area with emphasis on the area of impact problems. A description is presented of the explicit finite elements method and its application to two-dimensional Cartesian and cylindrical configurations. Using the method the explicit calculation code FINEDAN was written which was tested in a series of verification calculations for different configurations and different types of continuum. The main characteristics are presented of the code and of some, of its practical applications. Envisaged trends of the development of the code and its possible applications in the technology of nuclear reactors are given. (author). 9 figs., 4 tabs., 10 refs

  8. Finite element transport methods for criticality calculations - current status and potential applications

    International Nuclear Information System (INIS)

    Oliveira, C.R.E. de; Goddard, A.

    1991-01-01

    In this paper we review the current status of the finite element method applied to the solution of the neutron transport equation and we discuss its potential role in the field of criticality safety. We show that the method's ability in handling complex, irregular geometry in two- and three-dimensions coupled with its accurate solutions potentially renders it an attractive alternative to the longer-established Monte Carlo method. Details of the most favoured form of the method - that which combines finite elements in space and spherical harmonics in angle - are presented. This form of the method, which has been extensively investigated over the last decade by research groups at the University of London, has been numerically implemented in the finite element code EVENT. The code has among its main features the capability of solving fixed source eigenvalue and time-dependent complex geometry problems in two- and three-dimensions. Other features of the code include anisotropic up- and down-scatter, direct and/or adjoint solutions and access to standard data libraries. Numerical examples, ranging from simple criticality benchmark studies to the analysis of idealised three-dimensional reactor cores, are presented to demonstrate the potential of the method. (author)

  9. GPU-accelerated 3D neutron diffusion code based on finite difference method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q.; Yu, G.; Wang, K. [Dept. of Engineering Physics, Tsinghua Univ. (China)

    2012-07-01

    Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)

  10. GPU-accelerated 3D neutron diffusion code based on finite difference method

    International Nuclear Information System (INIS)

    Xu, Q.; Yu, G.; Wang, K.

    2012-01-01

    Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)

  11. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals.

    Science.gov (United States)

    Przybytek, Michal; Helgaker, Trygve

    2013-08-07

    We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems

  12. The finite precision computation and the nonconvergence of difference scheme

    OpenAIRE

    Pengfei, Wang; Jianping, Li

    2008-01-01

    The authors show that the round-off error can break the consistency which is the premise of using the difference equation to replace the original differential equations. We therefore proposed a theoretical approach to investigate this effect, and found that the difference scheme can not guarantee the convergence of the actual compute result to the analytical one. A conservation scheme experiment is applied to solve a simple linear differential equation satisfing the LAX equivalence theorem in...

  13. Calculation of two-dimensional thermal transients by the method of finite elements

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da.

    1980-08-01

    The unsteady linear heat conduction analysis throught anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is presented. The boundary conditions and the internal heat generation are supposed time - independent. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. Optionally, it can be used with a reduced resolution method called Stoker Economizing Method wich allows a decrease on the program processing costs. (Author) [pt

  14. Some efficient Lagrangian mesh finite elements encoded in ZEPHYR for two dimensional transport calculations

    International Nuclear Information System (INIS)

    Mordant, Maurice.

    1981-04-01

    To solve a multigroup stationary neutron transport equation in two-dimensional geometries (X-Y), (R-O) or (R-Z) generally on uses discrete ordinates and rectangular meshes. The way to do it is then well known, well documented and somewhat obvious. If one needs to treat awkward geometries or distorted meshes, things are not so easy and the way to do it is no longer straightforward. We have studied this problem at Limeil Nuclear Center and as an alternative to Monte Carlo methods and code we have implemented in ZEPHYR code at least two efficient finite element solutions for Lagrangian meshes involving any kind of triangles and quadrilaterals

  15. Calculation of gravity and magnetic anomalies of finite-length right polygonal prisms.

    Science.gov (United States)

    Cady, J.W.

    1980-01-01

    An equation is derived for the vertical gravity field due to a homogeneous body with polygonal cross‐section and finite strike‐length. The equation can be separated into the two‐dimensional (2-D) terms of Talwani et al. (1959) and exact terms for the contributions of the ends of the prism. Equations for the magnetic field due to a similar body were derived by Shuey and Pasquale (1973), who coined the term “two‐and‐a‐half dimensional” (2 1/2-D) to describe the geometry. Magnetic intensities are expressed as a vector sum, from which the common dot product formulation can be obtained by binomial expansion.

  16. Finite element calculation of forces on a DC magnet moving over an iron rail

    Energy Technology Data Exchange (ETDEWEB)

    Rodger, D.; Allen, N.; Coles, P.C.; Street, S.; Leonard, P.J.; Eastham, J.F. (Univ. of Bath (United Kingdom))

    1994-11-01

    This paper describes results taken from a test rig consisting of a DC magnet over a 0.35m radius spinning iron wheel. The magnet is excited by two coils. The iron parts are unlaminated. Eddy currents are induced in the wheel by virtue of the relative motion of wheel and magnetic field. All iron parts have a nonlinear B-H characteristic. Forces on the magnet are compared with 3D finite element predictions. The results are of relevance to the design of MAGLEV vehicles which are supported by DC magnets.

  17. Adaptive beamlet-based finite-size pencil beam dose calculation for independent verification of IMRT and VMAT

    International Nuclear Information System (INIS)

    Park, Justin C.; Li, Jonathan G.; Arhjoul, Lahcen; Yan, Guanghua; Lu, Bo; Fan, Qiyong; Liu, Chihray

    2015-01-01

    Purpose: The use of sophisticated dose calculation procedure in modern radiation therapy treatment planning is inevitable in order to account for complex treatment fields created by multileaf collimators (MLCs). As a consequence, independent volumetric dose verification is time consuming, which affects the efficiency of clinical workflow. In this study, the authors present an efficient adaptive beamlet-based finite-size pencil beam (AB-FSPB) dose calculation algorithm that minimizes the computational procedure while preserving the accuracy. Methods: The computational time of finite-size pencil beam (FSPB) algorithm is proportional to the number of infinitesimal and identical beamlets that constitute an arbitrary field shape. In AB-FSPB, dose distribution from each beamlet is mathematically modeled such that the sizes of beamlets to represent an arbitrary field shape no longer need to be infinitesimal nor identical. As a result, it is possible to represent an arbitrary field shape with combinations of different sized and minimal number of beamlets. In addition, the authors included the model parameters to consider MLC for its rounded edge and transmission. Results: Root mean square error (RMSE) between treatment planning system and conventional FSPB on a 10 × 10 cm 2 square field using 10 × 10, 2.5 × 2.5, and 0.5 × 0.5 cm 2 beamlet sizes were 4.90%, 3.19%, and 2.87%, respectively, compared with RMSE of 1.10%, 1.11%, and 1.14% for AB-FSPB. This finding holds true for a larger square field size of 25 × 25 cm 2 , where RMSE for 25 × 25, 2.5 × 2.5, and 0.5 × 0.5 cm 2 beamlet sizes were 5.41%, 4.76%, and 3.54% in FSPB, respectively, compared with RMSE of 0.86%, 0.83%, and 0.88% for AB-FSPB. It was found that AB-FSPB could successfully account for the MLC transmissions without major discrepancy. The algorithm was also graphical processing unit (GPU) compatible to maximize its computational speed. For an intensity modulated radiation therapy (∼12 segments) and a

  18. Hybrid TE-TM scheme for time domain numerical calculations of wakefields in structures with walls of finite conductivity

    Directory of Open Access Journals (Sweden)

    Andranik Tsakanian

    2012-05-01

    Full Text Available In particle accelerators a preferred direction, the direction of motion, is well defined. If in a numerical calculation the (numerical dispersion in this direction is suppressed, a quite coarse mesh and moderate computational resources can be used to reach accurate results even for extremely short electron bunches. Several approaches have been proposed in the past decades to reduce the accumulated dispersion error in wakefield calculations for perfectly conducting structures. In this paper we extend the TE/TM splitting algorithm to a new hybrid scheme that allows for wakefield calculations in structures with walls of finite conductivity. The conductive boundary is modeled by one-dimensional wires connected to each boundary cell. A good agreement of the numerical simulations with analytical results and other numerical approaches is obtained.

  19. Calculation of media temperatures for nuclear sources in geologic depositories by a finite-length line source superposition model (FLLSSM)

    Energy Technology Data Exchange (ETDEWEB)

    Kays, W M; Hossaini-Hashemi, F [Stanford Univ., Palo Alto, CA (USA). Dept. of Mechanical Engineering; Busch, J S [Kaiser Engineers, Oakland, CA (USA)

    1982-02-01

    A linearized transient thermal conduction model was developed to economically determine media temperatures in geologic repositories for nuclear wastes. Individual canisters containing either high-level waste or spent fuel assemblies are represented as finite-length line sources in a continuous medium. The combined effects of multiple canisters in a representative storage pattern can be established in the medium at selected point of interest by superposition of the temperature rises calculated for each canister. A mathematical solution of the calculation for each separate source is given in this article, permitting a slow hand calculation. The full report, ONWI-94, contains the details of the computer code FLLSSM and its use, yielding the total solution in one computer output.

  20. Neutron-proton mass difference in finite nuclei and the Nolen-Schiffer anomaly

    International Nuclear Information System (INIS)

    Meissner, U.G.; Rakhimov, A.M.; Wirzba, A.; Yakhshiev, U.T.

    2008-01-01

    The neutron-proton mass difference in finite nuclei is studied in the framework of a medium-modified Skyrme model. The possible interplay between the effective nucleon mass in finite nuclei and the Nolen-Schiffer anomaly is discussed. In particular, we find that a correct description of the properties of mirror nuclei leads to a stringent restriction of possible modifications of the nucleon's effective mass in nuclei. (orig.)

  1. Biomechanical Evaluations of Hip Fracture Using Finite Element Model that Models Individual Differences of Femur

    OpenAIRE

    田中, 英一; TANAKA, Eiichi; 山本, 創太; YAMAMOTO, Sota; 坂本, 誠二; SAKAMOTO, Seiji; 中西, 孝文; NAKANISHI, Takafumi; 原田, 敦; HARADA, Atsushi; 水野, 雅士; MIZUNO, Masashi

    2004-01-01

    This paper is concerned with an individual finite element modeling system for femur and biomechanical evaluations of the influences of loading conditions, bone shape and bone density on risks of hip fracture. Firstly, a method to construct an individual finite element model by morphological parameters that represent femoral shapes was developed. Using the models with different shapes constructed by this method, the effects of fall direction, posture of upper body, femur shape and bone density...

  2. Wing-Body Aeroelasticity Using Finite-Difference Fluid/Finite-Element Structural Equations on Parallel Computers

    Science.gov (United States)

    Byun, Chansup; Guruswamy, Guru P.; Kutler, Paul (Technical Monitor)

    1994-01-01

    In recent years significant advances have been made for parallel computers in both hardware and software. Now parallel computers have become viable tools in computational mechanics. Many application codes developed on conventional computers have been modified to benefit from parallel computers. Significant speedups in some areas have been achieved by parallel computations. For single-discipline use of both fluid dynamics and structural dynamics, computations have been made on wing-body configurations using parallel computers. However, only a limited amount of work has been completed in combining these two disciplines for multidisciplinary applications. The prime reason is the increased level of complication associated with a multidisciplinary approach. In this work, procedures to compute aeroelasticity on parallel computers using direct coupling of fluid and structural equations will be investigated for wing-body configurations. The parallel computer selected for computations is an Intel iPSC/860 computer which is a distributed-memory, multiple-instruction, multiple data (MIMD) computer with 128 processors. In this study, the computational efficiency issues of parallel integration of both fluid and structural equations will be investigated in detail. The fluid and structural domains will be modeled using finite-difference and finite-element approaches, respectively. Results from the parallel computer will be compared with those from the conventional computers using a single processor. This study will provide an efficient computational tool for the aeroelastic analysis of wing-body structures on MIMD type parallel computers.

  3. Automatic mesh generation for finite element calculations in the case of thermal loads

    International Nuclear Information System (INIS)

    Cords, H.; Zimmermann, R.

    1975-01-01

    The presentation describes a method to generate finite element nodal point networks on the basis of isothermals and flux lines. Such a mesh provides a relatively fine partitioning at regions where pronounced temperature variations exist. In case of entirely thermal loads a net of this kind is advantageous since the refinement is provided at exactly those locations where high stress levels are expected. In the present contribution the method was employed to analyze the structural behavior of a nuclear fuel element under operating conditions. The graphite block fuel elements for high temperature reactors are of prismatic shape with a large number of parallel bores in the axial direction. Some of these bores are open at both ends and cooling is effected by helium flowing through. Blind holes contain the fuel as compacts or cartridges. The basic temperature distribution in a horizontal section of the block was obtained by the boundary point least squares method which yields analytical expressions for both temperature and thermal flux. The corresponding computer code was presented at an earlier SMiRT conference. The method is particularly useful for regular arrays of heat sources and sinks as encountered in heat exchanger problems. The generated mesh matches the requirements of a subsequent structural analysis with finite elements provided there are no other than thermal loads

  4. Calculation of spin and orbital magnetizations in Fe slab systems at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Garibay-Alonso, R [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Coahuila, Conjunto Universitario Camporredondo, Edificio ' D' , 25000 Saltillo (Mexico); Reyes-Reyes, M [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis PotosI, Alvaro Obregon 64, San Luis PotosI (Mexico); Urrutia-Banuelos, EfraIn [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83190 (Mexico); Lopez-Sandoval, R [Instituto Potosino de Investigacion CientIfica y Tecnologica, Camino a la presa San Jose 2055, CP 78216, San Luis PotosI (Mexico)

    2010-02-10

    The temperature dependence of spin and orbital local magnetizations is theoretically determined for the non-bulk atomic region of (001) and (110) Fe slab systems. A d band Hamiltonian, including spin-orbit coupling terms, was used to model the slabs, which were emulated by using Fe films of sufficient thickness to reach a bulk behavior at their most inner atomic layers. The temperature effects were considered within the static approximation and a simple mean field theory was used to integrate the local magnetic moment and charge thermal fluctuations. The results reflect a clear interplay between electronic itinerancy and the local atomic environment and they can be physically interpreted from the local small charge transfers occurring in the superficial region of the slabs. For recovering the experimental behavior on the results for the (001) slab system, the geometrical relaxations at its non-bulk atomic layers and a d band filling variation are required. A study on the magnetic anisotropy aspects in the superficial region of the slabs is additionally performed by analyzing the results for the orbital local magnetization calculated along two different magnetization directions in both slab systems.

  5. DIF3D: a code to solve one-, two-, and three-dimensional finite-difference diffusion theory problems

    International Nuclear Information System (INIS)

    Derstine, K.L.

    1984-04-01

    The mathematical development and numerical solution of the finite-difference equations are summarized. The report provides a guide for user application and details the programming structure of DIF3D. Guidelines are included for implementing the DIF3D export package on several large scale computers. Optimized iteration methods for the solution of large-scale fast-reactor finite-difference diffusion theory calculations are presented, along with their theoretical basis. The computational and data management considerations that went into their formulation are discussed. The methods utilized include a variant of the Chebyshev acceleration technique applied to the outer fission source iterations and an optimized block successive overrelaxation method for the within-group iterations. A nodal solution option intended for analysis of LMFBR designs in two- and three-dimensional hexagonal geometries is incorporated in the DIF3D package and is documented in a companion report, ANL-83-1

  6. Perceived and calculated health risks: do the impacts differ

    International Nuclear Information System (INIS)

    Payne, B.A.; Williams, R.G.

    1986-01-01

    In many cases of radioactive and hazardous waste management, some members of the general public perceive that human health risks associated with the wastes are higher than the calculated risks. Calculated risks are projections that have been derived from models, and it is these risks that are usually used as the basis for waste management. However, for various reasons, the calculated risks are often considered by the public as too low or inappropriate. The reasons that calculated risks are not perceived as accurate and the factors that affect these perceptions are explored in this paper. Also discussed are the impacts related to the perceived and calculated health risks: what they are, and if and how they differ. The kinds of potential impacts examined are health effects, land value changes, and social, transportation, and economic effects. The paper concludes with a discussion of the implications of incorporating these different risk perspectives in decisions on waste management

  7. Hybrid variational principles and synthesis method for finite element neutron transport calculations

    International Nuclear Information System (INIS)

    Ackroyd, R.T.; Nanneh, M.M.

    1990-01-01

    A family of hybrid variational principles is derived using a generalised least squares method. Neutron conservation is automatically satisfied for the hybrid principles employing two trial functions. No interfaces or reflection conditions need to be imposed on the independent even-parity trial function. For some hybrid principles a single trial function can be employed by relating one parity trial function to the other, using one of the parity transport equation in relaxed form. For other hybrid principles the trial functions can be employed sequentially. Synthesis of transport solutions, starting with the diffusion theory approximation, has been used as a way of reducing the scale of the computation that arises with established finite element methods for neutron transport. (author)

  8. Analysis and Calculation of the Fluid Flow and the Temperature Field by Finite Element Modeling

    Science.gov (United States)

    Dhamodaran, M.; Jegadeesan, S.; Kumar, R. Praveen

    2018-04-01

    This paper presents a fundamental and accurate approach to study numerical analysis of fluid flow and heat transfer inside a channel. In this study, the Finite Element Method is used to analyze the channel, which is divided into small subsections. The small subsections are discretized using higher number of domain elements and the corresponding number of nodes. MATLAB codes are developed to be used in the analysis. Simulation results showed that the analyses of fluid flow and temperature are influenced significantly by the changing entrance velocity. Also, there is an apparent effect on the temperature fields due to the presence of an energy source in the middle of the domain. In this paper, the characteristics of flow analysis and heat analysis in a channel have been investigated.

  9. A new fitted operator finite difference method to solve systems of ...

    African Journals Online (AJOL)

    In recent years, fitted operator finite difference methods (FOFDMs) have been developed for numerous types of singularly perturbed ordinary differential equations. The construction of most of these methods differed though the final outcome remained similar. The most crucial aspect was how the difference operator was ...

  10. Two-dimensional calculation by finite element method of velocity field and temperature field development in fast reactor fuel assembly. II

    International Nuclear Information System (INIS)

    Schmid, J.

    1985-11-01

    A package of updated computer codes for velocity and temperature field calculations for a fast reactor fuel subassembly (or its part) by the finite element method is described. Isoparametric triangular elements of the second degree are used. (author)

  11. Perfectly Matched Layer for the Wave Equation Finite Difference Time Domain Method

    Science.gov (United States)

    Miyazaki, Yutaka; Tsuchiya, Takao

    2012-07-01

    The perfectly matched layer (PML) is introduced into the wave equation finite difference time domain (WE-FDTD) method. The WE-FDTD method is a finite difference method in which the wave equation is directly discretized on the basis of the central differences. The required memory of the WE-FDTD method is less than that of the standard FDTD method because no particle velocity is stored in the memory. In this study, the WE-FDTD method is first combined with the standard FDTD method. Then, Berenger's PML is combined with the WE-FDTD method. Some numerical demonstrations are given for the two- and three-dimensional sound fields.

  12. RAPS. A threedimensional plotprogram for testing of the model and for plotting of the results of finite-element calculations

    International Nuclear Information System (INIS)

    Koschmieder, D.; Altes, J.

    1979-06-01

    Usually in Finite-Element calculations a large amount of data is produced and because individual results have no meaning, graphic representation is bestsuited. It is convenient to link the F E Software-System with pre- and postprocessors. The plotting system RAPS, presented on the following pages, offers many possibilities for testing and description of two- or threedimensional structures, as well as for interpretation of results of static and dynamic calculations. The programm was developed for the F E System ASKA but it is possible to fit it to other F E Systems. At present the program is laid out for batchoperation. However it is planned to develop an interactive version of RAPS and to enlarge the postprocessor. (orig.) [de

  13. Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    International Nuclear Information System (INIS)

    Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A.

    1999-01-01

    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including electronic band structures and details of the convergence of the method. copyright 1999 The American Physical Society

  14. Comparison of different dose calculation methods for irregular photon fields

    International Nuclear Information System (INIS)

    Zakaria, G.A.; Schuette, W.

    2000-01-01

    In this work, 4 calculation methods (Wrede method, Clarskon method of sector integration, beam-zone method of Quast and pencil-beam method of Ahnesjoe) are introduced to calculate point doses in different irregular photon fields. The calculations cover a typical mantle field, an inverted Y-field and different blocked fields for 4 and 10 MV photon energies. The results are compared to those of measurements in a water phantom. The Clarkson and the pencil-beam method have been proved to be the methods of equal standard in relation to accuracy. Both of these methods are being distinguished by minimum deviations and applied in our clinical routine work. The Wrede and beam-zone methods deliver useful results to central beam and yet provide larger deviations in calculating points beyond the central axis. (orig.) [de

  15. A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation

    KAUST Repository

    Wu, Zedong

    2018-04-05

    Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is is highly accurate and efficient.

  16. Interactive finite difference preprocessor for three-dimensional fluid flow systems. [PREFLO

    Energy Technology Data Exchange (ETDEWEB)

    Kleinstreuer, C. (Rensselaer Polytechnic Inst., Troy, NY); Patterson, M.R.

    1981-06-01

    A preprocessor, called PREFLO, consisting of data processing modules combined with a flexible finite difference grid generator is described. This economical, interactive computer code is a useful research tool contributing significantly to the accurate analysis and modeling of large and/or geometrically complex flow systems. PREFLO (PREprocessor for fluid FLOw problems), written in FORTRAN IV, consists of four modules which in turn call various subroutines. The main programs accomplish the following tasks: (1) system identification and selection of appropriate finite difference algorithms; (2) input devices for storage of natural flow boundaries; (3) interactive generation of finite difference meshes and display of computer graphics; (4) preparation of all data files for the source program. The computation of the velocity field near a power plant site is outlined to illustrate the capabilities and application of PREFLO.

  17. Modeling seismic wave propagation using staggered-grid mimetic finite differences

    Directory of Open Access Journals (Sweden)

    Freysimar Solano-Feo

    2017-04-01

    Full Text Available Mimetic finite difference (MFD approximations of continuous gradient and divergence operators satisfy a discrete version of the Gauss-Divergence theorem on staggered grids. On the mimetic approximation of this integral conservation principle, an unique boundary flux operator is introduced that also intervenes on the discretization of a given boundary value problem (BVP. In this work, we present a second-order MFD scheme for seismic wave propagation on staggered grids that discretized free surface and absorbing boundary conditions (ABC with same accuracy order. This scheme is time explicit after coupling a central three-level finite difference (FD stencil for numerical integration. Here, we briefly discuss the convergence properties of this scheme and show its higher accuracy on a challenging test when compared to a traditional FD method. Preliminary applications to 2-D seismic scenarios are also presented and show the potential of the mimetic finite difference method.

  18. Efficient Finite Element Calculation of Ny 

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars; Krabbenhøft, K.

    2007-01-01

    The performance of a return mapping scheme for plasticity with linear yield planes in principal stress space is evaluated in relation to a Mohr-Coulomb material. For purely frictional materials this material model is known to cause problems in numerical calculations, but these problems...

  19. Slope Safety Calculation With A Non-Linear Mohr Criterion Using Finite Element Method

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2005-01-01

    Safety factors for soil slopes are calculated using a non-linear Mohr envelope. The often used linear Mohr-Coulomb envelope tends to overestimate the safety as the material parameters are usually determined at much higher stress levels, than those present at slope failure. Experimental data...

  20. Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation

    Science.gov (United States)

    Prentice, J. S. C.

    2012-01-01

    An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…

  1. Accuracy of finite-difference modeling of seismic waves : Simulation versus laboratory measurements

    Science.gov (United States)

    Arntsen, B.

    2017-12-01

    The finite-difference technique for numerical modeling of seismic waves is still important and for some areas extensively used.For exploration purposes is finite-difference simulation at the core of both traditional imaging techniques such as reverse-time migration and more elaborate Full-Waveform Inversion techniques.The accuracy and fidelity of finite-difference simulation of seismic waves are hard to quantify and meaningfully error analysis is really onlyeasily available for simplistic media. A possible alternative to theoretical error analysis is provided by comparing finite-difference simulated data with laboratory data created using a scale model. The advantage of this approach is the accurate knowledge of the model, within measurement precision, and the location of sources and receivers.We use a model made of PVC immersed in water and containing horizontal and tilted interfaces together with several spherical objects to generateultrasonic pressure reflection measurements. The physical dimensions of the model is of the order of a meter, which after scaling represents a model with dimensions of the order of 10 kilometer and frequencies in the range of one to thirty hertz.We find that for plane horizontal interfaces the laboratory data can be reproduced by the finite-difference scheme with relatively small error, but for steeply tilted interfaces the error increases. For spherical interfaces the discrepancy between laboratory data and simulated data is sometimes much more severe, to the extent that it is not possible to simulate reflections from parts of highly curved bodies. The results are important in view of the fact that finite-difference modeling is often at the core of imaging and inversion algorithms tackling complicatedgeological areas with highly curved interfaces.

  2. Optimal 25-Point Finite-Difference Subgridding Techniques for the 2D Helmholtz Equation

    Directory of Open Access Journals (Sweden)

    Tingting Wu

    2016-01-01

    Full Text Available We present an optimal 25-point finite-difference subgridding scheme for solving the 2D Helmholtz equation with perfectly matched layer (PML. This scheme is second order in accuracy and pointwise consistent with the equation. Subgrids are used to discretize the computational domain, including the interior domain and the PML. For the transitional node in the interior domain, the finite difference equation is formulated with ghost nodes, and its weight parameters are chosen by a refined choice strategy based on minimizing the numerical dispersion. Numerical experiments are given to illustrate that the newly proposed schemes can produce highly accurate seismic modeling results with enhanced efficiency.

  3. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics

    CERN Document Server

    Gedney, Stephen

    2011-01-01

    Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to p

  4. A perturbational h4 exponential finite difference scheme for the convective diffusion equation

    International Nuclear Information System (INIS)

    Chen, G.Q.; Gao, Z.; Yang, Z.F.

    1993-01-01

    A perturbational h 4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h 2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes. Besides, the h 4 accuracy of the perturbational scheme is verified using double precision arithmetic

  5. Analysis of equilibrium in a tokamak by the finite-difference method

    International Nuclear Information System (INIS)

    Kim, K.E.; Jeun, G.D.

    1983-01-01

    Ideal magnetohydrodynamic equilibrium in a Tokamak having a small radius with an elongated rectangular cross section is studied by applying the finite-difference method to the Grad-Shafranov equation to determine possible limitations for *b=8*pPsup(2)/Bsup(2). The coupled first-order differential equations resulting from the finite-difference Grad-Shafranov equation is solved by the numarical method:1)We concluded that equilibrium consideration alone gives no limitation even for *b approx.1. 2)We have obtained the equilibrium magnetic field configuration charcterized by a set of three parameters;the aspect ratio, *b,and the safety factor. (Author)

  6. Finite-temperature stress calculations in atomic models using moments of position

    Science.gov (United States)

    Parthasarathy, Ranganathan; Misra, Anil; Ouyang, Lizhi

    2018-07-01

    Continuum modeling of finite temperature mechanical behavior of atomic systems requires refined description of atomic motions. In this paper, we identify additional kinematical quantities that are relevant for a more accurate continuum description as the system is subjected to step-wise loading. The presented formalism avoids the necessity for atomic trajectory mapping with deformation, provides the definitions of the kinematic variables and their conjugates in real space, and simplifies local work conjugacy. The total work done on an atom under deformation is decomposed into the work corresponding to changing its equilibrium position and work corresponding to changing its second moment about equilibrium position. Correspondingly, we define two kinematic variables: a deformation gradient tensor and a vibration tensor, and derive their stress conjugates, termed here as static and vibration stresses, respectively. The proposed approach is validated using MD simulation in NVT ensembles for fcc aluminum subjected to uniaxial extension. The observed evolution of second moments in the MD simulation with macroscopic deformation is not directly related to the transformation of atomic trajectories through the deformation gradient using generator functions. However, it is noteworthy that deformation leads to a change in the second moment of the trajectories. Correspondingly, the vibration part of the Piola stress becomes particularly significant at high temperature and high tensile strain as the crystal approaches the softening limit. In contrast to the eigenvectors of the deformation gradient, the eigenvectors of the vibration tensor show strong spatial heterogeneity in the vicinity of softening. More importantly, the elliptic distribution of local atomic density transitions to a dumbbell shape, before significant non-affinity in equilibrium positions has occurred.

  7. Solution of unidimensional problems from monoenergetics neutrons diffusion through finite differences

    International Nuclear Information System (INIS)

    Filio Lopez, Carlos.

    1979-01-01

    A calculation program (URA 6.F4) was elaborated on FORTRAN IV language, that through finite differences solves the unidimensional scalar Helmholtz equation, assuming only one energy group, in spherical cylindrical or plane geometry. The purpose is the determination of the flow distribution in a reactor of spherical cylindrical or plane geometry and the critical dimensions. Feeding as entrance datas to the program the geometry, diffusion coefficients and macroscopic transversals cross sections of absorption and fission for each region. The differential diffusion equation is converted with its boundary conditions, to one system of homogeneous algebraic linear equations using the box integration technique. The investigation on criticality is converted then in a succession of eigenvalue problems for the critical eigenvalue. In general, only is necessary to solve the first eigenvalue and its corresponding eigenvector, employing the power method. The obtained results by the program for the critical dimensions of the clean reactors are admissible, the existing error as respect to the analytic is less of 0.5%; by the analysed reactors of three regions, the relative error with respect to the semianalytic result is less of 0.2%. With this program is possible to obtain one quantitative description of one reactor if the transversal sections that appears in the monoenergetic model are adequatedly averaged by the energy group used. (author)

  8. Design and development of an air humidifier using finite difference method for a solar desalination plant

    Science.gov (United States)

    Chiranjeevi, C.; Srinivas, T.

    2017-11-01

    Humidifier is an important component in air humidification-dehumidification desalination plant for fresh water production. Liquid to air flow rate ratio is optimization is reported for an industrial cooling towers but for an air humidifier it is not addressed. The current work is focused on the design and analysis of an air humidifier for solar desalination plant to maximize the yield with better humidification, using finite difference method (FDM). The outlet conditions of air from the humidifier are theoretically predicted by FDM with the given inlet conditions, which will be further used in the design calculation of the humidifier. Hot water to air flow rate ratio and inlet hot water temperature are identified as key operating parameters to evaluate the humidifier performance. The maximum and optimal values of mass flow rate ratio of water to air are found to be 2.15 and 1.5 respectively using packing function and Merkel Integral. The height of humidifier is constrained to 1.5 m and the diameter of the humidifier is found as 0.28m. The performance of humidifier and outlet conditions of air are simulated using FDM and compared with experimental results. The obtained results are within an agreeable range of deviation.

  9. A finite-density calculation of the surface tension of isotropic-nematic interfaces

    International Nuclear Information System (INIS)

    Moore, B.G.; McMullen, W.E.

    1992-01-01

    The surface tension of the isotropic-nematic interface in a fluid of intermediate-sized hard particles is studied and calculated. The transition from isotropic to nematic is fixed to occur in a continuous fashion by varying the biaxiality of the model particles. A reversal in the preferred orientation of the bulk nematic relative to the isotropic-nematic interface suggests an oblique orientation of the bulk nematic. 32 refs., 8 figs

  10. Detection limit calculations for different total reflection techniques

    International Nuclear Information System (INIS)

    Sanchez, H.J.

    2000-01-01

    In this work, theoretical calculations of detection limits for different total-reflection techniques are presented.. Calculations include grazing incidence (TXRF) and gracing exit (GEXRF) conditions. These calculations are compared with detection limits obtained for conventional x-ray fluorescence (XRF). In order to compute detection limits the Shiraiwa and Fujino's model to calculate x-ray fluorescence intensities was used. This model made certain assumptions and approximations to achieve the calculations, specially in the case of the geometrical conditions of the sample, and the incident and takeoff beams. Nevertheless the calculated data of detection limits for conventional XRF and total-reflection XRF show a good agreement with previous results. The model proposed here allows to analyze the different sources of background and the influence of the excitation geometry, which contribute to the understanding of the physical processes involved in the XRF analysis by total reflection. Finally, a comparison between detection limits in total-reflection analysis at grazing incidence and at grazing exit is carried out. Here a good agreement with the theoretical predictions of the reversibility principle is found, showing that detection limits are similar for both techniques. (author)

  11. A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    International Nuclear Information System (INIS)

    Gu Xuejun; Jia Xun; Jiang, Steve B; Jelen, Urszula; Li Jinsheng

    2011-01-01

    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite-size pencil beam (FSPB) algorithm with a 3D-density correction method on graphics processing unit (GPU). This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework (Gu et al 2009 Phys. Med. Biol. 54 6287-97). Dosimetric evaluations against Monte Carlo dose calculations are conducted on ten IMRT treatment plans (five head-and-neck cases and five lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 s (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (∼5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning.

  12. A study of self-consistent Hartree-Fock plus Bardeen-Cooper-Schrieffer calculations with finite-range interactions

    Science.gov (United States)

    Anguiano, M.; Lallena, A. M.; Co', G.; De Donno, V.

    2014-02-01

    In this work we test the validity of a Hartree-Fock plus Bardeen-Cooper-Schrieffer model in which a finite-range interaction is used in the two steps of the calculation by comparing the results obtained to those found in fully self-consistent Hartree-Fock-Bogoliubov calculations using the same interaction. Specifically, we consider the Gogny-type D1S and D1M forces. We study a wide range of spherical nuclei, far from the stability line, in various regions of the nuclear chart, from oxygen to tin isotopes. We calculate various quantities related to the ground state properties of these nuclei, such as binding energies, radii, charge and density distributions, and elastic electron scattering cross sections. The pairing effects are studied by direct comparison with the Hartree-Fock results. Despite its relative simplicity, in most cases, our model provides results very close to those of the Hartree-Fock-Bogoliubov calculations, and it reproduces the empirical evidence of pairing effects rather well in the nuclei investigated.

  13. Double-grid finite-difference frequency-domain (DG-FDFD) method for scattering from chiral objects

    CERN Document Server

    Alkan, Erdogan; Elsherbeni, Atef

    2013-01-01

    This book presents the application of the overlapping grids approach to solve chiral material problems using the FDFD method. Due to the two grids being used in the technique, we will name this method as Double-Grid Finite Difference Frequency-Domain (DG-FDFD) method. As a result of this new approach the electric and magnetic field components are defined at every node in the computation space. Thus, there is no need to perform averaging during the calculations as in the aforementioned FDFD technique [16]. We formulate general 3D frequency-domain numerical methods based on double-grid

  14. A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene

    International Nuclear Information System (INIS)

    Brinkman, D.; Heitzinger, C.; Markowich, P.A.

    2014-01-01

    We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses

  15. A convergent 2D finite-difference scheme for the Dirac-Poisson system and the simulation of graphene

    KAUST Repository

    Brinkman, Daniel; Heitzinger, Clemens Heitzinger; Markowich, Peter A.

    2014-01-01

    We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac-Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac-Poisson system where potentials act as beam splitters or Veselago lenses. © 2013 Elsevier Inc.

  16. Development of a Finite-Difference Time Domain (FDTD) Model for Propagation of Transient Sounds in Very Shallow Water.

    Science.gov (United States)

    Sprague, Mark W; Luczkovich, Joseph J

    2016-01-01

    This finite-difference time domain (FDTD) model for sound propagation in very shallow water uses pressure and velocity grids with both 3-dimensional Cartesian and 2-dimensional cylindrical implementations. Parameters, including water and sediment properties, can vary in each dimension. Steady-state and transient signals from discrete and distributed sources, such as the surface of a vibrating pile, can be used. The cylindrical implementation uses less computation but requires axial symmetry. The Cartesian implementation allows asymmetry. FDTD calculations compare well with those of a split-step parabolic equation. Applications include modeling the propagation of individual fish sounds, fish aggregation sounds, and distributed sources.

  17. Statistical parameters of random heterogeneity estimated by analysing coda waves based on finite difference method

    Science.gov (United States)

    Emoto, K.; Saito, T.; Shiomi, K.

    2017-12-01

    Short-period (2 s) seismograms. We found that the energy of the coda of long-period seismograms shows a spatially flat distribution. This phenomenon is well known in short-period seismograms and results from the scattering by small-scale heterogeneities. We estimate the statistical parameters that characterize the small-scale random heterogeneity by modelling the spatiotemporal energy distribution of long-period seismograms. We analyse three moderate-size earthquakes that occurred in southwest Japan. We calculate the spatial distribution of the energy density recorded by a dense seismograph network in Japan at the period bands of 8-16 s, 4-8 s and 2-4 s and model them by using 3-D finite difference (FD) simulations. Compared to conventional methods based on statistical theories, we can calculate more realistic synthetics by using the FD simulation. It is not necessary to assume a uniform background velocity, body or surface waves and scattering properties considered in general scattering theories. By taking the ratio of the energy of the coda area to that of the entire area, we can separately estimate the scattering and the intrinsic absorption effects. Our result reveals the spectrum of the random inhomogeneity in a wide wavenumber range including the intensity around the corner wavenumber as P(m) = 8πε2a3/(1 + a2m2)2, where ε = 0.05 and a = 3.1 km, even though past studies analysing higher-frequency records could not detect the corner. Finally, we estimate the intrinsic attenuation by modelling the decay rate of the energy. The method proposed in this study is suitable for quantifying the statistical properties of long-wavelength subsurface random inhomogeneity, which leads the way to characterizing a wider wavenumber range of spectra, including the corner wavenumber.

  18. Pressure transient analysis in single and two-phase water by finite difference methods

    International Nuclear Information System (INIS)

    Berry, G.F.; Daley, J.G.

    1977-01-01

    An important consideration in the design of LMFBR steam generators is the possibility of leakage from a steam generator water tube. The ensuing sodium/water reaction will be largely controlled by the amount of water available at the leak site, thus analysis methods treating this event must have the capability of accurately modeling pressure transients through all states of water occurring in a steam generator, whether single or two-phase. The equation systems of the present model consist of the conservation equations together with an equation of state for one-dimensional homogeneous flow. These equations are then solved using finite difference techniques with phase considerations and non-equilibrium effects being treated through the equation of state. The basis for water property computation is Keenan's 'fundamental equation of state' which is applicable to single-phase water at pressures less than 1000 bars and temperatures less than 1300 0 C. This provides formulations allowing computation of any water property to any desired precision. Two-phase properties are constructed from values on the saturation line. The use of formulations permits the direct calculation of any thermodynamic property (or property derivative) to great precision while requiring very little computer storage, but does involve considerable computation time. For this reason an optional calculation scheme based on the method of 'transfinite interpolation' is included to give rapid computation in selected regions with decreased precision. The conservation equations were solved using the second order Lax-Wendroff scheme which includes wall friction, allows the formation of shocks and locally supersonic flow. Computational boundary conditions were found from a method-of-characteristics solution at the reservoir and receiver ends. The local characteristics were used to interpolate data from inside the pipe to the boundary

  19. A finite difference Hartree-Fock program for atoms and diatomic molecules

    Science.gov (United States)

    Kobus, Jacek

    2013-03-01

    The newest version of the two-dimensional finite difference Hartree-Fock program for atoms and diatomic molecules is presented. This is an updated and extended version of the program published in this journal in 1996. It can be used to obtain reference, Hartree-Fock limit values of total energies and multipole moments for a wide range of diatomic molecules and their ions in order to calibrate existing and develop new basis sets, calculate (hyper)polarizabilities (αzz, βzzz, γzzzz, Az,zz, Bzz,zz) of atoms, homonuclear and heteronuclear diatomic molecules and their ions via the finite field method, perform DFT-type calculations using LDA or B88 exchange functionals and LYP or VWN correlations ones or the self-consistent multiplicative constant method, perform one-particle calculations with (smooth) Coulomb and Krammers-Henneberger potentials and take account of finite nucleus models. The program is easy to install and compile (tarball+configure+make) and can be used to perform calculations within double- or quadruple-precision arithmetic. Catalogue identifier: ADEB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADEB_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 171196 No. of bytes in distributed program, including test data, etc.: 9481802 Distribution format: tar.gz Programming language: Fortran 77, C. Computer: any 32- or 64-bit platform. Operating system: Unix/Linux. RAM: Case dependent, from few MB to many GB Classification: 16.1. Catalogue identifier of previous version: ADEB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 98(1996)346 Does the new version supersede the previous version?: Yes Nature of problem: The program finds virtually exact solutions of the Hartree-Fock and density functional theory type equations for atoms, diatomic molecules and their ions

  20. Finite Element Calculation of Local Variation in the Driving Force for Austenite to Martensite Transformation

    International Nuclear Information System (INIS)

    Datta, K.; Geijselaers, H. J. M.; Huetink, J.; Post, J.; Dinsdale, A.

    2007-01-01

    The mechanics and thermodynamics of strain induced martensitic transformation are coupled for a metastable alloy steel and implemented in FE models of forming processes. The basic formulations are based on a fifty year old treaty by Patel and Cohen. The variation in Gibbs energy due to local variation in strain, strain rate, temperature and state of stress of a forming part is calculated by FE codes. The local variation in Gibbs energy gives a probabilistic image of the potential sites for strain induced martensitic transformations

  1. Time dependent AN neutron transport calculations in finite media using a numerical inverse Laplace transform technique

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Sumini, M.

    1990-01-01

    The time dependent space second order discrete form of the monokinetic transport equation is given an analytical solution, within the Laplace transform domain. Th A n dynamic model is presented and the general resolution procedure is worked out. The solution in the time domain is then obtained through the application of a numerical transform inversion technique. The justification of the research relies in the need to produce reliable and physically meaningful transport benchmarks for dynamic calculations. The paper is concluded by a few results followed by some physical comments

  2. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    Science.gov (United States)

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  3. A fast finite-difference algorithm for topology optimization of permanent magnets

    Science.gov (United States)

    Abert, Claas; Huber, Christian; Bruckner, Florian; Vogler, Christoph; Wautischer, Gregor; Suess, Dieter

    2017-09-01

    We present a finite-difference method for the topology optimization of permanent magnets that is based on the fast-Fourier-transform (FFT) accelerated computation of the stray-field. The presented method employs the density approach for topology optimization and uses an adjoint method for the gradient computation. Comparison to various state-of-the-art finite-element implementations shows a superior performance and accuracy. Moreover, the presented method is very flexible and easy to implement due to various preexisting FFT stray-field implementations that can be used.

  4. Computational Aero-Acoustic Using High-order Finite-Difference Schemes

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2007-01-01

    are solved using the in-house flow solver EllipSys2D/3D which is a second-order finite volume code. The acoustic solution is found by solving the acoustic equations using high-order finite difference schemes. The incompressible flow equations and the acoustic equations are solved at the same time levels......In this paper, a high-order technique to accurately predict flow-generated noise is introduced. The technique consists of solving the viscous incompressible flow equations and inviscid acoustic equations using a incompressible/compressible splitting technique. The incompressible flow equations...

  5. Comparison of finite-difference and variational solutions to advection-diffusion problems

    International Nuclear Information System (INIS)

    Lee, C.E.; Washington, K.E.

    1984-01-01

    Two numerical solution methods are developed for 1-D time-dependent advection-diffusion problems on infinite and finite domains. Numerical solutions are compared with analytical results for constant coefficients and various boundary conditions. A finite-difference spectrum method is solved exactly in time for periodic boundary conditions by a matrix operator method and exhibits excellent accuracy compared with other methods, especially at late times, where it is also computationally more efficient. Finite-system solutions are determined from a conservational variational principle with cubic spatial trial functions and solved in time by a matrix operator method. Comparisons of problems with few nodes show excellent agreement with analytical solutions and exhibit the necessity of implementing Lagrangian conservational constraints for physically-correct solutions. (author)

  6. Computer Simulation and Experimental Study of Deformation in a Radial Tire under Different Static Loads Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Mir Hamid Reza Ghoreishy

    2014-10-01

    Full Text Available This research work is devoted to the simulation of a steel-belted radial tire under different static loads. The nonlinear finite element calculations were performed using the MSC.MARC code, installed on a computer system equipped with a parallel processing technology. Hybrid elements in conjunction with two hyperelastic models, namely Marlow and Yeoh, and rebar layer implemented in surface elements were used for the modeling of rubbery and reinforcing parts, respectively. Linear elastic material models were also used for the modeling of the reinforcing elements including steel cord in belts, polyester cord in carcass and nylon cord in cap ply section. Two-dimensional axisymmetric elements were used for the modeling of rim-mounting and inflation and three-dimensional models were developed for the application of the radial, tangential, lateral and torsional loads. Different finite element models were developed, in which both linear and quadratic elements were used in conjunction with different mesh densities in order to find the optimum finite element model. Based on the results of the load deflection (displacement data, the tire stiffness under radial, tangential, lateral and torsional loads were calculated and compared with their corresponding experimentally measured values. The comparison was verified by the accuracy of the measured radial stiffness. However, due to the neglecting of the stiffness in shear and bending modes in cord-rubber composites, modeled with rebar layer methodology, the difference between computed values and real data are not small enough so that a more robust material models and element formulation are required to be developed.

  7. Detailed balance principle and finite-difference stochastic equation in a field theory

    International Nuclear Information System (INIS)

    Kozhamkulov, T.A.

    1986-01-01

    A finite-difference equation, which is a generalization of the Langevin equation in field theory, has been obtained basing upon the principle of detailed balance for the Markov chain. Advantages of the present approach as compared with the conventional Parisi-Wu method are shown for examples of an exactly solvable problem of zero-dimensional quantum theory and a simple numerical simulation

  8. The finite-difference time-domain method for electromagnetics with Matlab simulations

    CERN Document Server

    Elsherbeni, Atef Z

    2016-01-01

    This book introduces the powerful Finite-Difference Time-Domain method to students and interested researchers and readers. An effective introduction is accomplished using a step-by-step process that builds competence and confidence in developing complete working codes for the design and analysis of various antennas and microwave devices.

  9. High-order Finite Difference Solution of Euler Equations for Nonlinear Water Waves

    DEFF Research Database (Denmark)

    Christiansen, Torben Robert Bilgrav; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    is discretized using arbitrary-order finite difference schemes on a staggered grid with one optional stretching in each coordinate direction. The momentum equations and kinematic free surface condition are integrated in time using the classic fourth-order Runge-Kutta scheme. Mass conservation is satisfied...

  10. Principle of detailed balance and the finite-difference stochastic equation in field theory

    International Nuclear Information System (INIS)

    Kozhamkulov, T.A.

    1986-01-01

    The principle of detailed balance for the Markov chain is used to obtain a finite-difference equation which generalizes the Langevin equation in field theory. The advantages of using this approach compared to the conventional Parisi-Wu method are demonstrated for the examples of an exactly solvable problem in zero-dimensional quantum theory and a simple numerical simulation

  11. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.

  12. Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments

    DEFF Research Database (Denmark)

    Larsen, Casper; Cooke, David G.; Jepsen, Peter Uhd

    2011-01-01

    In this paper we report on the numerical analysis of a time-resolved terahertz (THz) spectroscopy experiment using a modified finite-difference time-domain method. Using this method, we show that ultrafast carrier dynamics can be extracted with a time resolution smaller than the duration of the T...

  13. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    Science.gov (United States)

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-08-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.

  14. Stability of finite difference schemes for generalized von Foerster equations with renewal

    Directory of Open Access Journals (Sweden)

    Henryk Leszczyński

    2014-01-01

    Full Text Available We consider a von Foerster-type equation describing the dynamics of a population with the production of offsprings given by the renewal condition. We construct a finite difference scheme for this problem and give sufficient conditions for its stability with respect to \\(l^1\\ and \\(l^\\infty\\ norms.

  15. A coupled boundary element-finite difference solution of the elliptic modified mild slope equation

    DEFF Research Database (Denmark)

    Naserizadeh, R.; Bingham, Harry B.; Noorzad, A.

    2011-01-01

    The modified mild slope equation of [5] is solved using a combination of the boundary element method (BEM) and the finite difference method (FDM). The exterior domain of constant depth and infinite horizontal extent is solved by a BEM using linear or quadratic elements. The interior domain...

  16. High-order finite difference solution for 3D nonlinear wave-structure interaction

    DEFF Research Database (Denmark)

    Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2010-01-01

    This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme O...

  17. Modeling of Nanophotonic Resonators with the Finite-Difference Frequency-Domain Method

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry

    2011-01-01

    Finite-difference frequency-domain method with perfectly matched layers and free-space squeezing is applied to model open photonic resonators of arbitrary morphology in three dimensions. Treating each spatial dimension independently, nonuniform mesh of continuously varying density can be built ea...

  18. A comparative approach for the characterization of a pneumatic piston gauge up to 8 MPa using finite element calculations

    International Nuclear Information System (INIS)

    Dogra, Sugandha; Singh, Jasveer; Lodh, Abhishek; Sharma, Nita Dilawar; Bandyopadhyay, A K

    2011-01-01

    This paper reports the behavior of a well-characterized pneumatic piston gauge in the pressure range up to 8 MPa through simulation using finite element method (FEM). Experimentally, the effective area of this piston gauge has been estimated by cross-floating to obtain A 0 and λ. The FEM technique addresses this problem through simulation and optimization with standard commercial software (ANSYS) where the material properties of the piston and cylinder, dimensional measurements, etc are used as the input parameters. The simulation provides the effective area A p as a function of pressure in the free deformation mode. From these data, one can estimate A p versus pressure and thereby A o and λ. Further, we have carried out a similar theoretical calculation of A p using the conventional method involving the Dadson's as well as Johnson–Newhall equations. A comparison of these results with the experimental results has been carried out

  19. A comparative approach for the characterization of a pneumatic piston gauge up to 8 MPa using finite element calculations

    Science.gov (United States)

    Dogra, Sugandha; Singh, Jasveer; Lodh, Abhishek; Dilawar Sharma, Nita; Bandyopadhyay, A. K.

    2011-02-01

    This paper reports the behavior of a well-characterized pneumatic piston gauge in the pressure range up to 8 MPa through simulation using finite element method (FEM). Experimentally, the effective area of this piston gauge has been estimated by cross-floating to obtain A0 and λ. The FEM technique addresses this problem through simulation and optimization with standard commercial software (ANSYS) where the material properties of the piston and cylinder, dimensional measurements, etc are used as the input parameters. The simulation provides the effective area Ap as a function of pressure in the free deformation mode. From these data, one can estimate Ap versus pressure and thereby Ao and λ. Further, we have carried out a similar theoretical calculation of Ap using the conventional method involving the Dadson's as well as Johnson-Newhall equations. A comparison of these results with the experimental results has been carried out.

  20. A non-linear, finite element, heat conduction code to calculate temperatures in solids of arbitrary geometry

    International Nuclear Information System (INIS)

    Tayal, M.

    1987-01-01

    Structures often operate at elevated temperatures. Temperature calculations are needed so that the design can accommodate thermally induced stresses and material changes. A finite element computer called FEAT has been developed to calculate temperatures in solids of arbitrary shapes. FEAT solves the classical equation for steady state conduction of heat. The solution is obtained for two-dimensional (plane or axisymmetric) or for three-dimensional problems. Gap elements are use to simulate interfaces between neighbouring surfaces. The code can model: conduction; internal generation of heat; prescribed convection to a heat sink; prescribed temperatures at boundaries; prescribed heat fluxes on some surfaces; and temperature-dependence of material properties like thermal conductivity. The user has a option of specifying the detailed variation of thermal conductivity with temperature. For convenience to the nuclear fuel industry, the user can also opt for pre-coded values of thermal conductivity, which are obtained from the MATPRO data base (sponsored by the U.S. Nuclear Regulatory Commission). The finite element method makes FEAT versatile, and enables it to accurately accommodate complex geometries. The optional link to MATPRO makes it convenient for the nuclear fuel industry to use FEAT, without loss of generality. Special numerical techniques make the code inexpensive to run, for the type of material non-linearities often encounter in the analysis of nuclear fuel. The code, however, is general, and can be used for other components of the reactor, or even for non-nuclear systems. The predictions of FEAT have been compared against several analytical solutions. The agreement is usually better than 5%. Thermocouple measurements show that the FEAT predictions are consistent with measured changes in temperatures in simulated pressure tubes. FEAT was also found to predict well, the axial variations in temperatures in the end-pellets(UO 2 ) of two fuel elements irradiated

  1. A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault

    Science.gov (United States)

    Barall, Michael

    2009-01-01

    We present a new finite-element technique for calculating dynamic 3-D spontaneous rupture on an earthquake fault, which can reduce the required computational resources by a factor of six or more, without loss of accuracy. The grid-doubling technique employs small cells in a thin layer surrounding the fault. The remainder of the modelling volume is filled with larger cells, typically two or four times as large as the small cells. In the resulting non-conforming mesh, an interpolation method is used to join the thin layer of smaller cells to the volume of larger cells. Grid-doubling is effective because spontaneous rupture calculations typically require higher spatial resolution on and near the fault than elsewhere in the model volume. The technique can be applied to non-planar faults by morphing, or smoothly distorting, the entire mesh to produce the desired 3-D fault geometry. Using our FaultMod finite-element software, we have tested grid-doubling with both slip-weakening and rate-and-state friction laws, by running the SCEC/USGS 3-D dynamic rupture benchmark problems. We have also applied it to a model of the Hayward fault, Northern California, which uses realistic fault geometry and rock properties. FaultMod implements fault slip using common nodes, which represent motion common to both sides of the fault, and differential nodes, which represent motion of one side of the fault relative to the other side. We describe how to modify the traction-at-split-nodes method to work with common and differential nodes, using an implicit time stepping algorithm.

  2. Application of a finite element method to the calculation of compressible subsonic flows

    International Nuclear Information System (INIS)

    Montagne, J.L.

    1980-01-01

    The accidental transients in nuclear reactors requires two-phase flow calculation in complicated geometries. In the present case, the flow has been limited to the study of an homogeneous bidimensional flow model. One obtains equations analogous to those for compressible gas. The two-phase nature leads to sudden variations of specific mass as a function of pressure and enthalpy. In practice, the flows are in a transport regime, this is why one has sought a stable discretization scheme for the hyperbolic system of Euler equations. In order to take into account the thermal phenomena, the natural variables were kept, flow rate, pressure enthalpy and the equations were used in their conservative form. A Galerkin method was used to solve the momentum conservation equation. The space to which the flow rates belong is submitted to a matching condition, the normal component of these vectors is continuous at the boundary between elements. The pressures, enthalpy specific mass, in contrast, are discontinuous between two elements. Correspondences must be established between these two type of discretization. The program set into operation uses a discretization of lowest order, and has been conceived for processing time steps conditioned only by the flow speed. It has been tested in two cases where the thermal phenomena are important: cool liquid introduced in vapor, and heating along a plate [fr

  3. RADSHI: shielding calculation program for different geometries sources

    International Nuclear Information System (INIS)

    Gelen, A.; Alvarez, I.; Lopez, H.; Manso, M.

    1996-01-01

    A computer code written in pascal language for IBM/Pc is described. The program calculates the optimum thickness of slab shield for different geometries sources. The Point Kernel Method is employed, which enables the obtention of the ionizing radiation flux density. The calculation takes into account the possibility of self-absorption in the source. The air kerma rate for gamma radiation is determined, and with the concept of attenuation length through the equivalent attenuation length the shield is obtained. The scattering and the exponential attenuation inside the shield material is considered in the program. The shield materials can be: concrete, water, iron or lead. It also calculates the shield for point isotropic neutron source, using as shield materials paraffin, concrete or water. (authors). 13 refs

  4. Quantum key distribution with finite resources: calculating the min-entropy

    Energy Technology Data Exchange (ETDEWEB)

    Bratzik, Sylvia; Mertz, Markus; Kampermann, Hermann; Abruzzo, Silvestre; Bruss, Dagmar [Heinrich-Heine-Universitaet, Duesseldorf (Germany)

    2010-07-01

    The min-entropy is an important quantity in quantum key distribution. Recently, a connection between the min- entropy and the minimal-error discrimination problem was found. We use this connection to evaluate the min-entropy for different quantum key distribution setups.

  5. High‐order rotated staggered finite difference modeling of 3D elastic wave propagation in general anisotropic media

    KAUST Repository

    Chu, Chunlei

    2009-01-01

    We analyze the dispersion properties and stability conditions of the high‐order convolutional finite difference operators and compare them with the conventional finite difference schemes. We observe that the convolutional finite difference method has better dispersion properties and becomes more efficient than the conventional finite difference method with the increasing order of accuracy. This makes the high‐order convolutional operator a good choice for anisotropic elastic wave simulations on rotated staggered grids since its enhanced dispersion properties can help to suppress the numerical dispersion error that is inherent in the rotated staggered grid structure and its efficiency can help us tackle 3D problems cost‐effectively.

  6. Stiffeners in variational-difference method for calculating shells with complex geometry

    Directory of Open Access Journals (Sweden)

    Ivanov Vyacheslav Nikolaevich

    2014-05-01

    Full Text Available We have already considered an introduction of reinforcements in the variational-difference method (VDM of shells analysis with complex shape. At the moment only ribbed shells of revolution and shallow shells can be calculated with the help of developed analytical and finite-difference methods. Ribbed shells of arbitrary shape can be calculated only using the finite element method (FEM. However there are problems, when using FEM, which are absent in finite- and variational-difference methods: rigid body motion; conforming trial functions; parameterization of a surface; independent stress strain state. In this regard stiffeners are entered in VDM. VDM is based on the Lagrange principle - the principle of minimum total potential energy. Stress-strain state of ribs is described by the Kirchhoff-Clebsch theory of curvilinear bars: tension, bending and torsion of ribs are taken into account. Stress-strain state of shells is described by the Kirchhoff-Love theory of thin elastic shells. A position of points of the middle surface is defined by curvilinear orthogonal coordinates α, β. Curved ribs are situated along coordinate lines. Strain energy of ribs is added into the strain energy to account for ribs. A matrix form of strain energy of ribs is formed similar to a matrix form of the strain energy of the shell. A matrix of geometrical characteristics of a rib is formed from components of matrices of geometric characteristics of a shell. A matrix of mechanical characteristics of a rib contains rib’s eccentricity and geometrical characteristics of a rib’s section. Derivatives of displacements in the strain vector are replaced with finite-difference relations after the middle surface of a shell gets covered with a grid (grid lines coincide with the coordinate lines of principal curvatures. By this case the total potential energy functional becomes a function of strain nodal displacements. Partial derivatives of unknown nodal displacements are

  7. An outgoing energy flux boundary condition for finite difference ICRP antenna models

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Carter, M.D.

    1992-11-01

    For antennas at the ion cyclotron range of frequencies (ICRF) modeling in vacuum can now be carried out to a high level of detail such that shaping of the current straps, isolating septa, and discrete Faraday shield structures can be included. An efficient approach would be to solve for the fields in the vacuum region near the antenna in three dimensions by finite methods and to match this solution at the plasma-vacuum interface to a solution obtained in the plasma region in one dimension by Fourier methods. This approach has been difficult to carry out because boundary conditions must be imposed at the edge of the finite difference grid on a point-by-point basis, whereas the condition for outgoing energy flux into the plasma is known only in terms of the Fourier transform of the plasma fields. A technique is presented by which a boundary condition can be imposed on the computational grid of a three-dimensional finite difference, or finite element, code by constraining the discrete Fourier transform of the fields at the boundary points to satisfy an outgoing energy flux condition appropriate for the plasma. The boundary condition at a specific grid point appears as a coupling to other grid points on the boundary, with weighting determined by a kemel calctdated from the plasma surface impedance matrix for the various plasma Fourier modes. This boundary condition has been implemented in a finite difference solution of a simple problem in two dimensions, which can also be solved directly by Fourier transformation. Results are presented, and it is shown that the proposed boundary condition does enforce outgoing energy flux and yields the same solution as is obtained by Fourier methods

  8. Full-Wave Analysis of Traveling-Wave Field-Effect Transistors Using Finite-Difference Time-Domain Method

    Directory of Open Access Journals (Sweden)

    Koichi Narahara

    2012-01-01

    Full Text Available Nonlinear transmission lines, which define transmission lines periodically loaded with nonlinear devices such as varactors, diodes, and transistors, are modeled in the framework of finite-difference time-domain (FDTD method. Originally, some root-finding routine is needed to evaluate the contributions of nonlinear device currents appropriately to the temporally advanced electrical fields. Arbitrary nonlinear transmission lines contain large amount of nonlinear devices; therefore, it costs too much time to complete calculations. To reduce the calculation time, we recently developed a simple model of diodes to eliminate root-finding routines in an FDTD solver. Approximating the diode current-voltage relation by a piecewise-linear function, an extended Ampere's law is solved in a closed form for the time-advanced electrical fields. In this paper, we newly develop an FDTD model of field-effect transistors (FETs, together with several numerical examples that demonstrate pulse-shortening phenomena in a traveling-wave FET.

  9. Comparison of different methods of calculating pinwise power

    International Nuclear Information System (INIS)

    Powers, M.A.

    1987-01-01

    One objective of a nuclear utility is the capability to predict the peak rod power in reload core design accurately and efficiently. This capability can be utilized in the verification of vendor results and the development of utility reload methodology. The MBS code solves the diffusion equation in x-y geometry by the finite different technique. The MBS code utilizes coarser meshes but reaches the same level of accuracy as a pin-by-pin model. The CASMO code utilizes pin profiles at specified core conditions, which are superimposed on the MBS diffusion theory results for pin power predictions. Placement of the burnable poison rods in the loading pattern are crucial to minimizing peak pin power. Westinghouse utilizes a code called TURTLE, licensed by the US Nuclear Regulatory Commission and proprietary to Westinghouse. The MBS code, with macroscopic cross sections from CASMO, can be run with coarser meshes and macroscopic depletion and still reach the same level of accuracy as a pin-by-pin code such as PDQ-7 or TURTLE. The MBS input preparation is simpler than PDQ-7 or TURTLE-type input preparation

  10. Torque calculation in the induction motor with the finite element method; Calculo del par en el motor de induccion con el metodo del elemento finito

    Energy Technology Data Exchange (ETDEWEB)

    Castillo Diaz, Ramon

    2002-06-15

    In this work the method of the finite element is applied to the bi-dimensional analysis of the induction motor in operation in steady state, excited by sine sources of laminar currents and sine sources of voltage. The analysis is focused mainly in the calculation of the electromagnetic torque. The topics of electromagnetic theory are covered and in an idealized model of the induction motor, analytically and numerically with the method of the finite element, in the variant method of Galerkin, the vectorial potential and the torque are calculated. The results obtained with the analytical and numerical methods are compared. Three formulations are developed to calculate the torque with the method of the finite element, using triangular elements of first order, based in the equation of force of Lorentz, the Maxwell tensor and the principle of the virtual work. Finally, a motor of induction of real characteristics is simulated, assuming it is connected to a three-phase voltage source. In this motor it is analyzed the convergence and the evolution in the results obtained of the torque with different discretions, and the torque-velocity performance curve is calculated. [Spanish] En este trabajo se aplica el metodo del elemento finito al analisis bidimensional del motor de induccion en operacion en estado estable, excitado por fuentes de corriente laminar senoidales y fuentes de voltaje senoidales. El analisis se enfoca principalmente en el calculo del par electromagnetico. Se tratan los topicos de teoria electromagnetica involucrados y en un modelo idealizado del motor de induccion, se calculan analitica y numericamente con el metodo del elemento finito, en la variante metodo de Galerkin, el potencial vectorial y el par. Se comparan resultados obtenidos con los metodos analiticos y numericos. Se desarrollan tres formulaciones para calcular el par con el metodo del elemento finito, utilizando elementos triangulares de primer orden, basadas en la ecuacion de fuerza de

  11. Calculations of different transmutation concepts. An international benchmark exercise

    International Nuclear Information System (INIS)

    2000-01-01

    In April 1996, the NEA Nuclear Science Committee (NSC) Expert Group on Physics Aspects of Different Transmutation Concepts launched a benchmark exercise to compare different transmutation concepts based on pressurised water reactors (PWRs), fast reactors, and an accelerator-driven system. The aim was to investigate the physics of complex fuel cycles involving reprocessing of spent PWR reactor fuel and its subsequent reuse in different reactor types. The objective was also to compare the calculated activities for individual isotopes as a function of time for different plutonium and minor actinide transmutation scenarios in different reactor systems. This report gives the analysis of results of the 15 solutions provided by the participants: six for the PWRs, six for the fast reactor and three for the accelerator case. Various computer codes and nuclear data libraries were applied. (author)

  12. Three-dimensional body-wave model of Nepal using finite difference tomography

    Science.gov (United States)

    Ho, T. M.; Priestley, K.; Roecker, S. W.

    2017-12-01

    The processes occurring during continent-continent collision are still poorly understood. Ascertaining the seismic properties of the crust and uppermost mantle in such settings provides insight into continental rheology and geodynamics. The most active present-day continent-continent collision is that of India with Eurasia which has created the Himalayas and the Tibetan Plateau. Nepal provides an ideal laboratory for imaging the crustal processes resulting from the Indo-Eurasia collision. We build body wave models using local body wave arrivals picked at stations in Nepal deployed by the Department of Mining and Geology of Nepal. We use the tomographic inversion method of Roecker et al. [2006], the key feature of which is that the travel times are generated using a finite difference solution to the eikonal equation. The advantage of this technique is increased accuracy in the highly heterogeneous medium expected for the Himalayas. Travel times are calculated on a 3D Cartesian grid with a grid spacing of 6 km and intragrid times are estimated by trilinear interpolation. The gridded area spans a region of 80-90o longitude and 25-30o latitude. For a starting velocity model, we use IASP91. Inversion is performed using the LSQR algorithm. Since the damping parameter can have a significant effect on the final solution, we tested a range of damping parameters to fully explore its effect. Much of the seismicity is clustered to the West of Kathmandu at depths Small areas of strong fast wavespeeds exist in the centre of the region in the upper 30 km of the crust. At depths of 40-50 km, large areas of slow wavespeeds are present which track along the plate boundary.

  13. Stability and non-standard finite difference method of the generalized Chua's circuit

    KAUST Repository

    Radwan, Ahmed G.

    2011-08-01

    In this paper, we develop a framework to obtain approximate numerical solutions of the fractional-order Chua\\'s circuit with Memristor using a non-standard finite difference method. Chaotic response is obtained with fractional-order elements as well as integer-order elements. Stability analysis and the condition of oscillation for the integer-order system are discussed. In addition, the stability analyses for different fractional-order cases are investigated showing a great sensitivity to small order changes indicating the poles\\' locations inside the physical s-plane. The GrnwaldLetnikov method is used to approximate the fractional derivatives. Numerical results are presented graphically and reveal that the non-standard finite difference scheme is an effective and convenient method to solve fractional-order chaotic systems, and to validate their stability. © 2011 Elsevier Ltd. All rights reserved.

  14. Stability analysis of single-phase thermosyphon loops by finite difference numerical methods

    International Nuclear Information System (INIS)

    Ambrosini, W.

    1998-01-01

    In this paper, examples of the application of finite difference numerical methods in the analysis of stability of single-phase natural circulation loops are reported. The problem is here addressed for its relevance for thermal-hydraulic system code applications, in the aim to point out the effect of truncation error on stability prediction. The methodology adopted for analysing in a systematic way the effect of various finite difference discretization can be considered the numerical analogue of the usual techniques adopted for PDE stability analysis. Three different single-phase loop configurations are considered involving various kinds of boundary conditions. In one of these cases, an original dimensionless form of the governing equations is proposed, adopting the Reynolds number as a flow variable. This allows for an appropriate consideration of transition between laminar and turbulent regimes, which is not possible with other dimensionless forms, thus enlarging the field of validity of model assumptions. (author). 14 refs., 8 figs

  15. Energy stable and high-order-accurate finite difference methods on staggered grids

    Science.gov (United States)

    O'Reilly, Ossian; Lundquist, Tomas; Dunham, Eric M.; Nordström, Jan

    2017-10-01

    For wave propagation over distances of many wavelengths, high-order finite difference methods on staggered grids are widely used due to their excellent dispersion properties. However, the enforcement of boundary conditions in a stable manner and treatment of interface problems with discontinuous coefficients usually pose many challenges. In this work, we construct a provably stable and high-order-accurate finite difference method on staggered grids that can be applied to a broad class of boundary and interface problems. The staggered grid difference operators are in summation-by-parts form and when combined with a weak enforcement of the boundary conditions, lead to an energy stable method on multiblock grids. The general applicability of the method is demonstrated by simulating an explosive acoustic source, generating waves reflecting against a free surface and material discontinuity.

  16. Method and system employing finite state machine modeling to identify one of a plurality of different electric load types

    Science.gov (United States)

    Du, Liang; Yang, Yi; Harley, Ronald Gordon; Habetler, Thomas G.; He, Dawei

    2016-08-09

    A system is for a plurality of different electric load types. The system includes a plurality of sensors structured to sense a voltage signal and a current signal for each of the different electric loads; and a processor. The processor acquires a voltage and current waveform from the sensors for a corresponding one of the different electric load types; calculates a power or current RMS profile of the waveform; quantizes the power or current RMS profile into a set of quantized state-values; evaluates a state-duration for each of the quantized state-values; evaluates a plurality of state-types based on the power or current RMS profile and the quantized state-values; generates a state-sequence that describes a corresponding finite state machine model of a generalized load start-up or transient profile for the corresponding electric load type; and identifies the corresponding electric load type.

  17. A simple finite-difference scheme for handling topography with the first-order wave equation

    Science.gov (United States)

    Mulder, W. A.; Huiskes, M. J.

    2017-07-01

    One approach to incorporate topography in seismic finite-difference codes is a local modification of the difference operators near the free surface. An earlier paper described an approach for modelling irregular boundaries in a constant-density acoustic finite-difference code, based on the second-order formulation of the wave equation that only involves the pressure. Here, a similar method is considered for the first-order formulation in terms of pressure and particle velocity, using a staggered finite-difference discretization both in space and in time. In one space dimension, the boundary conditions consist in imposing antisymmetry for the pressure and symmetry for particle velocity components. For the pressure, this means that the solution values as well as all even derivatives up to a certain order are zero on the boundary. For the particle velocity, all odd derivatives are zero. In 2D, the 1-D assumption is used along each coordinate direction, with antisymmetry for the pressure along the coordinate and symmetry for the particle velocity component parallel to that coordinate direction. Since the symmetry or antisymmetry should hold along the direction normal to the boundary rather than along the coordinate directions, this generates an additional numerical error on top of the time stepping errors and the errors due to the interior spatial discretization. Numerical experiments in 2D and 3D nevertheless produce acceptable results.

  18. The Incorporation of Truncated Fourier Series into Finite Difference Approximations of Structural Stability Equations

    Science.gov (United States)

    Hannah, S. R.; Palazotto, A. N.

    1978-01-01

    A new trigonometric approach to the finite difference calculus was applied to the problem of beam buckling as represented by virtual work and equilibrium equations. The trigonometric functions were varied by adjusting a wavelength parameter in the approximating Fourier series. Values of the critical force obtained from the modified approach for beams with a variety of boundary conditions were compared to results using the conventional finite difference method. The trigonometric approach produced significantly more accurate approximations for the critical force than the conventional approach for a relatively wide range in values of the wavelength parameter; and the optimizing value of the wavelength parameter corresponded to the half-wavelength of the buckled mode shape. It was found from a modal analysis that the most accurate solutions are obtained when the approximating function closely represents the actual displacement function and matches the actual boundary conditions.

  19. Convergence of finite differences schemes for viscous and inviscid conservation laws with rough coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Karlsen, Kenneth Hvistendal; Risebro, Nils Henrik

    2000-09-01

    We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a ''rough'' coefficient function k(x). we show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, k' is in BV, thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion equations as well as new convergence results for their finite difference approximations. In the inviscid case, we also provide a rate of convergence. Our convergence proofs are based on deriving a series of a priori estimates and using a general L{sup p} compactness criterion. (author)

  20. Symmetries of the second-difference matrix and the finite Fourier transform

    International Nuclear Information System (INIS)

    Aguilar, A.; Wolf, K.B.

    1979-01-01

    The finite Fourier transformation is well known to diagonalize the second-difference matrix and has been thus applied extensively to describe finite crystal lattices and electric networks. In setting out to find all transformations having this property, we obtain a multiparameter class of them. While permutations and unitary scaling of the eigenvectors constitute the trivial freedom of choice common to all diagonalization processes, the second-difference matrix has a larger symmetry group among whose elements we find the dihedral manifest symmetry transformations of the lattice. The latter are nevertheless sufficient for the unique specification of eigenvectors in various symmetry-adapted bases for the constrained lattice. The free symmetry parameters are shown to lead to a complete set of conserved quantities for the physical lattice motion. (author)

  1. Five-point form of the nodal diffusion method and comparison with finite-difference

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1988-01-01

    Nodal Methods have been derived, implemented and numerically tested for several problems in physics and engineering. In the field of nuclear engineering, many nodal formalisms have been used for the neutron diffusion equation, all yielding results which were far more computationally efficient than conventional Finite Difference (FD) and Finite Element (FE) methods. However, not much effort has been devoted to theoretically comparing nodal and FD methods in order to explain the very high accuracy of the former. In this summary we outline the derivation of a simple five-point form for the lowest order nodal method and compare it to the traditional five-point, edge-centered FD scheme. The effect of the observed differences on the accuracy of the respective methods is established by considering a simple test problem. It must be emphasized that the nodal five-point scheme derived here is mathematically equivalent to previously derived lowest order nodal methods. 7 refs., 1 tab

  2. Optimal variable-grid finite-difference modeling for porous media

    International Nuclear Information System (INIS)

    Liu, Xinxin; Yin, Xingyao; Li, Haishan

    2014-01-01

    Numerical modeling of poroelastic waves by the finite-difference (FD) method is more expensive than that of acoustic or elastic waves. To improve the accuracy and computational efficiency of seismic modeling, variable-grid FD methods have been developed. In this paper, we derived optimal staggered-grid finite difference schemes with variable grid-spacing and time-step for seismic modeling in porous media. FD operators with small grid-spacing and time-step are adopted for low-velocity or small-scale geological bodies, while FD operators with big grid-spacing and time-step are adopted for high-velocity or large-scale regions. The dispersion relations of FD schemes were derived based on the plane wave theory, then the FD coefficients were obtained using the Taylor expansion. Dispersion analysis and modeling results demonstrated that the proposed method has higher accuracy with lower computational cost for poroelastic wave simulation in heterogeneous reservoirs. (paper)

  3. Implementation of compact finite-difference method to parabolized Navier-Stokes equations

    International Nuclear Information System (INIS)

    Esfahanian, V.; Hejranfar, K.; Darian, H.M.

    2005-01-01

    The numerical simulation of the Parabolized Navier-Stokes (PNS) equations for supersonic/hypersonic flow field is obtained by using the fourth-order compact finite-difference method. The PNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming. A shock fitting procedure is utilized to obtain the accurate solution in the vicinity of the shock. The computations are performed for hypersonic axisymmetric flow over a blunt cone. The present results for the flow field along with those of the second-order method are presented and accuracy analysis is performed to insure the fourth-order accuracy of the method. (author)

  4. Option Pricing under Risk-Minimization Criterion in an Incomplete Market with the Finite Difference Method

    Directory of Open Access Journals (Sweden)

    Xinfeng Ruan

    2013-01-01

    Full Text Available We study option pricing with risk-minimization criterion in an incomplete market where the dynamics of the risky underlying asset is governed by a jump diffusion equation with stochastic volatility. We obtain the Radon-Nikodym derivative for the minimal martingale measure and a partial integro-differential equation (PIDE of European option. The finite difference method is employed to compute the European option valuation of PIDE.

  5. Transport and dispersion of pollutants in surface impoundments: a finite difference model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model by finite-difference (SIMFD) has been developed. SIMFD computes the flow rate, velocity field, and the concentration distribution of pollutants in surface impoundments with any number of islands located within the region of interest. Theoretical derivations and numerical algorithm are described in detail. Instructions for the application of SIMFD and listings of the FORTRAN IV source program are provided. Two sample problems are given to illustrate the application and validity of the model.

  6. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    Science.gov (United States)

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  7. Explicit finite difference predictor and convex corrector with applications to hyperbolic partial differential equations

    Science.gov (United States)

    Dey, C.; Dey, S. K.

    1983-01-01

    An explicit finite difference scheme consisting of a predictor and a corrector has been developed and applied to solve some hyperbolic partial differential equations (PDEs). The corrector is a convex-type function which is applied at each time level and at each mesh point. It consists of a parameter which may be estimated such that for larger time steps the algorithm should remain stable and generate a fast speed of convergence to the steady-state solution. Some examples have been given.

  8. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    OpenAIRE

    Lei Wang; Hongjun Yin; Xiaoshuang Yang; Chuncheng Yang; Jing Fu

    2015-01-01

    Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare wi...

  9. Full Wave Analysis of Passive Microwave Monolithic Integrated Circuit Devices Using a Generalized Finite Difference Time Domain (GFDTD) Algorithm

    Science.gov (United States)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1993-01-01

    This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.

  10. Rotational degree-of-freedom synthesis: An optimised finite difference method for non-exact data

    Science.gov (United States)

    Gibbons, T. J.; Öztürk, E.; Sims, N. D.

    2018-01-01

    Measuring the rotational dynamic behaviour of a structure is important for many areas of dynamics such as passive vibration control, acoustics, and model updating. Specialist and dedicated equipment is often needed, unless the rotational degree-of-freedom is synthesised based upon translational data. However, this involves numerically differentiating the translational mode shapes to approximate the rotational modes, for example using a finite difference algorithm. A key challenge with this approach is choosing the measurement spacing between the data points, an issue which has often been overlooked in the published literature. The present contribution will for the first time prove that the use of a finite difference approach can be unstable when using non-exact measured data and a small measurement spacing, for beam-like structures. Then, a generalised analytical error analysis is used to propose an optimised measurement spacing, which balances the numerical error of the finite difference equation with the propagation error from the perturbed data. The approach is demonstrated using both numerical and experimental investigations. It is shown that by obtaining a small number of test measurements it is possible to optimise the measurement accuracy, without any further assumptions on the boundary conditions of the structure.

  11. Intercomparison of the finite difference and nodal discrete ordinates and surface flux transport methods for a LWR pool-reactor benchmark problem in X-Y geometry

    International Nuclear Information System (INIS)

    O'Dell, R.D.; Stepanek, J.; Wagner, M.R.

    1983-01-01

    The aim of the present work is to compare and discuss the three of the most advanced two dimensional transport methods, the finite difference and nodal discrete ordinates and surface flux method, incorporated into the transport codes TWODANT, TWOTRAN-NODAL, MULTIMEDIUM and SURCU. For intercomparison the eigenvalue and the neutron flux distribution are calculated using these codes in the LWR pool reactor benchmark problem. Additionally the results are compared with some results obtained by French collision probability transport codes MARSYAS and TRIDENT. Because the transport solution of this benchmark problem is close to its diffusion solution some results obtained by the finite element diffusion code FINELM and the finite difference diffusion code DIFF-2D are included

  12. Modelling migration in multilayer systems by a finite difference method: the spherical symmetry case

    International Nuclear Information System (INIS)

    Hojbota, C I; Toşa, V; Mercea, P V

    2013-01-01

    We present a numerical model based on finite differences to solve the problem of chemical impurity migration within a multilayer spherical system. Migration here means diffusion of chemical species in conditions of concentration partitioning at layer interfaces due to different solubilities of the migrant in different layers. We detail here the numerical model and discuss the results of its implementation. To validate the method we compare it with cases where an analytic solution exists. We also present an application of our model to a practical problem in which we compute the migration of caprolactam from the packaging multilayer foil into the food

  13. Discretization of convection-diffusion equations with finite-difference scheme derived from simplified analytical solutions

    International Nuclear Information System (INIS)

    Kriventsev, Vladimir

    2000-09-01

    Most of thermal hydraulic processes in nuclear engineering can be described by general convection-diffusion equations that are often can be simulated numerically with finite-difference method (FDM). An effective scheme for finite-difference discretization of such equations is presented in this report. The derivation of this scheme is based on analytical solutions of a simplified one-dimensional equation written for every control volume of the finite-difference mesh. These analytical solutions are constructed using linearized representations of both diffusion coefficient and source term. As a result, the Efficient Finite-Differencing (EFD) scheme makes it possible to significantly improve the accuracy of numerical method even using mesh systems with fewer grid nodes that, in turn, allows to speed-up numerical simulation. EFD has been carefully verified on the series of sample problems for which either analytical or very precise numerical solutions can be found. EFD has been compared with other popular FDM schemes including novel, accurate (as well as sophisticated) methods. Among the methods compared were well-known central difference scheme, upwind scheme, exponential differencing and hybrid schemes of Spalding. Also, newly developed finite-difference schemes, such as the the quadratic upstream (QUICK) scheme of Leonard, the locally analytic differencing (LOAD) scheme of Wong and Raithby, the flux-spline scheme proposed by Varejago and Patankar as well as the latest LENS discretization of Sakai have been compared. Detailed results of this comparison are given in this report. These tests have shown a high efficiency of the EFD scheme. For most of sample problems considered EFD has demonstrated the numerical error that appeared to be in orders of magnitude lower than that of other discretization methods. Or, in other words, EFD has predicted numerical solution with the same given numerical error but using much fewer grid nodes. In this report, the detailed

  14. Mimetic finite difference method for the stokes problem on polygonal meshes

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, K [Los Alamos National Laboratory; Beirao Da Veiga, L [DIPARTIMENTO DI MATE; Gyrya, V [PENNSYLVANIA STATE UNIV; Manzini, G [ISTIUTO DI MATEMATICA

    2009-01-01

    Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.

  15. Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites

    Science.gov (United States)

    Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.

    2018-04-01

    Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.

  16. An object-oriented 3D nodal finite element solver for neutron transport calculations in the Descartes project

    Energy Technology Data Exchange (ETDEWEB)

    Akherraz, B.; Lautard, J.J. [CEA Saclay, Dept. Modelisation de Systemes et Structures, Serv. d' Etudes des Reacteurs et de Modelisation Avancee (DMSS/SERMA), 91 - Gif sur Yvette (France); Erhard, P. [Electricite de France (EDF), Dir. de Recherche et Developpement, Dept. Sinetics, 92 - Clamart (France)

    2003-07-01

    In this paper we present two applications of the Nodal finite elements developed by Hennart and del Valle, first to three-dimensional Cartesian meshes and then to two-dimensional Hexagonal meshes. This work has been achieved within the framework of the DESCARTES project, which is a co-development effort by the 'Commissariat a l'Energie Atomique' (CEA) and 'Electricite de France' (EDF) for the development of a toolbox for reactor core calculations based on object oriented programming. The general structure of this project is based on the object oriented method. By using a mapping technique proposed in Schneider's thesis and del Valle, Mund, we show how this structuration allows us an easy implementation of the hexagonal case from the Cartesian case. The main attractiveness of this methodology is the possibility of a pin-by-pin representation by division of each lozenge into smaller ones. Furthermore, we will explore the use of non structured quadrangles to treat the circular geometry within a hexagon. It remains nevertheless, in the hexagonal case, the implementation of the acceleration of the internal iterations by the DSA (Diffusion Synthetic Acceleration) or the TSA. (authors)

  17. Explicit formula of finite difference method to estimate human peripheral tissue temperatures during exposure to severe cold stress.

    Science.gov (United States)

    Khanday, M A; Hussain, Fida

    2015-02-01

    During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, -5 °C and -10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A fast Cauchy-Riemann solver. [differential equation solution for boundary conditions by finite difference approximation

    Science.gov (United States)

    Ghil, M.; Balgovind, R.

    1979-01-01

    The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.

  19. Finite-difference solution of the space-angle-lethargy-dependent slowing-down transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M V [Boris Kidric Vinca Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1972-07-01

    A procedure has been developed for solving the slowing-down transport equation for a cylindrically symmetric reactor system. The anisotropy of the resonance neutron flux is treated by the spherical harmonics formalism, which reduces the space-angle-Iethargy-dependent transport equation to a matrix integro-differential equation in space and lethargy. Replacing further the lethargy transfer integral by a finite-difference form, a set of matrix ordinary differential equations is obtained, with lethargy-and space dependent coefficients. If the lethargy pivotal points are chosen dense enough so that the difference correction term can be ignored, this set assumes a lower block triangular form and can be solved directly by forward block substitution. As in each step of the finite-difference procedure a boundary value problem has to be solved for a non-homogeneous system of ordinary differential equations with space-dependent coefficients, application of any standard numerical procedure, for example, the finite-difference method or the method of adjoint equations, is too cumbersome and would make the whole procedure practically inapplicable. A simple and efficient approximation is proposed here, allowing analytical solution for the space dependence of the spherical-harmonics flux moments, and hence the derivation of the recurrence relations between the flux moments at successive lethargy pivotal points. According to the procedure indicated above a computer code has been developed for the CDC -3600 computer, which uses the KEDAK nuclear data file. The space and lethargy distribution of the resonance neutrons can be computed in such a detailed fashion as the neutron cross-sections are known for the reactor materials considered. The computing time is relatively short so that the code can be efficiently used, either autonomously, or as part of some complex modular scheme. Typical results will be presented and discussed in order to prove and illustrate the applicability of the

  20. Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures

    Directory of Open Access Journals (Sweden)

    N. Dadashzadeh

    2013-09-01

    Full Text Available Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We provide an overview of recent theoretical developments in a numerical modeling of Maxwell's equations to analyze the propagation of short laser pulses in photonic structures. The process of short light pulse propagation through 2D periodic and quasi-periodic photonic structures is simulated based on Finite-Difference Time-Domain calculations of Maxwell’s equations.

  1. Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation

    Science.gov (United States)

    Huang, Shi-Hao; Wang, Shiang-Jiu; Tseng, Snow H.

    2015-03-01

    Optical coherence tomography (OCT) provides high resolution, cross-sectional image of internal microstructure of biological tissue. We use the Finite-Difference Time-Domain method (FDTD) to analyze the data acquired by OCT, which can help us reconstruct the refractive index of the biological tissue. We calculate the refractive index tomography and try to match the simulation with the data acquired by OCT. Specifically, we try to reconstruct the structure of melanin, which has complex refractive indices and is the key component of human pigment system. The results indicate that better reconstruction can be achieved for homogenous sample, whereas the reconstruction is degraded for samples with fine structure or with complex interface. Simulation reconstruction shows structures of the Melanin that may be useful for biomedical optics applications.

  2. Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS).

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David Franklin; Collier, Sandra L. (U.S. Army Research Laboratory); Marlin, David H. (U.S. Army Research Laboratory); Ostashev, Vladimir E. (NOAA/Environmental Technology Laboratory); Symons, Neill Phillip; Wilson, D. Keith (U.S. Army Cold Regions Research Engineering Lab.)

    2005-05-01

    This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.

  3. Simulation of subwavelength metallic gratings using a new implementation of the recursive convolution finite-difference time-domain algorithm.

    Science.gov (United States)

    Banerjee, Saswatee; Hoshino, Tetsuya; Cole, James B

    2008-08-01

    We introduce a new implementation of the finite-difference time-domain (FDTD) algorithm with recursive convolution (RC) for first-order Drude metals. We implemented RC for both Maxwell's equations for light polarized in the plane of incidence (TM mode) and the wave equation for light polarized normal to the plane of incidence (TE mode). We computed the Drude parameters at each wavelength using the measured value of the dielectric constant as a function of the spatial and temporal discretization to ensure both the accuracy of the material model and algorithm stability. For the TE mode, where Maxwell's equations reduce to the wave equation (even in a region of nonuniform permittivity) we introduced a wave equation formulation of RC-FDTD. This greatly reduces the computational cost. We used our methods to compute the diffraction characteristics of metallic gratings in the visible wavelength band and compared our results with frequency-domain calculations.

  4. A finite-difference time-domain simulation of high power microwave generated plasma at atmospheric pressures

    International Nuclear Information System (INIS)

    Ford, Patrick J.; Beeson, Sterling R.; Krompholz, Hermann G.; Neuber, Andreas A.

    2012-01-01

    A finite-difference algorithm was developed to calculate several RF breakdown parameters, for example, the formative delay time that is observed between the initial application of a RF field to a dielectric surface and the formation of field-induced plasma interrupting the RF power flow. The analysis is focused on the surface being exposed to a background gas pressure above 50 Torr. The finite-difference algorithm provides numerical solutions to partial differential equations with high resolution in the time domain, making it suitable for simulating the time evolving interaction of microwaves with plasma; in lieu of direct particle tracking, a macroscopic electron density is used to model growth and transport. This approach is presented as an alternative to particle-in-cell methods due to its low complexity and runtime leading to more efficient analysis for a simulation of a microsecond scale pulse. The effect and development of the plasma is modeled in the simulation using scaling laws for ionization rates, momentum transfer collision rates, and diffusion coefficients, as a function of electric field, gas type and pressure. The incorporation of plasma material into the simulation involves using the Z-transform to derive a time-domain algorithm from the complex frequency-dependent permittivity of plasma. Therefore, the effect of the developing plasma on the instantaneous microwave field is calculated. Simulation results are compared with power measurements using an apparatus designed to facilitate surface flashover across a polycarbonate boundary in a controlled N 2 , air, or argon environment at pressures exceeding 50 Torr.

  5. Localized specific absorption rate calculations in a realistic phantom leg at 1-30 MHz using a finite element method

    International Nuclear Information System (INIS)

    Wainwright, P.R.

    1999-01-01

    Protection standards for radiofrequency electromagnetic radiation are principally intended to avoid detrimental thermal effects. To this end the International Commission on Non-Ionizing Radiation Protection (ICNIRP), and national bodies such as the National Radiological Protection Board (NRPB), recommend limitations on the localized specific energy absorption rate (SAR) in various parts of the body. The role of numerical dosimetry is to estimate the SAR from measurable parameters such as external field strengths and total body currents. In recent years there have been significant advances in the sophistication of the anatomical models available, and in our knowledge of the electrical properties of the body tissues. Several groups, including NRPB, have developed mathematical phantoms from medical imaging data, such as MRI scans. It has been known for some time that under certain circumstances SAR restrictions may be violated in the ankle due to the concentration of current in a small area. In this paper the author presents calculations of the SAR distribution in a human leg in the high-frequency (HF) band. This band contains the human whole-body resonance frequency and therefore gives the strongest coupling of the body to the field. The present study uses a finite element model with variable mesh size, derived from a 2 mm resolution voxel phantom of the whole body. It also uses recently acquired data on the electrical properties of the tissues. The results are discussed in the light of the exposure standards promulgated by national and international bodies such as NRPB and ICNIRP, and it is shown that the basic SAR restrictions in the leg are ensured by a current reference level of 100 mA. (author)

  6. Elastic frequency-domain finite-difference contrast source inversion method

    International Nuclear Information System (INIS)

    He, Qinglong; Chen, Yong; Han, Bo; Li, Yang

    2016-01-01

    In this work, we extend the finite-difference contrast source inversion (FD-CSI) method to the frequency-domain elastic wave equations, where the parameters describing the subsurface structure are simultaneously reconstructed. The FD-CSI method is an iterative nonlinear inversion method, which exhibits several strengths. First, the finite-difference operator only relies on the background media and the given angular frequency, both of which are unchanged during inversion. Therefore, the matrix decomposition is performed only once at the beginning of the iteration if a direct solver is employed. This makes the inversion process relatively efficient in terms of the computational cost. In addition, the FD-CSI method automatically normalizes different parameters, which could avoid the numerical problems arising from the difference of the parameter magnitude. We exploit a parallel implementation of the FD-CSI method based on the domain decomposition method, ensuring a satisfactory scalability for large-scale problems. A simple numerical example with a homogeneous background medium is used to investigate the convergence of the elastic FD-CSI method. Moreover, the Marmousi II model proposed as a benchmark for testing seismic imaging methods is presented to demonstrate the performance of the elastic FD-CSI method in an inhomogeneous background medium. (paper)

  7. Finite difference applied to the reconstruction method of the nuclear power density distribution

    International Nuclear Information System (INIS)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2016-01-01

    Highlights: • A method for reconstruction of the power density distribution is presented. • The method uses discretization by finite differences of 2D neutrons diffusion equation. • The discretization is performed homogeneous meshes with dimensions of a fuel cell. • The discretization is combined with flux distributions on the four node surfaces. • The maximum errors in reconstruction occur in the peripheral water region. - Abstract: In this reconstruction method the two-dimensional (2D) neutron diffusion equation is discretized by finite differences, employed to two energy groups (2G) and meshes with fuel-pin cell dimensions. The Nodal Expansion Method (NEM) makes use of surface discontinuity factors of the node and provides for reconstruction method the effective multiplication factor of the problem and the four surface average fluxes in homogeneous nodes with size of a fuel assembly (FA). The reconstruction process combines the discretized 2D diffusion equation by finite differences with fluxes distribution on four surfaces of the nodes. These distributions are obtained for each surfaces from a fourth order one-dimensional (1D) polynomial expansion with five coefficients to be determined. The conditions necessary for coefficients determination are three average fluxes on consecutive surfaces of the three nodes and two fluxes in corners between these three surface fluxes. Corner fluxes of the node are determined using a third order 1D polynomial expansion with four coefficients. This reconstruction method uses heterogeneous nuclear parameters directly providing the heterogeneous neutron flux distribution and the detailed nuclear power density distribution within the FAs. The results obtained with this method has good accuracy and efficiency when compared with reference values.

  8. A strong shock tube problem calculated by different numerical schemes

    Science.gov (United States)

    Lee, Wen Ho; Clancy, Sean P.

    1996-05-01

    Calculated results are presented for the solution of a very strong shock tube problem on a coarse mesh using (1) MESA code, (2) UNICORN code, (3) Schulz hydro, and (4) modified TVD scheme. The first two codes are written in Eulerian coordinates, whereas methods (3) and (4) are in Lagrangian coordinates. MESA and UNICORN codes are both of second order and use different monotonic advection method to avoid the Gibbs phenomena. Code (3) uses typical artificial viscosity for inviscid flow, whereas code (4) uses a modified TVD scheme. The test problem is a strong shock tube problem with a pressure ratio of 109 and density ratio of 103 in an ideal gas. For no mass-matching case, Schulz hydro is better than TVD scheme. In the case of mass-matching, there is no difference between them. MESA and UNICORN results are nearly the same. However, the computed positions such as the contact discontinuity (i.e. the material interface) are not as accurate as the Lagrangian methods.

  9. A strong shock tube problem calculated by different numerical schemes

    International Nuclear Information System (INIS)

    Lee, W.H.; Clancy, S.P.

    1996-01-01

    Calculated results are presented for the solution of a very strong shock tube problem on a coarse mesh using (1) MESA code, (2) UNICORN code, (3) Schulz hydro, and (4) modified TVD scheme. The first two codes are written in Eulerian coordinates, whereas methods (3) and (4) are in Lagrangian coordinates. MESA and UNICORN codes are both of second order and use different monotonic advection method to avoid the Gibbs phenomena. Code (3) uses typical artificial viscosity for inviscid flow, whereas code (4) uses a modified TVD scheme. The test problem is a strong shock tube problem with a pressure ratio of 10 9 and density ratio of 10 3 in an ideal gas. For no mass-matching case, Schulz hydro is better than TVD scheme. In the case of mass-matching, there is no difference between them. MESA and UNICORN results are nearly the same. However, the computed positions such as the contact discontinuity (i.e. the material interface) are not as accurate as the Lagrangian methods. copyright 1996 American Institute of Physics

  10. Analysis of oscillational instabilities in acoustic levitation using the finite-difference time-domain method

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2011-01-01

    The aim of the work described in this paper has been to investigate the use of the finite-difference time-domain method to describe the interactions between a moving object and a sound field. The main objective was to simulate oscillational instabilities that appear in single-axis acoustic...... levitation devices and to describe their evolution in time to further understand the physical mechanism involved. The study shows that the method gives accurate results for steady state conditions, and that it is a promising tool for simulations with a moving object....

  11. Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids

    Science.gov (United States)

    Housman, Jeffrey A.; Kiris, Cetin

    2016-01-01

    Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.

  12. COVE-1: a finite difference creep collapse code for oval fuel pin cladding material

    International Nuclear Information System (INIS)

    Mohr, C.L.

    1975-03-01

    COVE-1 is a time-dependent incremental creep collapse code that estimates the change in ovality of a fuel pin cladding tube. It uses a finite difference method of solving the differential equations which describe the deflection of the tube walls as a function of time. The physical problem is nonlinear, both with respect to geometry and material properties, which requires the use of an incremental, analytical, path-dependent solution. The application of this code is intended primarily for tubes manufactured from Zircaloy. Therefore, provision has been made to include some of the effects of anisotropy in the flow equations for inelastic incremental deformations. 10 references. (U.S.)

  13. Finite Difference Analysis of Transient Heat Transfer in Surrounding Rock Mass of High Geothermal Roadway

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2016-01-01

    Full Text Available Based on finite difference method, a mathematical model and a numerical model written by Fortran language were established in the paper. Then a series of experiments were conducted to figure out the evolution law of temperature field in high geothermal roadway. Research results indicate that temperature disturbance range increases gradually as the unsteady heat conduction goes on and it presents power function relationship with dimensionless time. Based on the case analysis, there is no distinct expansion of temperature disturbance range after four years of ventilation, when the temperature disturbance range R=13.6.

  14. A multigrid algorithm for the cell-centered finite difference scheme

    Science.gov (United States)

    Ewing, Richard E.; Shen, Jian

    1993-01-01

    In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.

  15. Four-level conservative finite-difference schemes for Boussinesq paradigm equation

    Science.gov (United States)

    Kolkovska, N.

    2013-10-01

    In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.

  16. Accuracy of spectral and finite difference schemes in 2D advection problems

    DEFF Research Database (Denmark)

    Naulin, V.; Nielsen, A.H.

    2003-01-01

    In this paper we investigate the accuracy of two numerical procedures commonly used to solve 2D advection problems: spectral and finite difference (FD) schemes. These schemes are widely used, simulating, e.g., neutral and plasma flows. FD schemes have long been considered fast, relatively easy...... that the accuracy of FD schemes can be significantly improved if one is careful in choosing an appropriate FD scheme that reflects conservation properties of the nonlinear terms and in setting up the grid in accordance with the problem....

  17. Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation

    Science.gov (United States)

    Agarwal, P.; El-Sayed, A. A.

    2018-06-01

    In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.

  18. New way for determining electron energy levels in quantum dots arrays using finite difference method

    Science.gov (United States)

    Dujardin, F.; Assaid, E.; Feddi, E.

    2018-06-01

    Electronic states are investigated in quantum dots arrays, depending on the type of cubic Bravais lattice (primitive, body centered or face centered) according to which the dots are arranged, the size of the dots and the interdot distance. It is shown that the ground state energy level can undergo significant variations when these parameters are modified. The results were obtained by means of finite difference method which has proved to be easily adaptable, efficient and precise. The symmetry properties of the lattice have been used to reduce the size of the Hamiltonian matrix.

  19. Solving the Schroedinger equation using the finite difference time domain method

    International Nuclear Information System (INIS)

    Sudiarta, I Wayan; Geldart, D J Wallace

    2007-01-01

    In this paper, we solve the Schroedinger equation using the finite difference time domain (FDTD) method to determine energies and eigenfunctions. In order to apply the FDTD method, the Schroedinger equation is first transformed into a diffusion equation by the imaginary time transformation. The resulting time-domain diffusion equation is then solved numerically by the FDTD method. The theory and an algorithm are provided for the procedure. Numerical results are given for illustrative examples in one, two and three dimensions. It is shown that the FDTD method accurately determines eigenfunctions and energies of these systems

  20. Scattering analysis of periodic structures using finite-difference time-domain

    CERN Document Server

    ElMahgoub, Khaled; Elsherbeni, Atef Z

    2012-01-01

    Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algor

  1. Double absorbing boundaries for finite-difference time-domain electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    LaGrone, John, E-mail: jlagrone@smu.edu; Hagstrom, Thomas, E-mail: thagstrom@smu.edu

    2016-12-01

    We describe the implementation of optimal local radiation boundary condition sequences for second order finite difference approximations to Maxwell's equations and the scalar wave equation using the double absorbing boundary formulation. Numerical experiments are presented which demonstrate that the design accuracy of the boundary conditions is achieved and, for comparable effort, exceeds that of a convolution perfectly matched layer with reasonably chosen parameters. An advantage of the proposed approach is that parameters can be chosen using an accurate a priori error bound.

  2. A finite-difference method for the variable coefficient Poisson equation on hierarchical Cartesian meshes

    Science.gov (United States)

    Raeli, Alice; Bergmann, Michel; Iollo, Angelo

    2018-02-01

    We consider problems governed by a linear elliptic equation with varying coefficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. We present a compact finite-difference scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel data structure. The main idea is to optimize the truncation error of the discretization scheme as a function of the local grid configuration to achieve second-order accuracy. Numerical illustrations are presented in two and three-dimensional configurations.

  3. Application of numerical inverse method in calculation of composition-dependent interdiffusion coefficients in finite diffusion couples

    DEFF Research Database (Denmark)

    Liu, Yuanrong; Chen, Weimin; Zhong, Jing

    2017-01-01

    The previously developed numerical inverse method was applied to determine the composition-dependent interdiffusion coefficients in single-phase finite diffusion couples. The numerical inverse method was first validated in a fictitious binary finite diffusion couple by pre-assuming four standard...... sets of interdiffusion coefficients. After that, the numerical inverse method was then adopted in a ternary Al-Cu-Ni finite diffusion couple. Based on the measured composition profiles, the ternary interdiffusion coefficients along the entire diffusion path of the target ternary diffusion couple were...... obtained by using the numerical inverse approach. The comprehensive comparisons between the computations and the experiments indicate that the numerical inverse method is also applicable to high-throughput determination of the composition-dependent interdiffusion coefficients in finite diffusion couples....

  4. A finite difference method for space fractional differential equations with variable diffusivity coefficient

    KAUST Repository

    Mustapha, K.

    2017-06-03

    Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.

  5. High-order asynchrony-tolerant finite difference schemes for partial differential equations

    Science.gov (United States)

    Aditya, Konduri; Donzis, Diego A.

    2017-12-01

    Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.

  6. A finite difference method for space fractional differential equations with variable diffusivity coefficient

    KAUST Repository

    Mustapha, K.; Furati, K.; Knio, Omar; Maitre, O. Le

    2017-01-01

    Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order diffusion equations, but is better described by fractional diffusion models. The nonlocal nature of the fractional diffusion operators makes substantially more difficult the mathematical analysis of these models and the establishment of suitable numerical schemes. This paper proposes and analyzes the first finite difference method for solving {\\em variable-coefficient} fractional differential equations, with two-sided fractional derivatives, in one-dimensional space. The proposed scheme combines first-order forward and backward Euler methods for approximating the left-sided fractional derivative when the right-sided fractional derivative is approximated by two consecutive applications of the first-order backward Euler method. Our finite difference scheme reduces to the standard second-order central difference scheme in the absence of fractional derivatives. The existence and uniqueness of the solution for the proposed scheme are proved, and truncation errors of order $h$ are demonstrated, where $h$ denotes the maximum space step size. The numerical tests illustrate the global $O(h)$ accuracy of our scheme, except for nonsmooth cases which, as expected, have deteriorated convergence rates.

  7. Transient analysis of printed lines using finite-difference time-domain method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Shahid [Thomas Jefferson National Accelerator Facility, 12050 Jefferson Avenue, Suite 704, Newport News, VA, 23606, USA

    2012-03-29

    Comprehensive studies of ultra-wideband pulses and electromagnetic coupling on printed coupled lines have been performed using full-wave 3D finite-difference time-domain analysis. Effects of unequal phase velocities of coupled modes, coupling between line traces, and the frequency dispersion on the waveform fidelity and crosstalk have been investigated in detail. To discriminate the contributions of different mechanisms into pulse evolution, single and coupled microstrip lines without (ϵr = 1) and with (ϵr > 1) dielectric substrates have been examined. To consistently compare the performance of the coupled lines with substrates of different permittivities and transients of different characteristic times, a generic metric similar to the electrical wavelength has been introduced. The features of pulse propagation on coupled lines with layered and pedestal substrates and on the irregular traces have been explored. Finally, physical interpretations of the simulation results are discussed in the paper.

  8. Three-dimensional modeling in the electromagnetic/magnetotelluric methods. Accuracy of various finite-element and finite difference methods; Denjiho MT ho ni okeru sanjigen modeling. Shushu no yugen yosoho to sabunho no seido

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Y [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-05-27

    To enhance the reliability of electromagnetic/magnetotelluric (MT) survey, calculation results of finite-element methods (FEMs) and finite difference methods (FDMs) were compared. Accuracy of individual methods and convergence of repitition solution were examined. As a result of the investigation, it was found that appropriate accuracy can be obtained from the edge FEM and FDM for the example of vertical magnetic dipole, and that the best accuracy can be obtained from the FDM among four methods for the example of MT survey. It was revealed that the ICBCG (incomplete Cholesky bi-conjugate gradient) method is an excellent method as a solution method of simultaneous equations from the viewpoint of accuracy and calculation time. For the joint FEM, solutions of SOR method converged for both the examples. It was concluded that the cause of error is not due to the error of numerical calculation, but due to the consideration without discontinuity of electric field. The conditions of coefficient matrix increased with decreasing the frequency, which resulted in the unstable numerical calculation. It would be required to incorporate the constraint in a certain form. 4 refs., 12 figs.

  9. Finite element calculations illustrating a method of model reduction for the dynamics of structures with localized nonlinearities.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel Todd; Segalman, Daniel Joseph

    2006-10-01

    A technique published in SAND Report 2006-1789 ''Model Reduction of Systems with Localized Nonlinearities'' is illustrated in two problems of finite element structural dynamics. That technique, called here the Method of Locally Discontinuous Basis Vectors (LDBV), was devised to address the peculiar difficulties of model reduction of systems having spatially localized nonlinearities. It's illustration here is on two problems of different geometric and dynamic complexity, but each containing localized interface nonlinearities represented by constitutive models for bolted joint behavior. As illustrated on simple problems in the earlier SAND report, the LDBV Method not only affords reduction in size of the nonlinear systems of equations that must be solved, but it also facilitates the use of much larger time steps on problems of joint macro-slip than would be possible otherwise. These benefits are more dramatic for the larger problems illustrated here. The work of both the original SAND report and this one were funded by the LDRD program at Sandia National Laboratories.

  10. A moving mesh finite difference method for equilibrium radiation diffusion equations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaobo, E-mail: xwindyb@126.com [Department of Mathematics, College of Science, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Huang, Weizhang, E-mail: whuang@ku.edu [Department of Mathematics, University of Kansas, Lawrence, KS 66045 (United States); Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn [School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen, Fujian 361005 (China)

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  11. Parallelized implicit propagators for the finite-difference Schrödinger equation

    Science.gov (United States)

    Parker, Jonathan; Taylor, K. T.

    1995-08-01

    We describe the application of block Gauss-Seidel and block Jacobi iterative methods to the design of implicit propagators for finite-difference models of the time-dependent Schrödinger equation. The block-wise iterative methods discussed here are mixed direct-iterative methods for solving simultaneous equations, in the sense that direct methods (e.g. LU decomposition) are used to invert certain block sub-matrices, and iterative methods are used to complete the solution. We describe parallel variants of the basic algorithm that are well suited to the medium- to coarse-grained parallelism of work-station clusters, and MIMD supercomputers, and we show that under a wide range of conditions, fine-grained parallelism of the computation can be achieved. Numerical tests are conducted on a typical one-electron atom Hamiltonian. The methods converge robustly to machine precision (15 significant figures), in some cases in as few as 6 or 7 iterations. The rate of convergence is nearly independent of the finite-difference grid-point separations.

  12. A Proposed Stochastic Finite Difference Approach Based on Homogenous Chaos Expansion

    Directory of Open Access Journals (Sweden)

    O. H. Galal

    2013-01-01

    Full Text Available This paper proposes a stochastic finite difference approach, based on homogenous chaos expansion (SFDHC. The said approach can handle time dependent nonlinear as well as linear systems with deterministic or stochastic initial and boundary conditions. In this approach, included stochastic parameters are modeled as second-order stochastic processes and are expanded using Karhunen-Loève expansion, while the response function is approximated using homogenous chaos expansion. Galerkin projection is used in converting the original stochastic partial differential equation (PDE into a set of coupled deterministic partial differential equations and then solved using finite difference method. Two well-known equations were used for efficiency validation of the method proposed. First one being the linear diffusion equation with stochastic parameter and the second is the nonlinear Burger's equation with stochastic parameter and stochastic initial and boundary conditions. In both of these examples, the probability distribution function of the response manifested close conformity to the results obtained from Monte Carlo simulation with optimized computational cost.

  13. A moving mesh finite difference method for equilibrium radiation diffusion equations

    International Nuclear Information System (INIS)

    Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian

    2015-01-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation

  14. Direct method of solving finite difference nonlinear equations for multicomponent diffusion in a gas centrifuge

    International Nuclear Information System (INIS)

    Potemki, Valeri G.; Borisevich, Valentine D.; Yupatov, Sergei V.

    1996-01-01

    This paper describes the the next evolution step in development of the direct method for solving systems of Nonlinear Algebraic Equations (SNAE). These equations arise from the finite difference approximation of original nonlinear partial differential equations (PDE). This method has been extended on the SNAE with three variables. The solving SNAE bases on Reiterating General Singular Value Decomposition of rectangular matrix pencils (RGSVD-algorithm). In contrast to the computer algebra algorithm in integer arithmetic based on the reduction to the Groebner's basis that algorithm is working in floating point arithmetic and realizes the reduction to the Kronecker's form. The possibilities of the method are illustrated on the example of solving the one-dimensional diffusion equation for 3-component model isotope mixture in a ga centrifuge. The implicit scheme for the finite difference equations without simplifying the nonlinear properties of the original equations is realized. The technique offered provides convergence to the solution for the single run. The Toolbox SNAE is developed in the framework of the high performance numeric computation and visualization software MATLAB. It includes more than 30 modules in MATLAB language for solving SNAE with two and three variables. (author)

  15. A coarse-mesh nodal method-diffusive-mesh finite difference method

    International Nuclear Information System (INIS)

    Joo, H.; Nichols, W.R.

    1994-01-01

    Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper

  16. On Long-Time Instabilities in Staggered Finite Difference Simulations of the Seismic Acoustic Wave Equations on Discontinuous Grids

    KAUST Repository

    Gao, Longfei; Ketcheson, David I.; Keyes, David E.

    2017-01-01

    We consider the long-time instability issue associated with finite difference simulation of seismic acoustic wave equations on discontinuous grids. This issue is exhibited by a prototype algebraic problem abstracted from practical application

  17. PCS: an Euler--Lagrange method for treating convection in pulsating stars using finite difference techniques in two spatial dimensions

    International Nuclear Information System (INIS)

    Deupree, R.G.

    1977-01-01

    Finite difference techniques were used to examine the coupling of radial pulsation and convection in stellar models having comparable time scales. Numerical procedures are emphasized, including diagnostics to help determine the range of free parameters

  18. Mathematical simulation of the thermal diffusion in dentine irradiated with Nd:YAG laser using finite difference method

    Science.gov (United States)

    Moriyama, Eduardo H.; Zangaro, Renato A.; Lobo, Paulo D. d. C.; Villaverde, Antonio G. J. B.; Watanabe-Sei, Ii; Pacheco, Marcos T. T.; Otsuka, Daniel K.

    2002-06-01

    Thermal damage in dental pulp during Nd:YAG laser irradiation have been studied by several researchers; but due to dentin inhomogeneous structure, laser interaction with dentin in the hypersensitivity treatment are not fully understood. In this work, heat distribution profile on human dentine samples irradiated with Nd:YAG laser was simulated at surface and subjacent layers. Calculations were carried out using the Crank-Nicolson's finite difference method. Sixteen dentin samples with 1,5 mm of thickness were evenly distributed into four groups and irradiated with Nd:YAG laser pulses, according to the following scheme: (I) 1 pulse of 900 mJ, (II) 2 pulses of 450 mJ, (III) 3 pulses of 300 mJ, (IV) 6 pulses of 150 mJ; corresponding to a total laser energy of 900 mJ. The pulse interval was 300ms, the pulse duration of 900 ms and irradiated surface area of 0,005 mm2. Laser induced morphological changes in dentin were observed for all the irradiated samples. The heat distribution throughout the dentin layer, from the external dentin surface to the pulpal chamber wall, was calculated for each case, in order to obtain further information about the pulsed Nd:YAG laser-oral hard tissue interaction. The simulation showed significant differences in the final temperature at the pulpal chamber, depending on the exposition time and the energy contained in the laser pulse.

  19. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    Science.gov (United States)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  20. Non-linear analysis of skew thin plate by finite difference method

    International Nuclear Information System (INIS)

    Kim, Chi Kyung; Hwang, Myung Hwan

    2012-01-01

    This paper deals with a discrete analysis capability for predicting the geometrically nonlinear behavior of skew thin plate subjected to uniform pressure. The differential equations are discretized by means of the finite difference method which are used to determine the deflections and the in-plane stress functions of plates and reduced to several sets of linear algebraic simultaneous equations. For the geometrically non-linear, large deflection behavior of the plate, the non-linear plate theory is used for the analysis. An iterative scheme is employed to solve these quasi-linear algebraic equations. Several problems are solved which illustrate the potential of the method for predicting the finite deflection and stress. For increasing lateral pressures, the maximum principal tensile stress occurs at the center of the plate and migrates toward the corners as the load increases. It was deemed important to describe the locations of the maximum principal tensile stress as it occurs. The load-deflection relations and the maximum bending and membrane stresses for each case are presented and discussed

  1. Finite element modelling of Plantar Fascia response during running on different surface types

    Science.gov (United States)

    Razak, A. H. A.; Basaruddin, K. S.; Salleh, A. F.; Rusli, W. M. R.; Hashim, M. S. M.; Daud, R.

    2017-10-01

    Plantar fascia is a ligament found in human foot structure located beneath the skin of human foot that functioning to stabilize longitudinal arch of human foot during standing and normal gait. To perform direct experiment on plantar fascia seems very difficult since the structure located underneath the soft tissue. The aim of this study is to develop a finite element (FE) model of foot with plantar fascia and investigate the effect of the surface hardness on biomechanical response of plantar fascia during running. The plantar fascia model was developed using Solidworks 2015 according to the bone structure of foot model that was obtained from Turbosquid database. Boundary conditions were set out based on the data obtained from experiment of ground reaction force response during running on different surface hardness. The finite element analysis was performed using Ansys 14. The results found that the peak of stress and strain distribution were occur on the insertion of plantar fascia to bone especially on calcaneal area. Plantar fascia became stiffer with increment of Young’s modulus value and was able to resist more loads. Strain of plantar fascia was decreased when Young’s modulus increased with the same amount of loading.

  2. Finite element modelling of different CANDU fuel bundle types in various refuelling conditions

    International Nuclear Information System (INIS)

    Roman, M. R.; Ionescu, D. V.; Olteanu, G.; Florea, S.; Radut, A. C.

    2016-01-01

    The objective of this paper is to develop a finite element model for static strength analysis of the CANDU standard with 37 elements fuel bundle and the SEU43 with 43 elements fuel bundle design for various refuelling conditions. The computer code, ANSYS7.1, is used to simulate the axial compression in CANDU type fuel bundles subject to hydraulic drag loads, deflection of fuel elements, stresses and displacements in the end plates. Two possible situations for the fuelling machine side stops are considered in our analyses, as follows: the last fuel bundle is supported by the two side stops and a side stop can be blocked therefore, the last fuel bundle is supported by only one side stop. The results of the analyses performed are briefly presented and also illustrated in a graphical form. The finite element model developed in present study is verified against test results for endplate displacement and element bowing obtained from strength tests with fuel bundle string and fuelling machine side-stop simulators. Comparison of ANSYS model predictions with these experimental results led to a very good agreement. Despite the difference in hydraulic load between SEU43 and CANDU standard fuel bundles strings, the maximum stress in the SEU43 endplate is about the same with the maximum stress in the CANDU standard endplate. The comparative assessment reveals that SEU43 fuel bundle is able to withstand high flow rate without showing a significant geometric instability. (authors)

  3. Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs

    International Nuclear Information System (INIS)

    Bollig, Evan F.; Flyer, Natasha; Erlebacher, Gordon

    2012-01-01

    This paper presents parallelization strategies for the radial basis function-finite difference (RBF-FD) method. As a generalized finite differencing scheme, the RBF-FD method functions without the need for underlying meshes to structure nodes. It offers high-order accuracy approximation and scales as O(N) per time step, with N being with the total number of nodes. To our knowledge, this is the first implementation of the RBF-FD method to leverage GPU accelerators for the solution of PDEs. Additionally, this implementation is the first to span both multiple CPUs and multiple GPUs. OpenCL kernels target the GPUs and inter-processor communication and synchronization is managed by the Message Passing Interface (MPI). We verify our implementation of the RBF-FD method with two hyperbolic PDEs on the sphere, and demonstrate up to 9x speedup on a commodity GPU with unoptimized kernel implementations. On a high performance cluster, the method achieves up to 7x speedup for the maximum problem size of 27,556 nodes.

  4. Finite Element Analysis of Increasing Column Section and CFRP Reinforcement Method under Different Axial Compression Ratio

    Science.gov (United States)

    Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang

    2017-11-01

    Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.

  5. Wave steering effects in anisotropic composite structures: Direct calculation of the energy skew angle through a finite element scheme.

    Science.gov (United States)

    Chronopoulos, D

    2017-01-01

    A systematic expression quantifying the wave energy skewing phenomenon as a function of the mechanical characteristics of a non-isotropic structure is derived in this study. A structure of arbitrary anisotropy, layering and geometric complexity is modelled through Finite Elements (FEs) coupled to a periodic structure wave scheme. A generic approach for efficiently computing the angular sensitivity of the wave slowness for each wave type, direction and frequency is presented. The approach does not involve any finite differentiation scheme and is therefore computationally efficient and not prone to the associated numerical errors. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Hybrid finite difference/finite element solution method development for non-linear superconducting magnet and electrical circuit breakdown transient analysis

    International Nuclear Information System (INIS)

    Kraus, H.G.; Jones, J.L.

    1986-01-01

    The problem of non-linear superconducting magnet and electrical protection circuit system transients is formulated. To enable studying the effects of coil normalization transients, coil distortion (due to imbalanced magnetic forces), internal coil arcs and shorts, and other normal and off-normal circuit element responses, the following capabilities are included: temporal, voltage and current-dependent voltage sources, current sources, resistors, capacitors and inductors. The concept of self-mutual inductance, and the form of the associated inductance matrix, is discussed for internally shorted coils. This is a Kirchhoff's voltage loop law and Kirchhoff's current node law formulation. The non-linear integrodifferential equation set is solved via a unique hybrid finite difference/integral finite element technique. (author)

  7. Comparison between a finite difference model (PUMA) and a finite element model (DELFIN) for simulation of the reactor of the atomic power plant of Atucha I

    International Nuclear Information System (INIS)

    Grant, C.R.

    1996-01-01

    The reactor code PUMA, developed in CNEA, simulates nuclear reactors discretizing space in finite difference elements. Core representation is performed by means a cylindrical mesh, but the reactor channels are arranged in an hexagonal lattice. That is why a mapping using volume intersections must be used. This spatial treatment is the reason of an overestimation of the control rod reactivity values, which must be adjusted modifying the incremental cross sections. Also, a not very good treatment of the continuity conditions between core and reflector leads to an overestimation of channel power of the peripherical fuel elements between 5 to 8 per cent. Another code, DELFIN, developed also in CNEA, treats the spatial discretization using heterogeneous finite elements, allowing a correct treatment of the continuity of fluxes and current among elements and a more realistic representation of the hexagonal lattice of the reactor. A comparison between results obtained using both methods in done in this paper. (author). 4 refs., 3 figs

  8. Experiences with explicit finite-difference schemes for complex fluid dynamics problems on STAR-100 and CYBER-203 computers

    Science.gov (United States)

    Kumar, A.; Rudy, D. H.; Drummond, J. P.; Harris, J. E.

    1982-01-01

    Several two- and three-dimensional external and internal flow problems solved on the STAR-100 and CYBER-203 vector processing computers are described. The flow field was described by the full Navier-Stokes equations which were then solved by explicit finite-difference algorithms. Problem results and computer system requirements are presented. Program organization and data base structure for three-dimensional computer codes which will eliminate or improve on page faulting, are discussed. Storage requirements for three-dimensional codes are reduced by calculating transformation metric data in each step. As a result, in-core grid points were increased in number by 50% to 150,000, with a 10% execution time increase. An assessment of current and future machine requirements shows that even on the CYBER-205 computer only a few problems can be solved realistically. Estimates reveal that the present situation is more storage limited than compute rate limited, but advancements in both storage and speed are essential to realistically calculate three-dimensional flow.

  9. Evaluation of the effective thermal conductivity of UO{sub 2} fuel by combining Potts model and finite difference method

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae-Yong, E-mail: tylor@kaeri.re.kr [Korea Atomic Energy Research Institute, Daedeok-daero 1045, Yuseong, Daejeon 305-353 (Korea, Republic of); Koo, Yang-Hyun; Lee, Byung-Ho; Tahk, Young-Wook [Korea Atomic Energy Research Institute, Daedeok-daero 1045, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2011-07-15

    This paper evaluated the effects of porosity on the effective thermal conductivity of UO{sub 2} fuel by combining the Potts model and the finite difference method (FDM). Two types of microstructures representing irradiated UO{sub 2} microstructures were simulated by the Potts model in the three dimensional cubic system. One represented very small intragranular bubbles and a few intergranular bubbles under a low temperature condition. The other represented large intergranular bubbles under a high temperature or annealing condition. For the simulated microstructures, the effective thermal conductivities were determined by FDM calculation of the temperature distributions under steady state condition. They were compared with an experimental equation and the effect of bubble morphology was investigated by fitting a porosity shape factor in the Maxwell-Eucken equation. The simulation results showed a good agreement with an experimental equation and demonstrated the capability of the Potts model to provide information on microstructure for calculating the effective thermal conductivity of UO{sub 2} fuel.

  10. Reliability of quay walls using finite element analysiscalibration of partial safety factors in quay wall design by probabilistic plaxis calculations

    NARCIS (Netherlands)

    Wolters, H.J.; Bakker, K.J.; De Gijt, J.G.

    2013-01-01

    During the last two years, CUR committee 183 has worked on the upgrade of the Dutch Quay Walls handbook (CUR 211), which is to be published in 2013. Two of the main elements that are considered in this new edition are the addition of Finite Element analysis (FEM) as a method for design, comparable

  11. Effective connectivity reveals strategy differences in an expert calculator.

    Directory of Open Access Journals (Sweden)

    Ludovico Minati

    Full Text Available Mathematical reasoning is a core component of cognition and the study of experts defines the upper limits of human cognitive abilities, which is why we are fascinated by peak performers, such as chess masters and mental calculators. Here, we investigated the neural bases of calendrical skills, i.e. the ability to rapidly identify the weekday of a particular date, in a gifted mental calculator who does not fall in the autistic spectrum, using functional MRI. Graph-based mapping of effective connectivity, but not univariate analysis, revealed distinct anatomical location of "cortical hubs" supporting the processing of well-practiced close dates and less-practiced remote dates: the former engaged predominantly occipital and medial temporal areas, whereas the latter were associated mainly with prefrontal, orbitofrontal and anterior cingulate connectivity. These results point to the effect of extensive practice on the development of expertise and long term working memory, and demonstrate the role of frontal networks in supporting performance on less practiced calculations, which incur additional processing demands. Through the example of calendrical skills, our results demonstrate that the ability to perform complex calculations is initially supported by extensive attentional and strategic resources, which, as expertise develops, are gradually replaced by access to long term working memory for familiar material.

  12. The use of the Finite Element method for the earthquakes modelling in different geodynamic environments

    Science.gov (United States)

    Castaldo, Raffaele; Tizzani, Pietro

    2016-04-01

    Many numerical models have been developed to simulate the deformation and stress changes associated to the faulting process. This aspect is an important topic in fracture mechanism. In the proposed study, we investigate the impact of the deep fault geometry and tectonic setting on the co-seismic ground deformation pattern associated to different earthquake phenomena. We exploit the impact of the structural-geological data in Finite Element environment through an optimization procedure. In this framework, we model the failure processes in a physical mechanical scenario to evaluate the kinematics associated to the Mw 6.1 L'Aquila 2009 earthquake (Italy), the Mw 5.9 Ferrara and Mw 5.8 Mirandola 2012 earthquake (Italy) and the Mw 8.3 Gorkha 2015 earthquake (Nepal). These seismic events are representative of different tectonic scenario: the normal, the reverse and thrust faulting processes, respectively. In order to simulate the kinematic of the analyzed natural phenomena, we assume, under the plane stress approximation (is defined to be a state of stress in which the normal stress, sz, and the shear stress sxz and syz, directed perpendicular to x-y plane are assumed to be zero), the linear elastic behavior of the involved media. The performed finite element procedure consist of through two stages: (i) compacting under the weight of the rock successions (gravity loading), the deformation model reaches a stable equilibrium; (ii) the co-seismic stage simulates, through a distributed slip along the active fault, the released stresses. To constrain the models solution, we exploit the DInSAR deformation velocity maps retrieved by satellite data acquired by old and new generation sensors, as ENVISAT, RADARSAT-2 and SENTINEL 1A, encompassing the studied earthquakes. More specifically, we first generate 2D several forward mechanical models, then, we compare these with the recorded ground deformation fields, in order to select the best boundaries setting and parameters. Finally

  13. 3D finite element analysis of tightening process of bolt and nut connections with pitch difference

    Science.gov (United States)

    Liu, X.; Noda, N.-A.; Sano, Y.; Huang, Y. T.; Takase, Y.

    2018-06-01

    In a wide industrial field, the bolt-nut joint is unitized as an important machine element and anti-loosening performance is always required. In this paper, the effect of a slight pitch difference between a bolt and nut is studied. Firstly, by varying the pitch difference, the prevailing torque required for the nut rotation, before the nut touches the clamped body, is measured experimentally. Secondly, the tightening torque is determined as a function of the axial force of the bolt after the nut touches the clamped body. The results show that a large value of pitch difference may provide large prevailing torque that causes an anti-loosening effect although a very large pitch difference may deteriorate the bolt axial force under a certain tightening torque. Thirdly, a suitable pitch difference is determined taking into account the anti-loosening and clamping abilities. Furthermore, the chamfered corners at nut ends are considered, and it is found that the 3D finite element analysis with considering the chamfered nut threads has a good agreement with the experimental observation. Finally, the most desirable pitch difference required for improving anti-loosening is proposed.

  14. Thermal Analysis of Ball screw Systems by Explicit Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Min, Bog Ki [Hanyang Univ., Seoul (Korea, Republic of); Park, Chun Hong; Chung, Sung Chong [KIMM, Daejeon (Korea, Republic of)

    2016-01-15

    Friction generated from balls and grooves incurs temperature rise in the ball screw system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ball screw shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ball screw. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.

  15. FDiff3: a finite-difference solver for facilitating understanding of heat conduction and numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Russell, M.B. [University of Hertfordshire, Hatfield (United Kingdom). Department of Aerospace, Automotive and Design Engineering; Probert, S.D. [Cranfield University, Bedfordshire (United Kingdom). School of Engineering

    2004-12-01

    The growing requirement for energy thrift and hence the increasing emphasis on 'low-purchased-energy' designs are stimulating the need for more accurate insights into the thermal behaviours of buildings and their components. This better understanding is preferably achieved, rather than by using 'closed software' or teaching the relevant mathematics outside heat-transfer lessons, but from embedding the pertinent tutoring while dealing with heat-transfer problems using an open-source code approach. Hence a finite-difference software program (FDiff3) has been composed to show the principles of numerical analysis as well as improve the undergraduates' perception of transient conduction. The pedagogic approach behind the development, its present capabilities and applications to sample test-cases are discussed. (author)

  16. The delay function in finite difference models for nuclear channels thermo-hydraulic transients

    International Nuclear Information System (INIS)

    Agazzi, A.

    1977-01-01

    The study of the thermo-hydraulic transients in a nuclear reactor core often requires a bi- or tri-dimensional mathematical simulation of a reactor channel. The equations involved are generally solved by means of finite-difference methods. The determination of the spatial mesh-width and the time interval is strongly conditioned by the necessity of a good accuracy in the description of the delay function which defines the transfer of thermal perturbations along the cooling channel. In this paper the effects of both space and time discretization on the delay function are considered and for the classical cases of inlet temperature step and ramp universal functions and diagrams are given in order to make possible the determination of optimal spatial mesh-width and time interval, once the requested accuracy of the model is fixed in advance

  17. Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation

    International Nuclear Information System (INIS)

    Sha, Wei; Huang, Zhixiang; Wu, Xianliang; Chen, Mingsheng

    2007-01-01

    An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to electromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In particular, new strategies for the air-dielectric interface treatment and the near-to-far-field (NFF) transformation are presented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed. Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation. Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-order methods, and can save computational resources

  18. Application of finite difference method in the study of diffusion with chemical kinetics of first order

    Directory of Open Access Journals (Sweden)

    Beltrán-Prieto Juan Carlos

    2016-01-01

    Full Text Available The mathematical modelling of diffusion of a bleaching agent into a porous material is studied in the present paper. Law of mass conservation was applied to analize the mass transfer of a reactant from the bulk into the external surface of a solid geometrically described as a flat plate. After diffusion of the reactant, surface reaction following kinetics of first order was considered to take place. The solution of the differential equation that described the process leaded to an equation that represents the concentration profile in function of distance, porosity and Thiele modulus. The case of interfacial mass resistance is also discused. In this case, finite difference method was used for the solution of the differential equation taking into account the respective boundary conditions. The profile of concentration can be obtained after numerical especification of Thiele modulus and Biot number.

  19. Simulation of acoustic streaming by means of the finite-difference time-domain method

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2012-01-01

    Numerical simulations of acoustic streaming generated by a standing wave in a narrow twodimensional cavity are presented. In this case, acoustic streaming arises from the viscous boundary layers set up at the surfaces of the walls. It is known that streaming vortices inside the boundary layer have...... directions of rotation that are opposite to those of the outer streaming vortices (Rayleigh streaming). The general objective of the work described in this paper has been to study the extent to which it is possible to simulate both the outer streaming vortices and the inner boundary layer vortices using...... the finite-difference time-domain method. To simplify the problem, thermal effects are not considered. The motivation of the described investigation has been the possibility of using the numerical method to study acoustic streaming, particularly under non-steady conditions. Results are discussed for channels...

  20. Black-Scholes finite difference modeling in forecasting of call warrant prices in Bursa Malaysia

    Science.gov (United States)

    Mansor, Nur Jariah; Jaffar, Maheran Mohd

    2014-07-01

    Call warrant is a type of structured warrant in Bursa Malaysia. It gives the holder the right to buy the underlying share at a specified price within a limited period of time. The issuer of the structured warrants usually uses European style to exercise the call warrant on the maturity date. Warrant is very similar to an option. Usually, practitioners of the financial field use Black-Scholes model to value the option. The Black-Scholes equation is hard to solve analytically. Therefore the finite difference approach is applied to approximate the value of the call warrant prices. The central in time and central in space scheme is produced to approximate the value of the call warrant prices. It allows the warrant holder to forecast the value of the call warrant prices before the expiry date.

  1. Elastic Stress Analysis of Rotating Functionally Graded Annular Disk of Variable Thickness Using Finite Difference Method

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Jalali

    2018-01-01

    Full Text Available Elastic stress analysis of rotating variable thickness annular disk made of functionally graded material (FGM is presented. Elasticity modulus, density, and thickness of the disk are assumed to vary radially according to a power-law function. Radial stress, circumferential stress, and radial deformation of the rotating FG annular disk of variable thickness with clamped-clamped (C-C, clamped-free (C-F, and free-free (F-F boundary conditions are obtained using the numerical finite difference method, and the effects of the graded index, thickness variation, and rotating speed on the stresses and deformation are evaluated. It is shown that using FG material could decrease the value of radial stress and increase the radial displacement in a rotating thin disk. It is also demonstrated that increasing the rotating speed can strongly increase the stress in the FG annular disk.

  2. A Finite Difference Scheme for Double-Diffusive Unsteady Free Convection from a Curved Surface to a Saturated Porous Medium with a Non-Newtonian Fluid

    KAUST Repository

    El-Amin, Mohamed

    2011-05-14

    In this paper, a finite difference scheme is developed to solve the unsteady problem of combined heat and mass transfer from an isothermal curved surface to a porous medium saturated by a non-Newtonian fluid. The curved surface is kept at constant temperature and the power-law model is used to model the non-Newtonian fluid. The explicit finite difference method is used to solve simultaneously the equations of momentum, energy and concentration. The consistency of the explicit scheme is examined and the stability conditions are determined for each equation. Boundary layer and Boussinesq approximations have been incorporated. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, temperature and concentration profiles are shown graphically. It is found that as time approaches infinity, the values of wall shear, heat transfer coefficient and concentration gradient at the wall, which are entered in tables, approach the steady state values.

  3. Three-dimensional finite element analysis of different implant configurations for a mandibular fixed prosthesis.

    Science.gov (United States)

    Fazi, Giovanni; Tellini, Simone; Vangi, Dario; Branchi, Roberto

    2011-01-01

    The distribution of stresses in bone, implants, and prosthesis were analyzed via three-dimensional finite element modeling in different implant configurations for a fixed implant-supported prosthesis in an edentulous mandible. A finite element model was created with data obtained from computed tomographic scans of a human mandible. Anisotropic characteristics for cortical and cancellous bone were incorporated into the model. Six different configurations of intraforaminal implants were tested, with the number of implants varying from three to five and the distal implants inserted either parallel to the other implants or tilted distally by 17 or 34 degrees. A prosthetic structure connecting the implants was designed, with 20-mm posterior cantilevers for the parallel implant configurations, and a load of 200 N was applied to the distal portion of the cantilevers. Stresses were measured at the level of the implant, the prosthetic structure, and the bone. Bone-level stresses were analyzed at the implant-bone interface, at the external cortical bone surface, distal to the terminal implant, and in the cancellous bone along the implant body. A three-parallel-implant configuration resulted in higher stress in the implant and bone than configurations with four or five parallel implants. Configurations with the distal implants tilted resulted in a more favorable stress distribution at all levels. In parallel-implant configurations for fixed implant-supported mandibular prostheses, four and five implants resulted in similar stress distribution in the bone, framework, and implants. A distribution of four implants with the distal implants tilted 34 degrees (ie, the "All-on-Four" configuration) resulted in a favorable reduction of stresses in the bone, framework, and implants.

  4. Different finite element techniques to predict welding residual stresses in aluminum alloy plates

    International Nuclear Information System (INIS)

    Moein, Hadi; Sattari-Far, Iradj

    2014-01-01

    This study is a 3D thermomechanical finite element (FE) analysis of a single-pass and butt-welded work-hardened aluminum (Al) 5456 plates. It aims to validate the use of FE welding simulations to predict residual stress states in assessing the integrity of welded components. The predicted final residual stresses in the plate from the FE simulations are verified through comparison with experimental measurements. Three techniques are used to simulate the welding process. In the first two approaches, welding deposition is applied by using element birth and interaction techniques. In the third approach, the entire weld zone is simultaneously deposited. Results show a value at approximately the yield strength for longitudinal residual stresses of the welded center of the butt-welded Al alloy plates with a thickness of 2 mm. Considering the application of a comprehensive heat source, along with heat loss modeling and the temperature dependent properties of the material, the approach without deposition predicts a reasonable distribution of residual stresses. However, the element birth and interaction techniques, compared with the no-deposit technique, provide more accurate results in calculating residual stresses. Furthermore, the element interaction technique, compared with the element birth technique, exhibits higher efficiency and flexibility in modeling the deposition of welded metals as well as less modeling cost.

  5. DETERMINATION OF MOISTURE DIFFUSION COEFFICIENT OF LARCH BOARD WITH FINITE DIFFERENCE METHOD

    Directory of Open Access Journals (Sweden)

    Qiaofang Zhou

    2011-04-01

    Full Text Available This paper deals with the moisture diffusion coefficient of Dahurian Larch (Larix gmelinii Rupr. by use of the Finite Difference Method (FDM. To obtain moisture distributions the dimensional boards of Dahurian Larch were dried, from which test samples were cut and sliced evenly into 9 pieces in different drying periods, so that moisture distributions at different locations and times across the thickness of Dahurian Larch were obtained with a weighing method. With these experimental data, FDM was used to solve Fick’s one-dimensional unsteady-state diffusion equation, and the moisture diffusion coefficient across the thickness at specified time was obtained. Results indicated that the moisture diffusion coefficient decreased from the surface to the center of the Dahurian Larch wood, and it decreased with decreasing moisture content at constant wood temperature; as the wood temperature increased, the moisture diffusion coefficient increased, and the effect of the wood temperature on the moisture diffusion coefficient was more significant than that of moisture content. Moisture diffusion coefficients were different for the two experiments due to differing diffusivity of the specimens.

  6. Component mode synthesis methods applied to 3D heterogeneous core calculations, using the mixed dual finite element solver MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, P.; Baudron, A. M.; Lautard, J. J. [Commissariat a l' Energie Atomique, DEN/DANS/DM2S/SERMA/LENR, CEA Saclay, 91191 Gif sur Yvette (France)

    2006-07-01

    This paper describes a new technique for determining the pin power in heterogeneous core calculations. It is based on a domain decomposition with overlapping sub-domains and a component mode synthesis technique for the global flux determination. Local basis functions are used to span a discrete space that allows fundamental global mode approximation through a Galerkin technique. Two approaches are given to obtain these local basis functions: in the first one (Component Mode Synthesis method), the first few spatial eigenfunctions are computed on each sub-domain, using periodic boundary conditions. In the second one (Factorized Component Mode Synthesis method), only the fundamental mode is computed, and we use a factorization principle for the flux in order to replace the higher order Eigenmodes. These different local spatial functions are extended to the global domain by defining them as zero outside the sub-domain. These methods are well-fitted for heterogeneous core calculations because the spatial interface modes are taken into account in the domain decomposition. Although these methods could be applied to higher order angular approximations - particularly easily to a SPN approximation - the numerical results we provide are obtained using a diffusion model. We show the methods' accuracy for reactor cores loaded with UOX and MOX assemblies, for which standard reconstruction techniques are known to perform poorly. Furthermore, we show that our methods are highly and easily parallelizable. (authors)

  7. Component mode synthesis methods for 3-D heterogeneous core calculations applied to the mixed-dual finite element solver MINOS

    International Nuclear Information System (INIS)

    Guerin, P.; Baudron, A.M.; Lautard, J.J.; Van Criekingen, S.

    2007-01-01

    This paper describes a new technique for determining the pin power in heterogeneous three-dimensional calculations. It is based on a domain decomposition with overlapping sub-domains and a component mode synthesis (CMS) technique for the global flux determination. Local basis functions are used to span a discrete space that allows fundamental global mode approximation through a Galerkin technique. Two approaches are given to obtain these local basis functions. In the first one (the CMS method), the first few spatial eigenfunctions are computed on each sub-domain, using periodic boundary conditions. In the second one (factorized CMS method), only the fundamental mode is computed, and we use a factorization principle for the flux in order to replace the higher-order Eigenmodes. These different local spatial functions are extended to the global domain by defining them as zero outside the sub-domain. These methods are well fitted for heterogeneous core calculations because the spatial interface modes are taken into account in the domain decomposition. Although these methods could be applied to higher-order angular approximations-particularly easily to an SPN approximation-the numerical results we provide are obtained using a diffusion model. We show the methods' accuracy for reactor cores loaded with uranium dioxide and mixed oxide assemblies, for which standard reconstruction techniques are known to perform poorly. Furthermore, we show that our methods are highly and easily parallelizable. (authors)

  8. Component mode synthesis methods applied to 3D heterogeneous core calculations, using the mixed dual finite element solver MINOS

    International Nuclear Information System (INIS)

    Guerin, P.; Baudron, A. M.; Lautard, J. J.

    2006-01-01

    This paper describes a new technique for determining the pin power in heterogeneous core calculations. It is based on a domain decomposition with overlapping sub-domains and a component mode synthesis technique for the global flux determination. Local basis functions are used to span a discrete space that allows fundamental global mode approximation through a Galerkin technique. Two approaches are given to obtain these local basis functions: in the first one (Component Mode Synthesis method), the first few spatial eigenfunctions are computed on each sub-domain, using periodic boundary conditions. In the second one (Factorized Component Mode Synthesis method), only the fundamental mode is computed, and we use a factorization principle for the flux in order to replace the higher order Eigenmodes. These different local spatial functions are extended to the global domain by defining them as zero outside the sub-domain. These methods are well-fitted for heterogeneous core calculations because the spatial interface modes are taken into account in the domain decomposition. Although these methods could be applied to higher order angular approximations - particularly easily to a SPN approximation - the numerical results we provide are obtained using a diffusion model. We show the methods' accuracy for reactor cores loaded with UOX and MOX assemblies, for which standard reconstruction techniques are known to perform poorly. Furthermore, we show that our methods are highly and easily parallelizable. (authors)

  9. Development and application of a third order scheme of finite differences centered in mesh

    International Nuclear Information System (INIS)

    Delfin L, A.; Alonso V, G.; Valle G, E. del

    2003-01-01

    In this work the development of a third order scheme of finite differences centered in mesh is presented and it is applied in the numerical solution of those diffusion equations in multi groups in stationary state and X Y geometry. Originally this scheme was developed by Hennart and del Valle for the monoenergetic diffusion equation with a well-known source and they show that the one scheme is of third order when comparing the numerical solution with the analytical solution of a model problem using several mesh refinements and boundary conditions. The scheme by them developed it also introduces the application of numeric quadratures to evaluate the rigidity matrices and of mass that its appear when making use of the finite elements method of Galerkin. One of the used quadratures is the open quadrature of 4 points, no-standard, of Newton-Cotes to evaluate in approximate form the elements of the rigidity matrices. The other quadrature is that of 3 points of Radau that it is used to evaluate the elements of all the mass matrices. One of the objectives of these quadratures are to eliminate the couplings among the Legendre moments 0 and 1 associated to the left and right faces as those associated to the inferior and superior faces of each cell of the discretization. The other objective is to satisfy the particles balance in weighed form in each cell. In this work it expands such development to multiplicative means considering several energy groups. There are described diverse details inherent to the technique, particularly those that refer to the simplification of the algebraic systems that appear due to the space discretization. Numerical results for several test problems are presented and are compared with those obtained with other nodal techniques. (Author)

  10. A finite difference method for off-fault plasticity throughout the earthquake cycle

    Science.gov (United States)

    Erickson, Brittany A.; Dunham, Eric M.; Khosravifar, Arash

    2017-12-01

    We have developed an efficient computational framework for simulating multiple earthquake cycles with off-fault plasticity. The method is developed for the classical antiplane problem of a vertical strike-slip fault governed by rate-and-state friction, with inertial effects captured through the radiation-damping approximation. Both rate-independent plasticity and viscoplasticity are considered, where stresses are constrained by a Drucker-Prager yield condition. The off-fault volume is discretized using finite differences and tectonic loading is imposed by displacing the remote side boundaries at a constant rate. Time-stepping combines an adaptive Runge-Kutta method with an incremental solution process which makes use of an elastoplastic tangent stiffness tensor and the return-mapping algorithm. Solutions are verified by convergence tests and comparison to a finite element solution. We quantify how viscosity, isotropic hardening, and cohesion affect the magnitude and off-fault extent of plastic strain that develops over many ruptures. If hardening is included, plastic strain saturates after the first event and the response during subsequent ruptures is effectively elastic. For viscoplasticity without hardening, however, successive ruptures continue to generate additional plastic strain. In all cases, coseismic slip in the shallow sub-surface is diminished compared to slip accumulated at depth during interseismic loading. The evolution of this slip deficit with each subsequent event, however, is dictated by the plasticity model. Integration of the off-fault plastic strain from the viscoplastic model reveals that a significant amount of tectonic offset is accommodated by inelastic deformation ( ∼ 0.1 m per rupture, or ∼ 10% of the tectonic deformation budget).

  11. A Coupled Finite Difference and Moving Least Squares Simulation of Violent Breaking Wave Impact

    DEFF Research Database (Denmark)

    Lindberg, Ole; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    feature of this model is a generalized finite point set method which is applied to the solution of the Poisson equation on an unstructured point distribution. The presented finite point set method is generalized to arbitrary order of approximation. The two models are applied to simulation of steep...

  12. Calculation of stress intensity factors using the UNCLE finite element system and their application in fracture mechanics

    International Nuclear Information System (INIS)

    Pearce, J.H.B.

    1978-02-01

    The behaviour of crack-like defects in loaded structures is in many cases characterised by the stress intensity factor, K, which describes the spatial distribution around the crack tip. Analytical evaluation of K for generalised loading and geometry would be extremely complex. A finite element approach is described which utilises the existing UNCLE system of the UKAEA. The interpretation of the results for a fracture mechanics analysis is briefly reviewed. (author)

  13. PARMELAB: a new version of PARMELA with coherent synchrotron radiation effects and a finite difference space charge routine

    International Nuclear Information System (INIS)

    Koltenbah, B.E.C.; Parazzoli, Claudio G.; Greegor, Robert B.; Dowell, David H.

    2002-01-01

    Recent interest in advanced laser light sources has stimulated development of accelerator systems of intermediate beam energy, 100-200 MeV, and high charge, 1-10 nC, for high power FEL applications and high energy, 1-2 GeV, high charge, SASE-FEL applications. The current generation of beam transport codes which were developed for high-energy, low-charge beams with low self-fields are inadequate to address this energy and charge regime, and better computational tools are required to accurately calculate self-fields. To that end, we have developed a new version of PARMELA, named PARMELA B and written in Fortran 95, which includes a coherent synchrotron radiation (CSR) routine and an improved, generalized space charge (SC) routine. An electron bunch is simulated by a collection of macro-particles, which traverses a series of beam line elements. At each time step through the calculation, the momentum of each particle is updated due to the presence of external and self-fields. The self-fields are due to CSR and SC. For the CSR calculations, the macro-particles are further combined into macro-particle-bins that follow the central trajectory of the bend. The energy change through the time step is calculated from expressions derived from the Lienard-Wiechart formulae, and from this energy change the particle's momentum is updated. For the SC calculations, we maintain the same rest-frame-electrostatic approach of the original PARMELA; however, we employ a finite difference Poisson equation solver instead of the symmetrical ring algorithm of the original code. In this way, we relax the symmetry assumptions in the original code. This method is based upon standard numerical procedures and conserves momentum to first order. The SC computational grid is adaptive and conforms to the size of the pulse as it evolves through the calculation. We provide descriptions of these two algorithms, validation comparisons with other CSR and SC methods, and a limited comparison with

  14. Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.

    Science.gov (United States)

    Qi, Ruxi; Botello-Smith, Wesley M; Luo, Ray

    2017-07-11

    Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.

  15. Mechanical interaction buffer/backfill. Finite element calculations of the upward swelling of the buffer against both dry and saturated backfill

    Energy Technology Data Exchange (ETDEWEB)

    Boergesson, Lennart (Clay Technology AB, Lund (Sweden)); Hernelind, Jan (5T-Engineering AB, Vaesteraas (Sweden))

    2009-10-15

    The mechanical interaction between the buffer material in the deposition hole and the backfill material in the deposition tunnel is an important process in the safety assessment since the primary function of the backfill is to keep the buffer in place and not allow it to expand too much and thereby loose too much of its density and barrier properties. In order to study the upwards swelling of the buffer and the subsequent density reduction a number of finite element calculations have been performed. The calculations have been done with the FE-program Abaqus with 3D-models of a deposition hole and the deposition tunnel. In order to refine the modelling only the two extreme cases of completely un-wetted (dry) and completely water saturated (wet) backfill have been modelled. For the wet case the influence of different factors has been studied while only one calculation of the dry case has been done. The calculated upwards swelling of the buffer varied between 2 and 15 cm for the different wet cases while it was about 10 cm for the dry case. In the wet reference case the E-modulus of the block and pellets fillings was 50 MPa and 3.24 MPa respectively, the friction angle between the buffer and the rock and canister was 8.7 deg and there were no swelling pressure from the backfill. There is a strong influence of the friction angle on both the upwards swelling and the canister heave. The friction is important for preventing especially canister displacements. The unrealistic case of no friction yielded strong unacceptable influence on the buffer with an upwards swelling of 15 cm and a strong heave of 5 cm of the canister. The influence of the backfill stiffness is as expected strong. Both buffer swelling and canister heave are twice as large at the E-modulus E = 25 MPa than at the E-modulus E = 100 MPa. The influence of the stiffness of the pellets filling is not strong since there are no pellets on the floor in the model used. The influence of the swelling pressure of the

  16. Mechanical interaction buffer/backfill. Finite element calculations of the upward swelling of the buffer against both dry and saturated backfill

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Hernelind, Jan

    2009-10-01

    The mechanical interaction between the buffer material in the deposition hole and the backfill material in the deposition tunnel is an important process in the safety assessment since the primary function of the backfill is to keep the buffer in place and not allow it to expand too much and thereby loose too much of its density and barrier properties. In order to study the upwards swelling of the buffer and the subsequent density reduction a number of finite element calculations have been performed. The calculations have been done with the FE-program Abaqus with 3D-models of a deposition hole and the deposition tunnel. In order to refine the modelling only the two extreme cases of completely un-wetted (dry) and completely water saturated (wet) backfill have been modelled. For the wet case the influence of different factors has been studied while only one calculation of the dry case has been done. The calculated upwards swelling of the buffer varied between 2 and 15 cm for the different wet cases while it was about 10 cm for the dry case. In the wet reference case the E-modulus of the block and pellets fillings was 50 MPa and 3.24 MPa respectively, the friction angle between the buffer and the rock and canister was 8.7 deg and there were no swelling pressure from the backfill. There is a strong influence of the friction angle on both the upwards swelling and the canister heave. The friction is important for preventing especially canister displacements. The unrealistic case of no friction yielded strong unacceptable influence on the buffer with an upwards swelling of 15 cm and a strong heave of 5 cm of the canister. The influence of the backfill stiffness is as expected strong. Both buffer swelling and canister heave are twice as large at the E-modulus E = 25 MPa than at the E-modulus E = 100 MPa. The influence of the stiffness of the pellets filling is not strong since there are no pellets on the floor in the model used. The influence of the swelling pressure of the

  17. Stability of finite difference numerical simulations of acoustic logging-while-drilling with different perfectly matched layer schemes

    Science.gov (United States)

    Wang, Hua; Tao, Guo; Shang, Xue-Feng; Fang, Xin-Ding; Burns, Daniel R.

    2013-12-01

    In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius ˜27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is >30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(MPML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one d 0. The optimal parameter space for the maximum value of the linear frequency-shifted factor ( α 0) and the scaling factor ( β 0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to <1

  18. Dynamic pulse buckling of cylindrical shells under axial impact: A benchmark study of 2D and 3D finite element calculations

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Ammerman, D.J.

    1995-01-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. During the pulse buckling tests, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. Numerical simulations of the test were performed using PRONTO, a Sandia developed transient dynamics analysis code, and ABAQUS/Explicit with both shell and continuum elements. The calculations are compared to the tests with respect to deformed shape and impact load history

  19. Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches.

    Science.gov (United States)

    Xu, Zhenli; Ma, Manman; Liu, Pei

    2014-07-01

    We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.

  20. Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes

    Science.gov (United States)

    Capuano, M.; Bogey, C.; Spelt, P. D. M.

    2018-05-01

    A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.

  1. Reliability of quay walls using finite element analysiscalibration of partial safety factors in quay wall design by probabilistic plaxis calculations

    OpenAIRE

    Wolters, H.J.; Bakker, K.J.; De Gijt, J.G.

    2013-01-01

    During the last two years, CUR committee 183 has worked on the upgrade of the Dutch Quay Walls handbook (CUR 211), which is to be published in 2013. Two of the main elements that are considered in this new edition are the addition of Finite Element analysis (FEM) as a method for design, comparable to the description in the Handbook Sheet-Pile Structures (CUR 166), and the calibration of partial safety factors design with FEM.With respect to the actuality of this update it must be remembered t...

  2. Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials

    Science.gov (United States)

    Bray, Matthew G.

    The term "Metamaterial" has been introduced into the electromagnetic lexicon in recent years to describe new artificial materials with electromagnetic properties that are not found in naturally occurring materials. Metamaterials exhibit electromagnetic properties that are not observed in its constituent materials, and/or not observed in nature. This thesis will analyze two different classes of metamaterials through the use of the finite-difference time-domain (FDTD) technique. The first class of metamaterials are artificial magnetic conductors (AMC) which approximate the behavior of a perfect magnetic conductor (PMC) over a finite frequency range. The AMC metamaterials are created through the use of an electromagnetic bandgap (EBG) structure. A periodic FDTD code is used to simulate a full-wave model of the metallodielectric EBG structures. The AMCs developed with the aid of the FDTD tool are then used to create low-profile antenna systems consisting of a dipole antenna in close proximity to an AMC surface. Through the use of this FDTD tool, several original contributions were made to the electromagnetic community. These include the first dual-band independently tunable EBG AMC ground plane and the first linearly polarized single-band and dual-band tunable antenna/EBG systems. The second class of materials analyzed are bi-anisotropic metamaterials. Bi-anisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, and other composite materials. The dispersive properties of these materials can be approximated by the oscillator model. This model assumes a Lorentzian frequency profile for the permittivity and permeability and a Condon model for chirality. A new FDTD formulation is introduced which can simulate this type of bi-anisotropic media. This FDTD method incorporates the dispersive material properties through

  3. Different methods for calculation of LVEF: which is right?

    International Nuclear Information System (INIS)

    Blair, E.; McLean, R.; Dixson, H.

    1999-01-01

    Full text: Before the introduction of quantitative gated SPET (QGS) software, our routine method of determining left ventricular ejection fraction (LVEF) was the manual processing of gated heart pool studies (GHPS). The purpose of this preliminary study was to evaluate four methods of LVEF determination available in our private practice. We compared the LVEF obtained from manual GHPS (mGHPS) with that from automated GHPS (aGHPS), and that from both manual and automated QGS (mQGS and aQGS respectively) in 20 patients with a mean age of 63.5 years. All studies were analysed using standard ADAC computers and proprietary software. Two observers were used to determine mGHPS and mQGS, and the results were analysed using linear regression, Bland-Altman plots and visual analysis. The values determined by the two observers for the mGHPS and mQGS differed by an average of 1.15% and - 0.35% respectively and were strongly correlated (r = 0.95 and 0.94). For the automatic processing protocols (aGHPS and aQGS), there was a mean difference of 1.00% and a correlation of r = 0.63. The differences between mGHPS and aGHPS were greater than the differences between mQGS and aQGS. Comparing Observer 1's mGHPS and mQGS, a mean difference of 12.4% (range 2% to 24%), r=0.75. Comparing Observer 2's GHPS and QGS, a mean difference of 11.0% (range -11% to 22%), r = 0.66. Comparing the average mGHPS to aGHPS, a mean difference of 2.4% (range -8.5% to 12%), r = 0.88. Comparing the average mQGS to aQGS, a mean difference of -10.5% (range -18.5% to -5%), r = 0.96. From this study, we have found that the LVEF by mGHPS is substantially higher than mQGS, aGHPS and aQGS. Further investigation with a larger sample and different camera systems is needed

  4. Leading relativistic corrections for atomic P states calculated with a finite-nuclear-mass approach and all-electron explicitly correlated Gaussian functions

    Science.gov (United States)

    Stanke, Monika; Bralin, Amir; Bubin, Sergiy; Adamowicz, Ludwik

    2018-01-01

    In this work we report progress in the development and implementation of quantum-mechanical methods for calculating bound ground and excited states of small atomic systems. The work concerns singlet states with the L =1 total orbital angular momentum (P states). The method is based on the finite-nuclear-mass (non-Born-Oppenheimer; non-BO) approach and the use of all-particle explicitly correlated Gaussian functions for expanding the nonrelativistic wave function of the system. The development presented here includes derivation and implementation of algorithms for calculating the leading relativistic corrections for singlet states. The corrections are determined in the framework of the perturbation theory as expectation values of the corresponding effective operators using the non-BO wave functions. The method is tested in the calculations of the ten lowest 1P states of the helium atom and the four lowest 1P states of the beryllium atom.

  5. Ab initio calculation of the neutron-proton mass difference

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The existence and stability of atoms relies on the fact that neutrons are more massive than protons. The mass difference is only 0.14% of the average and has significant astrophysical and cosmological implications. A slightly smaller or larger value would have led to a dramatically different universe. After an introduction to the problem and to lattice quantum chromodynamics (QCD), I will show how this difference can be computed precisely by carefully accounting for electromagnetic and mass isospin breaking effects in lattice computations. I will also report on results for splittings in the \\Sigma, \\Xi, D and \\Xi_{cc} isospin multiplets, some of which are predictions. The computations are performed in lattice QCD plus QED with four, non-degenerate quark flavors.

  6. Ab initio calculation of the neutron-proton mass difference

    Science.gov (United States)

    Borsanyi, Sz.; Durr, S.; Fodor, Z.; Hoelbling, C.; Katz, S. D.; Krieg, S.; Lellouch, L.; Lippert, T.; Portelli, A.; Szabo, K. K.; Toth, B. C.

    2015-03-01

    The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of 300 kilo-electron volts, which is greater than 0 by 5 standard deviations. We also determine the splittings in the Σ, Ξ, D, and Ξcc isospin multiplets, exceeding in some cases the precision of experimental measurements.

  7. Solving the linearized forward-speed radiation problem using a high-order finite difference method on overlapping grids

    DEFF Research Database (Denmark)

    Amini Afshar, Mostafa; Bingham, Harry B.

    2017-01-01

    . Frequency-domain results are then obtained from a Fourier transform of the force and motion signals. In order to make a robust Fourier transform, and capture the response around the critical frequency, the tail of the force signal is asymptotically extrapolated assuming a linear decay rate. Fourth......The linearized potential flow approximation for the forward speed radiation problem is solved in the time domain using a high-order finite difference method. The finite-difference discretization is developed on overlapping, curvilinear body-fitted grids. To ensure numerical stability...

  8. The transient response for different types of erodable surface thermocouples using finite element analysis

    Directory of Open Access Journals (Sweden)

    Mohammed Hussein

    2007-01-01

    Full Text Available The transient response of erodable surface thermocouples has been numerically assessed by using a two dimensional finite element analysis. Four types of base metal erodable surface thermocouples have been examined in this study, included type-K (alumel-chromel, type-E (chromel-constantan, type-T (copper-constantan, and type-J (iron-constantan with 50 mm thick- ness for each. The practical importance of these types of thermocouples is to be used in internal combustion engine studies and aerodynamics experiments. The step heat flux was applied at the surface of the thermocouple model. The heat flux from the measurements of the surface temperature can be commonly identified by assuming that the heat transfer within these devices is one-dimensional. The surface temperature histories at different positions along the thermocouple are presented. The normalized surface temperature histories at the center of the thermocouple for different types at different response time are also depicted. The thermocouple response to different heat flux variations were considered by using a square heat flux with 2 ms width, a sinusoidal surface heat flux variation width 10 ms period and repeated heat flux variation with 2 ms width. The present results demonstrate that the two dimensional transient heat conduction effects have a significant influence on the surface temperature history measurements made with these devices. It was observed that the surface temperature history and the transient response for thermocouple type-E are higher than that for other types due to the thermal properties of this thermocouple. It was concluded that the thermal properties of the surrounding material do have an impact, but the properties of the thermocouple and the insulation materials also make an important contribution to the net response.

  9. Study of the /sup 58/Ni, /sup 90/Zr and /sup 208/Pb(p,d) reactions at 121 MeV. [DWBA, angular distributions, spectroscopic factors, finite range calculations

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R E; Kraushaar, J J; Shepard, J R [Colorado Univ., Boulder (USA). Nuclear Physics Lab.; Comfort, J R [Indiana Univ., Bloomington (USA). Dept. of Physics

    1978-01-01

    The (p,d) reaction has been studied on /sup 58/Ni, /sup 90/Zr and /sup 208/Pb at 121 MeV in order to test the applicability of the usual DWBA methods to higher energy data. The calculations describe the angular distribution for the strongly excited low-lying states reasonably well when adiabatic-deuteron optical potentials are used. Some discrepancies in shape persist, however, and some values of the spectroscopic factors differ from lower energy data in spite of many variations in the calculations. By use of exact finite-range calculations a value of D/sup 2//sub 0/ = 1.23 x 10/sup 4/ MeV/sup 2/.fm/sup 3/ was found for use at 121 MeV. Deuteron D-state contributions were negligible at forward angles and two-step contributions do not appear more significant than for data at lower energy.

  10. A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber

    Science.gov (United States)

    Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.

    1992-01-01

    Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.

  11. Modelling optimization involving different types of elements in finite element analysis

    International Nuclear Information System (INIS)

    Wai, C M; Rivai, Ahmad; Bapokutty, Omar

    2013-01-01

    Finite elements are used to express the mechanical behaviour of a structure in finite element analysis. Therefore, the selection of the elements determines the quality of the analysis. The aim of this paper is to compare and contrast 1D element, 2D element, and 3D element used in finite element analysis. A simple case study was carried out on a standard W460x74 I-beam. The I-beam was modelled and analyzed statically with 1D elements, 2D elements and 3D elements. The results for the three separate finite element models were compared in terms of stresses, deformation and displacement of the I-beam. All three finite element models yield satisfactory results with acceptable errors. The advantages and limitations of these elements are discussed. 1D elements offer simplicity although lacking in their ability to model complicated geometry. 2D elements and 3D elements provide more detail yet sophisticated results which require more time and computer memory in the modelling process. It is also found that the choice of element in finite element analysis is influence by a few factors such as the geometry of the structure, desired analysis results, and the capability of the computer

  12. Finite difference method for inner-layer equations in the resistive MagnetoHydroDynamic stability analysis

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Watanabe, Tomoko.

    1996-08-01

    The matching problem in resistive MagnetoHydroDynamic stability analysis by the asymptotic matching method has been reformulated as an initial-boundary value problem for the inner-layer equations describing the plasma dynamics in the thin layer around a rational surface. The third boundary conditions at boundaries of a finite interval are imposed on the inner layer equations in the formulation instead of asymptotic conditions at infinities. The finite difference method for this problem has been applied to model equations whose solutions are known in a closed form. It has been shown that the initial value problem and the associated eigenvalue problem for the model equations can be solved by the finite difference method with numerical stability. The formulation presented here enables the asymptotic matching method to be a practical method for the resistive MHD stability analysis. (author)

  13. Application of the finite-field coupled-cluster method to calculate molecular properties relevant to electron electric-dipole-moment searches

    Science.gov (United States)

    Abe, M.; Prasannaa, V. S.; Das, B. P.

    2018-03-01

    Heavy polar diatomic molecules are currently among the most promising probes of fundamental physics. Constraining the electric dipole moment of the electron (e EDM ), in order to explore physics beyond the standard model, requires a synergy of molecular experiment and theory. Recent advances in experiment in this field have motivated us to implement a finite-field coupled-cluster (FFCC) approach. This work has distinct advantages over the theoretical methods that we had used earlier in the analysis of e EDM searches. We used relativistic FFCC to calculate molecular properties of interest to e EDM experiments, that is, the effective electric field (Eeff) and the permanent electric dipole moment (PDM). We theoretically determine these quantities for the alkaline-earth monofluorides (AEMs), the mercury monohalides (Hg X ), and PbF. The latter two systems, as well as BaF from the AEMs, are of interest to e EDM searches. We also report the calculation of the properties using a relativistic finite-field coupled-cluster approach with single, double, and partial triples' excitations, which is considered to be the gold standard of electronic structure calculations. We also present a detailed error estimate, including errors that stem from our choice of basis sets, and higher-order correlation effects.

  14. Comparison of measured and predicted thermal mixing tests using improved finite difference technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Rice, J.G.; Kim, J.H.

    1983-01-01

    The numerical diffusion introduced by the use of upwind formulations in the finite difference solution of the flow and energy equations for thermal mixing problems (cold water injection after small break LOCA in a PWR) was examined. The relative importance of numerical diffusion in the flow equations, compared to its effect on the energy equation was demonstrated. The flow field equations were solved using both first order accurate upwind, and second order accurate differencing schemes. The energy equation was treated using the conventional upwind and a mass weighted skew upwind scheme. Results presented for a simple test case showed that, for thermal mixing problems, the numerical diffusion was most significant in the energy equation. The numerical diffusion effect in the flow field equations was much less significant. A comparison of predictions using the skew upwind and the conventional upwind with experimental data from a two dimensional thermal mixing text are presented. The use of the skew upwind scheme showed a significant improvement in the accuracy of the steady state predicted temperatures. (orig./HP)

  15. Data assimilation method for fractured reservoirs using mimetic finite differences and ensemble Kalman filter

    KAUST Repository

    Ping, Jing

    2017-05-19

    Optimal management of subsurface processes requires the characterization of the uncertainty in reservoir description and reservoir performance prediction. For fractured reservoirs, the location and orientation of fractures are crucial for predicting production characteristics. With the help of accurate and comprehensive knowledge of fracture distributions, early water/CO 2 breakthrough can be prevented and sweep efficiency can be improved. However, since the rock property fields are highly non-Gaussian in this case, it is a challenge to estimate fracture distributions by conventional history matching approaches. In this work, a method that combines vector-based level-set parameterization technique and ensemble Kalman filter (EnKF) for estimating fracture distributions is presented. Performing the necessary forward modeling is particularly challenging. In addition to the large number of forward models needed, each model is used for sampling of randomly located fractures. Conventional mesh generation for such systems would be time consuming if possible at all. For these reasons, we rely on a novel polyhedral mesh method using the mimetic finite difference (MFD) method. A discrete fracture model is adopted that maintains the full geometry of the fracture network. By using a cut-cell paradigm, a computational mesh for the matrix can be generated quickly and reliably. In this research, we apply this workflow on 2D two-phase fractured reservoirs. The combination of MFD approach, level-set parameterization, and EnKF provides an effective solution to address the challenges in the history matching problem of highly non-Gaussian fractured reservoirs.

  16. Finite element analysis to compare complete denture and implant-retained overdentures with different attachment systems.

    Science.gov (United States)

    Barão, Valentim Adelino Ricardo; Assunção, Wirley Gonçalves; Tabata, Lucas Fernando; Delben, Juliana Aparecida; Gomes, Erica Alves; de Sousa, Edson Antonio Capello; Rocha, Eduardo Passos

    2009-07-01

    This finite element analysis compared stress distribution on complete dentures and implant-retained overdentures with different attachment systems. Four models of edentulous mandible were constructed: group A (control), complete denture; group B, overdenture retained by 2 splinted implants with bar-clip system; group C, overdenture retained by 2 unsplinted implants with o'ring system; and group D, overdenture retained by 2 splinted implants with bar-clip and 2 distally placed o'ring system. Evaluation was performed on Ansys software, with 100-N vertical load applied on central incisive teeth. The lowest maximum general stress value (in megapascal) was observed in group A (64.305) followed by groups C (119.006), D (258.650), and B (349.873). The same trend occurred in supporting tissues with the highest stress value for cortical bone. Unsplinted implants associated with the o'ring attachment system showed the lowest maximum stress values among all overdenture groups. Furthermore, o'ring system also improved stress distribution when associated with bar-clip system.

  17. Accelerated cardiac cine MRI using locally low rank and finite difference constraints.

    Science.gov (United States)

    Miao, Xin; Lingala, Sajan Goud; Guo, Yi; Jao, Terrence; Usman, Muhammad; Prieto, Claudia; Nayak, Krishna S

    2016-07-01

    To evaluate the potential value of combining multiple constraints for highly accelerated cardiac cine MRI. A locally low rank (LLR) constraint and a temporal finite difference (FD) constraint were combined to reconstruct cardiac cine data from highly undersampled measurements. Retrospectively undersampled 2D Cartesian reconstructions were quantitatively evaluated against fully-sampled data using normalized root mean square error, structural similarity index (SSIM) and high frequency error norm (HFEN). This method was also applied to 2D golden-angle radial real-time imaging to facilitate single breath-hold whole-heart cine (12 short-axis slices, 9-13s single breath hold). Reconstruction was compared against state-of-the-art constrained reconstruction methods: LLR, FD, and k-t SLR. At 10 to 60 spokes/frame, LLR+FD better preserved fine structures and depicted myocardial motion with reduced spatio-temporal blurring in comparison to existing methods. LLR yielded higher SSIM ranking than FD; FD had higher HFEN ranking than LLR. LLR+FD combined the complimentary advantages of the two, and ranked the highest in all metrics for all retrospective undersampled cases. Single breath-hold multi-slice cardiac cine with prospective undersampling was enabled with in-plane spatio-temporal resolutions of 2×2mm(2) and 40ms. Highly accelerated cardiac cine is enabled by the combination of 2D undersampling and the synergistic use of LLR and FD constraints. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Finite difference solution of the time dependent neutron group diffusion equations

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Henry, A.F.

    1975-08-01

    In this thesis two unrelated topics of reactor physics are examined: the prompt jump approximation and alternating direction checkerboard methods. In the prompt jump approximation it is assumed that the prompt and delayed neutrons in a nuclear reactor may be described mathematically as being instantaneously in equilibrium with each other. This approximation is applied to the spatially dependent neutron diffusion theory reactor kinetics model. Alternating direction checkerboard methods are a family of finite difference alternating direction methods which may be used to solve the multigroup, multidimension, time-dependent neutron diffusion equations. The reactor mesh grid is not swept line by line or point by point as in implicit or explicit alternating direction methods; instead, the reactor mesh grid may be thought of as a checkerboard in which all the ''red squares'' and '' black squares'' are treated successively. Two members of this family of methods, the ADC and NSADC methods, are at least as good as other alternating direction methods. It has been found that the accuracy of implicit and explicit alternating direction methods can be greatly improved by the application of an exponential transformation. This transformation is incompatible with checkerboard methods. Therefore, a new formulation of the exponential transformation has been developed which is compatible with checkerboard methods and at least as good as the former transformation for other alternating direction methods

  19. Methods for compressible fluid simulation on GPUs using high-order finite differences

    Science.gov (United States)

    Pekkilä, Johannes; Väisälä, Miikka S.; Käpylä, Maarit J.; Käpylä, Petri J.; Anjum, Omer

    2017-08-01

    We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them an attractive platform for fluid simulation. However, high-order stencil computation is memory-intensive with respect to both main memory and the caches of the GPU. We present two approaches for simulating compressible fluids using 55-point and 19-point stencils. We seek to reduce the requirements for memory bandwidth and cache size in our methods by using cache blocking and decomposing a latency-bound kernel into several bandwidth-bound kernels. Our fastest implementation is bandwidth-bound and integrates 343 million grid points per second on a Tesla K40t GPU, achieving a 3 . 6 × speedup over a comparable hydrodynamics solver benchmarked on two Intel Xeon E5-2690v3 processors. Our alternative GPU implementation is latency-bound and achieves the rate of 168 million updates per second.

  20. An Efficient Explicit Finite-Difference Scheme for Simulating Coupled Biomass Growth on Nutritive Substrates

    Directory of Open Access Journals (Sweden)

    G. F. Sun

    2015-01-01

    Full Text Available A novel explicit finite-difference (FD method is presented to simulate the positive and bounded development process of a microbial colony subjected to a substrate of nutrients, which is governed by a nonlinear parabolic partial differential equations (PDE system. Our explicit FD scheme is uniquely designed in such a way that it transfers the nonlinear terms in the original PDE into discrete sets of linear ones in the algebraic equation system that can be solved very efficiently, while ensuring the stability and the boundedness of the solution. This is achieved through (1 a proper design of intertwined FD approximations for the diffusion function term in both time and spatial variations and (2 the control of the time-step through establishing theoretical stability criteria. A detailed theoretical stability analysis is conducted to reveal that our FD method is indeed stable. Our examples verified the fact that the numerical solution can be ensured nonnegative and bounded to simulate the actual physics. Numerical examples have also been presented to demonstrate the efficiency of the proposed scheme. The present scheme is applicable for solving similar systems of PDEs in the investigation of the dynamics of biological films.

  1. Wavelet-based adaptation methodology combined with finite difference WENO to solve ideal magnetohydrodynamics

    Science.gov (United States)

    Do, Seongju; Li, Haojun; Kang, Myungjoo

    2017-06-01

    In this paper, we present an accurate and efficient wavelet-based adaptive weighted essentially non-oscillatory (WENO) scheme for hydrodynamics and ideal magnetohydrodynamics (MHD) equations arising from the hyperbolic conservation systems. The proposed method works with the finite difference weighted essentially non-oscillatory (FD-WENO) method in space and the third order total variation diminishing (TVD) Runge-Kutta (RK) method in time. The philosophy of this work is to use the lifted interpolating wavelets as not only detector for singularities but also interpolator. Especially, flexible interpolations can be performed by an inverse wavelet transformation. When the divergence cleaning method introducing auxiliary scalar field ψ is applied to the base numerical schemes for imposing divergence-free condition to the magnetic field in a MHD equation, the approximations to derivatives of ψ require the neighboring points. Moreover, the fifth order WENO interpolation requires large stencil to reconstruct high order polynomial. In such cases, an efficient interpolation method is necessary. The adaptive spatial differentiation method is considered as well as the adaptation of grid resolutions. In order to avoid the heavy computation of FD-WENO, in the smooth regions fixed stencil approximation without computing the non-linear WENO weights is used, and the characteristic decomposition method is replaced by a component-wise approach. Numerical results demonstrate that with the adaptive method we are able to resolve the solutions that agree well with the solution of the corresponding fine grid.

  2. A Finite-Difference Solution of Solute Transport through a Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    B. Godongwana

    2015-01-01

    Full Text Available The current paper presents a theoretical analysis of the transport of solutes through a fixed-film membrane bioreactor (MBR, immobilised with an active biocatalyst. The dimensionless convection-diffusion equation with variable coefficients was solved analytically and numerically for concentration profiles of the solutes through the MBR. The analytical solution makes use of regular perturbation and accounts for radial convective flow as well as axial diffusion of the substrate species. The Michaelis-Menten (or Monod rate equation was assumed for the sink term, and the perturbation was extended up to second-order. In the analytical solution only the first-order limit of the Michaelis-Menten equation was considered; hence the linearized equation was solved. In the numerical solution, however, this restriction was lifted. The solution of the nonlinear, elliptic, partial differential equation was based on an implicit finite-difference method (FDM. An upwind scheme was employed for numerical stability. The resulting algebraic equations were solved simultaneously using the multivariate Newton-Raphson iteration method. The solution allows for the evaluation of the effect on the concentration profiles of (i the radial and axial convective velocity, (ii the convective mass transfer rates, (iii the reaction rates, (iv the fraction retentate, and (v the aspect ratio.

  3. New 2D adaptive mesh refinement algorithm based on conservative finite-differences with staggered grid

    Science.gov (United States)

    Gerya, T.; Duretz, T.; May, D. A.

    2012-04-01

    We present new 2D adaptive mesh refinement (AMR) algorithm based on stress-conservative finite-differences formulated for non-uniform rectangular staggered grid. The refinement approach is based on a repetitive cell splitting organized via a quad-tree construction (every parent cell is split into 4 daughter cells of equal size). Irrespective of the level of resolution every cell has 5 staggered nodes (2 horizontal velocities, 2 vertical velocities and 1 pressure) for which respective governing equations, boundary conditions and interpolation equations are formulated. The connectivity of the grid is achieved via cross-indexing of grid cells and basic nodal points located in their corners: four corner nodes are indexed for every cell and up to 4 surrounding cells are indexed for every node. The accuracy of the approach depends critically on the formulation of the stencil used at the "hanging" velocity nodes located at the boundaries between different levels of resolution. Most accurate results are obtained for the scheme based on the volume flux balance across the resolution boundary combined with stress-based interpolation of velocity orthogonal to the boundary. We tested this new approach with a number of 2D variable viscosity analytical solutions. Our tests demonstrate that the adaptive staggered grid formulation has convergence properties similar to those obtained in case of a standard, non-adaptive staggered grid formulation. This convergence is also achieved when resolution boundary crosses sharp viscosity contrast interfaces. The convergence rates measured are found to be insensitive to scenarios when the transition in grid resolution crosses sharp viscosity contrast interfaces. We compared various grid refinement strategies based on distribution of different field variables such as viscosity, density and velocity. According to these tests the refinement allows for significant (0.5-1 order of magnitude) increase in the computational accuracy at the same

  4. Moment Inversion of the DPRK Nuclear Tests Using Finite-Difference Three-dimensional Strain Green's Tensors

    Science.gov (United States)

    Bao, X.; Shen, Y.; Wang, N.

    2017-12-01

    Accurate estimation of the source moment is important for discriminating underground explosions from earthquakes and other seismic sources. In this study, we invert for the full moment tensors of the recent seismic events (since 2016) at the Democratic People's Republic of Korea (PRRK) Punggye-ri test site. We use waveform data from broadband seismic stations located in China, Korea, and Japan in the inversion. Using a non-staggered-grid, finite-difference algorithm, we calculate the strain Green's tensors (SGT) based on one-dimensional (1D) and three-dimensional (3D) Earth models. Taking advantage of the source-receiver reciprocity, a SGT database pre-calculated and stored for the Punggye-ri test site is used in inversion for the source mechanism of each event. With the source locations estimated from cross-correlation using regional Pn and Pn-coda waveforms, we obtain the optimal source mechanism that best fits synthetics to the observed waveforms of both body and surface waves. The moment solutions of the first three events (2016-01-06, 2016-09-09, and 2017-09-03) show dominant isotropic components, as expected from explosions, though there are also notable non-isotropic components. The last event ( 8 minutes after the mb6.3 explosion in 2017) contained mainly implosive component, suggesting a collapse following the explosion. The solutions from the 3D model can better fit observed waveforms than the corresponding solutions from the 1D model. The uncertainty in the resulting moment solution is influenced by heterogeneities not resolved by the Earth model according to the waveform misfit. Using the moment solutions, we predict the peak ground acceleration at the Punggye-ri test site and compare the prediction with corresponding InSAR and other satellite images.

  5. Earthquake accelerations estimation for construction calculating with different responsibility degrees

    International Nuclear Information System (INIS)

    Dolgaya, A.A.; Uzdin, A.M.; Indeykin, A.V.

    1993-01-01

    The investigation object is the design amplitude of accelerograms, which are used in the evaluation of seismic stability of responsible structures, first and foremost, NPS. The amplitude level is established depending on the degree of responsibility of the structure and on the prevailing period of earthquake action on the construction site. The investigation procedure is based on statistical analysis of 310 earthquakes. At the first stage of statistical data-processing we established the correlation dependence of both the mathematical expectation and root-mean-square deviation of peak acceleration of the earthquake on its prevailing period. At the second stage the most suitable law of acceleration distribution about the mean was chosen. To determine of this distribution parameters, we specified the maximum conceivable acceleration, the excess of which is not allowed. Other parameters of distribution are determined according to statistical data. At the third stage the dependencies of design amplitude on the prevailing period of seismic effect for different structures and equipment were established. The obtained data made it possible to recommend to fix the level of safe-shutdown (SSB) and operating basis earthquakes (OBE) for objects of various responsibility categories when designing NPS. (author)

  6. Biomechanical evaluation of different abutment-implant connections - A nonlinear finite element analysis

    Science.gov (United States)

    Ishak, Muhammad Ikman; Shafi, Aisyah Ahmad; Rosli, M. U.; Khor, C. Y.; Zakaria, M. S.; Rahim, Wan Mohd Faizal Wan Abd; Jamalludin, Mohd Riduan

    2017-09-01

    The success of dental implant surgery is majorly dependent on the stability of prosthesis to anchor to implant body as well as the integration of implant body to bone. The attachment between dental implant body and abutment plays a vital role in attributing to the stability of dental implant system. A good connection between implant body cavity to abutment may minimize the complications of abutment loosening and implant fractures as widely reported in clinical findings. The aim of this paper is to investigate the effect of different abutment-implant connections on stress dispersion within the abutment and implant bodies as well as displacement of implant body via three-dimensional (3-D) finite element analysis (FEA). A 3-D model of mandible was reconstructed from computed tomography (CT) image datasets using an image-processing software with the selected region of interest was the left side covering the second premolar, first molar and second molar regions. The bone was modelled as compact (cortical) and porous (cancellous) structures. Besides, three implant bodies and three generic models of abutment with different types of connections - tapered interference fit (TIF), tapered integrated screwed-in (TIS) and screw retention (SR) were created using computer-aided design (CAD) software and all models were then analysed via 3D FEA software. Occlusal forces of 114.6 N, 17.2 N and 23.4 N were applied in the axial, lingual and mesio-distal directions, respectively, on the top surface of first molar crown. All planes of the mandibular bone model were rigidly fixed. The result exhibited that abutment with TIS connection produced the most favourable stress and displacement outcomes as compared to other attachment types. This is due to the existence of integrated screw at the bottom portion of tapered abutment which increases the motion resistance.

  7. Maxillary anterior en masse retraction using different antero-posterior position of mini screw: a 3D finite element study

    Directory of Open Access Journals (Sweden)

    Zohreh Hedayati

    2016-10-01

    Full Text Available Abstract Background Nowadays, mini screws are used in orthodontic tooth movement to obtain maximum or absolute anchorage. They have gained popularity among orthodontists for en masse retraction of anterior teeth after first premolar extraction in maximum anchorage cases. The purpose of this study was to determine the type of anterior tooth movement during the time when force was applied from different mini screw placements to the anterior power arm with various heights. Methods A finite element method was used for modeling maxillary teeth and bone structure. Brackets, wire, and hooks were also designed for modeling. Two appropriate positions for mini screw in the mesial and distal of the second premolar were designed as fixed nodes. Forces were applied from the mini screw to four different levels of anterior hook height: 0, 3, 6, and 9 mm. Initial tooth movement in eight different conditions was analyzed and calculated with ANSYS software. Results Rotation of anterior dentition was decreased with a longer anterior power arm and the mesial placement of the mini screw. Bodily movements occurred with the 9-mm height of the power arm in both mini screw positions. Intrusion or extrusion of the anterior teeth segment depended on the level of the mini screw and the edge of the power arm on the Z axis. Conclusions According to the findings of this study, the best control in the sagittal plane during anterior en masse retraction was achieved by mesial placement of the mini screw and the 9-mm height of the anterior power arm. Where control in the vertical plane was concerned, distal placement of the mini screw with the 6-mm power arm height had minimum adverse effect on anterior dentition.

  8. Spatially dispersive finite-difference time-domain analysis of sub-wavelength imaging by the wire medium slabs

    Science.gov (United States)

    Zhao, Yan; Belov, Pavel A.; Hao, Yang

    2006-06-01

    In this paper, a spatially dispersive finite-difference time-domain (FDTD) method to model wire media is developed and validated. Sub-wavelength imaging properties of the finite wire medium slabs are examined. It is demonstrated that the slab with its thickness equal to an integer number of half-wavelengths is capable of transporting images with sub-wavelength resolution from one interface of the slab to another. It is also shown that the operation of such transmission devices is not sensitive to their transverse dimensions, which can be made even comparable to the wavelength. In this case, the edge diffractions are negligible and do not disturb the image formation.

  9. Finite element analysis of the three different posterior malleolus fixation strategies in relation to different fracture sizes.

    Science.gov (United States)

    Anwar, Adeel; Lv, Decheng; Zhao, Zhi; Zhang, Zhen; Lu, Ming; Nazir, Muhammad Umar; Qasim, Wasim

    2017-04-01

    Appropriate fixation method for the posterior malleolar fractures (PMF) according to the fracture size is still not clear. Aim of this study was to evaluate the outcomes of the different fixation methods used for fixation of PMF by finite element analysis (FEA) and to compare the effect of fixation constructs on the size of the fracture computationally. Three dimensional model of the tibia was reconstructed from computed tomography (CT) images. PMF of 30%, 40% and 50% fragment sizes were simulated through computational processing. Two antero-posterior (AP) lag screws, two postero-anterior (PA) lag screws and posterior buttress plate were analysed for three different fracture volumes. The simulated loads of 350N and 700N were applied to the proximal tibial end. Models were fixed distally in all degrees of freedom. In single limb standing condition, the posterior plate group produced the lowest relative displacement (RD) among all the groups (0.01, 0.03 and 0.06mm). Further nodal analysis of the highest RD fracture group showed a higher mean displacement of 4.77mm and 4.23mm in AP and PA lag screws model (p=0.000). The amounts of stress subjected to these implants, 134.36MPa and 140.75MPa were also significantly lower (p=0.000). There was a negative correlation (p=0.021) between implant stress and the displacement which signifies a less stable fixation using AP and PA lag screws. Progressively increasing fracture size demands more stable fixation construct because RD increases significantly. Posterior buttress plate produces superior stability and lowest RD in PMF models irrespective of the fragment size. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Different Modelling Approaches to Coupling Wall and Floor Panels within a Dynamic Finite Element Model of a Lightweight Building

    DEFF Research Database (Denmark)

    Kiel, Nikolaj; Andersen, Lars Vabbersgaard; Niu, Bin

    2012-01-01

    . With the number of modules in the three axial directions defined, wall and floor panels are constructed, placed and coupled in the global model. The core of this modular finite element model consists of connecting the different panels to each other in a rational manner, where the accuracy is as high as possible......, with as many applications as possible, for the least possible computational cost. The coupling method of the structural panels in the above mentioned modular finite element model is in this paper discussed and evaluated. The coupling of the panels are performed using the commercial finite element program....... In this way a well-defined master geometry is present onto which all panels can be tied. But as the skeleton is an element itself, it will have a physical mass and a corresponding stiffness to be included in the linear system of equations. This means that the skeleton will influence the structure...

  11. Finite-difference Green's functions on a 3-D cubic lattice - Integer versus fixed-precision arithmetic recurrence schemes

    NARCIS (Netherlands)

    De Hon, B. P.; Arnold, J. M.

    2016-01-01

    Time-domain 3-D lattice Green's function (LGF) sequences can be evaluated using a single-lattice point recurrence scheme, and play an important role in finite-difference Green's function diakoptics. Asymptotically, at large distances, the LGFs in three dimensions can be described in terms of six

  12. A finite difference approach to despiking in-stationary velocity data - tested on a triple-lidar

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul; Troldborg, Niels

    2016-01-01

    A novel despiking method is presented for in-stationary wind lidar velocity measurements. A finite difference approach yields the upper and lower bounds for a valid velocity reading. The sole input to the algorithm is the velocity series and optionally a far- field reference to the temporal...

  13. Aspects of the generation of finite-difference Green's function sequences for arbitrary 3-D cubic lattice points

    NARCIS (Netherlands)

    de Hon, B.P.; Arnold, J.M.

    2015-01-01

    The robust and speedy evaluation of lattice Green's functions LGFs) is crucial to the effectiveness of finite-difference Green's function diakoptics schemes. We have recently determined a generic recurrence scheme for the construction of scalar LGF sequences at arbitrary points on a 3-D cubic

  14. Characterization of differences in calculated and actual measured skin doses to canine limbs during stereotactic radiosurgery using Gafchromic film

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Jerri [Duke Energy, York, SC (United States); Colorado State University, Fort Collins, CO (United States); Ryan, Stewart [Animal Cancer Center, Colorado State University, Fort Collins, CO (United States); Harmon, Joseph F., E-mail: joseph_harmon@bshsi.org [Bon Secours Cancer Institute, Henrico, VA (United States)

    2012-07-01

    Accurate calculation of absorbed dose to the skin, especially the superficial and radiosensitive basal cell layer, is difficult for many reasons including, but not limited to, the build-up effect of megavoltage photons, tangential beam effects, mixed energy scatter from support devices, and dose interpolation caused by a finite resolution calculation matrix. Stereotactic body radiotherapy (SBRT) has been developed as an alternative limb salvage treatment option at Colorado State University Veterinary Teaching Hospital for dogs with extremity bone tumors. Optimal dose delivery to the tumor during SBRT treatment can be limited by uncertainty in skin dose calculation. The aim of this study was to characterize the difference between measured and calculated radiation dose by the Varian Eclipse (Varian Medical Systems, Palo Alto, CA) AAA treatment planning algorithm (for 1-mm, 2-mm, and 5-mm calculation voxel dimensions) as a function of distance from the skin surface. The study used Gafchromic EBT film (International Specialty Products, Wayne, NJ), FilmQA analysis software, a limb phantom constructed from plastic water Trade-Mark-Sign (fluke Biomedical, Everett, WA) and a canine cadaver forelimb. The limb phantom was exposed to 6-MV treatments consisting of a single-beam, a pair of parallel opposed beams, and a 7-beam coplanar treatment plan. The canine forelimb was exposed to the 7-beam coplanar plan. Radiation dose to the forelimb skin at the surface and at depths of 1.65 mm and 1.35 mm below the skin surface were also measured with the Gafchromic film. The calculation algorithm estimated the dose well at depths beyond buildup for all calculation voxel sizes. The calculation algorithm underestimated the dose in portions of the buildup region of tissue for all comparisons, with the most significant differences observed in the 5-mm calculation voxel and the least difference in the 1-mm voxel. Results indicate a significant difference between measured and calculated data

  15. Magnetic materials at finite temperatures: thermodynamics and combined spin and molecular dynamics derived from first principles calculations

    International Nuclear Information System (INIS)

    Eisenbach, Markus; Perera, Meewanage Dilina N.; Landau, David P; Nicholson, Don M.; Yin, Junqi; Brown, Greg

    2015-01-01

    We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles-derived simulations.

  16. Using finite element method in the processof strength calculation for the pipeline supports in above-groundarea of "Zapolyar'e — NPS "PUR-PE" oil pipeline

    Directory of Open Access Journals (Sweden)

    Surikov Vitaliy Ivanovich

    2014-01-01

    Full Text Available The present article studies a procedure of calculating the strength of pipeline support constructions of the above-ground oil trunk pipeline system «Zapolyar'e — oil pumping station «Pur-pe». The calculations of the supports stress-strain state are performed with the use of computer complex Ansys v13, which applies the finite element method. The article provides a short description of the construction of fixed, linear-sliding and free-sliding supports of the oil pipeline of above-ground routing, developed for the installation in complex climatic and geologic conditions of the far north. According to the operation specification for design — the support constructions have to maintain the resistance power and bearing capacity under the influence of the pipeline stress without sagging and considering the possible sagging of the neighboring support. The support constructions represent space structures with a complex geometry. Together with the complex geometry, contacting elements are present in the construction of the supports. There is also an interaction of the pile foundation and the nonhomogeneous foundation. The enumerated peculiarities of the construction and operating conditions of the supports considerably complicate the strength calculations by engineering methods. The method of numerical modeling (finite element method used in the article for the analysis of the supports’ operation under the stress is widely applied at the present time for calculations of space structures with a complex geometry. For the first time, while performing the supports’ strength calculations, the article considers the mutual deformation of the support, foundation grill and pile foundation in the ground, thus making it possible to consider real operation of the construction altogether. The main development stages of the calculation model “support — pile foundation — ground” in ANSYS, calculation and testing of the static strength of the support

  17. A two-dimensional, finite-element methods for calculating TF coil response to out-of-plane Lorentz forces

    International Nuclear Information System (INIS)

    Witt, R.J.

    1989-01-01

    Toroidal field (TF) coils in fusion systems are routinely operated at very high magnetic fields. While obtaining the response of the coil to in-plane loads is relatively straightforward, the same is not true for the out-of-plane loads. Previous treatments of the out-of-plane problem have involved large, three-dimensional finite element idealizations. A new treatment of the out-of-plane problem is presented here; the model is two-dimensional in nature, and consumes far less CPU-time than three-dimensional methods. The approach assumes there exists a region of torsional deformation in the inboard leg and a bending region in the outboard leg. It also assumes the outboard part of the coil is attached to a torque frame/cylinder, which experiences primarily torsional deformation. Three-dimensional transition regions exist between the inboard and outboard legs and between the outboard leg and the torque frame. By considering several idealized problems of cylindrical shells subjected to moment distributions, it is shown that the size of these three-dimensional regions is quite small, and that the interaction between the torsional and bending regions can be treated in an equivalent two-dimensional fashion. Equivalent stiffnesses are derived to model penetration into and twist along the cylinders. These stiffnesses are then used in a special substructuring analysis to couple the three regions together. Results from the new method are compared to results from a 3D continuum model. (orig.)

  18. Neurite, a finite difference large scale parallel program for the simulation of electrical signal propagation in neurites under mechanical loading.

    Directory of Open Access Journals (Sweden)

    Julián A García-Grajales

    Full Text Available With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite--explicit and implicit--were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon

  19. Plasmonic Resonances for Spectroscopy Applications using 3D Finite-Difference Time-Domain Models

    Science.gov (United States)

    Ravi, Aruna

    Tuning plasmonic extinction resonances of sub-wavelength scale structures is essential to achieve maximum sensitivity and accuracy. These resonances can be controlled with careful design of nanoparticle geometries and incident wave attributes. In the first part of this dissertation, plasmonically enhanced effects on hexagonal-arrays of metal nanoparticles, metal-hole arrays (micro-mesh), and linear-arrays of metal nanorings are analyzed using three-dimensional Finite-Difference Time-Domain (3D-FDTD) simulations. The effect of particle size, lattice spacing, and lack of monodispersity of a self-assembled, hexagonal array layer of silver (Ag) nanoparticles on the extinction resonance is investigated to help determine optimal design specifications for efficient organic solar power harvesting. The enhancement of transmission resonances using plasmonic thin metal films with arrays of holes which enable recording of scatter-free infrared (IR) transmission spectra of individual particles is also explored. This method is quantitative, non-destructive and helps in better understanding the interaction of light with sub-wavelength particles. Next, plasmonically enhanced effects on linear arrays of gold (Au) rings are studied. Simulations employing 3D-FDTD can be used to determine the set of geometrical parameters to attain localized surface plasmon resonance (LSPR). The shifts in resonances due to changes in the effective dielectric of the structure are investigated, which is useful in sensing applications. Computational models enrich experimental studies. In the second part of this dissertation, the effect of particle size, shape and orientation on the IR spectra is investigated using 3D-FDTD and Mie-Bruggeman models. This computational analysis is extended to include clusters of particles of mixed composition. The prediction of extinction and absorption spectra of single particles of mixed composition helps in interpreting their physical properties and predict chemical

  20. Foundation calculation for buildings and structures with two elastic characteristics of the foundation using features of Fourier transformsfor finite functions

    Directory of Open Access Journals (Sweden)

    Kurbatskiy Evgeniy Nikolaevich

    2014-01-01

    Full Text Available The problem of a beam resting on elastic foundation often occurs in the analysis of building, geotechnical, highway, and railroad structures. Its solution demands modeling of the mechanical behavior of the beam, the mechanical behavior of the soil as elastic subgrade and the form of interaction between the beam and the soil. The oldest, most famous and most frequently used mechanical model is the one devised by Winkler (1867, in which the beam-supporting soil is modeled as a series of closely spaced, mutually independent, linear elastic vertical springs, which, evidently, provide resistance in direct proportion to the deflection of the beam.The solution is presented for the problem of an Euler–Bernoulli beam supported by an infinite two-parameter Pasternak foundation. The beam is subjected to arbitrarily distributed or concentrated vertical loading along its length. Static response of a beam on an elastic foundation characterized by two parameters is investigated assuming, that the beam is subjected to external loads and two concentrated edge load. The governing equations of the problem are obtained and solved by pointing out that there is a concentrated edge foundation reaction in addition to a continuous foundation reaction along the beam axis in the case of complete contact in the foundation reactions of the two-parameter foundation model. The proposed method is based on the properties of Fourier transforms of the finite functions. Particular attention is paid to the problem, taking into account the deformation of soil areas outside the beam. The beam model with two foundation coefficients more realistically describes the behavior of strip footings under loading.

  1. 3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media

    Science.gov (United States)

    Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.

    2003-12-01

    Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented

  2. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.

    Science.gov (United States)

    Rocklin, Gabriel J; Mobley, David L; Dill, Ken A; Hünenberger, Philippe H

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol(-1)) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB

  3. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Rocklin, Gabriel J. [Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA and Biophysics Graduate Program, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550 (United States); Mobley, David L. [Departments of Pharmaceutical Sciences and Chemistry, University of California Irvine, 147 Bison Modular, Building 515, Irvine, California 92697-0001, USA and Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148 (United States); Dill, Ken A. [Laufer Center for Physical and Quantitative Biology, 5252 Stony Brook University, Stony Brook, New York 11794-0001 (United States); Hünenberger, Philippe H., E-mail: phil@igc.phys.chem.ethz.ch [Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich (Switzerland)

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol{sup −1}) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non

  4. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    Science.gov (United States)

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-11-01

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol-1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB

  5. Complex image method for calculating electric and magnetic fields produced by an auroral electrojet of finite length

    Directory of Open Access Journals (Sweden)

    R. Pirjola

    1998-11-01

    Full Text Available The electromagnetic field due to ionospheric currents has to be known when evaluating space weather effects at the earth's surface. Forecasting methods of these effects, which include geomagnetically induced currents in technological systems, are being developed. Such applications are time-critical, so the calculation techniques of the electromagnetic field have to be fast but still accurate. The contribution of secondary sources induced within the earth leads to complicated integral formulas for the field at the earth's surface with a time-consuming computation. An approximate method of calculation based on replacing the earth contribution by an image source having mathematically a complex location results in closed-form expressions and in a much faster computation. In this paper we extend the complex image method (CIM to the case of a more realistic electrojet system consisting of a horizontal line current filament with vertical currents at its ends above a layered earth. To be able to utilize previous CIM results, we prove that the current system can be replaced by a purely horizontal current distribution which is equivalent regarding the total (=primary + induced magnetic field and the total horizontal electric field at the earth's surface. The latter result is new. Numerical calculations demonstrate that CIM is very accurate and several magnitudes faster than the exact conventional approach.Key words. Electromagnetic theory · Geomagnetic induction · Auroral ionosphere

  6. Current trends in methods for neutron diffusion calculations

    International Nuclear Information System (INIS)

    Adams, C.H.

    1977-01-01

    Current work and trends in the application of neutron diffusion theory to reactor design and analysis are reviewed. Specific topics covered include finite-difference methods, synthesis methods, nodal calculations, finite-elements and perturbation theory

  7. Use of a finite difference code for the prediction of the ability of sub-floor ventilation strategies to reduce indoor radon concentrations

    International Nuclear Information System (INIS)

    Cohilis, P.; Wouters, P.; L'Heureux, D.

    1992-01-01

    This paper concerns the use of a numerical code, based on the finite difference method, for the evaluation of 222 Rn mitigation strategies in dwellings. It is supposed that 222 Rn transport from soil into a dwelling occurs mainly by pressure-driven air flow. The program calculates the pressure fields under the buildings, supposing a laminar air flow in the soil and adopting the steady-state condition. The simple data structure of the code allows one to describe even complex configurations in an easy way. Clear alphanumerical and graphical outputs are delivered. The calculations presented in the paper illustrate the possibilities of the program. An interesting consequence of the linear assumption implicit in the equations of the model is considered, and a comparison with laboratory measurements is presented. (author)

  8. Biexponential analysis of diffusion-weighted imaging: comparison of three different calculation methods in transplanted kidneys.

    Science.gov (United States)

    Heusch, Philipp; Wittsack, Hans-Jörg; Pentang, Gael; Buchbender, Christian; Miese, Falk; Schek, Julia; Kröpil, Patric; Antoch, Gerald; Lanzman, Rotem S

    2013-12-01

    Biexponential analysis has been used increasingly to obtain contributions of both diffusion and microperfusion to the signal decay in diffusion-weighted imaging DWI of different parts of the body. To compare biexponential diffusion parameters of transplanted kidneys obtained with three different calculation methods. DWI was acquired in 15 renal allograft recipients (eight men, seven women; mean age, 52.4 ± 14.3 years) using a paracoronal EPI sequence with 16 b-values (b = 0-750 s/mm(2)) and six averages at 1.5T. No respiratory gating was used. Three different calculation methods were used for the calculation of biexponential diffusion parameters: Fp, ADCP, and ADCD were calculated without fixing any parameter a priori (calculation method 1); ADCP was fixed to 12.0 µm(2)/ms, whereas Fp and ADCD were calculated using the biexponential model (calculation method 2); multistep approach with monoexponential fitting of the high b-value portion (b ≥ 250 s/mm(2)) for determination of ADCD and assessment of the low b intercept for determination of Fp (calculation method 3). For quantitative analysis, ROI measurements were performed on the according parameter maps. Mean ADCD values of the renal cortex using calculation method 1 were significantly lower than using calculation methods 2 and 3 (P < 0.001). There was a significant correlation between calculation methods 1 and 2 (r = 0.69 (P < 0.005) and calculation methods 1 and 3 (r = 0.59; P < 0.05) as well as calculation methods 2 and 3 (r = 0.98; P < 0.001). Mean Fp values of the renal cortex were higher with calculation method 1 than with calculation methods 2 and 3 (P < 0.001). For Fp, only the correlation between calculation methods 2 and 3 was significant (r = 0.98; P < 0.001). Biexponential diffusion parameters differ significantly depending on the calculation methods used for their calculation.

  9. Simulation model of stratified thermal energy storage tank using finite difference method

    Science.gov (United States)

    Waluyo, Joko

    2016-06-01

    Stratified TES tank is normally used in the cogeneration plant. The stratified TES tanks are simple, low cost, and equal or superior in thermal performance. The advantage of TES tank is that it enables shifting of energy usage from off-peak demand for on-peak demand requirement. To increase energy utilization in a stratified TES tank, it is required to build a simulation model which capable to simulate the charging phenomenon in the stratified TES tank precisely. This paper is aimed to develop a novel model in addressing the aforementioned problem. The model incorporated chiller into the charging of stratified TES tank system in a closed system. The model was developed in one-dimensional type involve with heat transfer aspect. The model covers the main factors affect to degradation of temperature distribution namely conduction through the tank wall, conduction between cool and warm water, mixing effect on the initial flow of the charging as well as heat loss to surrounding. The simulation model is developed based on finite difference method utilizing buffer concept theory and solved in explicit method. Validation of the simulation model is carried out using observed data obtained from operating stratified TES tank in cogeneration plant. The temperature distribution of the model capable of representing S-curve pattern as well as simulating decreased charging temperature after reaching full condition. The coefficient of determination values between the observed data and model obtained higher than 0.88. Meaning that the model has capability in simulating the charging phenomenon in the stratified TES tank. The model is not only capable of generating temperature distribution but also can be enhanced for representing transient condition during the charging of stratified TES tank. This successful model can be addressed for solving the limitation temperature occurs in charging of the stratified TES tank with the absorption chiller. Further, the stratified TES tank can be

  10. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  11. Domain-adaptive finite difference methods for collapsing annular liquid jets

    Science.gov (United States)

    Ramos, J. I.

    1993-01-01

    rate increases as the Weber number, nozzle exit angle, gas concentration at the nozzle exit, and temperature of the gases enclosed by the annular liquid jet are increased, but it decreases as the Froude and Peclet numbers, and annular liquid jet's thickness-to-radius ratio at the nozzle exit are increased. It is also shown that the annular liquid jet's collapse rate increases as the Weber number, nozzle exit angle, temperature of the gases enclosed by the annular liquid jet, and pressure of the gases which surround the jet are increased, but decreases as the Froude and Peclet numbers, and annular liquid jet's thickness-toradius ratio at the nozzle exit are increased. It is also shown that both the ratio of the initial pressure of the gas enclosed by the jet to the pressure of the gas surrounding the jet and the ratio of solubilities at the annular liquid jet's inner and outer interfaces play an important role on both the steady state mass absorption rate and the jet collapse. If the product of these ratios is greater or less than one, both the pressure and the mass of the gas enclosed by the annular liquid jet decrease or increase, respectively, with time. It is also shown that the numerical results obtained with the conservative, domain-adaptive method of lines technique presented in this paper are in excellent agreement with those of a domain-adaptive, iterative, non-conservative, block-bidiagonal, finite difference method which uncouples the solution of the fluid dynamics equations from that of the convergence length.

  12. Calculation of the magnetic anisotropy energy and finite-temperature magnetic properties of transition-metal films

    International Nuclear Information System (INIS)

    Garibay-Alonso, R; Villasenor-Gonzalez, P; Dorantes-Davila, J; Pastor, G M

    2004-01-01

    The magnetic anisotropy energy at the interface (IMAE) of Co films deposited on the Pd(111) surface are determined in the framework of a self-consistent, real-space tight-binding method at zero temperature. Significant spin moments are induced at the Pd atoms at the interface which have an important influence on the observed reorientation transitions as a function of Co film thickness. Film-substrate hybridizations are therefore crucial for the magneto-anisotropic behaviour of thin transition-metal films deposited on metallic non-magnetic substrates. Furthermore, using a real-space recursive expansion of the local Green function and within the virtual-crystal approximation we calculate the magnetization curves and the Curie temperature T C for free-standing Fe films

  13. Calculation of the magnetic flux density distribution in type-II superconductors with finite thickness and well-defined geometry

    International Nuclear Information System (INIS)

    Forkl, A.; Kronmueller, H.

    1995-01-01

    The distribution of the critical current density j c (r) in hard type-II superconductors depends strongly on their sample geometry. Rules are given for the construction of j c (r). Samples with homogeneous thickness are divided into cakelike regions with a unique current direction. The spatial magnetic flux density distribution and the magnetic polarization of such a cakelike unit cell with homogeneous current density are calculated analytically. The magnetic polarization and magnetic flux density distribution of a superconductor in the mixed state is then given by an adequate superposition of the unit cell solutions. The theoretical results show good agreement with magneto-optically determined magnetic flux density distributions of a quadratic thin superconducting YBa 2 Cu 3 O 7-x film. The current density distribution is discussed for several sample geometries

  14. Dynamic pulse buckling of cylindrical shells under axial impact: A comparison of 2D and 3D finite element calculations with experimental data

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Ammerman, D.J.

    1995-04-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. Four axial impact tests were performed on 4 in-diameter, 8 in-long, 304 L stainless steel cylinders with a 3/16 in wall thickness. The cylinders were struck by a 597 lb mass with an impact velocity ranging from 42.2 to 45.1 ft/sec. During the impact event, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. The instability occurred at the top of the cylinder in three tests and at the bottom in one test. Numerical simulations of the test were performed using the following codes and element types: PRONTO2D with axisymmetric four-node quadrilaterals; PRONTO3D with both four-node shells and eight-node hexahedrons; and ABAQUS/Explicit with axisymmetric two-node shells and four-node quadrilaterals, and 3D four-node shells and eight-node hexahedrons. All of the calculations are compared to the tests with respect to deformed shape and impact load history. As in the tests, the location of the instability is not consistent in all of the calculations. However, the calculations show good agreement with impact load measurements with the exception of an initial load spike which is proven to be the dynamic response of the load cell to the impact. Finally, the PRONIT02D calculation is compared to the tests with respect to strain and acceleration histories. Accelerometer data exhibited good qualitative agreement with the calculations. The strain comparisons show that measurements are very sensitive to gage placement

  15. Comparison of numerical dispersion for finite-difference algorithms in transversely isotropic media with a vertical symmetry axis

    International Nuclear Information System (INIS)

    Liang, Wen-Quan; Wang, Yan-Fei; Yang, Chang-Chun

    2015-01-01

    Numerical simulation of the wave equation is widely used to synthesize seismograms theoretically and is also the basis of the reverse time migration and full waveform inversion. For the finite difference methods, grid dispersion often exists because of the discretization of the time and the spatial derivatives in the wave equation. How to suppress the grid dispersion is therefore a key problem for finite difference (FD) approaches. The FD operators for the space derivatives are usually obtained in the space domain. However, the wave equations are discretized in the time and space directions simultaneously. So it would be better to design the FD operators in the time–space domain. We improved the time–space domain method for obtaining the FD operators in an acoustic vertically transversely isotropic (VTI) media so as to cover a much wider range of frequencies. Dispersion analysis and seismic numerical simulation demonstrate the effectiveness of the proposed method. (paper)

  16. A Fast Implicit Finite Difference Method for Fractional Advection-Dispersion Equations with Fractional Derivative Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Taohua Liu

    2017-01-01

    Full Text Available Fractional advection-dispersion equations, as generalizations of classical integer-order advection-dispersion equations, are used to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper, we develop an implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions. First-order consistency, solvability, unconditional stability, and first-order convergence of the method are proven. Then, we present a fast iterative method for the implicit finite difference scheme, which only requires storage of O(K and computational cost of O(Klog⁡K. Traditionally, the Gaussian elimination method requires storage of O(K2 and computational cost of O(K3. Finally, the accuracy and efficiency of the method are checked with a numerical example.

  17. Acoustic Wave Propagation Modeling by a Two-dimensional Finite-difference Summation-by-parts Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petersson, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examples and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.

  18. An interactive algorithm for identifying multiattribute measurable value functions based on finite-order independence of structural difference

    International Nuclear Information System (INIS)

    Tamura, Hiroyuki; Hikita, Shiro

    1985-01-01

    In this paper, we develop an interactive algorithm for identifying multiattribute measurable value functions based on the concept of finite-order independence of structural difference. This concept includes Dyer and Sarin's weak difference independence as special cases. The algorithm developed is composed of four major parts: 1) formulation of the problem 2) assessment of normalized conditional value functions and structural difference functions 3) assessment of corner values 4) assessment of the order of independence of structural difference and selection of the model. A hypothetical numerical example of a trade-off analysis for siting a nuclear power plant is included. (author)

  19. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    International Nuclear Information System (INIS)

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs

  20. Study of two-dimensional transient cavity fields using the finite-difference time-domain technique

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.L.

    1988-06-01

    This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs.