WorldWideScience

Sample records for fine-tunable monodentate phosphoramidite

  1. Asymmetric hydrogenation of quinolines catalyzed by iridium complexes of monodentate BINOL-derived phosphoramidites

    NARCIS (Netherlands)

    Mrsic, Natasa; Lefort, Laurent; Boogers, Jeroen A. F.; Minnaard, Adriaan J.; Feringa, Ben L.; de Vries, Johannes G.; Mršić, Nataša

    The monodentate BINOL-derived phosphoramidite PipPhos is used as ligand for the iridium-catalyzed asymmetric hydrogenation of 2- and 2,6-substituted quinolines. If tri-ortho-tolylphosphine and/or chloride salts are used as additives enantioselectivities are strongly enhanced up to 89%. NMR indicates

  2. PipPhos and MorfPhos : Privileged monodentate phosphoramidite ligands for rhodium-catalyzed asymmetric hydrogenation

    NARCIS (Netherlands)

    Bernsmann, Heiko; van den Berg, M; Hoen, Robert; Minnaard, AJ; Mehler, G; Reetz, MT; De Vries, JG; Feringa, BL

    2005-01-01

    A library of 20 monodentate phosphoramidite ligands has been prepared and applied in rhodium-catalyzed asymmetric hydrogenation. This resulted in the identification of two ligands, PipPhos and MorfPhos, that afford excellent and in several cases unprecedented enantioselectivities in the

  3. Phosphoramidite accelerated copper(I)-catalyzed [3+2] cycloadditions of azides and alkynes

    NARCIS (Netherlands)

    Campbell-Verduyn, Lachlan S.; Mirfeizi, Leila; Dierckx, Rudi A.; Elsinga, Philip H.; Feringa, Ben L.

    2009-01-01

    Monodentate phosphoramidite ligands are used to accelerate the copper(I)-catalyzed 1,3-dipolar cycloaddition of azides and alkynes (CuAAC) rapidly yielding a wide variety of functionalized 1,4-disubstituted-1,2,3-triazoles; Cu(I) and Cu(II) salts both function as the copper source in aqueous

  4. Catalytic enantioselective addition of organometallic reagents to N-formylimines using monodentate phosphoramidite ligands

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriella; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    [GRAPHICS] The asymmetric synthesis of protected amines via the copper/phosphoramidite-catalyzed addition of organozine and organoaluminum reagents to N-acylimines, generated in situ from aromatic and aliphatic alpha-amidosulfones, is reported. High yields of optically active N-formyl-protected

  5. Catalytic Enantioselective Addition of Organometallic Reagents to N-Formylimines Using Monodentate Phosphoramidite Ligands

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriella; Minnaard, Adriaan J.; Feringa, Bernard

    2008-01-01

    The asymmetric synthesis of protected amines via the copper/phosphoramidite-catalyzed addition of organozinc and organoaluminum reagents to N-acylimines, generated in situ from aromatic and aliphatic α-amidosulfones, is reported. High yields of optically active N-formyl-protected amines and

  6. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    Science.gov (United States)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  7. A Mixed-Ligand Approach Enables the Asymmetric Hydrogenation of an α-Isopropylcinnamic Acid en Route to the Renin Inhibitor Aliskiren

    NARCIS (Netherlands)

    Boogers, Jeroen A.F.; Felfer, Ulfried; Kotthaus, Martina; Lefort, Laurent; Steinbauer, Gerhard; Vries, André H.M. de; Vries, Johannes G. de

    2007-01-01

    An asymmetric hydrogenation process for an α-isopropyl dihydrocinnamic acid derivative, an intermediate for the renin inhibitor aliskiren, has been developed using a rhodium catalyst ligated with a chiral monodentate phosphoramidite and a nonchiral phosphine. Whereas catalysts based on two

  8. Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.

    Science.gov (United States)

    Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N

    2016-06-01

    The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920  ps) together with a compact footprint (4.15  mm2) and optical loss graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.

  9. A Mixed Ligand Approach for the Asymmetric Hydrogenation of 2-Substituted Pyridinium Salts

    NARCIS (Netherlands)

    Renom-Carrasco, Marc; Gajewski, Piotr; Pignataro, Luca; de Vries, Johannes G.; Piarulli, Umberto; Gennari, Cesare; Lefort, Laurent

    2016-01-01

    Herein we describe a new methodology for the asymmetric hydrogenation (AH) of 2-substituted pyridinium salts. An iridium catalyst based on a mixture of a chiral monodentate phosphoramidite and an achiral phosphine was shown to hydrogenate N-benzyl-2-arylpyiridinium bromides to the corresponding

  10. Asymmetric Hydrogenation of Quinoxalines Catalyzed by Iridium/PipPhos

    NARCIS (Netherlands)

    Mrsic, Natasa; Jerphagnon, Thomas; Minnaard, Adriaan J.; Feringa, Ben L.; de Vries, Johannes G.

    2009-01-01

    A catalyst made in situ from the (cyclooctadiene)iridium chloride dimer, [Ir(COD)Cl](2), and the monodentate phosphoramidite ligand (S)-PipPhos was used in the enantioselective hydrogenation of 2- and 2,6-substituted quinoxalines. In the presence of piperidine hydrochloride as additive full

  11. A general synthesis of C8-arylpurine phosphoramidites.

    Science.gov (United States)

    Vongsutilers, Vorasit; Daft, Jonathan R; Shaughnessy, Kevin H; Gannett, Peter M

    2009-09-02

    A general scheme for the synthesis of C8-arylpurine phosphoramidites has been developed. C8-Arylation of C8-bromo-2'-deoxyguanosine is the key step and has been achieved through the use of a Suzuki coupling. Since the coupling reaction is conducted under aqueous conditions, it is unnecessary to protect and then deprotect the hydroxyl groups, thus saving several steps and improving overall yields. Once the C8-arylgroup is introduced, the glycosidic bond becomes very sensitive to acid catalyzed cleavage. Protection of the amino groups as the corresponding N,N-dimethylformamidine derivative improves stability of the derivatives. Synthetic C8-arylpurines were successfully used to prepare synthetic oligonucleotides.

  12. A General Synthesis of C8-Arylpurine Phosphoramidites

    Directory of Open Access Journals (Sweden)

    Vorasit Vongsutilers

    2009-09-01

    Full Text Available A general scheme for the synthesis of C8-arylpurine phosphoramidites has been developed. C8-Arylation of C8-bromo-2′-deoxyguanosine is the key step and has been achieved through the use of a Suzuki coupling. Since the coupling reaction is conducted under aqueous conditions, it is unnecessary to protect and then deprotect the hydroxyl groups, thus saving several steps and improving overall yields. Once the C8-arylgroup is introduced, the glycosidic bond becomes very sensitive to acid catalyzed cleavage. Protection of the amino groups as the corresponding N,N-dimethylformamidine derivative improves stability of the derivatives. Synthetic C8-arylpurines were successfully used to prepare synthetic oligonucleotides.

  13. NAA-modified DNA oligonucleotides with zwitterionic backbones: stereoselective synthesis of A-T phosphoramidite building blocks.

    Science.gov (United States)

    Schmidtgall, Boris; Höbartner, Claudia; Ducho, Christian

    2015-01-01

    Modifications of the nucleic acid backbone are essential for the development of oligonucleotide-derived bioactive agents. The NAA-modification represents a novel artificial internucleotide linkage which enables the site-specific introduction of positive charges into the otherwise polyanionic backbone of DNA oligonucleotides. Following initial studies with the introduction of the NAA-linkage at T-T sites, it is now envisioned to prepare NAA-modified oligonucleotides bearing the modification at X-T motifs (X = A, C, G). We have therefore developed the efficient and stereoselective synthesis of NAA-linked 'dimeric' A-T phosphoramidite building blocks for automated DNA synthesis. Both the (S)- and the (R)-configured NAA-motifs were constructed with high diastereoselectivities to furnish two different phosphoramidite reagents, which were employed for the solid phase-supported automated synthesis of two NAA-modified DNA oligonucleotides. This represents a significant step to further establish the NAA-linkage as a useful addition to the existing 'toolbox' of backbone modifications for the design of bioactive oligonucleotide analogues.

  14. Thermodynamics of synergistic extraction of hexavalent plutonium with HPMBP and neutral donors: monodentate versus bidentate

    International Nuclear Information System (INIS)

    Lohithakshan, K.V.; Mithapara, P.D.; Pai, S.A.; Aggarwal, S.K.; Jain, H.C.

    1996-01-01

    Synergistic extraction of hexavalent plutonium was studied from HNO 3 medium (0.05 M) with 1-phnyl, 3-methyl, 4-benzoyl, pyrazolone-5 (HPMBP) and different monodentate neutral donors viz. diphenyl sulphoxide (DPSO), tri-n-butyl phosphate (TBP) and tri-n-octyl phosphine oxide (TOPO) using benzene as a diluent. Thermodynamic parameters (ΔG, ΔH, ΔS) evaluated by performing the experiments at various fixed temperatures (288 K to 318 K) were compared with those reported previously for the bidentate neutral donors (DBDECMP, DHDECMP and CMPO). The net enthalpy changes were negative and comparable. The monodentate neutral donors, however, showed a larger decrease in the entropy values. Further, the negative values of enthalpy and entropy changes indicated that the organic adduct formation is an addition reaction as reported ealier for the bidentate donors. (orig.)

  15. Permanent magnetic ferrite based power-tunable metamaterials

    Science.gov (United States)

    Zhang, Guanqiao; Lan, Chuwen; Gao, Rui; Zhou, Ji

    2017-08-01

    Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  16. Permanent magnetic ferrite based power-tunable metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanqiao; Lan, Chuwen [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Gao, Rui [High Temperature Thermochemistry Laboratory, Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada); Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-08-15

    Highlights: • Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated. • It is observed that resonant frequency of the array shifts upon altering the output power. • This kind of power-tunable behavior is due to the temperature rise as a result of FMR-induced heat buildup. • This work offers a practical idea to tune ferrite metamaterials besides magneto-tunability and thermal-tunability. - Abstract: Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  17. Design, Testing and Kinetic Analysis of Bulky Monodentate Phosphorus Ligands in the Mizoroki-Heck Reaction

    NARCIS (Netherlands)

    Dodds, Deborah L.; Boele, Maarten D. K.; van Strijdonck, Gino P. F.; de Vries, Johannes G.; van Leeuwen, Piet W. N. M.; Kamer, Paul C. J.

    A series of new monodentate phosphane ligands 2 have been evaluated in the MizorokiHeck arylation reaction of iodobenzene and styrene and compared with our previously reported ligands, 1, 3 and 4. The concept of rational ligand design is discussed, and we describe how the performance of this new

  18. Application of 2-cyanoethyl n,n,n′,n′-tetraisopropylphosphorodiamidite for in situ preparation of deoxyribonucleoside phosphoramidites and their use in polymer-supported synthesis of oligodeoxyribonucleotides

    DEFF Research Database (Denmark)

    Nielsen, John; Taagaard, Michael; Marugg, John E.

    1986-01-01

    Deoxyribonucleoside phosphoramidites are prepared in situ from 5′-O,N-protected deoxyribonucleosides and 2-cyanoethyl N,N,N′,N′-tetraisopropylphosphorodiamidite with tetrazole as catalyst, and the solutions applied directly on an automatic solid-phase DNA synthesizer. Using LCAA-CPG support and a...

  19. SYNTHESIS OF THE FULLY PROTECTED PHOSPHORAMIDITE OF THE BENZENE-DNA ADDUCT, N2- (4-HYDROXYPHENYL)-2'-DEOXYGUANOSINE AND INCORPORATION OF THE LATER INTO DNA OLIGOMERS

    Energy Technology Data Exchange (ETDEWEB)

    Chenna, Ahmed; Gupta, Ramesh C.; Bonala, Radha R.; Johnson, Francis; Huang, Bo

    2008-06-09

    N2-(4-Hydroxyphenyl)-2'-deoxyguanosine-5'-O-DMT-3'-phosphoramidite has been synthesized and used to incorporate the N2-(4-hydroxyphenyl)-2'-dG (N2-4-HOPh-dG) into DNA, using solid-state synthesis technology. The key step to obtaining the xenonucleoside is a palladium (Xantphos-chelated) catalyzed N2-arylation (Buchwald-Hartwig reaction) of a fully protected 2'-deoxyguanosine derivative by 4-isobutyryloxybromobenzene. The reaction proceeded in good yield and the adduct was converted to the required 5'-O-DMT-3'-O-phosphoramidite by standard methods. The latter was used to synthesize oligodeoxynucleotides in which the N2-4-HOPh-dG adduct was incorporated site-specifically. The oligomers were purified by reverse-phase HPLC. Enzymatic hydrolysis and HPLC analysis confirmed the presence of this adduct in the oligomers.

  20. An N-Linked Bidentate Phosphoramidite Ligand (N-Me-BIPAM for Rhodium-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to α,β-Unsaturated Ketones

    Directory of Open Access Journals (Sweden)

    Norio Miyaura

    2012-12-01

    Full Text Available A new bidentate phosphoramidite (N-Me-BIPAM based on Shibasaki’s N-linked BINOL was synthesized. This ligand appears to be highly effective for rhodium-catalyzed asymmetric conjugated addition of arylboronic acids to α,β-unsaturated enones. The reaction of ortho-substituted arylboronic acid with acyclic and cyclic enones provides the corresponding products in good yields and enantioselectivities.

  1. Conformationally locked aryl C-nucleosides: synthesis of phosphoramidite monomers and incorporation into single-stranded DNA and LNA (locked nucleic acid)

    DEFF Research Database (Denmark)

    Babu, B. Ravindra; Prasad, Ashok K.; Trikha, Smriti

    2002-01-01

    . The phosphoramidite approach was used for automated incorporation of the LNA-type beta-configured C-aryl monomers 17a-17e into short DNA and 2'-OMe-RNA/LNA strands. It is shown that universal hybridization can be obtained with a conformationally restricted monomer as demonstrated most convincingly for the pyrene LNA...... monomer 17d, both in a DNA context and in an RNA-like context. Increased binding affinity of oligonucleotide probes for universal hybridization can be induced by combining the pyrene LNA monomer 17d with affinity-enhancing 2'-OMe-RNA/LNA monomers....

  2. Palladium-catalyzed Asymmetric Hydrosilylation of Styrene and Its Derivatives with Chiral Phosphoramidite Ligands Containing Chiral Ferrocenyl Amine

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun-Sub; Kim, Min Young; Ahn, Hyo Jin; Han, Jin Wook [Hanyang University, Seoul (Korea, Republic of)

    2016-06-15

    Asymmetric hydrosilylation was one of the most effective methods, which provided optically active organosilanes as a synthetically useful intermediate in organic synthesis. One useful transformation is the Tamao-Fleming oxidation, which is an oxidation reaction of carbon[BOND]silicone bond to afford optically active alcohols with retention of configuration. It is demonstrated that a palladium catalyst coordinating with phosphoramidite ligand (S {sub a},R {sub c},R {sub c,})-L3a from (S)-BINOL and chiral bis((R)-1-ferrocenylethyl) amine shows a high catalytic activity and enantioselectivity up to 97% ee in asymmetric hydrosilylation of styrene and its derivatives. The hydrosilylation of various olefin substrates using these ligands is in progress.

  3. A dual-wavelength tunable laser with superimposed fiber Bragg gratings

    International Nuclear Information System (INIS)

    Álvarez-Tamayo, R I; Durán-Sánchez, M; Pottiez, O; Ibarra-Escamilla, B; Kuzin, E A; Cruz, J L; Andrés, M V

    2013-01-01

    We report a dual-wavelength tunable fiber laser. The cavity is formed by two superimposed fiber Bragg gratings (FBGs) and a temperature tunable high-birefringence fiber optical loop mirror (FOLM). FBGs with wavelengths of 1548.5 and 1538.5 nm were printed in the same section of a fiber using two different masks. The superimposed FBGs were placed on a mechanical mount that allows stretch or compression of the FBGs. As a result of the FBG strain both lines are shifted simultaneously. Dual-wavelength generation requires a fine adjustment of the cavity loss for both wavelengths. (paper)

  4. Tunability of the FBG group delay through acousto-optic modulation

    Science.gov (United States)

    Marques, Carlos A. F.; Oliveira, Roberson A.; Pohl, Alexandre A. P.; Nogueira, Rogério N.

    2013-03-01

    A new method for fine control of the group delay of a fiber Bragg grating (FBG) is presented. It is based on an acoustic wave applied to the fiber. The standing acoustic wave imposes a periodic chirp to the uniform FBG. Tunability is obtained through adjustment of the intensity and/or frequency of the acoustic wave. A fast switching time of ∼17 μs was achieved. The experimental results were verified by theoretical simulation showing a good agreement between them. It can be used for different applications such as tunable narrow dispersion compensator for independent coarse wavelength division multiplexing (CWDM) channels or optical delay lines.

  5. RF MEMS suspended band-stop resonator and filter for frequency and bandwidth continuous fine tuning

    International Nuclear Information System (INIS)

    Jang, Yun-Ho; Kim, Yong-Kweon; Llamas-Garro, Ignacio; Kim, Jung-Mu

    2012-01-01

    We firstly propose the concept of a frequency and bandwidth fine-tuning method using an RF MEMS-based suspended tunable band-stop resonator. We experimentally show the feasibility of the continuously tuned resonator, including a second-order filter, which consists of cascaded resonators to achieve center frequency and bandwidth fine tuning. The structure consists of a freestanding half-wavelength (λ/2) resonator connected to a large displacement comb actuator. The lateral movement of the λ/2 resonator over the main transmission line produces different electromagnetic decoupling values from the main transmission line. The decoupled energy leads to continuous center frequency and bandwidth tuning using the band-stop resonator circuit for fine-tuning applications. The freestanding λ/2 resonator plays the role of a variable capacitor as well as a decoupling resonator in the proposed structure. The fabricated tunable filter shows suitability for Ku-band wireless communication system applications with continuous reconfiguration

  6. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.

    Science.gov (United States)

    Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D

    2006-03-15

    We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.

  7. Stokes shift and fine structure splitting in composition-tunable Zn{sub x}Cd{sub 1−x}Se nanocrystals: Atomistic tight-binding theory

    Energy Technology Data Exchange (ETDEWEB)

    Sukkabot, Worasak, E-mail: w.sukkabot@gmail.com

    2017-02-01

    I report on the atomistic correlation of the structural properties and excitonic splitting of ternary alloy Zn{sub x}Cd{sub 1−x}Se wurtzite nanocrystals using the sp{sup 3}s* empirical tight-binding method with the description of the first nearest neighbouring interaction and bowing effect. Based on a successful model, the computations are presented under various Zn compositions (x) and diameters of alloy Zn{sub x}Cd{sub 1−x}Se nanocrystals with the experimentally synthesized compositions and sizes. With increasing Zn contents (x), the optical band gaps and electron-hole coulomb energies are improved, while ground electron-hole wave function overlaps, electron-hole exchange energies, stokes shift and fine structure splitting are reduced. A composition-tunable emission from blue to yellow wavelength is obviously demonstrated. The optical band gaps, ground electron-hole wave function overlaps, electron-hole interactions, stokes shift and fine structure splitting are progressively decreased with the increasing diameters. Alloy Zn{sub x}Cd{sub 1−x}Se nanocrystal with Zn rich and large diameter is the best candidate to optimistically be used as a source of entangled photon pairs. The agreement with the experimental data is remarkable. Finally, the present systematic study on the structural properties and excitonic splitting predominantly opens a new perspective to understand the size- and composition-dependent properties of Zn{sub x}Cd{sub 1−x}Se nanocrystals with a comprehensive strategy to design the optoelectronic devices.

  8. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  9. Mechanistic studies on the phosphoramidite coupling reaction in oligonucleotide synthesis. I. Evidence for nudeophilic catalysis by tetrazole and rate variations with the phosphorus substituents

    DEFF Research Database (Denmark)

    Dahl, Bjarne H.; Nielsen, John; Dahl, Otto

    1987-01-01

    , and that dialkylammonium tetrazolide salts are inhibitors. These and other facts are evidence that the reactions are subjected to nucleophilic catalysis by tetrazole, in addition to acid catalysis. The rate variations with phosphorus substituents of 1a-h are NEt 2 > NRr12 > N(CH 2CH 2)O > NMePh, and OMe > OCH 2CH 2CN......Tetrazole catalyzed reactions of a series of phosphoramidites, 5′ -O- DMTdT-3′-O-P(OR 1)NRNR22 (1a-h), with 3′ O-SiBu tPh 2-6-N-benzoyl-dA (2a) in acetonitrite solution have been studied. It is found that the coupling rate depends very much on whether tetrazole is added before or after 2a...

  10. Some organodioxygen complexes of molybdenum(VI), tungsten(VI), zinc(II) and cadmium(II) containing some monodentate and multidentate ligands

    International Nuclear Information System (INIS)

    Tarafder, M.T.H.; Leo Man Lin; Grouse, Karen A.; Mariotto, Gino

    2003-08-01

    Several novel organodioxygen complexes of the type [M(O)(O 2 ) 2 L](MMo(VI), W(VI)) and [M'(O 2 )L](M'= Cd(II) and Zn(II)) have been synthesized using monodentate, bidentate and tridentate ligands, L pyridine, picolinic acid, diethylenetriamine, 1,2-phenylenediamine, triphenylphosphine oxide. These complexes were characterized by elemental analyses, conductivity measurements, infrared, Raman spectral studies. For dioxygen complexes, the v(O=O) stretches of the superoxo moities were only Raman active, because of apparent linearity of the M-O 2 moieties, giving peaks at 1020-1030 cm -1 . The complexes were all thermodynamically stable. The dioxygen complexes containing bidentate co-ligands were found to show oxygen transfer reactions to various organic and inorganic substrates. Mechanisms have been postulated. (author)

  11. Tunable electro-optic filter stack

    Science.gov (United States)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  12. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  13. Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm

    Directory of Open Access Journals (Sweden)

    Guanquan Liang

    2011-12-01

    Full Text Available A prototype of planar silicon photonic structure is designed and simulated to provide narrow resonant line-width (∼2 nm in a wide photonic band gap (∼210 nm with broad tunable resonant wavelength range (∼100 nm around the optical communication wavelength 1550 nm. This prototype is based on the combination of two modified basic photonic structures, i.e. a split tapered photonic crystal micro-cavity embedded in a photonic wire waveguide, and a slot waveguide with narrowed slabs. This prototype is then further integrated with a MEMS (microelectromechanical systems based electrostatic comb actuator to achieve “coarse tune” and “fine tune” at the same time for wide range and narrow-band filtering and modulating. It also provides a wide range tunability to achieve the designed resonance even fabrication imperfection occurs.

  14. Polarized fine structure in the excitation spectrum of a negatively charged quantum dot

    OpenAIRE

    Ware, M. E.; Stinaff, E. A.; Gammon, D.; Doty, M. F.; Bracker, A. S.; Gershoni, D.; Korenev, V. L.; Badescu, S. C.; Lyanda-Geller, Y.; Reinecke, T. L.

    2005-01-01

    We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of qua...

  15. Photochemistry of monodentate and bidentate carbonato complexes of rhodium (3). [applications to spacecraft fuel cells

    Science.gov (United States)

    Sheridan, P. S.

    1980-01-01

    A scheme for the photochemical fixation of water is proposed which involves a five-step reaction sequence; the first step involves the 2 electron reduction of a metal by a coordinated carbonate ligand, with corresponding oxidation of the carbonate to CO2 and O2. Ligand field photolysis of trans- (RH(en)2 H2O CO3) ClO4, and (Rh(en)2 CO3) CLO4 have been studied in the solid state and in aqueous solution at various pH values. Both salts are photoinert in the solid phase, but are quite photoreactive in aqueous solution. In solution, the monodentate ion undergoes efficient isomerization to a mixture of cis and trans - (Rh(en)2 H2O CO3)+, presumably with water exchange. A minor pH increase upon photolysis is evidence of inefficient carbonate (CO3 =) release, with formation of (Rh(en)2 (H2O)2)3+. In contrast, aqueous solutions of the bidentate carbonato complex undergo efficient pH decrease upon ligand field photolysis. Changes in the electronic spectrum (200-500 nm) and pH changes indicate that the desired redox is occurring. The pH increase is due to the aqueous behavior of CO2.

  16. Preparation and photoluminescence enhancement in terbium(III ternary complexes with β-diketone and monodentate auxiliary ligands

    Directory of Open Access Journals (Sweden)

    Devender Singh

    2016-12-01

    Full Text Available A series of new solid ternary complexes of terbium(III ion based on β-diketone ligand acetylacetone (acac and monodentate auxiliary ligands (aqua/urea/triphenylphosphineoxide/pyridine-N-oxide had been prepared. The structural characterizations of synthesized ternary compounds were studied by means of elemental analysis, infrared (IR, and proton nuclear magnetic resonance (NMR spectral techniques. The optical characteristics were investigated with absorption as well as photoluminescence spectroscopy. Thermal behavior of compounds was examined by TGA/DTA analysis and all metal complexes were found to have good thermal stability. The luminescence decay time of complexes were also calculated by monitoring at emission wavelength corresponding to 5D4 → 7F5 transition. A comparative inspection of the luminescent behavior of prepared ternary compounds was performed in order to determine the function of auxiliary ligands in the enhancement of luminescence intensity produced by central terbium(III ion. The color coordinates values suggested that compounds showed bright green emission in visible region in electromagnetic spectrum. Complexes producing green light could play a significant role in the fabrication of efficient light conversion molecular devices for display purposes and lightning systems.

  17. Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: Design, modeling and experiments

    Science.gov (United States)

    Xie, Longhan; Li, Jiehong; Li, Xiaodong; Huang, Ledeng; Cai, Siqi

    2018-01-01

    Hydraulic dampers are used to decrease the vibration of a vehicle, where vibration energy is dissipated as heat. In addition to resulting in energy waste, the damping coefficient in hydraulic dampers cannot be changed during operation. In this paper, an energy-harvesting vehicle damper was proposed to replace traditional hydraulic dampers. The goal is not only to recover kinetic energy from suspension vibration but also to change the damping coefficient during operation according to road conditions. The energy-harvesting damper consists of multiple generators that are independently controlled by switches. One of these generators connects to a tunable resistor for fine tuning the damping coefficient, while the other generators are connected to a control and rectifying circuit, each of which both regenerates electricity and provides a constant damping coefficient. A mathematical model was built to investigate the performance of the energy-harvesting damper. By controlling the number of switched-on generators and adjusting the value of the external tunable resistor, the damping can be fine tuned according to the requirement. In addition to the capability of damping tuning, the multiple controlled generators can output a significant amount of electricity. A prototype was built to test the energy-harvesting damper design. Experiments on an MTS testing system were conducted, with results that validated the theoretical analysis. Experiments show that changing the number of switched-on generators can obviously tune the damping coefficient of the damper and simultaneously produce considerable electricity.

  18. Electrostatically Tunable Nanomechanical Shallow Arches

    KAUST Repository

    Kazmi, Syed N. R.

    2017-11-03

    We report an analytical and experimental study on the tunability of in-plane doubly-clamped nanomechanical arches under varied DC bias conditions at room temperature. For this purpose, silicon based shallow arches are fabricated using standard e-beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator (SOI) wafer. The experimental results show good agreement with the analytical results with a maximum tunability of 108.14% for 180 nm thick arch with a transduction gap of 1 μm between the beam and the driving/sensing electrodes. The high tunability of shallow arches paves the ways for highly tunable band pass filtering applications in high frequency range.

  19. Quantitative nanometer-scale mapping of dielectric tunability

    Energy Technology Data Exchange (ETDEWEB)

    Tselev, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klein, Andreas [Technische Univ. Darmstadt (Germany); Gassmann, Juergen [Technische Univ. Darmstadt (Germany); Jesse, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Qian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wisinger, Nina Balke [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-21

    Two scanning probe microscopy techniques—near-field scanning microwave microscopy (SMM) and piezoresponse force microscopy (PFM)—are used to characterize and image tunability in a thin (Ba,Sr)TiO3 film with nanometer scale spatial resolution. While sMIM allows direct probing of tunability by measurement of the change in the dielectric constant, in PFM, tunability can be extracted via electrostrictive response. The near-field microwave imaging and PFM provide similar information about dielectric tunability with PFM capable to deliver quantitative information on tunability with a higher spatial resolution close to 15 nm. This is the first time that information about the dielectric tunability is available on such length scales.

  20. Tunable, Quantitative Fenton-RAFT Polymerization via Metered Reagent Addition.

    Science.gov (United States)

    Nothling, Mitchell D; McKenzie, Thomas G; Reyhani, Amin; Qiao, Greg G

    2018-05-10

    A continuous supply of radical species is a key requirement for activating chain growth and accessing quantitative monomer conversions in reversible addition-fragmentation chain transfer (RAFT) polymerization. In Fenton-RAFT, activation is provided by hydroxyl radicals, whose indiscriminate reactivity and short-lived nature poses a challenge to accessing extended polymerization times and quantitative monomer conversions. Here, an alternative Fenton-RAFT procedure is presented, whereby radical generation can be finely controlled via metered dosing of a component of the Fenton redox reaction (H 2 O 2 ) using an external pumping system. By limiting the instantaneous flux of radicals and ensuring sustained radical generation over tunable time periods, metered reagent addition reduces unwanted radical "wasting" reactions and provides access to consistent quantitative monomer conversions with high chain-end fidelity. Fine tuning of radical concentration during polymerization is achieved simply via adjustment of reagent dose rate, offering significant potential for automation. This modular strategy holds promise for extending traditional RAFT initiation toward more tightly regulated radical concentration profiles and affords excellent prospects for the automation of Fenton-RAFT polymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. CuI/Pd0 cooperative dual catalysis: tunable stereoselective construction of tetra-substituted alkenes.

    Science.gov (United States)

    Vercruysse, Sébastien; Cornelissen, Loïc; Nahra, Fady; Collard, Laurent; Riant, Olivier

    2014-02-10

    This paper describes a tunable and stereoselective dual catalytic system that uses copper and palladium reagents. This cooperative silylcupration and palladium-catalyzed allylation readily affords trisubstituted alkenylsilanes. Fine-tuning the reaction conditions allows selective access to one stereoisomer over the other. This new methodology tolerates different substituents on both coupling partners with high levels of stereoselectivity. The one-pot reaction involving a Cu(I)/Pd(0) cooperative dual catalyst directly addresses the need to develop more time-efficient and less-wasteful synthetic pathways. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Antenna Miniaturization with MEMS Tunable Capacitors

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their characterist......In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss...

  3. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System.

    Directory of Open Access Journals (Sweden)

    Yoichiro Ito

    Full Text Available Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering.

  4. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    Science.gov (United States)

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  5. Study of Chemistry and Structure-Property Relationship on Tunable Plasmonic Nanostructures

    Science.gov (United States)

    Jing, Hao

    In this dissertation, the rational design and controllable fabrication of an array of novel plasmonic nanostructures with geometrically tunable optical properties are demonstrated, including metal-semiconductor hybrid hetero-nanoparticles, bimetallic noble metal nanoparticles and hollow nanostructures (nanobox and nanocage). Firstly, I have developed a robust wet chemistry approach to the geometry control of Ag-Cu2O core-shell nanoparticles through epitaxial growth of Cu2O nanoshells on the surfaces of various Ag nanostructures, such as quasi-spherical nanoparticles, nanocubes, and nanocuboids. Precise control over the core and the shell geometries enables me to develop detailed, quantitative understanding of how the Cu2O nanoshells introduce interesting modifications to the resonance frequencies and the extinction spectral line shapes of multiple plasmon modes of the Ag cores. Secondly, I present a detailed and systematic study of the controlled overgrowth of Pd on Au nanorods. The overgrowth of Pd nanoshells with fine-controlled dimensions and architectures on single-crystalline Au nanorods through seed-mediated growth protocol in the presence of various surfactants is investigated. Thirdly, I have demonstrated that creation of high-index facets on subwavelength metallic nanoparticles provides a unique approach to the integration of desired plasmonic and catalytic properties on the same nanoparticle. Through site-selective surface etching of metallic nanocuboids whose surfaces are dominated by low-index facets, I have controllably fabricated nanorice and nanodumbbell particles, which exhibit drastically enhanced catalytic activities arising from the catalytically active high index facets abundant on the particle surfaces. And the nanorice and nanodumbbell particles also possess appealing tunable plasmonic properties that allow us to gain quantitative insights into nanoparticle-catalyzed reactions with unprecedented sensitivity and detail through time

  6. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    Science.gov (United States)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  7. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  8. Dimensional and Compositional Change of 1D Chalcogen Nanostructures Leading to Tunable Localized Surface Plasmon Resonances.

    Science.gov (United States)

    Min, Yuho; Seo, Ho Jun; Choi, Jong-Jin; Hahn, Byung-Dong; Moon, Geon Dae

    2018-05-31

    As the oxygen family, chalcogen (Se, Te) nanostructures have been considered important elements for various practical fields and further exploited to constitute metal chalcogenides for each targeted application. Here we report a controlled synthesis of well-defined one-dimensional chalcogen nanostructures such as nanowries, nanorods, and nanotubes by controlling reduction reaction rate to fine-tune the dimension and composition of the products. Tunable optical properties (localized surface plasmon resonances) of these chalcogen nanostructures are observed depending on their morphological, dimensional, and compositional variation. © 2018 IOP Publishing Ltd.

  9. Tunable eye-safe Er:YAG laser

    International Nuclear Information System (INIS)

    Němec, M; Šulc, J; Indra, L; Fibrich, M; Jelínková, H

    2015-01-01

    Er:YAG crystal was investigated as the gain medium in a diode (1452 nm) pumped tunable laser. The tunability was reached in an eye-safe region by an intracavity birefringent filter. The four tuning bands were obtained peaking at wavelengths 1616, 1632, 1645, and 1656 nm. The broadest continuous tunability was 6 nm wide peaking at 1616 nm. The laser was operating in a pulsed regime (10 ms pulse length, 10 Hz repetition rate). The maximum mean output power was 26.5 mW at 1645 nm. The constructed system demonstrated the tunability of a resonantly diode-pumped Er:YAG laser which could be useful in the development of compact diode-pumped lasers for spectroscopic applications. (paper)

  10. Infrared frequency-tunable coherent thermal sources

    International Nuclear Information System (INIS)

    Wang, Hao; Yang, Yue; Wang, Liping

    2015-01-01

    In this work, we numerically demonstrate an infrared (IR) frequency-tunable selective thermal emitter made of graphene-covered silicon carbide (SiC) gratings. Rigorous coupled-wave analysis shows temporally-coherent emission peaks associated with magnetic polariton (MP), whose resonance frequency can be dynamically tuned within the phonon absorption band of SiC by varying graphene chemical potential. An analytical inductor–capacitor circuit model is introduced to quantitatively predict the resonance frequency and further elucidate the mechanism for the tunable emission peak. The effects of grating geometric parameters, such as grating height, groove width and grating period, on the selective emission peak are explored. The direction-independent behavior of MP and associated coherent emission are also demonstrated. Moreover, by depositing four layers of graphene sheets onto the SiC gratings, a large tunability of 8.5% in peak frequency can be obtained to yield the coherent emission covering a broad frequency range from 820 to 890 cm −1 . The novel tunable metamaterial could pave the way to a new class of tunable thermal sources in the IR region. (paper)

  11. Undulator tunability and synchrotron ring-energy

    International Nuclear Information System (INIS)

    Viccaro, P.J.; Sheony, G.K.

    1992-01-01

    An undulator has two properties which make it an extremely attractive source of electromagnetic radiation. The first is that the radiation is concentrated in a number of narrow energy bands known as harmonics of the device. The second characteristic is that under favorable operating conditions, the energy of these harmonics can be shifted or open-quote tunedclose quotes over an energy interval which can be as large as two or three times the value of the lowest energy harmonic. Both the photon energy of an undulator as well as its tunability are determined by the period, λ, of the device, the magnetic gap, G (which is larger than the minimum aperture required for injection and operation of the storage ring) and the storage ring energy E R . Given the photon energy, E p , the above parameters ultimately define the limits of operation or tunability of the undulator. In general, the larger the tunability range, the more useful the device. Therefore, for a given required maximum photon energy, it is desirable to find the operating conditions and device parameters which result in the largest tunability interval possible. With this in mind, we have investigated the question of undulator tunability with emphasis on the role of the ring energy in order to find the smallest E R consistent with the desired tunability interval and photon energy. As a guideline, we have included a preliminary criteria, concerning the tunability requirements for the Advanced Photon Source (APS) to be built at Argonne. The analysis is aimed at X-ray undulator sources on the APS but is applicable to any storage ring

  12. Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot

    Science.gov (United States)

    Ware, M. E.; Stinaff, E. A.; Gammon, D.; Doty, M. F.; Bracker, A. S.; Gershoni, D.; Korenev, V. L.; Bădescu, Ş. C.; Lyanda-Geller, Y.; Reinecke, T. L.

    2005-10-01

    We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.

  13. Thue-Morse nanostructures for tunable light extraction in the visible region

    Science.gov (United States)

    Rippa, M.; Castagna, R.; Marino, A.; Tkachenko, V.; Palermo, G.; Pane, A.; Umeton, C.; Tabiryan, N.; Petti, L.

    2018-05-01

    Controlling light propagation at the nanoscale is a fascinating opportunity offered by modern photonics, more than a challenge to face off. This study is aimed at investigating a particular kind of nanocomposite and reconfigurable optical metamaterials that can be exploited for the realization of a new class of switchable photonic devices, representing a breakthrough with respect to the state of the art. Existing photonic devices exhibit, in general, a drawback in the absence of tunability; this work aims to the design and characterization of metamaterials exploiting reconfigurable media, like LCs, which enable realization of a tunable, high quality, photonic quasi-crystal based switchable mode selector. It turned out that, starting from an unpolarized white light source, through a light extraction mechanism based on the diffraction of light, the high quality structure, combined with a uniformly aligned Photo-responsive Liquid Crystal (PLC), is able to give rise to an extremely narrow (FWHM ≈5 nm) and linearly polarized single mode peak of the extracted light intensity. Moreover, we have shown that the spectral properties (switching) of the samples can be finely controlled by using both an external applied voltage and a suitable pump light source with a maximum increase of 45% of the extracted light. Finally, both Scanning Electron Microscopy (SEM) and Far Field Diffraction (FFD) analysis have shown the high quality morphology of the realized structure.

  14. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  15. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  16. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2016-01-01

    On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range.......On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range....

  17. Liquid lens with double tunable surfaces for large power tunability and improved optical performance

    International Nuclear Information System (INIS)

    Li, Lei; Wang, Qiong-Hua; Jiang, Wei

    2011-01-01

    In this paper we propose a liquid lens with two tunable interfaces formed by two kinds of immiscible liquids. The proposed liquid lens uses liquid pressure to change the shape of the interfaces. It can provide a large tunable range of optical power and improved optical performance. By applying suitable liquids the gravity effect can also be negligible. To prove the principles, a liquid lens with 7 mm aperture was fabricated. The optical performance indicates that the proposed liquid lens can provide a large tunable range of both positive and negative powers even using liquids with small differences in refractive indices. The resolution is better than 50 lp mm −1 under white light environment. The spherical aberration and coma are also largely reduced. The proposed liquid lens can also provide the optical designer with the freedom to choose the combination of liquids to reduce or even correct aberrations

  18. Hydrogen bond based smart polymer for highly selective and tunable capture of multiply phosphorylated peptides.

    Science.gov (United States)

    Qing, Guangyan; Lu, Qi; Li, Xiuling; Liu, Jing; Ye, Mingliang; Liang, Xinmiao; Sun, Taolei

    2017-09-06

    Multisite phosphorylation is an important and common mechanism for finely regulating protein functions and subsequent cellular responses. However, this study is largely restricted by the difficulty to capture low-abundance multiply phosphorylated peptides (MPPs) from complex biosamples owing to the limitation of enrichment materials and their interactions with phosphates. Here we show that smart polymer can serve as an ideal platform to resolve this challenge. Driven by specific but tunable hydrogen bonding interactions, the smart polymer displays differential complexation with MPPs, singly phosphorylated and non-modified peptides. Importantly, MPP binding can be modulated conveniently and precisely by solution conditions, resulting in highly controllable MPP adsorption on material surface. This facilitates excellent performance in MPP enrichment and separation from model proteins and real biosamples. High enrichment selectivity and coverage, extraordinary adsorption capacities and recovery towards MPPs, as well as high discovery rates of unique phosphorylation sites, suggest its great potential in phosphoproteomics studies.Capture of low-abundance multiply phosphorylated peptides (MPPs) is difficult due to limitation of enrichment materials and their interactions with phosphates. Here the authors show, a smart polymer driven by specific but tunable hydrogen bonding interactions can differentially complex with MPPs, singly phosphorylated and non-modified peptides.

  19. The Positively Charged Hyperbranched Polymers with Tunable Fluorescence and the Cell Imaging Application.

    Science.gov (United States)

    Ma, Hengchang; Qin, Yanfang; Yang, Zenming; Yang, Manyi; Ma, Yucheng; Yin, Pei; Yang, Yuan; Wang, Tao; Lei, Ziqiang; Yao, Xiaoqiang

    2018-04-25

    Fluorescence-tunable materials are becoming increasingly attractive for their potential application in optics, electronics, and biomedical technology. Herein, a multi-color molecular pixel system is realized using simple copolymerization method. Bleeding both of complementary colors from blue and yellow fluorescence segments, reproduced a serious multicolor fluorescence materials. Interestingly, the emission colors of the polymers can be fine-tuned in solid state, solution phase, and in hydrogel state. More importantly, the positive fluorescent polymers exhibited cell-membrane permeable ability, and were found to accumulate on the cell nucleus, exhibiting remarkable selectivity to give bright fluorescence. The DNA/RNA selectivity experiments in vitro and in vivo verified that [tris(4-(pyridin-4-yl)phenyl)amine]-[1,8-dibromooctane] (TPPA-DBO) has prominent selectivity to DNA over RNA inside cells.

  20. Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

    1984-01-01

    The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures

  1. A Continuously Tunable Erbium-Doped Fibre Laser Using Tunable Fibre Bragg Gratings and Optical Circulator

    International Nuclear Information System (INIS)

    Peng, Liu; Feng-Ping, Yan; Jian, Li; Lin, Wang; Ti-Gang, Ning; Tao-Rong, Gong; Shui-Sheng, Jian

    2008-01-01

    A continuously tunable erbium-doped fibre laser (TEDFL) based on tunable fibre Bragger grating (TFBG) and a three-port optical circulator (OC) is proposed and demonstrated. The OC acts as a 100%-reflective mirror. A strain-induced uniform fibre Bragger grating (FBG) which functions as a partial-reflecting mirror is implemented in the linear cavity. By applying axial strain onto the TFBG, a continuously tunable lasing output can be realized. The wavelength tuning range covers approximately 7.00nm in C band (from 1543.6161 to 1550.3307nm). The side mode suppression ratio (SMSR) is better than 50 dB, and the 3 dB bandwidth of the laser is less than 0.01 nm. Moreover, an array waveguide grating (AWG) is inserted into the cavity for wavelength preselecting, and a 50 km transmission experiment was performed using our TEDFL at a 10Gb/s modulation rate

  2. Tunable features of magnetoelectric transformers.

    Science.gov (United States)

    Dong, Shuxiang; Zhai, Junyi; Priya, Shashank; Li, Jie-Fang; Viehland, Dwight

    2009-06-01

    We have found that magnetostrictive FeBSiC alloy ribbons laminated with piezoelectric Pb(Zr,Ti)O(3) fiber can act as a tunable transformer when driven under resonant conditions. These composites were also found to exhibit the strongest resonant magnetoelectric voltage coefficient of 750 V/cm-Oe. The tunable features were achieved by applying small dc magnetic biases of -5 transformer features can be attributed to large changes in the piezomagnetic coefficient and permeability of the magnetostrictive phase under H(dc).

  3. Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 microns

    Science.gov (United States)

    Mcguckin, B. T.; Menzies, Robert T.

    1992-01-01

    A conversion efficiency of 42 percent and slope efficiency of approximately 60 percent relative to absorbed pump power are reported from a continuous wave diode-pumped Tm, Ho:YLF laser at 2 microns with output power of 84 mW at sub-ambient temperatures. The emission spectrum is etalon tunable over a range of 16/cm centered on 2.067 microns, with fine tuning capability of the transition frequency with crystal temperature at a measured rate of about -0.03/cm-K. The effective emission cross section is measured to be 5 x 10 exp -21 sq cm. These and other aspects of the laser performance are discussed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications.

  4. Electrically Tunable Plasmonic Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Ni, Xingjie

    2012-01-01

    Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance.......Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance....

  5. Highly Tunable Narrow Bandpass MEMS Filter

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-07-07

    We demonstrate a proof-of-concept highly tunable narrow bandpass filter based on electrothermally and electrostatically actuated microelectromechanical-system (MEMS) resonators. The device consists of two mechanically uncoupled clamped-clamped arch resonators, designed such that their resonance frequencies are independently tuned to obtain the desired narrow passband. Through the electrothermal and electrostatic actuation, the stiffness of the structures is highly tunable. We experimentally demonstrate significant percentage tuning (~125%) of the filter center frequency by varying the applied electrothermal voltages to the resonating structures, while maintaining a narrow passband of 550 ± 50 Hz, a stopband rejection of >17 dB, and a passband ripple ≤ 2.5 dB. An analytical model based on the Euler-Bernoulli beam theory is used to confirm the behavior of the filter, and the origin of the high tunability using electrothermal actuation is discussed.

  6. Tunable Microwave Component Technologies for SatCom-Platforms

    Science.gov (United States)

    Maune, Holger; Jost, Matthias; Wiens, Alex; Weickhmann, Christian; Reese, Roland; Nikfalazar, Mohammad; Schuster, Christian; Franke, Tobias; Hu, Wenjuan; Nickel, Matthias; Kienemund, Daniel; Prasetiadi, Ananto Eka; Jakoby, Rolf

    2017-03-01

    Modern communication platforms require a huge amount of switched RF component banks especially made of different filters and antennas to cover all operating frequencies and bandwidth for the targeted services and application scenarios. In contrast, reconfigurable devices made of tunable components lead to a considerable reduction in complexity, size, weight, power consumption, and cost. This paper gives an overview of suitable technologies for tunable microwave components especially for SatCom applications. Special attention is given to tunable components based on functional materials such as barium strontium titanate (BST) and liquid crystal (LC).

  7. Investigating tunable KRb gases and Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Jørgensen, Nils Byg

    2015-01-01

    We present the production of dual-species Bose-Einstein condensates of 39K and 87Rb with tunable interactions. A dark spontaneous force optical trap was used for 87Rb to reduce the losses in 39K originating from light-assisted collisions in the magneto optical trapping phase. Using sympathetic...... for dual-species condensates with tunable interactions. Employing the dual-species condensates, the miscible to immiscible phase transition was investigated. By applying an empirical model, the transition was used to determine the background scattering length. Two species quantum gases with tunable...

  8. Narrowband tunable laser for uranium-233 cleanup process

    International Nuclear Information System (INIS)

    Singh, Sunita; Sridhar, G.; Rawat, V.S.; Kawde, Nitin; Sinha, A.K.; Bhatt, S.; Gantayet, L.M.

    2009-01-01

    Design, development and technology demonstration of proto type Single Longitudinal Mode pulsed tunable laser is reported in this work. The tunable laser has a narrow bandwidth less than 400 MHz required for isotopic clean up of 233 U. (author)

  9. Adaptive Tunable Laser Spectrometer for Space Applications

    Science.gov (United States)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  10. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz

    2017-11-24

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  11. Highly tunable NEMS shallow arches

    KAUST Repository

    Kazmi, Syed N. R.

    2017-11-30

    We report highly tunable nanoelectromechanical systems NEMS shallow arches under dc excitation voltages. Silicon based in-plane doubly clamped bridges, slightly curved as shallow arches, are fabricated using standard electron beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator wafer. By designing the structures to have gap to thickness ratio of more than four, the mid-plane stretching of the nano arches is maximized such that an increase in the dc bias voltage will result into continuous increase in the resonance frequency of the resonators to wide ranges. This is confirmed analytically based on a nonlinear beam model. The experimental results are found to be in good agreement with that of the results from developed analytical model. A maximum tunability of 108.14% for a 180 nm thick arch with an initially designed gap of 1 μm between the beam and the driving/sensing electrodes is achieved. Furthermore, a tunable narrow bandpass filter is demonstrated, which opens up opportunities for designing such structures as filtering elements in high frequency ranges.

  12. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz; Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Da Costa, Pedro M. F. J.; Younis, Mohammad I.

    2017-01-01

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  13. MEMS for Tunable Photonic Metamaterial Applications

    Science.gov (United States)

    Stark, Thomas

    Photonic metamaterials are materials whose optical properties are derived from artificially-structured sub-wavelength unit cells, rather than from the bulk properties of the constituent materials. Examples of metamaterials include plasmonic materials, negative index materials, and electromagnetic cloaks. While advances in simulation tools and nanofabrication methods have allowed this field to grow over the past several decades, many challenges still exist. This thesis addresses two of these challenges: fabrication of photonic metamaterials with tunable responses and high-throughput nanofabrication methods for these materials. The design, fabrication, and optical characterization of a microelectromechanical systems (MEMS) tunable plasmonic spectrometer are presented. An array of holes in a gold film, with plasmon resonance in the mid-infrared, is suspended above a gold reflector, forming a Fabry-Perot interferometer of tunable length. The spectra exhibit the convolution of extraordinary optical transmission through the holes and Fabry-Perot resonances. Using MEMS, the interferometer length is modulated from 1.7 mum to 21.67 mum , thereby tuning the free spectral range from about 2900 wavenumbers to 230.7 wavenumbers and shifting the reflection minima and maxima across the infrared. Due to its broad spectral tunability in the fingerprint region of the mid-infrared, this device shows promise as a tunable biological sensing device. To address the issue of high-throughput, high-resolution fabrication of optical metamaterials, atomic calligraphy, a MEMS-based dynamic stencil lithography technique for resist-free fabrication of photonic metamaterials on unconventional substrates, has been developed. The MEMS consists of a moveable stencil, which can be actuated with nanometer precision using electrostatic comb drive actuators. A fabrication method and flip chip method have been developed, enabling evaporation of metals through the device handle for fabrication on an

  14. Coherent tunable far infrared radiation

    Science.gov (United States)

    Jennings, D. A.

    1989-01-01

    Tunable, CW, FIR radiation has been generated by nonlinear mixing of radiation from two CO2 lasers in a metal-insulator-metal (MIM) diode. The FIR difference-frequency power was radiated from the MIM diode antenna to a calibrated InSb bolometer. FIR power of 200 nW was generated by 250 mW from each of the CO2 lasers. Using the combination of lines from a waveguide CO2 laser, with its larger tuning range, with lines from CO2, N2O, and CO2-isotope lasers promises complete coverage of the entire FIR band with stepwise-tunable CW radiation.

  15. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  16. Frequency-Tunable and Pattern Diversity Antennas for Cognitive Radio Applications

    Directory of Open Access Journals (Sweden)

    A. H. Ramadan

    2014-01-01

    Full Text Available Frequency-tunable microstrip antennas, for cognitive radio applications, are proposed herein. The approach is based on tuning the operating frequency of a bandpass filter that is incorporated into a wideband antenna. The integration of an open loop resonator- (OLR- based adjustable bandpass filter into a wideband antenna to transform it into a tunable filter-antenna is presented. The same technique is employed to design a cognitive radio pattern diversity tunable filter-antenna. A good agreement between the simulated and measured results for the fabricated prototypes is obtained. The radiation characteristics of each designed tunable filter-antenna are included herein.

  17. A low-loss, continuously tunable microwave notch filter

    DEFF Research Database (Denmark)

    Acar, Öncel; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2016-01-01

    The development in high-end microwave transceiver systems toward the software defined radio has brought about the need for tunable frontend filters. Although the problem is being tackled by the microwave community, there still appears to be an unmet demand for practical tunable filter technologies...

  18. A Tuning Process in a Tunable Archtecture Computer System

    OpenAIRE

    深沢, 良彰; 岸野, 覚; 門倉, 敏夫

    1986-01-01

    A tuning process in a tunable archtecture computer is described. We have designed a computer system with tunable archtecture. Main components of this computer are four AM2903 bit-slice chips. The control schema of micro instructions is horizontal-type, and the length of each instruction is 104 bits. Our tunable algorithm utilizes an execution history of machine level instructions, because the execution history can be regarded as a property of the user program. In execution histories of simila...

  19. Comparison between liquid and solid tunable focus lenses

    International Nuclear Information System (INIS)

    Santiago-Alvarado, A; Cruz-Martinez, V M; Vazquez-Montiel, S; Munoz-Lopez, J; Diaz-Gonzalez, G; Campos-Garcia, M

    2011-01-01

    Nowadays more reports in the use of tunable lenses are reported, it is due to the benefits they offer in optical systems design. A tunable lens is an optical system that can focus on a range of positions by changing dynamically one of its geometric parameters. There are several types of tunable lenses, the most known types are the liquid, the solid elastic, with variable refractive index, and lenses that use a dielectric medium. This paper presents the analysis and opto-mechanical design of two tunable lenses, a liquid lens and another Solid Elastic Lens (SEL). Both lenses are made in mounting aluminium and polydimethylsiloxane (PDMS) as refractor medium, the liquid lens use two elastic membranes containing a liquid medium between them while the SEL only use PDMS material as body of the lens (medium refractor). We describe the opto-mechanical performance of both types of lens highlighting the main features of each. Finally, results of a opto-functional comparison between these prototypes are showed.

  20. Tunable thin-film optical filters for hyperspectral microscopy

    Science.gov (United States)

    Favreau, Peter F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2013-02-01

    Hyperspectral imaging was originally developed for use in remote sensing applications. More recently, it has been applied to biological imaging systems, such as fluorescence microscopes. The ability to distinguish molecules based on spectral differences has been especially advantageous for identifying fluorophores in highly autofluorescent tissues. A key component of hyperspectral imaging systems is wavelength filtering. Each filtering technology used for hyperspectral imaging has corresponding advantages and disadvantages. Recently, a new optical filtering technology has been developed that uses multi-layered thin-film optical filters that can be rotated, with respect to incident light, to control the center wavelength of the pass-band. Compared to the majority of tunable filter technologies, these filters have superior optical performance including greater than 90% transmission, steep spectral edges and high out-of-band blocking. Hence, tunable thin-film optical filters present optical characteristics that may make them well-suited for many biological spectral imaging applications. An array of tunable thin-film filters was implemented on an inverted fluorescence microscope (TE 2000, Nikon Instruments) to cover the full visible wavelength range. Images of a previously published model, GFP-expressing endothelial cells in the lung, were acquired using a charge-coupled device camera (Rolera EM-C2, Q-Imaging). This model sample presents fluorescently-labeled cells in a highly autofluorescent environment. Linear unmixing of hyperspectral images indicates that thin-film tunable filters provide equivalent spectral discrimination to our previous acousto-optic tunable filter-based approach, with increased signal-to-noise characteristics. Hence, tunable multi-layered thin film optical filters may provide greatly improved spectral filtering characteristics and therefore enable wider acceptance of hyperspectral widefield microscopy.

  1. 2 ~ 5 times tunable repetition-rate multiplication of a 10 GHz pulse source using a linearly tunable, chirped fiber Bragg grating.

    Science.gov (United States)

    Lee, Ju Han; Chang, You; Han, Young-Geun; Kim, Sang; Lee, Sang

    2004-08-23

    We experimentally demonstrate a simple scheme for the tunable pulse repetition-rate multiplication based on the fractional Talbot effect in a linearly tunable, chirped fiber Bragg grating (FBG). The key component in this scheme is our linearly tunable, chirped FBG with no center wavelength shift, which was fabricated with the S-bending method using a uniform FBG. By simply tuning the group velocity dispersion of the chirped FBG, we readily multiply an original 8.5 ps, 10 GHz soliton pulse train by a factor of 2 ~ 5 to obtain high quality pulses at repetition-rates of 20 ~ 50 GHz without significantly changing the system configuration.

  2. Development of frequency tunable gyrotrons for plasma diagnostics

    International Nuclear Information System (INIS)

    Idehara, T.; Mitsudo, S.; Sabchevski, S.; Glyavin, M.; Ogawa, I.; Sato, M.; Kawahata, K.; Brand, G.F.

    2000-01-01

    Development of two types of frequency tunable gyrotrons are described. One is frequency step-tunable gyrotrons (Gyrotron FU Series) which cover wide range from millimeter to submillimeter wavelength region. The other is a quasi-optical gyrotron operating in 90 and 180 GHz bands. Both are applicable for plasma diagnostics as power sources. (author)

  3. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  4. Voltage-controlled colour-tunable microcavity OLEDs with enhanced colour purity

    International Nuclear Information System (INIS)

    Choy, Wallace C H; Niu, J H; Li, W L; Chui, P C

    2008-01-01

    The emission spectrum of single-unit voltage-controlled colour-tunable organic light emitting devices (OLEDs) has been theoretically and experimentally studied. Our results show that by introducing the microcavity structure, the colour purity of not only the destination colour but also the colour-tunable route can be enhanced, while colour purity is still an issue in typical single-unit voltage-controlled colour-tunable OLEDs. With the consideration of the periodical cycling of resonant wavelength and absorption loss of the metal electrodes, the appropriate change in the thickness of the microcavity structure has been utilized to achieve voltage-controlled red-to-green and red-to-blue colour-tunable OLEDs without adding dyes or other organic materials to the OLEDs

  5. A Microwave Tunable Bandpass Filter for Liquid Crystal Applications

    Science.gov (United States)

    Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan

    2017-07-01

    In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.

  6. Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Kuznetsova, Svetlana M.; Zhukovsky, Sergei

    2015-01-01

    We reveal an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials. Specifically, we demonstrate thermal, mechanical and gravitational tunability of magnetic and electric...

  7. Dynamically tunable interface states in 1D graphene-embedded photonic crystal heterostructure

    Science.gov (United States)

    Huang, Zhao; Li, Shuaifeng; Liu, Xin; Zhao, Degang; Ye, Lei; Zhu, Xuefeng; Zang, Jianfeng

    2018-03-01

    Optical interface states exhibit promising applications in nonlinear photonics, low-threshold lasing, and surface-wave assisted sensing. However, the further application of interface states in configurable optics is hindered by their limited tunability. Here, we demonstrate a new approach to generate dynamically tunable and angle-resolved interface states using graphene-embedded photonic crystal (GPC) heterostructure device. By combining the GPC structure design with in situ electric doping of graphene, a continuously tunable interface state can be obtained and its tuning range is as wide as the full bandgap. Moreover, the exhibited tunable interface states offer a possibility to study the correspondence between space and time characteristics of light, which is beyond normal incident conditions. Our strategy provides a new way to design configurable devices with tunable optical states for various advanced optical applications such as beam splitter and dynamically tunable laser.

  8. CALiPER Report 23: Photometric Testing of White Tunable LED Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-01

    This report documents an initial investigation of photometric testing procedures for white-tunable LED luminaires and summarizes the key features of those products. Goals of the study include understanding the amount of testing required to characterize a white-tunable product, and documenting the performance of available color-tunable luminaires that are intended for architectural lighting.

  9. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  10. Tunable pulse-shaping with gated graphene nanoribbons

    DEFF Research Database (Denmark)

    Prokopeva, Ludmila; Emani, Naresh K.; Boltasseva, Alexandra

    2014-01-01

    We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed.......We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed....

  11. Tunable dye laser research at U. N. E

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S C

    1976-10-01

    Attempts to extend present tunable radiation sources into the wavelength region from 140 to 330 nm are presented in the following areas: frequency doubling and parametric upconversion methods, frequency mixing techniques in metal vapors, the pulsed N/sub 2/ laser, tunable dye lasers for the near uv to ir spectral range, heat pipe ovens, and preliminary experiments. (MHR)

  12. A bio-inspired approach for in situ synthesis of tunable adhesive

    International Nuclear Information System (INIS)

    Sun, Leming; Yi, Sijia; Wang, Yongzhong; Pan, Kang; Zhong, Qixin; Zhang, Mingjun

    2014-01-01

    Inspired by the strong adhesive produced by English ivy, this paper proposes an in situ synthesis approach for fabricating tunable nanoparticle enhanced adhesives. Special attention was given to tunable features of the adhesive produced by the biological process. Parameters that may be used to tune properties of the adhesive will be proposed. To illustrate and validate the proposed approach, an experimental platform was presented for fabricating tunable chitosan adhesive enhanced by Au nanoparticles synthesized in situ. This study contributes to a bio-inspired approach for in situ synthesis of tunable nanocomposite adhesives by mimicking the natural biological processes of ivy adhesive synthesis. (paper)

  13. Tunable high-power narrow-linewidth green external-cavity GaN diode laser

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system.......A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system....

  14. The application of structural nonlinearity in the development of linearly tunable MEMS capacitors

    International Nuclear Information System (INIS)

    Shavezipur, M; Khajepour, A; Hashemi, S M

    2008-01-01

    Electrostatically actuated parallel-plate tunable capacitors are the most desired MEMS capacitors because of their smaller sizes and higher Q-factors. However, these capacitors suffer from low tunability and exhibit high sensitivity near the pull-in voltage which counters the concept of tunability. In this paper, a novel design for parallel-plate tunable capacitors with high tunability and linear capacitance–voltage (C–V) response is developed. The design uses nonlinear structural rigidities to relieve intrinsic electrostatic nonlinearity in MEMS capacitors. Based on the force–displacement characteristic of an ideally linear capacitor, a real beam-like nonlinear spring model is developed. The variable stiffness coefficients of such springs improve the linearity of the C–V curve. Moreover, because the structural stiffness increases with deformations, the pull-in is delayed and higher tunability is achieved. Finite element simulations reveal that capacitors with air gaps larger than 4 µm and supporting beams thinner than 1 µm can generate highly linear C–V responses and tunabilities over 120%. Experimental results for capacitors fabricated by PolyMUMPs verify the effect of weak nonlinear geometric stiffness on improving the tunability for designs with a small air gap and relatively thick structural layers

  15. Enhanced Performance & Functionality of Tunable Delay Lines

    Science.gov (United States)

    2012-08-01

    Based Tunable Optical Delays”, Optics Letters, Vol. 33, Issue 13, pp. 1518-1520 (2008). 2. Louis Christen, Irfan Fazal , Omer F. Yilmaz, Xiaoxia Wu...2008. 3. Omer F. Yilmaz, Louis Christen, Xiaoxia Wu, Scott R. Nuccio, Irfan Fazal , and Alan E. Willner, “Time-Slot-Interchange of 40 Gb/s Variable...F. Yilmaz, S. Khaleghi, L. Christen, I. Fazal , and A. E. Willner, “503 ns, Tunable Optical Delay of 40 Gb/s RZ-OOK using Additional λ-Conversion

  16. Bandwidth tunable amplifier for recording biopotential signals.

    Science.gov (United States)

    Hwang, Sungkil; Aninakwa, Kofi; Sonkusale, Sameer

    2010-01-01

    This paper presents a low noise, low power, bandwidth tunable amplifier for bio-potential signal recording applications. By employing depletion-mode pMOS transistor in diode configuration as a tunable sub pA current source to adjust the resistivity of MOS-Bipolar pseudo-resistor, the bandwidth is adjusted without any need for a separate band-pass filter stage. For high CMRR, PSRR and dynamic range, a fully differential structure is used in the design of the amplifier. The amplifier achieves a midband gain of 39.8dB with a tunable high-pass cutoff frequency ranging from 0.1Hz to 300Hz. The amplifier is fabricated in 0.18εm CMOS process and occupies 0.14mm(2) of chip area. A three electrode ECG measurement is performed using the proposed amplifier to show its feasibility for low power, compact wearable ECG monitoring application.

  17. Optimal design of tunable phononic bandgap plates under equibiaxial stretch

    International Nuclear Information System (INIS)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M S; Guest, James K

    2016-01-01

    Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite

  18. Wide-range tunable magnetic lens for tabletop electron microscope

    International Nuclear Information System (INIS)

    Chang, Wei-Yu; Chen, Fu-Rong

    2016-01-01

    A tabletop scanning electron microscope (SEM) utilizes permanent magnets as condenser lenses to minimize its size, but this sacrifices the tunability of condenser lenses such that a tabletop system can only be operated with a fixed accelerating voltage. In contrast, the traditional condenser lens utilizes an electromagnetic coil to adjust the optical properties, but the size of the electromagnetic lens is inevitably larger. Here, we propose a tunable condenser lens for a tabletop SEM that uses a combination of permanent magnets and electromagnetic coils. The overall dimensions of the newly designed lens are the same as the original permanent magnet lens, but the new lens allows the tabletop SEM to be operated at different accelerating voltages between 1 kV and 15 kV. - Highlights: • A compact condenser lens combines both permanent magnet and coils. • A tunable lens is designed to keep the same focal point for voltage 1 to 15 kV. • A miniature tunable lens which can directly fit into tabletop SEM.

  19. Wide-range tunable magnetic lens for tabletop electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Wei-Yu; Chen, Fu-Rong, E-mail: fchen1@me.com

    2016-12-15

    A tabletop scanning electron microscope (SEM) utilizes permanent magnets as condenser lenses to minimize its size, but this sacrifices the tunability of condenser lenses such that a tabletop system can only be operated with a fixed accelerating voltage. In contrast, the traditional condenser lens utilizes an electromagnetic coil to adjust the optical properties, but the size of the electromagnetic lens is inevitably larger. Here, we propose a tunable condenser lens for a tabletop SEM that uses a combination of permanent magnets and electromagnetic coils. The overall dimensions of the newly designed lens are the same as the original permanent magnet lens, but the new lens allows the tabletop SEM to be operated at different accelerating voltages between 1 kV and 15 kV. - Highlights: • A compact condenser lens combines both permanent magnet and coils. • A tunable lens is designed to keep the same focal point for voltage 1 to 15 kV. • A miniature tunable lens which can directly fit into tabletop SEM.

  20. Synthesis and structural characterization of PHP[(C(5)Me(4))(2)], a monodentate chiral phosphine derived from intramolecular C-C coupling of tetramethylcyclopentadienyl groups: an evaluation of steric and electronic properties.

    Science.gov (United States)

    Shin, J H; Bridgewater, B M; Churchill, D G; Parkin, G

    2001-10-22

    The chiral monodentate phosphine PhP[(C(5)Me(4))(2)] is readily obtained by oxidation of the lithium complex Li(2)[PhP(C(5)Me(4))(2)] with I(2), which couples the two cyclopentadienyl groups to form a five-membered heterocyclic ring. The steric and electronic properties of PhP[(C(5)Me(4))(2)] have been evaluated by X-ray diffraction and IR spectroscopic studies on a variety of derivatives, including Ph[(C(5)Me(4))(2)]PE (E = S, Se), Cp*MCl(4)[P[(C(5)Me(4))(2)]Ph] (M = Mo, Ta), Ir[P[(C(5)Me(4))(2)]Ph](2)(CO)Cl, and CpFe(CO)[PhP[(C(5)Me(4))(2)

  1. Equivalent Circuit of a High Q Tunable PIFA

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Franek, Ondrej

    2011-01-01

    This paper presents an Equivalent Circuit Model (ECM) for a high Quality factor (Q) tunable Planar Inverted F Antenna (PIFA). A PIFA is described and simulated with the Finite-Difference Time-Domain (FDTD) method. The resonance behavior of the proposed ECM is compared to the FDTD results and shows...... a match. The ECM is also valid when the PIFA is made tunable with an additional capacitor....

  2. Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    2007-01-01

    We suggest and demonstrate a novel platform for the study of tunable nonlinear light propagation in two-dimensional discrete systems, based on photonic crystal fibers filled with high index nonlinear liquids. Using the infiltrated cladding region of a photonic crystal fiber as a nonlinear waveguide...... array, we experimentally demonstrate highly tunable beam diffraction and thermal self-defocusing, and realize a compact all-optical power limiter based on a tunable nonlinear response....

  3. Tunable bandpass filter based on photonic crystal fiber filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Scolari, Lara; Tartarini, G.; Borelli, E.

    2007-01-01

    A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC.......A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC....

  4. High Selectivity Dual-Band Bandpass Filter with Tunable Lower Passband

    Directory of Open Access Journals (Sweden)

    Wei-Qiang Pan

    2015-01-01

    Full Text Available This paper presents a novel method to design dual-band bandpass filters with tunable lower passband and fixed upper passband. It utilizes a trimode resonator with three controllable resonant modes. Discriminating coupling is used to suppress the unwanted mode to avoid the interference. Varactors are utilized to realize tunable responses. The bandwidth of the two bands can be controlled individually. Transmission zeros are generated near the passband edges, resulting in high selectivity. For demonstration, a tunable bandpass filter is implemented. Good agreement between the prediction and measurement validates the proposed method.

  5. Computer Processing Of Tunable-Diode-Laser Spectra

    Science.gov (United States)

    May, Randy D.

    1991-01-01

    Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.

  6. Freely tunable broadband polarization rotator for terahertz waves.

    Science.gov (United States)

    Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping; Peng, Ru-Wen; Jiang, Shang-Chi; Xu, Di-Hu; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu

    2015-02-18

    A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Micromachined tunable metamaterials: a review

    International Nuclear Information System (INIS)

    Liu, A Q; Zhu, W M; Tsai, D P; Zheludev, N I

    2012-01-01

    This paper reviews micromachined tunable metamaterials, whereby the tuning capabilities are based on the mechanical reconfiguration of the lattice and/or the metamaterial element geometry. The primary focus of this review is the feasibility of the realization of micromachined tunable metamaterials via structure reconfiguration and the current state of the art in the fabrication technologies of structurally reconfigurable metamaterial elements. The micromachined reconfigurable microstructures not only offer a new tuning method for metamaterials without being limited by the nonlinearity of constituent materials, but also enable a new paradigm of reconfigurable metamaterial-based devices with mechanical actuations. With recent development in nanomachining technology, it is possible to develop structurally reconfigurable metamaterials with faster tuning speed, higher density of integration and more flexible choice of the working frequencies. (review article)

  8. Tunability of the circadian action of tetrachromatic solid-state light sources

    International Nuclear Information System (INIS)

    Žukauskas, A.; Vaicekauskas, R.

    2015-01-01

    An approach to the optimization of the spectral power distribution of solid-state light sources with the tunable non-image forming photobiological effect on the human circadian rhythm is proposed. For tetrachromatic clusters of model narrow-band (direct-emission) light-emitting diodes (LEDs), the limiting tunability of the circadian action factor (CAF), which is the ratio of the circadian efficacy to luminous efficacy of radiation, was established as a function of constraining color fidelity and luminous efficacy of radiation. For constant correlated color temperatures (CCTs), the CAF of the LED clusters can be tuned above and below that of the corresponding blackbody radiators, whereas for variable CCT, the clusters can have circadian tunability covering that of a temperature-tunable blackbody radiator

  9. Tunability of the circadian action of tetrachromatic solid-state light sources

    Energy Technology Data Exchange (ETDEWEB)

    Žukauskas, A., E-mail: arturas.zukauskas@ff.vu.lt [Institute of Applied Research, Vilnius University, Saulėtekio al. 9-III, LT-10222 Vilnius (Lithuania); Vaicekauskas, R. [Department of Computer Science, Vilnius University, Didlaukio g. 47, Vilnius LT-08303 (Lithuania)

    2015-01-26

    An approach to the optimization of the spectral power distribution of solid-state light sources with the tunable non-image forming photobiological effect on the human circadian rhythm is proposed. For tetrachromatic clusters of model narrow-band (direct-emission) light-emitting diodes (LEDs), the limiting tunability of the circadian action factor (CAF), which is the ratio of the circadian efficacy to luminous efficacy of radiation, was established as a function of constraining color fidelity and luminous efficacy of radiation. For constant correlated color temperatures (CCTs), the CAF of the LED clusters can be tuned above and below that of the corresponding blackbody radiators, whereas for variable CCT, the clusters can have circadian tunability covering that of a temperature-tunable blackbody radiator.

  10. High Q-factor tunable superconducting HF circuit

    CERN Document Server

    Vopilkin, E A; Pavlov, S A; Ponomarev, L I; Ganitsev, A Y; Zhukov, A S; Vladimirov, V V; Letyago, A G; Parshikov, V V

    2001-01-01

    Feasibility of constructing a high Q-factor (Q approx 10 sup 5) mechanically tunable in a wide range of frequencies (12-63 MHz) vibration circuit of HF range was considered. The tunable circuit integrates two single circuits made using YBaCuO films. The circuit frequency is tuned by changing distance X (capacity) between substrates. Potentiality of using substrates of lanthanum aluminate, neodymium gallate and strontium titanate for manufacture of single circuits was considered. Q-factor of the circuit amounted to 68000 at resonance frequency of 6.88 MHz

  11. High Q-factor tunable superconducting HF circuit

    International Nuclear Information System (INIS)

    Vopilkin, E.A.; Parafin, A.E.; Pavlov, S.A.; Ponomarev, L.I.; Ganitsev, A.Yu.; Zhukov, A.S.; Vladimirov, V.V.; Letyago, A.G.; Parshikov, V.V.

    2001-01-01

    Feasibility of constructing a high Q-factor (Q ∼ 10 5 ) mechanically tunable in a wide range of frequencies (12-63 MHz) vibration circuit of HF range was considered. The tunable circuit integrates two single circuits made using YBaCuO films. The circuit frequency is tuned by changing distance X (capacity) between substrates. Potentiality of using substrates of lanthanum aluminate, neodymium gallate and strontium titanate for manufacture of single circuits was considered. Q-factor of the circuit amounted to 68000 at resonance frequency of 6.88 MHz [ru

  12. Thermally tunable magnetic metamaterials at THz frequencies

    International Nuclear Information System (INIS)

    Bui, Son Tung; Nguyen, Van Dung; Bui, Xuan Khuyen; Vu, Dinh Lam; Nguyen, Thanh Tung; Lievens, Peter; Lee, YoungPak

    2013-01-01

    We investigate theoretically and numerically the tunability of the magnetic property of metamaterial in the THz region via thermal control. One component of the meta-atom is InSb, playing an important role as an alterable metal. When the temperature of the InSb stack increases from 300 to 350 K, the resonance peak of the transmission spectra shows a shift from 0.6 to 0.85 THz accompanied by a stronger magnetic behavior. The S-parameter retrieval method realizes the tunability of the negative permeability achieved in the above heating range. (paper)

  13. Fabrication of ultra-fine nanostructures using edge transfer printing.

    Science.gov (United States)

    Xue, Mianqi; Li, Fengwang; Cao, Tingbing

    2012-03-21

    The exploration of new methods and techniques for application in diverse fields, such as photonics, microfluidics, biotechnology and flexible electronics is of increasing scientific and technical interest for multiple uses over distance of 10-100 nm. This article discusses edge transfer printing--a series of unconventional methods derived from soft lithography for nanofabrication. It possesses the advantages of easy fabrication, low-cost and great serviceability. In this paper, we show how to produce exposed edges and use various materials for edge transfer printing, while nanoskiving, nanotransfer edge printing and tunable cracking for nanogaps are introduced. Besides this, different functional materials, such as metals, inorganic semiconductors and polymers, as well as localised heating and charge patterning, are described here as unconventional "inks" for printing. Edge transfer printing, which can effectively produce sub-100 nm scale ultra-fine structures, has broad applications, including metallic nanowires as nanoelectrodes, semiconductor nanowires for chemical sensors, heterostructures of organic semiconductors, plasmonic devices and so forth. This journal is © The Royal Society of Chemistry 2012

  14. Additive manufacturing of tunable lenses

    Science.gov (United States)

    Schlichting, Katja; Novak, Tobias; Heinrich, Andreas

    2017-02-01

    Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

  15. Thermally tunable VO2-SiO2 nanocomposite thin-film capacitors

    Science.gov (United States)

    Sun, Yifei; Narayanachari, K. V. L. V.; Wan, Chenghao; Sun, Xing; Wang, Haiyan; Cooley, Kayla A.; Mohney, Suzanne E.; White, Doug; Duwel, Amy; Kats, Mikhail A.; Ramanathan, Shriram

    2018-03-01

    We present a study of co-sputtered VO2-SiO2 nanocomposite dielectric thin-film media possessing continuous temperature tunability of the dielectric constant. The smooth thermal tunability is a result of the insulator-metal transition in the VO2 inclusions dispersed within an insulating matrix. We present a detailed comparison of the dielectric characteristics of this nanocomposite with those of a VO2 control layer and of VO2/SiO2 laminate multilayers of comparable overall thickness. We demonstrated a nanocomposite capacitor that has a thermal capacitance tunability of ˜60% between 25 °C and 100 °C at 1 MHz, with low leakage current. Such thermally tunable capacitors could find potential use in applications such as sensing, thermal cloaks, and phase-change energy storage devices.

  16. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  17. Enhanced tunability of magneto-impedance and magneto-capacitance in annealed Metglas/PZT magnetoelectric composites

    Science.gov (United States)

    Leung, Chung Ming; Zhuang, Xin; Xu, Junran; Li, Jiefang; Zhang, Jitao; Srinivasan, G.; Viehland, D.

    2018-05-01

    This report is on a new class of magnetostatically tunable magneto-impedance and magneto-capacitance devices based on a composite of ferromagnetic Metglas and ferroelectric lead zirconate titanate (PZT). Layered magneto-electric (ME) composites with annealed Metglas and PZT were studied in a longitudinal in-plane magnetic field-transverse electric field (L-T) mode. It was found that the degree of tunability was dependent on the annealing temperature of Metglas. An impedance tunability (ΔZ/Z0) of ≥400% was obtained at the electromechanical resonance (EMR) frequency (fr) for a sample with Metglas layers annealed at Ta = 500oC. This tunability is a factor of two higher than for composites with Metglas annealed at 350oC. The tunability of the capacitance, (ΔC/C0), was found to be 290% and -135k% at resonance and antiresonance, respectively, for Ta = 500oC. These results provide clear evidence for improvement in static magnetic field tunability of impedance and capacitance of ME composites with the use of annealed Metglas and are of importance for their potential use in tunable electronic applications.

  18. Resonance ionization mass spectrometry using tunable diode lasers

    International Nuclear Information System (INIS)

    Shaw, R.W.; Young, J.P.; Smith, D.H.

    1990-01-01

    Tunable semiconductor diode lasers will find many important applications in atomic spectroscopy. They exhibit the desirable attributes of lasers: narrow bandwidth, tunability, and spatial coherence. At the same time, they possess few of the disadvantages of other tunable lasers. They require no alignment, are simple to operate, and are inexpensive. Practical laser spectroscopic instruments can be envisioned. The authors have applied diode lasers to resonance ionization mass spectrometry (RIMS) of some of the lanthanide elements. Sub-Doppler resolution spectra have been recorded and have been used for atomic hyperfine structure analysis. Isotopically-selective ionization has been accomplished, even in cases where photons from a broadband dye laser are part of the overall ionization process and where the isotopic spectral shift is very small. A convenient RIMS instrument for isotope ratio measurements that employs only diode lasers, along with electric field ionization, should be possible

  19. Tunable radiation emitting semiconductor device

    NARCIS (Netherlands)

    2009-01-01

    A tunable radiation emitting semiconductor device includes at least one elongated structure at least partially fabricated from one or more semiconductor materials exhibiting a bandgap characteristic including one or more energy transitions whose energies correspond to photon energies of light

  20. Tunable photonic cavities for in-situ spectroscopic trace gas detection

    Science.gov (United States)

    Bond, Tiziana; Cole, Garrett; Goddard, Lynford

    2012-11-13

    Compact tunable optical cavities are provided for in-situ NIR spectroscopy. MEMS-tunable VCSEL platforms represents a solid foundation for a new class of compact, sensitive and fiber compatible sensors for fieldable, real-time, multiplexed gas detection systems. Detection limits for gases with NIR cross-sections such as O.sub.2, CH.sub.4, CO.sub.x and NO.sub.x have been predicted to approximately span from 10.sup.ths to 10s of parts per million. Exemplary oxygen detection design and a process for 760 nm continuously tunable VCSELS is provided. This technology enables in-situ self-calibrating platforms with adaptive monitoring by exploiting Photonic FPGAs.

  1. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo

    2016-05-27

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  2. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo; Wu, Ying

    2016-01-01

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  3. Photonic-Enabled RF Canceller with Tunable Time-Delay Taps

    Science.gov (United States)

    2016-12-05

    Photonic -Enabled RF Canceller with Tunable Time-Delay Taps Kenneth E. Kolodziej, Sivasubramaniam Yegnanarayanan, Bradley T. Perry MIT Lincoln...canceller design that uses photonics and a vector modulator architecture to provide a high number of canceller taps with tunable time-delays, which allow...microwave photonics , RF cancellation. I. INTRODUCTION In-Band Full-Duplex (IBFD) technologies are being consid- ered for 5th generation (5G) wireless

  4. Critical electric field for maximum tunability in nonlinear dielectrics

    Science.gov (United States)

    Akdogan, E. K.; Safari, A.

    2006-09-01

    The authors develop a self-consistent thermodynamic theory to compute the critical electric field at which maximum tunability is attained in a nonlinear dielectric. They then demonstrate that the stored electrostatic free energy functional has to be expanded at least up to the sixth order in electric field so as to define the critical field, and show that it depends solely on the fourth and sixth order permittivities. They discuss the deficiency of the engineering tunability metric in describing nonlinear dielectric phenomena, introduce a critical field renormalized tunability parameter, and substantiate the proposed formalism by computing the critical electric field for prototypical 0.9Pb(Mg1/3,Nb2/3)-0.1PbTiO3 and Ba(Ti0.85,Sn0.15)O3 paraelectrics.

  5. Electrostatically Tunable Nanomechanical Shallow Arches

    KAUST Repository

    Kazmi, Syed N. R.; Hajjaj, Amal Z.; Da Costa, Pedro M. F. J.; Younis, Mohammad I.

    2017-01-01

    -beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator (SOI) wafer. The experimental results show good agreement with the analytical results with a maximum tunability of 108.14% for 180 nm thick arch with a

  6. 360° tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Xue, Weiqi; Liu, Liu

    2010-01-01

    We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained......We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained...

  7. Frequency-tunable SRF cavities for microwave opto-mechanics

    Science.gov (United States)

    Castelli, Alessandro; Martinez, Luis; Pate, Jacob; Thompson, Johnathon; Chiao, Raymond; Sharping, Jay

    Three dimensional SRF (Superconducting Radio Frequency) cavities are known for achieving high quality factors (Q =109 or higher) but suffer from limited frequency tunability once fabricated and cooled to superconducting temperatures. Our end-wall design allows for numerous applications of cavity tuning at temperatures as low as 40 millikelvin. Using a bimorphic piezoelectric transducer, we demonstrate approximately 15 MHz of resonance tunability for the TE011 mode at cryogenic temperatures in a cylindrical reactor grade niobium (Nb) cavity (10% of the range at room temperature). This range doubles when using tunable end-walls on both cavity ends. We report on techniques for improving the Q of multi-component cavities including the use of concave end-walls to reduce fields near the cylinder ends and indium O-rings to reduce resistive losses at the gaps. Three-dimensional SRF cavities of this type have potential applications to quantum information science, precision displacement metrology, and quantum electro-dynamics.

  8. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    International Nuclear Information System (INIS)

    Giuliani, A.; Giorgetta, J.-L.; Ricaud, J.-P.; Jamme, F.; Rouam, V.; Wien, F.; Laprévote, O.; Réfrégiers, M.

    2012-01-01

    Highlights: ► Coupling of an atmospheric pressure photoionization source with a vacuum ultra-violet (VUV) beamline. ► The set up allows photoionization up to 20 eV. ► Compared to classical atmospheric pressure photoionization (APPI), our set up offers spectral purity and tunability. ► Allows photoionization mass spectrometry on fragile and hard to vaporize molecules. - Abstract: We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4–20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  9. Tunable Balun Low-Noise Amplifier in 65nm CMOS Technology

    Directory of Open Access Journals (Sweden)

    J. Sturm

    2014-04-01

    Full Text Available The presented paper includes the design and implementation of a 65 nm CMOS low-noise amplifier (LNA based on inductive source degeneration. The amplifier is realized with an active balun enabling a single-ended input which is an important requirement for low-cost system on chip implementations. The LNA has a tunable bandpass characteristics from 4.7 GHz up to 5.6 GHz and a continuously tunable gain from 22 dB down to 0 dB, which enables the required flexibility for multi-standard, multi-band receiver architectures. The gain and band tuning is realized with an optimized tunable active resistor in parallel to a tunable L-C tank amplifier load. The amplifier achieves an IIP3 linearity of -8dBm and a noise figure of 2.7 dB at the highest gain and frequency setting with a low power consumption of 10 mW. The high flexibility of the proposed LNA structure together with the overall good performance makes it well suited for future multi-standard low-cost receiver front-ends.

  10. Imaging spectrometer using a liquid crystal tunable filter

    Science.gov (United States)

    Chrien, Thomas G.; Chovit, Christopher; Miller, Peter J.

    1993-09-01

    A demonstration imaging spectrometer using a liquid crystal tunable filter (LCTF) was built and tested on a hot air balloon platform. The LCTF is a tunable polarization interference or Lyot filter. The LCTF enables a small, light weight, low power, band sequential imaging spectrometer design. An overview of the prototype system is given along with a description of balloon experiment results. System model performance predictions are given for a future LCTF based imaging spectrometer design. System design considerations of LCTF imaging spectrometers are discussed.

  11. [Gas pipeline leak detection based on tunable diode laser absorption spectroscopy].

    Science.gov (United States)

    Zhang, Qi-Xing; Wang, Jin-Jun; Liu, Bing-Hai; Cai, Ting-Li; Qiao, Li-Feng; Zhang, Yong-Ming

    2009-08-01

    The principle of tunable diode laser absorption spectroscopy and harmonic detection technique was introduced. An experimental device was developed by point sampling through small multi-reflection gas cell. A specific line near 1 653. 7 nm was targeted for methane measurement using a distributed feedback diode laser as tunable light source. The linearity between the intensity of second harmonic signal and the concentration of methane was determined. The background content of methane in air was measured. The results show that gas sensors using tunable diode lasers provide a high sensitivity and high selectivity method for city gas pipeline leak detection.

  12. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2015-01-01

    A chip scale tunable laser in the visible spectral band is realized by generating a periodic droplet array inside a microfluidic channel. Combined with a gain medium within the droplets, the periodic structure provides the optical feedback of the laser. By controlling the pressure applied to two...

  13. Using MEMS Capacitive Switches in Tunable RF Amplifiers

    OpenAIRE

    Danson John; Plett Calvin; Tait Niall

    2006-01-01

    A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA) operating at GHz and GHz, and a tunable power amplifier (PA) at GHz are simulated in m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining dB of gain and sub- dB no...

  14. Weighted tunable clustering in local-world networks with increment behavior

    International Nuclear Information System (INIS)

    Ma, Ying-Hong; Li, Huijia; Zhang, Xiao-Dong

    2010-01-01

    Since some realistic networks are influenced not only by increment behavior but also by the tunable clustering mechanism with new nodes to be added to networks, it is interesting to characterize the model for those actual networks. In this paper, a weighted local-world model, which incorporates increment behavior and the tunable clustering mechanism, is proposed and its properties are investigated, such as degree distribution and clustering coefficient. Numerical simulations are fitted to the model and also display good right-skewed scale-free properties. Furthermore, the correlation of vertices in our model is studied which shows the assortative property. The epidemic spreading process by weighted transmission rate on the model shows that the tunable clustering behavior has a great impact on the epidemic dynamic

  15. Green high-power tunable external-cavity GaN diode laser at 515 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam...... incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode...... laser system....

  16. Electrothermally Tunable Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-03-18

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291

  17. Tunable resistance coatings

    Science.gov (United States)

    Elam, Jeffrey W.; Mane, Anil U.

    2015-08-11

    A method and article of manufacture of intermixed tunable resistance composite materials containing at least one of W:Al.sub.2O.sub.3, Mo:Al.sub.2O.sub.3 or M:Al.sub.2O.sub.3 where M is a conducting compound containing either W or Mo. A conducting material and an insulating material are deposited by such methods as ALD or CVD to construct composites with intermixed materials which do not have structure or properties like their bulk counterparts.

  18. Tunable, Room Temperature THZ Emitters Based on Nonlinear Photonics

    Science.gov (United States)

    Sinha, Raju

    The Terahertz (1012 Hz) region of the electromagnetic spectrum covers the frequency range from roughly 300 GHz to 10 THz, which is in between the microwave and infrared regimes. The increasing interest in the development of ultra-compact, tunable room temperature Terahertz (THz) emitters with wide-range tunability has stimulated in-depth studies of different mechanisms of THz generation in the past decade due to its various potential applications such as biomedical diagnosis, security screening, chemical identification, life sciences and very high speed wireless communication. Despite the tremendous research and development efforts, all the available state-of-the-art THz emitters suffer from either being large, complex and costly, or operating at low temperatures, lacking tunability, having a very short spectral range and a low output power. Hence, the major objective of this research was to develop simple, inexpensive, compact, room temperature THz sources with wide-range tunability. We investigated THz radiation in a hybrid optical and THz micro-ring resonators system. For the first time, we were able to satisfy the DFG phase matching condition for the above-mentioned THz range in one single device geometry by employing a modal phase matching technique and using two separately designed resonators capable of oscillating at input optical waves and generated THz waves. In chapter 6, we proposed a novel plasmonic antenna geometry – the dimer rod-tapered antenna (DRTA), where we created a hot-spot in the nanogap between the dimer arms with a very large intensity enhancement of 4.1x105 at optical resonant wavelength. Then, we investigated DFG operation in the antenna geometry by incorporating a nonlinear nanodot in the hot-spot of the antenna and achieved continuously tunable enhanced THz radiation across 0.5-10 THz range. In chapter 8, we designed a multi-metallic resonators providing an ultrasharp toroidal response at THz frequency, then fabricated and

  19. Tunable CW diode-pumped Tm,Ho:YLiF4 laser operating at or near room temperature

    Science.gov (United States)

    Mcguckin, Brendan T. (Inventor); Menzies, Robert T. (Inventor)

    1995-01-01

    A conversion efficiency of 42% and slope efficiency of 60% relative to absorbed pump power are obtained from a continuous wave diode-pumped Tm,Ho:YLiF4 laser at 2 microns with output power of 84 mW at a crystal temperature of 275 K. The emission spectrum is etalon tunable over a range of7 nm (16.3/cm) centered on 2.067 microns with fine tuning capability of the transition frequency with crystal temperature at a measured rate of -0.03/(cm)K. The effective emission cross-section is measured to be 5 x 10(exp -21) cm squared. These and other aspects of the laser performance are disclosed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications. Single frequency output and frequency stabilization are achieved using an intracavity etalon in conjunction with an external reference etalon.

  20. Optimization of thermochromic VO2-based structures with tunable thermal emissivity

    International Nuclear Information System (INIS)

    Li Voti, R.; Larciprete, M.C.; Leahu, G.L.; Bertolotti, M.; Sibilia, C.

    2013-01-01

    In this paper we design and simulate VO 2 /metal multilayers to obtain a large tunability of the thermal emissivity of IR filters in the typical MWIR window of many infrared cameras. The multilayer structure is optimized to realise a low-emissivity filter at high temperatures useful for military purposes. The values of tunability found for VO 2 /metal multilayers are larger than the value for a single thick layer of VO 2 . Innovative SiO 2 /VO 2 synthetic opals are also investigated to enhance the optical tunability by combining the properties of a 3D periodic structure and the specific optical properties of vanadium dioxide.

  1. Fine and hyperfine structure spectra of the ultra-violet 23S → 53P transition in 4He and 3He with a frequency doubled CW ring laser, detected via associative ionization

    International Nuclear Information System (INIS)

    Runge, S.; Pesnelle, A.; Perdrix, M.; Sevin, D.; Wolffer, N.; Watel, G.

    1982-01-01

    High resolution laser spectroscopy coupled to a sensitive method of detection via mass analysis of He + 2 ions produced in He(5 3 P) + He(1 1 S) collisions, is used to obtain the fine and hyperfine spectra of the ultra-violet He 2 3 S → 5 3 P transition. A cw tunable UV radiation around 294.5 nm is generated by intracavity frequency doubling a Rhodamine 6G single mode ring dye laser using an ADA crystal. Both spectra enable fine and hyperfine structures to be determined within a few MHz. The magnetic dipole coupling constant A of the 5 3 P term of 3 He is found to be -4326 +- 9 MHz (-0.1443 +- 0.0003 cm -1 ). (orig.)

  2. Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre

    DEFF Research Database (Denmark)

    Scolari, Lara; Olausson, Christina Bjarnal Thulin; Weirich, Johannes

    2008-01-01

    A tunable and polarisation-maintaining all-in-fibre filter based on a liquid crystal photonic bandgap fibre is demonstrated. Its polarisation extinction ratio reaches 14 dB at 1550 nm wavelength. Its spectral tunability range spans over 250 nm in the temperature range 30–70°C. The measured...

  3. A dynamically-tunable graphene-based fano metasurface

    KAUST Repository

    Amin, Muhammad

    2013-09-01

    A planar graphene metasurface with rectangular holes, which is capable of supporting a dynamically tunable Fano resonance at Terahertz (THz) frequencies, is proposed. The rectangular hole is patterned asymmetrically within the metasurface\\'s unit cell to \\'brighten\\' an originally-dark quadrupolar surface plasmon mode. Fano resonance is achieved via the destructive interference of this mode with a dipolar surface plasmon. The spectral location and line shape of the Fano resonance can be dynamically tuned via a gate voltage applied to the metasurface to change graphene\\'s optical properties. The dynamic tunability of the Fano resonance suggests the applicability of the proposed metasurface in designing THz wave modulators and band-pass filters. © 2013 IEEE.

  4. Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST

    Science.gov (United States)

    Du, Hong-Lei; Xue, Qian; Gao, Xiao-Yang; Yao, Feng-Rui; Lu, Shi-Yang; Wang, Ye-Long; Liu, Chun-Heng; Zhang, Yong-Cheng; Lü, Yue-Guang; Li, Shan-Dong

    2015-12-01

    A composite ceramic with nominal composition of 45.0 wt%(Ba0.5Sr0.5)TiO3-55.0 wt%MgO (acronym is BST-MgO) is sintered for fabricating a frequency reconfigurable aperture-coupled microstrip antenna. The calcined BST-MgO composite ceramic exhibits good microwave dielectric properties at X-band with appropriate dielectric constant ɛr around 85, lower dielectric loss tan δ about 0.01, and higher permittivity tunability 14.8% at 8.33 kV/cm. An ultrahigh E-field tunability of working frequency up to 11.0% (i.e., from 9.1 GHz to 10.1 GHz with a large frequency shift of 1000 MHz) at a DC bias field from 0 to 8.33 kV/cm and a considerably large center gain over 7.5 dB are obtained in the designed frequency reconfigurable microstrip antenna. These results demonstrate that BST materials are promising for the frequency reconfigurable antenna. Project supported by the National Natural Science Foundation of China (Grant No. 11074040) and the Key Project of Shandong Provincial Department of Science and Technology, China (Grant No. ZR2012FZ006).

  5. Gradiometric tunable-gap flux qubits in a circuit QED architecture

    International Nuclear Information System (INIS)

    Schwarz, Manuel Johannes

    2015-01-01

    In circuit quantum electrodynamics or quantum simulation experiments, superconducting quantum bits with long coherence time, high in situ tunability and usually large anharmonicity are required. In contrast to the popular transmon, the gradiometric tunable-gap flux qubit meets all these requirements. We fabricate and characterize such a qubit and demonstrate its first implementation into a transmission line resonator. We show spectroscopy and first time domain results.

  6. Sahara Coal: the fine art of collecting fines for profit

    Energy Technology Data Exchange (ETDEWEB)

    Schreckengost, D.; Arnold, D.

    1984-09-01

    A considerable increase in the volume of fines in rom coal caused Sahara Coal in Illinois to redesign the fine coal system in their Harrisburg preparation plant. Details of the new design, and particularly the fine refuse system which dewaters and dries 28 mesh x O clean coal, are given. Results have exceeded expectations in reducing product losses, operating costs and slurry pond cleaning costs.

  7. Tunable Hybrid Qubit in a Triple Quantum Dot

    Science.gov (United States)

    Wang, Bao-Chuan; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Hu, Xuedong; Jiang, Hong-Wen; Guo, Guo-Ping

    2017-12-01

    We experimentally demonstrate quantum-coherent dynamics of a triple-dot-based multielectron hybrid qubit. Pulsed experiments show that this system can be conveniently initialized, controlled, measured electrically, and has a good ratio Q ˜29 between the coherence time and gate time. Furthermore, the current multielectron hybrid qubit has an operation frequency that is tunable in a wide range, from 2 to about 15 GHz. We also provide a qualitative understanding of the experimental observations by mapping them onto a three-electron system. The demonstration of the high tunability in a triple dot system could be potentially useful for future quantum control.

  8. Widely tunable quantum cascade laser-based terahertz source.

    Science.gov (United States)

    Danylov, Andriy A; Light, Alexander R; Waldman, Jerry; Erickson, Neal; Qian, Xifeng

    2014-07-10

    A compact, tunable, ultranarrowband terahertz source, Δν∼1  MHz, is demonstrated by upconversion of a 2.324 THz, free-running quantum cascade laser with a THz Schottky-diode-balanced mixer using a swept, synthesized microwave source to drive the nonlinearity. Continuously tunable radiation of 1 μW power is demonstrated in two frequency regions: ν(Laser) ± 0 to 50 GHz and ν(Laser) ± 70 to 115 GHz. The sideband spectra were characterized with a Fourier-transform spectrometer, and the radiation was tuned through CO, HDO, and D2O rotational transitions.

  9. Tunable metamaterials fabricated by fiber drawing

    DEFF Research Database (Denmark)

    Fleming, Simon; Stefani, Alessio; Tang, Xiaoli

    2017-01-01

    We demonstrate a practical scalable approach to the fabrication of tunable metamaterials. Designed for terahertz (THz) wavelengths, the metamaterial is comprised of polyurethane filled with an array of indium wires using the well-established fiber drawing technique. Modification of the dimensions...

  10. MEMS Tunable nanostructured photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee

    This thesis was prepared at the department of Photonics Engineering, the Technical University of Denmark in fulfilment of the requirements for acquiring a Philosophiae doctor (Ph.D.) in Photonics Engineering. The thesis deals with the design and fabrication of tunable resonant-cavity-enhanced pho......) structure. Results from the fabricated devices are reported along with an investigation of the design parameters which influence the performance deviation from the design....

  11. Near-infrared light-controlled tunable grating based on graphene/elastomer composites

    Science.gov (United States)

    Wang, Fei; Jia, Shuhai; Wang, Yonglin; Tang, Zhenhua

    2018-02-01

    A near-infrared (nIR) light actuated tunable transmission optical grating based on graphene nanoplatelet (GNP)/polydimethylsiloxane (PDMS) and PDMS is proposed. A simple fabrication protocol is studied that allows integration of the grating with the actuation mechanism; both components are made from soft elastomers, and this ensure the tunability and the light-driven operation of the grating. The resulting grating structure demonstrates continuous period tunability of 2.7% under an actuation power density of 220 mW cm-2 within a period of 3 s and also demonstrates a time-independent characteristic. The proposed infrared activated grating can be developed for wireless remote light splitting in bio/chemical sensing and optical telecommunications applications.

  12. Optically controlled tunable dispersion compensators based on pumped fiber gratings.

    Science.gov (United States)

    Shu, Xuewen; Sugden, Kate; Bennion, Ian

    2011-08-01

    We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment. © 2011 Optical Society of America

  13. Thin film barium strontium titanate capacitors for tunable RF front-end applications

    NARCIS (Netherlands)

    Tiggelman, M.P.J.

    2009-01-01

    In this thesis, the results of intensive electrical characterization, modeling and the design of hardware with thin film tunable capacitors, i.e., dielectric varactors, has been presented and discussed. Especially the quality factor Q and the tuning ratio of the tunable capacitors have been studied,

  14. Experimental demonstration of software defined data center optical networks with Tbps end-to-end tunability

    Science.gov (United States)

    Zhao, Yongli; Zhang, Jie; Ji, Yuefeng; Li, Hui; Wang, Huitao; Ge, Chao

    2015-10-01

    The end-to-end tunability is important to provision elastic channel for the burst traffic of data center optical networks. Then, how to complete the end-to-end tunability based on elastic optical networks? Software defined networking (SDN) based end-to-end tunability solution is proposed for software defined data center optical networks, and the protocol extension and implementation procedure are designed accordingly. For the first time, the flexible grid all optical networks with Tbps end-to-end tunable transport and switch system have been online demonstrated for data center interconnection, which are controlled by OpenDayLight (ODL) based controller. The performance of the end-to-end tunable transport and switch system has been evaluated with wavelength number tuning, bit rate tuning, and transmit power tuning procedure.

  15. Tunable Soft X-Ray Oscillators

    International Nuclear Information System (INIS)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X.-W.; Fawley, William M.; Reinsch, Matthia; Penn, Gregory; Kim, K.-J.; Lindberg, Ryan; Zholents, Alexander

    2010-01-01

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  16. Tunable Soft X-Ray Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  17. Tunable cavity resonator including a plurality of MEMS beams

    Science.gov (United States)

    Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah; Liu, Xiaoguang; Irshad, Wasim; Arif, Muhammad Shoaib

    2015-10-20

    A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.

  18. Tunable Sparse Network Coding for Multicast Networks

    DEFF Research Database (Denmark)

    Feizi, Soheil; Roetter, Daniel Enrique Lucani; Sørensen, Chres Wiant

    2014-01-01

    This paper shows the potential and key enabling mechanisms for tunable sparse network coding, a scheme in which the density of network coded packets varies during a transmission session. At the beginning of a transmission session, sparsely coded packets are transmitted, which benefits decoding...... complexity. At the end of a transmission, when receivers have accumulated degrees of freedom, coding density is increased. We propose a family of tunable sparse network codes (TSNCs) for multicast erasure networks with a controllable trade-off between completion time performance to decoding complexity...... a mechanism to perform efficient Gaussian elimination over sparse matrices going beyond belief propagation but maintaining low decoding complexity. Supporting simulation results are provided showing the trade-off between decoding complexity and completion time....

  19. Tunable volatile release from organogel-emulsions based on the self-assembly of β-sitosterol and γ-oryzanol.

    Science.gov (United States)

    Chen, Xiao-Wei; Chen, Ya-Jun; Wang, Jin-Mei; Guo, Jian; Yin, Shou-Wei; Yang, Xiao-Quan

    2017-04-15

    A current challenge in the area of food emulsion is the design of microstructure that provides controlled release of volatile compounds during storage and consumption. Here, a new strategy addressed this problem at the fundamental level by describing the design of organogel-based emulsion from the self-assembly of β-sitosterol and γ-oryzanol that are capable of tuning volatile release. The results showed that the release rate (v 0 ), maximum headspace concentrations (C max ) and partition coefficients (k a / e ) above structured emulsions were significantly lower than unstructured emulsions and controlled release doing undergo tunable though the self-assembled interface and core fine microstructure from internal phase under dynamic and static condition. This result provides an understanding of how emulsions can behave as delivery system to better design novel food products with enhanced sensorial and nutritional attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Discretely tunable micromachined injection-locked lasers

    International Nuclear Information System (INIS)

    Cai, H; Yu, M B; Lo, G Q; Kwong, D L; Zhang, X M; Liu, A Q; Liu, B

    2010-01-01

    This paper reports a micromachined injection-locked laser (ILL) to provide tunable discrete wavelengths. It utilizes a non-continuously tunable laser as the master to lock a Fabry–Pérot semiconductor laser chip. Both lasers are integrated into a deep-etched silicon chip with dimensions of 3 mm × 3 mm × 0.8 mm. Based on the experimental results, significant improvements in the optical power and spectral purity have been achieved in the fully locked state, and optical hysteresis and bistability have also been observed in response to the changes of the output wavelength and optical power of the master laser. As a whole system, the micromachined ILL is able to provide single mode, discrete wavelength tuning, high power and direct modulation with small size and single-chip solution, making it promising for advanced optical communications such as wavelength division multiplexing optical access networks.

  1. Wide range optofluidically tunable multimode interference fiber laser

    International Nuclear Information System (INIS)

    Antonio-Lopez, J E; LiKamWa, P; Sanchez-Mondragon, J J; May-Arrioja, D A

    2014-01-01

    An optofluidically tunable fiber laser based on multimode interference (MMI) effects with a wide tuning range is proposed and demonstrated. The tunable mechanism is based on an MMI fiber filter fabricated using a special fiber known as no-core fiber, which is a multimode fiber (MMF) without cladding. Therefore, when the MMI filter is covered by liquid the optical properties of the no-core fiber are modified, which allow us to tune the peak wavelength response of the MMI filter. Rather than applying the liquid on the entire no-core fiber, we change the liquid level along the no-core fiber, which provides a highly linear tuning response. In addition, by selecting the adequate refractive index of the liquid we can also choose the tuning range. We demonstrate the versatility of the optofluidically tunable MMI filter by wavelength tuning two different gain media, erbium doped fiber and a semiconductor optical amplifier, achieving tuning ranges of 55 and 90 nm respectively. In both cases, we achieve side-mode suppression ratios (SMSR) better than 50 dBm with output power variations of less than 0.76 dBm over the whole tuning range. (paper)

  2. Development of tunable flashlamp excited dye laser system

    International Nuclear Information System (INIS)

    Bhanthumnavin, V.; Apikitmata, S.; Kochareon, P.

    1991-01-01

    A tunable flashlamp excited dye laser (FEDL) was successfully developed for the first time in Thailand by Thai scientists at KMIT Thonburi (Bangmod). The Rhodamine 6G dissolved in ethyl alcohol was utilized as a laser medium and circulated by a pump through a laser head. The dye cuvette had an inner diameter of 4.0 mm and was 90 mm long. The cavity mirrors M 1 , and M 2 were concave mirrors with reflectivities of 100% and 73% respectively. A power supply of 0-20 kV and current of 0-50 mA charged a capacitor of 0.3 μ f at 10-15 kV which was then discharged via a spark gap through the flashlamp. The output laser wavelengths was tunable from λ = 550-640 nm. It is the first FEDL system, locally developed, which has a tunable wavelength for the laser output. The laser pulse width is about 1.0 μs with energy of 20 mJ and peak power pf 20 KW. The repetition rate of the laser is 1/15 Hz. (author). 14 refs, 7 figs

  3. Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes

    OpenAIRE

    Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C. T. Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei

    2018-01-01

    Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively....

  4. Tunable waveguide bends with graphene-based anisotropic metamaterials

    KAUST Repository

    Chen, Zhao-xian; Chen, Ze-guo; Ming, Yang; Wu, Ying; Lu, Yan-qing

    2016-01-01

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  5. Tunable waveguide bends with graphene-based anisotropic metamaterials

    KAUST Repository

    Chen, Zhao-xian

    2016-01-15

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  6. Design of tunable surface mode waveguide based on photonic crystal composite structure using organic liquid*

    International Nuclear Information System (INIS)

    Zhang Lan-Lan; Liu Wei; Li Ping; Yang Xi; Cao Xu

    2017-01-01

    With the method of replacing the surface layer of photonic crystal with tubes, a novel photonic crystal composite structure used as a tunable surface mode waveguide is designed. The tubes support tunable surface states. The tunable propagation capabilities of the structure are investigated by using the finite-difference time-domain. Simulation results show that the beam transmission distributions of the composite structure are sensitive to the frequency range of incident light and the surface morphology which can be modified by filling the tubes with different organic liquids. By adjusting the filler in tubes, the T-shaped, Y-shaped, and L-shaped propagations can be realized. The property can be applied to the tunable surface mode waveguide. Compared with a traditional single function photonic crystal waveguide, our designed structure not only has a small size, but also is a tunable device. (paper)

  7. Tunable graphene antennas for selective enhancement of THz-emission

    KAUST Repository

    Filter, Robert; Farhat, Mohamed; Steglich, Mathias; Alaee, Rasoul; Rockstuhl, Carsten; Lederer, Falk L.

    2013-01-01

    In this paper, we will introduce THz graphene antennas that strongly enhance the emission rate of quantum systems at specific frequencies. The tunability of these antennas can be used to selectively enhance individual spectral features. We will show as an example that any weak transition in the spectrum of coronene can become the dominant contribution. This selective and tunable enhancement establishes a new class of graphene-based THz devices, which will find applications in sensors, novel light sources, spectroscopy, and quantum communication devices. © 2013 Optical Society of America.

  8. Tunable blue–violet Cr3+:LiCAF + BiBO compact laser

    International Nuclear Information System (INIS)

    Maestre, H; Torregrosa, A J; Capmany, J

    2015-01-01

    We present a compact continuous wave (CW) external-cavity tunable Cr 3+ :LiCaAlF 6 (Cr:LiCAF) laser which is intracavity frequency doubled using a BiB 3 O 6 (BiBO) nonlinear crystal to obtain tunable blue–violet radiation. The generated second harmonic (SH) can be tuned by means of either angular or temperature variation of the nonlinear crystal. We have obtained SH radiation between 390–415 nm and a maximum output power of 34 mW at 400 nm. Future improvements on the SH tuning range and output power are addressed in the text. Our results may be applied in the design of compact tunable composite external-cavity solid-state lasers. (paper)

  9. Frequency tunable surface magneto elastic waves

    NARCIS (Netherlands)

    Janusonis, J.; Chang, C. L.; van Loosdrecht, P. H. M.; Tobey, R. I.

    2015-01-01

    We use the transient grating technique to generate narrow-band, widely tunable, in-plane surface magnetoelastic waves in a nickel film. We monitor both the structural deformation of the acoustic wave and the accompanying magnetic precession and witness their intimate coupling in the time domain.

  10. Thermal, optical, and electrical engineering of an innovative tunable white LED light engine

    Science.gov (United States)

    Trivellin, Nicola; Meneghini, Matteo; Ferretti, Marco; Barbisan, Diego; Dal Lago, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico

    2014-02-01

    Color temperature, intensity and blue spectrum of the light affects the ganglion receptors in human brain stimulating the human nervous system. With this work we review different methods for obtaining tunable light emission spectra and propose an innovative white LED lighting system. By an in depth study of the thermal, electrical and optical characteristics of GaN and GaP based compound semiconductors for optoelectronics a specific tunable spectra has been designed. The proposed tunable white LED system is able to achieve high CRI (above 95) in a large CCT range (3000 - 5000K).

  11. Enantioselective Rhodium-Catalyzed [2+2+2] Cycloadditions of Terminal Alkynes and Alkenyl Isocyanates: Mechanistic Insights Lead to a Unified Model that Rationalizes Product Selectivity

    Science.gov (United States)

    Dalton, Derek M.; Oberg, Kevin M.; Yu, Robert T.; Lee, Ernest E.; Perreault, Stéphane; Oinen, Mark Emil; Pease, Melissa L.; Malik, Guillaume; Rovis, Tomislav

    2009-01-01

    This manuscript describes the development and scope of the asymmetric rhodium-catalyzed [2+2+2] cycloaddition of terminal alkynes and alkenyl isocyanates leading to the formation of indolizidine and quinolizidine scaffolds. The use of phosphoramidite ligands proved crucial for avoiding competitive terminal alkyne dimerization. Both aliphatic and aromatic terminal alkynes participate well, with product selectivity a function of both the steric and electronic character of the alkyne. Manipulation of the phosphoramidite ligand leads to tuning of enantio- and product selectivity, with a complete turnover in product selectivity seen with aliphatic alkynes when moving from Taddol-based to biphenol-based phosphoramidites. Terminal and 1,1-disubstituted olefins are tolerated with nearly equal efficacy. Examination of a series of competition experiments in combination with analysis of reaction outcome shed considerable light on the operative catalytic cycle. Through a detailed study of a series of X-ray structures of rhodium(cod)chloride/phosphoramidite complexes, we have formulated a mechanistic hypothesis that rationalizes the observed product selectivity. PMID:19817441

  12. Design of multi-wavelength tunable filter based on Lithium Niobate

    Science.gov (United States)

    Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun

    2018-05-01

    A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.

  13. Tunable strain gauges based on two-dimensional silver nanowire networks

    International Nuclear Information System (INIS)

    Ho, Xinning; Cheng, Chek Kweng; Tey, Ju Nie; Wei, Jun

    2015-01-01

    Strain gauges are used in various applications such as wearable strain gauges and strain gauges in airplanes or structural health monitoring. Sensitivity of the strain gauge required varies, depending on the application of the strain gauge. This paper reports a tunable strain gauge based on a two-dimensional percolative network of silver nanowires. By varying the surface coverage of the nanowire network and the waviness of the nanowires in the network, the sensitivity of the strain gauge can be controlled. Hence, a tunable strain gauge can be engineered, based on demands of the application. A few applications are demonstrated. The strain gauge can be adhered to the human neck to detect throat movements and a glove integrated with such a strain gauge can detect the bending of the forefinger. Other classes of two-dimensional percolative networks of one-dimensional materials are also expected to exhibit similar tunable properties. (paper)

  14. Hybrid Micro-Electro-Mechanical Tunable Filter

    Science.gov (United States)

    2007-09-01

    and polymer hybrid actuator and applications as a tunable filter in telecom and in IR chemical detector,” in Micromachining and Microfabrication...consistently achieved. At this temperature, SU8 - SU-8 bonding withstood subsequent processing steps, resulting in a 57% bond yield and an overall 30

  15. Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals

    OpenAIRE

    Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing; Zhai, Lei; Eskildsen, Lars; Alkeskjold, Thomas Tanggaard; Wu, Shin-Tson; Bjarklev, Anders Overgaard

    2009-01-01

    We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum with the one achieved without dopant. New interesting features, such as frequency modulation response of the device and a transmission spectrum with tunable attenuation on the short wavelength side of the widest bandgap, suggest a potential application of this device as a tunable all-in-fiber gain equalization filter with an adjustable slope. The tunability ...

  16. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Science.gov (United States)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  17. Charge neutrality of fine particle (dusty) plasmas and fine particle cloud under gravity

    Energy Technology Data Exchange (ETDEWEB)

    Totsuji, Hiroo, E-mail: totsuji-09@t.okadai.jp

    2017-03-11

    The enhancement of the charge neutrality due to the existence of fine particles is shown to occur generally under microgravity and in one-dimensional structures under gravity. As an application of the latter, the size and position of fine particle clouds relative to surrounding plasmas are determined under gravity. - Highlights: • In fine particle (dusty) plasmas, the charge neutrality is much enhanced by the existence of fine particles. • The enhancement of charge neutrality generally occurs under microgravity and gravity. • Structure of fine particle clouds under gravity is determined by applying the enhanced charge neutrality.

  18. The theoretical and numerical models of the novel and fast tunable semiconductor ring laser

    Science.gov (United States)

    Zhu, Jiangbo; Zhang, Junwen; Chi, Nan; Yu, Siyuan

    2011-01-01

    Fast wavelength-tunable semiconductor lasers will be the key components in future optical packet switching networks. Especially, they are of great importance in the optical network nodes: transmitters, optical wavelength-routers, etc. In this paper, a new scheme of a next-generation fast tunable ring laser was given. Tunable lasers in this design have better wavelength tunability compared with others, for they are switched faster in wavelength and simpler to control with the injecting light from an external distributed Bragg-reflector(DBR). Then some discussion of the waveguide material system and coupler design of the ring laser were given. And we also derived the multimode rate equations corresponding to this scheme by analyzing some characteristics of the semiconductor ring cavity, directionality, nonlinear mode competition, optical injection locking, etc. We did MatLab simulation based on the new rate equations to research the process of mode competition and wavelength switching in the laser, and achieved the basic functions of a tunable laser. Finally some discussion of the impact of several key parameters was given.

  19. Tunable Water-based Microwave Metasurface

    DEFF Research Database (Denmark)

    Kapitanova, Polina; Odit, Mikhail; Dobrykh, Dmitry

    2017-01-01

    A water-based dynamically tunable microwave metasurface is developed and experimentally investigated. A simple approach to tune the metasurface properties by changing the shape of water-based unit cells by gravitation force is proposed. The transmission spectra of the metasurface for linear...... angle. The proposed approach can be used to design cheap metasurfaces for electromagnetic wave control in the microwave frequency range....

  20. Poly(ethylene glycol)/carbon quantum dot composite solid films exhibiting intense and tunable blue–red emission

    International Nuclear Information System (INIS)

    Hao, Yanling; Gan, Zhixing; Xu, Jiaqing; Wu, Xinglong; Chu, Paul K.

    2014-01-01

    Highlights: • Poly(ethylene glycol)/carbon quantum dots (PEG/CQDs) composite solid films exhibiting strong and tunable blue–red emission were prepared. Successful preparation of tunable emitting CQDs solid films can extend the application of carbon quantum dots in photoelectric devices. • The mechanism of the tunable emission from the PEG/CQDs composite solid films was discussed. • On the basis of the characteristics of the PL from solid films in this work, the complex PL origins of CQDs were further defined. The PL mechanism provides insights into the fluorescence mechanism of CQDs and may promotes their applications. • Poly(ethylene glycol); carbon quantum dots; Strong and tunable blue-red emission; The fluorescent quantum yield of 12.6%. - Abstract: Although carbon quantum dots (CQDs) possess excellent luminescence properties, it is a challenge to apply water-soluble CQDs to tunable luminescent devices. Herein, quaternary CQDs are incorporated into poly(ethylene glycol) to produce poly(ethylene glycol)/CQD composite solid films which exhibit strong and tunable blue–red emission. The fluorescent quantum yield reaches 12.6% which is comparable to that of many liquid CQDs and the photoluminescence characteristics are determined to elucidate the fluorescence mechanism. The CQD solid films with tunable optical properties bode well for photoelectric devices especially displays

  1. Free space broad-bandwidth tunable laser diode based on Littman configuration for 3D profile measurement

    Science.gov (United States)

    Shirazi, Muhammad Faizan; Kim, Pilun; Jeon, Mansik; Kim, Chang-Seok; Kim, Jeehyun

    2018-05-01

    We developed a tunable laser diode for an optical coherence tomography system that can perform three-dimensional profile measurement using an area scanning technique. The tunable laser diode is designed using an Eagleyard tunable laser diode with a galvano filter. The Littman free space configuration is used to demonstrate laser operation. The line- and bandwidths of this source are 0.27 nm (∼110 GHz) and 43 nm, respectively, at the center wavelength of 860 nm. The output power is 20 mW at an operating current of 150 mA. A step height target is imaged using a wide-area scanning system to show the measurement accuracy of the proposed tunable laser diode. A TEM grid is also imaged to measure the topography and thickness of the sample by proposed tunable laser diode.

  2. Experimental demonstration of water based tunable metasurface

    DEFF Research Database (Denmark)

    Odit, Mikhail; Kapitanova, Polina; Andryieuski, Andrei

    2016-01-01

    A simple dynamically tunable metasurface (two-dimensional metamaterial) operating at microwave frequencies is developed and experimentally investigated. Conceptually, the simplicity of the approach is granted by reconfigurable properties of unit cells partially filled with distilled water...

  3. Absolute Distance Measurements with Tunable Semiconductor Laser

    Czech Academy of Sciences Publication Activity Database

    Mikel, Břetislav; Číp, Ondřej; Lazar, Josef

    T118, - (2005), s. 41-44 ISSN 0031-8949 R&D Projects: GA AV ČR(CZ) IAB2065001 Keywords : tunable laser * absolute interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.661, year: 2004

  4. Get out of Fines Free: Recruiting Student Usability Testers via Fine Waivers

    Science.gov (United States)

    Hockenberry, Benjamin; Blackburn, Kourtney

    2016-01-01

    St. John Fisher College's Lavery Library's Access Services and Systems departments began a pilot project in which students with overdue fines tested usability of library Web sites in exchange for fine waivers. Circulation staff promoted the program and redeemed fine waiver vouchers at the Checkout Desk, while Systems staff administered testing and…

  5. Using MEMS Capacitive Switches in Tunable RF Amplifiers

    Directory of Open Access Journals (Sweden)

    Danson John

    2006-01-01

    Full Text Available A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA operating at GHz and GHz, and a tunable power amplifier (PA at GHz are simulated in m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining dB of gain and sub- dB noise figure. MEMS switches are used to implement a variable matching network that allows the PA to realize up to 37% PAE improvement at low input powers.

  6. Tunable negative index metamaterial using yttrium iron garnet

    International Nuclear Information System (INIS)

    He, Yongxue; He, Peng; Dae Yoon, Soack; Parimi, P.V.; Rachford, F.J.; Harris, V.G.; Vittoria, C.

    2007-01-01

    A magnetic field tunable, broadband, low-loss, negative refractive index metamaterial is fabricated using yttrium iron garnet (YIG) and a periodic array of copper wires. The tunability is demonstrated from 18 to 23 GHz under an applied magnetic field with a figure of merit of 4.2 GHz/kOe. The tuning bandwidth is measured to be 5 GHz compared to 0.9 GHz for fixed field. We measure a minimum insertion loss of 4 dB (or 5.7 dB/cm) at 22.3 GHz. The measured negative refractive index bandwidth is 0.9 GHz compared to 0.5 GHz calculated by the transfer function matrix theory and 1 GHz calculated by finite element simulation

  7. GATEWAY Report Brief: Evaluating Tunable LED Lighting in the Swedish Medical Behavioral Health Unit

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-23

    Summary of a GATEWAY report evaluation of a tunable LED lighting system installed in the new Swedish Medical Behavioral Health Unit in Seattle that incorporates color-tunable luminaires in common areas, and uses advanced controls for dimming and color tuning, with the goal of providing a better environment for staff and patients. The report reviews the design of the tunable lighting system, summarizes two sets of measurements, and discusses the circadian, energy, and commissioning implications as well as lessons learned from the project.

  8. Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Xue, Weiqi

    2010-01-01

    We propose and demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator microring resonators. The phase-shifting range and the RF-power variation are analyzed. A maximum phase-shifting range of 0~600° is achieved by utilizing a dual-microring resonator...

  9. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    International Nuclear Information System (INIS)

    Fudouzi, Hiroshi

    2011-01-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites. (topical review)

  10. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    Directory of Open Access Journals (Sweden)

    Hiroshi Fudouzi

    2011-01-01

    Full Text Available In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  11. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    Science.gov (United States)

    Fudouzi, Hiroshi

    2011-01-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites. PMID:27877454

  12. Tunable dispersion compensator based on uniform fiber Bragg grating and its application to tunable pulse repetition-rate multiplication.

    Science.gov (United States)

    Han, Young-Geun; Lee, Sang

    2005-11-14

    A new technique to control the chromatic dispersion of a uniform fiber Bragg grating based on the symmetrical bending is proposed and experimentally demonstrated. The specially designed two translation stages with gears and a sawtooth wheel can simultaneously induce the tension and compression strain corresponding to the bending direction. The tension and compression strain can effectively control the chirp ratio along the fiber grating attached on a flexible cantilever beam and consequently the dispersion value without the center wavelength shift. We successfully achieve the wide tuning range of chromatic dispersion without the center wavelength shift, which is less than 0.02 nm. We also reduce the group delay ripple as low as ~+/-5 ps. And we also demonstrate the application of the proposed tunable dispersion compensation technique to the tunable pulse repetition-rate multiplication and obtain high-quality pulses at repetition rates of 20 ~ 40 GHz.

  13. Computer control of pulsed tunable dye lasers

    International Nuclear Information System (INIS)

    Thattey, S.S.; Dongare, A.S.; Suri, B.M.; Nair, L.G.

    1992-01-01

    Pulsed tunable dye lasers are being used extensively for spectroscopic and photo-chemical experiments, and a system for acquisition and spectral analysis of a volume of data generated will be quite useful. The development of a system for wavelength tuning and control of tunable dye lasers and an acquisition system for spectral data generated in experiments with these lasers are described. With this system, it is possible to control the tuning of three lasers, and acquire data in four channels, simultaneously. It is possible to arrive at the desired dye laser wavelength with a reproducibility of ± 0.012 cm -1 , which is within the absorption width (atomic interaction) caused by pulsed dye lasers of linewidth 0.08 cm -1 . The spectroscopic data generated can be analyzed for spectral identification within absolute accuracy ± 0.012 cm -1 . (author). 6 refs., 11 figs

  14. Tunable Nitride Josephson Junctions.

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lewis, Rupert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfley, Steven L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolak, Matthaeus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.

  15. External-cavity high-power dual-wavelength tapered amplifier with tunable THz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    A tunable 800 nm high-power dual-wavelength diode laser system with double-Littrow external-cavity feedback is demonstrated. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. A maximum output power of 1.54 W is achie......A tunable 800 nm high-power dual-wavelength diode laser system with double-Littrow external-cavity feedback is demonstrated. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. A maximum output power of 1.54 W...... is achieved with a frequency difference of 0.86 THz, the output power is higher than 1.3 W in the 5.0 THz range of frequency difference, and the amplified spontaneous emission intensity is more than 20 dB suppressed in the range of frequency difference. The beam quality factor M2 is 1.22±0.15 at an output...

  16. Molecular mechanism of reflectin's tunable biophotonic control: Opportunities and limitations for new optoelectronics

    Science.gov (United States)

    Levenson, Robert; DeMartini, Daniel G.; Morse, Daniel E.

    2017-10-01

    Discovery that reflectin proteins fill the dynamically tunable Bragg lamellae in the reflective skin cells of certain squids has prompted efforts to design new reflectin-inspired systems for dynamic photonics. But new insights into the actual role and mechanism of action of the reflectins constrain and better define the opportunities and limitations for rationally designing optical systems with reflectin-based components. We and our colleagues have discovered that the reflectins function as a signal-controlled molecular machine, regulating an osmotic motor that tunes the thickness, spacing, and refractive index of the tunable, membrane-bound Bragg lamellae in the iridocytes of the loliginid squids. The tunable reflectin proteins, characterized by a variable number of highly conserved peptide domains interspersed with positively charged linker segments, are restricted in intra- and inter-chain contacts by Coulombic repulsion. Physiologically, this inhibition is progressively overcome by charge-neutralization resulting from acetylcholine (neurotransmitter)-induced, site-specific phosphorylation, triggering the simultaneous activation and progressive tuning of reflectance from red to blue. Details of this process have been resolved through in vitro analyses of purified recombinant reflectins, controlling charge-neutralization by pH-titration or mutation as surrogates for the in vivo phosphorylation. Results of these analyses have shown that neutralization overcoming the Coulombic inhibition reversibly and cyclably triggers condensation and secondary folding of the reflectins, with the emergence of previously cryptic, phase-segregated hydrophobic domains enabling hierarchical assembly. This tunable, reversible, and cyclable assembly regulates the Gibbs-Donnan mediated osmotic shrinking or swelling of the Bragg lamellae that tunes the brightness and color of reflected light. Our most recent studies have revealed a direct relationship between the extent of charge

  17. Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding

    DEFF Research Database (Denmark)

    Peng, J. H.; Sokolov, A. V.; Benabid, F.

    2010-01-01

    We report on a means to generate tunable ultrashort optical pulses. We demonstrate that dispersive waves generated by solitons within the small-core features of a photonic crystal fiber cladding can be used to obtain femtosecond pulses tunable over an octave-wide spectral range. The generation...... process is highly efficient and occurs at the relatively low laser powers available from a simple Ti:sapphire laser oscillator. The described phenomenon is general and will play an important role in other systems where solitons are known to exist....

  18. Anne Fine

    Directory of Open Access Journals (Sweden)

    Philip Gaydon

    2015-04-01

    Full Text Available An interview with Anne Fine with an introduction and aside on the role of children’s literature in our lives and development, and our adult perceptions of the suitability of childhood reading material. Since graduating from Warwick in 1968 with a BA in Politics and History, Anne Fine has written over fifty books for children and eight for adults, won the Carnegie Medal twice (for Goggle-Eyes in 1989 and Flour Babies in 1992, been a highly commended runner-up three times (for Bill’s New Frock in 1989, The Tulip Touch in 1996, and Up on Cloud Nine in 2002, been shortlisted for the Hans Christian Andersen Award (the highest recognition available to a writer or illustrator of children’s books, 1998, undertaken the positon of Children’s Laureate (2001-2003, and been awarded an OBE for her services to literature (2003. Warwick presented Fine with an Honorary Doctorate in 2005. Philip Gaydon’s interview with Anne Fine was recorded as part of the ‘Voices of the University’ oral history project, co-ordinated by Warwick’s Institute of Advanced Study.

  19. Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback

    International Nuclear Information System (INIS)

    Zhao Mao-Rong; Wu Zheng-Mao; Deng Tao; Zhou Zhen-Li; Xia Guang-Qiong

    2015-01-01

    Based on a semiconductor laser (SL) with incoherent optical feedback, a novel all-optical scheme for generating tunable and broadband microwave frequency combs (MFCs) is proposed and investigated numerically. The results show that, under suitable operation parameters, the SL with incoherent optical feedback can be driven to operate at a regular pulsing state, and the generated MFCs have bandwidths broader than 40 GHz within a 10 dB amplitude variation. For a fixed bias current, the line spacing (or repetition frequency) of the MFCs can be easily tuned by varying the feedback delay time and the feedback strength, and the tuning range of the line spacing increases with the increase in the bias current. The linewidth of the MFCs is sensitive to the variation of the feedback delay time and the feedback strength, and a linewidth of tens of KHz can be achieved through finely adjusting the feedback delay time and the feedback strength. In addition, mappings of amplitude variation, repetition frequency, and linewidth of MFCs in the parameter space of the feedback delay time and the feedback strength are presented. (paper)

  20. Aspects of High-Q Tunable Antennas and Their Deployment for 4G Mobile Communications

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Jagielski, Ole; Svendsen, Simon

    2016-01-01

    Tunable antennas are very promising for future generations of mobile communications, where broad frequency coverage will be required increasingly. This work describes the design of small high-Quality factor (Q) tunable antennas based on Micro-Electro-Mechanical Systems (MEMS), which are capable...... of operation in the frequency ranges 600 - 960 MHz and 1710 - 2690 MHz. Some aspects of high-Q tunable antennas are investigated through experimental measurements and the result are presented. Results show that more than -30 dB of isolation can be achieved between the Transmit (Tx) and Receive (Rx) antennas...

  1. Photon energy tunability of advanced photon source undulators

    International Nuclear Information System (INIS)

    Viccaro, P.J.; Shenoy, G.K.

    1987-08-01

    At a fixed storage ring energy, the energy of the harmonics of an undulator can be shifted or ''tuned'' by changing the magnet gap of the device. The possible photon energy interval spanned in this way depends on the undulator period, minimum closed gap, minimum acceptable photon intensity and storage ring energy. The minimum magnet gap depends directly on the stay clear particle beam aperture required for storage ring operation. The tunability of undulators planned for the Advanced Photon Source with first harmonic photon energies in the range of 5 to 20 keV are discussed. The results of an analysis used to optimize the APS ring energy is presented and tunability contours and intensity parameters are presented for two typical classes of devices

  2. Development of novel segmented-plate linearly tunable MEMS capacitors

    International Nuclear Information System (INIS)

    Shavezipur, M; Khajepour, A; Hashemi, S M

    2008-01-01

    In this paper, novel MEMS capacitors with flexible moving electrodes and high linearity and tunability are presented. The moving plate is divided into small and rigid segments connected to one another by connecting beams at their end nodes. Under each node there is a rigid step which selectively limits the vertical displacement of the node. A lumped model is developed to analytically solve the governing equations of coupled structural-electrostatic physics with mechanical contact. Using the analytical solver, an optimization program finds the best set of step heights that provides the highest linearity. Analytical and finite element analyses of two capacitors with three-segmented- and six-segmented-plate confirm that the segmentation technique considerably improves the linearity while the tunability remains as high as that of a conventional parallel-plate capacitor. Moreover, since the new designs require customized fabrication processes, to demonstrate the applicability of the proposed technique for standard processes, a modified capacitor with flexible steps designed for PolyMUMPs is introduced. Dimensional optimization of the modified design results in a combination of high linearity and tunability. Constraining the displacement of the moving plate can be extended to more complex geometries to obtain smooth and highly linear responses

  3. Tunable bead-on-string microstructures fabricated by mechano-electrospinning

    International Nuclear Information System (INIS)

    Bu Ningbin; Huang Yongan; Deng Huixu; Yin Zhouping

    2012-01-01

    In this paper, bead-on-string microstructures are fabricated by the mechano-electrospinning (MES) process in a continuously tunable manner. The thin jet is pulled onto the substrate by the stable electric field force and tunable mechanical drawing force, and then the bead-on-string structures are generated by means of the force exerted on the jet, which changes from capillary force and resisting viscosity force to friction force at the contact point in the horizontal direction. In a stable bead-on-string formation process, one cycle can be divided into three stages from the point of view of the jet behaviour: being anchored, being stretched, and skipping. The bead size and the bead gap are continuously tunable through the MES process. The fabrication mechanisms of the bead-on-string microstructure are uncovered through theoretical analysis and experimental characterization. When a critical velocity is achieved, the jet directly falls on the substrate without accumulation since the mechanical drawing force in the horizontal direction overtakes the capillary force, which leads the bead-on-string microstructures to a continuous fibre line. It is a flexible and highly controllable method to fabricate bead-on-string microstructures.

  4. Functionalized graphene/silicon chemi-diode H₂ sensor with tunable sensitivity.

    Science.gov (United States)

    Uddin, Md Ahsan; Singh, Amol Kumar; Sudarshan, Tangali S; Koley, Goutam

    2014-03-28

    A reverse bias tunable Pd- and Pt-functionalized graphene/Si heterostructure Schottky diode H2 sensor has been demonstrated. Compared to the graphene chemiresistor sensor, the chemi-diode sensor offers more than one order of magnitude higher sensitivity as the molecular adsorption induced Schottky barrier height change causes the heterojunction current to vary exponentially in reverse bias. The reverse bias operation also enables low power consumption, as well as modulation of the atomically thin graphene's Fermi level, leading to tunable sensitivity and detection of H₂ down to the sub-ppm range.

  5. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Lani, Shane W., E-mail: shane.w.lani@gmail.com, E-mail: karim.sabra@me.gatech.edu, E-mail: levent.degertekin@me.gatech.edu; Sabra, Karim G. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); Wasequr Rashid, M.; Hasler, Jennifer [School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States); Levent Degertekin, F. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States)

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  6. Tunability of optofluidic distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We investigate the tunability of optofluidic distributed feedback (DFB) dye lasers. The lasers rely on light-confinement in a nano-structured polymer film where an array of nanofluidic channels constitutes a third order Bragg grating DFB laser resonator with a central phase-shift. The lasers...... are operated by filling the DFB laser resonator with a dye solution by capillary action and optical pumping with a frequency doubled Nd: YAG laser. The low reflection order of the DFB laser resonator yields low out-of-plane scattering losses as well as a large free spectral range (FSR), and low threshold...... fluences down to similar to 7 mu J/mm2 are observed. The large FSR facilitates wavelength tuning over the full gain spectrum of the chosen laser dye and we demonstrate 45 nm tunability using a single laser dye by changing the grating period and dye solution refractive index. The lasers are straight...

  7. On Applicability of Tunable Filter Bank Based Feature for Ear Biometrics: A Study from Constrained to Unconstrained.

    Science.gov (United States)

    Chowdhury, Debbrota Paul; Bakshi, Sambit; Guo, Guodong; Sa, Pankaj Kumar

    2017-11-27

    In this paper, an overall framework has been presented for person verification using ear biometric which uses tunable filter bank as local feature extractor. The tunable filter bank, based on a half-band polynomial of 14th order, extracts distinct features from ear images maintaining its frequency selectivity property. To advocate the applicability of tunable filter bank on ear biometrics, recognition test has been performed on available constrained databases like AMI, WPUT, IITD and unconstrained database like UERC. Experiments have been conducted applying tunable filter based feature extractor on subparts of the ear. Empirical experiments have been conducted with four and six subdivisions of the ear image. Analyzing the experimental results, it has been found that tunable filter moderately succeeds to distinguish ear features at par with the state-of-the-art features used for ear recognition. Accuracies of 70.58%, 67.01%, 81.98%, and 57.75% have been achieved on AMI, WPUT, IITD, and UERC databases through considering Canberra Distance as underlying measure of separation. The performances indicate that tunable filter is a candidate for recognizing human from ear images.

  8. Enhanced photoconductivity and fine response tuning in nanostructured porous silicon microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Urteaga, R; MarIn, O; Acquaroli, L N; Schmidt, J A; Koropecki, R R [INTEC-UNL-CONICET, Guemes 3450 - 3000 Santa Fe (Argentina); Comedi, D, E-mail: rkoro@intec.ceride.gov.a [CONICET y LAFISO, Departamento de Fisica, FACET, Universidad Nacional de Tucuman (Argentina)

    2009-05-01

    We used light confinement in optical microcavities to achieve a strong enhancement and a precise wavelength tunability of the electrical photoconductance of nanostructured porous silicon (PS). The devices consist of a periodic array of alternating PS layers, electrochemically etched to have high and low porosities - and therefore distinct dielectric functions. A central layer having a doubled thickness breaks up the symmetry of the one-dimensional photonic structure, producing a resonance in the photonic band gap that is clearly observed in the reflectance spectrum. The devices were transferred to a glass coated with a transparent SnO{sub 2} electrode, while an Al contact was evaporated on its back side. The electrical conductance was measured as a function of the photon energy. A strong enhancement of the conductance is obtained in a narrow (17nm FWHM) band peaking at the resonance. We present experimental results of the angular dependence of this photoconductance peak energy, and propose an explanation of the conductivity behaviour supported by calculations of the internal electromagnetic field. These devices are promising candidates for finely tuned photoresistors with potential application as chemical sensors and biosensors.

  9. Electronic Structure Approach to Tunable Electronic Properties of Hybrid Organic-Inorganic Perovskites

    Science.gov (United States)

    Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker

    We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.

  10. Tunable Absorption System based on magnetorheological elastomers and Halbach array: design and testing

    Energy Technology Data Exchange (ETDEWEB)

    Bocian, Mirosław; Kaleta, Jerzy; Lewandowski, Daniel, E-mail: daniel.lewandowski@pwr.edu.pl; Przybylski, Michał

    2017-08-01

    Highlights: • Construction of a Tunable Absorption System incorporating MRE has been done. • For system control by magnetic field a double circular Halbach array has been used. • Significant changes of the TSAs natural frequency and damping has been obtained. - Abstract: In this paper, the systematic design, construction and testing of a Tunable Absorption System (TAS) incorporating magnetorheological elastomer (MRE) has been investigated. The TAS has been designed for energy absorption and mitigation of vibratory motions from an impact excitation. The main advantage of the designed TAS is that it has the ability to change and adapt to working conditions. Tunability can be realised through a change in the magnetic field caused by the change of an internal arrangement of permanent magnets within a double dipolar circular Halbach array. To show the capabilities of the tested system, experiments based on an impulse excitation have been performed. Significant changes of the TASs natural frequency and damping characteristics have been obtained. By incorporating magnetic tunability within the TAS a significant qualitative and quantitative change in the devices mechanical properties and performance were obtained.

  11. Designed synthesis of tunable amorphous carbon nanotubes (a ...

    Indian Academy of Sciences (India)

    Administrator

    Page 1. Electronic Supplementary Material. Graphical abstract. Designed synthesis of tunable amorphous carbon nanotubes (a-CNTs) by a novel route and their oxidation resistance properties by Longlong. Xu et al (pp 1397–1402).

  12. Controllable asymmetric transmission via gap-tunable acoustic metasurface

    Science.gov (United States)

    Liu, Bingyi; Jiang, Yongyuan

    2018-04-01

    In this work, we utilize the acoustic gradient metasurface (AGM) of a bilayer configuration to realize the controllable asymmetric transmission. Relying on the adjustable gap between the two composing layers, the metasurface could switch from symmetric transmission to asymmetric transmission at a certain gap value. The underlying mechanism is attributed to the interference between the forward diffracted waves scattered by the surface bound waves at two air-AGM interfaces, which is apparently influenced by the interlayer distance. We further utilize the hybrid acoustic elements to construct the desired gradient metasurface with a tunable gap and validate the controllable asymmetric transmission with full-wave simulations. Our work provides the solution for actively controlling the transmission property of an acoustic element, which shows potential application in acoustic communication as a dynamic tunable acoustic diode.

  13. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Sabloff, J.A.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  14. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  15. Widely-duration-tunable nanosecond pulse Nd:YVO4 laser based on double Pockels cells

    Science.gov (United States)

    He, Li-Jiao; Liu, Ke; Bo, Yong; Wang, Xiao-Jun; Yang, Jing; Liu, Zhao; Zong, Qing-Shuang; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan

    2018-05-01

    The development of duration-tunable pulse lasers with constant output power is important for scientific research and materials processing. We present a widely-duration-tunable nanosecond (ns) pulse Nd:YVO4 laser based on double Pockels cells (PCs), i.e. inserting an extra PC into a conventional electro-optic Q-switched cavity dumped laser resonator. Under the absorbed pump power of 24.9 W, the pulse duration is adjustable from 31.9 ns to 5.9 ns by changing the amplitude of the high voltage on the inserted PC from 1100 V to 4400 V at the pulse repetition rate of 10 kHz. The corresponding average output power is almost entirely maintained in the range of 3.5–4.1 W. This represents more than three times increase in pulse duration tunable regime and average power compared to previously reported results for duration-tunable ns lasers. The laser beam quality factor was measured to be M 2  <  1.18.

  16. A simple, tunable, and highly sensitive radio-frequency sensor.

    Science.gov (United States)

    Cui, Yan; Sun, Jiwei; He, Yuxi; Wang, Zheng; Wang, Pingshan

    2013-08-05

    We report a radio frequency (RF) sensor that exploits tunable attenuators and phase shifters to achieve high-sensitivity and broad band frequency tunability. Three frequency bands are combined to enable sensor operations from ∼20 MHz to ∼38 GHz. The effective quality factor ( Q eff ) of the sensor is as high as ∼3.8 × 10 6 with 200  μ l of water samples. We also demonstrate the measurement of 2-proponal-water-solution permittivity at 0.01 mole concentration level from ∼1 GHz to ∼10 GHz. Methanol-water solution and de-ionized water are used to calibrate the RF sensor for the quantitative measurements.

  17. Continuous-wave diode-pumped Yb 3+:LYSO tunable laser

    Science.gov (United States)

    Du, Juan; Liang, Xiaoyan; Xu, Yi; Li, Ruxin; Yan, Chengfeng; Zhao, Guangjun; Su, Liangbi; Xu, Jun; Xu, Zhizhan

    2007-01-01

    A new alloyed crystal, Yb:LYSO, has been grown by the Czochralski method in our institute for the first time, and its effective diode-pumped cw tunable laser action was demonstrated. The alloyed crystal retains excellent laser properties of LSO with reduced growth cost, as well as the favorable growth properties of YSO. With a 5-at.% Yb:LYSO sample, we achieved 2.84 W output power at 1085 nm and a slope efficiency of 63.5%. And its laser wavelength could be tuned over a range broader than 80nm, from 1030nm to 1111 nm. This is the broadest tunable range achieved for Yb:LYSO laser, as far as we know.

  18. Tunable quantum interference in a 3D integrated circuit.

    Science.gov (United States)

    Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J

    2015-04-27

    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.

  19. Quasi-Airy beams along tunable propagation trajectories and directions.

    Science.gov (United States)

    Qian, Yixian; Zhang, Site

    2016-05-02

    We present a theoretical and experimental exhibit that accelerates quasi-Airy beams propagating along arbitrarily appointed parabolic trajectories and directions in free space. We also demonstrate that such quasi-Airy beams can be generated by a tunable phase pattern, where two disturbance factors are introduced. The topological structures of quasi-Airy beams are readily manipulated with tunable phase patterns. Quasi-Airy beams still possess the characteristics of non-diffraction, self-healing to some extent, although they are not the solutions for paraxial wave equation. The experiments show the results are consistent with theoretical predictions. It is believed that the property of propagation along arbitrarily desired parabolic trajectories will provide a broad application in trapping atom and living cell manipulation.

  20. A Tunable Polarization-Dependent Terahertz Metamaterial Absorber Based on Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Guangsheng Deng

    2018-02-01

    Full Text Available In this paper, a tunable polarization-dependent terahertz (THz metamaterial absorber based on liquid crystal (LC is presented. The measurement results show that absorption peak is at 239.5 GHz for a TE-polarized wave and 306.6 GHz for a TM-polarized wave, without exerting the bias voltage on the LC layer. An increase in bias voltage affects the orientation of LC molecules and causes redshifted resonant frequencies. By adjusting the bias voltage from 0 to 10 V, frequency tunabilities of 4.7% and 4.1% for TE- and TM-polarized waves, respectively, were experimentally demonstrated. Surface current and power loss distribution was analyzed to explain the physical mechanism of the absorber, while the absorption dependence on geometrical parameters and incident angles was also studied in detail. According to the obtained results, the proposed absorber is shown here to be capable of achieving tunable polarization-dependent absorption, and to have potential application in terahertz polarization imaging, terahertz sensing, and polarization multiplexing.

  1. 3-4.5 μm continuously tunable single mode VECSEL

    Science.gov (United States)

    Fill, M.; Felder, F.; Rahim, M.; Khiar, A.; Zogg, H.

    2012-11-01

    We present continuously tunable Vertical External Cavity Surface Emitting Lasers (VECSEL) in the mid-infrared. The structure based on IV-VI semiconductors is epitaxially grown on a Si-substrates. The VECSEL emit one single mode, which is mode hop-free tunable over 50-100 nm around the center wavelength. In this work, two different devices are presented, emitting at 3.4 μm and 3.9 μm, respectively. The lasers operate near room temperature with thermoelectric stabilization. They are optically pumped, yielding an output power >10 mWp. The axial symmetric emission beam has a half divergence angle of <3.3∘.

  2. Mid-Infrared Tunable Resonant Cavity Enhanced Detectors

    Directory of Open Access Journals (Sweden)

    Hans Zogg

    2008-09-01

    Full Text Available Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 μm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 μm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA.

  3. Tunable driver for the LLNL FEL experiment

    International Nuclear Information System (INIS)

    Guss, W.C.; Basten, M.A.; Kreischer, K.E.; Temkin, R.J.

    1991-07-01

    This report describes main activities undertaken during the period 1 June 1990 to 1 June 1991 by MIT to support the Lawrence Livermore National Laboratory tunable FEL driver project. The goal of this research was to further characterize a tunable microwave source (already identified as a BWO-gyrotron) of moderate output power (10--20 kW). In the 1989 fiscal year, the source was assembled at MIT and initial tests were conducted. Proposed for the fiscal year 1990 were analysis of the previous experimental results, and the performance of new experiments designed to increase the voltage tuning range, the output efficiency, and magnetic field tuning. During the report period the previous experimental results were analyzed and compared to computational results and new components were designed, to make the BWO ready for further experiments. In addition, the BWO-gyrotron was mounted in a new superconducting magnet and initial magnetic field profile measurements were made

  4. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    Science.gov (United States)

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-05

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.

  5. Tunable emission in surface passivated Mn-ZnS nanophosphors and its application for Glucose sensing

    Directory of Open Access Journals (Sweden)

    Manoj Sharma

    2012-03-01

    Full Text Available The present work describes the tunable emission in inorganic-organic hybrid NPs which can be useful for optoelectronic and biosensing applications. In this work, Mn- ZnS nanoparticles emitting various colors, including blue and orange, were synthesized by simple chemical precipitation method using chitosan as a capping agent. Earlier reports describe that emission color characteristics in nanoparticles are tuned by varying particle size and with doping concentration. Here in this article tunable emission has been achieved by varying excitation wavelength in a single sample. This tunable emission property with high emission intensity was further achieved by changing capping concentration keeping host Mn-ZnS concentration same. Tunable emission is explained by FRET mechanism. Commission Internationale de l’Eclairage (CIE chromaticity coordinates shifts from (0.273, 0.20 and (0.344, 0.275 for same naocrystals by suitably tuning excitation energy from higher and lower ultra-violet (UV range. Synthesized nanoparticles have been characterized by X-ray diffraction, SEM, HRTEM, UV- Visible absorption and PL spectroscopy for structural and optical studies. Using tunable emission property, these highly emissive nanoparticles functionalized with biocompatible polymer chitosan were further used for glucose sensing applications.

  6. New Temperature-Insensitive Electronically-Tunable Grounded Capacitor Simulator

    OpenAIRE

    Abuelma'atti, Muhammad Taher; Khan, Muhammad Haroon

    1996-01-01

    A new circuit for simulating a grounded capacitor is presented. The circuit uses one operationalamplifier (OA), three operational-transconductance amplifiers (OTAs), and one capacitor. The realized capacitor is temperature-insensitive and electronically tunable. Experimental results are included.

  7. Tunable all-optical devices based on liquid-filled photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis; Neshev, Dragomir N.

    of discrete and nonlinear light propagation in extended two-dimensional periodic systems. We experimentally demonstrate strongly tunable beam diffraction in a triangular waveguide array created by infiltration of a high index liquid into the cladding holes of a standard PCF, and employ the thermal...... high-precision fabrication procedures, and provides high tunability and nonlinearity at moderate laser powers while taking advantage of a compact experimental setup. The increasingly broad range of PCF structures available could stimulate further efforts in applying them in discrete nonlinear optics...

  8. Wavelength-tunable laser based on nonlinear dispersive-wave generation in a tapered optical waveguide

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a method and a wavelength tunable laser comprising a first laser source configured to emit a first optical pulse having a pump wavelength, the first optical pulse being emitted in a first longitudinal direction. Furthermore, the wavelength tunable laser comprises...... a waveguide extending in the first longitudinal direction, the waveguide having longitudinally varying phase matching conditions, the waveguide being configured to generate a second optical pulse with a centre wavelength upon receiving the first optical pulse, wherein the wavelength tunable laser...... is configured to tune the centre wavelength of the second optical pulse by varying at least one pulse property of the first optical pulse....

  9. Impact of the electrode material and shape on performance of intrinsically tunable ferroelectric FBARs.

    Science.gov (United States)

    Vorobiev, Andrei; Gevorgian, Spartak

    2014-05-01

    Experiment-based analysis of losses in tunable ferroelectric xBiFeO3-(1-x)BaTiO3 (BF-BT) film bulk acoustic wave resonators (FBARs) is reported. The Q-factors, effective coupling coefficients, and tunabilities are considered as functions of surface roughness of the ferroelectric film, the acoustic impedance and shape of the electrodes/interconnecting strips, leakage of acoustic waves into the substrate via Bragg reflector, and the relative thicknesses of the electrodes and ferroelectric film. Compared with Al, the high acoustic impedance of Pt electrodes provides higher Q-factor, coupling coefficient, and tunability. However, using Pt in the interconnecting strips results in reduction of the Q-factor.

  10. Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wei, Lei; Alkeskjold, Thomas Tanggaard

    2009-01-01

    We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used to demons......We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used...... to demonstrate that both signs of the thermal tunability of the bandgaps are possible. The useful bandgaps are ultimately bounded to the visible range by the transparency window of the polymer....

  11. An X-band Schottky diode mixer in SiGe technology with tunable Marchand balun

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2017-01-01

    In this paper, we propose a double balanced mixer with a tunable Marchand balun. The circuit is designed in a SiGe BiCMOS process using Schottky diodes. The tunability of the Marchand balun is used to enhance critical parameters for double balanced mixers. The local oscillator-IF isolation can...

  12. Sahara Coal: the fine art of collecting fines for profit

    Energy Technology Data Exchange (ETDEWEB)

    Schreckengost, D.; Arnold, D.

    1984-09-01

    Because of a change in underground mining methods that caused a considerable increase in the amount of fine sizes in the raw coal, Sahara Coal Co. designed and constructed a unique and simple fine coal system at their Harrisburg, IL prep plant. Before the new system was built, the overload of the fine coal circuit created a cost crunch due to loss of salable coal to slurry ponds, slurry pond cleaning costs, and operating and maintenance costs--each and every one excessive. Motivated by these problems, Sahara designed a prototype system to dewater the minus 28 mesh refuse. The success of the idea permitted fine refuse to be loaded onto the coarse refuse belt. Sahara also realized a large reduction in pond cleaning costs. After a period of testing, an expanded version of the refuse system was installed to dewater and dry the 28 mesh X 0 clean coal. Clean coal output increased about 30 tph. Cost savings justified the expenditures for the refuse and clean coal systems. These benefits, combined with increased coal sales revenue, paid back the project costs in less than a year.

  13. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-oninsulator microring resonator

    DEFF Research Database (Denmark)

    Lloret, Juan; Sancho, Juan; Pu, Minhao

    2011-01-01

    A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploit...

  14. Highly Tunable Electrothermally Actuated Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated MEMS arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and results of a multi-physics finite-element model. A good agreement is found among all the results. The electrothermal voltage is applied between the anchors of the clamped-clamped MEMS arch beam, generating a current that passes through the MEMS arch beam and controls its axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to increase in its curvature, thereby increases the resonance frequencies of the structure. We show here that the first resonance frequency can increase up to twice its initial value. We show also that after some electro-thermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators.

  15. Novel Tunable Dye Laser for Lidar Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A tunable dye laser for Lidar detection will be fabricated based on the innovative dye-doped Holographic Polymer Dispersed Liquid Crystals (HPDLC) technology. The...

  16. Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control

    Science.gov (United States)

    Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.

  17. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    Science.gov (United States)

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  18. Functionalized graphene/silicon chemi-diode H2 sensor with tunable sensitivity

    International Nuclear Information System (INIS)

    Uddin, Md Ahsan; Singh, Amol Kumar; Sudarshan, Tangali S; Koley, Goutam

    2014-01-01

    A reverse bias tunable Pd- and Pt-functionalized graphene/Si heterostructure Schottky diode H 2 sensor has been demonstrated. Compared to the graphene chemiresistor sensor, the chemi-diode sensor offers more than one order of magnitude higher sensitivity as the molecular adsorption induced Schottky barrier height change causes the heterojunction current to vary exponentially in reverse bias. The reverse bias operation also enables low power consumption, as well as modulation of the atomically thin graphene’s Fermi level, leading to tunable sensitivity and detection of H 2 down to the sub-ppm range. (paper)

  19. Tunable all-optical plasmonic rectifier in nanoscale metal-insulator-metal waveguides.

    Science.gov (United States)

    Xu, Yi; Wang, Xiaomeng; Deng, Haidong; Guo, Kangxian

    2014-10-15

    We propose a tunable all-optical plasmonic rectifier based on the nonlinear Fano resonance in a metal-insulator-metal plasmonic waveguide and cavities coupling system. We develop a theoretical model based on the temporal coupled-mode theory to study the device physics of the nanoscale rectifier. We further demonstrate via the finite difference time domain numerical experiment that our idea can be realized in a plasmonic system with an ultracompact size of ~120×800  nm². The tunable plasmonic rectifier could facilitate the all-optical signal processing in nanoscale.

  20. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    Science.gov (United States)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  1. A tunable hybrid metamaterial absorber based on vanadium oxide films

    International Nuclear Information System (INIS)

    Wen Qiye; Zhang Huaiwu; Yang Qinghui; Long Yang; Jing Yulan; Lin Yuan; Chen Zhi; Zhang Peixin

    2012-01-01

    A tunable hybrid metamaterial absorber (MA) in the microwave band was designed, fabricated and characterized. The hybrid MA was realized by incorporating a VO 2 film into the conventional resonant MA. By thermally triggering the insulator-metal phase transition of the VO 2 film, the impedance match condition was broken and a deep amplitude modulation of about 63.3% to the electromagnetic wave absorption was achieved. A moderate blue-shift of the resonance frequency was observed which is promising for practical applications. This VO 2 -based MA exhibits many advantages such as strong tunability, frequency agility, simple fabrication and ease of scaling to the terahertz band. (paper)

  2. Tunable Microfluidic Devices for Hydrodynamic Fractionation of Cells and Beads: A Review

    Directory of Open Access Journals (Sweden)

    Jafar Alvankarian

    2015-11-01

    Full Text Available The adjustable microfluidic devices that have been developed for hydrodynamic-based fractionation of beads and cells are important for fast performance tunability through interaction of mechanical properties of particles in fluid flow and mechanically flexible microstructures. In this review, the research works reported on fabrication and testing of the tunable elastomeric microfluidic devices for applications such as separation, filtration, isolation, and trapping of single or bulk of microbeads or cells are discussed. Such microfluidic systems for rapid performance alteration are classified in two groups of bulk deformation of microdevices using external mechanical forces, and local deformation of microstructures using flexible membrane by pneumatic pressure. The main advantage of membrane-based tunable systems has been addressed to be the high capability of integration with other microdevice components. The stretchable devices based on bulk deformation of microstructures have in common advantage of simplicity in design and fabrication process.

  3. Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.

    Science.gov (United States)

    Boire, Timothy C; Gupta, Mukesh K; Zachman, Angela L; Lee, Sue Hyun; Balikov, Daniel A; Kim, Kwangho; Bellan, Leon M; Sung, Hak-Joon

    2015-09-01

    Thermo-responsive shape memory polymers (SMPs) can be programmed to fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly(ε-caprolactone)-co-y%(α-allyl carboxylate ε-caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit highly elastic, switch-like shape recovery near 37°C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. With the ongoing thrust to make surgeries minimally-invasive, it is prudent to develop new biomaterials that are highly compatible and effective in this workflow. Thermo-responsive shape memory polymers (SMPs) have great potential for minimally-invasive applications because SMP medical devices (e.g. stents, grafts) can fit into small-bore minimally-invasive surgical devices and recover their functional shape when deployed in the body. To realize their potential, it is imperative to devise

  4. Microcavity-coupled fiber Bragg grating with tunable reflection spectra and speed of light.

    Science.gov (United States)

    Chen, Lei; Han, Ya; Liu, Qian; Liu, Yan-Ge; Zhang, Weigang; Chou, Keng C

    2018-04-15

    After a fiber Bragg grating (FBG) is fabricated, the reflection spectrum of the FBG is generally not tunable without mechanical deformation or temperature adjustment. Here we present a microcavity-coupled FBG with both a tunable reflection lineshape and dispersion using electromagnetically induced transparency. The Fano interference of light in the FBG and the microcavity allows for dramatic modification of the reflection spectrum. The phase of the reflected spectrum is continuously tunable between 0 and 2π to produce various Fano lineshapes. The dispersion of the output light is adjustable from normal dispersion to abnormal dispersion, consequently providing an adjustable speed of light. Additionally, it allows the FBG to switch from a notch filter to a bandpass filter at the resonant wavelength, which is not possible in a conventional uniform FBG.

  5. High-power dual-wavelength external-Cavity diode laser based on tapered amplifier with tunable terahertz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2011-01-01

    Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5:0 THz......, this is the highest output power from a dual-wavelength diode laser system operating with tunable terahertz frequency difference. © 2011 Optical Society of America....

  6. Long range surface plasmon resonance enhanced electro-optically tunable Goos-Hänchen shift and Imbert-Fedorov shift in ZnSe prism

    Science.gov (United States)

    Goswami, Nabamita; Kar, Aparupa; Saha, Ardhendu

    2014-11-01

    A new theoretical approach towards the tuning of Goos-Hänchen shift and Imbert-Fedorov shift for the reflected light beam is observed, designed and simulated in this paper through electro-optically tunable liquid crystal at an incident wavelength of 1550 nm within the communication window. Here the considered Kretschmann-Raether geometry comprises a ZnSe prism and a liquid crystal layer of E44 between two metal layers of silver, where with the application of electric field from (0-10) V electro-optically tuning of the Goos-Hänchen shift from 64.09 μm to -53.408 μm and the Imbert-Fedorov shift from 122.8 μm to -32.5 μm for a change in refractive index of the liquid crystal layer from 1.52-1.79 are envisaged. This idea expedites the scope of fine tuning in optical switching within the μm ranges.

  7. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  8. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  9. Split-disk micro-lasers: Tunable whispering gallery mode cavities

    Directory of Open Access Journals (Sweden)

    T. Siegle

    2017-09-01

    Full Text Available Optical micro-cavities of various types have emerged as promising photonic structures, for both the investigation of fundamental science in cavity quantum electrodynamics and simultaneously for various applications, e.g., lasers, filters, or modulators. In either branch a demand for adjustable and tunable photonic devices becomes apparent, which has been mainly based on the modification of the refractive index of the micro-resonators so far. In this paper, we report on a novel type of whispering gallery mode resonator where resonance tuning is achieved by modification of the configuration. This is realized by polymeric split-disks consisting of opposing half-disks with an intermediate air gap. Functionality of the split-disk concept and its figures of merit like low-threshold lasing are demonstrated for laser dye-doped split-disks fabricated by electron beam lithography on Si substrates. Reversible resonance tuning is achieved for split-disks structured onto elastomeric substrates by direct laser writing. The gap width and hence the resonance wavelength can be well-controlled by mechanically stretching the elastomer and exploiting the lateral shrinkage of the substrate. We demonstrate a broad spectral tunability of laser modes by more than three times the free spectral range. These cavities have the potential to form a key element of flexible and tunable photonic circuits based on polymers.

  10. Acclimation of fine root respiration to soil warming involves starch deposition in very fine and fine roots: a case study in Fagus sylvatica saplings.

    Science.gov (United States)

    Di Iorio, Antonino; Giacomuzzi, Valentino; Chiatante, Donato

    2016-03-01

    Root activities in terms of respiration and non-structural carbohydrates (NSC) storage and mobilization have been suggested as major physiological roles in fine root lifespan. As more frequent heat waves and drought periods within the next decades are expected, to what extent does thermal acclimation in fine roots represent a mechanism to cope with such upcoming climatic conditions? In this study, the possible changes in very fine (diameter respiration rate and NSC [soluble sugars (SS) and starch] concentrations, were investigated on 2-year-old Fagus sylvatica saplings subjected to a simulated long-lasting heat wave event and to co-occurring soil drying. For both very fine and fine roots, soil temperature (ST) resulted inversely correlated with specific root length, respiration rates and SSs concentration, but directly correlated with root mass, root tissue density and starch concentration. In particular, starch concentration increased under 28 °C for successively decreasing under 21 °C ST. These findings showed that thermal acclimation in very fine and fine roots due to 24 days exposure to high ST (∼ 28 °C), induced starch accumulation. Such 'carbon-savings strategy' should bear the maintenance costs associated to the recovery process in case of restored favorable environmental conditions, such as those occurring at the end of a heat wave event. Drought condition seems to affect the fine root vitality much more under moderate than high temperature condition, making the temporary exposure to high ST less threatening to root vitality than expected. © 2015 Scandinavian Plant Physiology Society.

  11. Recent advancements in spectroscopy using tunable diode lasers

    International Nuclear Information System (INIS)

    Nasim, Hira; Jamil, Yasir

    2013-01-01

    Spectroscopy using tunable diode lasers is an area of research that has gone through a dramatic evolution over the last few years, principally because of new exciting approaches in the field of atomic and molecular spectroscopy. This article attempts to review major recent advancements in the field of diode laser based spectroscopy. The discussion covers the developments made so far in the field of diode lasers and illustrates comprehensively the properties of free-running diode lasers. Since the commercially available free-running diode lasers are not suitable for high-precision spectroscopic studies, various techniques developed so far for converting these free-running diode lasers into true narrow linewidth tunable laser sources are discussed comprehensively herein. The potential uses of diode lasers in different spectroscopic fields and their extensive list of applications have also been included, which may be interesting for the novice and the advanced user as well. (topical review)

  12. Thermally and optically tunable lasing properties from dye-doped holographic polymer dispersed liquid crystal in capillaries

    Science.gov (United States)

    Chen, Maozhou; Dai, Haitao; Wang, Dongshuo; Yang, Yue; Luo, Dan; Zhang, Xiaodong; Liu, Changlong

    2018-03-01

    In this paper, we investigated tunable lasing properties from the dye-doped holographic polymer dispersed liquid crystal (HPDLC) gratings in capillaries with thermal and optical manners. The thermally tunable range of the lasing from the dye-doped HPDLC reached 8.60 nm with the temperature ranging from 23 °C to 50 °C. The optically tunable laser emission was achieved by doping azo-dye in HPDLC. The transition of azo-dye from trans- to cis-state could induce the reorientation of LC molecules after UV light irradiation, which resulted in the variation of refractive index contrast of LC-rich/polymer-rich layer in HPDLC. Experimentally, the emission wavelength of lasing showed a blueshift (about 2 nm) coupled with decreasing output intensities. The tunable laser based on HPDLC may enable more applications in laser displays, optical communication, biosensors, etc.

  13. Wavelength Tunable Flip-Flop Operation of a Modulated Grating Y-branch Laser

    DEFF Research Database (Denmark)

    An, Yi; Lorences Riesgo, Abel; Peucheret, Christophe

    2012-01-01

    Wavelength tunable flip-flop operation is experimentally demonstrated in a single modulated grating Y-branch laser for the first time. The control pulses have energies of 0.16-0.34 pJ and the switching time is about 200 ps.......Wavelength tunable flip-flop operation is experimentally demonstrated in a single modulated grating Y-branch laser for the first time. The control pulses have energies of 0.16-0.34 pJ and the switching time is about 200 ps....

  14. Tunable structures and modulators for THz light

    Czech Academy of Sciences Publication Activity Database

    Kužel, Petr; Kadlec, Filip

    2008-01-01

    Roč. 9, - (2008), 197-214 ISSN 1631-0705 R&D Projects: GA AV ČR KJB100100512; GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : terahertz radiation * tunable devices * photonic crystals * strontium titanate * gallium arsenide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.164, year: 2008

  15. Graphene-Based Flexible and Transparent Tunable Capacitors.

    Science.gov (United States)

    Man, Baoyuan; Xu, Shicai; Jiang, Shouzheng; Liu, Aihua; Gao, Shoubao; Zhang, Chao; Qiu, Hengwei; Li, Zhen

    2015-12-01

    We report a kind of electric field tunable transparent and flexible capacitor with the structure of graphene-Bi1.5MgNb1.5O7 (BMN)-graphene. The graphene films with low sheet resistance were grown by chemical vapor deposition. The BMN thin films were fabricated on graphene by using laser molecular beam epitaxy technology. Compared to BMN films grown on Au, the samples on graphene substrates show better quality in terms of crystallinity, surface morphology, leakage current, and loss tangent. By transferring another graphene layer, we fabricated flexible and transparent capacitors with the structure of graphene-BMN-graphene. The capacitors show a large dielectric constant of 113 with high dielectric tunability of ~40.7 % at a bias field of 1.0 MV/cm. Also, the capacitor can work stably in the high bending condition with curvature radii as low as 10 mm. This flexible film capacitor has a high optical transparency of ~90 % in the visible light region, demonstrating their potential application for a wide range of flexible electronic devices.

  16. Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals.

    Science.gov (United States)

    Akamatsu, N; Hisano, K; Tatsumi, R; Aizawa, M; Barrett, C J; Shishido, A

    2017-10-25

    Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.

  17. Moiré volume Bragg grating filter with tunable bandwidth.

    Science.gov (United States)

    Mokhov, Sergiy; Ott, Daniel; Divliansky, Ivan; Zeldovich, Boris; Glebov, Leonid

    2014-08-25

    We propose a monolithic large-aperture narrowband optical filter based on a moiré volume Bragg grating formed by two sequentially recorded gratings with slightly different resonant wavelengths. Such recording creates a spatial modulation of refractive index with a slowly varying sinusoidal envelope. By cutting a specimen at a small angle, to a thickness of one-period of this envelope, the longitudinal envelope profile will shift from a sine profile to a cosine profile across the face of the device. The transmission peak of the filter has a tunable bandwidth while remaining at a fixed resonant wavelength by a transversal shift of incidence position. Analytical expressions for the tunable bandwidth of such a filter are calculated and experimental data from a filter operating at 1064 nm with bandwidth range 30-90 pm is demonstrated.

  18. Electrically tunable spin polarization in silicene: A multi-terminal spin density matrix approach

    International Nuclear Information System (INIS)

    Chen, Son-Hsien

    2016-01-01

    Recent realized silicene field-effect transistor yields promising electronic applications. Using a multi-terminal spin density matrix approach, this paper presents an analysis of the spin polarizations in a silicene structure of the spin field-effect transistor by considering the intertwined intrinsic and Rashba spin–orbit couplings, gate voltage, Zeeman splitting, as well as disorder. Coexistence of the stagger potential and intrinsic spin–orbit coupling results in spin precession, making any in-plane polarization directions reachable by the gate voltage; specifically, the intrinsic coupling allows one to electrically adjust the in-plane components of the polarizations, while the Rashba coupling to adjust the out-of-plan polarizations. Larger electrically tunable ranges of in-plan polarizations are found in oppositely gated silicene than in the uniformly gated silicene. Polarizations in different phases behave distinguishably in weak disorder regime, while independent of the phases, stronger disorder leads to a saturation value. - Highlights: • Density matrix with spin rotations enables multi-terminal arbitrary spin injections. • Gate-voltage tunable in-plane polarizations require intrinsic SO coupling. • Gate-voltage tunable out-of-plane polarizations require Rashba SO coupling. • Oppositely gated silicene yields a large tunable range of in-plan polarizations. • Polarizations in different phases behave distinguishably only in weak disorder.

  19. Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems.

    Science.gov (United States)

    Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai

    2014-10-20

    We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.

  20. Strain-induced tunable negative differential resistance in triangle graphene spirals

    Science.gov (United States)

    Tan, Jie; Zhang, Xiaoming; Liu, Wenguan; He, Xiujie; Zhao, Mingwen

    2018-05-01

    Using non-equilibrium Green’s function formalism combined with density functional theory calculations, we investigate the significant changes in electronic and transport properties of triangle graphene spirals (TGSs) in response to external strain. Tunable negative differential resistance (NDR) behavior is predicted. The NDR bias region, NDR width, and peak-to-valley ratio can be well tuned by external strain. Further analysis shows that these peculiar properties can be attributed to the dispersion widths of the p z orbitals. Moreover, the conductance of TGSs is very sensitive to the applied stress, which is promising for applications in nanosensor devices. Our findings reveal a novel approach to produce tunable electronic devices based on graphene spirals.

  1. Design and Fabrication of Tunable Nanoparticles for Biomedical Applications

    Science.gov (United States)

    Sun, Leming

    In this dissertation, we first reviewed the naturally occurring nanoparticles and their limitations (Chapter 1). We then discussed the need and the parameters to design and fabricate bio-inspired tunable nanoparticles for wound healing, Alzheimer's disease (AD) diagnosis and progression monitoring. Tunable nanoparticles enhanced adhesive was inspired from the self-assembly processes, nanocomposite and chemical structures. Fluorescent peptide nanoparticles were inspired from the biological peptide self-assembly and naturally occurring fluorescent proteins. Then we reported the development of an in situ synthesis approach for fabricating tunable nanoparticle enhanced adhesives inspired from the strong adhesive produced by English ivy in Chapter 2. Special attention was given to tunable features of the adhesive produced by the biological process. Parameters that may be used to tune properties of the adhesive were proposed. To illustrate and validate the proposed approach, an experimental platform was presented for fabricating tunable chitosan adhesive enhanced by Au nanoparticles synthesized in situ. This study contributes to a bio-inspired approach for in situ synthesis of tunable nanocomposite adhesives by mimicking the natural biological processes of ivy adhesive synthesis. Using a bio-inspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels in Chapter 3. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing; when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites; which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose derived stem cells (ADSCs), and compared to other therapeutic

  2. On the Use of Tunable Power Splitter for Simultaneous Wireless Information and Power Transfer Receivers

    Directory of Open Access Journals (Sweden)

    Abdul Quddious

    2018-01-01

    Full Text Available The use of a tunable power splitter (PS as a constituent component of a simultaneous wireless information and power transfer (SWIPT system is discussed. Two varactor diodes are used to achieve a tunable output power ratio P2 : P3 varying from 1 : 1 to 1 : 10 under good matching conditions. The SWIPT system that operates at 2.4 GHz consists of a typical patch antenna, cascaded with the tunable PS, and a voltage doubler rectifier. The constituent components were implemented and tested as stand-alone devices and were subsequently combined in a measurement system using interconnectors. The effect of the tunable PS was explored with respect to the SNR measurements on the port that is intended for the information decoding receiver and the DC voltage measurements on the termination load of the rectifier that is connected directly on the energy harvesting port of the tunable PS. A spectrum analyzer is used for the SNR measurements while the input power is controlled using a signal generator. Both wireless power transmission and on-board measurements verify that the harvested energy can be maximized by using the minimum SNR at the information decoding branch at the expense of DC power consumption required for the biasing of the varactor diodes.

  3. Tunable wavefront coded imaging system based on detachable phase mask: Mathematical analysis, optimization and underlying applications

    Science.gov (United States)

    Zhao, Hui; Wei, Jingxuan

    2014-09-01

    The key to the concept of tunable wavefront coding lies in detachable phase masks. Ojeda-Castaneda et al. (Progress in Electronics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010) described a typical design in which two components with cosinusoidal phase variation operate together to make defocus sensitivity tunable. The present study proposes an improved design and makes three contributions: (1) A mathematical derivation based on the stationary phase method explains why the detachable phase mask of Ojeda-Castaneda et al. tunes the defocus sensitivity. (2) The mathematical derivations show that the effective bandwidth wavefront coded imaging system is also tunable by making each component of the detachable phase mask move asymmetrically. An improved Fisher information-based optimization procedure was also designed to ascertain the optimal mask parameters corresponding to specific bandwidth. (3) Possible applications of the tunable bandwidth are demonstrated by simulated imaging.

  4. Colloidal Photonic Crystals Containing Silver Nanoparticles with Tunable Structural Colors

    Directory of Open Access Journals (Sweden)

    Chun-Feng Lai

    2016-05-01

    Full Text Available Polystyrene (PS colloidal photonic crystals (CPhCs containing silver nanoparticles (AgNPs present tunable structural colors. PS CPhC color films containing a high concentration of AgNPs were prepared using self-assembly process through gravitational sedimentation method. High-concentration AgNPs were deposited on the bottom of the substrate and acted as black materials to absorb background and scattering light. Brilliant structural colors were enhanced because of the absorption of incoherent scattering light, and color saturation was increased by the distribution AgNPs on the PS CPhC surfaces. The vivid iridescent structural colors of AgNPs/PS hybrid CPhC films were based on Bragg diffraction and backward scattering absorption using AgNPs. The photonic stop band of PS CPhCs and AgNPs/PS hybrid CPhCs were measured by UV–visible reflection spectrometry and calculated based on the Bragg–Snell law. In addition, the tunable structural colors of AgNPs/PS hybrid CPhC films were evaluated using color measurements according to the Commission International d’Eclairage standard colorimetric system. This paper presents a simple and inexpensive method to produce tunable structural colors for numerous applications, such as textile fabrics, bionic colors, catalysis, and paints.

  5. Research on a high-precision calibration method for tunable lasers

    Science.gov (United States)

    Xiang, Na; Li, Zhengying; Gui, Xin; Wang, Fan; Hou, Yarong; Wang, Honghai

    2018-03-01

    Tunable lasers are widely used in the field of optical fiber sensing, but nonlinear tuning exists even for zero external disturbance and limits the accuracy of the demodulation. In this paper, a high-precision calibration method for tunable lasers is proposed. A comb filter is introduced and the real-time output wavelength and scanning rate of the laser are calibrated by linear fitting several time-frequency reference points obtained from it, while the beat signal generated by the auxiliary interferometer is interpolated and frequency multiplied to find more accurate zero crossing points, with these points being used as wavelength counters to resample the comb signal to correct the nonlinear effect, which ensures that the time-frequency reference points of the comb filter are linear. A stability experiment and a strain sensing experiment verify the calibration precision of this method. The experimental result shows that the stability and wavelength resolution of the FBG demodulation can reach 0.088 pm and 0.030 pm, respectively, using a tunable laser calibrated by the proposed method. We have also compared the demodulation accuracy in the presence or absence of the comb filter, with the result showing that the introduction of the comb filter results to a 15-fold wavelength resolution enhancement.

  6. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  7. A Practical View on Tunable Sparse Network Coding

    DEFF Research Database (Denmark)

    Sørensen, Chres Wiant; Shahbaz Badr, Arash; Cabrera Guerrero, Juan Alberto

    2015-01-01

    Tunable sparse network coding (TSNC) constitutes a promising concept for trading off computational complexity and delay performance. This paper advocates for the use of judicious feedback as a key not only to make TSNC practical, but also to deliver a highly consistent and controlled delay perfor...

  8. Inverse-designed stretchable metalens with tunable focal distance

    Science.gov (United States)

    Callewaert, Francois; Velev, Vesselin; Jiang, Shizhou; Sahakian, Alan Varteres; Kumar, Prem; Aydin, Koray

    2018-02-01

    In this paper, we present an inverse-designed 3D-printed all-dielectric stretchable millimeter wave metalens with a tunable focal distance. A computational inverse-design method is used to design a flat metalens made of disconnected polymer building blocks with complex shapes, as opposed to conventional monolithic lenses. The proposed metalens provides better performance than a conventional Fresnel lens, using lesser amount of material and enabling larger focal distance tunability. The metalens is fabricated using a commercial 3D-printer and attached to a stretchable platform. Measurements and simulations show that the focal distance can be tuned by a factor of 4 with a stretching factor of only 75%, a nearly diffraction-limited focal spot, and with a 70% relative focusing efficiency, defined as the ratio between power focused in the focal spot and power going through the focal plane. The proposed platform can be extended for design and fabrication of multiple electromagnetic devices working from visible to microwave radiation depending on scaling of the devices.

  9. Tunable bandpass filter based on partially magnetized ferrite LTCC with embedded windings for SoP applications

    KAUST Repository

    Arabi, Eyad A.

    2015-01-01

    Tunable filters that are based on ferrite materials often require large and bulky electromagnets. In this work, we present a tunable filter in the Ku-band, which is realized in multilayer ferrite LTCC substrate with embedded bias windings, thus negating the need of a large electromagnet. Also, because of the embedded windings, the bias fields are not lost at the air-substrate interface and therefore the field and current requirements are reduced by an order of magnitude as compared to the previously reported filters. A simulation strategy that uses full permeability tensor with arbitrarily directed magnetic fields has been used to model the filter on a partially magnetized ferrite substrate. Special attention has also been paid to approximate the non-uniform magneto-static fields produced by the embedded windings. The complete design is implemented in 10 layers of ferrite LTCC, making it the first magnetically tunable filter with embedded windings and extremely small size [(5 × 5 × 1.1)mm3]. The filter demonstrates a measured tunability of 4% and an insertion loss of 2.3 dB. With the small form factor, embedded windings, and low bias requirements, the design is highly suitable for compact and tunable SoP applications.

  10. Tunable synthesis of copper nanotubes

    International Nuclear Information System (INIS)

    Kaniukov, E; Yakimchuk, D; Kozlovsky, A; Shlimas, D; Zdorovets, M; Kadyrzhanov, K

    2016-01-01

    Simple method of tunable synthesis of copper nanotubes based on template synthesis was developed. A comprehensive study of the structural, morphological and electrical characteristics of the obtained nanostructures was carried out. Characterization of structural features was made by methods of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry analysis. Evaluation of wall thickness is made by methods of gas permeability. Electrical conductivity of nanotubes was define in the study of their current-voltage characteristics. The possibility to control of copper nanotubes physical properties by variation of the deposition parameters was shown. (paper)

  11. Study on the structure of bridge surface of the micro Fabry-Perot cavity tunable filter

    International Nuclear Information System (INIS)

    Meng Qinghua; Luo Huan; Bao Shiwei; Zhou Yifan; Chen Sihai

    2011-01-01

    Micro Fabry-Perot cavity tunable filters are widely applied in the area of Pushbroom Hyperspectral imaging, DWDM optical communication system and self-adaptive optics. With small volume, lower consumption and cost, the Micro Fabry-Perot cavity tunable filter can realize superior response speed, large spectral range, high definition and high reliability. By deposition metal membrane on silicon chip by MEMS technology, the micro Fabry-Perot cavity has been achieved, which is actuated by electrostatic force and can realize the function of an optical filter. In this paper, the micro-bridge structure of the micro Fabry-Perot cavity tunable filter has been studied. Finite element analysis software COMSOL Multiphysics has been adopted to design the structure of the micro-bridge of the micro filter. In order to simulate the working mechanism of the micro Fabry-Perot cavity and study the electrical and mechanical characteristics of the micro tunable filter,the static and dynamic characteriastics are analyzed, such as stress, displacement, transient response, etc. The corresponding parameters of the structure are considered as well by optimizition the filter's sustain structure.

  12. 2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer Bragg reflector.

    Science.gov (United States)

    Yoon, Ki-Hong; Oh, Su Hwan; Kim, Ki Soo; Kwon, O-Kyun; Oh, Dae Kon; Noh, Young-Ouk; Lee, Hyung-Jong

    2010-03-15

    We presented a hybridly-integrated tunable external cavity laser with 0.8 nm mode spacing 16 channels operating in the direct modulation of 2.5-Gbps for a low-cost source of a WDM-PON system. The tunable laser was fabricated by using a superluminescent diode (SLD) and a polymer Bragg reflector. The maximum output power and the power slope efficiency of the tunable laser were 10.3 mW and 0.132 mW/mA, respectively, at the SLD current of 100 mA and the temperature of 25 degrees C. The directly-modulated tunable laser successfully provided 2.5-Gbps transmissions through 20-km standard single mode fiber. The power penalty of the tunable laser was less than 0.8 dB for 16 channels after a 20-km transmission. The power penalty variation was less than 1.4 dB during the blue-shifted wavelength tuning.

  13. Fast tunable blazed MEMS grating for external cavity lasers

    Science.gov (United States)

    Tormen, Maurizio; Niedermann, Philippe; Hoogerwerf, Arno; Shea, Herbert; Stanley, Ross

    2017-11-01

    Diffractive MEMS are interesting for a wide range of applications, including displays, scanners or switching elements. Their advantages are compactness, potentially high actuation speed and in the ability to deflect light at large angles. We have designed and fabricated deformable diffractive MEMS grating to be used as tuning elements for external cavity lasers. The resulting device is compact, has wide tunability and a high operating speed. The initial design is a planar grating where the beams are free-standing and attached to each other using leaf springs. Actuation is achieved through two electrostatic comb drives at either end of the grating. To prevent deformation of the free-standing grating, the device is 10 μm thick made from a Silicon on Insulator (SOI) wafer in a single mask process. At 100V a periodicity tuning of 3% has been measured. The first resonant mode of the grating is measured at 13.8 kHz, allowing high speed actuation. This combination of wide tunability and high operating speed represents state of the art in the domain of tunable MEMS filters. In order to improve diffraction efficiency and to expand the usable wavelength range, a blazed version of the deformable MEMS grating has been designed. A key issue is maintaining the mechanical properties of the original device while providing optically smooth blazed beams. Using a process based on anisotropic KOH etching, blazed gratings have been obtained and preliminary characterization is promising.

  14. Polarization-Insensitive Tunable Optical Filters based on Liquid Crystal Polarization Gratings

    Science.gov (United States)

    Nicolescu, Elena

    Tunable optical filters are widely used for a variety of applications including spectroscopy, optical communication networks, remote sensing, and biomedical imaging and diagnostics. All of these application areas can greatly benefit from improvements in the key characteristics of the tunable optical filters embedded in them. Some of these key parameters include peak transmittance, bandwidth, tuning range, and transition width. In recent years research efforts have also focused on miniaturizing tunable optical filters into physically small packages for compact portable spectroscopy and hyperspectral imaging applications such as real-time medical diagnostics and defense applications. However, it is important that miniaturization not have a detrimental effect on filter performance. The overarching theme of this dissertation is to explore novel configurations of Polarization Gratings (PGs) as simple, low-cost, polarization-insensitive alternatives to conventional optical filtering technologies for applications including hyperspectral imaging and telecommunications. We approach this goal from several directions with a combination of theory and experimental demonstration leading to, in our opinion, a significant contribution to the field. We present three classes of tunable optical filters, the first of which is an angle-filtering scheme where the stop-band wavelengths are redirected off axis and the passband is transmitted on-axis. This is achieved using a stacked configuration of polarization gratings of various thicknesses. To improve this class of filter, we also introduce a novel optical element, the Bilayer Polarization Grating, exhibiting unique optical properties and demonstrating complex anchoring conditions with high quality. The second class of optical filter is analogous to a Lyot filter, utilizing stacks of static or tunable waveplates sandwiched with polarizing elements. However, we introduce a new configuration using PGs and static waveplates to replace

  15. Ferrite LTCC-based antennas for tunable SoP applications

    KAUST Repository

    Shamim, Atif; Bray, Joey R.; Hojjat, Nasrin; Roy, Langis

    2011-01-01

    tunable system-on-package applications. Measurements of rectangular microstrip patch antennas on a ferrite LTCC substrate display a maximum tuning range of 610 MHz near 12 GHz. Two different bias windings and their effect on the antenna performance

  16. Real time algorithm temperature compensation in tunable laser / VCSEL based WDM-PON system

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Rodes Lopez, Roberto; Pham, Tien Thang

    2012-01-01

    We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C.......We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C....

  17. Fully reconfigurable 2x2 optical cross-connect using tunable wavelength switching modules

    DEFF Research Database (Denmark)

    Liu, Fenghai; Zheng, Xueyan; Pedersen, Rune Johan Skullerud

    2001-01-01

    A modular tunable wavelength switching module is proposed and used to construct 2x2 fully reconfigurable optical cross-connects. Large size optical switch is avoided in the OXC and it is easy to upgrade to more wavelength channels.......A modular tunable wavelength switching module is proposed and used to construct 2x2 fully reconfigurable optical cross-connects. Large size optical switch is avoided in the OXC and it is easy to upgrade to more wavelength channels....

  18. Synthesis, fractionation, and thin film processing of nanoparticles using the tunable solvent properties of carbon dioxide gas expanded liquids

    Science.gov (United States)

    Anand, Madhu

    Nanoparticles have received significant attention because of their unusual characteristics including high surface area to volume ratios. Materials built from nanoparticles possess unique chemical, physical, mechanical and optical properties. Due to these properties, they hold potential in application areas such as catalysts, sensors, semiconductors and optics. At the same time, CO 2 in the form of supercritical fluid or CO2 gas-expanded liquid mixtures has gained significant attention in the area of processing nanostructures. This dissertation focuses on the synthesis and processing of nanoparticles using CO2 tunable solvent systems. Nanoparticle properties depend heavily on their size and, as such, the ability to finely control the size and uniformity of nanoparticles is of utmost importance. Solution based nanoparticle formation techniques are attractive due to their simplicity, but they often result in the synthesis of particles with a wide size range. To address this limitation, a post-synthesis technique has been developed in this dissertation to fractionate polydisperse nanoparticles ( s . = 30%) into monodisperse fractions ( s . = 8%) using tunable physicochemical properties of CO 2 expanded liquids, where CO2 is employed as an antisolvent. This work demonstrates that by controlling the addition of CO2 (pressurization) to an organic dispersion of nanoparticles, the ligand stabilized nanoparticles can be size selectively precipitated within a novel high pressure apparatus that confines the particle precipitation to a specified location on a surface. Unlike current techniques, this CO2 expanded liquid approach provides faster and more efficient particle size separation, reduction in organic solvent usage, and pressure tunable size selection in a single process. To improve our fundamental understanding and to further refine the size separation process, a detailed study has been performed to identify the key parameters enabling size separation of various

  19. Coumarin-BODIPY hybrids by heteroatom linkage: versatile, tunable and photostable dye lasers for UV irradiation.

    Science.gov (United States)

    Esnal, I; Duran-Sampedro, G; Agarrabeitia, A R; Bañuelos, J; García-Moreno, I; Macías, M A; Peña-Cabrera, E; López-Arbeloa, I; de la Moya, S; Ortiz, M J

    2015-03-28

    Linking amino and hydroxycoumarins to BODIPYs through the amino or hydroxyl group lets the easy construction of unprecedented photostable coumarin-BODIPY hybrids with broadened and enhanced absorption in the UV spectral region, and outstanding wavelength-tunable laser action within the green-to-red spectral region (∼520-680 nm). These laser dyes allow the generation of a valuable tunable UV (∼260-350 nm) laser source by frequency doubling, which is essential to study accurately the photochemistry of biological molecules under solar irradiation. The tunability is achieved by selecting the substitution pattern of the hybrid. Key factors are the linking heteroatom (nitrogen vs. oxygen), the number of coumarin units joined to the BODIPY framework and the involved linking positions.

  20. Tunable photonic bandgap fiber based devices for optical networks

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Rottwitt, Karsten

    2005-01-01

    In future all optical networks one of the enabling technologies is tunable elements including reconfigurable routers, switches etc. Thus, the development of a technology platform that allows construction of tuning components is critical. Lately, microstructured optical fibers, filled with liquid......, for example a liquid crystal that changes optical properties when subjected to, for example, an optical or an electrical field. The utilization of these two basic properties allows design of tunable optical devices for optical networks. In this work, we focus on applications of such devices and discuss recent...... crystals, have proven to be a candidate for such a platform. Microstructured optical fibers offer unique wave-guiding properties that are strongly related to the design of the air holes in the cladding of the fiber. These wave-guiding properties may be altered by filling the air holes with a material...

  1. Miniature, minimally invasive, tunable endoscope for investigation of the middle ear.

    Science.gov (United States)

    Pawlowski, Michal E; Shrestha, Sebina; Park, Jesung; Applegate, Brian E; Oghalai, John S; Tkaczyk, Tomasz S

    2015-06-01

    We demonstrate a miniature, tunable, minimally invasive endoscope for diagnosis of the auditory system. The probe is designed to sharply image anatomical details of the middle ear without the need for physically adjusting the position of the distal end of the endoscope. This is achieved through the addition of an electrowetted, tunable, electronically-controlled lens to the optical train. Morphological imaging is enabled by scanning light emanating from an optical coherence tomography system. System performance was demonstrated by imaging part of the ossicular chain and wall of the middle ear cavity of a normal mouse. During the experiment, we electronically moved the plane of best focus from the incudo-stapedial joint to the stapedial artery. Repositioning the object plane allowed us to image anatomical details of the middle ear beyond the depth of field of a static optical system. We also demonstrated for the first time to our best knowledge, that an optical system with an electrowetted, tunable lens may be successfully employed to measure sound-induced vibrations within the auditory system by measuring the vibratory amplitude of the tympanic membrane in a normal mouse in response to pure tone stimuli.

  2. Polarization independent polymer waveguide tunable receivers incorporating a micro-optic circulator

    Science.gov (United States)

    Wu, Xiaoping; Park, Tae-Hyun; Park, Su-Hyun; Seo, Jun-Kyu; Oh, Min-Cheol

    2018-06-01

    In order to simplify the receiver configuration in a wavelength division multiplexed optical fiber network, compact wavelength tunable filters have long been expected to be used as channel selectors. Bragg reflector inherently has the most suitable reflection spectrum for filtering a single wavelength from the densely multiplexed wavelength signal. Polymer has high thermo-optic coefficient and good thermal insulation property compared to the other optical waveguide materials such as silicon and silica materials. This can be used to broadly tune the reflection spectrum of Bragg reflector using a simple micro-heater. In this work, a micro-optic circulator component and a polymeric Bragg reflector device are assembled to produce a small form factor tunable receiver. Compared to the integrated-optical versions, the micro-optics are based on well-developed manufacturing processes and can achieve competitive production yields. The device exhibits high reflectivity with a flat top passband, and a polarization dependence of 0.06 nm achieved by virtue of the low birefringence of LFR polymer, which make a significant contribution to the implementation of polarization independent tunable receiver. The wavelength tuning range of 40 nm is demonstrated by using a bottom located heater with a groove for heat isolation.

  3. Continuously tunable photonic fractional Hilbert transformer using a high-contrast germanium-doped silica-on-silicon microring resonator.

    Science.gov (United States)

    Shahoei, Hiva; Dumais, Patrick; Yao, Jianping

    2014-05-01

    We propose and experimentally demonstrate a continuously tunable fractional Hilbert transformer (FHT) based on a high-contrast germanium-doped silica-on-silicon (SOS) microring resonator (MRR). The propagation loss of a high-contrast germanium-doped SOS waveguide can be very small (0.02 dB/cm) while the lossless bend radius can be less than 1 mm. These characteristics lead to the fabrication of an MRR with a high Q-factor and a large free-spectral range (FSR), which is needed to implement a Hilbert transformer (HT). The SOS MRR is strongly polarization dependent. By changing the polarization direction of the input signal, the phase shift introduced at the center of the resonance spectrum is changed. The tunable phase shift at the resonance wavelength can be used to implement a tunable FHT. A germanium-doped SOS MRR with a high-index contrast of 3.8% is fabricated. The use of the fabricated MRR for the implementation of a tunable FHT with tunable orders at 1, 0.85, 0.95, 1.05, and 1.13 for a Gaussian pulse with the temporal full width at half-maximum of 80 ps is experimentally demonstrated.

  4. Chemical composition of Martian fines

    Science.gov (United States)

    Clark, B. C.; Baird, A. K.; Weldon, R. J.; Tsusaki, D. M.; Schnabel, L.; Candelaria, M. P.

    1982-01-01

    Of the 21 samples acquired for the Viking X-ray fluorescence spectrometer, 17 were analyzed to high precision. Compared to typical terrestrial continental soils and lunar mare fines, the Martian fines are lower in Al, higher in Fe, and much higher in S and Cl concentrations. Protected fines at the two lander sites are almost indistinguishable, but concentration of the element S is somewhat higher at Utopia. Duricrust fragments, successfully acquired only at the Chryse site, invariably contained about 50% higher S than fines. No elements correlate positively with S, except Cl and possibly Mg. A sympathetic variation is found among the triad Si, Al, Ca; positive correlation occurs between Ti and Fe. Sample variabilities are as great within a few meters as between lander locations (4500 km apart), implying the existence of a universal Martian regolith component of constant average composition. The nature of the source materials for the regolith fines must be mafic to ultramafic.

  5. Tunable and white light emitting AlPO4 mesoporous glass by design of inorganic/organic luminescent species

    Directory of Open Access Journals (Sweden)

    Jin He

    2015-04-01

    Full Text Available The realization of tunable and white light emitting sources employed by UV-LED with single-host phosphors has been an exciting development in the search for high luminous efficiency and excellent color rendering index white-light source. A tunable and white light emitting mesoporous glass was prepared by utilizing both inorganic/organic (Europium/coumarin luminescent species in the meso-structure. The tunable and white light emission was deliberately designed by CIE calculation based on the individual emission spectra, which was realized by tailoring the emission of Eu2+/Eu3+ ions and coumarin 535 in sol-gel AlPO4 mesoporous glass. This simple and versatile procedure is not limited in the combination of rare earth and organic dye and is therefore extendable to other luminescent species in meso-structure for color-tunable efficient solid-state lighting sources.

  6. Bandwidth tunable microwave photonic filter based on digital and analog modulation

    Science.gov (United States)

    Zhang, Qi; Zhang, Jie; Li, Qiang; Wang, Yubing; Sun, Xian; Dong, Wei; Zhang, Xindong

    2018-05-01

    A bandwidth tunable microwave photonic filter based on digital and analog modulation is proposed and experimentally demonstrated. The digital modulation is used to broaden the effective gain spectrum and the analog modulation is to get optical lines. By changing the symbol rate of data pattern, the bandwidth is tunable from 50 MHz to 700 MHz. The interval of optical lines is set according to the bandwidth of gain spectrum which is related to the symbol rate. Several times of bandwidth increase are achieved compared to a single analog modulation and the selectivity of the response is increased by 3.7 dB compared to a single digital modulation.

  7. A Tunable Eight-Wavelength Terahertz Modulator Based on Photonic Crystals

    Science.gov (United States)

    Ji, K.; Chen, H.; Zhou, W.; Zhuang, Y.; Wang, J.

    2017-11-01

    We propose a tunable eight-wavelength terahertz modulator based on a structure of triple triangular lattice photonic crystals by using photonic crystals in the terahertz regime. The triple triangular lattice was formed by nesting circular, square, and triangular dielectric cylinders. Three square point defects were introduced into the perfect photonic crystal to produce eight defect modes. GaAs was used as the point defects to realize tunability. We used a structure with a reflecting barrier to achieve modulation at high transmission rate. The insertion loss and extinction ratio were 0.122 and 38.54 dB, respectively. The modulation rate was 0.788 dB. The performance of the eightwavelength terahertz modulator showed great potential for use in future terahertz communication systems.

  8. On Basu's proposal: Fines affect bribes

    OpenAIRE

    Popov, Sergey V.

    2017-01-01

    I model the connection between the equilibrium bribe amount and the fines imposed on both bribe-taker and bribe-payer. I show that Basu's (2011) proposal to lower the fines imposed on bribe-payers in order to induce more whistleblowing and increase the probability of penalizing corrupt government officials might instead increase bribe amounts. Higher expected fines on bribe-takers will make them charge larger bribes; at the same time, lowering fines for bribe-paying might increase bribe-payer...

  9. A broadband frequency-tunable dynamic absorber for the vibration control of structures

    International Nuclear Information System (INIS)

    Komatsuzaki, T; Inoue, T; Terashima, O

    2016-01-01

    A passive-type dynamic vibration absorber (DVA) is basically a mass-spring system that suppresses the vibration of a structure at a particular frequency. Since the natural frequency of the DVA is usually tuned to a frequency of particular excitation, the DVA is especially effective when the excitation frequency is close to the natural frequency of the structure. Fixing the physical properties of the DVA limits the application to a narrowband, harmonically excited vibration problem. A frequency-tunable DVA that can modulate its stiffness provides adaptability to the vibration control device against non-stationary disturbances. In this paper, we suggest a broadband frequency-tunable DVA whose natural frequency can be extended by 300% to the nominal value using the magnetorheological elastomers (MREs). The frequency adjustability of the proposed absorber is first shown. The real-time vibration control performance of the frequency-tunable absorber for an acoustically excited plate having multiple resonant peaks is then evaluated. Investigations show that the vibration of the structure can be effectively reduced with an improved performance by the DVA in comparison to the conventional passive- type absorber. (paper)

  10. Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU

    Science.gov (United States)

    Su, X.; Wang, D.; Tian, Q.; Liang, Y.; Niu, L.; Yan, L.; Du, Y.; Huang, W.; Tang, C.

    2018-01-01

    There is anxious demand for intense widely tunable narrow-band Terahertz (THz) radiation in scientific research, which is regarded as a powerful tool for the coherent control of matter. We report the generation of widely tunable THz radiation from a planar permanent magnet undulator at Tsinghua University (THU). A relativistic electron beam is compressed by a magnetic chicane into sub-ps bunch length to excite THz radiation in the undulator coherently. The THz frequency can be tuned from 0.4 THz to 10 THz continuously with narrow-band spectrums when the undulator gap ranges from 23 mm to 75 mm. The measured pulse THz radiation energy from 220 pC bunch is 3.5 μJ at 1 THz and tens of μJ pulse energy (corresponding peak power of 10 MW) can be obtained when excited by 1 nC beam extrapolated from the property of coherent radiation. The experimental results agree well with theoretical predictions, which demonstrates a suitable THz source for the many applications that require intense and widely tunable THz sources.

  11. Tunable Mechanical Metamaterials through Hybrid Kirigami Structures.

    Science.gov (United States)

    Hwang, Doh-Gyu; Bartlett, Michael D

    2018-02-21

    Inspired by the art of paper cutting, kirigami provides intriguing tools to create materials with unconventional mechanical and morphological responses. This behavior is appealing in multiple applications such as stretchable electronics and soft robotics and presents a tractable platform to study structure-property relationships in material systems. However, mechanical response is typically controlled through a single or fractal cut type patterned across an entire kirigami sheet, limiting deformation modes and tunability. Here we show how hybrid patterns of major and minor cuts creates new opportunities to introduce boundary conditions and non-prismatic beams to enable highly tunable mechanical responses. This hybrid approach reduces stiffness by a factor of ~30 while increasing ultimate strain by a factor of 2 (up to 750% strain) relative to single incision patterns. We present analytical models and generate general design criteria that is in excellent agreement with experimental data from nanoscopic to macroscopic systems. These hybrid kirigami materials create new opportunities for multifunctional materials and structures, which we demonstrate with stretchable kirigami conductors with nearly constant electrical resistance up to >400% strain and magnetoactive actuators with extremely rapid response (>10,000% strain s -1 ) and high, repeatable elongation (>300% strain).

  12. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator.

    Science.gov (United States)

    Lloret, Juan; Sancho, Juan; Pu, Minhao; Gasulla, Ivana; Yvind, Kresten; Sales, Salvador; Capmany, José

    2011-06-20

    A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploiting the optical phase transfer function of a microring resonator aiming at implementing complex-valued multi-tap filtering schemes are also reported. The trade-off between the degree of tunability without changing the free spectral range and the number of taps is studied in-depth. Different window based scenarios are evaluated for improving the filter performance in terms of the side-lobe level.

  13. Tunable Single Frequency 1.55 Micron Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative Er/Yb-co-doped...

  14. GATEWAY Demonstrations: Tuning Hospital Lighting: Evaluating Tunable LED Lighting at the Swedish Hospital Behavioral Health Unit in Seattle

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, Andrea [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clark, Edward [ZGF Architects LLP, Seattle, WA (United States)

    2017-08-23

    The GATEWAY program evaluated a tunable LED lighting system installed in the new Swedish Medical Behavioral Health Unit in Seattle that incorporates color-tunable luminaires in common areas, and uses advanced controls for dimming and color tuning, with the goal of providing a better environment for staff and patients. The report reviews the design of the tunable lighting system, summarizes two sets of measurements, and discusses the circadian, energy, and commissioning implications as well as lessons learned from the project.

  15. The Fine Structure Constant

    Indian Academy of Sciences (India)

    IAS Admin

    The article discusses the importance of the fine structure constant in quantum mechanics, along with the brief history of how it emerged. Al- though Sommerfelds idea of elliptical orbits has been replaced by wave mechanics, the fine struc- ture constant he introduced has remained as an important parameter in the field of ...

  16. Enhanced statistical damage identification using frequency-shift information with tunable piezoelectric transducer circuitry

    International Nuclear Information System (INIS)

    Zhao, J; Tang, J; Wang, K W

    2008-01-01

    The frequency-shift-based damage detection method entertains advantages such as global detection capability and easy implementation, but also suffers from drawbacks that include low detection accuracy and sensitivity and the difficulty in identifying damage using a small number of measurable frequencies. Moreover, the damage detection/identification performance is inevitably affected by the uncertainty/variations in the baseline model. In this research, we investigate an enhanced statistical damage identification method using the tunable piezoelectric transducer circuitry. The tunable piezoelectric transducer circuitry can lead to much enriched information on frequency shift (before and after damage occurrence). The circuitry elements, meanwhile, can be directly and accurately measured and thus can be considered uncertainty-free. A statistical damage identification algorithm is formulated which can identify both the mean and variance of the elemental property change. Our analysis indicates that the integration of the tunable piezoelectric transducer circuitry can significantly enhance the robustness of the frequency-shift-based damage identification approach under uncertainty and noise

  17. Wavelength tunable CW red laser generated based on an intracavity-SFG composite cavity

    Science.gov (United States)

    Zhang, Z. N.; Bai, Y.; Lei, G. Z.; Bai, B.; Sun, Y. X.; Hu, M. X.; Wang, C.; Bai, J. T.

    2016-12-01

    We report a wavelength-tunable watt-level continuous wave (CW) red laser that uses a composite cavity based on an intracavity sum-frequency generation (SFG). The composite cavity is composed of a LD side-pumped Nd: GdVO4 p-polarized 1062.9 nm resonant cavity and a resonant optical parametric oscillator (SRO) of s-polarized signal light using a periodically poled crystal MgO: PPLN. Based on the temperature tuning from 30 °C to 200 °C, the CW red laser beams are obtained in a tunable waveband from 634.4 nm to 649.1 nm, corresponding to a tunable output waveband from 3278.0 nm to 2940.2 nm of the mid-infrared idler lights. The maximum CW output power of the red laser at 634.4 nm and the idler light at 3278.0 nm reach 3.03 W and 4.13 W under 30 °C, respectively.

  18. Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition.

    Science.gov (United States)

    Park, Jun-Bum; Lee, Il-Min; Lee, Seung-Yeol; Kim, Kyuho; Choi, Dawoon; Song, Eui Young; Lee, Byoungho

    2013-07-01

    We propose a novel approach to generate and tune a hot spot in a dipole nanostructure of vanadium dioxide (VO2) laid on a gold (Au) substrate. By inducing a phase transition of the VO2, the spatial and spectral distributions of the hot spot generated in the feed gap of the dipole can be tuned. Our numerical simulation based on a finite-element method shows a strong intensity enhancement difference and tunability near the wavelength of 678 nm, where the hot spot shows 172-fold intensity enhancement when VO2 is in the semiconductor phase. The physical mechanisms of forming the hot spots at the two-different phases are discussed. Based on our analysis, the effects of geometric parameters in our dipole structure are investigated with an aim of enhancing the intensity and the tunability. We hope that the proposed nanostructure opens up a practical approach for the tunable near-field nano-photonic devices.

  19. A Wide-Range Tunable Level-Keeper Using Vertical Metal-Oxide-Semiconductor Field-Effect Transistors for Current-Reuse Systems

    Science.gov (United States)

    Tanoi, Satoru; Endoh, Tetsuo

    2012-04-01

    A wide-range tunable level-keeper using vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed for current-reuse analog systems. The design keys for widening tunable range of the operation are a two-path feed-back and a vertical MOSFET with back-bias-effect free. The proposed circuit with the vertical MOSFETs shows the 1.23-V tunable-range of the input level with the 2.4-V internal-supply voltage (VDD) in the simulation. This tunable-range of the proposed circuit is 4.7 times wider than that of the conventional. The achieved current efficiency of the proposed level-keeper is 66% at the 1.2-V output with the 2.4-V VDD. This efficiency of the proposed circuit is twice higher than that of the traditional voltage down converter.

  20. A Novel Load Capacity Model with a Tunable Proportion of Load Redistribution against Cascading Failures

    Directory of Open Access Journals (Sweden)

    Zhen-Hao Zhang

    2018-01-01

    Full Text Available Defence against cascading failures is of great theoretical and practical significance. A novel load capacity model with a tunable proportion is proposed. We take degree and clustering coefficient into account to redistribute the loads of broken nodes. The redistribution is local, where the loads of broken nodes are allocated to their nearest neighbours. Our model has been applied on artificial networks as well as two real networks. Simulation results show that networks get more vulnerable and sensitive to intentional attacks along with the decrease of average degree. In addition, the critical threshold from collapse to intact states is affected by the tunable parameter. We can adjust the tunable parameter to get the optimal critical threshold and make the systems more robust against cascading failures.

  1. Tunable two-phase coexistence in half-doped manganites

    Indian Academy of Sciences (India)

    Our recent work on half-doped manganites builds on those ideas to explain our data showing continuously tunable phase coexistence of FM and AFM states. Macroscopic hysteresis across transitions is often used to assert their first-order nature, and this has also been done in the case of half-doped manganites [6]. Kuwa-.

  2. A U-Shaped Slot UWB Antenna with Flexible and Wide Tunable Dual Notch Band

    Directory of Open Access Journals (Sweden)

    Zhang Zhongmin

    2016-01-01

    Full Text Available A coplanar waveguide (CPW fed ultra-wideband (UWB antenna with flexible and wide tunable dual bandnotched characteristics is proposed in this paper. The dual band-notched function is achieved by using an U-shaped slot inserted into the ellipse radiation patch and by using an elliptic parasitic slit placed near the ground plane. The wide tunable band-notched characteristic is implemented by adjusting the length of U-shaped slot and by adjusting the length of ellipse parasitic slit. The design aims to achieve wide reconfigurable band-notched features on the UWB antenna. The simulated results indicate that the proposed antenna has a wide bandwidth (VSWR under 2 from 2.9GHz to 12.6GHz with fractional bandwidth of 125%, and has a wide tunable notch band center frequency from 4.5GHz to 12.4GHz.

  3. Tunable conductivity in mesoporous germanium

    Science.gov (United States)

    Beattie, Meghan N.; Bioud, Youcef A.; Hobson, David G.; Boucherif, Abderraouf; Valdivia, Christopher E.; Drouin, Dominique; Arès, Richard; Hinzer, Karin

    2018-05-01

    Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10‑3) Ω‑1 cm‑1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10‑3 Ω‑1 cm‑1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

  4. Polarization-coupled tunable resistive behavior in oxide ferroelectric heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gruverman, Alexei [Univ. of Nebraska, Lincoln, NE (United States); Tsymbal, Evgeny Y. [Univ. of Nebraska, Lincoln, NE (United States); Eom, Chang-Beom [Univ. of Wisconsin, Madison, WI (United States)

    2017-05-03

    This research focuses on investigation of the physical mechanism of the electrically and mechanically tunable resistive behavior in oxide ferroelectric heterostructures with engineered interfaces realized via a strong coupling of ferroelectric polarization with tunneling electroresistance and metal-insulator (M-I) transitions. This report describes observation of electrically conductive domain walls in semiconducting ferroelectrics, voltage-free control of resistive switching and demonstration of a new mechanism of electrical control of 2D electron gas (2DEG) at oxide interfaces. The research goals are achieved by creating strong synergy between cutting-edge fabrication of epitaxial single-crystalline complex oxides, nanoscale electrical characterization by scanning probe microscopy and theoretical modeling of the observed phenomena. The concept of the ferroelectric devices with electrically and mechanically tunable nonvolatile resistance represents a new paradigm shift in realization of the next-generation of non-volatile memory devices and low-power logic switches.

  5. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  6. Investigation of graphene-integrated tunable metamaterials in THz regime

    Science.gov (United States)

    Demir, S. Mahircan; Yüksek, Yahya; Sabah, Cumali

    2018-05-01

    A metallic fishnet metamaterial structure in sub-THz region is presented. The proposed structure is based on hexagonal resonators. Simulations have been performed by a 3D full-wave electromagnetic simulator and a negative refractive index has been observed at the frequency range between 0.55 and 0.70 THz with the help of the graphene layer. In order to observe the effect of the graphene layer, the metamaterial structure has been simulated and examined before and after graphene integration. Significant modification in the propagation properties has been observed after the graphene integration. Change in S-parameters with the size variation of hexagonal resonators and alteration in graphene thickness are also presented as a parametric study to show the tunability of the structure. Suitability of the metamaterial for sensor applications has been investigated. The proposed metamaterial structure is promising to be effectively used for tunability and sensor applications.

  7. Ferrite LTCC-based antennas for tunable SoP applications

    KAUST Repository

    Shamim, Atif

    2011-07-01

    For the first time, ferrite low temperature co-fired ceramic (LTCC) tunable antennas are presented. These antennas are frequency tuned by a variable magnetostatic field produced in a winding that is completely embedded inside the ferrite LTCC substrate. Embedded windings have reduced the typically required magnetic bias field for antenna tuning by over 95%. The fact that large electromagnets are not required for tuning makes ferrite LTCC with embedded bias windings an ideal platform for advanced tunable system-on-package applications. Measurements of rectangular microstrip patch antennas on a ferrite LTCC substrate display a maximum tuning range of 610 MHz near 12 GHz. Two different bias windings and their effect on the antenna performance are discussed, as is the effect of antenna orientation with respect to the bias winding. The antenna radiation patterns are measured under biased and unbiased conditions, showing a stable co-polarized linear gain. © 2011-2012 IEEE.

  8. Real-time tunability of chip-based light source enabled by microfluidic mixing

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Rasmussen, Torben; Balslev, Søren

    2006-01-01

    We demonstrate real-time tunability of a chip-based liquid light source enabled by microfluidic mixing. The mixer and light source are fabricated in SU-8 which is suitable for integration in SU-8-based laboratory-on-a-chip microsystems. The tunability of the light source is achieved by changing...... the concentration of rhodamine 6G dye inside two integrated vertical resonators, since both the refractive index and the gain profile are influenced by the dye concentration. The effect on the refractive index and the gain profile of rhodamine 6G in ethanol is investigated and the continuous tuning of the laser...

  9. Magneto-optical polarization rotation in a ladder-type atomic system for tunable offset locking

    Energy Technology Data Exchange (ETDEWEB)

    Parniak, Michał, E-mail: michal.parniak@fuw.edu.pl; Leszczyński, Adam; Wasilewski, Wojciech [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland)

    2016-04-18

    We demonstrate an easily tunable locking scheme for stabilizing frequency-sum of two lasers on a two-photon ladder transition based on polarization rotation in warm rubidium vapors induced by magnetic field and circularly polarized drive field. Unprecedented tunability of the two-photon offset frequency is due to strong splitting and shifting of magnetic states in external field. In our experimental setup, we achieve two-photon detuning of up to 700 MHz.

  10. Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients.

    Science.gov (United States)

    Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel

    2005-03-07

    We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.

  11. 36 CFR 910.35 - Fine arts.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Fine arts. 910.35 Section 910... DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.35 Fine arts. Fine arts... of art which are appropriate for the development. For information and guidance, a reasonable...

  12. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.

    Science.gov (United States)

    Li, Kai; Huang, Junchao; Gao, Huichang; Zhong, Yi; Cao, Xiaodong; Chen, Yun; Zhang, Lina; Cai, Jie

    2016-04-11

    Incorporation of nanofillers into aliphatic polyesters is a convenient approach to create new nanomaterials with significantly reinforced mechanical properties compared to the neat polymers or conventional composites. Nanoporous cellulose gels (NCG) prepared from aqueous alkali hydroxide/urea solutions can act as alternative reinforcement nanomaterials for polymers with improved mechanical properties. We report a simple and versatile process for the fabrication of NCG/poly(L-lactide-co-caprolactone) (NCG/P(LLA-co-CL) nanocomposites through in situ ring-opening polymerization of L-lactide (LLA) and ε-caprolactone (ε-CL) monomers in the NCG. The volume fraction of the NCG in the nanocomposites was tunable and ranged from 4.5% to 37%. Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) results indicated that P(LLA-co-CL) were synthesized within the NCG and partially grafted onto the surface of the cellulose nanofibrils. The glass-transition temperature (Tg) of the NCG/P(LLA-co-CL) nanocomposites could be altered by varying the molar ratio of LLA/ε-CL and was affected by the volume fraction of NCG. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images confirmed that the interconnected nanofibrillar cellulose network structure of the NCG was finely distributed and preserved in the P(LLA-co-CL) matrix after polymerization. The dynamic mechanical analysis (DMA) results showed remarkable reinforcement of the tensile storage modulus (E') of the P(LLA-co-CL) nanocomposites in the presence of NCG, especially above the Tg of the P(LLA-co-CL). The modified percolation model agreed well with the mechanical properties of the NCG/P(LLA-co-CL) nanocomposites. The introduction of NCG into the P(LLA-co-CL) matrix improved the mechanical properties and thermal stability of the NCG/P(LLA-co-CL) nanocomposites. Moreover, the NCG/P(LLA-co-CL) nanocomposites have tunable biodegradability and biocompatibility and

  13. Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Erbert, G.; Sumpf, B.

    2010-01-01

    A 668 nm tunable high-power narrow-spectrum diode laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The laser system is tunable from 659 to 675 nm. As high as 1.38 W output power is obtained at 668.35 nm. The emission spectral bandwidth is less than...

  14. Tunable emergent heterostructures in a prototypical correlated metal

    Science.gov (United States)

    Fobes, D. M.; Zhang, S.; Lin, S.-Z.; Das, Pinaki; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Harriger, L. W.; Ehlers, G.; Podlesnyak, A.; Bewley, R. I.; Sazonov, A.; Hutanu, V.; Ronning, F.; Batista, C. D.; Janoschek, M.

    2018-05-01

    At the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced1, or entirely new functionalities may emerge2. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions3, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom4. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn5, revealing competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures5. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. The resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting6 and electronic nematic textures7 in CeRhIn5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.

  15. Spontaneous emission control in a tunable hybrid photonic system

    NARCIS (Netherlands)

    Frimmer, M.; Koenderink, A.F.

    2013-01-01

    We experimentally demonstrate control of the rate of spontaneous emission in a tunable hybrid photonic system that consists of two canonical building blocks for spontaneous emission control, an optical antenna and a mirror, each providing a modification of the local density of optical states (LDOS).

  16. Tunable all-optical photonic crystal channel drop filter for DWDM systems

    Science.gov (United States)

    Habibiyan, H.; Ghafoori-Fard, H.; Rostami, A.

    2009-06-01

    In this paper we propose a tunable channel drop filter in a two-dimensional photonic crystal, based on coupled-cavity waveguides with alternating small and large defects and an electromagnetically induced transparency phenomenon. By utilizing this phenomenon a narrower linewidth is obtained and also the frequency of the dropped signal becomes tunable. Simulation results show that the proposed filter is suitable for dense wavelength-division multiplexing (DWDM) systems with 0.8 nm channel spacing. Using this novel component, two ultrasmall eight-channel double-sided and single-sided demultiplexers are introduced. The properties of these devices are investigated using the finite-difference time-domain method. For the single-sided device, transmission loss is 1.5 ± 0.5 dB, the cross-talk level between adjacent channels is better than -18 dB and the average 3 dB optical passband is 0.36 nm. Using planar silicon-on-insulator technology, the physical area for the single-sided component is 700 µm2 and for the double-sided component is 575 µm2. To the best of our knowledge, these are the smallest all-optical demultiplexers with this spectral resolution reported to date. Malfunction of the proposed device due to fabrication errors is modeled and its tunable characteristic is demonstrated.

  17. Considering Fine Art and Picture Books

    Science.gov (United States)

    Serafini, Frank

    2015-01-01

    There has been a close association between picturebook illustrations and works of fine art since the picturebook was first conceived, and many ways these associations among works of fine art and picturebook illustrations and design play out. To make sense of all the various ways picturebook illustrations are associated with works of fine art,…

  18. Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP

    CERN Document Server

    Tanabé, T; Nishizawa, J I; Saitô, K; Kimura, T

    2003-01-01

    High-power, wide-frequency-tunable terahertz waves were generated based on difference-frequency generation in GaP crystals with small-angle noncollinear phase matching. The tunable frequency range was as wide as 0.5-7 THz, and the peak power remained high, near 100 mW, over most of the frequency region. The tuning properties were well described by the dispersion relationship for the phonon-polariton mode of GaP up to 6 THz. We measured the spectra of crystal polyethylene and crystal quartz with high resolution using this THz-wave source.

  19. Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP

    International Nuclear Information System (INIS)

    Tanabe, Tadao; Suto, Ken; Nishizawa, Jun-ichi; Saito, Kyosuke; Kimura, Tomoyuki

    2003-01-01

    High-power, wide-frequency-tunable terahertz waves were generated based on difference-frequency generation in GaP crystals with small-angle noncollinear phase matching. The tunable frequency range was as wide as 0.5-7 THz, and the peak power remained high, near 100 mW, over most of the frequency region. The tuning properties were well described by the dispersion relationship for the phonon-polariton mode of GaP up to 6 THz. We measured the spectra of crystal polyethylene and crystal quartz with high resolution using this THz-wave source

  20. Low-loss microelectrodes fabricated using reverse-side exposure for a tunable ferroelectric capacitor application

    Science.gov (United States)

    Yoon, Yong-Kyu; Stevenson Kenney, J.; Hunt, Andrew T.; Allen, Mark G.

    2006-02-01

    Narrowly spaced thick microelectrodes are fabricated using a self-aligned multiple reverse-side exposure scheme for an improved quality-factor tunable ferroelectric capacitor. The microelectrodes are fabricated on a functional substrate—a thin film ferroelectric (barium strontium titanate, BST; BaxSr1-xTiO3) coated sapphire substrate, which has an electric-field-dependent dielectric property providing tuning functionality, as well as UV transparency permitting an additional degree of freedom in photolithography steps. The microelectrode process has been applied to interdigitated capacitor fabrication, where a critical challenge is maintaining narrow gaps between electrodes for high tunability, while simultaneously forming thick electrodes to minimize conductor loss. A single mask, self-aligned reverse-side exposure through the transparent substrate achieves both these goals. A single-finger test capacitor with an electrode gap of 1.2 µm and an electrode thickness of 2.2 µm is fabricated and characterized. Tunability (T = 100 × (C0 - Cbias)/C0) of 33% at 10 V has been achieved at 100 kHz. The 2.2 µm thick structure shows improvement of Q-factor compared to that of a 0.1 µm thick structure. To demonstrate the scalability of this process, a 102-finger interdigitated capacitor is fabricated and characterized at 100 kHz and 1 GHz. The structure is embedded in a 25 µm thick epoxy resin SU-8 for passivation. A quality factor decrease of 15-25%, tunability decrease of 2-3% and capacitance increase of 6% are observed due to the expoxy resin after passivation. High frequency performance of the capacitor has been measured to be 15.9 pF of capacitance, 28.1% tunability at 10 V and a quality factor of 16 (at a 10 V dc bias) at 1 GHz.

  1. A spectroscopic study of uranium and molybdenum complexation within the pore channels of hybrid mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Charlot, Alexandre [CEA, DEN, DTDC, SPDE, Laboratoire des Procedes Supercritiques de Separation, Bagnols-sur-Ceze (France); CEA, DEN, DTDC, SPDE, Laboratoire de Developpement des Procedes de Separation, Bagnols-sur-Ceze (France); Dumas, Thomas [CEA, DEN, DTDC, SPDE, Laboratoire d' Interaction Ligands Actinides, Bagnols-sur-Ceze (France); Solari, Pier L. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette (France); Cuer, Frederic [CEA, DEN, DTDC, SPDE, Laboratoire de Developpement des Procedes de Separation, Bagnols-sur-Ceze (France); Grandjean, Agnes [CEA, DEN, DTDC, SPDE, Laboratoire des Procedes Supercritiques de Separation, Bagnols-sur-Ceze (France)

    2017-01-18

    To enable the reduction of the environmental impact of nuclear energy generation, in this paper, we link the molecular and macroscopic behaviour of a functionalized material (TR rate at SBA15) used to extract uranium from sulfuric media. Two organic 3-[N,N-di(2-ethylhexyl)carbamoyl]-3-[ethoxy(hydroxy)phosphoryl]propanoic acid (TR) molecules grafted onto the solid are involved in the extraction process and form a 2:1 TR-U complex. FTIR and extended X-ray absorption fine structure (EXAFS) spectroscopic analyses show that the TR-U bond is realized through a phosphonate group in a monodentate fashion below pH 3, in agreement with the macroscopic observations. The first coordination sphere of the uranyl ion is completed by two monodentate sulfate ions and one water molecule. Above pH 3, the TR contribution decreases, and other inner-sphere complexes appear, which is consistent with the increased extraction observed on the macroscopic scale. Molybdenum, a competitor element, reduces the uranium extraction capacity but not its speciation, whereas polyoxomolybdates form inside the pores from the molybdenum in solution. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.

    Science.gov (United States)

    Boire, Timothy C; Gupta, Mukesh K; Zachman, Angela L; Lee, Sue Hyun; Balikov, Daniel A; Kim, Kwangho; Bellan, Leon M; Sung, Hak-Joon

    2016-04-01

    Thermo-responsive shape memory polymers (SMPs) can be programmed to fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly(ε-caprolactone)-co-y%(α-allyl carboxylate ε-caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit highly elastic, switch-like shape recovery near 37 °C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. With the ongoing thrust to make surgeries minimally-invasive, it is prudent to develop new biomaterials that are highly compatible and effective in this workflow. Thermo-responsive shape memory polymers (SMPs) have great potential for minimally-invasive applications because SMP medical devices (e.g. stents, grafts) can fit into small-bore minimally-invasive surgical devices and recover their functional shape when deployed in the body. To realize their potential, it is imperative to devise

  3. Tunable third-harmonic probe for non-degenerate ultrafast pump ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... 413–417. Tunable third-harmonic probe for non-degenerate ultrafast ... A beam splitter was used to split the beam into two with the power ratio of ... Now polarization of the 800-nm beam is made to be parallel with the 400-nm.

  4. Accuracy optimization with wavelength tunability in overlay imaging technology

    Science.gov (United States)

    Lee, Honggoo; Kang, Yoonshik; Han, Sangjoon; Shim, Kyuchan; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, Dongyoung; Oh, Eungryong; Choi, Ahlin; Kim, Youngsik; Marciano, Tal; Klein, Dana; Hajaj, Eitan M.; Aharon, Sharon; Ben-Dov, Guy; Lilach, Saltoun; Serero, Dan; Golotsvan, Anna

    2018-03-01

    As semiconductor manufacturing technology progresses and the dimensions of integrated circuit elements shrink, overlay budget is accordingly being reduced. Overlay budget closely approaches the scale of measurement inaccuracies due to both optical imperfections of the measurement system and the interaction of light with geometrical asymmetries of the measured targets. Measurement inaccuracies can no longer be ignored due to their significant effect on the resulting device yield. In this paper we investigate a new approach for imaging based overlay (IBO) measurements by optimizing accuracy rather than contrast precision, including its effect over the total target performance, using wavelength tunable overlay imaging metrology. We present new accuracy metrics based on theoretical development and present their quality in identifying the measurement accuracy when compared to CD-SEM overlay measurements. The paper presents the theoretical considerations and simulation work, as well as measurement data, for which tunability combined with the new accuracy metrics is shown to improve accuracy performance.

  5. Semi-insulating Sn-Zr-O: Tunable resistance buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Teresa M.; Burst, James M.; Reese, Matthew O.; Perkins, Craig L. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2015-03-02

    Highly resistive and transparent (HRT) buffer layers are critical components of solar cells and other opto-electronic devices. HRT layers are often undoped transparent conducting oxides. However, these oxides can be too conductive to form an optimal HRT. Here, we present a method to produce HRT layers with tunable electrical resistivity, despite the presence of high concentrations of unintentionally or intentionally added dopants in the film. This method relies on alloying wide-bandgap, high-k dielectric materials (e.g., ZrO{sub 2}) into the host oxide to tune the resistivity. We demonstrate Sn{sub x}Zr{sub 1−x}O{sub 2}:F films with tunable resistivities varying from 0.001 to 10 Ω cm, which are controlled by the Zr mole fraction in the films. Increasing Zr suppresses carriers by expanding the bandgap almost entirely by shifting the valence-band position, which allows the HRT layers to maintain good conduction-band alignment for a low-resistance front contact.

  6. Tunable optical absorption in silicene molecules

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2016-01-01

    Two-dimensional materials with a tunable band gap that covers a wide range of the solar spectrum hold great promise for sunlight harvesting. For this reason, we investigate the structural, electronic, and optical properties of silicene molecules using time dependent density functional theory. We address the influence of the molecular size, buckling, and charge state as well as that of a dielectric environment. Unlike planar graphene molecules, silicene molecules prefer to form low-buckled structures with strong visible to ultraviolet optical response. We also identify molecular plasmons.

  7. Tunable optical absorption in silicene molecules

    KAUST Repository

    Mokkath, Junais Habeeb

    2016-07-13

    Two-dimensional materials with a tunable band gap that covers a wide range of the solar spectrum hold great promise for sunlight harvesting. For this reason, we investigate the structural, electronic, and optical properties of silicene molecules using time dependent density functional theory. We address the influence of the molecular size, buckling, and charge state as well as that of a dielectric environment. Unlike planar graphene molecules, silicene molecules prefer to form low-buckled structures with strong visible to ultraviolet optical response. We also identify molecular plasmons.

  8. Gyroid Nanoporous Membranes with Tunable Permeability

    DEFF Research Database (Denmark)

    Li, Li; Schulte, Lars; Clausen, Lydia D.

    2011-01-01

    -linked 1,2-polybutadiene (1,2-PB) membranes with uniform pores that, if needed, can be rendered hydrophilic. The gyroid porosity has the advantage of isotropic percolation with no need for structure prealignment. Closed (skin) or opened (nonskin) outer surface can be simply realized by altering...... the effective diffusion coefficients of a series of antibiotics, proteins, and other biomolecules; solute permeation is discussed in terms of hindered diffusion. The combination of uniform bulk morphology, isotropically percolating porosity, controlled surface chemistry, and tunable permeability is distinctive...

  9. Tunable inkjet-printed slotted waveguide antenna on a ferrite substrate

    KAUST Repository

    Nafe, Ahmed; Farooqui, Muhammad; Shamim, Atif

    2015-01-01

    In this work an inkjet-printed frequency-tunable slotted waveguide antenna on a ferrite substrate is reported. Unlike the typical substrate integrated waveguide approach with via holes, a true 3D rectangular waveguide is realized by inkjet-printing

  10. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...... dispersion equation in modeling the transport and the deposition of reservoir fines. It successfully predicts the unsymmetrical concentration profiles and the hyperexponential deposition in experiments....

  11. Tunable inkjet-printed slotted waveguide antenna on a ferrite substrate

    KAUST Repository

    Nafe, Ahmed

    2015-04-13

    In this work an inkjet-printed frequency-tunable slotted waveguide antenna on a ferrite substrate is reported. Unlike the typical substrate integrated waveguide approach with via holes, a true 3D rectangular waveguide is realized by inkjet-printing of nano-particle based conductive ink on the broad faces as well as on sides of the substrate. The operating frequency of the antenna can be tuned by applying a variable static bias magnetic field that controls the permeability of the host ferrite substrate. The antenna operates about a center frequency of approximately 14 GHz with an instantaneous impedance bandwidth of 75 MHz. A fabricated prototype has demonstrated a tuning range of 10% (1.5 GHz) using an applied bias magnetic field of 3 kOe yielding it especially attractive for tunable and reconfigurable yet low cost microwave systems.

  12. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    Design and technology demonstration of compact, narrow bandwidth, high repetition rate, tunable SLM dye lasers in two different configurations, namely Littrow and grazing incidence grating (GIG), were carried out in our lab at BARC, India. The single longitudinal mode (SLM) dye laser generates single-mode laser beams ...

  13. Tunable plasmon-induced transparency with graphene-based T-shaped array metasurfaces

    Science.gov (United States)

    Niu, Yuying; Wang, Jicheng; Hu, Zhengda; Zhang, Feng

    2018-06-01

    The frequency tunable Plasmonic induced transparency (PIT) effect is researched with a periodically patterned T-shaped graphene array in mid-infrared region. We adjust the geometrical parameters to obtain the optimized combination for the realization of the PIT response and use the coupled Lorentz oscillator model to analysis the physical mechanism. Due to the properties of graphene, the PIT effect can be easily and markedly enhanced with the increase of chemical potential and carrier mobility. The frequency of PIT effect is also insensitive with the angle of incident light. In addition, we also propose the π shaped structure to realizing the double-peak PIT effect. The results offer a flexible approach for the development of tunable graphene-based photonic devices.

  14. Injection-seeded tunable mid-infrared pulses generated by difference frequency mixing

    Science.gov (United States)

    Miyamoto, Yuki; Hara, Hideaki; Masuda, Takahiko; Hiraki, Takahiro; Sasao, Noboru; Uetake, Satoshi

    2017-03-01

    We report on the generation of nanosecond mid-infrared pulses having frequency tunability, a narrow linewidth, and a high pulse energy. These pulses are obtained by frequency mixing between injection-seeded near-infrared pulses in potassium titanyl arsenate crystals. A continuous-wave external cavity laser diode or a Ti:sapphire ring laser is used as a tunable seeding source for the near-infrared pulses. The typical energy of the generated mid-infrared pulses is in the range of 0.4-1 mJ/pulse. The tuning wavelength ranges from 3142 to 4806 nm. A narrow linewidth of 1.4 GHz and good frequency reproducibility of the mid-infrared pulses are confirmed by observing a rovibrational absorption line of gaseous carbon monoxide at 4587 nm.

  15. Numerical studies of the fractional quantum Hall effect in systems with tunable interactions

    International Nuclear Information System (INIS)

    Papić, Z; Bhatt, R N; Abanin, D A; Barias, Y

    2012-01-01

    The discovery of the fractional quantum Hall effect in GaAs-based semiconductor devices has lead to new advances in condensed matter physics, in particular the possibility for exotic, topological phases of matter that possess fractional, and even non-Abelian, statistics of quasiparticles. One of the main limitations of the experimental systems based on GaAs has been the lack of tunability of the effective interactions between two-dimensional electrons, which made it difficult to stabilize some of the more fragile states, or induce phase transitions in a controlled manner. Here we review the recent studies that have explored the effects of tunability of the interactions offered by alternative two-dimensional systems, characterized by non-trivial Berry phases and including graphene, bilayer graphene and topological insulators. The tunability in these systems is achieved via external fields that change the mass gap, or by screening via dielectric plate in the vicinity of the device. Our study points to a number of different ways to manipulate the effective interactions, and engineer phase transitions between quantum Hall liquids and compressible states in a controlled manner.

  16. Invited Article: Electrically tunable silicon-based on-chip microdisk resonator for integrated microwave photonic applications

    Directory of Open Access Journals (Sweden)

    Weifeng Zhang

    2016-11-01

    Full Text Available Silicon photonics with advantages of small footprint, compatibility with the mature CMOS fabrication technology, and its potential for seamless integration with electronics is making a significant difference in realizing on-chip integration of photonic systems. A microdisk resonator (MDR with a strong capacity in trapping and storing photons is a versatile element in photonic integrated circuits. Thanks to the large index contrast, a silicon-based MDR with an ultra-compact footprint has a great potential for large-scale and high-density integrations. However, the existence of multiple whispering gallery modes (WGMs and resonance splitting in an MDR imposes inherent limitations on its widespread applications. In addition, the waveguide structure of an MDR is incompatible with that of a lateral PN junction, which leads to the deprivation of its electrical tunability. To circumvent these limitations, in this paper we propose a novel design of a silicon-based MDR by introducing a specifically designed slab waveguide to surround the disk and the lateral sides of the bus waveguide to suppress higher-order WGMs and to support the incorporation of a lateral PN junction for electrical tunability. An MDR based on the proposed design is fabricated and its optical performance is evaluated. The fabricated MDR exhibits single-mode operation with a free spectral range of 28.85 nm. Its electrical tunability is also demonstrated and an electro-optic frequency response with a 3-dB modulation bandwidth of ∼30.5 GHz is measured. The use of the fabricated MDR for the implementation of an electrically tunable optical delay-line and a tunable fractional-order temporal photonic differentiator is demonstrated.

  17. Investigating the Thermodynamic Performances of TO-Based Metamaterial Tunable Cells with an Entropy Generation Approach

    Directory of Open Access Journals (Sweden)

    Guoqiang Xu

    2017-10-01

    Full Text Available Active control of heat flux can be realized with transformation optics (TO thermal metamaterials. Recently, a new class of metamaterial tunable cells has been proposed, aiming to significantly reduce the difficulty of fabrication and to flexibly switch functions by employing several cells assembled on related positions following the TO design. However, owing to the integration and rotation of materials in tunable cells, they might lead to extra thermal losses as compared with the previous continuum design. This paper focuses on investigating the thermodynamic properties of tunable cells under related design parameters. The universal expression for the local entropy generation rate in such metamaterial systems is obtained considering the influence of rotation. A series of contrast schemes are established to describe the thermodynamic process and thermal energy distributions from the viewpoint of entropy analysis. Moreover, effects of design parameters on thermal dissipations and system irreversibility are investigated. In conclusion, more thermal dissipations and stronger thermodynamic processes occur in a system with larger conductivity ratios and rotation angles. This paper presents a detailed description of the thermodynamic properties of metamaterial tunable cells and provides reference for selecting appropriate design parameters on related positions to fabricate more efficient and energy-economical switchable TO devices.

  18. Bandwidth Controllable Tunable Filter for Hyper-/Multi-Spectral Imager, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal introduces a fast speed bandwidth controllable tunable filter for hyper-/multi-spectral (HS/MS) imagers. It dynamically passes a variable...

  19. Active thermal fine laser tuning in a broad spectral range and optical properties of cholesteric liquid crystal.

    Science.gov (United States)

    Jeong, Mi-Yun; Kwak, Keumcheol

    2016-11-20

    In this study, we achieved active fine laser tuning in a broad spectral range with dye-doped cholesteric liquid crystal wedge-type cells through temperature control. The spatial pitch gradient of each position of the wedge cell at room temperature was almost maintained after developing a temperature gradient. To achieve the maximum tuning range, the chiral dopant concentration, thickness, thickness gradient, and temperature gradient on the wedge cell should be matched properly. In order to understand the laser tuning mechanism for temperature change, we studied the temperature dependence of optical properties of the photonic bandgap of cholesteric liquid crystals. In our cholesteric liquid crystal samples, when temperature was increased, photonic bandgaps were shifted toward blue, while the width of the photonic bandgap was decreased, regardless of whether the helicity was left-handed or right-handed. This is mainly due to the combination of decreased refractive indices, higher molecular anisotropy of chiral molecules, and increased chiral molecular solubility. We envisage that this kind of study will prove useful in the development of practical active tunable CLC laser devices.

  20. A dynamically tunable plasmonic multi-functional device based on graphene nano-sheet pair arrays

    Science.gov (United States)

    Wang, Wei; Meng, Zhao; Liang, Ruisheng; Chen, Shijie; Ding, Li; Wang, Faqiang; Liu, Hongzhan; Meng, Hongyun; Wei, Zhongchao

    2018-05-01

    Dynamically tunable plasmonic multi-functional is particularly desirable for various nanotechnological applications. In this paper, graphene nano-sheet pair arrays separated by a substrate, which can act as a dynamically tunable plasmonic band stop filter with transmission at resonance wavelength lower than 1%, a high sensitivity refractive index sensor with sensitivity up to 4879 nm/RIU, figure of merit of 40.66 and a two circuit optical switch with the modulation depth up to 0.998, are proposed and numerically investigated. These excellent optical performances are calculated by using FDTD numerical modeling and theoretical deduction. Simulation results show that a slight variation of chemical potential of the graphene nano-sheet can achieve significant resonance wavelength shifts. In additional, the resonance wavelength and transmission of this plasmonic device can be tuned easily by two voltages owing to the simple patterned graphene. These studies may have great potential in fabrication of multi-functional and dynamically tunable optoelectronic integrated devices.

  1. A versatile tunable microcavity for investigation of light-matter interaction

    Science.gov (United States)

    Mochalov, Konstantin E.; Vaskan, Ivan S.; Dovzhenko, Dmitriy S.; Rakovich, Yury P.; Nabiev, Igor

    2018-05-01

    Light-matter interaction between a molecular ensemble and a confined electromagnetic field is a promising area of research, as it allows light-control of the properties of coupled matter. The common way to achieve coupling is to place an ensemble of molecules or quantum emitters into a cavity. In this approach, light-matter coupling is evidenced by modification of the spectral response of the emitter, which depends on the strength of interaction between emitter and cavity modes. However, there is not yet a user-friendly approach that allows the study of a large number of different and replaceable samples in a wide optical range using the same resonator. Here, we present the design of such a device that can speed up and facilitate investigation of light-matter interaction ranging from weak to strong coupling regimes in ultraviolet-visible and infrared (IR) spectral regions. The device is based on a tunable unstable λ/2 Fabry-Pérot microcavity consisting of plane and convex mirrors that satisfy the plane-parallelism condition at least at one point of the curved mirror and minimize the mode volume. Fine tuning of the microcavity length is provided by a Z-piezopositioner in a range up to 10 μm with a step of several nm. This design makes a device a versatile instrument that ensures easy finding of optimal conditions for light-matter interaction for almost any sample in both visible and IR areas, enabling observation of both electronic and vibrational couplings with microcavity modes thus paving the way to investigation of various coupling effects including Raman scattering enhancement, modification of chemical reactivity rate, lasing, and long-distance nonradiative energy transfer.

  2. Novel RF and microwave components employing ferroelectric and solid-state tunable capacitors for multi-functional wireless communication systems

    Science.gov (United States)

    Tombak, Ali

    The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF

  3. Fine Guidance Sensing for Coronagraphic Observatories

    Science.gov (United States)

    Brugarolas, Paul; Alexander, James W.; Trauger, John T.; Moody, Dwight C.

    2011-01-01

    Three options have been developed for Fine Guidance Sensing (FGS) for coronagraphic observatories using a Fine Guidance Camera within a coronagraphic instrument. Coronagraphic observatories require very fine precision pointing in order to image faint objects at very small distances from a target star. The Fine Guidance Camera measures the direction to the target star. The first option, referred to as Spot, was to collect all of the light reflected from a coronagraph occulter onto a focal plane, producing an Airy-type point spread function (PSF). This would allow almost all of the starlight from the central star to be used for centroiding. The second approach, referred to as Punctured Disk, collects the light that bypasses a central obscuration, producing a PSF with a punctured central disk. The final approach, referred to as Lyot, collects light after passing through the occulter at the Lyot stop. The study includes generation of representative images for each option by the science team, followed by an engineering evaluation of a centroiding or a photometric algorithm for each option. After the alignment of the coronagraph to the fine guidance system, a "nulling" point on the FGS focal point is determined by calibration. This alignment is implemented by a fine alignment mechanism that is part of the fine guidance camera selection mirror. If the star images meet the modeling assumptions, and the star "centroid" can be driven to that nulling point, the contrast for the coronagraph will be maximized.

  4. Full C-band Tunable MEMS-VCSEL for Next Generation G.metro Mobile Front- and Backhauling

    DEFF Research Database (Denmark)

    Wagner, Christoph; Zou, Shihuan Jim; Ortsiefer, Markus

    2017-01-01

    We report full C-band tunable, 10 Gbit/s capability, directly modulated MEMS-VCSEL for next generation converged mobile fronthaul and backhaul applications. Bit error rates below 10(-9) were achieved over up to 40 km SSMF.......We report full C-band tunable, 10 Gbit/s capability, directly modulated MEMS-VCSEL for next generation converged mobile fronthaul and backhaul applications. Bit error rates below 10(-9) were achieved over up to 40 km SSMF....

  5. Silicon graphene waveguide tunable broadband microwave photonics phase shifter.

    Science.gov (United States)

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-04-07

    We propose the use of silicon graphene waveguides to implement a tunable broadband microwave photonics phase shifter based on integrated ring cavities. Numerical computation results show the feasibility for broadband operation over 40 GHz bandwidth and full 360° radiofrequency phase-shift with a modest voltage excursion of 0.12 volt.

  6. Tunable Design for LTE Mobile-Phones

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon

    2014-01-01

    Antenna volume has become a critical parameter in mobile phone antenna design, as broader bandwidths are required for high connectivity between users. Shrinking the antenna size affects its efficiency, if one does not sacrifice bandwidth. This paper proposes an architecture to address the need...... for small and wide-band antennas. The study focuses on the low-frequencies (700 MHz - 960 MHz) in order to address a tough scenario for small platforms. A tunable design of the front-end and the antennas of the mobile phone is proposed and investigated. Operation is achieved on all low...

  7. An optical technique to measure the frequency and mode emission of tunable lasers

    International Nuclear Information System (INIS)

    Marchetti, S.; Simili, R.

    1988-01-01

    To use mode tunable lasers it is necessary to measure the laser frequency and the mode emission. This problem is very important when waveguide lasers are used. Normally this information is obtained by a heterodyne technique, but there are some difficulties to perform this method in a large electrical noise environment, when pulsed of radiofrequency lasers are used. This laser information was obtained by using an alternative low-cost optical system. With this apparatus the cavity pulling was measured and an upper limit for the linewidth of a radiofrequency, high pressure, line and mode-tunable, CO 2 laser was roughly estimated

  8. A high-speed tunable beam splitter for feed-forward photonic quantum information processing.

    Science.gov (United States)

    Ma, Xiao-Song; Zotter, Stefan; Tetik, Nuray; Qarry, Angie; Jennewein, Thomas; Zeilinger, Anton

    2011-11-07

    We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.

  9. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    Directory of Open Access Journals (Sweden)

    Keathley P.

    2013-03-01

    Full Text Available We studied high-harmonic generation (HHG in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ−5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  10. Tunable and switchable all-fiber comb filter using a PBS-based two-stage cascaded Mach-Zehnder interferometer

    Science.gov (United States)

    Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng

    2011-08-01

    We propose and demonstrate a novel tunable and switchable all-fiber comb filter by employing a polarization beam splitter (PBS)-based two-stage cascaded Mach-Zehnder (M-Z) interferometer. The proposed comb filter consists of a rotatable polarizer, a fiber PBS, a non-3-dB coupler and a 3-dB coupler. By simply adjusting the polarization state of the input light, the dual-function of channel spacing tunable and wavelength switchable (interleaving) operations can be efficiently obtained. The theoretical analysis is verified by the experimental results. A comb filter with both the channel spacing tunable from 0.18 nm to 0.36 nm and the wavelength switchable functions is experimentally demonstrated.

  11. Two-dimensional grating guided-mode resonance tunable filter.

    Science.gov (United States)

    Kuo, Wen-Kai; Hsu, Che-Jung

    2017-11-27

    A two-dimensional (2D) grating guided-mode resonance (GMR) tunable filter is experimentally demonstrated using a low-cost two-step nanoimprinting technology with a one-dimensional (1D) grating polydimethylsiloxane mold. For the first nanoimprinting, we precisely control the UV LED irradiation dosage and demold the device when the UV glue is partially cured and the 1D grating mold is then rotated by three different angles, 30°, 60°, and 90°, for the second nanoimprinting to obtain 2D grating structures with different crossing angles. A high-refractive-index film ZnO is then coated on the surface of the grating structure to form the GMR filter devices. The simulation and experimental results demonstrate that the passband central wavelength of the filter can be tuned by rotating the device to change azimuth angle of the incident light. We compare these three 2D GMR filters with differential crossing angles and find that the filter device with a crossing angle of 60° exhibits the best performance. The tunable range of its central wavelength is 668-742 nm when the azimuth angle varies from 30° to 90°.

  12. Pelletization of fine coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  13. Radioactivity in fine papers

    International Nuclear Information System (INIS)

    Taylor, H.W.; Singh, B.

    1993-01-01

    The radioactivity of fine papers has been studied through γ-ray spectroscopy with an intrinsic Ge detector. Samples of paper from European and North American sources were found to contain very different amounts of 226 Ra and 232 Th. The processes which introduce radionuclides into paper are discussed. The radioactivity from fine papers makes only a small contribution to an individual's annual radiation dose; nevertheless it is easily detectable and perhaps, avoidable. (Author)

  14. Experimental measurements on a 100 GHz frequency tunable quasioptical gyrotron

    International Nuclear Information System (INIS)

    Alberti, S.; Tran, M.Q.; Hogge, J.P.; Tran, T.M.; Bondeson, A.; Muggli, P.; Perrenoud, A.; Joedicke, B.; Mathews, H.G.

    1990-01-01

    Experiments on a 100 GHz quasioptical (QO) gyrotron operating at the fundamental (ω=Ω ce ) are described. Powers larger than 90 kW at an efficiency of about 12% were achieved. Depending on the electron beam parameters, the frequency spectrum of the output can be either single moded or multimoded. One of the main advantages of the QO gyrotron over the conventional gyrotron is its continuous frequency tunability. Various techniques to tune the output frequency have been tested, such as changing the mirror separation, the beam voltage, or the main magnetic field. Within the limitations of the present setup, 5% tunability was achieved. The QO gyrotron designed for operation at the fundamental frequency exhibits simultaneous emission at 100 GHz (fundamental) and 200 GHz (second harmonic). For a beam current of 4 A, 20% of the total rf power is emitted at the second harmonic

  15. Design of a gap tunable flux qubit with FastHenry

    Science.gov (United States)

    Akhtar, Naheed; Zheng, Yarui; Nazir, Mudassar; Wu, Yulin; Deng, Hui; Zheng, Dongning; Zhu, Xiaobo

    2016-12-01

    In the preparations of superconducting qubits, circuit design is a vital process because the parameters and layout of the circuit not only determine the way we address the qubits, but also strongly affect the qubit coherence properties. One of the most important circuit parameters, which needs to be carefully designed, is the mutual inductance among different parts of a superconducting circuit. In this paper we demonstrate how to design a gap-tunable flux qubit by layout design and inductance extraction using a fast field solver FastHenry. The energy spectrum of the gap-tunable flux qubit shows that the measured parameters are close to the design values. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374344, 11404386, and 91321208), the National Basic Research Program of China (Grant No. 2014CB921401), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07010300).

  16. Nanoporous carbon tunable resistor/transistor and methods of production thereof

    Science.gov (United States)

    Biener, Juergen; Baumann, Theodore F; Dasgupta, Subho; Hahn, Horst

    2014-04-22

    In one embodiment, a tunable resistor/transistor includes a porous material that is electrically coupled between a source electrode and a drain electrode, wherein the porous material acts as an active channel, an electrolyte solution saturating the active channel, the electrolyte solution being adapted for altering an electrical resistance of the active channel based on an applied electrochemical potential, wherein the active channel comprises nanoporous carbon arranged in a three-dimensional structure. In another embodiment, a method for forming the tunable resistor/transistor includes forming a source electrode, forming a drain electrode, and forming a monolithic nanoporous carbon material that acts as an active channel and selectively couples the source electrode to the drain electrode electrically. In any embodiment, the electrolyte solution saturating the nanoporous carbon active channel is adapted for altering an electrical resistance of the nanoporous carbon active channel based on an applied electrochemical potential.

  17. Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal

    Science.gov (United States)

    Yang, Jun; Xia, Tianyu; Jing, Shuaicheng; Deng, Guangsheng; Lu, Hongbo; Fang, Yong; Yin, Zhiping

    2018-02-01

    We present a reflective spatial phase shifter which operates at terahertz regime above 325 GHz. The controllable permittivity of the nematic liquid crystals was utilized to realize a tunable terahertz (THz) reflective phase shifter. The reflective characteristics of the terahertz electromagnetic waves and the liquid crystal parameters were calculated and analyzed. We provide the simulation results for the effect of the incident angle of the plane wave on the reflection. The experiment was carried out considering an array consisting of 30 × 30 patch elements, printed on a 20 × 20 mm quartz substrate with 1-mm thickness. The phase shifter provides a tunable phase range of 300° over the frequency range of 325 to 337.6 GHz. The maximum phase shift of 331° is achieved at 330 GHz. The proposed phase shifter is a potential candidate for THz applications, particularly for reconfigurable reflectarrays.

  18. Design and measuring of a tunable hybrid metamaterial absorber for terahertz frequencies

    Science.gov (United States)

    Zhong, Min; Liu, Shui Jie; Xu, Bang Li; Wang, Jie; Huang, Hua Qing

    2018-04-01

    A tunable hybrid metamaterial absorber is designed and experimentally produced in THz band. The hybrid metamaterial absorber contains two dielectric layers: SU-8 and VO2 layers. An absorption peak reaching to 83.5% is achieved at 1.04 THz. The hybrid metamaterial absorber exhibits high absorption when the incident angle reaches to 45°. Measured results indicate that the absorption amplitude and peak frequency of the hybrid metamaterial absorber is tunable in experiments. It is due to the insulator-to-metal phase transition is achieved when the measured temperature reaches to 68 °C. Moreover, the hybrid metamaterial absorber reveals high figure of merit (FOM) value when the measured temperature reaches to 68 °C.

  19. An Einstein-Cartan Fine Structure Constant Definition

    Directory of Open Access Journals (Sweden)

    Stone R. A. Jr.

    2010-01-01

    Full Text Available The fine structure constant definition given in Stone R.A. Jr. Progress in Physics, 2010, v.1, 11-13 is compared to an Einstein-Cartan fine structure constant definition. It is shown that the Einstein-Cartan definition produces the correct pure theory value, just not the measure value. To produce the measured value, the pure theory Einstein-Cartan fine structure constant requires only the new variables and spin coupling of the fine structure constant definition in [1].

  20. Construction of tunable peptide nucleic acid junctions.

    Science.gov (United States)

    Duan, Tanghui; He, Liu; Tokura, Yu; Liu, Xin; Wu, Yuzhou; Shi, Zhengshuang

    2018-03-15

    We report here the construction of 3-way and 4-way peptide nucleic acid (PNA) junctions as basic structural units for PNA nanostructuring. The incorporation of amino acid residues into PNA chains makes PNA nanostructures with more structural complexity and architectural flexibility possible, as exemplified by building 3-way PNA junctions with tunable nanopores. Given that PNA nanostructures have good thermal and enzymatic stabilities, they are expected to have broad potential applications in biosensing, drug delivery and bioengineering.

  1. Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits

    Science.gov (United States)

    Machnes, Shai; Assémat, Elie; Tannor, David; Wilhelm, Frank K.

    2018-04-01

    Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific constraints. Superconducting qubits present the additional requirement that pulses must have simple parameterizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system parameters. Other quantum technologies, such as sensing, require extremely high fidelities. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control technique named gradient optimization of analytic controls (GOAT), which satisfies all the above requirements, unlike previous approaches. To demonstrate GOAT's capabilities, with emphasis on flexibility and ease of subsequent calibration, we optimize fast coherence-limited pulses for two leading superconducting qubits architectures—flux-tunable transmons and fixed-frequency transmons with tunable couplers.

  2. 47 CFR 76.943 - Fines.

    Science.gov (United States)

    2010-10-01

    ... TELEVISION SERVICE Cable Rate Regulation § 76.943 Fines. (a) A franchising authority may impose fines or... specifically at the cable operator, provided the franchising authority has such power under state or local laws. (b) If a cable operator willfully fails to comply with the terms of any franchising authority's order...

  3. High-resolution 3D laser imaging based on tunable fiber array link

    Science.gov (United States)

    Zhao, Sisi; Ruan, Ningjuan; Yang, Song

    2017-10-01

    Airborne photoelectric reconnaissance system with the bore sight down to the ground is an important battlefield situational awareness system, which can be used for reconnaissance and surveillance of complex ground scene. Airborne 3D imaging Lidar system is recognized as the most potential candidates for target detection under the complex background, and is progressing in the directions of high resolution, long distance detection, high sensitivity, low power consumption, high reliability, eye safe and multi-functional. However, the traditional 3D laser imaging system has the disadvantages of lower imaging resolutions because of the small size of the existing detector, and large volume. This paper proposes a high resolution laser 3D imaging technology based on the tunable optical fiber array link. The echo signal is modulated by a tunable optical fiber array link and then transmitted to the focal plane detector. The detector converts the optical signal into electrical signals which is given to the computer. Then, the computer accomplishes the signal calculation and image restoration based on modulation information, and then reconstructs the target image. This paper establishes the mathematical model of tunable optical fiber array signal receiving link, and proposes the simulation and analysis of the affect factors on high density multidimensional point cloud reconstruction.

  4. Efficient color-tunable multiexcitonic dual wavelength emission from Type II semiconductor tetrapods.

    Science.gov (United States)

    Wu, Wen-Ya; Li, Mingjie; Lian, Jie; Wu, Xiangyang; Yeow, Edwin K L; Jhon, Mark H; Chan, Yinthai

    2014-09-23

    We synthesized colloidal InP/ZnS seeded CdS tetrapods by harnessing the structural stability of the InP/ZnS seed nanocrystals at the high reaction temperatures needed to grow the CdS arms. Because of an unexpected Type II band alignment at the interface of the InP/ZnS core and CdS arms that enhanced the occurrence of radiative excitonic recombination in CdS, these tetrapods were found to be capable of exhibiting highly efficient multiexcitonic dual wavelength emission of equal intensity at spectrally distinct wavelengths of ∼485 and ∼675 nm. Additionally, the Type II InP/ZnS seeded CdS tetrapods displayed a wider range of pump-dependent emission color-tunability (from red to white to blue) within the context of a CIE 1931 chromaticity diagram and possessed higher photostability due to suppressed multiexcitonic Auger recombination when compared to conventional Type I CdSe seeded CdS tetrapods. By employing time-resolved spectroscopy measurements, we were able to attribute the wide emission color-tunability to the large valence band offset between InP and CdS. This work highlights the importance of band alignment in the synthetic design of semiconductor nanoheterostructures, which can exhibit color-tunable multiwavelength emission with high efficiency and photostability.

  5. Broad-band tunable visible emission of sol-gel derived SiBOC ceramic thin films

    International Nuclear Information System (INIS)

    Karakuscu, Aylin; Guider, Romain; Pavesi, Lorenzo; Soraru, Gian Domenico

    2011-01-01

    Strong broad band tunable visible emission of SiBOC ceramic films is reported and the results are compared with one of boron free SiOC ceramic films. The insertion of boron into the SiOC network is verified by Fourier-Transform Infrared Spectroscopy. Optical properties are studied by photoluminescence and ultraviolet-visible spectroscopy measurements. Boron addition causes a decrease in the emission intensity attributed to defect states and shifts the emission to the visible range at lower temperatures (800-900 o C) leading to a very broad tunable emission with high external quantum efficiency.

  6. Thermal Loss Becomes an Issue for Tunable Narrow-band Antennas in Fourth Generation Handsets

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2015-01-01

    Antenna tuning is a very promising technique to cope with the expansion of the mobile communication frequency spectrum. Tunable antennas can address a wide range of operating frequencies, while being highly integrated. In particular, high-Q antennas (also named narrow-band antennas) are very...... compact, thus are good candidates to be embedded on fourth generation handsets. This study focuses on ‘high-Q’ tunable antennas and contributes with a characterisation of their loss mechanism, which is a major parameter in link-budget calculations. This study shows, through an example, that the tuner loss...

  7. 1060-nm Tunable Monolithic High Index Contrast Subwavelength Grating VCSEL

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Chung, Il-Sug; Semenova, Elizaveta

    2013-01-01

    We present the first tunable vertical-cavity surface-emitting laser (VCSEL) where the top distributed Bragg reflector has been completely substituted by an air-cladded high-index-contrast subwavelength grating (HCG) mirror. In this way, an extended cavity design can be realized by reducing...

  8. Development of fine motor skills in preterm infants.

    Science.gov (United States)

    Bos, Arend F; Van Braeckel, Koenraad N J A; Hitzert, Marrit M; Tanis, Jozien C; Roze, Elise

    2013-11-01

    Fine motor skills are related to functioning in daily life and at school. We reviewed the status of knowledge, in preterm children, on the development of fine motor skills, the relation with gross motor skills, and risk factors for impaired fine motor skills. We searched the past 15 years in PubMed, using ['motor skills' or 'fine motor function' and 'preterm infant'] as the search string. Impaired gross and fine motor skills are among the most frequently occurring problems encountered by preterm children who do not develop cerebral palsy. The prevalence is around 40% for mild to moderate impairment and 20% for moderate impairment. Fine motor skill scores on the Movement Assessment Battery for Children are about 0.62 of a standard deviation lower compared with term children. Risk factors for fine motor impairments include moderately preterm birth (odds ratio [OR] 2.0) and, among very preterm children (development of and recovery from brain injury could guide future intervention attempts aimed at improving fine motor skills of preterm children. © The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.

  9. A disorder-based strategy for tunable, broadband wave attenuation

    Science.gov (United States)

    Zhang, Weiting; Celli, Paolo; Cardella, Davide; Gonella, Stefano

    2017-04-01

    One of the most daunting limitations of phononic crystals and acoustic/elastic metamaterials is their passivity: a given configuration is bound to display its phononic properties only around its design point, i.e., working at some pre-determined operating conditions. In the past decade, this shortcoming has inspired the design of phononic media with tunable wave characteristics; noteworthy results have been obtained through a family of methodologies involving shunted piezoelectric elements. Shunting a piezoelectric element means connecting it to a passive electric circuit; tunability stems from the ability to modify the effective mechanical properties of the piezoelectric medium by modifying the circuit characteristics. One of the most popular shunting circuits is the resistor-inductor, which allows the patch-and-shunt system to behave as an electromechanical resonator. A common motif among the works employing shunted piezos for phononic control is periodicity: the patches are typically periodically placed in the domain and the circuits are identically tuned. The objective of this work is to demonstrate that the wave attenuation performance of structures with shunted piezoelectric patches can be improved by leveraging notions of organized disorder. Based on the idea of rainbow trapping broadband wave attenuation obtained by tuning an array of resonators at distinct neighboring frequencies we design and test an electromechanical waveguide structure capable of attenuating waves over broad frequency ranges. In order to emphasize the fact that periodicity is not a binding requirement when working with RL shunts (which induce locally resonant bandgaps), we report on the performance of random arrangements of patches. In an attempt to demonstrate the tunability attribute of our strategy, we take advantage of the reconfigurability of the circuits to show how a single waveguide can attenuate both waves and vibrations over different frequency ranges.

  10. Tunable third-harmonic probe for non-degenerate ultrafast pump ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... In this article, we report a method to achieve a precisely tunable highly stable probe beam generation for performing pump–probe experiment around a given wavelength by tilting a sum frequency generation (SFG) crystal angle. The width of the generated third-harmonic beam is of the order of 2 nm ...

  11. Highly Tunable Electrothermally and Electrostatically Actuated Resonators

    KAUST Repository

    Hajjaj, Amal Z.

    2016-03-30

    This paper demonstrates experimentally, theoretically, and numerically for the first time, a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator actuated electrothermally and electrostatically. Using both actuation methods, we demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally by passing a dc current through it, and electrostatically by applying a dc polarization voltage between the microbeam and the stationary electrode. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Adding a dc bias changes the qualitative nature of the tunability both before and after buckling, which adds another independent way of tuning. This reduces the dip before buckling, and can eliminate it if desired, and further increases the fundamental frequency after buckling. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared with the experimental data and simulation results of a multi-physics finite-element model. A good agreement is found among all the results. [2015-0341

  12. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  13. Usage of Crushed Concrete Fines in Decorative Concrete

    Science.gov (United States)

    Pilipenko, Anton; Bazhenova, Sofia

    2017-10-01

    The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of

  14. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  15. Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange.

    Science.gov (United States)

    Lim, Ho Sun; Lee, Jae-Hwang; Walish, Joseph J; Thomas, Edwin L

    2012-10-23

    One-dimensionally periodic block copolymer photonic lamellar gels with full-color tunability as a result of a direct exchange of counteranions were fabricated via a two-step procedure comprising the self-assembly of a hydrophobic block-hydrophilic polyelectrolyte block copolymer, polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP), followed by sequential quaternization of the P2VP layers in 1-bromoethane solution. Depending on the hydration characteristics of each counteranion, the selective swelling of the block copolymer lamellar structures leads to large tunability of the photonic stop band from blue to red wavelengths. More extensive quaternization of the P2VP block allows the photonic lamellar gels to swell more and red shift to longer wavelength. Here, we investigate the dynamic swelling behavior in the photonic gel films through time-resolved in situ measurement of UV-vis transmission. We model the swelling behavior using the transfer matrix method based on the experimentally observed reflectivity data with substitution of appropriate counterions. These tunable structural color materials may be attractive for numerous applications such as high-contrast displays without using a backlight, color filters, and optical mirrors for flexible lasing.

  16. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.

    2011-03-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  17. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.; Melnikov, Vasily; Fedotov, Il'ya V.; Fedotov, Andrei B.; Perova, Tatiana S.; Zheltikov, Aleksei M.

    2011-01-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  18. Tunable Laser for High-Performance, Low-Cost Distributed Sensing Platform, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will establish technical feasibility of an approach to optimizing a low-cost, fast-sweeping tunable laser for distributed sensing. Multiple...

  19. A novel synthesis of graphene nanoscrolls with tunable dimension at a large scale

    International Nuclear Information System (INIS)

    Chen Xuli; Li Li; Sun Xuemei; Peng Huisheng; Kia, Hamid G

    2012-01-01

    Graphene nanoscrolls which could overcome the chirality dependence of metallic or semiconducting behavior in carbon nanotubes have been recently investigated and proposed for a wide variety of applications. In order to further improve their practical applications, a variety of synthetic approaches have been widely explored but with various limitations. For instance, it remains challenging to produce graphene nanoscrolls with tunable dimensions and high quantity, which greatly hinders their potential applications. Herein, we report a new and general approach to synthesize graphene nanoscrolls with accurately tunable widths and lengths at a large scale. The resulting high-quality graphene nanoscrolls show promising applications in a wide variety of electronic devices. (paper)

  20. Graphene-Based Flexible and Transparent Tunable Capacitors

    OpenAIRE

    Man, Baoyuan; Xu, Shicai; Jiang, Shouzheng; Liu, Aihua; Gao, Shoubao; Zhang, Chao; Qiu, Hengwei; Li, Zhen

    2015-01-01

    We report a kind of electric field tunable transparent and flexible capacitor with the structure of graphene-Bi1.5MgNb1.5O7 (BMN)-graphene. The graphene films with low sheet resistance were grown by chemical vapor deposition. The BMN thin films were fabricated on graphene by using laser molecular beam epitaxy technology. Compared to BMN films grown on Au, the samples on graphene substrates show better quality in terms of crystallinity, surface morphology, leakage current, and loss tangent. By...

  1. 5.5nm wavelength-tunable high-power MOPA diode laser system at 971 nm

    Science.gov (United States)

    Tawfieq, Mahmoud; Müller, André; Fricke, Jörg; Della Casa, Pietro; Ressel, Peter; Ginolas, Arnim; Feise, David; Sumpf, Bernd; Tränkle, Günther

    2018-02-01

    In this work, a widely tunable hybrid master oscillator power amplifier (MOPA) diode laser with 6.2 W of output power at 971.8 nm will be presented. The MO is a DBR laser, with a micro heater embedded on top of the DBR grating for wavelength tunability. The emitted light of the MO is collimated and coupled into a tapered amplifier using micro cylindrical lenses, all constructed on a compact 25 mm × 25 mm conduction cooled laser package. The MOPA system emits light with a measured spectral width smaller than 17 pm, limited by the spectrometer, and with a beam propagation factor of M2 1/e2 = 1.3 in the slow axis. The emission is thus nearly diffraction limited with 79% of the total power within the central lobe (4.9 W diffraction limited). The electrically controlled micro-heater provides up to 5.5 nm of wavelength tunability, up to a wavelength of 977.3 nm, while maintaining an output power variation of only +/- 0.16 % for the entire tuning range.

  2. Tunable secondary dimension selectivity in comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Mommers, J.; Pluimakers, G.; Knooren, J.; Dutriez, T.; van der Wal, S.

    2013-01-01

    In this paper two tunable two-dimensional gas chromatography setups are compared and described in which the secondary dimension consists of two different capillary columns coupled in series. In the first setup the selectivity of the second dimension can be tuned by adjusting the effective column

  3. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2010-01-01

    We investigate the tunability of splay-aligned liquid crystals for the use in solid core photonic crystal fibers. Finite element simulations are used to obtain the alignment of the liquid crystals subject to an external electric field. By means of the liquid crystal director field the optical...

  4. Trap-mediated electronic transport properties of gate-tunable pentacene/MoS2 p-n heterojunction diodes.

    Science.gov (United States)

    Kim, Jae-Keun; Cho, Kyungjune; Kim, Tae-Young; Pak, Jinsu; Jang, Jingon; Song, Younggul; Kim, Youngrok; Choi, Barbara Yuri; Chung, Seungjun; Hong, Woong-Ki; Lee, Takhee

    2016-11-10

    We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS 2 ) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS 2 and pentacene. The pentacene/MoS 2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices.

  5. Tunable coupling and ultrastrong interaction in circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Baust, Alexander Theodor

    2015-01-01

    For future quantum information and quantum simulation architectures with superconducting circuits, a profound understanding of the coupling mechanisms between the individual building blocks is essential. In our work, we investigate galvanically coupled qubit-resonator systems, demonstrate the phenomenon of ultrastrong coupling and realize qubit mediated tunable and switchable coupling between two frequency-degenerate coplanar microwave resonators.

  6. Dual-layer electrode-driven liquid crystal lens with electrically tunable focal length and focal plane

    Science.gov (United States)

    Zhang, Y. A.; Lin, C. F.; Lin, J. P.; Zeng, X. Y.; Yan, Q.; Zhou, X. T.; Guo, T. L.

    2018-04-01

    Electric-field-driven liquid crystal (ELC) lens with tunable focal length and their depth of field has been extensively applied in 3D display and imaging systems. In this work, a dual-layer electrode-driven liquid crystal (DELC) lens with electrically tunable focal length and controllable focal plane is demonstrated. ITO-SiO2-AZO electrodes with the dual-layer staggered structure on the top substrate are used as driven electrodes within a LC cell, which permits the establishment of an alternative controllability. The focal length of the DELC lens can be adjusted from 1.41 cm to 0.29 cm when the operating voltage changes from 15 V to 40 V. Furthermore, the focal plane of the DELC lens can selectively move by changing the driving method of the applied voltage to the next driven electrodes. This work demonstrates that the DELC lens has potential applications in imaging systems because of electrically tunable focal length and controllable focal plane.

  7. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M2 = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient......We report the realization of a tapered diode laser operated in a coupled ring cavity that significantly improves the coherence properties of the tapered laser and efficiently generates tunable light at the second harmonic frequency. The tapered diode laser is tunable with single-frequency output...... frequency doubling. More than 500 mW green output power is obtained by placing a periodically poled LiNbO3 crystal in the external cavity. The single frequency green output from the laser system is tunable in the 530 nm to 533 nm range limited by the LiNbO3 crystal. The optical to optical conversion...

  8. Tunable Clamped–Guided Arch Resonators Using Electrostatically Induced Axial Loads

    KAUST Repository

    Alcheikh, Nouha; Ramini, Abdallah; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2017-01-01

    We present a simulation and experimental investigation of bi-directional tunable in-plane clamped-guided arch microbeam resonators. Tensile and compressive axial forces are generated from a bi-directional electrostatic actuator, which modulates the microbeam stiffness, and hence changes its natural frequency to lower or higher values from its as-fabricated value. Several devices of various anchor designs and geometries are fabricated. We found that for the fabricated shallow arches, the effect of the curvature of the arch is less important compared to the induced axial stress from the axial load. We have shown that the first mode resonance frequency can be increased up to twice its initial value. Additionally, the third mode resonance frequency can be increased up to 30% of its initial value. These results can be promising as a proof-of-concept for the realization of wide-range tunable microresonators. The experimental results have been compared to finite-element simulations, showing good agreement among them.

  9. Soliton filtering from a supercontinuum: a tunable femtosecond pulse source

    Energy Technology Data Exchange (ETDEWEB)

    Licea-Rodriguez, Jacob; Rangel-Rojo, Raul [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada B.C., 22860 (Mexico); Garay-Palmett, Karina, E-mail: rrangel@cicese.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico DF. 04510 (Mexico)

    2011-01-01

    In this article we report experimental results related with the generation of a supercontinuum in a microstructured fiber, from which the soliton with the longest wavelength is filtered out of the continuum and is used to construct a tunable ultrashort pulses source by varying the pump power. Pulses of an 80 fs duration (FWHM) from a Ti:sapphire oscillator were input into a 2 m long fiber to generate the continuum. The duration of the solitons at the fiber output was preserved by using a zero dispersion filtering system, which selected the longest wavelength soliton, while avoiding temporal spreading of the solitons. We present a complete characterization of the filtered pulses that are continuously tunable in the 850-1100 nm range. We also show that the experimental results have a qualitative agreement with theory. An important property of the proposed near-infrared pulsed source is that the soliton pulse energies obtained after filtering are large enough for applications in nonlinear microscopy.

  10. Tunable Clamped–Guided Arch Resonators Using Electrostatically Induced Axial Loads

    KAUST Repository

    Alcheikh, Nouha

    2017-01-04

    We present a simulation and experimental investigation of bi-directional tunable in-plane clamped-guided arch microbeam resonators. Tensile and compressive axial forces are generated from a bi-directional electrostatic actuator, which modulates the microbeam stiffness, and hence changes its natural frequency to lower or higher values from its as-fabricated value. Several devices of various anchor designs and geometries are fabricated. We found that for the fabricated shallow arches, the effect of the curvature of the arch is less important compared to the induced axial stress from the axial load. We have shown that the first mode resonance frequency can be increased up to twice its initial value. Additionally, the third mode resonance frequency can be increased up to 30% of its initial value. These results can be promising as a proof-of-concept for the realization of wide-range tunable microresonators. The experimental results have been compared to finite-element simulations, showing good agreement among them.

  11. Low-loss tunable 1D ITO-slot photonic crystal nanobeam cavity

    Science.gov (United States)

    Amin, Rubab; Tahersima, Mohammad H.; Ma, Zhizhen; Suer, Can; Liu, Ke; Dalir, Hamed; Sorger, Volker J.

    2018-05-01

    Tunable optical material properties enable novel applications in both versatile metamaterials and photonic components including optical sources and modulators. Transparent conductive oxides (TCOs) are able to highly tune their optical properties with applied bias via altering their free carrier concentration and hence plasma dispersion. The TCO material indium tin oxide (ITO) exhibits unity-strong index change and epsilon-near-zero behavior. However, with such tuning the corresponding high optical losses, originating from the fundamental Kramers–Kronig relations, result in low cavity finesse. However, achieving efficient tuning in ITO-cavities without using light–matter interaction enhancement techniques such as polaritonic modes, which are inherently lossy, is a challenge. Here we discuss a novel one-dimensional photonic crystal nanobeam cavity to deliver a cavity system offering a wide range of resonance tuning range, while preserving physical compact footprints. We show that a vertical silicon-slot waveguide incorporating an actively gated-ITO layer delivers ∼3.4 nm of tuning. By deploying distributed feedback, we are able to keep the Q-factor moderately high with tuning. Combining this with the sub-diffraction limited mode volume (0.1 (λ/2n)3) from the photonic (non-plasmonic) slot waveguide, facilitates a high Purcell factor exceeding 1000. This strong light–matter-interaction shows that reducing the mode volume of a cavity outweighs reducing the losses in diffraction limited modal cavities such as those from bulk Si3N4. These tunable cavities enable future modulators and optical sources such as tunable lasers.

  12. Robust and Elastic Polymer Membranes with Tunable Properties for Gas Separation.

    Science.gov (United States)

    Cao, Peng-Fei; Li, Bingrui; Hong, Tao; Xing, Kunyue; Voylov, Dmitry N; Cheng, Shiwang; Yin, Panchao; Kisliuk, Alexander; Mahurin, Shannon M; Sokolov, Alexei P; Saito, Tomonori

    2017-08-09

    Polymer membranes with the capability to process a massive volume of gas are especially attractive for practical applications of gas separation. Although much effort has been devoted to develop novel polymer membranes with increased selectivity, the overall gas-separation performance and lifetime of membrane are still negatively affected by the weak mechanical performance, low plasticization resistance and poor physical aging tolerance. Recently, elastic polymer membranes with tunable mechanical properties have been attracting significant attentions due to their tremendous potential applications. Herein, we report a series of urethane-rich PDMS-based polymer networks (U-PDMS-NW) with improved mechanical performance for gas separation. The cross-link density of U-PDMS-NWs is tailored by varying the molecular weight (M n ) of PDMS. The U-PDMS-NWs show up to 400% elongation and tunable Young's modulus (1.3-122.2 MPa), ultimate tensile strength (1.1-14.3 MPa), and toughness (0.7-24.9 MJ/m 3 ). All of the U-PDMS-NWs exhibit salient gas-separation performance with excellent thermal resistance and aging tolerance, high gas permeability (>100 Barrer), and tunable gas selectivity (up to α[P CO 2 /P N 2 ] ≈ 41 and α[P CO 2 /P CH 4 ] ≈ 16). With well-controlled mechanical properties and gas-separation performance, these U-PDMS-NW can be used as a polymer-membrane platform not only for gas separation but also for other applications such as microfluidic channels and stretchable electronic devices.

  13. Tunable filter imaging of high-redshift quasar fields

    NARCIS (Netherlands)

    Swinbank, J.; Baker, J.; Barr, J.; Hook, I.; Bland-Hawthorn, J.

    2012-01-01

    We have used the Taurus Tunable Filter to search for Lyα emitters in the fields of three high-redshift quasars: two at z∼ 2.2 (MRC B1256−243 and MRC B2158−206) and one at z∼ 4.5 (BR B0019−1522). Our observations had a field of view of around 35 arcmin2, and reached AB magnitudes of ∼21 (MRC

  14. Novel O-band tunable fiber laser using an array waveguide grating

    International Nuclear Information System (INIS)

    Ahmad, H; Zulkifli, M Z; Latif, A A; Harun, S W

    2010-01-01

    A novel tunable fibre laser (TFL) operating in the ordinary band (O-band) of 1310 nm is proposed and demonstrated. The proposed TFL is developed using a 1×16 arrayed waveguide grating (AWG) as a slicing mechanism for the broadband amplified spontaneous emission (ASE) source and an optical channel selector (OCS) to provide the tunability. A semiconductor optical amplifier (SOA) with a centre wavelength of 1310 nm serves as the compact gain medium for the TFL and also as a broadband ASE source. The TFL has a tuning range of 1301.26 nm to 1311.18 nm with 9.92 nm span and a channel spacing of 0.7 nm. The measured output power is about –4 and –8 dBm and with a side node suppression ratio (SMSR) of 29 to 33 dB

  15. Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass

    Energy Technology Data Exchange (ETDEWEB)

    Foucher, C.; Guilhabert, B.; Laurand, N.; Dawson, M. D. [Institute of Photonics, SUPA, University of Strathclyde, Glasgow (United Kingdom)

    2014-04-07

    A mechanically flexible and wavelength-tunable laser with an ultra-thin glass membrane as substrate is demonstrated. The optically pumped hybrid device has a distributed feedback cavity that combines a colloidal quantum dot gain film with a grating-patterned polymeric underlayer, all on a 30-μm thick glass sheet. The total thickness of the structure is only 75 μm. The hybrid laser has an average threshold fluence of 450 ± 80 μJ/cm{sup 2} (for 5-ns excitation pulses) at an emitting wavelength of 607 nm. Mechanically bending the thin-glass substrate enables continuous tuning of the laser emission wavelength over an 18-nm range, from 600 nm to 618 nm. The correlation between the wavelength tunability and the mechanical properties of the thin laser structure is verified theoretically and experimentally.

  16. A tunable RF Front-End with Narrowband Antennas for Mobile Devices

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Olesen, Poul; Madsen, Peter

    2015-01-01

    desensitization due to the Tx signal. The filters and antennas demonstrate tunability across multiple bands. System validation is detailed for LTE band I. Frequency response, as well as linearity measurements of the complete Tx and Rx front-end chains, show that the system requirements are fulfilled.......In conventional full-duplex radio communication systems, the transmitter (Tx) is active at the same time as the receiver (Rx). The isolation between the Tx and the Rx is ensured by duplex filters. However, an increasing number of long-term evolution (LTE) bands crave multiband operation. Therefore......, a new front-end architecture, addressing the increasing number of LTE bands, as well as multiple standards, is presented. In such an architecture, the Tx and Rx chains are separated throughout the front-end. Addition of bands is solved by making the antennas and filters tunable. Banks of duplex filters...

  17. Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter.

    Science.gov (United States)

    Lloret, Juan; Morthier, Geert; Ramos, Francisco; Sales, Salvador; Van Thourhout, Dries; Spuesens, Thijs; Olivier, Nicolas; Fédéli, Jean-Marc; Capmany, José

    2012-05-07

    A broadband microwave photonic phase shifter based on a single III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic silicon-on-insulator waveguide is reported. The phase shift tunability is accomplished by modifying the effective index through carrier injection. A comprehensive semi-analytical model aiming at predicting its behavior is formulated and confirmed by measurements. Quasi-linear and continuously tunable 2π phase shifts at radiofrequencies greater than 18 GHz are experimentally demonstrated. The phase shifter performance is also evaluated when used as a key element in tunable filtering schemes. Distortion-free and wideband filtering responses with a tuning range of ~100% over the free spectral range are obtained.

  18. A study of human DPOAE fine structure

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    height and ripple prevalence. Temporary changes of the DPOAE fine structure are analyzed by measuring DPOAE both before and after exposing some of the subjects to an intense sound. The characteristic patterns of fine structure can be found in the DPOAE of all subjects, though they are individual and vary...... fine structures are obtained from 74 normalhearing humans using primary levels of L1/L2=65/45 dB. The subjects belong to groups with different age and exposure history. A classification algorithm is developed, which quantifies the fine structure by the parameters ripple place, ripple width, ripple...

  19. Fine 5 Eesti tantsuväljal / Iiris Viirpalu

    Index Scriptorium Estoniae

    Viirpalu, Iiris, 1992-

    2017-01-01

    Nüüdistantsuteatril Fine 5 täitub tänavu 25. tegutsemisaasta. Fine 5 käekirjast. Vestlusest Fine 5 tantsuteatri ja -kooli kauaaegsete kunstiliste juhtide Renee Nõmmiku ja Tiina Olleskiga Eesti tantsukunstist

  20. Noise filtering in a multi-channel system using a tunable liquid crystal photonic bandgap fiber

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal; Scolari, Lara; Tokle, Torger

    2008-01-01

    This paper reports on the first application of a liquid crystal infiltrated photonic bandgap fiber used as a tunable filter in an optical transmission system. The device allows low-cost amplified spontaneous emission (ASE) noise filtering and gain equalization with low insertion loss and broad...... tunability. System experiments show that the use of this filter increases for times the distance over which the optical signal-to-noise ratio (OSNR) is sufficient for error-free transmission with respect to the case in which no filtering is used....

  1. Revisiting fine-tuning in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Graham G. [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Staub, Florian [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Physik; Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Experimentelle Kernphysik

    2017-03-15

    We evaluate the amount of fine-tuning in constrained versions of the minimal supersymmetric standard model (MSSM), with different boundary conditions at the GUT scale. Specifically we study the fully constrained version as well as the cases of non-universal Higgs and gaugino masses. We allow for the presence of additional non-holomorphic soft-terms which we show further relax the fine-tuning. Of particular importance is the possibility of a Higgsino mass term and we discuss possible origins for such a term in UV complete models. We point out that loop corrections typically lead to a reduction in the fine-tuning by a factor of about two compared to the estimate at tree-level, which has been overlooked in many recent works. Taking these loop corrections into account, we discuss the impact of current limits from SUSY searches and dark matter on the fine-tuning. Contrary to common lore, we find that the MSSM fine-tuning can be as small as 10 while remaining consistent with all experimental constraints. If, in addition, the dark matter abundance is fully explained by the neutralino LSP, the fine-tuning can still be as low as ∝20 in the presence of additional non-holomorphic soft-terms. We also discuss future prospects of these models and find that the MSSM will remain natural even in the case of a non-discovery in the foreseeable future.

  2. Revisiting fine-tuning in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Graham G. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Schmidt-Hoberg, Kai [DESY, Notkestraße 85, D-22607 Hamburg (Germany); Staub, Florian [Institute for Theoretical Physics (ITP), Karlsruhe Institute of Technology, Engesserstraße 7, D-76128 Karlsruhe (Germany); Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2017-03-06

    We evaluate the amount of fine-tuning in constrained versions of the minimal supersymmetric standard model (MSSM), with different boundary conditions at the GUT scale. Specifically we study the fully constrained version as well as the cases of non-universal Higgs and gaugino masses. We allow for the presence of additional non-holomorphic soft-terms which we show further relax the fine-tuning. Of particular importance is the possibility of a Higgsino mass term and we discuss possible origins for such a term in UV complete models. We point out that loop corrections typically lead to a reduction in the fine-tuning by a factor of about two compared to the estimate at tree-level, which has been overlooked in many recent works. Taking these loop corrections into account, we discuss the impact of current limits from SUSY searches and dark matter on the fine-tuning. Contrary to common lore, we find that the MSSM fine-tuning can be as small as 10 while remaining consistent with all experimental constraints. If, in addition, the dark matter abundance is fully explained by the neutralino LSP, the fine-tuning can still be as low as ∼20 in the presence of additional non-holomorphic soft-terms. We also discuss future prospects of these models and find that the MSSM will remain natural even in the case of a non-discovery in the foreseeable future.

  3. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors

    Science.gov (United States)

    Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu

    2016-02-01

    We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.

  4. Process of briquetting fine shale

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, J

    1943-05-05

    A process is described for the preparation of briquetts of fine bituminous shale, so-called Mansfield copper shale, without addition of binding material, characterized in that the fine shale is warmed to about 100/sup 0/C and concurrently briquetted in a high-pressure rolling press or piece press under a pressure of 300 to 800 kg/cm/sup 2/.

  5. Shape tunable synthesis of Eu- and Sm-doped ZnO microstructures ...

    Indian Academy of Sciences (India)

    Shape tunable synthesis of Eu- and Sm-doped ZnO microstructures: a morphological ... different microstructures material at relatively low temper- ..... Chem. C 114. 2776. 5. Gao P X and Wang Z L 2003 J. Am. Chem. Soc. 125 11299. 6.

  6. Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties

    NARCIS (Netherlands)

    Richter, Alexander P.; Bharti, Bhuvnesh; Armstrong, Hinton B.; Brown, Joseph S.; Plemmons, Dayne; Paunov, Vesselin N.; Stoyanov, Simeon D.; Velev, Orlin D.

    2016-01-01

    Lignin nanoparticles can serve as biodegradable carriers of biocidal actives with minimal environmental footprint. Here we describe the colloidal synthesis and interfacial design of nanoparticles with tunable surface properties using two different lignin precursors, Kraft (Indulin AT) lignin and

  7. Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications

    Science.gov (United States)

    Henderson, Sammy W.; Hale, Charley P.

    2017-08-01

    We are developing a family of fast, widely-tunable cw diode-pumped single frequency solid-state lasers, called Swift. The Swift laser architecture is compatible with operation using many different solid-state laser crystals for operation at various emission lines between 1 and 2.1 micron. The initial prototype Swift laser using a Tm,Ho:YLF laser crystal near 2.05 micron wavelength achieved over 100 mW of single frequency cw output power, up to 50 GHz-wide, fast, mode-hop-free piezoelectric tunability, and 100 kHz/ms frequency stability. For the Tm,Ho:YLF laser material, the fast 50 GHz tuning range can be centered at any wavelength from 2047-2059 nm using appropriate intracavity spectral filters. The frequency stability and power are sufficient to serve as the local oscillator (LO) laser in long-range coherent wind-measuring lidar systems, as well as a frequency-agile master oscillator (MO) or injection-seed source for larger pulsed transmitter lasers. The rapid and wide frequency tunablity meets the requirements for integrated-path or range-resolved differential absorption lidar or applications where targets with significantly different line of sight velocities (Doppler shifts) must be tracked. Initial demonstration of an even more compact version of the Swift is also described which requires less prime power and produces less waste heat.

  8. High sensitivity spectroscopy with tunable diode lasers - detection of O2 quadrupole transitions and 14C

    International Nuclear Information System (INIS)

    Reid, J.

    1981-01-01

    In recent years, tunable lead-salt diode lasers (TDLs) have found widespread application in all fields of infrared spectroscopy. However, most applications of TDLs utilise only the tunability and high resolution of these devices, and few experiments have employed the ability of the TDL to detect very small absorption coefficients. We have developed a laser absorption spectrometer (LAS) which can detect absorption coefficients as small as 10 -6 to 10 -7 m -1 , while retaining the full tunability and resolution of the TDL. This instrument has been used as a point monitoring system for many trace gases of atmospheric significance. In this paper, we describe two additional applications of the LAS: (I) the detection of very weak transitions such as quadrupole lines in oxygen, and (II) the detection of rare isotopes, with 14 C in CO 2 as an example. Details are given in the following sections. (orig.)

  9. Effect of hyperbaric environment on fine motor skills

    OpenAIRE

    Les, Martin

    2017-01-01

    Title: Effect of hyperbaric environment on fine motor skills Objectives: The aim of study is to assess the changes fine motor skills due to hyperbaric environment in preparation for selected tests of fine motor skills. Methods: The first method was used empirically - research. Then the method chosen of compilation of the information obtained. The basic method to work was the experimental measurement method specially constructed tests on fine motor skills. All measured values were statisticall...

  10. Ligand-controlled, tunable silver-catalyzed C-H amination.

    Science.gov (United States)

    Alderson, Juliet M; Phelps, Alicia M; Scamp, Ryan J; Dolan, Nicholas S; Schomaker, Jennifer M

    2014-12-03

    The development of readily tunable and regioselective C-H functionalization reactions that operate solely through catalyst control remains a challenge in modern organic synthesis. Herein, we report that simple silver catalysts supported by common nitrogenated ligands can be used to tune a nitrene transfer reaction between two different types of C-H bonds. The results reported herein represent the first example of ligand-controlled and site-selective silver-promoted C-H amination.

  11. Broadband tunable electromagnetically induced transparency analogue metamaterials based on graphene in terahertz band

    Science.gov (United States)

    Wang, Yue; Leng, Yanbing; Wang, Li; Dong, Lianhe; Liu, Shunrui; Wang, Jun; Sun, Yanjun

    2018-06-01

    Most of the actively controlled electromagnetically induced transparency analogue (EIT-like) metamaterials were implemented with narrowband modulations. In this paper, a broadband tunable EIT-like metamaterial based on graphene in the terahertz band is presented. It consists of a cut wire as the bright resonator and two couples of H-shaped resonators in mirror symmetry as the dark resonators. A broadband tunable property of transmission amplitude is realized by changing the Fermi level of graphene. Furthermore, the geometries of the metamaterial structure are optimized to achieve the ideal curve through the simulation. Such EIT-like metamaterials proposed here are promising candidates for designing active wide-band slow-light devices, wide-band terahertz active filters, and wide-band terahertz modulators.

  12. Storage and on-demand release of microwaves using superconducting resonators with tunable coupling

    International Nuclear Information System (INIS)

    Pierre, Mathieu; Svensson, Ida-Maria; Raman Sathyamoorthy, Sankar; Johansson, Göran; Delsing, Per

    2014-01-01

    We present a system which allows to tune the coupling between a superconducting resonator and a transmission line. This storage resonator is addressed through a second, coupling resonator, which is frequency-tunable and controlled by a magnetic flux applied to a superconducting quantum interference device. We experimentally demonstrate that the lifetime of the storage resonator can be tuned by more than three orders of magnitude. A field can be stored for 18 μs when the coupling resonator is tuned off resonance and it can be released in 14 ns when the coupling resonator is tuned on resonance. The device allows capture, storage, and on-demand release of microwaves at a tunable rate.

  13. Tunable Q-Factor RF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, Mario D. [Fermilab; Yonehara, Katsuya [Fermilab; Moretti, Alfred [Fermilab; Kazakevitch, Gregory [Fermilab

    2018-01-01

    Intense neutrino beam is a unique probe for researching beyond the standard model. Fermilab is the main institution to produce the most powerful and widespectrum neutrino beam. From that respective, a radiation robust beam diagnostic system is a critical element in order to maintain the quality of the neutrino beam. Within this context, a novel radiation-resistive beam profile monitor based on a gasfilled RF cavity is proposed. The goal of this measurement is to study a tunable Qfactor RF cavity to determine the accuracy of the RF signal as a function of the quality factor. Specifically, measurement error of the Q-factor in the RF calibration is investigated. Then, the RF system will be improved to minimize signal error.

  14. Strain-tunable quantum dot devices

    International Nuclear Information System (INIS)

    Rastelli, A.; Trotta, R.; Zallo, E.; Atkinson, P.; Magerl, E.; Ding, F.; Plumhof, J.D.; Kumar, S.; Doerr, K.; Schmidt, O.G.

    2011-01-01

    We introduce a new class of quantum dot-based devices, in which the semiconductor structures are integrated on top of piezoelectric actuators. This combination allows on one hand to study in detail the effects produced by variable strains (up to about 0.2%) on the excitonic emission of single quantum dots and on the other to manipulate their electronic- and optical properties to achieve specific requirements. In fact, by combining strain with electric fields we are able to obtain (i) independent control of emission energy and charge-state of a QD, (II) wavelength-tunable single-QD light-emitting diodes and (III) frequency-stabilized sources of single photons at predefined wavelengths. Possible future extensions and applications of this technology will be discussed.

  15. Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays

    International Nuclear Information System (INIS)

    Jiang, Aiting; Jung, Seungyong; Jiang, Yifan; Kim, Jae Hyun; Belkin, Mikhail A.; Vijayraghavan, Karun

    2015-01-01

    We demonstrate a compact monolithic terahertz source continuously tunable from 1.9 THz to 3.9 THz with the maximum peak power output of 106 μW at 3.46 THz at room temperature. The source consists of an array of 10 electrically tunable quantum cascade lasers with intra-cavity terahertz difference-frequency generation. To increase fabrication yield and achieve high THz peak power output in our devices, a dual-section current pumping scheme is implemented using two electrically isolated grating sections to independently control gain for the two mid-IR pumps

  16. Risk of pneumonia in obstructive lung disease: A real-life study comparing extra-fine and fine-particle inhaled corticosteroids.

    Science.gov (United States)

    Sonnappa, Samatha; Martin, Richard; Israel, Elliot; Postma, Dirkje; van Aalderen, Wim; Burden, Annie; Usmani, Omar S; Price, David B

    2017-01-01

    Regular use of inhaled corticosteroids (ICS) in patients with obstructive lung diseases has been associated with a higher risk of pneumonia, particularly in COPD. The risk of pneumonia has not been previously evaluated in relation to ICS particle size and dose used. Historical cohort, UK database study of 23,013 patients with obstructive lung disease aged 12-80 years prescribed extra-fine or fine-particle ICS. The endpoints assessed during the outcome year were diagnosis of pneumonia, acute exacerbations and acute respiratory events in relation to ICS dose. To determine the association between ICS particle size, dose and risk of pneumonia in unmatched and matched treatment groups, logistic and conditional logistic regression models were used. 14788 patients were stepped-up to fine-particle ICS and 8225 to extra-fine ICS. On unmatched analysis, patients stepping-up to extra-fine ICS were significantly less likely to be coded for pneumonia (adjusted odds ratio [aOR] 0.60; 95% CI 0.37, 0.97]); experience acute exacerbations (adjusted risk ratio [aRR] 0.91; 95%CI 0.85, 0.97); and acute respiratory events (aRR 0.90; 95%CI 0.86, 0.94) compared with patients stepping-up to fine-particle ICS. Patients prescribed daily ICS doses in excess of 700 mcg (fluticasone propionate equivalent) had a significantly higher risk of pneumonia (OR [95%CI] 2.38 [1.17, 4.83]) compared with patients prescribed lower doses, irrespective of particle size. These findings suggest that patients with obstructive lung disease on extra-fine particle ICS have a lower risk of pneumonia than those on fine-particle ICS, with those receiving higher ICS doses being at a greater risk.

  17. Multichannel tunable omnidirectional photonic band gaps of 1D ternary photonic crystal containing magnetized cold plasma

    Science.gov (United States)

    Awasthi, Suneet Kumar; Panda, Ranjita; Chauhan, Prashant Kumar; Shiveshwari, Laxmi

    2018-05-01

    By using the transfer matrix method, theoretical investigations have been carried out in the microwave region to study the reflection properties of multichannel tunable omnidirectional photonic bandgaps (OPBGs) based on the magneto-optic Faraday effect. The proposed one dimensional ternary plasma photonic crystal consists of alternate layers of quartz, magnetized cold plasma (MCP), and air. In the absence of an external magnetic field, the proposed structure possesses two OPBGs induced by Bragg scattering and is strongly dependent on the incident angle, the polarization of the incident light, and the lattice constant unlike to the single-negative gap and zero- n ¯ gap. Next, the reflection properties of OPBGs have been made tunable by the application of external magnetic field under right hand and left hand polarization configurations. The results of this manuscript may be utilized for the development of a new kind of tunable omnidirectional band stop filter with ability to completely stop single to multiple bands (called channels) of microwave frequencies in the presence of external static magnetic field under left-hand polarization and right-hand polarization configurations, respectively. Moreover, outcomes of this study open a promising way to design tunable magneto-optical devices, omnidirectional total reflectors, and planar waveguides of high Q microcavities as a result of evanescent fields in the MCP layer to allow propagation of light.

  18. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xianjun, E-mail: xianjun.huang@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Hu, Zhirun [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Liu, Peiguo [College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-11-15

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.

  19. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    International Nuclear Information System (INIS)

    Huang, Xianjun; Hu, Zhirun; Liu, Peiguo

    2014-01-01

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications

  20. Elastic metamaterial beam with remotely tunable stiffness

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Wei [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Zhengyue [School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Xiaole [School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Lai, Yun [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Yellen, Benjamin B., E-mail: yellen@duke.edu [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2016-02-07

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  1. Elastic metamaterial beam with remotely tunable stiffness

    Science.gov (United States)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-02-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  2. A photo-excited broadband to dual-band tunable terahertz prefect metamaterial polarization converter

    Science.gov (United States)

    Zhu, Jianfeng; Yang, Yang; Li, Shufang

    2018-04-01

    A new and simple design of photo-excited broadband to dual-band tunable terahertz (THz) metamaterial cross polarization converter is proposed in this paper. The tunable converter is a sandwich structure with the center-cut cross-shaped metallic patterned structure as a resonator, the middle dielectric layer as a spacer and the bottom metallic film as the ground. The conductivity of the photoconductive semiconductor (Silicon) filled in the gap of the cross-shaped metallic resonator can be tuned by the incident pump power, leading to an easy modulation of the electromagnetic response of the proposed converter. The results show that the proposed cross-polarization converter can be tuned from a broadband with polarization conversion ratio (PCR) beyond 95% (1.86-2.94 THz) to dual frequency bands (fl = 1 . 46 THz &fh = 2 . 9 THz). The conversion peaks can reach 99.9% for the broadband and, 99.5% (fl) and 99.7% (fh) for the dual-band, respectively. Most importantly, numerical simulations demonstrate that the broadband/dual-band polarization conversion mechanism of the converter originates from the localized surface plasmon modes, which make the design simple and different from previous designs. With these good features, the proposed broadband to dual-band tunable polarization converter is expected to be used in widespread applications.

  3. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.

    Science.gov (United States)

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-12

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  4. Tunable-angle wedge transducer for improved acoustophoretic control in a microfluidic chip

    DEFF Research Database (Denmark)

    Iranmanesh, I.; Barnkob, Rune; Bruus, Henrik

    2012-01-01

    We present a tunable-angle wedge ultrasound transducer for improved control of microparticle acoustophoresis in a microfluidic chip. The transducer is investigated by analyzing the pattern of aligned particles and induced acoustic energy density while varying the system geometry, transducer...... in geometry and that the coupling angle may be used as an additional tuning parameter for improved acoustophoretic control with single-frequency actuation. Further, we find that frequency-modulation actuation is suitable for diminishing such tuning effects and that it is a robust method to produce uniform...... coupling angle, and transducer actuation method (single-frequency actuation or frequency-modulation actuation). The energy-density analysis is based on measuring the transmitted light intensity through a microfluidic channel filled with a suspension of 5-μm-diameter beads and the results with the tunable-angle...

  5. Tunable-angle wedge transducer for improved acoustophoretic control in a microfluidic chip

    DEFF Research Database (Denmark)

    Iranmanesh, I.; Barnkob, Rune; Bruus, Henrik

    2013-01-01

    We present a tunable-angle wedge ultrasound transducer for improved control of microparticle acoustophoresis in a microfluidic chip. The transducer is investigated by analyzing the pattern of aligned particles and induced acoustic energy density while varying the transducer geometry, transducer...... change in geometry and that the coupling angle may be used as an additional tuning parameter for improved acoustophoretic control with single-frequency actuation. Further, we find that frequency-modulation actuation is suitable for diminishing such tuning effects and that it is a robust method to produce...... coupling angle, and transducer actuation method (single-frequency actuation or frequency-modulation actuation). The energy-density analysis is based on measuring the transmitted light intensity through a microfluidic channel filled with a suspension of 5 µm diameter beads and the results with the tunable-angle...

  6. A thermally tunable inverse opal photonic crystal for monitoring glass transition.

    Science.gov (United States)

    Sun, Liguo; Xie, Zhuoying; Xu, Hua; Xu, Ming; Han, Guozhi; Wang, Cheng; Bai, Xuduo; Gu, ZhongZe

    2012-03-01

    An optical method was developed to monitor the glass transition of the polymer by taking advantage of reflection spectrum change of the thermally tunable inverse opal photonic crystal. The thermally tunable photonic bands of the polymer inverse opal photonic crystal were traceable to the segmental motion of macromolecules, and the segmental motion was temperature dependent. By observing the reflection spectrum change of the polystyrene inverse opal photonic crystal during thermal treatment, the glass transition temperature of polystyrene was gotten. Both changes of the position and intensity of the reflection peak were observed during the glass transition process of the polystyrene inverse opal photonic crystal. The optical change of inverse opal photonic crystal was so large that the glass transition temperature could even be estimated by naked eyes. The glass transition temperature derived from this method was consistent with the values measured by differential scanning calorimeter.

  7. A tunable plasmonic nano-antenna based on metal–graphene double-nanorods

    Science.gov (United States)

    Dong, Zhewei; Sun, Chen; Si, Jiangnan; Deng, Xiaoxu

    2018-05-01

    A tunable plasmonic antenna based on metal–graphene nanostructures is proposed in the mid-infrared region, composed of two identical gold nanorods placed on separated graphene sheets. The unidirectional side scattering of the plasmonic antenna achieved by the constructive and destructive interference of the localized surface plasmon resonances (LSPR) of the nanorods is investigated using finite-difference time-domain solutions and is theoretically analyzed based on a two point dipole model. The scattering directivity peak of the plasmonic antenna is red-shifted linearly with increasing refractive index of the environment. The scattering direction from the plasmonic antenna is switched actively by tuning the LSPRs of the nanorods with the Fermi energies of the separated graphene sheets. The refractive index sensitivity and active tunable scattering direction of the plasmonic antenna provides a promising application to manipulate light at the nanoscale in the fields of bio-sensing and optoelectronic devices.

  8. A thermo-degradable hydrogel with light-tunable degradation and drug release.

    Science.gov (United States)

    Hu, Jingjing; Chen, Yihua; Li, Yunqi; Zhou, Zhengjie; Cheng, Yiyun

    2017-01-01

    The development of thermo-degradable hydrogels is of great importance in drug delivery. However, it still remains a huge challenge to prepare thermo-degradable hydrogels with inherent degradation, reproducible, repeated and tunable dosing. Here, we reported a thermo-degradable hydrogel that is rapidly degraded above 44 °C by a facile chemistry. Besides thermo-degradability, the hydrogel also undergoes rapid photolysis with ultraviolet light. By embedding photothermal nanoparticles or upconversion nanoparticles into the gel, it can release the entrapped cargoes such as dyes, enzymes and anticancer drugs in an on-demand and dose-tunable fashion upon near-infrared light exposure. The smart hydrogel works well both in vitro and in vivo without involving sophisticated syntheses, and is well suited for clinical cancer therapy due to the high transparency and non-invasiveness features of near-infrared light. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Tunable Fano resonator using multilayer graphene in the near-infrared region

    Science.gov (United States)

    Zhou, Chaobiao; Liu, Guoqin; Ban, Guoxun; Li, Shiyu; Huang, Qingzhong; Xia, Jinsong; Wang, Yi; Zhan, Mingsheng

    2018-03-01

    Fano resonance (FR) holds promising applications for high performance optoelectronic devices due to its strong enhancement of light-matter interactions. In this work, we experimentally demonstrate a tunable FR in a photonic crystal nanoresonator (PCR), including the effects of structural parameters and graphene nanosheets with different layer numbers. The results show that the intensity and position of Fano peaks can be tuned via altering the lattice constant and the hole radius of PCR due to the variation of the effective refractive index. More importantly, we experimentally study the interaction between sharp FR with multilayer graphene. The results indicate that the FR transmission spectrum can be efficiently adjusted with the layer number of graphene, and the largest change in transmission (˜44%) is achieved with three-layer graphene because of high conductivity. These consequences may lead to efficient and tunable electro-optical modulators, biosensors, and optical switches in the near-infrared region.

  10. Fine structure studies of terbium atoms

    International Nuclear Information System (INIS)

    Abhay Kumar; Bandyopadhyay, Krishnanath; Niraj Kumar

    2012-01-01

    Terbium (Z = 65) is a typical rare-earth element. Fine structure of spectural lines of terbium (Tb) are presented using the laser optogalvanic spectroscopic technique. Altogether eighty transitions in the 5686-6367 A range have been observed in the fine structure spectrum of 159 Tb. Wavelengths of all the observed transitions have been determined. Out of 80 transitions of Tb, a total of 59 transitions are being reported for the first time. Classifications of 39 new transitions have been provided using the known energy levels, Doppler-limited optogalvanic spectroscopic technique is employed to study the fine structure (fs) 159 Tb. (author)

  11. Tunable and rotatable birefringence controller based on electrical control of liquid crystal filled photonic bandgap fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    We demonstrate the first compact electrically tunable and rotatable birefringence controller based on LCPBG fibers. The birefringence can be tuned electrically to work as a quarter-wave or a half-wave plate in the wavelength range 1520nm-1600nm.......We demonstrate the first compact electrically tunable and rotatable birefringence controller based on LCPBG fibers. The birefringence can be tuned electrically to work as a quarter-wave or a half-wave plate in the wavelength range 1520nm-1600nm....

  12. Investigating Block-Copolymer Micelle Dynamics for Tunable Cargo Delivery

    Science.gov (United States)

    Li, Xiuli; Kidd, Bryce; Cooksey, Tyler; Robertson, Megan; Madsen, Louis

    Block-copolymer micelles (BCPMs) can carry molecular cargo in a nanoscopic package that is tunable using polymer structure in combination with cargo properties, as well as with external stimuli such as temperature or pH. For example, BCPMs can be used in targeted anticancer drug delivery due to their biocompatibility, in vivo degradability and prolonged circulation time. We are using NMR spectroscopy and diffusometry as well as SANS to investigate BCPMs. Here we study a diblock poly(ethylene oxide)-b-(caprolactone) (PEO-PCL) that forms spherical micelles at 1% (w/v) in the mixed solvent D2O/THF-d8. We quantify the populations and diffusion coefficients of coexisting micelles and free unimers over a range of temperatures and solvent compositions. We use temperature as a stimulus to enhance unimer exchange and hence trigger cargo release, in some cases at a few degrees above body temperature. We present evidence for dominance of the insertion-expulsion mechanism of unimer exchange in these systems, and we map phase diagrams versus temperature and solvent composition. This study sheds light on how intermolecular interactions fundamentally affect cargo release, unimer exchange, and overall micelle tunability.

  13. Magnetocapacitance of an electrically tunable silicene device

    KAUST Repository

    Tahir, M.

    2012-09-26

    Despite their structural similarity, the electronic properties of silicene are fundamentally different from those of well-known graphene due to the strong intrinsic spin orbit interaction and buckled structure of silicene. We address the magnetocapacitance of spin and valley polarized silicene in an external perpendicular magnetic field to clarify the interplay of the spin orbit interaction and the perpendicular electric field. We find that the band gap is electrically tunable and show that the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high magnetic field.

  14. Magnetocapacitance of an electrically tunable silicene device

    KAUST Repository

    Tahir, M.; Schwingenschlö gl, Udo

    2012-01-01

    Despite their structural similarity, the electronic properties of silicene are fundamentally different from those of well-known graphene due to the strong intrinsic spin orbit interaction and buckled structure of silicene. We address the magnetocapacitance of spin and valley polarized silicene in an external perpendicular magnetic field to clarify the interplay of the spin orbit interaction and the perpendicular electric field. We find that the band gap is electrically tunable and show that the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high magnetic field.

  15. Magnetic nanoparticles for tunable microwave metamaterials

    KAUST Repository

    Noginova, Natalia; Williams, Quincy Leon; Dallas, Panagiotis; Giannelis, Emmanuel P.

    2012-01-01

    Commonly, metamaterials are electrically engineered systems with optimized spatial arrangement of subwavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. To better understand effects of particle size and magnetization dynamics, we performed electron magnetic resonance study on several varieties of magnetic nanoparticles and determined potential of nanoparticle use as building blocks for tunable microwave metamaterials. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  16. Magnetic nanoparticles for tunable microwave metamaterials

    KAUST Repository

    Noginova, Natalia

    2012-09-24

    Commonly, metamaterials are electrically engineered systems with optimized spatial arrangement of subwavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. To better understand effects of particle size and magnetization dynamics, we performed electron magnetic resonance study on several varieties of magnetic nanoparticles and determined potential of nanoparticle use as building blocks for tunable microwave metamaterials. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  17. Mechanisms of chromate adsorption on boehmite

    International Nuclear Information System (INIS)

    Johnston, Chad P.; Chrysochoou, Maria

    2015-01-01

    Graphical abstract: - Highlights: • We characterized chromate adsorption on boehmite using molecular modeling and spectroscopy. • Chromate forms a mixture of outer-sphere and inner-sphere complexes. • Inner-sphere complexes are in monodentate and bidentate configuration. - Abstract: Adsorption reactions play an important role in the transport behavior of groundwater contaminants. Molecular-scale information is needed to elucidate the mechanisms by which ions coordinate to soil mineral surfaces. In this study, we characterized the mechanisms of chromate adsorption on boehmite (γ-AlOOH) using a combination of extended X-ray absorption fine structure (EXAFS) measurements, in situ attenuated total reflectance Fourier transform infrared spectroscopy, and quantum chemical calculations. The effects of pH, ionic strength, and aqueous chromate concentration were investigated. Our overall findings were that chromate primarily forms outer-sphere complexes on boehmite over a broad range of pH and aqueous concentrations. Additionally, a small fraction of monodentate and bidentate inner-sphere complexes are present under acidic conditions, as evidenced by two sets of chromate stretching vibrations at approximately 915, 870, and 780 cm −1 , and 940, 890, 850, and 780 cm −1 , respectively. The bidentate complex is supported by a best-fit Cr-Al distance in the EXAFS of 3.2 Å. Results from DFT also support the formation of monodentate and bidentate complexes, which are predicted to results in Gibbs energy changes of −140.4 and −62.5 kJ mol −1 , respectively. These findings are consistent with the intermediate binding strength of chromate with respect to similar oxyanions such as sulfate and selenite. Overall, the surface species identified in this work can be used to develop a more accurate stoichiometric framework in mechanistic adsorption models

  18. The Execution of Criminal Fine Penalty

    Directory of Open Access Journals (Sweden)

    Cosmin Peneoașu

    2014-05-01

    Full Text Available This paper aims at dissecting the criminal provisions on criminal enforcement of fines in current Romanian criminal law with the goal of highlighting the new penal policy stated in the larger field of criminal penalties. In the new Criminal Code the fine penalty experience a new regulation, but also a wider scope compared to the Criminal Code from 1968, with an exponential growth of the number of offenses or variations of them, for which a fine may be imposed as a unique punishment, but, especially, as an alternative punishment to imprisonment. Consequently, to ensure the efficiency of this punishment, the effective enforcement manner of the fine takes a new dimension. The study aims both students and academics or practitioners in the making. Furthermore, throughout the approach of this scientific research, new matters that new criminal legislation brings, are emphasized regarding this institution, both in a positive, and especially under a critical manner.

  19. Tunable arbitrary unitary transformer based on multiple sections of multicore fibers with phase control.

    Science.gov (United States)

    Zhou, Junhe; Wu, Jianjie; Hu, Qinsong

    2018-02-05

    In this paper, we propose a novel tunable unitary transformer, which can achieve arbitrary discrete unitary transforms. The unitary transformer is composed of multiple sections of multi-core fibers with closely aligned coupled cores. Phase shifters are inserted before and after the sections to control the phases of the waves in the cores. A simple algorithm is proposed to find the optimal phase setup for the phase shifters to realize the desired unitary transforms. The proposed device is fiber based and is particularly suitable for the mode division multiplexing systems. A tunable mode MUX/DEMUX for a three-mode fiber is designed based on the proposed structure.

  20. Adaptive non-collinear autocorrelation of few-cycle pulses with an angular tunable bi-mirror

    Energy Technology Data Exchange (ETDEWEB)

    Treffer, A., E-mail: treffer@mbi-berlin.de; Bock, M.; König, S.; Grunwald, R. [Max Born Institute for Nonlinear Optics and Short-Pulse Spectroscopy, Max Born Strasse 2A, D-12489 Berlin (Germany); Brunne, J.; Wallrabe, U. [Laboratory for Microactuators, Department of Microsystems Engineering, IMTEK, University of Freiburg, Georges-Koehler-Allee 102, Freiburg 79110 (Germany)

    2016-02-01

    Adaptive autocorrelation with an angular tunable micro-electro-mechanical system is reported. A piezo-actuated Fresnel bi-mirror structure was applied to measure the second order autocorrelation of near-infrared few-cycle laser pulses in a non-collinear setup at tunable superposition angles. Because of enabling measurements with variable scaling and minimizing the influence of distortions by adaptive self-reconstruction, the approach extends the capability of autocorrelators. Flexible scaling and robustness against localized amplitude obscurations are demonstrated. The adaptive reconstruction of temporal frequency information by the Fourier analysis of autocorrelation data is shown. Experimental results and numerical simulations of the beam propagation and interference are compared for variable angles.

  1. Remelting of metallurgical fines using thermal plasma

    International Nuclear Information System (INIS)

    Vicente, L.C.; Neto F, J.B.F.; Bender, O.W.; Collares, M.P.

    1992-01-01

    A plasma furnace was developed for remelting of ferro alloys and silicon fines. The furnace capacity was about 4 Kg of silicon and power about 50 kW. The fine (20 to 100 mesh) was fed into the furnace directly at the high temperature zone. This system was tested for remelting silicon fines and the results in the recovery of silicon was about 95% and it took place a refine of aluminium and calcium. (author)

  2. Emission tunability and local environment in europium-doped OH{sup −}-free calcium aluminosilicate glasses for artificial lighting applications

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Aline M.; Sandrini, Marcelo; Viana, José Renato M.; Baesso, Mauro L.; Bento, Antônio C.; Rohling, Jurandir H. [Departamento de Física, Universidade Estadual de Maringá, Av Colombo, 5790, 87020-900, Maringá, PR (Brazil); Guyot, Yannick [Laboratoire de Physico–Chimie des Matériaux Luminescents, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, UMR 5620 CNRS 69622 (France); De Ligny, Dominique [Department of Materials Science and Engineering, University of Erlangen Nürnberg, Martens str. 5, 91058, Erlangen (Germany); Nunes, Luiz Antônio O. [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense400, 13566-590, São Carlos, SP (Brazil); Gandra, Flávio G. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Sampaio, Juraci A. [Lab Ciências Físicas, Universidade Estadual Norte Fluminense, 28013-602, Campos Dos Goytacazes, RJ (Brazil); Lima, Sandro M.; Andrade, Luis Humberto C. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul-UEMS, Dourados, MS, C. P. 351, CEP 79804-970 (Brazil); and others

    2015-04-15

    The relationship between emission tunability and the local environment of europium ions in OH{sup −}-free calcium aluminosilicate glasses was investigated, focusing on the development of devices for artificial lighting. Significant conversion of Eu{sup 3+} to Eu{sup 2+} was obtained by means of melting the glasses under a vacuum atmosphere and controlling the silica content, resulting in broad, intense, and tunable luminescence ranging from blue to red. Electron spin resonance and X-ray absorption near edge structure measurements enabled correlation of the luminescence behavior of the material with the Eu{sup 2+}/Eu{sup 3+} concentration ratio and changes in the surrounding ions' crystal field. The coordinates of the CIE 1931 chromaticity diagram were calculated from the spectra, and the contour maps showed that the light emitted from Eu{sup 2+} presented broad bands and enhanced color tuning, ranging from reddish-orange to blue. The results showed that these Eu doped glasses can be used for tunable white lighting by combining matrix composition and the adjustment of the pumping wavelength. - Highlights: • Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass as a new source for white lighting. • Correlation between emission tunability and local environment of europium ions. • Significant reduction of Eu{sup 3+} to Eu{sup 2+} by melting the glasses under vacuum atmosphere. • Broad, intense and tunable luminescence ranging from blue to red.

  3. 1.5 W high efficiency and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect.

    Science.gov (United States)

    Wu, Jing; Ju, Youlun; Dai, Tongyu; Yao, Baoquan; Wang, Yuezhu

    2017-10-30

    We demonstrated an efficient and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect for application to measure atmospheric carbon dioxide (CO 2 ). Single-longitudinal-mode power at 2051.65 nm achieved 528 mW with the slope efficiency of 39.5% and the M 2 factor of 1.07, and the tunable range of about 178 GHz was obtained by inserting a Fabry-Perot (F-P) etalon with the thickness of 0.5 mm. In addition, the maximum single-longitudinal-mode power reached 1.5 W with the injected power of 528 mW at 2051.65 nm by master oscillator power amplifier (MOPA) technique. High efficiency and tunable single-longitudinal-mode based on Faraday effect around 2 μm has not been reported yet to the best of our knowledge.

  4. Broadband tunability of gain-flattened quantum-well semiconductor lasers with an external grating

    International Nuclear Information System (INIS)

    Mittelstein, M.; Mehuys, D.; Yariv, A.; Sarfaty, R.; Ungar, J.E.

    1989-01-01

    Semiconductor injection lasers are known to be tunable over a range of order kΒ · T. Quantum-well lasers, in particular, are shown to exhibit flattened, broadband gain spectra at a particular pumping condition. The gain requirement for a grating-tuned external cavity configuration is examined and is applied to a semiconductor quantum-well laser with an optimized length of gain region. The coupled-cavity formalism is employed to examine the conditions for continuous tuning. The possible tuning range of double-heterostructure lasers is compared to that of quantum-well lasers. The predicted broadband tunability of quantum-well lasers is confirmed experimentally by grating-tuning of uncoated lasers exceeding 120 nm, with single, longitudinal mode output power exceeding 300 mW

  5. Design strategy for a tunable antenna on a partially magnetized ferrite LTCC substrate

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif; Bray, Joey R.

    2014-01-01

    Typical microwave simulators cannot accurately predict the behavior of an antenna on a partially magnetized substrate as they assume the substrate to be in fully saturate state. In this work, a new simulation strategy aided by theoretical analysis, is presented to model a tunable patch antenna on a partially magnetized ferrite substrate through a combination of magnetostatic and microwave simulators. An antenna prototype is fabricated in Ferrite LTCC medium to verify the partially magnetized state simulations. The measured results are in close agreement with the simulations, contrary to the case where the substrate is assumed to be in saturation. The prototype designed for 13 GHz exhibits a tuning range of 10 % making it highly suitable for tunable and reconfigurable wireless applications.

  6. Design strategy for a tunable antenna on a partially magnetized ferrite LTCC substrate

    KAUST Repository

    Ghaffar, Farhan A.

    2014-07-01

    Typical microwave simulators cannot accurately predict the behavior of an antenna on a partially magnetized substrate as they assume the substrate to be in fully saturate state. In this work, a new simulation strategy aided by theoretical analysis, is presented to model a tunable patch antenna on a partially magnetized ferrite substrate through a combination of magnetostatic and microwave simulators. An antenna prototype is fabricated in Ferrite LTCC medium to verify the partially magnetized state simulations. The measured results are in close agreement with the simulations, contrary to the case where the substrate is assumed to be in saturation. The prototype designed for 13 GHz exhibits a tuning range of 10 % making it highly suitable for tunable and reconfigurable wireless applications.

  7. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    Energy Technology Data Exchange (ETDEWEB)

    Ziętek, Slawomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Stobiecki, Tomasz [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Ogrodnik, Piotr, E-mail: piotrogr@if.pw.edu.pl [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Stobiecki, Feliks [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Dijken, Sebastiaan van [NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Barnaś, Józef [Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-08-15

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  8. Vibration-Assisted Handling of Dry Fine Powders

    Directory of Open Access Journals (Sweden)

    Paul Dunst

    2018-04-01

    Full Text Available Since fine powders tend strongly to adhesion and agglomeration, their processing with conventional methods is difficult or impossible. Typically, in order to enable the handling of fine powders, chemicals are added to increase the flowability and reduce adhesion. This contribution shows that instead of additives also vibrations can be used to increase the flowability, to reduce adhesion and cohesion, and thus to enable or improve processes such as precision dosing, mixing, and transport of very fine powders. The methods for manipulating powder properties are described in detail and prototypes for experimental studies are presented. It is shown that the handling of fine powders can be improved by using low-frequency, high-frequency or a combination of low- and high-frequency vibration.

  9. High-Chern-number bands and tunable Dirac cones in beta-graphyne

    NARCIS (Netherlands)

    van Miert, Guido; Smith, Cristiane Morais; Juricic, Vladimir

    2014-01-01

    Graphynes represent an emerging family of carbon allotropes that recently attracted much interest due to the tunability of the Dirac cones in the band structure. Here, we show that the spin-orbit couplings in beta-graphyne could produce various effects related to the topological properties of its

  10. Atomic-resolution measurements with a new tunable diode laser-based interferometer

    DEFF Research Database (Denmark)

    Silver, R.M.; Zou, H.; Gonda, S.

    2004-01-01

    is lightweight and is mounted directly on an ultra-high vacuum scanning tunneling microscope capable of atomic resolution. We report the simultaneous acquisition of an atomic resolution image, while the relative lateral displacement of the tip along the sample distance is measured with the new tunable diode...

  11. Fine motor control

    Science.gov (United States)

    ... gross (large, general) motor control. An example of gross motor control is waving an arm in greeting. Problems ... out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To ...

  12. Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG.

    Science.gov (United States)

    Dolasinski, Brian; Powers, Peter E; Haus, Joseph W; Cooney, Adam

    2015-02-09

    We report a widely tunable narrowband terahertz (THz) source via difference frequency generation (DFG). A narrowband THz source uses the output of dual seeded periodically poled lithium niobate (PPLN) optical parametric generators (OPG) combined in the nonlinear crystal 4-dimthylamino-N-methyl-4-stilbazolium-tosylate (DAST). We demonstrate a seamlessly tunable THZ output that tunes from 1.5 THz to 27 THz with a minimum bandwidth of 3.1 GHz. The effects of dispersive phase matching, two-photon absorption, and polarization were examined and compared to a power emission model that consisted of the current accepted parameters of DAST.

  13. Realizing tunable molecular thermal devices based on photoisomerism—Is it possible?

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Raghavan; Sasikumar, Kiran; Keblinski, Pawel, E-mail: keblip@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-01-14

    In this work, we address the question if it is possible to tune the thermal conductance through photoisomerism-capable molecular junctions. Using non-equilibrium molecular dynamics simulations, we study heat flow due to phonons between two silicon leads connected via two classes of photoisomeric molecules—(a) azobenzene and (b) Spiropyran (SP)–Merocyanine (MC) isomers. For the case of azobenzene, isomeric states with different conformations are realized via mechanical strain, while in the case of SP-MC, via a hybridization change. Based on the phononic contribution to thermal conductance, we observe that the thermal conductance of both junctions is rather insensitive to the isomeric state, thereby rendering the tunability of molecular thermal devices rather difficult. Consistent with these observations, the vibrational density of states for different configurations yields very similar spectra. We note that including the effect of electronic contribution to thermal conductance could enhance the tunability of thermal properties, albeit weakly.

  14. Gate-tunable Andreev bound states in InSb nanowire Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ning; Li, Sen; Fan, Dingxun; Xu, Hongqi [Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Caroff, Philippe [Division of Solid State Physics, Lund University, P. O. Box 118, S-221 00 Lund (Sweden)

    2016-07-01

    Hybrid InSb nanowire-superconductor devices are promising candidates for investigating Majorana modes in solid-state devices and future technologies of topological quantum manipulation. Here, we report low-temperature transport measurements on an individual InSb nanowire quantum dot coupled to superconducting contacts that exhibit an interplay between the Kondo effects and superconductivity. We observed two types of subgap resonance states within the superconducting gap, which can be attributed to gate-tunable Andreev bound states in Coulomb valleys with different Kondo temperatures. The presence of the gate-tunable 0 and pi junction allow us to investigate the fundamental 0- pi transition. Detailed magnetic field and temperature evolution of level spectroscopy demonstrate different behavior of two types of the Andreev bound states. Our results exhibit that the InSb nanowires can provide a promising platform for exploring phase coherence transport and the effect of spin-orbit coupling in semiconductor nanowire-superconductor hybrid device.

  15. A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser

    Science.gov (United States)

    Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.

    2018-05-01

    A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.

  16. Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter.

    Science.gov (United States)

    Hameed, Mohamed Farhat O; Heikal, A M; Younis, B M; Abdelrazzak, Maher; Obayya, S S A

    2015-03-23

    A novel ultra-high tunable photonic crystal fiber (PCF) polarization filter is proposed and analyzed using finite element method. The suggested design has a central hole infiltrated with a nematic liquid crystal (NLC) that offers high tunability with temperature and external electric field. Moreover, the PCF is selectively filled with metal wires into cladding air holes. Results show that the resonance losses and wavelengths are different in x and y polarized directions depending on the rotation angle φ of the NLC. The reported filter of compact device length 0.5 mm can achieve 600 dB / cm resonance losses at φ = 90° for x-polarized mode at communication wavelength of 1300 mm with low losses of 0.00751 dB / cm for y-polarized mode. However, resonance losses of 157.71 dB / cm at φ = 0° can be achieved for y-polarized mode at the same wavelength with low losses of 0.092 dB / cm for x-polarized mode.

  17. Generation of tunable coherent far-infrared radiation using atomic Rydberg states

    International Nuclear Information System (INIS)

    Bookless, W.

    1980-12-01

    A source of tunable far-infrared radiation has been constructed. The system has been operated at 91.6 cm -1 with a demonstrated tunability of .63 cm -1 . The system is based on a Rydberg state transition in optically pumped potassium vapor. The transition energy is tuned by the application of an electric field to the excited vapor. The transition wavelength and the shifted wavelength were detected and measured by the use of a Michelson interferometer and a liquid helium cooled Ga:Ge bolometer and the data was reduced using Fast Fourier transform techniques. Extensive spectroscopy was done on the potassium vapor to elucidate the depopulation paths and rates of the excited levels. Both theoretical and experimental results are presented to support the conclusions of the research effort. Additionally, possible alternative approaches to the population of the excited state are explored and recommendations are made for the future development of this source as well as the potential uses of it in molecular spectroscopy

  18. Gate-tunable large magnetoresistance in an all-semiconductor spin valve device.

    Science.gov (United States)

    Oltscher, M; Eberle, F; Kuczmik, T; Bayer, A; Schuh, D; Bougeard, D; Ciorga, M; Weiss, D

    2017-11-27

    A large spin-dependent and electric field-tunable magnetoresistance of a two-dimensional electron system is a key ingredient for the realization of many novel concepts for spin-based electronic devices. The low magnetoresistance observed during the last few decades in devices with lateral semiconducting transport channels between ferromagnetic source and drain contacts has been the main obstacle for realizing spin field effect transistor proposals. Here, we show both a large two-terminal magnetoresistance in a lateral spin valve device with a two-dimensional channel, with up to 80% resistance change, and tunability of the magnetoresistance by an electric gate. The enhanced magnetoresistance is due to finite electric field effects at the contact interface, which boost spin-to-charge conversion. The gating scheme that we use is based on switching between uni- and bidirectional spin diffusion, without resorting to spin-orbit coupling. Therefore, it can also be employed in materials with low spin-orbit coupling.

  19. Electro-optical tunable birefringent filter

    Science.gov (United States)

    Levinton, Fred M [Princeton, NJ

    2012-01-31

    An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.

  20. Development of fine motor skills in preterm infants

    NARCIS (Netherlands)

    Bos, Arend F.; Van Braeckel, Koenraad N. J. A.; Hitzert, Marrit M.; Tanis, Jozien C.; Roze, Elise

    2013-01-01

    Fine motor skills are related to functioning in daily life and at school. We reviewed the status of knowledge, in preterm children, on the development of fine motor skills, the relation with gross motor skills, and risk factors for impaired fine motor skills. We searched the past 15 years in PubMed,

  1. Harnessing the metal-insulator transition for tunable metamaterials

    Science.gov (United States)

    Charipar, Nicholas A.; Charipar, Kristin M.; Kim, Heungsoo; Bingham, Nicholas S.; Suess, Ryan J.; Mathews, Scott A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2017-08-01

    The control of light-matter interaction through the use of subwavelength structures known as metamaterials has facilitated the ability to control electromagnetic radiation in ways not previously achievable. A plethora of passive metamaterials as well as examples of active or tunable metamaterials have been realized in recent years. However, the development of tunable metamaterials is still met with challenges due to lack of materials choices. To this end, materials that exhibit a metal-insulator transition are being explored as the active element for future metamaterials because of their characteristic abrupt change in electrical conductivity across their phase transition. The fast switching times (▵t < 100 fs) and a change in resistivity of four orders or more make vanadium dioxide (VO2) an ideal candidate for active metamaterials. It is known that the properties associated with thin film metal-insulator transition materials are strongly dependent on the growth conditions. For this work, we have studied how growth conditions (such as gas partial pressure) influence the metalinsulator transition in VO2 thin films made by pulsed laser deposition. In addition, strain engineering during the growth process has been investigated as a method to tune the metal-insulator transition temperature. Examples of both the optical and electrical transient dynamics facilitating the metal-insulator transition will be presented together with specific examples of thin film metamaterial devices.

  2. Tunable topological phases in photonic and phononic crystals

    KAUST Repository

    Chen, Zeguo

    2018-02-18

    Topological photonics/phononics, inspired by the discovery of topological insulators, is a prosperous field of research, in which remarkable one-way propagation edge states are robust against impurities or defect without backscattering. This dissertation discusses the implementation of multiple topological phases in specific designed photonic and phononic crystals. First, it reports a tunable quantum Hall phase in acoustic ring-waveguide system. A new three-band model focused on the topological transitions at the Γ point is studied, which gives the functionality that nontrivial topology can be tuned by changing the strengths of the couplings and/or the broken time-reversal symmetry. The resulted tunable topological edge states are also numerically verified. Second, based on our previous studied acoustic ring-waveguide system, we introduce anisotropy by tuning the couplings along different directions. We find that the bandgap topology is related to the frequency and directions. We report our proposal on a frequency filter designed from such an anisotropic topological phononic crystal. Third, motivated by the recent progress on quantum spin Hall phases, we propose a design of time-reversal symmetry broken quantum spin Hall insulators in photonics, in which a new quantum anomalous Hall phase emerges. It supports a chiral edge state with certain spin orientations, which is robust against the magnetic impurities. We also report the realization of the quantum anomalous Hall phase in phononics.

  3. Tunable THz notch filter with a single groove inside parallel-plate waveguides.

    Science.gov (United States)

    Lee, Eui Su; Jeon, Tae-In

    2012-12-31

    A single groove in a parallel-plate waveguide (PPWG) has been applied to a tunable terahertz (THz) notch filter with a transverse-electromagnetic (TEM) mode. When the air gap between the metal plates of the PPWG is controlled from 60 to 240 μm using a motor controlled translation stage or a piezo-actuator, the resonant frequency of the notch filter is changed from 1.75 up to 0.62 THz, respectively. Therefore, the measured tunable sensitivity of the notch filter increases to 6.28 GHz/μm. The measured resonant frequencies were found to be in good agreement with the calculation using an effective groove depth. Using a finite-difference time-domain (FDTD) simulation, we also demonstrate that the sensitivity of a THz microfluidic sensor can be increased via a small air gap, a narrow groove width, and a deep groove depth.

  4. Tunable multiple plasmon induced transparencies in parallel graphene sheets and its applications

    Science.gov (United States)

    khazaee, Sara; Granpayeh, Nosrat

    2018-01-01

    Tunable plasmon induced transparency is achieved by using only two parallel graphene sheets beyond silicon diffractive grating in mid-infrared region. Excitation of the guided-wave resonance (GWR) in this structure is illustrated on the normal incident transmission spectra and plays the bright resonance mode role. Weak hybridization between two bright modes, creates plasmon induced transparency (PIT) optical response. The resonance frequency of transparency window can be tuned by different geometrical parameters. Also, variation of graphene Fermi energy can be used to achieve tunability of the resonance frequency of transparency window without reconstruction and re-fabrication of the structure. We demonstrate the existence of multiple PIT spectral responses resulting from a series of self-assembled GWRs to be used as the wavelength demultiplexer. This study can be used for design of the optical ultra-compact devices and photonic integrated circuits.

  5. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.; Alcheikh, Nouha; Ramini, Abdallah; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2016-01-01

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  6. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  7. Speciation of Am(III)/Eu(III) sorbed on γ-alumina. Effect of metal ion concentration

    International Nuclear Information System (INIS)

    Kumar, S.; Tomar, B.S.; Godbole, S.V.

    2013-01-01

    The present paper describes the speciation of Am(III)/Eu(III) sorbed on γ-alumina, and its evolution with changing metal ion concentration, studied using batch sorption experiment, time resolved fluorescence spectroscopy (TRFS), extended X-ray absorption fine structure (EXAFS) and surface Complexation modeling (SCM). Though numerous studies exist in the literature on the speciation of trivalent actinides and lanthanides on alumina surface, the mechanism of sorption at high metal ion concentrations is not yet fully understood. Batch sorption experiments of Am(III) on γ-alumina under varying condition of pH (3-10), ionic strength (0.005-0.1 M NaClO 4 ) and metal ion concentration (10 -7 -10 -4 M) were performed. Higher metal ion concentration was achieved by the addition of Eu(III) considering it as an analogue of Am(III). Time resolved fluorescence spectroscopy (TRFS) study of Eu(III) sorbed on γ-alumina at the metal ion concentration of 5.0 x 10 -5 M was carried out over pH 4 to 7. TRFS showed the presence of two surface species, with distinctly different fluorescence decay life times. The shorter lifetime value and its changing pattern with pH indicate the surface species corresponding to this component to be monodentate species > AlOAm 2+ and its hydrolyzed forms. The sorbed Eu 3+ species corresponding to the longer lifetime value has 2-3 water molecules in its first coordination sphere and is multidentate in its binding on alumina surface. Extended X-ray absorption fine structure (EXAFS) measurement of Eu:γ-Al 2 O 3 sorption systems at pH 6.18 and 7.15 corroborate the existence of two surface complexes. Further it suggests the edge sharing bidentate binding of Eu on AlO 6 octahedra as the co-ordination mode of the higher lifetime component. Surface Complexation Modeling (SCM) of Am(III)/Eu(III) sorption onto γ-alumina at pH ≤7 has been carried out using these two surface species. 2-pK surface complexation modeling coupled with constant capacitance model

  8. SHAPE ANALYSIS OF FINE AGGREGATES USED FOR CONCRETE

    Directory of Open Access Journals (Sweden)

    Huan He

    2016-12-01

    Full Text Available Fine aggregate is one of the essential components in concrete and significantly influences the material properties. As parts of natures, physical characteristics of fine aggregate are highly relevant to its behaviors in concrete. The most of previous studies are mainly focused on the physical properties of coarse aggregate due to the equipment limitations. In this paper, two typical fine aggregates, i.e. river sand and crushed rock, are selected for shape characterization. The new developed digital image analysis systems are employed as the main approaches for the purpose. Some other technical methods, e.g. sieve test, laser diffraction method are also used for the comparable references. Shape characteristics of fine aggregates with different origins but in similar size ranges are revealed by this study. Compared with coarse aggregate, fine grains of different origins generally have similar shape differences. These differences are more significant in surface texture properties, which can be easily identified by an advanced shape parameter: bluntness. The new image analysis method is then approved to be efficient for the shape characterization of fine aggregate in concrete.

  9. Waveguide-Integrated MEMS Concepts for Tunable Millimeter-Wave Systems

    OpenAIRE

    Baghchehsaraei, Zargham

    2014-01-01

    This thesis presents two families of novel waveguide-integrated components based on millimeter-wave microelectromechanical systems (MEMS) for reconfigurable systems. The first group comprises V-band (50–75 GHz) and W-band (75–110 GHz) waveguide switches and switchable irises, and their application as switchable cavity resonators, and tunable bandpass filters implemented by integration of novel MEMS-reconfigurable surfaces into a rectangular waveguide. The second category comprises MEMS-based ...

  10. A novel optogenetically tunable frequency modulating oscillator.

    Directory of Open Access Journals (Sweden)

    Tarun Mahajan

    Full Text Available Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.

  11. Tunable lasers for waste management photochemistry applications

    International Nuclear Information System (INIS)

    Finch, F.T.

    1978-09-01

    A review of lasers with potential photochemical applications in waste management indicates that dye lasers, as a class, can provide tunable laser output through the visible and near-uv regions of the spectrum of most interest to photochemistry. Many variables can affect the performance of a specific dye laser, and the interactions of these variables, at the current state of the art, are complex. The recent literature on dye-laser characteristics has been reviewed and summarized, with emphasis on those parameters that most likely will affect the scaling of dye lasers in photochemical applications. Current costs are reviewed and correlated with output power. A new class of efficient uv lasers that appear to be scalable in both energy output and pulse rate, based on rare-gas halide excimers and similar molecules, is certain to find major applications in photochemistry. Because the most important developments are too recent to be adequately described in the literature or are the likely outcome of current experiments, the basic physics underlying the class of excimer lasers is described. Specific cost data are unavailable, but these new gas lasers should reflect costs similar to those of existing gas lasers, in particular, the pulsed CO 2 lasers. To complete the survey of tunable-laser characteristics, the technical characteristics of the various classes of lasers in the ir are summarized. Important developments in ir laser technology are being accelerated by isotope-separation research, but, initially at least, this portion of the spectrum is least likely to receive emphasis in waste-management-oriented photochemistry

  12. Negative stiffness honeycombs as tunable elastic metamaterials

    Science.gov (United States)

    Goldsberry, Benjamin M.; Haberman, Michael R.

    2018-03-01

    Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.

  13. Characterization of tunable light source by optical parametric oscillator for high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. W. [Ewha Womens Univ., Seoul (Korea); Rhee, B. G. [Sejong Univ., Seoul (Korea); Park, S. W. [Yonsei Univ., Seoul (Korea); Noh, J. W. [Inha Univ., Incheon (Korea)

    1998-04-01

    A tunable light source is developed by the optical parametric oscillator, which is very useful for a high resolution spectroscopy. The electronic structure of molecules and atoms can be examined by a proper coherent light source. Optical parametric oscillator provides light sources stable and widely tunable. In this work, the characteristics of the parametric optical generation are examined in the LiNbO{sub 3}. The theoretical analysis as well as the experimental measurement is performed. The pump laser is a second harmonic of Nd:YAG laser, and the parametric gain is measured. The characteristics of singly resonant oscillator and doubly resonant oscillator is studied as a function of temperature. It is found that 1mole% MgO:LiNbO{sub 3} crystal provides the tunability from 0.6{mu}m to 3.0{mu}m wavelength. Both the critical and noncritical phase matching are studied. The optical damage occurring in a congruent LiNbO{sub 3} crystal was not observed in 1mole% MgO:LiNbO{sub 3} crystal, opening a possibility for a high power optical parametric oscillation generation. The current work can be extended to an experiment employing the fundamental Nd:YAG as pump to provide a coherent light source for the study of molecular vibrations. 28 refs., 14 figs., 3 tabs. (Author)

  14. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    International Nuclear Information System (INIS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Zgadzaj, Rafal; Henderson, Watson; Downer, M. C.; Arefiev, Alexey V.; Zhang, Xi; Khudik, V.; Shvets, G.

    2015-01-01

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a 0 ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10 −12 ) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements

  15. Tunable THz perfect absorber with two absorption peaks based on graphene microribbons

    DEFF Research Database (Denmark)

    Gu, Mingyue; Xiao, Binggang; Xiao, Sanshui

    2018-01-01

    Perfect absorption is characterised by the complete suppression of incident and reflected electromagnetic wave, and complete dissipation of the incident energy. A tunable perfect terahertz (THz) absorber with two absorption peaks based on graphene is presented. The proposed structure consists of ...

  16. Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode

    DEFF Research Database (Denmark)

    Klinkhammer, Sönke; Liu, Xin; Huska, Klaus

    2012-01-01

    The fabrication and characterization of continuously tunable, solution-processed distributed feedback (DFB) lasers in the visible regime is reported. Continuous thin film thickness gradients were achieved by means of horizontal dipping of several conjugated polymer and blended small molecule solu...

  17. Fine filament NbTi superconductive composite

    International Nuclear Information System (INIS)

    Hong, S.; Grabinsky, G.; Marancik, W.; Pattanayak, D.

    1986-01-01

    The large superconducting magnet for the high energy physics accelerator requires fine filament composite to minimize the field error due to the persistent current in the filaments. New concepts toward the fine filament composite and its cable fabrication are discussed. Two-stage cables of fine wire with intermediate number of filaments were introduced. The first stage was six wires cables around one and in the second stage this was used to produce a Rutherford cable. The advantage of this process is in the ease of billet fabrication since the number of filaments in a single wire is within the range of easy billet fabrication. The disadvantage is in the cable fabrication. One of the major concerns in the fabrication of fine NbTi filaments composite in a copper matrix is the intermetallic compound formation during the extrusion and heat treatment steps. The hard intermetallic particles degrade the uniformity of the filaments and reduce the critical current density. The process of using Nb barrier between the filaments and copper matrix in order to prevent this CuTi intermetallic particle formation is described

  18. Tunable plasmonic lattices of silver nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong

    2008-02-18

    Silver nanocrystals are ideal building blocks for plasmonicmaterials that exhibit a wide range of unique and potentially usefuloptical phenomena. Individual nanocrystals display distinct opticalscattering spectra and can be assembled into hierarchical structures thatcouple strongly to external electromagnetic fields. This coupling, whichis mediated by surface plasmons, depends on their shape and arrangement.Here we demonstrate the bottom-up assembly of polyhedral silvernanocrystals into macroscopic two-dimensional superlattices using theLangmuir-Blodgett technique. Our ability to control interparticlespacing, density, and packing symmetry allows for tunability of theoptical response over the entire visible range. This assembly strategyoffers a new, practical approach to making novel plasmonic materials forapplication in spectroscopic sensors, sub-wavelength optics, andintegrated devices that utilize field enhancement effects.

  19. Tunable superconducting qudit mediated by microwave photons

    Directory of Open Access Journals (Sweden)

    Sung Un Cho

    2015-08-01

    Full Text Available We have investigated the time-domain characteristics of the Autler-Townes doublet in a superconducting circuit. The transition probabilities between the ground state and the Autler-Townes doublet states are shown to be controlled in a phase-coherent manner using a well-known microwave pulse pattern technique. The experimental results are well explained by a numerical simulation based on the Markovian master equation. Our result indicates that the Autler-Townes doublet states might be useful as a tunable qudit for implementation of quantum information processing, in particular as a multivalued quantum logic element.

  20. Tunable Diode Laser Heterodyne Spectrophotometry of Ozone

    Science.gov (United States)

    Fogal, P. F.; McElroy, C. T.; Goldman, A.; Murcray, D. G.

    1988-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (less than 0.0005/ cm) solar spectra in the 9.6 micron ozone band. Observations have shown that a signal-to-noise ratio of 95 : 1 (35% of theoretical) for an integration time of 1/8 second can be achieved at a resolution of 0.0005 wavenumbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that. measured at the nearby National Oceanographic and Atmospheric Administration (NOAA) ozone monitoring facility in Boulder, Colorado.

  1. Mid-Infrared Continuously Tunable Single Mode VECSEL

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Felder, F.; Fill, M.; Zogg, H.

    2011-12-01

    Tunable mid-infrared vertical external cavity surface emitting lasers were developed for the wavelength range around 3.8-3.9 μm and 3.2-3.3 μm, respectively. The devices are based on lead salt materials epitaxially grown by MBE on a Si substrate. The active part consists of PbSe QW in a PbSrSe host layer. Both devices are operated around -20 °C and have output power of several 10 mW. By changing the cavity length, a single mode hop free tuning range up to 80 cm-1 is achieved.

  2. Iron Oxide Nanoparticle-Based Magnetic Ink Development for Fully Printed Tunable Radio-Frequency Devices

    KAUST Repository

    Vaseem, Mohammad

    2018-01-30

    The field of printed electronics is still in its infancy and most of the reported work is based on commercially available nanoparticle-based metallic inks. Although fully printed devices that employ dielectric/semiconductor inks have recently been reported, there is a dearth of functional inks that can demonstrate controllable devices. The lack of availability of functional inks is a barrier to the widespread use of fully printed devices. For radio-frequency electronics, magnetic materials have many uses in reconfigurable components but rely on expensive and rigid ferrite materials. A suitable magnetic ink can facilitate the realization of fully printed, magnetically controlled, tunable devices. This report presents the development of an iron oxide nanoparticle-based magnetic ink. First, a tunable inductor is fully printed using iron oxide nanoparticle-based magnetic ink. Furthermore, iron oxide nanoparticles are functionalized with oleic acid to make them compatible with a UV-curable SU8 solution. Functionalized iron oxide nanoparticles are successfully embedded in the SU8 matrix to make a magnetic substrate. The as-fabricated substrate is characterized for its magnetostatic and microwave properties. A frequency tunable printed patch antenna is demonstrated using the magnetic and in-house silver-organo-complex inks. This is a step toward low-cost, fully printed, controllable electronic components.

  3. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-01-01

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ∼7 eV, delivering under typical conditions >10 12 ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  4. Magneto-Optic Fiber Gratings Useful for Dynamic Dispersion Management and Tunable Comb Filtering

    International Nuclear Information System (INIS)

    Bao-Jian, Wu; Xin, Lu; Kun, Qiu

    2010-01-01

    Intelligent control of dispersion management and tunable comb filtering in optical network applications can be performed by using magneto-optic fiber Bragg gratings (MFBGs). When a nonuniform magnetic field is applied to the MFBG with a constant grating period, the resulting grating response is equivalent to that of a conventional chirped grating. Under a linearly nonuniform magnetic field along the grating, a linear dispersion is achieved in the grating bandgap and the maximal dispersion slope can come to 1260 ps/nm 2 for a 10-mm-long fiber grating at 1550 nm window. Similarly, a Gaussian-apodizing sampled MFBG is also useful for magnetically tunable comb filtering, with potential application to clock recovery from return-to-zero optical signals and optical carrier tracking. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Independent tunability of the double-mode-locked cw dye laser.

    LENUS (Irish Health Repository)

    Bourkoff, E

    1979-06-01

    We report a new configuration that enables the double-mode-locked cw dye laser to be independently tunable. In addition, the output coupling at each of the two wavelengths can be independently specified. A series of oscillographs shows some interesting features unique to double mode locking and also shows the effects of varying the two cavity lengths with respect to each other.

  6. Low-loss tunable all-in-fiber filter for Raman spectroscopy

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, Lara; Lund-Hansen, Toke

    2011-01-01

    We show a novel in-line Rayleigh-rejection filter for Raman spectroscopy, based on a solid-core Photonic Crystal Fiber (PCF) filled with a high-index material. The device is low-loss and thermally tunable, and allows for a strong attenuation of the Rayleigh line at 532nm and the transmission...... of the Raman lines in a broad wavenumber range....

  7. An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy

    International Nuclear Information System (INIS)

    Dunsby, C; Lanigan, P M P; McGinty, J; Elson, D S; Requejo-Isidro, J; Munro, I; Galletly, N; McCann, F; Treanor, B; Oenfelt, B; Davis, D M; Neil, M A A; French, P M W

    2004-01-01

    Fluorescence imaging is used widely in microscopy and macroscopic imaging applications for fields ranging from biomedicine to materials science. A critical component for any fluorescence imaging system is the excitation source. Traditionally, wide-field systems use filtered thermal or arc-generated white light sources, while point scanning confocal microscope systems require spatially coherent (point-like) laser sources. Unfortunately, the limited range of visible wavelengths available from conventional laser sources constrains the design and usefulness of fluorescent probes in confocal microscopy. A 'hands-off' laser-like source, electronically tunable across the visible spectrum, would be invaluable for fluorescence imaging and provide new opportunities, e.g. automated excitation fingerprinting and in situ measurement of excitation cross-sections. Yet more information can be obtained using fluorescence lifetime imaging (FLIM), which requires that the light source be pulsed or rapidly modulated. We show how a white light continuum, generated by injecting femtosecond optical radiation into a micro-structured optical fibre, coupled with a simple prism-based tunable filter arrangement, can fulfil all these roles as a continuously electronically tunable (435-1150 nm) visible ultrafast light source in confocal, wide-field and FLIM systems

  8. Method of vitrificating fine-containing liquid waste

    International Nuclear Information System (INIS)

    Hagiwara, Minoru; Matsunaka, Kazuhisa.

    1989-01-01

    This invention concerns a vitrificating method of liquid wastes containing fines (metal powder discharged upon cutting fuel cans) used in a process for treating high level radioactive liquid wastes or a process for treating liquid wastes from nuclear power plants. Liquid wastes containing fines, slurries, etc. are filtered by a filter vessel comprising glass fibers. The fines are supplied as they are to a glass melting furnace placed in the vessel. Filterates formed upon filteration are mixed with other high level radioactive wastes and supplied together with starting glass material to the glass melting furnace. Since the fine-containing liquid wastes are processed separately from high radioactive liquid wastes, clogging of pipeways, etc. can be avoided, supply to the melting furnace is facilitated and the operation efficiency of the vitrification process can be improved. (I.N.)

  9. Porous (Ba,SrTiO3 ceramics for tailoring dielectric and tunability properties: Modelling and experiment

    Directory of Open Access Journals (Sweden)

    Roxana E. Stanculescu

    2017-12-01

    Full Text Available 3D Finite Element Method simulations were employed in order to describe tunability properties in anisotropic porous paraelectric structures. The simulations predicted that properties of a ceramic can be tailored by using various levels of porosity. Porous Ba0.6Sr0.4TiO3 (BST ceramics have been studied in order to investigate the influence of porosity on their functional properties. The BST ceramics with various porosity levels have been obtained by solid-state reaction. Lamellar graphite in different concentration of 10, 20 and 35 vol.% was added as sacrificial pore forming agent. The structural, microstructural, dielectric and tunability properties were investigated. By comparison with dense BST ceramic, porous samples present a fracture mode transformation from intragranular to an intergranular fracture and a decrease of grain size. Lower dielectric constants, low dielectric losses, but higher values of tunability than in the dense material were obtained in the porous BST structures as a result of local field inhomogeneity generated by the presence of air pores-ceramic interfaces.

  10. Signaling mechanisms underlying the robustness and tunability of the plant immune network

    Science.gov (United States)

    Kim, Yungil; Tsuda, Kenichi; Igarashi, Daisuke; Hillmer, Rachel A.; Sakakibara, Hitoshi; Myers, Chad L.; Katagiri, Fumiaki

    2014-01-01

    Summary How does robust and tunable behavior emerge in a complex biological network? We sought to understand this for the signaling network controlling pattern-triggered immunity (PTI) in Arabidopsis. A dynamic network model containing four major signaling sectors, the jasmonate, ethylene, PAD4, and salicylate sectors, which together explain up to 80% of the PTI level, was built using data for dynamic sector activities and PTI levels under exhaustive combinatorial sector perturbations. Our regularized multiple regression model had a high level of predictive power and captured known and unexpected signal flows in the network. The sole inhibitory sector in the model, the ethylene sector, was central to the network robustness via its inhibition of the jasmonate sector. The model's multiple input sites linked specific signal input patterns varying in strength and timing to different network response patterns, indicating a mechanism enabling tunability. PMID:24439900

  11. The fine particle emissions of energy production in Finland

    International Nuclear Information System (INIS)

    Ohlstroem, M.

    1998-01-01

    The main purpose of this master's thesis was to define the fine particle (PM2.5, diameter under 2,5 μm) emissions of the energy production and to compare the calculated emission factors between different energy production concepts. The purpose was also to define what is known about fine particle emissions and what should still be studied/measured. The purpose was also to compare briefly the fine particle emissions of energy production and vehicle traffic, and their correlations to the fine particle concentrations of urban air. In the theory part of this work a literature survey was made about fine particles in energy production, especially how they form and how they are separated from the flue gas. In addition, the health effects caused by fine particles, and different measuring instruments were presented briefly. In the experimental part of this work, the aim was to find out the fine particle emissions of different energy production processes by calculating specific emission factors (mg/MJ fuel ) from powerplants' annual total particulate matter emissions (t/a), which were obtained from VAHTI-database system maintained by the Finnish Environmental Institute, and by evaluating the share of fine particles from total emissions with the help of existing measurement results. Only those energy production processes which produce significantly direct emissions of solid particles have been treated (pulverised combustion and oil burners from burner combustion, fluidized bed combustion processes, grate boilers, recovery boilers and diesel engines). The processes have been classified according to boiler type, size category, main fuel and also according to dust separation devices. To be able to compare different energy production processes, shared specific emission factor have been calculated for the similar subprocesses. The fine particle emissions depend strongest on the boiler size category and dust separation devices used. Spent fuel or combustion technique does not have

  12. Effects of applied electric field during postannealing on the tunable properties of (Ba,Sr)TiO3 thin films

    International Nuclear Information System (INIS)

    Xia Yidong; Cheng Jinbo; Pan Bai; Wu Di; Meng Xiangkang; Liu Zhiguo

    2005-01-01

    The impact of postannealing in electric field on the structure, tunability, and dielectric behavior of rf magnetron sputtering derived (Ba,Sr)TiO 3 films has been studied. It has been demonstrated that postannealing in the proper electric field can increase the dielectric constant and the tunability remarkably and destroy the symmetry of capacitance-voltage characteristics of the films. The increased out-of-plane lattice constant and the appearance of the hysteresis loops in the electric-annealed films indicated the formation of small polar regions with tetragonal structure, which are responsible for the increased dielectric constant and tunability. It was proposed that the segregation of Ti 3+ ions caused by electric annealing could induce the formation of BaTiO 3 -like regions, which are ferroelectric at room temperature

  13. Effects of applied electric field during postannealing on the tunable properties of (Ba,Sr)TiO3 thin films

    Science.gov (United States)

    Xia, Yidong; Cheng, Jinbo; Pan, Bai; Wu, Di; Meng, Xiangkang; Liu, Zhiguo

    2005-08-01

    The impact of postannealing in electric field on the structure, tunability, and dielectric behavior of rf magnetron sputtering derived (Ba,Sr)TiO3 films has been studied. It has been demonstrated that postannealing in the proper electric field can increase the dielectric constant and the tunability remarkably and destroy the symmetry of capacitance-voltage characteristics of the films. The increased out-of-plane lattice constant and the appearance of the hysteresis loops in the electric-annealed films indicated the formation of small polar regions with tetragonal structure, which are responsible for the increased dielectric constant and tunability. It was proposed that the segregation of Ti3+ ions caused by electric annealing could induce the formation of BaTiO3-like regions, which are ferroelectric at room temperature.

  14. A novel evolving scale-free model with tunable attractiveness

    International Nuclear Information System (INIS)

    Xuan, Liu; Tian-Qi, Liu; Xing-Yuan, Li; Hao, Wang

    2010-01-01

    In this paper, a new evolving model with tunable attractiveness is presented. Based on the Barabasi–Albert (BA) model, we introduce the attractiveness of node which can change with node degree. Using the mean-field theory, we obtain the analytical expression of power-law degree distribution with the exponent γ in (3, ∞). The new model is more homogeneous and has a lower clustering coefficient and bigger average path length than the BA model. (general)

  15. MOTORIC STIMULATION RELATED TO FINE MOTORIC DEVELOPMENT ON CHILD

    Directory of Open Access Journals (Sweden)

    Mira Triharini

    2017-07-01

    Full Text Available Introduction: Motor developmental stimulation is an activity undertaken to stimulate the children basic skills and so they can grow and develop optimally. Children who obtain a direct stimulus will grow faster than who get less stimulus. Mother’s behavior of stimulation is very important for children, it is considering as the basic needs of children and it must be fulfilled. Providing good stimulation could optimize fine motor development in children. The purpose of this study was to analyze mother’s behavior about motor stimulation with fine motor development in toddler age 4-5 years old. Method: Design have been  used in this study was cross sectional. Population were mothers and their toddler in Group A of Dharma Wanita Persatuan Driyorejo Gresik Preschool. Sample were 51 respondents recruited by using purposive sampling technique according to inclusion and exclusion criteria. The independent variable was mother’s behavior about motor stimulation whereas dependent variable was fine motor development in toddler. The data were collected using questionnaire and conducting observation on fine motor development based on Denver Development Screening Test (DDST. Data then analyzed using Spearman Rho (r test to find relation between mother’s behaviors about stimulation motor on their toddler fine motor development. Result: Results  of this study showed that there were correlations between mother’s knowledge and fine motor development in toddler (p=0.000, between mother’s attitude and fine motor development in toddler (p=0.000, and between mother’s actions and fine motor development in toddler (p=0.000. Analysis: In sort study found that there were relation between fine motor development and mother’s behavior. Discussion: Therefore mother’s behavior needed to be improved. Further research about stimulation motor and fine motor development aspects in toddler is required.

  16. Widely tunable Sampled Grating Distributed Bragg Reflector Quantum Cascade laser for gas spectroscopy applications

    Science.gov (United States)

    Diba, Abdou Salam

    Since the advent of semiconductor lasers, the development of tunable laser sources has been subject of many efforts in industry and academia arenas. This interest towards broadly tunable lasers is mainly due to the great promise they have in many applications ranging from telecommunication, to environmental science and homeland security, just to name a few. After the first demonstration of quantum cascade laser (QCL) in the early nineties, QCL has experienced a rapid development, so much so that QCLs are now the most reliable and efficient laser source in the Mid-IR range covering between 3 microm to 30 microm region of the electromagnetic spectrum. QCLs have almost all the desirable characteristics of a laser for spectroscopy applications such as narrow spectral linewidth ideal for high selectivity measurement, high power enabling high sensitivity sensing and more importantly they emit in the finger-print region of most of the trace gases and large molecules. The need for widely tunable QCLs is now more pressing than ever before. A single mode quantum cascade laser (QCL) such as a distributed feedback (DFB) QCL, is an ideal light source for gas sensing in the MIR wavelength range. Despite their performance and reliability, DFB QCLs are limited by their relatively narrow wavelength tuning range determined by the thermal rollover of the laser. An external cavity (EC) QCL, on the other hand, is a widely tunable laser source, and so far is the choice mid-infrared single frequency light sources for detecting multiple species/large molecules. However, EC QCLs can be complex, bulky and expensive. In the quest for finding alternative broadly wavelength tunable sources in the mid-infrared, many monolithic tunable QCLs are recently proposed and fabricated, including SG-DBR, DFB-Arrays, Slot-hole etc. and they are all of potentially of interest as a candidate for multi-gas sensing and monitoring applications, due to their large tuning range (>50 cm-1), and potentially low

  17. Significance of Fines in Hot Mix Asphalt Synthesis

    Directory of Open Access Journals (Sweden)

    Kalaitzaki Elvira

    2017-07-01

    Full Text Available According to their size, aggregates are classified in coarse grained, fine grained, and fines. The determination of fines content in aggregate materials is very simple and is performed through the aggregate washing during the sieving procedure to define the gradation curve. The very fine material consists of grains having a size lower than 63 μm. The presence of fines directly influences the composition and performance of concrete and asphalt mixtures (e.g. asphalt content, elasticity, fracture. The strength and load carrying capacity of hot mix asphalt (HMA results from the aggregate framework created through particle-particle contact and interlock. Fines or mineral filler have a role in HMA. The coarse aggregate framework is filled by the sand-sized material and finally by the mineral filler. At some point, the smallest particles lose contact becoming suspended in the binder not having the particle-particle contact that is created by the larger particles. The overall effect of mineral filler in hot mix asphalt specimens has been investigated through a series of laboratory tests. It is clear that a behaviour influenced by the adherence of fines to asphalt film has been developed. The optimum bitumen content requirement in case of stone filler is almost the same as that for fly ash. It has been found that the percentage of fly ash filler is crucial if it exceeds approximately a value of 4%.

  18. Tunable white light of a Ce3+,Tb3+,Mn2+ triply doped Na2Ca3Si2O8 phosphor for high colour-rendering white LED applications: tunable luminescence and energy transfer.

    Science.gov (United States)

    Lü, Wei; Xu, Huawei; Huo, Jiansheng; Shao, Baiqi; Feng, Yang; Zhao, Shuang; You, Hongpeng

    2017-07-18

    A tunable white light emitting Na 2 Ca 3 Si 2 O 8 :Ce 3+ ,Tb 3+ ,Mn 2+ phosphor with a high color rendering index (CRI) has been prepared. Under UV excitation, Na 2 Ca 3 Si 2 O 8 :Ce 3+ phosphors present blue luminescence and exhibit a broad excitation ranging from 250 to 400 nm. When codoping Tb 3+ /Mn 2+ ions into Na 2 Ca 3 Si 2 O 8 , energy transfer from Ce 3+ to Tb 3+ and Ce 3+ to Mn 2+ ions is observed from the spectral overlap between Ce 3+ emission and Tb 3+ /Mn 2+ excitation spectra. The energy-transfer efficiencies and corresponding mechanisms are discussed in detail. The mechanism of energy transfer from Ce 3+ to Tb 3+ is demonstrated to be a dipole-quadrupole mechanism by the Inokuti-Hirayama model. The wavelength-tunable white light can be realized by coupling the emission bands centered at 440, 550 and 590 nm ascribed to the contribution from Ce 3+ , Tb 3+ and Mn 2+ , respectively. The commission on illumination value of color tunable emission can be tuned by controlling the content of Ce 3+ , Tb 3+ and Mn 2+ . Temperature-dependent luminescence spectra proved the good thermal stability of the as-prepared phosphor. White LEDs with CRI = 93.5 are finally fabricated using a 365 nm UV chip and the as-prepared Na 2 Ca 3 Si 2 O 8 :Ce 3+ ,Tb 3+ ,Mn 2+ phosphor. All the results suggest that Na 2 Ca 3 Si 2 O 8 :Ce 3+ ,Tb 3+ ,Mn 2+ can act as potential color-tunable and single-phase white emission phosphors for possible applications in UV based white LEDs.

  19. Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials

    Science.gov (United States)

    Shen, Xin-Wei; Tong, Wen-Yi; Gong, Shi-Jing; Duan, Chun-Gang

    2018-03-01

    The concept of ferrovalley materials has been proposed very recently. The existence of spontaneous valley polarization, resulting from ferromagnetism, in such hexagonal 2D materials makes nonvolatile valleytronic applications realizable. Here, we introduce a new member of ferrovalley family with orthorhombic lattice, i.e. monolayer group-IV monochalcogenides (GIVMs), in which the intrinsic valley polarization originates from ferroelectricity, instead of ferromagnetism. Combining the group theory analysis and first-principles calculations, we demonstrate that, different from the valley-selective circular dichroism in hexagonal lattice, linearly polarized optical selectivity for valleys exists in the new type of ferrovalley materials. On account of the distinctive property, a prototype of electrically tunable polarizer is realized. In the ferrovalley-based polarizer, a laser beam can be optionally polarized in x- or y-direction, depending on the ferrovalley state controlled by external electric fields. Such a device can be further optimized to emit circularly polarized radiation with specific chirality and to realize the tunability for operating wavelength. Therefore, we show that 2D orthorhombic ferrovalley materials are the promising candidates to provide an advantageous platform to realize the polarizer driven by electric means, which is of great importance in extending the practical applications of valleytronics.

  20. High-gain Seeded FEL Amplifier Tunable in the Terahertz Range

    CERN Document Server

    Sung, C; Pellegrini, C; Ralph, J E; Reiche, S; Rosenzweig, J B; Tochitsky, Sergei Ya

    2005-01-01

    The lack of a high-power, relatively low-cost and compact terahertz (THz) source in the range 0.3-3x10(12) Hz is the major obstacle in progressing on biomedical and material studies at these wavelengths. A high-gain, single pass seeded FEL technique allows to obtain high power THz pulses of a high spectral brightness. We describe an ongoing project at the Neptune laboratory where a ~ 1kW seed pulse generated by difference frequency mixing of CO2 laser lines in a GaAs nonlinear crystal is injected into a waveguide FEL amplifier. The FEL is driven by a 5 ps (r.m.s) long electron pulse with a peak current up to 100A provided by a regular S-band photoinjector. According to 3-D, time dependent simulations, up to ~ 10 MW THz power can be generated using a 2 meter long planar undulator. By mixing different pairs of CO2 laser lines and matching resonant energy of the electron beam, tunability in the 100-400 mm range is expected. A tunable Fabri-Perot interferometer will be used to select a high-power 5ps THz pulse. T...