WorldWideScience

Sample records for fine-structure constant revisited

  1. The Oklo bound on the time variation of the fine-structure constant revisited

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume; Damour, Thibault; Dyson, Freeman

    1996-01-01

    It has been pointed out by Shlyakhter that data from the natural fission reactors which operated about two billion years ago at Oklo (Gabon) had the potential of providing an extremely tight bound on the variability of the fine-structure constant alpha. We revisit the derivation of such a bound by: (i) reanalyzing a large selection of published rare-earth data from Oklo, (ii) critically taking into account the very large uncertainty of the temperature at which the reactors operated, and (iii) connecting in a new way (using isotope shift measurements) the Oklo-derived constraint on a possible shift of thermal neutron-capture resonances with a bound on the time variation of alpha. Our final (95% C.L.) results are: -0.9 \\times 10^{-7} <(alpha^{Oklo} - alpha^{now})/alpha <1.2\\times 10^{-7} and -6.7 \\times 10^{-17} {yr}^{-1} < {\\dot alpha}^{averaged}/alpha <5.0\\times10^{-17} {yr}^{-1}.

  2. Cosmological Constant, Fine Structure Constant and Beyond

    CERN Document Server

    Wei, Hao; Li, Hong-Yu; Xue, Dong-Ze

    2016-01-01

    In this work, we consider the cosmological constant model $\\Lambda\\propto\\alpha^{-6}$, which is well motivated from three independent approaches. As is well known, the evidence of varying fine structure constant $\\alpha$ was found in 1998. If $\\Lambda\\propto\\alpha^{-6}$ is right, it means that the cosmological constant $\\Lambda$ should be also varying. In this work, we try to develop a suitable framework to model this varying cosmological constant $\\Lambda\\propto\\alpha^{-6}$, in which we view it from an interacting vacuum energy perspective. We propose two types of models to describe the evolutions of $\\Lambda$ and $\\alpha$. Then, we consider the observational constraints on these models, by using the 293 $\\Delta\\alpha/\\alpha$ data from the absorption systems in the spectra of distant quasars, and the data of type Ia supernovae (SNIa), cosmic microwave background (CMB), baryon acoustic oscillation (BAO). We find that the model parameters can be tightly constrained to the narrow ranges of ${\\cal O}(10^{-5})$ t...

  3. Varying Fine-Structure Constant and the Cosmological Constant Problem

    CERN Document Server

    Fujii, Y

    2003-01-01

    We start with a brief account of the latest analysis of the Oklo phenomenon providing the still most stringent constraint on time-variability of the fine- structure constant $\\alpha$. Comparing this with the recent result from the measurement of distant QSO's appears to indicate a non-uniform time-dependence, which we argue to be related to another recent finding of the accelerating universe. This view is implemented in terms of the scalar-tensor theory, applied specifically to the small but nonzero cosmological constant. Our detailed calculation shows that these two phenomena can be understood in terms of a common origin, a particular behavior of the scalar field, dilaton. We also sketch how this theoretical approach makes it appropriate to revisit non- Newtonian gravity featuring small violation of Weak Equivalence Principle at medium distances.

  4. Varying Fine-Structure Constant and the Cosmological Constant Problem

    Science.gov (United States)

    Fujii, Yasunori

    We start with a brief account of the latest analysis of the Oklo phenomenon providing the still most stringent constraint on time variability of the fine-structure constant α. Comparing this with the recent result from the measurement of distant QSO's appears to indicate a non-uniform time-dependence, which we argue to be related to another recent finding of the accelerating universe. This view is implemented in terms of the scalar-tensor theory, applied specifically to the small but nonzero cosmological constant. Our detailed calculation shows that these two phenomena can be understood in terms of a common origin, a particular behavior of the scalar field, dilaton. We also sketch how this theoretical approach makes it appropriate to revisit non-Newtonian gravity featuring small violation of Weak Equivalence Principle at medium distances.

  5. On a time varying fine structure constant

    CERN Document Server

    Berman, M S; Berman, Marcelo S.; Trevisan, Luis A.

    2001-01-01

    By employing Dirac LNH, and a further generalization by Berman (GLNH), we estimate how should vary the total number of nucleons, the energy density, Newton Gravitational constant, the cosmological constant, the magnetic permeability and electric permitivity, of the Universe,in order to account for the experimentally observed time variation of the fine structure constant. As a bonus,we find an acceptable value for the deceleration parameter of the present Universe, compatible with the Supernovae observations.

  6. The fine structure constant and habitable planets

    DEFF Research Database (Denmark)

    Sandora, McCullen

    2016-01-01

    © 2016 IOP Publishing Ltd and Sissa Medialab srl .We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, α. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product...

  7. Variation of the fine structure constant

    CERN Document Server

    Lipovka, Anton A

    2016-01-01

    In present paper we evaluate the fine structure constant variation which should take place as the Universe is expanded and its curvature is changed adiabatically. This changing of the fine structure constant is attributed to the energy lost by physical system (consist of baryonic component and electromagnetic field) due to expansion of our Universe. Obtained ratio (d alpha)/alpha = 1. 10{-18} (per second) is only five times smaller than actually reported experimental limit on this value. For this reason this variation can probably be measured within a couple of years. To argue the correctness of our approach we calculate the Planck constant as adiabatic invariant of electromagnetic field, from geometry of our Universe in the framework of the pseudo- Riemannian geometry. Finally we discuss the double clock experiment based on Al+ and Hg+ clocks carried out by T. Rosenband et al. (Science 2008). We show that in this particular case there is an error in method and this way the fine structure constant variation c...

  8. Fine Structure Constant: Theme With Variations

    CERN Document Server

    Bezerra, V B; Muniz, C R; Tahim, M O; Vieira, H S

    2016-01-01

    In this paper, we study the spatial variation of the fine structure constant $\\alpha$ due to the presence of a static and spherically symmetric gravitational source. The procedure consists of calculating the solution including the energy eigenvalues of a massive scalar field around that source, considering the weak-field regimen, which yields the gravitational analog of the atomic Bohr levels. From this result, we obtain several values for the effective $\\alpha$ by considering some scenarios of semi-classical and quantum gravities. Constraints on the parameters of the involved theories are calculated from astrophysical observations of the white dwarf emission spectra. Such constraints are compared with those ones obtained in the literature.

  9. The Fine Structure Constant and Habitable Planets

    CERN Document Server

    Sandora, McCullen

    2016-01-01

    We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, $\\alpha$. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product of stellar fusion is iron and not one of its neighboring elements, restricts $\\alpha^{-1}$ to be $145\\pm 50$. The second, that radiogenic heat in the Earth's interior remains adequately productive for billions of years, restricts it to be $145\\pm9$. A connection with the grand unified theory window is discussed, effectively providing a route to probe ultra-high energy physics with upcoming advances in planetary science.

  10. The fine structure constant and habitable planets

    Science.gov (United States)

    Sandora, McCullen

    2016-08-01

    We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, α. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product of stellar fusion is iron and not one of its neighboring elements, restricts α-1 to be 145± 50. The second, that radiogenic heat in the Earth's interior remains adequately productive for billions of years, restricts it to be 145±9. A connection with the grand unified theory window is discussed, effectively providing a route to probe ultra-high energy physics with upcoming advances in planetary science.

  11. The fine structure constant and habitable planets

    DEFF Research Database (Denmark)

    Sandora, McCullen

    2016-01-01

    © 2016 IOP Publishing Ltd and Sissa Medialab srl .We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, α. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product...... of stellar fusion is iron and not one of its neighboring elements, restricts α-1 to be 145± 50. The second, that radiogenic heat in the Earth's interior remains adequately productive for billions of years, restricts it to be 145±9. A connection with the grand unified theory window is discussed, effectively...

  12. The fine structure constant and numerical alchemy

    CERN Document Server

    Dattoli, Giuseppe

    2010-01-01

    We comment on past and more recent efforts to derive a formula yielding the fine structure constant in terms of integers and transcendent numbers. We analyse these "exoteric" attitudes and describe the myths regarding {\\alpha}, which seems to have very ancient roots, tracing back to Cabbala and to medieval alchemic conceptions. We discuss the obsession for this constant developed by Pauli and the cultural "environment" in which such an "obsession" grew. We also derive a simple formula for {\\alpha} in terms of two numbers {\\pi} and 137 only. The formula we propose reproduces the experimental values up to the last significant digit, it has not any physical motivation and is the result of an alchemic combination of numbers. We make a comparison with other existing formulae, discuss the relevant limits of validity by comparison with the experimental values and discuss a criterion to recover a physical meaning, if existing, from their mathematical properties.

  13. Implications of a Time-Varying Fine Structure Constant

    CERN Document Server

    Alfonso-Faus, A

    2002-01-01

    Much work has been done after the possibility of a fine structure constant being time-varying. It has been taken as an indication of a time-varying speed of light. Here we prove that this is not the case. We prove that the speed of light may or may not vary with time, independently of the fine structure constant being constant or not. Time variations of the speed of light, if present, have to be derived by some other means and not from the fine structure constant. No implications based on the possible variations of the fine structure constant can be imposed on the speed of light.

  14. An Einstein-Cartan Fine Structure Constant Definition

    Directory of Open Access Journals (Sweden)

    Stone R. A. Jr.

    2010-01-01

    Full Text Available The fine structure constant definition given in Stone R.A. Jr. Progress in Physics, 2010, v.1, 11-13 is compared to an Einstein-Cartan fine structure constant definition. It is shown that the Einstein-Cartan definition produces the correct pure theory value, just not the measure value. To produce the measured value, the pure theory Einstein-Cartan fine structure constant requires only the new variables and spin coupling of the fine structure constant definition in [1].

  15. Search for Possible Variation of the Fine Structure Constant

    OpenAIRE

    2003-01-01

    Determination of the fine structure constant alpha and search for its possible variation are considered. We focus on a role of the fine structure constant in modern physics and discuss precision tests of quantum electrodynamics. Different methods of a search for possible variations of fundamental constants are compared and those related to optical measurements are considered in detail.

  16. Fine-structure constant: Is it really a constant?

    Science.gov (United States)

    Bekenstein, Jacob D.

    1982-03-01

    It is often claimed that the fine-structure "constant" α is shown to be strictly constant in time by a variety of astronomical and geophysical results. These constrain its fractional rate of change α˙α to at least some orders of magnitude below the Hubble rate H0. We argue that the conclusion is not as straightforward as claimed since there are good physical reasons to expect α˙α<

  17. Possible Cosmological Implications of Time Varying Fine Structure Constant

    CERN Document Server

    Berman, M S; Berman, Marcelo S.; Trevisan, Luis A.

    2001-01-01

    We make use of Dirac LNH and results for a time varying fine structure constant in order to derive possible laws of variation for speed of light, the number of nucleons in the Universe, energy density and gravitational constant. By comparing with experimental bounds on G variation, we find that the deceleration paramenter of the present Universe is negative. This is coherent with recent Supernovae observations.

  18. Simple Model with Time-Varying Fine-Structure ``Constant''

    Science.gov (United States)

    Berman, M. S.

    2009-10-01

    Extending the original version written in colaboration with L.A. Trevisan, we study the generalisation of Dirac's LNH, so that time-variation of the fine-structure constant, due to varying electrical and magnetic permittivities is included along with other variations (cosmological and gravitational ``constants''), etc. We consider the present Universe, and also an inflationary scenario. Rotation of the Universe is a given possibility in this model.

  19. Fine structure constant variation or space-time anisotropy?

    CERN Document Server

    Chang, Zhe; Li, Xin

    2011-01-01

    Recent observations on quasar absorption spectra supply evidences for variation of fine structure constant $\\alpha$. In this paper, we propose another interpretation of the observational data on quasar absorption spectra: a scenario with space-time inhomogeneity and anisotropy but uniform fine structure constant. Maybe the space-time is characterized by Finsler geometry instead of Riemann one. Finsler geometry admits less symmetries than Riemann geometry does. We investigate the Finslerian geodesic equations in Randers space-time (a special Finsler space-time). It is found that the cosmological redshift in this space-time is deviated from the one in general relativity. The modification term to redshift could be generally revealed as a monopole plus dipole function about space-time locations and directions. We suggest that this modification corresponds to the observed spatial monopole and Australian Dipole in quasar absorption spectra.

  20. Topological Quantization in Units of the Fine Structure Constant

    Energy Technology Data Exchange (ETDEWEB)

    Maciejko, Joseph; /Stanford U., Phys. Dept. /Stanford U., Materials Sci. Dept. /SLAC; Qi, Xiao-Liang; /Station Q, UCSB /Stanford U., Phys. Dept. /Stanford U., Materials Sci. Dept. /SLAC; Drew, H.Dennis; /Maryland U.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept. /Stanford U., Materials Sci. Dept. /SLAC

    2011-11-11

    Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant {alpha} = e{sup 2}/{h_bar}c. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.

  1. Derivation of the fine structure constant using fractional dynamics

    CERN Document Server

    Goldfain, E

    2003-01-01

    Both classical and quantum electrodynamics assume that random fluctuations are absent from the steady-state evolution of the underlying physical system. Our work goes beyond this approximation and accounts for the continuous exposure to stochastic fluctuations. It is known that the asymptotic limit of quantum field dynamics, dominated by large and persistent perturbations, may be described as an anomalous diffusion process. We use fractional calculus as an appropriate tool to handle this highly non-trivial regime. It is shown that the fine structure constant can be recovered from the fractional evolution equation of the density matrix under standard normalization conditions.

  2. Fine-structure constant constraints on Bekenstein-type models

    CERN Document Server

    Leal, P M M; Ventura, L B

    2014-01-01

    Astrophysical tests of the stability of dimensionless fundamental couplings, such as the fine-structure constant $\\alpha$, are an area of much increased recent activity, following some indications of possible spacetime variations at the few parts per million level. Here we obtain updated constraints on the Bekenstein-Sandvik-Barrow-Magueijo model, which is arguably the simplest model allowing for $\\alpha$ variations. Recent accurate spectroscopic measurements allow us to improve previous constraints by about an order of magnitude. We briefly comment on the dependence of the results on the data sample, as well as on the improvements expected from future facilities.

  3. QED Based Calculation of the Fine Structure Constant

    Energy Technology Data Exchange (ETDEWEB)

    Lestone, John Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-13

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. Here, semi-classical approaches are used to obtain a more intuitive feel for what causes electrostatics, and the anomalous magnetic moment of the electron. These intuitive arguments lead to a possible answer to the question of the nature of charge. Virtual photons, with a reduced wavelength of λ, are assumed to interact with isolated electrons with a cross section of πλ2. This interaction is assumed to generate time-reversed virtual photons that are capable of seeking out and interacting with other electrons. This exchange of virtual photons between particles is assumed to generate and define the strength of electromagnetism. With the inclusion of near-field effects the model presented here gives a fine structure constant of ~1/137 and an anomalous magnetic moment of the electron of ~0.00116. These calculations support the possibility that near-field corrections are the key to understanding the numerical value of the dimensionless fine structure constant.

  4. Black Holes and Quantum Theory: The Fine Structure Constant Connection

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available The new dynamical theory of space is further confirmed by showing that the effective “black hole” masses M BH in 19 spherical star systems, from globular clusters to galaxies, with masses M , satisfy the prediction that M BH = α 2 M , where α is the fine structure constant. As well the necessary and unique generalisations of the Schr ̈ odinger and Dirac equations permit the first derivation of gravity from a deeper theory, showing that gravity is a quantum effect of quantum matter interacting with the dynamical space. As well the necessary generalisation of Maxwell’s equations displays the observed light bending effects. Finally it is shown from the generalised Dirac equation where the spacetime mathematical formalism, and the accompanying geodesic prescription for matter trajectories, comes from. The new theory of space is non-local and we see many parallels between this and quantum theory, in addition to the fine structure constant manifesting in both, so supporting the argument that space is a quantum foam system, as implied by the deeper information-theoretic theory known as Process Physics. The spatial dynamics also provides an explanation for the “dark matter” effect and as well the non-locality of the dynamics provides a mechanism for generating the uniformity of the universe, so explaining the cosmological horizon problem.

  5. Further Evidence for Cosmological Evolution of the Fine Structure Constant

    CERN Document Server

    Webb, J K; Flambaum, V V; Dzuba, V A; Barrow, John D; Churchill, C W; Prochaska, J X; Wolfe, A M

    2001-01-01

    We summarise the results of a search for time variability of the fine structure constant, alpha, using absorption systems in the spectra of distant quasars. Three large optical datasets and two 21cm/mm absorption systems provide four independent samples, spanning approximately 23% to 87% of the age of the universe. Each sample yields a negative Delta(alpha)/alpha (smaller alpha in the past) and the whole optical sample shows a 4-sigma deviation: Delta(alpha)/alpha = -0.72 +/- 0.18 x 10^{-5} over the redshift range 0.5 < z < 3.5. A comprehensive search for systematic effects reveals none which can explain our results. The only potentially significant systematic effects push Delta(alpha)/alpha towards positive values, i.e. our results would become more significant were we to correct for them.

  6. Time Variation of the Fine Structure Constant Driven by Quintessence

    CERN Document Server

    Anchordoqui, L A; Anchordoqui, Luis; Goldberg, Haim

    2003-01-01

    There are indications from the study of quasar absorption spectra that the fine structure constant $\\alpha$ may have been measurably smaller for redshifts $z>2.$ Analyses of other data ($^{149}$Sm fission rate for the Oklo natural reactor, variation of $^{187}$Re $\\beta$-decay rate in meteorite studies, atomic clock measurements) which probe variations of $\\alpha$ in the more recent past imply much smaller deviations from its present value. In this work we tie the variation of $\\alpha$ to the evolution of the quintessence field proposed by Albrecht and Skordis, and show that agreement with all these data, as well as consistency with WMAP observations, can be achieved for a range of parameters. Some definite predictions follow for upcoming space missions searching for violations of the equivalence principle.

  7. Nonlinear Electrodynamics Analysis Of The Fine Structure Constant

    Science.gov (United States)

    Mbelek, Jean Paul

    2010-10-01

    It has been claimed that during the late time history of our universe, the fine structure constant, α, has been increasing [1],[2]. However, other teams has claimed a discordant result [3],[4]. Also, the current precision of laboratory tests is not sufficient to either comfort or reject any of these astronomical observations. Here we suggest that a nonlinear electrodynamics (NLED) interaction of photons with the weak local background magnetic fields of a gas cloud absorber can reconcile the null result of refs.[3] and [4] with the negative variation found by refs. [2] and [1] and also to find a bridge with the positive variation found later by Levshakov et al.. [5]-[7]. Moreover, NLED photon propagation in a vacuum permeated by a background magnetic field is actually in full agreement with constraints from Oklo natural reactor data.

  8. Time variation of the fine structure constant driven by quintessence

    Science.gov (United States)

    Anchordoqui, Luis; Goldberg, Haim

    2003-10-01

    There are indications from the study of quasar absorption spectra that the fine structure constant α may have been measurably smaller for redshifts z>2. Analyses of other data (149Sm fission rate for the Oklo natural reactor, variation of 187Re β-decay rate in meteorite studies, atomic clock measurements) which probe variations of α in the more recent past imply much smaller deviations from its present value. In this work we tie the variation of α to the evolution of the quintessence field proposed by Albrecht and Skordis, and show that agreement with all these data, as well as consistency with Wilkinson Microwave Anisotropy Probe observations, can be achieved for a range of parameters. Some definite predictions follow for upcoming space missions searching for violations of the equivalence principle.

  9. Varying Fine Structure Constant and Black Hole Physics

    CERN Document Server

    Das, S; Das, Saurya; Kunstatter, Gabor

    2003-01-01

    Recent astrophysical observations suggest that the fine structure constant $\\alpha=e^2/\\hbar c$ may be slowly increasing with time. This may be due to an increase of $e$ or a decrease of $c$, or both. In this article, we argue from model independent considerations that this variation should be considered adiabatic. Then, we examine in detail the consequences of such an adiabatic variation in the context of a specific model of quantized charged black holes. We find that the second law of black hole thermodynamics is obeyed, regardless of the origin of the variation, and that interesting constraints arise on the charge and mass of black holes. Finally, we estimate the work done on a black hole of mass $M$ due to the $\\alpha$ variation.

  10. Atomic Clocks and Variations of the FIne Structure Constant

    Science.gov (United States)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    1995-01-01

    We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.

  11. Varying fine structure "constant" and charged black holes

    CERN Document Server

    Bekenstein, Jacob D

    2009-01-01

    Tension between varying fine-structure "constant'' alpha and charged black hole properties has been invoked in the past to place constraints on cosmological variability of alpha. However, the properties used are those of the standard Reissner-Nordstrom black holes; this ignores modifications of black hole structure that must result from alpha variability. To elucidate this issue we have derived, in 4-D general relativity, and using isotropic coordinates, the solution for a charged spherical black hole according to the framework for dynamical variability of alpha which does not fix its overall scale. This solution coincides with a known one-parameter extension of the dilatonic black hole family. Among the notable properties of varying alpha charged black holes are adherence to the "no hair'' principle, the absence of the inner (Cauchy) horizon, the nonexistence of precisely extremal black holes, and the appearance of naked singularities in a separate sector of the relevant metric. This last hints at the possib...

  12. Measurement of the Running of the Fine-Structure Constant

    CERN Document Server

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Balandras, A; Ball, R C; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; Cozzoni, B; de la Cruz, B; Csilling, Akos; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hirstius, A; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lassila-Perini, K M; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Molnár, P; Monteleoni, B; Moulik, T; Muanza, G S; Muheim, F; Muijs, A J M; Musy, M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Oulianov, A; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Raspereza, A V; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Sciarrino, D; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, M; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, A; Zilizi, G; Zöller, M

    2000-01-01

    Small-angle Bhabha scattering data recorded at the Z resonance and large-angleBhabha scattering data recorded at $\\sqrt{s} = 189$ \\textrm{Ge\\kern -0.1em V} bythe L3 detector at LEP are used to measure the running of the effective fine-structure constant for spacelike momentum transfers. The results are\\begin{eqnarray*} \\alpha^{-1}(-2.1 \\mathrm{Ge\\kern -0.1em V}^{2}) - \\alpha^{-1}(-6.25 \\mathrm{Ge\\kern -0.1em V}^{2}) & = & 0.78 \\pm 0.26 \\\\ \\alpha^{-1}(-12.25 \\mathrm{Ge\\kern -0.1em V}^{2}) - \\alpha^{-1}(-3434 \\mathrm{Ge\\kern -0.1em V}^{2}) & = & 3.80 \\pm 1.29, \\\\\\end{eqnarray*}in agreement with theoretical predictions.

  13. Galaxy clusters, type Ia supernovae and the fine structure constant

    CERN Document Server

    Holanda, R F L; Colaço, L R; Alcaniz, J S; Landau, S J

    2016-01-01

    As is well known, measurements of the Sunyaev-Zeldovich effect can be combined with observations of the X-ray surface brightness of galaxy clusters to estimate the angular diameter distance to these structures. In this paper, we show that this technique depends on the fine structure constant, $\\alpha$. Therefore, if $\\alpha$ is a time-dependent quantity, e.g., $\\alpha=\\alpha_0 \\phi(z)$, where $\\phi$ is a function of redshift, we argue that current data do not provide the real angular diameter distance, $D_{\\rm{A}}(z)$, to the cluster but instead $D_A^{data}(z) = \\phi(z)^2 D_{\\rm{A}}(z)$. We use this result to derive constraints on a possible variation of $\\alpha$ for a class of dilaton runaway models considering a sample of 25 measurements of $D_A^{data}(z)$ in redshift range $0.023 < z < 0.784$ and estimates of $D_{\\rm{A}}(z)$ from current type Ia supernovae observations. We find no significant indication of variation of $\\alpha$ with the present data.

  14. Estimate on the deceleration parameter in a Universe with variable fine structure constant

    CERN Document Server

    Berman, M S; Berman, Marcelo S.; Trevisan, Luis A.

    2001-01-01

    We determine a cosmological model that include a positive acceleration of the Universe and a time decreasing fine structure constant. The present day deceleration parameter is estimated by us, according to our model and the available experimental data .

  15. Prediction for Nonabelian Fine Structure Constants from Multicriticality

    CERN Document Server

    Nielsen, Holger Bech

    1994-01-01

    In developing a model for predicting the nonabelian gauge coupling constants we argue for the phenomenological validity of a ``principle of multiple point criticality''. This is supplemented with the assumption of an ``(grand) anti-unified'' gauge group $SMG^{N_{gen.}}\\sim U(1)^{N_{gen.}}\\times SU(2)^{N_{gen.}}\\times SU(3)^{N_{gen.}}$ that, at the Planck scale, breaks down to the diagonal subgroup. Here $N_{gen}$ is the number of generations which is assumed to be 3. According to this ``multiple point criticality principle'', the Planck scale experimental couplings correspond to multiple point couplings of the bulk phase transition of a lattice gauge theory (with gauge group $SMG^{N_{gen.}}$). Predictions from this principle agree with running nonabelian couplings (after an extrapolation to the Planck scale using the assumption of a ``desert'') to an accuracy of 7\\%. As an explanation for the existence of the multiple point, a speculative model using a glassy lattice gauge theory is presented.

  16. A five dimensional model of varying effective gravitational and fine structure constants

    Science.gov (United States)

    Mbelek, J. P.; Lachièze-Rey, M.

    2003-01-01

    We explore the possibility that the reported time variation of the fine structure constant alpha is due to a coupling between electromagnetism and gravitation. We predict such a coupling from a very simple effective theory of physical interactions, under the form of an improved version of the Kaluza-Klein theory. We show that it precisely leads to a variation of the effective fine structure constant with cosmic conditions, and thus with cosmic time. The comparison with the recent data from distant quasars absorption line spectra gives a good agreement; moreover, this may reconcile the claimed results on alpha with the upper limit from the Oklo naturel Uranium fission reactor.

  17. The Anthropic Principle and numerical coincidences involving the cosmological, gravitational and fine structure constants

    CERN Document Server

    Eaves, Laurence

    2014-01-01

    Christian Beck has proposed a set of Shannon-Khinchin axioms to derive a formula for the cosmological constant, {\\Lambda}. We discuss this result in relation to numerical coincidences involving the measured values of {\\Lambda} and the gravitational and fine structure constants, G and {\\alpha}. The empirical formulae that inter-relate the three constants suggest that the measured values of G and {\\Lambda} are consistent with the apparent anthropic fine-tuning of {\\alpha}.

  18. A five dimensional model of varying effective gravitational and fine structure constants

    CERN Document Server

    Mbelek, J P

    2003-01-01

    We explore the possibility that the reported time variation of the fine structure constant $\\alpha$ is due to a coupling between electromagnetism and gravitation. We consider the coupling predicted by a very simple {\\sl effective} theory of physical interactions, under the form of an improved version of the Kaluza-Klein theory. We show that it is precisely expressed by a variation of the effective fine structure constant with cosmic conditions, and thus with cosmic time. We compare the predicted variation with the recent data from distant quasars absorption line spectra: we find a good agreement, which moreover reconcile the claimed results on $\\alpha$ with the upper limit from the Oklo naturel Uranium fission reactor.

  19. How Strongly does Dating Meteorites Constrain the Time-Dependence of the Fine-Structure Constant?

    Science.gov (United States)

    Fujii, Yasunori; Iwamoto, Akira

    We review our argument on the nature of the so-called meteorite constraint on the possible time-dependence of the fine-structure constant, emphasizing that dating meteorites at the present time is different in principle from searching directly for the traces in the past, as in the Oklo phenomenon and the QSO absorption lines. In the related literature, we still find some arguments not necessarily consistent with this difference to be taken properly into account. It does not immediately follow that any model-dependent approaches are useless in practice, though we cannot help suspecting that dating meteorites is no match for the Oklo and the QSO in probing the time-variability of the fine-structure constant, at this moment. Some of the relevance to the QSO data particularly in terms of the scalar field will be discussed.

  20. Constraints on field theoretical models for variation of the fine structure constant

    Science.gov (United States)

    Steinhardt, Charles L.

    2005-02-01

    Recent theoretical ideas and observational claims suggest that the fine structure constant α may be variable. We examine a spectrum of models in which α is a function of a scalar field. Specifically, we consider three scenarios: oscillating α, monotonic time variation of α, and time-independent α that is spatially varying. We examine the constraints imposed upon these theories by cosmological observations, particle detector experiments, and “fifth force” experiments. These constraints are very strong on models involving oscillation but cannot compete with bounds from the Oklo subnuclear reactor on models with monotonic timelike variation of α. One particular model with spatial variation is consistent with all current experimental and observational measurements, including those from two seemingly conflicting measurements of the fine structure constant using the many multiplet method on absorption lines.

  1. How strongly does dating meteorites constrain the time-dependence of the fine-structure constant?

    CERN Document Server

    Fujii, Y; Fujii, Yasunori; Iwamoto, Akira

    2005-01-01

    We review our argument on the nature of the so-called meteorite constraint on the possible time-dependence of the fine-structure constant, emphasizing that dating meteorites at the present time is different in principle from searching directly for the traces in the past, as in the Oklo phenomenon and the QSO absorption lines. In the related literature, we still find some arguments not necessarily consistent with this difference to be taken properly into account. This does not imply that any of the model-dependent approaches are useless in practice, though we cannot help guessing that dating meteorites is no match for the Oklo and the QSO in probing time-dependence of the fine-structure constant, at this moment. Some of the relevance to the QSO data particularly in terms of the scalar field will be discussed.

  2. New Constraints on Spatial Variations of the Fine Structure Constant from Clusters of Galaxies

    Directory of Open Access Journals (Sweden)

    Ivan De Martino

    2016-12-01

    Full Text Available We have constrained the spatial variation of the fine structure constant using multi-frequency measurements of the thermal Sunyaev-Zeldovich effect of 618 X-ray selected clusters. Although our results are not competitive with the ones from quasar absorption lines, we improved by a factor 10 and ∼2.5 previous results from Cosmic Microwave Background power spectrum and from galaxy clusters, respectively.

  3. Fine Structure Constant, Domain Walls, and Generalized Uncertainty Principle in the Universe

    Directory of Open Access Journals (Sweden)

    Luigi Tedesco

    2011-01-01

    Full Text Available We study the corrections to the fine structure constant from the generalized uncertainty principle in the spacetime of a domain wall. We also calculate the corrections to the standard formula to the energy of the electron in the hydrogen atom to the ground state, in the case of spacetime of a domain wall and generalized uncertainty principle. The results generalize the cases known in literature.

  4. Re/Os Constraint on the Time Variability of the Fine-Structure Constant

    Science.gov (United States)

    Fujii, Yasunori; Iwamoto, Akira

    2003-12-01

    We argue that the accuracy by which the isochron parameters of the decay 187Re→187Os are determined by dating iron meteorites may constrain the possible time dependence of the decay rate and hence of the fine-structure constant α, not directly but only in a model-dependent manner. From this point of view, some of the attempts to analyze the Oklo constraint and the results of the quasistellar-object absorption lines are reexamined.

  5. Re/Os constraint on the time-variability of the fine-structure constant

    CERN Document Server

    Fujii, Y; Fujii, Yasunori; Iwamoto, Akira

    2003-01-01

    We argue that the accuracy by which the isochron parameters of the decay $^{187}{\\rm Re}\\to ^{187}{\\rm Os}$ are determined by dating iron meteorites may not directly constrain the possible time-dependence of the decay rate and hence of the fine-structure constant $\\alpha$. From this point of view, some of the attempts to analyze the Oklo constraint and the results of the QSO absorption lines are re-examined.

  6. Time variation of the fine structure constant in the early universe and the Bekenstein model

    CERN Document Server

    Mosquera, Mercedes E; Landau, Susana J; Vucetich, Hector

    2007-01-01

    We use observational primordial abundances of $\\De$, $\\Het$, $\\He$ and $\\Li$, recent data from the Cosmic Microwave Background and the 2dFGRS power spectrum, to put limits on the variation of the fine structure constant in the early universe. Furthermore, we use these constraints together with other astronomical and geophysical bounds from the late universe to test Bekenstein's model for the variation of $\\alpha$. The model is not able to fit all observational and experimental data.

  7. Cosmological implications in electrodynamics due to variations of the fine structure constant

    CERN Document Server

    Martínez-Ledesma, J L

    2002-01-01

    Astronomical observations are strongly suggesting that the fine structure constant varies cosmologically. We present an analysis on the consequences that this variations might induce on the electromagnetic field as a whole. We show that under this circumstances the electrodynamics in vacuum of the universe are described by two fields, the ``standard'' Maxwell's field and a new scalar field. We provide a generalized Lorentz force which can be used to test our results experimentally.

  8. Strong limit on the spatial and temporal variations of the fine-structure constant

    Science.gov (United States)

    Le, T. D.

    2016-10-01

    Observed spectra of quasars provide a powerful tool to test the possible spatial and temporal variations of the fine-structure constant α = e 2/ћc over the history of the Universe. It is demonstrated that high sensitivity to the variation of α can be obtained from a comparison of the spectra of quasars and laboratories. We reported a new constraint on the variation of the fine-structure constant based on the analysis of the optical spectra of the fine-structure transitions in [NeIII], [NeV], [OIII], [OI] and [SII] multiplets from 14 Seyfert 1.5 galaxies. The weighted mean value of the α-variation derived from our analysis over the redshift range 0.035 < z < 0.281 Δα/α= (4.50 +/- 5.53) \\times 10-5. This result presents strong limit improvements on the constraint on Δα/α compared to the published in the literature

  9. Precision Measurements: Testing the Time Variation of the Fine Structure Constant

    Science.gov (United States)

    Lamoreaux, Steve

    2004-05-01

    Often, precision measurements from diverse fields can be used to learn new facts about the universe. The usual definition of "precision" is based on improvements over previous measurements. A review of the present state of knowledge regarding the possible time variation of the fine structure constant α will be presented; "precise" data from natural phenomena, which include an apparent shift in the red-shift-scaled fine structure in the absorption spectra of quasar light, and the isotopic abundances in the fission products of a prehistoric natural reactor in Oklo, Gabon. Prospects to improve the accuracy for the constancy of α with laboratory experiments will be discussed. Our two experimental investigations currently being developed are based on optical spectroscopy of trapped ions and on radiofrequency spectroscopy of an atomic dysprosium beam. A sensitivity of dotα/α≈ 10-18/yr is anticipated. Because this accuracy exceeds that by which the second is defined, these measurements will necessarily be differential.

  10. 3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-04-01

    Full Text Available A theory of 3-space explains the phenomenon of gravity as arising from the time-dependence and inhomogeneity of the differential flow of this 3-space. The emergent theory of gravity has two gravitational constants: G - Newton's constant, and a dimensionless constant alpha. Various experiments and astronomical observations have shown that alpha is the fine structure constant ~1/137. Here we analyse the Greenland Ice Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision this value of alpha. This and other successful tests of this theory of gravity, including the supermassive black holes in globular clusters and galaxies, and the "dark-matter" effect in spiral galaxies, shows the validity of this theory of gravity. This success implies that the non-relativistic Newtonian gravity was fundamentally flawed from the beginning, and that this flaw was inherited by the relativistic General Relativity theory of gravity.

  11. 3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-04-01

    Full Text Available A theory of 3-space explains the phenomenon of gravity as arising from the time-dependence and inhomogeneity of the differential flow of this 3-space. The emergent theory of gravity has two gravitational constants: GN — Newton’s constant, and a dimensionless constant α. Various experiments and astronomical observations have shown that α is the fine structure constant ≈ 1/137. Here we analyse the Greenland Ice Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision this value of α. This and other successful tests of this theory of gravity, including the supermassive black holes in globular clusters and galaxies, and the “dark-matter” effect in spiral galaxies, shows the validity of this theory of gravity. This success implies that the non-relativistic Newtonian gravity was fundamentally flawed from the beginning, and that this flaw was inherited by the relativistic General Relativity theory of gravity.

  12. 3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant

    CERN Document Server

    Cahill, R T

    2006-01-01

    A theory of 3-space explains the phenomenon of gravity as arising from the time-dependence and inhomogeneity of the differential flow of this 3-space. The emergent theory of gravity has two gravitational constants: G - Newton's constant, and a dimensionless constant - alpha. Various experiments and astronomical observations have shown that alpha is the fine structure constant 1/137. Here we analyse the Greenland Ice Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision this value of alpha. This and other successful tests of this theory of gravity, including the supermassive black holes in globular clusters and galaxies, and the `dark-matter' effect in spiral galaxies, demonstrates the validity of this theory of gravity. This success implies that Newtonian gravity was fundamentally flawed from the beginning.

  13. A Note on Transfinite M Theory and the Fine Structure Constant

    CERN Document Server

    Castro, C

    2001-01-01

    In this short note, using notions from $p$-Adic QFT and $p$-branes, we derive the transfinite M $theoretical$ corrections $(\\alpha_M)^{-1} = 100 + 61 \\phi$ to El Naschie's inverse fine structure constant value $(\\alpha_{HS})^{-1}= 100 + 60\\phi$ which was based on a transfinite Heterotic string theory ormalism . $\\phi$ is the Golden Mean $0.6180339...$. Our results are consistent with recent Astrophysical observations of he Boomerang and Maxima experiments, with previous results based on the four dimensional gravitational conformal anomaly calculations and with an enhanced hierarchy of the number of lines on Del Pezzo surfaces.

  14. Enhanced laboratory sensitivity to variation of the fine-structure constant using highly charged ions.

    Science.gov (United States)

    Berengut, J C; Dzuba, V A; Flambaum, V V

    2010-09-17

    We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant α. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest α sensitivities seen in atomic systems.

  15. Time Variation of the Fine Structure Constant in the Spacetime of a Cosmic Domain Wall

    Science.gov (United States)

    Campanelli, L.; Cea, P.; Tedesco, L.

    The gravitational field produced by a domain wall acts as a medium with spacetime-dependent permittivity ɛ. Therefore, the fine structure constant α=e2/4πɛ will be a time-dependent function at fixed position. The most stringent constraint on the time-variation of α comes from the natural reactor Oklo and gives |˙ α /α | < few × 10-17 yr-1. This limit constrains the tension of a cosmic domain wall to be less than σ ≲ 10-2 MeV3, and then represents the most severe limit on the energy density of a cosmic wall stretching our Universe.

  16. Time Variation of the Fine Structure Constant in the Spacetime of a Domain Wall

    CERN Document Server

    Campanelli, L; Tedesco, L

    2005-01-01

    The gravitational field produced by a domain wall acts as a medium with spacetime-dependent permittivity \\epsilon. Therefore, the fine structure constant \\alpha = e^2/4 \\pi \\epsilon will be a time-dependent function at fixed position. The most stringent constraint on the time-variation of \\alpha comes from the natural reactor Oklo and gives |\\dot{\\alpha}/\\alpha| < few 10^{-17} yr^{-1}. This limit constrains the tension of a cosmic domain wall to be less than \\sigma \\lesssim 10^{-2} MeV^3, and then represents the most severe limit on the energy density of a cosmic wall stretching our Universe.

  17. Evolution of the fine-structure constant in runaway dilaton models

    Energy Technology Data Exchange (ETDEWEB)

    Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Vielzeuf, P.E., E-mail: pvielzeuf@ifae.es [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Martinelli, M., E-mail: martinelli@thphys.uni-heidelberg.de [Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 16, 69120, Heidelberg (Germany); Calabrese, E., E-mail: erminia.calabrese@astro.ox.ac.uk [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Pandolfi, S., E-mail: stefania@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

    2015-04-09

    We study the detailed evolution of the fine-structure constant α in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent α measurements and discuss ways to distinguish it from alternative models for varying α. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical ΛCDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT), together with more sensitive α measurements, will thus dramatically constrain these scenarios.

  18. Evolution of the fine-structure constant in runaway dilaton models

    CERN Document Server

    Martins, C J A P; Martinelli, M; Calabrese, E; Pandolfi, S

    2015-01-01

    We study the detailed evolution of the fine-structure constant $\\alpha$ in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent $\\alpha$ measurements and discuss ways to distinguish it from alternative models for varying $\\alpha$. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical $\\Lambda$CDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT), together with more sensitive $\\alpha$ measurements, will thus dramatically constrain these scenarios.

  19. Oklo Constraint on the Time-Variability of the Fine-Structure Constant

    CERN Document Server

    Fujii, Y

    2003-01-01

    The Oklo phenomenon, natural fission reactors which had taken place in Gabon about 2 billion years ago, porvides one of the most stringent constraints on the possible time-variability of the fine-structure constant $\\alpha$. We first review briefly what it is and how reliable it is in constraining $\\alpha$. We then compare the result with a more recent result on the nonzero change of $\\alpha$ obtained from the observation of the QSO absoorption lines. We suggest a possible way to make these results consistent with each other in terms of the behavior of a scalar field which is expected to be responsible for the accelaration of the universe.

  20. Oklo Constraint on the Time-Variabilityof the Fine-Structure Constant

    Science.gov (United States)

    Fujii, Yasunori

    The Oklo phenomenon, natural fission reactors which had taken place in Gabon about 2 billion years ago, provides one of the most stringent constraints on the possible time-variability of the fine-structure constant . We first review briefly what it is and how reliable it is in constraining . We then compare the result with a more recent result on the nonzero change of obtained from the observation of the QSO absorption lines. We suggest a possible way to make these results consistent with each other in terms of the behavior of a scalar field which is expected to be responsible for the acceleration of the universe.

  1. Time Evolution of the Fine Structure Constant in a Two-Field Quintessence Model

    CERN Document Server

    Bento, M C; Santos, N M C

    2004-01-01

    We examine the variation of the fine structure constant in the context of a two-field quintessence model. We find that, for solutions that lead to a transient late period of accelerated expansion, it is possible to fit the data arising from quasar spectra and comply with the bounds on the variation of $\\alpha$ from the Oklo reactor, meteorite analysis, atomic clock measurements, Cosmic Microwave Background Radiation and Big Bang Nucleosynthesis. That is more difficult if we consider solutions corresponding to a late period of permanent accelerated expansion.

  2. Time evolution of the fine structure constant in a two-field quintessence model

    Science.gov (United States)

    Bento, M. C.; Bertolami, O.; Santos, N. M.

    2004-11-01

    We examine the variation of the fine structure constant in the context of a two-field quintessence model. We find that, for solutions that lead to a transient late period of accelerated expansion, it is possible to fit the data arising from quasar spectra and comply with the bounds on the variation of α from the Oklo reactor, meteorite analysis, atomic clock measurements, cosmic microwave background radiation, and big bang nucleosynthesis. That is more difficult if we consider solutions corresponding to a late period of permanent accelerated expansion.

  3. Evolution of the fine-structure constant in runaway dilaton models

    Directory of Open Access Journals (Sweden)

    C.J.A.P. Martins

    2015-04-01

    Full Text Available We study the detailed evolution of the fine-structure constant α in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent α measurements and discuss ways to distinguish it from alternative models for varying α. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical ΛCDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT, together with more sensitive α measurements, will thus dramatically constrain these scenarios.

  4. Variation of the fine-structure constant from the de Sitter invariant special relativity

    Institute of Scientific and Technical Information of China (English)

    CHEN Shao-Xia; XIAO Neng-Chao; YAN Mu-Lin

    2008-01-01

    We discuss the variation of the fine-structure constant,α.There are obvious discrepancies among the results of α-variation from recent Quasi-stellar observation experiments and from the Oklo uranium mine analysis.We use dS Sitter invariant Special Relativity (SRc,R) and Dirac large number hypothesis to discuss this puzzle,and present a possible solution to the disagreement.By means of the observational data and the discussions presented in this paper,we estimate the radius of the Universe in SRc,R which is about ~2(√5)×1011l.y.

  5. Constraining spatial variations of the fine-structure constant in symmetron models

    Science.gov (United States)

    Pinho, A. M. M.; Martinelli, M.; Martins, C. J. A. P.

    2017-06-01

    We introduce a methodology to test models with spatial variations of the fine-structure constant α, based on the calculation of the angular power spectrum of these measurements. This methodology enables comparisons of observations and theoretical models through their predictions on the statistics of the α variation. Here we apply it to the case of symmetron models. We find no indications of deviations from the standard behavior, with current data providing an upper limit to the strength of the symmetron coupling to gravity (log ⁡β2 constrain the model when also the symmetry breaking scale factor aSSB is free to vary.

  6. The variation of the fine structure constant: testing the dipole model with thermonuclear supernovae

    CERN Document Server

    Kraiselburd, Lucila; Negrelli, Carolina; Berro, Enrique García

    2014-01-01

    The large-number hypothesis conjectures that fundamental constants may vary. Accordingly, the spacetime variation of fundamental constants has been an active subject of research for decades. Recently, using data obtained with large telescopes a phenomenological model in which the fine structure constant might vary spatially has been proposed. We test whether this hypothetical spatial variation of {\\alpha}, which follows a dipole law, is compatible with the data of distant thermonuclear supernovae. Unlike previous works, in our calculations we consider not only the variation of the luminosity distance when a varying {\\alpha} is adopted, but we also take into account the variation of the peak luminosity of Type Ia supernovae resulting from a variation of {\\alpha}. This is done using an empirical relation for the peak bolometric magnitude of thermonuclear supernovae that correctly reproduces the results of detailed numerical simulations. We find that there is no significant difference between the several phenome...

  7. The variation of the fine-structure constant from disformal couplings

    CERN Document Server

    van de Bruck, Carsten; Nunes, Nelson J

    2015-01-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, alpha. As a result, the theory we consider can explain the non-zero reported variation in the evolution of alpha by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of alpha. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical r...

  8. The variation of the fine-structure constant from disformal couplings

    Science.gov (United States)

    van de Bruck, Carsten; Mifsud, Jurgen; Nunes, Nelson J.

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.

  9. Constraining spatial variations of the fine structure constant using clusters of galaxies and Planck data

    CERN Document Server

    de Martino, I; Ebeling, H; Kocevski, D

    2016-01-01

    We propose an improved methodology to constrain spatial variations of the fine structure constant using clusters of galaxies. We use the {\\it Planck} 2013 data to measure the thermal Sunyaev-Zeldovich effect at the location of 618 X-ray selected clusters. We then use a Monte Carlo Markov Chain algorithm to obtain the temperature of the Cosmic Microwave Background at the location of each galaxy cluster. When fitting three different phenomenological parameterizations allowing for monopole and dipole amplitudes in the value of the fine structure constant we improve the results of earlier analysis involving clusters and CMB power spectrum, and we also found that the best-fit direction of a hypothetical dipole is compatible with the direction of other known anomalies. Although the constraining power of our current datasets do not allow us to test the indications of a dipole obtained though high-resolution optical/UV spectroscopy, our results do highlight that clusters of galaxies will be a very powerful tool to pr...

  10. What could the value of the cosmological constant tell us about the future variation of the fine structure constant?

    CERN Document Server

    Romano, Antonio Enea

    2014-01-01

    Motivated by reported claims of the measurements of a variation of the fine structure constant $\\alpha$ we consider a theory where the electric charge, and consequently $\\alpha$, is not a constant but depends on the Ricci scalar $R$. %We then show how this can be considered a particular case of the Bekenstein theory in which there is no need to %introduce an additional kinetic term for the scalar field associated to the electric charge, since the Einstein's% %equations are sufficient to determine the geometry and, consequently the Ricci scalar. We then study the cosmological implications of this theory, considering in particular the effects of dark energy and of a cosmological constant on the evolution of $\\alpha$. Some low-red shift expressions for the variation of $\\alpha(z)$ are derived, showing the effects of the equation of state of dark energy on $\\alpha$ and observing how future measurements of the variation of the fine structure constant could be used to determine indirectly the equation of state of d...

  11. Possible evidence for a variable fine structure constant from QSO absorption lines systematic errors

    CERN Document Server

    Murphy, M T; Flambaum, V V; Churchill, C W; Prochaska, J X

    2001-01-01

    Comparison of quasar absorption spectra with laboratory spectra allow us to probe possible variations in the fundamental constants over cosmological time-scales. In a companion paper we present an analysis of Keck/HIRES spectra and report possible evidence suggesting that the fine structure constant, alpha, may have been smaller in the past: da/a = (-0.72 +/- 0.18) * 10^{-5} over the redshift range 0.5 < z < 3.5. In this paper we describe a comprehensive investigation into possible systematic effects. Most of these do not significantly influence our results. When we correct for those which do produce a significant systematic effect in the data, the deviation of da/a from zero becomes more significant. We are lead increasingly to the interpretation that alpha was slightly smaller in the past.

  12. New determination of the fine structure constant and test of the quantum electrodynamics.

    Science.gov (United States)

    Bouchendira, Rym; Cladé, Pierre; Guellati-Khélifa, Saïda; Nez, François; Biraben, François

    2011-02-25

    We report a new measurement of the ratio h/m(Rb) between the Planck constant and the mass of (87)Rb atom. A new value of the fine structure constant is deduced, α(-1)=137.035999037(91) with a relative uncertainty of 6.6×10(-10). Using this determination, we obtain a theoretical value of the electron anomaly a(e)=0.00115965218113(84), which is in agreement with the experimental measurement of Gabrielse [a(e)=0.00115965218073(28)]. The comparison of these values provides the most stringent test of the QED. Moreover, the precision is large enough to verify for the first time the muonic and hadronic contributions to this anomaly.

  13. Representations of U(2∞ and the Value of the Fine Structure Constant

    Directory of Open Access Journals (Sweden)

    William H. Klink

    2005-12-01

    Full Text Available A relativistic quantum mechanics is formulated in which all of the interactions are in the four-momentum operator and Lorentz transformations are kinematic. Interactions are introduced through vertices, which are bilinear in fermion and antifermion creation and annihilation operators, and linear in boson creation and annihilation operators. The fermion-antifermion operators generate a unitary Lie algebra, whose representations are fixed by a first order Casimir operator (corresponding to baryon number or charge. Eigenvectors and eigenvalues of the four-momentum operator are analyzed and exact solutions in the strong coupling limit are sketched. A simple model shows how the fine structure constant might be determined for the QED vertex.

  14. Constraints on the time variation of the fine structure constant by the 5-year WMAP data

    CERN Document Server

    Nakashima, Masahiro; Yokoyama, Jun'ichi

    2008-01-01

    The constraints on the time variation of the fine structure constant at recombination epoch relative to its present value, $\\Delta\\alpha/\\alpha \\equiv (\\alpha_{\\mathrm{rec}} - \\alpha_{\\mathrm{now}})/\\alpha_{\\mathrm{now}}$, are obtained from the analysis of the 5-year WMAP cosmic microwave background data. As a result of Markov-Chain Monte-Carlo analysis, it is found that, contrary to the analysis based on the previous WMAP data, the mean value of $\\Delta\\alpha/\\alpha=-0.0009$ does not change significantly whether we use the Hubble Space Telescope (HST) measurement of the Hubble parameter as a prior or not. The resultant 95% confidence ranges of $\\Delta\\alpha/\\alpha$ are $-0.028 < \\Delta\\alpha/\\alpha < 0.026$ with HST prior and $-0.050 < \\Delta\\alpha/\\alpha < 0.042$ without HST prior.

  15. Variation of the fine-structure constant from the de Sitter invariant special relativity

    Science.gov (United States)

    Chen, Shao-Xia; Xiao, Neng-Chao; Yan, Mu-Lin

    2008-08-01

    We discuss the variation of the fine-structure constant, α. There are obvious discrepancies among the results of α-variation from recent Quasi-stellar observation experiments and from the Oklo uranium mine analysis. We use dS Sitter invariant Special Relativity (Script SScript Rc,R) and Dirac large number hypothesis to discuss this puzzle, and present a possible solution to the disagreement. By means of the observational data and the discussions presented in this paper, we estimate the radius of the Universe in Script SScript Rc,R which is about ~2√5×1011l.y. Supported by National Natural Science Foundation of China (90403021) and PhD Program Funds of Education Ministry of China (20020358040)

  16. Constraints on a possible variation of the fine structure constant from galaxy cluster data

    CERN Document Server

    Holanda, R F L; Alcaniz, J S; G., I E Sanchez; Busti, V C

    2015-01-01

    We propose a new method to probe a possible time evolution of the fine structure constant $\\alpha$ from X-ray and Sunyaev-Zeldovich measurements of the gas mass fraction ($f_{gas}$) in galaxy clusters. Taking into account a direct relation between variations of $\\alpha$ and violations of the distance-duality relation, we discuss constraints on $\\alpha$ for a class of dilaton runaway models. Although not yet competitive with bounds from high-$z$ quasar absorption systems, our constraints, considering a sample of 29 measurements of $f_{gas}$, in the redshift interval $0.14 < z < 0.89$, provide an independent estimate of $\\alpha$ variation at low and intermediate redshifts. Furthermore, current and planned surveys will provide a larger amount of data and thus allow to improve the limits on $\\alpha$ variation obtained in the present analysis.

  17. The variation of the fine structure constant: an update of statistical analysis with recent data

    CERN Document Server

    Kraiselburd, Lucila; Simeone, Claudio

    2013-01-01

    We analyze different astronomical data of the variation in the fine structure constant obtained with KECK and VLT to check their consistency. We test consistency using the Student test and confidence intervals. We split the data sets in smaller intervals and group them by i) redshift and ii) angular position. Another statistical analysis is proposed considering phenomenological models for the variation in \\alpha\\ . Results show consistency for reduced intervals for each pair of data sets considered and suggest that the variation in \\alpha\\ is important at higher redshifts.Even though the "dipole model" proposed by Webb et al. seems to be the most accurate phenomenological model, the statistical analyses indicates that the variation in \\alpha\\ might be depending both on redshift and angular position.

  18. Constraints on a possible variation of the fine structure constant from galaxy cluster data

    Science.gov (United States)

    Holanda, R. F. L.; Landau, S. J.; Alcaniz, J. S.; Sánchez G., I. E.; Busti, V. C.

    2016-05-01

    We propose a new method to probe a possible time evolution of the fine structure constant α from X-ray and Sunyaev-Zel'dovich measurements of the gas mass fraction (fgas) in galaxy clusters. Taking into account a direct relation between variations of α and violations of the distance-duality relation, we discuss constraints on α for a class of dilaton runaway models. Although not yet competitive with bounds from high-z quasar absorption systems, our constraints, considering a sample of 29 measurements of fgas, in the redshift interval 0.14 intermediate redshifts. Furthermore, current and planned surveys will provide a larger amount of data and thus allow to improve the limits on α variation obtained in the present analysis.

  19. Variation of the fine structure constant and the electron mass at early Universe

    CERN Document Server

    Scóccola, Claudia G

    2009-01-01

    In this thesis, we focus on the study of the variation of the electron mass $m_e$, and the fine structure constant $\\alpha$, at different cosmic times. We analyze the details of the recombination physics, including helium recombination, in order to find the dependences of the physical quantities on the fundamental constants. Using up-to-date CMB data, and the final 2dFGRS power spectrum, we set limits to the possible variation of the constants at recombination. We analyze the variation of $\\alpha$ and $m_e$ independently, and the case in which both variations are allowed, fitting also a set of cosmological parameters. We find a fenomenological relationship between the variation of $\\alpha$ and the variation of $m_e$, between decoupling and present time. We analyze the Barrow-Magueijo fenomenological model, which propose a variation in the electron mass induced by changes in a space-time scalar field. We present improved solutions and we estimate the model parameters using bounds on the variation of the electr...

  20. Possible evidence for a variable fine structure constant from QSO absorption lines motivations, analysis and results

    CERN Document Server

    Murphy, M T; Flambaum, V V; Dzuba, V A; Churchill, C W; Prochaska, J X; Barrow, John D; Wolfe, A M

    2001-01-01

    An experimental search for variation in the fundamental coupling constants is strongly motivated by modern high-energy physics theories. Comparison of quasar absorption line spectra with laboratory spectra provides a sensitive probe for variability of the fine structure constant, alpha, over cosmological time-scales. We have previously developed and applied a new method providing an order of magnitude gain in precision over previous optical astrophysical constraints. Here we extend that work by including new quasar spectra of damped Lyman-alpha absorption systems. We also re-analyse our previous lower redshift data and confirm our initial results. The constraints on alpha come from simultaneous fitting of absorption lines of subsets of the following species: Mg I, Mg II, Al II, Al III, Si II, Cr II, Fe II, Ni II and Zn II. We present a detailed description of our methods and results based on an analysis of 49 quasar absorption systems (towards 28 QSOs) covering the redshift range 0.5 < z < 3.5. There is...

  1. Accelerating universe and the time-dependent fine-structure constant

    Science.gov (United States)

    Fujii, Yasunori

    2010-11-01

    I start with assuming a gravitational scalar field as the dark-energy supposed to be responsible for the accelerating universe. Also from the point of view of unification, a scalar field implies a time-variability of certain “constants” in Nature. In this context I once derived a relation for the time-variability of the fine-structure constant α: Δα/α =ζ Ƶ(α/π) Δσ, where ζ and Ƶ are the constants of the order one, while σ on the right-hand side is the scalar field in action in the accelerating universe. I use the reduced Planckian units with c=ℏ =MP(=(8π G)-1/2)=1. I then compared the dynamics of the accelerating universe, on one hand, and Δα/α derived from the analyses of QSO absorption lines, Oklo phenomenon, also different atomic clocks in the laboratories, on the other hand. I am here going to discuss the theoretical background of the relation, based on the scalar-tensor theory invented first by Jordan in 1955.

  2. Cosmological variation of the fine structure constant from an ultralight scalar field: The effects of mass

    Science.gov (United States)

    Gardner, Carl L.

    2003-08-01

    Cosmological variation of the fine structure constant α due to the evolution of a spatially homogeneous ultralight scalar field (m˜H0) during the matter and Λ dominated eras is analyzed. Agreement of Δα/α with the value suggested by recent observations of quasar absorption lines is obtained by adjusting a single parameter, the coupling of the scalar field to matter. Asymptotically α(t) in this model goes to a constant value α¯≈α0 in the early radiation and the late Λ dominated eras. The coupling of the scalar field to (nonrelativistic) matter drives α slightly away from α¯ in the epochs when the density of matter is important. Simultaneous agreement with the more restrictive bounds on the variation |Δα/α| from the Oklo natural fission reactor and from meteorite samples can be achieved if the mass of the scalar field is on the order of 0.5 0.6 HΛ, where HΛ=Ω1/2ΛH0. Depending on the scalar field mass, α may be slightly smaller or larger than α0 at the times of big bang nucleosynthesis, the emission of the cosmic microwave background, the formation of early solar system meteorites, and the Oklo reactor. The effects on the evolution of α due to nonzero mass for the scalar field are emphasized. An order of magnitude improvement in the laboratory technique could lead to a detection of (α˙/α)0.

  3. Time variation of the fine structure constant α from realistic models of Oklo reactors.

    Science.gov (United States)

    Gould, C. R.; Sharapov, E. I.; Lamoreaux, S. K.

    2006-11-01

    The topic of whether the fundamental constants of nature vary with time has been a subject of great interest since Dirac originally proposed the possibility that GN˜1/tuniverse. Recent observations of absorption spectra lines from distant quasars appeared to indicate a possible increase in the fine structure constant α over ten billion years. Contrarily, analyses of the time evolution of α from Oklo natural nuclear reactor data have yielded inconsistent results, some indicating a decrease over two billion years while others indicated no change. We have used known Oklo reactor epithermal spectral indices as criteria for selecting realistic reactor models. Reactors RZ2 and RZ10 were modeled with MCNP and the resulting neutron spectra were used to calculate the change in the ^149Sm capture cross section as a function of a possible shift in the energy of the 97.3-meV resonance. Our study resolves the contradictory situation with previous Oklo α-results. Our suggested 2 σ bound on a possible time variation of α over two billion years is stringent: -0.11 <=δαα <=0.24, in units of 10-7, but model dependent in that it assumes only α has varied over time.

  4. Non-linear electrodynamics and the variation of the fine structure constant

    Science.gov (United States)

    Mbelek, Jean Paul; Mosquera Cuesta, Herman J.

    2008-09-01

    It has been claimed that during the late-time history of our Universe, the fine structure constant of electromagnetism, α, has been increasing. The conclusion is achieved after looking at the separation between lines of ions like CIV, MgII, SiII, FeII, among others in the absorption spectra of very distant quasars, and comparing them with their counterparts obtained in the laboratory. However, in the meantime, other teams have claimed either a null result or a decreasing α with respect to the cosmic time. Also, the current precision of laboratory tests does not allow one to either comfort or reject any of these astronomical observations. Here, we suggest that as photons are the sidereal messengers, a non-linear electrodynamics (NLED) description of the interaction of photons with the weak local background magnetic fields of a gas cloud absorber around the emitting quasar can reconcile the Chand et al. and Levshakov et al. findings with the negative variation found by Murphy et al. and Webb et al., and also to find a bridge with the positive variation argued more recently by Levshakov et al. We also show that NLED photon propagation in a vacuum permeated by a background magnetic field presents a full agreement with constraints from Oklo natural reactor data. Finally, we show that NLED may render a null result only in a narrow range of the local background magnetic field which should be the case of both the claims by Chand et al. and by Srianand et al.

  5. A new analysis of fine-structure constant measurements and modelling errors from quasar absorption lines

    CERN Document Server

    Wilczynska, Michael R; King, Julian A; Murphy, Michael T; Bainbridge, Matthew B; Flambaum, Victor V

    2015-01-01

    We present an analysis of 23 absorption systems along the lines of sight towards 18 quasars in the redshift range of $0.4 \\leq z_{abs} \\leq 2.3$ observed on the Very Large Telescope (VLT) using the Ultraviolet and Visual Echelle Spectrograph (UVES). Considering both statistical and systematic error contributions we find a robust estimate of the weighted mean deviation of the fine-structure constant from its current, laboratory value of $\\Delta\\alpha/\\alpha=\\left(0.22\\pm0.23\\right)\\times10^{-5}$, consistent with the dipole variation reported in Webb et al. and King et al. This paper also examines modelling methodologies and systematic effects. In particular we focus on the consequences of fitting quasar absorption systems with too few absorbing components and of selectively fitting only the stronger components in an absorption complex. We show that using insufficient continuum regions around an absorption complex causes a significant increase in the scatter of a sample of $\\Delta\\alpha/\\alpha$ measurements, th...

  6. Constraining the Variation in Fine-Structure Constant Using SDSS DR8 QSO Spectra

    CERN Document Server

    Rahmani, H; Srianand, R

    2013-01-01

    We report a robust constrain on the possible variation of fine-structure constant, alpha = e^2/(hbar*c), obtained using O III 4959,5007, nebular emission lines from QSOs. We find Delta-alpha/alpha=-(2.1 +/- 1.6) x 10^(-5) based on a well selected sample of 2347 QSOs from Sloan Digital Sky Survey Data Release 8 with 0.02 < z < 0.74. Our result is consistent with a non-varying alpha at a level of 2 x 10^(-5) over approximately 7 Gyr. This is the largest sample of extragalactic objects yet used to constrain the variation of alpha. While this constraint is not as stringent as those determined using many-multiplet method it is free from various systematic effects. A factor of ~ 4 improvement in Delta-alpha/alpha achieved here compared to the previous study (Bahcall et al. 2004) is just consistent with what is expected based on a factor of 14 times bigger sample used here. This suggests that errors are mainly dominated by the statistical uncertainty. We also find the ratio of transition probabilities correspo...

  7. Bound on the variation in the fine structure constant implied by Oklo data

    CERN Document Server

    Hamdan, Leila

    2015-01-01

    Dynamical models of dark energy can imply that the fine structure constant $\\alpha$ varies over cosmological time scales. Data on shifts in resonance energies $E_r$ from the Oklo natural fission reactor have been used to place restrictive bounds on the change in $\\alpha$ over the last 1.8 billion years. We review the uncertainties in these analyses, focussing on corrections to the standard estimate of $k_\\alpha\\!=\\!\\alpha\\,dE_r/d\\alpha$ due to Damour and Dyson. Guided, in part, by the best practice for assessing systematic errors in theoretical estimates spelt out by Dobaczewski et al. [in J. Phys. G: Nucl. Part. Phys. 41, 074001 (2014)], we compute these corrections in a variety of models tuned to reproduce existing nuclear data. Although the net correction is uncertain to within a factor of 2 or 3, it constitutes at most no more than 25% of the Damour-Dyson estimate of $k_\\alpha$. Making similar allowances for the uncertainties in the modeling of the operation of the Oklo reactors, we conclude that the rela...

  8. Rate Constants for Fine-structure Excitations in O-H Collisions with Error Bars Obtained by Machine Learning

    Science.gov (United States)

    Vieira, Daniel; Krems, Roman V.

    2017-02-01

    We present an approach using a combination of coupled channel scattering calculations with a machine-learning technique based on Gaussian Process regression to determine the sensitivity of the rate constants for non-adiabatic transitions in inelastic atomic collisions to variations of the underlying adiabatic interaction potentials. Using this approach, we improve the previous computations of the rate constants for the fine-structure transitions in collisions of O({}3{P}j) with atomic H. We compute the error bars of the rate constants corresponding to 20% variations of the ab initio potentials and show that this method can be used to determine which of the individual adiabatic potentials are more or less important for the outcome of different fine-structure changing collisions.

  9. Avoiding unrealistic priors: the case of dark energy constraints from the time variation of the fine-structure constant

    CERN Document Server

    Avelino, P P

    2016-01-01

    We critically assess recent claims suggesting that upper limits on the time variation of the fine-structure constant tightly constrain the coupling of a dark energy scalar field to the electromagnetic sector, and, indirectly, the violation of the weak equivalence principle. We show that such constraints depend crucially on the assumed priors, even if the dark energy was described by a dynamical scalar field with a constant equation of state parameter $w$ linearly coupled to the electromagnetic sector through a dimensionless coupling $\\zeta$. We find that, although local atomic clock tests, as well as other terrestrial, astrophysical and cosmological data, put stringent bounds on $|\\zeta| {\\sqrt {|w+1|}}$, the time variation of the fine-structure constant cannot be used to set or to improve upper limits on $|\\zeta|$ or $|w+1|$ without specifying priors, consistent but not favoured by current data, which strongly disfavour low values of $|w+1|$ or $|\\zeta|$, respectively. We briefly discuss how this might chang...

  10. A unified description for dipoles of the fine-structure constant and SnIa Hubble diagram in Finslerian universe

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin [Chongqing University, Department of Physics, Chongqing (China); Chinese Academy of Sciences, State Key Laboratory Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Lin, Hai-Nan [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Wang, Sai [Chinese Academy of Sciences, State Key Laboratory Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Chang, Zhe [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, State Key Laboratory Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2015-05-15

    We propose a Finsler spacetime scenario of the anisotropic universe. The Finslerian universe requires both the fine-structure constant and the accelerating cosmic expansion to have a dipole structure and the directions of these two dipoles to be the same. Our numerical results show that the dipole direction of the SnIa Hubble diagram locates at (l,b) = (314.6 {sup circle} ± 20.3 {sup circle},-11.5 {sup circle} ± 12.1 {sup circle}) with magnitude B = (-3.60 ± 1.66) x 10{sup -2}. The dipole direction of the fine-structure constant locates at (l,b) = (333.2 {sup circle} ± 8.8 {sup circle},-12.7 {sup circle} ± 6.3 {sup circle}) with magnitude B = (0.97 ± 0.21) x 10{sup -5}. The angular separation between the two dipole directions is about 18.2 {sup circle}. (orig.)

  11. A unified description for dipoles of the fine-structure constant and SnIa Hubble diagram in Finslerian universe

    CERN Document Server

    Li, Xin; Wang, Sai; Chang, Zhe

    2015-01-01

    We propose a Finsler spacetime scenario of the anisotropic universe. The Finslerian universe requires both the fine-structure constant and accelerating cosmic expansion have dipole structure, and the directions of these two dipoles are the same. Our numerical results show that the dipole direction of SnIa Hubble diagram locates at $(l,b)=(314.6^\\circ\\pm20.3^\\circ,-11.5^\\circ\\pm12.1^\\circ)$ with magnitude $B=(-3.60\\pm1.66)\\times10^{-2}$. And the dipole direction of the fine-structure constant locates at $(l,b)=(333.2^\\circ\\pm8.8^\\circ,-12.7^\\circ\\pm6.3^\\circ)$ with magnitude $B=(0.97\\pm0.21)\\times10^{-5}$. The angular separation between the two dipole directions is about $18.2^\\circ$.

  12. Time-variability of the fine-structure constant expected from the Oklo constraint and the QSO absorption lines

    CERN Document Server

    Fujii, Y

    2003-01-01

    The data from the QSO absorption lines indicating a nonzero time-variability of the fine-structure constant has been re-analyzed on the basis of a "damped-oscillator" fit, as motivated by the same type of behavior of a scalar field, dilaton, which mimics a cosmological constant to understand the accelerating universe. We find nearly as good fit to the latest data as the simple weighted mean. In this way, we offer a way to fit the more stringent result from the Oklo phenomenon, as well.

  13. Time-variability of the fine-structure constant expected from the Oklo constraint and the QSO absorption lines

    Science.gov (United States)

    Fujii, Yasunori

    2003-10-01

    The data from the QSO absorption lines indicating a nonzero time-variability of the fine-structure constant has been re-analyzed on the basis of a ``damped-oscillator'' fit, as motivated by the same type of behavior of a scalar field, dilaton, which mimics a cosmological constant to understand the accelerating universe. We find nearly as good fit to the latest data as the simple weighted mean. In this way, we offer a way to fit the more stringent result from the Oklo phenomenon, as well.

  14. Optical transitions in highly charged californium ions with high sensitivity to variation of the fine-structure constant.

    Science.gov (United States)

    Berengut, J C; Dzuba, V A; Flambaum, V V; Ong, A

    2012-08-17

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf(16+) is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf(16+) has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.

  15. Determination of the fine structure constant based on BLOCH oscillations of ultracold atoms in a vertical optical lattice.

    Science.gov (United States)

    Cladé, Pierre; de Mirandes, Estefania; Cadoret, Malo; Guellati-Khélifa, Saïda; Schwob, Catherine; Nez, François; Julien, Lucile; Biraben, François

    2006-01-27

    We report an accurate measurement of the recoil velocity of 87Rb atoms based on Bloch oscillations in a vertical accelerated optical lattice. We transfer about 900 recoil momenta with an efficiency of 99.97% per recoil. A set of 72 measurements of the recoil velocity, each one with a relative uncertainty of about 33 ppb in 20 min integration time, leads to a determination of the fine structure constant with a statistical relative uncertainty of 4.4 ppb. The detailed analysis of the different systematic errors yields to a relative uncertainty of 6.7 ppb. The deduced value of alpha-1 is 137.035 998 78(91).

  16. Combination of BLOCH oscillations with a Ramsey-Bordé interferometer: new determination of the fine structure constant.

    Science.gov (United States)

    Cadoret, Malo; de Mirandes, Estefania; Cladé, Pierre; Guellati-Khélifa, Saïda; Schwob, Catherine; Nez, François; Julien, Lucile; Biraben, François

    2008-12-01

    We report a new experimental scheme which combines atom interferometry with Bloch oscillations to provide a new measurement of the ratio h/mRb. By using Bloch oscillations, we impart to the atoms up to 1600 recoil momenta and thus we improve the accuracy on the recoil velocity measurement. The deduced value of h/mRb leads to a new determination of the fine structure constant alpha(-1) =137.03599945 (62) with a relative uncertainty of 4.6 x 10(-9). The comparison of this result with the value deduced from the measurement of the electron anomaly provides the most stringent test of QED.

  17. The fine-structure constant a new observational limit on its cosmological variation and some theoretical consequences

    CERN Document Server

    Ivanchik, A V; Varshalovich, D A

    1999-01-01

    Endeavours of the unification of the four fundamental interactions have resulted in a development of theories having cosmological solutions in which low-energy limits of fundamental physical constants vary with time. The validity of such theoretical models should be checked by comparison of the theoretical predictions with observational and experimental bounds on possible time-dependences of the fundamental constants. Based on high-resolution measurements of quasar spectra, we obtain the following direct limits on the average rate of the cosmological time variation of the fine-structure constant limit, and |\\dot{\\alpha}/\\alpha| < 3.1 \\times 10^{-14} yr^{-1} is the most conservative limit. Analogous estimates published previously, as well as other contemporary tests for possible variations of \\alpha (those based on the "Oklo phenomenon", on the primordial nucleosynthesis models, and others) are discussed and compared with the present upper limit. We argue that the present result is the most conservative one...

  18. Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of the Fine Structure Constant

    CERN Document Server

    Aoyama, Tatsumi; Kinoshita, Toichiro; Nio, Makiko

    2012-01-01

    This paper presents the complete QED contribution to the electron g-2 up to the tenth order. With the help of the automatic code generator, we have evaluated all 12672 diagrams of the tenth-order diagrams and obtained a_e^{(10)} = 9.16 (58) in units of (\\alpha/\\pi)^5. We have also improved the eighth-order contribution obtaining a_e^{(8)} = -1.9097 (20) in units of (\\alpha/\\pi)^4, which includes the mass-dependent contributions. These results together with the measurement of a_e lead to the improved value of the fine-structure constant \\alpha^{-1} = 137.035 999 166 (34) [0.25 ppb].

  19. Constraining possible variations of the fine structure constant in strong gravitational fields with the K$\\alpha$ iron line

    CERN Document Server

    Bambi, Cosimo

    2013-01-01

    Extensions of general relativity and theories aiming at unifying gravity with the forces of the Standard Model are usually characterized by new degrees of freedom and violations of the Einstein Equivalence Principle. The search for time and/or space variations of fundamental parameters like the fine structure constant $\\alpha$ tests the assumption of Local Position Invariance. In this letter, I show that the analysis of the K$\\alpha$ iron line observed in the X-ray spectrum of black holes can probe $\\alpha$ in gravitational potentials relative to Earth of $\\Delta \\phi \\approx 0.1$. From the measurements of the black hole in Cygnus X-1 reported in the literature, one obtains $|\\Delta \\alpha / \\alpha| \\lesssim 0.01$.

  20. Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant

    CERN Document Server

    Bainbridge, Matthew B

    2016-01-01

    A new and fully-automated method is presented for the analysis of high-resolution absorption spectra (GVPFIT). The method has broad application but here we apply it specifically to the problem of measuring the fine structure constant at high redshift. For this we need objectivity and reproducibility. GVPFIT is also motivated by the importance of obtaining a large statistical sample of measurements of $\\Delta\\alpha/\\alpha$. Interactive analyses are both time consuming and complex and automation makes obtaining a large sample feasible. Three numerical methods are unified into one artificial intelligence process: a genetic algorithm that emulates the Darwinian processes of reproduction, mutation and selection, non-linear least-squares with parameter constraints (VPFIT), and Bayesian model averaging. In contrast to previous methodologies, which relied on a particular solution as being the most likely model, GVPFIT plus Bayesian model averaging derives results from a large set of models, and helps overcome systema...

  1. Attempts at a determination of the fine-structure constant from first principles: A brief historical overview

    CERN Document Server

    Jentschura, U D

    2014-01-01

    It has been a notably elusive task to find a remotely sensical ansatz for a calculation of Sommerfeld's electrodynamic fine-structure constant alpha_QED ~ 1/137.036 based on first principles. However, this has not prevented a number of researchers to invest considerable effort into the problem, despite the formidable challenges, and a number of attempts have been recorded in the literature. Here, we review a possible approach based on the quantum electrodynamic (QED) beta function, and on algebraic identities relating alpha_QED to invariant properties of "internal" symmetry groups, as well as attempts to relate the strength of the electromagnetic interaction to the natural cut-off scale for other gauge theories. Conjectures based on both classical as well as quantum-field theoretical considerations are discussed. We point out apparent strengths and weaknesses of the most prominent attempts that were recorded in the literature. This includes possible connections to scaling properties of the Einstein-Maxwell La...

  2. Determination of the fine-structure constant {alpha} by measuring the quotient of the Planck constant and the neutron mass

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, E.; Nistler, W.; Weirauch, W. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    1997-04-01

    Using a special high-precision apparatus at ILL the quotient h/m{sub n} (h Planck constant, m{sub n} neutron mass) has been measured. The value measured for h/m{sub n} leads to {alpha}{sup -1} = 137.03601082(524) (relative uncertainty: 3.9{center_dot}10{sup -8}) It was the first time that this fundamental constant has been determined by means of neutrons. The experiment, which had been running since 1981 in a preliminary version and since 1987 in the final version, which was finished in December 1996, is described. (author).

  3. On the role of the fine structure constant in the alpha/beta rule for calculation of particle masses

    Energy Technology Data Exchange (ETDEWEB)

    Greulich, Karl Otto [Fritz Lipmann Institut, Beutenbergstr.11, 07745 Jena (Germany)

    2016-07-01

    The masses of essentially all elementary particles are given almost exactly by the α/β rule (K.O.Greulich, Spring meeting 2014 German Phys Society T 99.4), i.e. particle masses depend on the fine structure (Sommerfeld constant α 1/137). This is somewhat surprising since alpha is rather known as a spectroscopic constant than as a mass ratio. One key to understand this is the observation that the Bohr energy is exactly the 1/α-fold of the ionization energy of the hydrogen atom (Rydberg energy, 13.6 eV). Thereby the Bohr energy is the de Broglie energy of the electron in the ground state (on the Bohr radius). A second mass or energy ratio, the ratio between the energy at rest of the electron and the Bohr energy can be derived analytically to be α{sup -2}. Both results together suggest a general dependence of rest energies or rest masses on α. Simply by the hypothesis that this observation can be extrapolated to higher values of n, the α/β rule follows immediately. Only the beta (1 or 1836.12) term has to be added empirically.

  4. On the Evidence for Cosmic Variation of the Fine Structure Constant: A Bayesian Reanalysis of the Quasar Dataset

    CERN Document Server

    Cameron, Ewan

    2012-01-01

    We review the evidence behind recent claims of spatial variation in the fine structure constant deriving from observations on ground-based telescopes of ionic absorption lines in the light from distant quasars. To this end we expand upon previous non-Bayesian analyses limited by the assumptions of a strictly Normal and unbiased form for the "unexplained errors" of the benchmark quasar dataset. Through nested importance sampling and the method of power posteriors we evaluate and compare marginal likelihoods (or Bayes factors) for three competing hypotheses-(i) the strict null (no cosmic variation), (ii) the monopole null (a constant Earth-to-quasar offset only), and (iii) the monopole+dipole hypothesis (featuring a cosmic variation manifest to the Earth-bound observer as a North-South divergence)-under various alternative error terms. Our analysis reveals significant support for a skeptical interpretation in which the apparent dipole effect is driven solely by systematic errors of opposing sign inherent in mea...

  5. Cosmological Variation of the Fine Structure Constant from an Ultra-Light Scalar Field: The Effects of Mass

    CERN Document Server

    Gardner, C L

    2003-01-01

    Cosmological variation of the fine structure constant $\\alpha$ due to the evolution of a spatially homogeneous ultra-light scalar field ($m \\sim H_0$) during the matter and $\\Lambda$ dominated eras is analyzed. Agreement of $\\Delta \\alpha/\\alpha$ with the value suggested by recent observations of quasar absorption lines is obtained by adjusting a single parameter, the coupling of the scalar field to matter. Asymptotically $\\alpha(t)$ in this model goes to a constant value $\\bar{\\alpha} \\approx \\alpha_0$ in the early radiation and the late $\\Lambda$ dominated eras. The coupling of the scalar field to (nonrelativistic) matter drives $\\alpha$ slightly away from $\\bar{\\alpha}$ in the epochs when the density of matter is important. Simultaneous agreement with the more restrictive bounds on the variation $|\\Delta \\alpha/\\alpha|$ from the Oklo natural fission reactor and from meteorite samples can be achieved if the mass of the scalar field is on the order of 0.5--0.6 $\\bar{H}$, where $\\bar{H} = \\Omega_\\Lambda^{1/2}...

  6. Bloch oscillations of ultracold atoms and measurement of the fine structure constant; Oscillations de Bloch d'atomes ultrafroids et mesure de la constante de structure fine

    Energy Technology Data Exchange (ETDEWEB)

    Clade, P

    2005-10-15

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10{sup -9}, in conjunction with a careful study of systematic effects (5 10{sup -9}), has led us to a determination of alpha with an uncertainty of 6.7 10{sup -9}: {alpha}{sup -1}(Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  7. High-precision limit on variation in the fine-structure constant from a single quasar absorption system

    CERN Document Server

    Kotuš, Srđan M; Carswell, Robert F

    2016-01-01

    The brightest southern quasar above redshift $z=1$, HE 0515$-$4414, with its strong intervening metal absorption-line system at $z_{abs}=1.1508$, provides a unique opportunity to precisely measure or limit relative variations in the fine-structure constant ($\\Delta\\alpha/\\alpha$). A variation of just $\\sim$3 parts per million (ppm) would produce detectable velocity shifts between its many strong metal transitions. Using new and archival observations from the Ultraviolet and Visual Echelle Spectrograph (UVES) we obtain an extremely high signal-to-noise ratio spectrum (peaking at S/N $\\approx250$ pix$^{-1}$). This provides the most precise measurement of $\\Delta\\alpha/\\alpha$ from a single absorption system to date, $\\Delta\\alpha/\\alpha=-1.42\\pm0.55_{\\rm stat}\\pm0.65_{\\rm sys}$ ppm, comparable with the precision from previous, large samples of $\\sim$150 absorbers. The largest systematic error in all (but one) previous similar measurements, including the large samples, was long-range distortions in the wavelengt...

  8. Precise limits on cosmological variability of the fine-structure constant with zinc and chromium quasar absorption lines

    CERN Document Server

    Murphy, Michael T; Prochaska, J Xavier

    2016-01-01

    The strongest transitions of Zn and CrII are the most sensitive to relative variations in the fine-structure constant ($\\Delta\\alpha/\\alpha$) among the transitions commonly observed in quasar absorption spectra. They also lie within just 40 \\AA\\ of each other (rest frame), so they are resistant to the main systematic error affecting most previous measurements of $\\Delta\\alpha/\\alpha$: long-range distortions of the wavelength calibration. While Zn and CrII absorption is normally very weak in quasar spectra, we obtained high signal-to-noise, high-resolution echelle spectra from the Keck and Very Large Telescopes of 9 rare systems where it is strong enough to constrain $\\Delta\\alpha/\\alpha$ from these species alone. These provide 12 independent measurements (3 quasars were observed with both telescopes) at redshifts 1.0--2.4, 11 of which pass stringent reliability criteria. These 11 are all consistent with $\\Delta\\alpha/\\alpha=0$ within their individual uncertainties of 3.5--13 parts per million (ppm), with a we...

  9. Possible link between the changing fine-structure constant and the accelerating universe via scalar-tensor theory

    CERN Document Server

    Fujii, Y

    2002-01-01

    In 1976, Shlyakhter showed that the Sm data from Oklo results in the upper bound on the time-variability of the fine-structure constant: $|\\dot{\\alpha}/\\alpha| \\lsim 10^{-17}{\\rm y}^{-1}$, which has ever been the most stringent bound. Since the details have never been published, however, we recently re-analyzed the latest data according to Shlyakhter's recipe. We nearly re-confirmed his result. To be more precise, however, the Sm data gives either an upper-bound or an "evidence" for a changing $\\alpha$: $\\dot{\\alpha}/\\alpha = -(0.44 \\pm 0.04)\\times 10^{-16}{\\rm y}^{-1}$. A remark is made to a similar re-analysis due to Damour and Dyson. We also compare our result with a recent "evidence" due to Webb et al, obtained from distant QSO's. We point out a possible connection between this time-dependence and the behavior of a scalar field supposed to be responsible for the acceleration of the universe, also revealed recently.

  10. High-precision limit on variation in the fine-structure constant from a single quasar absorption system

    Science.gov (United States)

    Kotuš, S. M.; Murphy, M. T.; Carswell, R. F.

    2017-01-01

    The brightest southern quasar above redshift z = 1, HE 0515-4414, with its strong intervening metal absorption line system at zabs = 1.1508, provides a unique opportunity to precisely measure or limit relative variations in the fine-structure constant (Δα/α). A variation of just ˜3 parts per million (ppm) would produce detectable velocity shifts between its many strong metal transitions. Using new and archival observations from the Ultraviolet and Visual Echelle Spectrograph (UVES), we obtain an extremely high signal-to-noise ratio spectrum (peaking at S/N ≈ 250 pix-1). This provides the most precise measurement of Δα/α from a single absorption system to date, Δα/α = -1.42 ± 0.55stat ± 0.65sys ppm, comparable with the precision from previous, large samples of ˜150 absorbers. The largest systematic error in all (but one) previous similar measurements, including the large samples, was long-range distortions in the wavelength calibration. These would add an ˜2 ppm systematic error to our measurement and up to ˜10 ppm to other measurements using Mg and Fe transitions. However, we corrected the UVES spectra using well-calibrated spectra of the same quasar from the High Accuracy Radial velocity Planet Searcher, leaving a residual 0.59 ppm systematic uncertainty, the largest contribution to our total systematic error. A similar approach, using short observations on future well-calibrated spectrographs to correct existing high S/N spectra, would efficiently enable a large sample of reliable Δα/α measurements. The high-S/N UVES spectrum also provides insights into analysis difficulties, detector artefacts and systematic errors likely to arise from 25-40-m telescopes.

  11. Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant

    Science.gov (United States)

    Bainbridge, Matthew B.; Webb, John K.

    2017-06-01

    A new and automated method is presented for the analysis of high-resolution absorption spectra. Three established numerical methods are unified into one `artificial intelligence' process: a genetic algorithm (Genetic Voigt Profile FIT, gvpfit); non-linear least-squares with parameter constraints (vpfit); and Bayesian model averaging (BMA). The method has broad application but here we apply it specifically to the problem of measuring the fine structure constant at high redshift. For this we need objectivity and reproducibility. gvpfit is also motivated by the importance of obtaining a large statistical sample of measurements of Δα/α. Interactive analyses are both time consuming and complex and automation makes obtaining a large sample feasible. In contrast to previous methodologies, we use BMA to derive results using a large set of models and show that this procedure is more robust than a human picking a single preferred model since BMA avoids the systematic uncertainties associated with model choice. Numerical simulations provide stringent tests of the whole process and we show using both real and simulated spectra that the unified automated fitting procedure out-performs a human interactive analysis. The method should be invaluable in the context of future instrumentation like ESPRESSO on the VLT and indeed future ELTs. We apply the method to the zabs = 1.8389 absorber towards the zem = 2.145 quasar J110325-264515. The derived constraint of Δα/α = 3.3 ± 2.9 × 10-6 is consistent with no variation and also consistent with the tentative spatial variation reported in Webb et al. and King et al.

  12. Precise limits on cosmological variability of the fine-structure constant with zinc and chromium quasar absorption lines

    Science.gov (United States)

    Murphy, Michael T.; Malec, Adrian L.; Prochaska, J. Xavier

    2016-09-01

    The strongest transitions of Zn and Cr II are the most sensitive to relative variations in the fine-structure constant (Δα/α) among the transitions commonly observed in quasar absorption spectra. They also lie within just 40 Å of each other (rest frame), so they are resistant to the main systematic error affecting most previous measurements of Δα/α: long-range distortions of the wavelength calibration. While Zn and Cr II absorption is normally very weak in quasar spectra, we obtained high signal-to-noise, high-resolution echelle spectra from the Keck and Very Large Telescopes of nine rare systems where it is strong enough to constrain Δα/α from these species alone. These provide 12 independent measurements (three quasars were observed with both telescopes) at redshifts 1.0-2.4, 11 of which pass stringent reliability criteria. These 11 are all consistent with Δα/α = 0 within their individual uncertainties of 3.5-13 parts per million (ppm), with a weighted mean Δα/α = 0.4 ± 1.4stat ± 0.9sys ppm (1σ statistical and systematic uncertainties), indicating no significant cosmological variations in α. This is the first statistical sample of absorbers that is resistant to long-range calibration distortions (at the <1 ppm level), with a precision comparable to previous large samples of ˜150 (distortion-affected) absorbers. Our systematic error budget is instead dominated by much shorter range distortions repeated across echelle orders of individual spectra.

  13. Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant.

    Science.gov (United States)

    Bainbridge, Matthew B.; Webb, John K.

    2017-01-01

    A new and automated method is presented for the analysis of high-resolution absorption spectra. Three established numerical methods are unified into one "artificial intelligence" process: a genetic algorithm (GVPFIT); non-linear least-squares with parameter constraints (VPFIT); and Bayesian Model Averaging (BMA). The method has broad application but here we apply it specifically to the problem of measuring the fine structure constant at high redshift. For this we need objectivity and reproducibility. GVPFIT is also motivated by the importance of obtaining a large statistical sample of measurements of Δα/α. Interactive analyses are both time consuming and complex and automation makes obtaining a large sample feasible. In contrast to previous methodologies, we use BMA to derive results using a large set of models and show that this procedure is more robust than a human picking a single preferred model since BMA avoids the systematic uncertainties associated with model choice. Numerical simulations provide stringent tests of the whole process and we show using both real and simulated spectra that the unified automated fitting procedure out-performs a human interactive analysis. The method should be invaluable in the context of future instrumentation like ESPRESSO on the VLT and indeed future ELTs. We apply the method to the zabs = 1.8389 absorber towards the zem = 2.145 quasar J110325-264515. The derived constraint of Δα/α = 3.3 ± 2.9 × 10-6 is consistent with no variation and also consistent with the tentative spatial variation reported in Webb et al. (2011) and King et al. (2012).

  14. Ion clock and search for the variation of the fine structure constant using optical transitions in Nd$^{13+}$ and Sm$^{15+}$

    CERN Document Server

    Dzuba, V A; Flambaum, V V

    2012-01-01

    We study ultranarrow $5s_{1/2}$ - $4f_{5/2}$ transitions in Nd$^{13+}$ and Sm$^{15+}$ and demonstrate that they lie in the optical region. The transitions are insensitive to external perturbations. At the same time they are sensitive to the variation of the fine structure constant $\\alpha$. The fractional accuracy of the frequency of the transitions can be smaller than $10^{-19}$, which may provide a basis for atomic clocks of superb accuracy. Sensitivity to the variation of $\\alpha$ approaches $10^{-20}$ per year.

  15. Sensitive search for the temporal variation of the fine structure constant using radio-frequency E1 transitions in atomic dysprosium

    CERN Document Server

    Nguyen, A T; Lamoreaux, S K; Torgerson, J R

    2003-01-01

    It has been proposed that the radio-frequency electric-dipole (E1) transition between two nearly degenerate opposite-parity states in atomic dysprosium should be highly sensitive to possible temporal variation of the fine structure constant ($\\alpha$) [V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev. A {\\bf 59}, 230 (1999)]. We discuss here an experimental realization of the proposed search, which involves monitoring the E1 transition frequency over a period of time using direct frequency counting techniques. We estimate that a statistical sensitivity of $|\\adota| \\sim 10^{-18}$/yr may be achieved and discuss possible systematic effects in such a measurement.

  16. SeD Radical: A probe for measurement of time variation of Fine Structure Constant($\\alpha$) and Proton to Electron Mass Ratio($\\mu$)

    CERN Document Server

    Ganguly, Gaurab; Mukherjee, Manas; Paul, Ankan

    2014-01-01

    Based on the spectroscopic constants derived from highly accurate potential energy surfaces, the SeD radical is identified as a spectroscopic probe for measuring spatial and temporal variation of fundamental physical constants such as the fine-structure constant (denoted as $\\alpha=\\frac{e^2}{\\hbar c}$) and the proton-to-electron mass ratio (denoted as $\\mu=\\frac{m_p}{m_e}$). The ground state of SeD ($X^2\\Pi$), due to spin-orbit coupling, splits into two fine structure multiplets $^2\\Pi_{\\frac{3}{2}}$ and $^2\\Pi_{\\frac{1}{2}}$. The potential energy surfaces of these spin-orbit components are derived from a state of the art electronic structure method, MRCI+Q inclusive of scalar relativistic effects with the spin-orbit effects accounted through the Breit-Pauli operator. The relevant spectroscopic data are evaluated using Murrel-Sorbie fit to the potential energy surfaces. The spin-orbit splitting($\\omega_f$) between the two multiplets is similar in magnitude with the harmonic frequency ($\\omega_e$) of the diat...

  17. Constraint on the time variation of the fine-structure constant with the SDSS-III/BOSS DR12 quasar sample

    CERN Document Server

    Albareti, Franco D; Gutiérrez, Carlos M; Prada, Francisco; Pâris, Isabelle; Schlegel, David; López-Corredoira, Martín; Schneider, Donald P; Manchado, Arturo; García-Hernández, D A; Petitjean, Patrick; Ge, Jian

    2015-01-01

    From the Sloan Digital Sky Survey Data Release 12, which covers the full Baryonic Oscillation Spectroscopic Survey (BOSS) footprint, we investigate the possible variation of the fine-structure constant over cosmological time scales. We analyze the largest quasar sample considered so far in the literature, which contains 10,363 spectra with $z<1$. All the BOSS quasar spectra are selected from a visually inspected quasar catalog. We apply the emission line method on the [O III] doublet (4960, 5008 A) and obtain $\\Delta\\alpha/\\alpha= \\left(1.4 \\pm 2.3\\right)\\times10^{-5}$ for the relative variation of the fine-structure constant. We also investigate the possible sources of systematics: misidentification of the lines, sky OH lines, H$\\beta$ and broad line contamination, optimal wavelength range for the Gaussian fits, chosen polynomial order for the continuum spectrum, signal-to-noise ratio and good quality of the fits. The uncertainty of the measurement is dominated by the sky subtraction. The results presente...

  18. Unique Physically Anchored Cryptographic Theoretical Calculation of the Fine-Structure Constant {\\alpha} Matching both the g/2 and Interferometric High-Precision Measurements

    CERN Document Server

    Rhodes, Charles Kirkham

    2010-01-01

    The fine-structure constant {\\alpha}, the dimensionless number that represents the strength of electromagnetic coupling in the limit of sufficiently low energy interactions, is the crucial fundamental physical parameter that governs a nearly limitless range of phenomena involving the interaction of radiation with materials. Ideally, the apparatus of physical theory should be competent to provide a calculational procedure that yields a quantitatively correct value for {\\alpha} and the physical basis for its computation. This study presents the first demonstration of an observationally anchored theoretical procedure that predicts a unique value for {\\alpha} that stands in full agreement with the best (~370 ppt) high-precision experimental determinations. In a directly connected cryptographic computation, the method that gives these results also yields the magnitude of the cosmological constant {\\Omega}{\\Lambda} in conformance with the observational data and the condition of perfect flatness ({\\Omega}{\\Lambda} +...

  19. Searching for space-time variation of the fine structure constant using QSO spectra: overview and future prospects

    Science.gov (United States)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.

    2010-11-01

    Current theories that seek to unify gravity with the other fundamental interactions suggest that spatial and temporal variation of fundamental constants is a possibility, or even a necessity, in an expanding Universe. Several studies have tried to probe the values of constants at earlier stages in the evolution of the Universe, using tools such as big-bang nucleosynthesis, the Oklo natural nuclear reactor, quasar absorption spectra, and atomic clocks (see, e.g. Flambaum & Berengut (2009)).

  20. Immunological fine structure of the variable and constant regions of a polymorphic malarial surface antigen from Plasmodium falciparum.

    Science.gov (United States)

    Jones, G L; Edmundson, H M; Lord, R; Spencer, L; Mollard, R; Saul, A J

    1991-09-01

    The 51-kDa merozoite surface antigen MSA2 of Plasmodium falciparum shows considerable strain-dependent polymorphism. Although marked sequence variation occurs in the central region of the molecule, the N and C-terminal sequences are highly conserved. A number of monoclonal antibodies directed against MSA2 have been described which inhibit parasite growth in vitro, but these are all directed against variable regions. In an attempt to raise strain independent antibodies we have prepared peptide-diphtheria toxoid (DT) constructs from 36 N-terminal octapeptides spanning the constant region and extending into the variable region of the FCQ/27 PNG variant staggered by one amino acid at either end. Similarly, we prepared 26 C-terminal octapeptides spanning the C-terminal constant region as well as 10 octapeptides from the variable region of the Indochina I variant MSA2. Most of the peptides elicited antipeptide titres in excess of 1/10(4) when administered to mice as peptide-DT adducts emulsified with Freund's complete adjuvant. Only 3 of the 43 N- and C-terminal constant region peptides elicited antibodies which reacted appropriately on immunofluorescence (IFA) or immunoblotting analysis with the intact MSA2 of both strains studied (FCQ/27 and Indochina I), whereas 3 other peptides from the variable region elicited antibodies reactive with the parent MSA2 only. Peptide constructs eliciting antibodies recognising the intact protein corresponded to elements in the cognate sequence of high antigenicity as predicted by the Jameson and Wolf algorithm.

  1. Probing the time-variation of the fine-structure constant: Results based on Si IV doublets from a UVES sample

    CERN Document Server

    Chand, H; Srianand, R; Aracil, B; Chand, Hum; Petitjean, Patrick; Srianand, Raghunathan; Aracil, Bastien

    2004-01-01

    We report a new constraint on the variation of the fine-structure constant based on the analysis of 15 Si IV doublets selected from a ESO-UVES sample. We find \\Delta\\alpha/\\alpha= +(0.15 +/- 0.43) 10^{-5} over a redshift range of 1.59< z < 2.92 which is consistent with no variation in \\alpha. This result represents a factor three improvement on the constraint on \\Delta\\alpha/\\alpha based on Si IV doublets compared to the published results in the literature. Alkali doublet method used here avoids the implicit assumptions used in the many-multiplet method that chemical and ionization homogeneities are negligible and isotopic abundances are close to the terrestrial value.

  2. Twin Concept of Fine Structure Constant as the ‘Self Number-Archetype’ in Perspective of the Pauli-Jung Correspondence; Part I: Observation, Identification and Interpretation

    Directory of Open Access Journals (Sweden)

    Péter Várlaki

    2009-07-01

    Full Text Available The paper – similarly to our earlier publications since 1993 – is trying to‘synchronize’ early quantum physics, the Kalmanian representation theory, Jungiananalytic psychology, and certain aesthetical categories. The number ‘137’, the so-calledinverse Fine Structure Constant (IFSC, is placed at the centre of this heuristic andepistemological experiment, along with the scientific cooperation of Pauli and Jung. A newpossibilistic twin concept of “controlling-observing equations” is proposed for thereinterpretation of the FSC and other Number Archetypes on the basis of the Hermeneuticand symbolic languages found in the W. Pauli and C. G. Jung “Correspondence”. The firstpart of the paper deals in first line with the introduction of the possibilistic twin concept ofFSC together with its interpretation according to the hermeneutical “tradition” of thePauli-Jung collaboration.

  3. On the Evidence for Cosmic Variation of the Fine Structure Constant (II): A Semi-Parametric Bayesian Model Selection Analysis of the Quasar Dataset

    CERN Document Server

    Cameron, Ewan

    2013-01-01

    In the second paper of this series we extend our Bayesian reanalysis of the evidence for a cosmic variation of the fine structure constant to the semi-parametric modelling regime. By adopting a mixture of Dirichlet processes prior for the unexplained errors in each instrumental subgroup of the benchmark quasar dataset we go some way towards freeing our model selection procedure from the apparent subjectivity of a fixed distributional form. Despite the infinite-dimensional domain of the error hierarchy so constructed we are able to demonstrate a recursive scheme for marginal likelihood estimation with prior-sensitivity analysis directly analogous to that presented in Paper I, thereby allowing the robustness of our posterior Bayes factors to hyper-parameter choice and model specification to be readily verified. In the course of this work we elucidate various similarities between unexplained error problems in the seemingly disparate fields of astronomy and clinical meta-analysis, and we highlight a number of sop...

  4. Weighted difference of g-factors of light Li-like and H-like ions for an improved determination of the fine-structure constant

    CERN Document Server

    Yerokhin, V A; Harman, Z; Tupitsyn, I I; Keitel, C H

    2016-01-01

    A weighted difference of the $g$-factors of the Li- and H-like ion of the same element is studied and optimized in order to maximize the cancellation of nuclear effects. To this end, a detailed theoretical investigation is performed for the finite nuclear size correction to the one-electron $g$-factor, the one- and two-photon exchange effects, and the QED effects. The coefficients of the $Z\\alpha$ expansion of these corrections are determined, which allows us to set up the optimal definition of the weighted difference. It is demonstrated that, for moderately light elements, such weighted difference is nearly free from uncertainties associated with nuclear effects and can be utilized to extract the fine-structure constant from bound-electron $g$-factor experiments with an accuracy competitive with or better than its current literature value.

  5. Proposal for a New Test of the Time Independence Of The Fine Structure Constant, alpha, Using Orthogonally Polarised Whispering Gallery Modes in a Single Sapphire Resonator

    CERN Document Server

    Tobar, M E; Tobar, Michael Edmund; Hartnett, John Gideon

    2003-01-01

    A new experiment to test for the time independence of the fine structure constant, alpha, is proposed. The experiment utilizes orthogonally polarized Transverse Electric and Transverse Magnetic Whispering Gallery Modes in a single sapphire resonator tuned to similar frequencies. When configured as a dual mode sapphire clock, we show that the anisotropy of sapphire makes it is possible to undertake a sensitive measurement from the beat frequency between the two modes. At infrared frequencies this is possible due to the different effect of the lowest phonon frequency on the two orthogonally polarized modes. At microwave frequencies we show that the phonon effect is too small. We show that the Electron Spin Resonance of paramagnetic impurities (such as Cr3+) in the lattice effects only one polarization with an alpha^6 dependence. This enables an enhancement of the sensitivity to temporal changes in a at microwave frequencies.

  6. The Sun-Earth connect 2: Modelling patterns of a fractal Sun in time and space using the fine structure constant

    Science.gov (United States)

    Baker, Robert G. V.

    2017-02-01

    Self-similar matrices of the fine structure constant of solar electromagnetic force and its inverse, multiplied by the Carrington synodic rotation, have been previously shown to account for at least 98% of the top one hundred significant frequencies and periodicities observed in the ACRIM composite irradiance satellite measurement and the terrestrial 10.7cm Penticton Adjusted Daily Flux data sets. This self-similarity allows for the development of a time-space differential equation (DE) where the solutions define a solar model for transmissions through the core, radiative, tachocline, convective and coronal zones with some encouraging empirical and theoretical results. The DE assumes a fundamental complex oscillation in the solar core and that time at the tachocline is smeared with real and imaginary constructs. The resulting solutions simulate for tachocline transmission, the solar cycle where time-line trajectories either 'loop' as Hermite polynomials for an active Sun or 'tail' as complementary error functions for a passive Sun. Further, a mechanism that allows for the stable energy transmission through the tachocline is explored and the model predicts the initial exponential coronal heating from nanoflare supercharging. The twisting of the field at the tachocline is then described as a quaternion within which neutrinos can oscillate. The resulting fractal bubbles are simulated as a Julia Set which can then aggregate from nanoflares into solar flares and prominences. Empirical examples demonstrate that time and space fractals are important constructs in understanding the behaviour of the Sun, from the impact on climate and biological histories on Earth, to the fractal influence on the spatial distributions of the solar system. The research suggests that there is a fractal clock underpinning solar frequencies in packages defined by the fine structure constant, where magnetic flipping and irradiance fluctuations at phase changes, have periodically impacted on the

  7. Measurement of the running of the fine structure constant below 1 GeV with the KLOE detector

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Precision physics requires appropriate inclusion of higher order effects and the knowledge of very precise input parameters of the electroweak Standard Model. One of the basic input parameters is the effective QED coupling constant α(s) which depends on the energy scale because of charge screening by vacuum polarization. Hadronic non-perturbative effects limits the accuracy of α(s) from low energy to the Z mass scale. We present the measurement of the running of the QED coupling constant in the time-like region 0.6 < √s < 0.975 GeV with the KLOE detector at DAΦNE , using the ISR differential cross section dσ(e+e− → μ+μ− γ)/d√s. The result shows a clear contribution of the ρ−ω resonances to the photon propagator with a significance of the hadronic contribution to the running of α(s) of more than 5σ. It represents the first measurement of th...

  8. Measurement of the running of the fine structure constant below 1 GeV with the KLOE Detector

    CERN Document Server

    :,; Babusci, D; Bencivenni, G; Berlowski, M; Bloise, C; Bossi, F; Branchini, P; Budano, A; Balkeståhl, L Caldeira; Cao, B; Ceradini, F; Ciambrone, P; Curciarello, F; Czerwiński, E; D'Agostini, G; Dané, E; De Leo, V; De Lucia, E; De Santis, A; De Simone, P; Di Cicco, A; Di Domenico, A; Di Salvo, R; Domenici, D; D'Uffizi, A; Fantini, A; Felici, G; Fiore, S; Gajos, A; Gauzzi, P; Giardina, G; Giovannella, S; Graziani, E; Happacher, F; Heijkenskjöld, L; Johansson, T; Kamińska, D; Krzemien, W; Kupsc, A; Loffredo, S; Lukin, P A; Mandaglio, G; Martini, M; Mascolo, M; Messi, R; Miscetti, S; Morello, G; Moricciani, D; Moskal, P; Papenbrock, M; Passeri, A; Patera, V; del Rio, E Perez; Ranieri, A; Santangelo, P; Sarra, I; Schioppa, M; Silarski, M; Sirghi, F; Tortora, L; Venanzoni, G; Wiślicki, W; Wolke, M; Jegerlehner, F

    2016-01-01

    We have measured the running of the effective QED coupling constant $\\alpha(s)$ in the time-like region $0.6<\\sqrt s< 0.975$ GeV with the KLOE detector at DA$\\Phi$NE using the Initial State Radiation process $e^+e^-\\to\\mu^+ \\mu^-\\gamma$. It represents the first measurement of the running of $\\alpha(s)$ in this energy region. Our results show a more than 5$\\sigma$ significance of the hadronic contribution to the running of $\\alpha(s)$, which is the strongest direct evidence both in time- and space-like regions achieved in a single measurement. By using the $e^+e^-\\to\\pi^+\\pi^-$ cross section measured by KLOE, the real and imaginary part of the shift $\\Delta\\alpha(s)$ has been extracted. By a fit of the real part of $\\Delta\\alpha(s)$ and assuming the lepton universality the branching ratio $BR(\\omega\\to\\mu^+\\mu^-) = (6.6\\pm1.4_{stat}\\pm1.7_{syst})\\cdot 10^{-5} $ has been determined.

  9. Measurement of the running of the fine structure constant below 1 GeV with the KLOE detector

    Directory of Open Access Journals (Sweden)

    A. Anastasi

    2017-04-01

    Full Text Available We have measured the running of the effective QED coupling constant α(s in the time-like region 0.6

  10. Helium and deuterium abundances as a test for the time variation of the fine structure constant and the Higgs vacuum expectation value

    Energy Technology Data Exchange (ETDEWEB)

    Chamoun, N [Departamento de Fisica, Universidad Nacional de La Plata, cc67, 1900 La Plata (Argentina); Landau, S J [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque, cp 1900 La Plata (Argentina); Mosquera, M E [Facultad de Ciencias Astronomicas y GeofIsicas, Universidad Nacional de La Plata, Paseo del Bosque, cp 1900 La Plata (Argentina); Vucetich, Hector [Departamento de Fisica, Universidad Nacional de La Plata, cc67, 1900 La Plata (Argentina)

    2007-02-15

    We use the semi-analytic method of Esmailzadeh et al (1991 Astrophys. J. 378 504-18) to calculate the abundances of helium and deuterium produced during Big Bang nucleosynthesis assuming the fine structure constant and the Higgs vacuum expectation value may vary in time. We analyse the dependence on the fundamental constants of the nucleon mass, nuclear binding energies and cross sections involved in the calculation of the abundances. Unlike previous works, we do not assume the chiral limit of QCD. Rather, we take into account the quark masses and consider the one-pion exchange potential, within perturbation theory, for the proton-neutron scattering. However, we do not consider the time variation of the strong interactions scale but attribute the changes in the quark masses to the temporal variation of the Higgs vacuum expectation value. Using the observational data of the helium and deuterium, we put constraints on the variation of the fundamental constants between the time of nucleosynthesis and the present time.

  11. Highly charged W+13, Ir+16, and Pt+17 ions as promising optical clock candidates for probing variations of the fine-structure constant

    Science.gov (United States)

    Nandy, D. K.; Sahoo, B. K.

    2016-09-01

    Transitions among the first three low-lying states in the highly charged W+13, Ir+16, and Pt+17 ions are found to be strongly forbidden with wavelengths in the optical regime. By determining their energy levels, lifetimes, and other spectroscopic properties that are decisive quantities for estimating dominant systematics due to stray electromagnetic interactions in an experiment, we demonstrate that it can be possible to measure frequencies of the lowest forbidden transitions below a 10-19 precision level in the above ions, and hence, they seem to be suitable for frequency standards. We employ a sophisticated relativistic coupled cluster method to carry out calculations of these properties of the above states involving 4 f - and 5 s -core orbitals. We also found, by estimating their relativistic sensitivity coefficients, that these clock transitions can be highly sensitive to the tiny drift in the fine-structure constant αe. Consequently, a clock based on one of these ions, particularly Pt+17, could be used for corroborating the hypothesis of temporal and spatial variation in αe.

  12. Determining the value of the fine-structure constant from a current balance: getting acquainted with some upcoming changes to the SI

    CERN Document Server

    Davis, Richard S

    2016-01-01

    The revised International System of Units (SI), expected to be approved late in 2018, has implications for physics pedagogy; the ampere definition which dates from 1948 will be replaced by a definition that fixes the numerical value of the elementary charge, e, in coulombs. The kilogram definition which dates from 1889 will be replaced by a definition that fixes the numerical value of the Planck constant, h, in joule seconds. Existing SI equations are completely unaffected. However, there will be a largely-negligible, but nevertheless necessary, change to published numerical factors relating SI electrical units to their corresponding units in the Gaussian and other CGS systems of units. The implications of the revised SI for electrical metrology are neatly illustrated by considering the interpretation of results obtained from a current balance in the present SI and in the revised SI.

  13. Characterization of DPOAE fine structure

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    2005-01-01

    , and has recently been demonstrated to exist in low level equal-loudness contours. The character of the DPOAE fine structure depends on several parameters, i.e., level, frequencies, and frequency of the two primaries, but also level and character of the noise floor. The prevalence and character of the fine......The distortion product otoacoustic emission (DPOAE) fine structure is revealed, when measuring DPOAE with a very fine frequency resolution. It is characterized by consistent maxima and minima with notches of up to 20 dB depth. The fine structure is known also from absolute hearing thresholds...... structures are highly individual, and till now no standardized method has been suggested for a consistent categorization. In the present paper a method developed for the categorization of fine structures is presented. The method has been used in two previous studies on the prevalence of fine structures, 1...

  14. Estimating the experimental value of the electromagnetic fine structure constant {alpha}-bar {sub 0}=1/137.036 using the Leech lattice in conjunction with the monster group and Spher's kissing number in 24 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    El Naschie, M.S. [King Abdul Aziz City of Science and Technology, Riyadh (Saudi Arabia)

    2007-04-15

    We start with various observations regarding the kissing number in the 24-dimensional Leech lattice N{sub {tau}}{sup (24)}=196560 as well as the j-function coefficient b=196884 and the minimal dimension in which the monster group can act D{sub m}=196883. Subsequently based on the previous results and earlier numerical experiments, we use a quibic potential to derive a quadratic equationx{sup 2}+12820x-(N{sub {tau}}{sup (24)}/10)=0where 128=spin 7=(2){sup 7}, 10=D{sup (10)} and N{sub {tau}}{sup (24)}=196560 are the spin representation, the super string dimension and the Leech kissing number, respectively. It is found that the only positive solution of this equation isx{sub 1}=137.036={alpha}-bar {sub 0}which is the accurate experimental value of inverse of the electromagnetic fine structure constant. This remarkable result is interpreted in terms of the connection between the Moonshine conjecture and string theory as well as the E-infinity relation between the kissing number in 10 dimensions K{sub {tau}}{sup (10)}=336 and the degrees of freedom of Klein's modular space dim {gamma}(7)=336.

  15. Decay constants in soft wall AdS/QCD revisited

    Directory of Open Access Journals (Sweden)

    Nelson R.F. Braga

    2016-12-01

    We show here that a modified framework of soft wall AdS/QCD involving an additional dimensionfull parameter, associated with an ultraviolet energy scale, provides decay constants decreasing with radial excitation level. In this version of the soft wall model the two point function of gauge theory operators is calculated at a finite position of the anti-de Sitter space radial coordinate.

  16. Observations of substorm fine structure

    Directory of Open Access Journals (Sweden)

    L. L. Lazutin

    Full Text Available Particle and magnetic field measurements on the CRRES satellite were used, together with geosynchronous satellites and ground-based observations, to investigate the fine structure of a magnetospheric substorm on February 9, 1991. Using the variations in the electron fluxes, the substorm activity was divided into several intensifications lasting about 3–15 minutes each. The two main features of the data were: (1 the intensifications showed internal fine structure in the time scale of about 2 minutes or less. We call these shorter periods activations. Energetic electrons and protons at the closest geosynchronous spacecraft (1990 095 were found to have comparable activation structure. (2 The energetic (>69 keV proton injections were delayed with respect to electron injections, and actually coincided in time with the end of the intensifications and partial returns to locally more stretched field line configuration. We propose that the energetic protons could be able to control the dynamics of the system locally be quenching the ongoing intensification and possibly preparing the final large-scale poleward movement of the activity. It was also shown that these protons originated from the same intensification as the preceeding electrons. Therefore, the substorm instability responsible for the intensifications could introduce a negative feedback loop into the system, creating the observed fine structure with the intensification time scales.

    Key words. Magnetospheric Physics (Storms and substorms.

  17. Helium 23P Fine Structure Measurement in a Discharge Cell

    Science.gov (United States)

    Zelevinsky, T.; Farkas, D.; Gabrielse, G.

    2005-12-01

    A precise measurement of helium 23P fine structure was carried out in a discharge cell using Doppler-free laser spectroscopy. It is the only known experiment to directly measure all three fine structure intervals at a 1 kHz level of accuracy. The 23P1 - 23P2 interval value agrees with other experiments but disagrees with theoretical predictions of two-electron QED. When this disagreement is resolved, the 23P0 - 23P1 interval measurement reported here will allow a determination of the fine structure constant to 14 parts in 109, surpassing the precision of the well known QED-independent quantum Hall effect and Josephson effect determinations. The discharge cell is shown to be advantageous in the study and correction of systematic frequency shifts related to light pressure, and the use of the cell ensures that the possible systematic errors are substantially different from those reported in other experiments.

  18. Revisiting the decoupling effects in the running of the Cosmological Constant

    Science.gov (United States)

    Antipin, Oleg; Melić, Blaženka

    2017-09-01

    We revisit the decoupling effects associated with heavy particles in the renormalization group running of the vacuum energy in a mass-dependent renormalization scheme. We find the running of the vacuum energy stemming from the Higgs condensate in the entire energy range and show that it behaves as expected from the simple dimensional arguments meaning that it exhibits the quadratic sensitivity to the mass of the heavy particles in the infrared regime. The consequence of such a running to the fine-tuning problem with the measured value of the Cosmological Constant is analyzed and the constraint on the mass spectrum of a given model is derived. We show that in the Standard Model (SM) this fine-tuning constraint is not satisfied while in the massless theories this constraint formally coincides with the well known Veltman condition. We also provide a remarkably simple extension of the SM where saturation of this constraint enables us to predict the radiative Higgs mass correctly. Generalization to constant curvature spaces is also given.

  19. Solving the Fine Structure Constant by the Radios of the Bohr Atom Model Energy to Photon Energy%用玻尔原子模型轨道能量与光子能量比解精细结构常数

    Institute of Scientific and Technical Information of China (English)

    袁立新

    2012-01-01

    用玻尔原子模型轨道能量与光子能量比的方式,对精细结构常数值的求解作了论证;对以玻尔原子模型轨道速度V与光速c比的精细结构常数值求解,与玻尔原子模型轨道能量与光子能量比的同值性作了分析;并论证了由速度比定义的精细结构常数,是一般式玻尔原子模型轨道能量与光子能量比的特解.%The fine structure constant has been analysed by the ratio of the Bohr atom model energy to photon energy. That the phenomenon of same value of the ratio of the Bohr atom model energy to photon energy and the ratio of the velocity v of the the Bohr atom model to the velocity c has been analysed. That the fine structure constant is given by the ratio of the velocity v of the the Bohr atom model to velocity c is a characteristic solution from the general formula of the ratio of the Bohr atom model energy to photon energy.

  20. Control of the 133 cesium cold collisions, search for a variation of the fine structure constant using a dual rubidium-cesium atomic fountain; Controle des collisions froides du cesium {sup 133}Cs: tests de la variation de la constante de structure fine a l'aide d'une fontaine atomique double rubidium-cesium

    Energy Technology Data Exchange (ETDEWEB)

    Marion, H

    2005-03-15

    We developed a method of measurement of the frequency shift due to the collisions between cold atoms. This is the main systematic limitation for the accuracy of the Cs{sup 133} based fountains ({approx} 10{sup -15} in relative frequency). Consequently, we can measure this effect near 0.5% This opens prospects for improvements of the fountains performances in term of accuracy until 10{sup -16}. The fountain has also obtained a stability about 10{sup -14} at 1 s. We discovered for the first time, at very low magnetic field (5 {+-} 1 mG), Feshbach resonances. We also took a new absolute measurement of the hyperfine transition of the Rb{sup 87}, which is the most precise ever carried out and is used now as definition for the secondary standard. By comparing this value with those measured the previous years, we could carry out a test of the stability of the fine structure constant on the level of 10{sup -15} /yr. We led local comparisons between atomic fountains and the other fountains of the laboratory. Most stable it is unrolled with a combined stability of 5.10{sup -14} at 1 s. The behavior of the difference of the two clocks goes like white frequency noise up to 3.10{sup -16}. The assessment of the dual fountain accuracy budget has been evaluated at 7.10{sup -16} for the cesium part and 8.10{sup -16} for the rubidium part. We contributed to the realization of the scale of International Atomic Time, by series of calibrations of hydrogen masers. An atomic comparison of fountain by satellite links was tested between our laboratory and our German counterpart. This measurement has determined the good agreement between the two clocks. (author)

  1. The fine structure of the ionosphere

    DEFF Research Database (Denmark)

    D'Angelo, N.; Michelsen, Poul

    1967-01-01

    We consider in this note the excitation of ion-acoustic waves by vertical gradients of density in the ionosphere. The conclusion is reached that the fine structure of the ionosphere is probably affected by the resulting instability, as comparison with observations seems to indicate. Recently, Liu...

  2. The End of the Age Problem, And The Case For A Cosmological Constant Revisited

    CERN Document Server

    Krauss, L M

    1998-01-01

    The lower limit on the age of the universe derived from globular cluster dating techniques, which previously strongly motivated a non-zero cosmological constant, has now been dramatically reduced, allowing consistency for a flat matter dominated universe with a Hubble Constant, $H_0 \\le 66 km s^{-1} Mpc^{-1}$. The case for an open universe versus a flat universe with non-zero cosmological constant is reanalyzed in this context, incorporating not only the new age data, but also updates on baryon abundance constraints, and large scale structure arguments. For the first time, the allowed parameter space for the density of non-relativistic matter appears larger for an open universe than for a flat universe with cosmological constant, while a flat universe with zero cosmological constant remains strongly disfavored. Several other preliminary observations suggest a non-zero cosmological constant, but a definitive determination awaits refined measurements of $q_0$, and small scale anisotropies of the Cosmic Microwav...

  3. Fine structure of synapses on dendritic spines

    Directory of Open Access Journals (Sweden)

    Michael eFrotscher

    2014-09-01

    Full Text Available Camillo Golgi’s Reazione Nera led to the discovery of dendritic spines, small appendages originating from dendritic shafts. With the advent of electron microscopy (EM they were identified as sites of synaptic contact. Later it was found that changes in synaptic strength were associated with changes in the shape of dendritic spines. While live-cell imaging was advantageous in monitoring the time course of such changes in spine structure, EM is still the best method for the simultaneous visualization of all cellular components, including actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise localization of molecules in relation to synaptic structures. Previous EM studies of spines and synapses were performed in tissue subjected to aldehyde fixation and dehydration in ethanol, which is associated with protein denaturation and tissue shrinkage. It has remained an issue to what extent fine structural details are preserved when subjecting the tissue to these procedures. In the present review, we report recent studies on the fine structure of spines and synapses using high-pressure freezing (HPF, which avoids protein denaturation by aldehydes and results in an excellent preservation of ultrastructural detail. In these studies, HPF was used to monitor subtle fine-structural changes in spine shape associated with chemically induced long-term potentiation (cLTP at identified hippocampal mossy fiber synapses. Changes in spine shape result from reorganization of the actin cytoskeleton. We report that cLTP was associated with decreased immunogold labeling for phosphorylated cofilin (p-cofilin, an actin-depolymerizing protein. Phosphorylation of cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton. Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying the changes in spine shape associated with cLTP. The findings reviewed here establish HPF as

  4. Linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    Science.gov (United States)

    Camporesi, Roberto

    2011-06-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and the variation of constants method. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  5. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    Science.gov (United States)

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  6. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    Science.gov (United States)

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  7. Thermal stability analysis of the fine structure of solar prominences

    Science.gov (United States)

    Demoulin, Pascal; Malherbe, Jean-Marie; Schmieder, Brigitte; Raadu, Mickael A.

    1986-01-01

    The linear thermal stability of a 2D periodic structure (alternatively hot and cold) in a uniform magnetic field is analyzed. The energy equation includes wave heating (assumed proportional to density), radiative cooling and both conduction parallel and orthogonal to magnetic lines. The equilibrium is perturbed at constant gas pressure. With parallel conduction only, it is found to be unstable when the length scale 1// is greater than 45 Mn. In that case, orthogonal conduction becomes important and stabilizes the structure when the length scale is smaller than 5 km. On the other hand, when the length scale is greater than 5 km, the thermal equilibrium is unstable, and the corresponding time scale is about 10,000 s: this result may be compared to observations showing that the lifetime of the fine structure of solar prominences is about one hour; consequently, our computations suggest that the size of the unresolved threads could be of the order of 10 km only.

  8. Magnetic Tension of Sunspot Fine Structures

    CERN Document Server

    Venkatakrishnan, P

    2010-01-01

    The equilibrium structure of sunspots depends critically on its magnetic topology and is dominated by magnetic forces. Tension force is one component of the Lorentz force which balances the gradient of magnetic pressure in force-free configurations. We employ the tension term of the Lorentz force to clarify the structure of sunspot features like penumbral filaments, umbral light bridges and outer penumbral fine structures. We compute vertical component of tension term of Lorentz force over two active regions namely NOAA AR 10933 and NOAA AR 10930 observed on 05 January 2007 and 12 December 2006 respectively. The former is a simple while latter is a complex active region with highly sheared polarity inversion line (PIL). The vector magnetograms used are obtained from Hinode(SOT/SP). We find an inhomogeneous distribution of tension with both positive and negative signs in various features of the sunspots. The existence of positive tension at locations of lower field strength and higher inclination is compatible...

  9. Precision Measurement of the Three 23PJ Helium Fine Structure Intervals

    Science.gov (United States)

    Zelevinsky, T.; Farkas, D.; Gabrielse, G.

    2005-11-01

    The three 23P fine structure intervals of He4 are measured at an improved accuracy that is sufficient to test two-electron QED theory and to determine the fine structure constant α to 14 parts in 109. The more accurate determination of α, to a precision higher than attained with the quantum Hall and Josephson effects, awaits the reconciliation of two inconsistent theoretical calculations now being compared term by term. A low pressure helium discharge presents experimental uncertainties quite different than for earlier measurements and allows direct measurements of light pressure shifts.

  10. Varying Constants

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume

    2003-01-01

    We review some string-inspired theoretical models which incorporate a correlated spacetime variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring unnatural fine-tunings of parameters, a variation of the fine-structure constant as large as that recently ``observed'' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universality of free fall, such as MICROSCOPE and STEP. Recent claims by Bekenstein that fine-structure-constant variability does not imply detectable violations of the equivalence principle are shown to be untenable.

  11. Fine structure of charge exchange lines observed in laboratory plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ida, K.; Nishimura, S. [National Inst. for Fusion Science, Nagoya (Japan); Kondo, K.

    1997-01-01

    The influence of the fine structure of charge exchange lines appears only at the plasma edge or in the recombining phase where the ion temperature is low enough. The observed spectra in Li III and C VI are consistent with the sum of fine-structure components populated by statistical weights (assuming complete l-mixing) not by direct charge exchange cross sections. Some discrepancy was observed in the intensity ratio of fine-structure components between the observation and calculation for C VI in the recombining phase. The fine-structure of charge exchange lines gives an apparent Doppler shift in plasma rotation velocity measurement using charge exchange spectroscopy. (author)

  12. Cell fine structure and function - Past and present

    Science.gov (United States)

    Fernandez-Moran, H.

    1970-01-01

    Electron microscopic studies of nerve membrane fine structure, discussing cell membrane multienzyme and macromolecular energy and information transduction, protein synthesis and nucleic acids interrelations

  13. The Fine Structure of the Parathyroid Gland

    Science.gov (United States)

    Trier, Jerry Steven

    1958-01-01

    The fine structure of the parathyroid of the macaque is described, and is correlated with classical parathyroid cytology as seen in the light microscope. The two parenchymal cell types, the chief cells and the oxyphil cells, have been recognized in electron micrographs. The chief cells contain within their cytoplasm mitochondria, endoplasmic reticulum, and Golgi bodies similar to those found in other endocrine tissues as well as frequent PAS-positive granules. The juxtanuclear body of the light microscopists is identified with stacks of parallel lamellar elements of the endoplasmic reticulum of the ergastoplasmic or granular type. Oxyphil cells are characterized by juxtanuclear bodies and by numerous mitochondria found throughout their cytoplasm. Puzzling lamellar whorls are described in the cytoplasm of some oxyphil cells. The endothelium of parathyroid capillaries is extremely thin in some areas and contains numerous fenestrations as well as an extensive system of vesicles. The possible significance of these structures is discussed. The connective tissue elements found in the perivascular spaces of macaque parathyroid are described. PMID:13502423

  14. Molecular Eigensolution Symmetry Analysis and Fine Structure

    Directory of Open Access Journals (Sweden)

    William G. Harter

    2013-01-01

    Full Text Available Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES. Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES used in Born-Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v, then applied to families of Oh clusters in SF6 spectra and to extreme clusters.

  15. Temperature-dependent fine structure splitting in InGaN quantum dots

    Science.gov (United States)

    Wang, Tong; Puchtler, Tim J.; Zhu, Tongtong; Jarman, John C.; Kocher, Claudius C.; Oliver, Rachel A.; Taylor, Robert A.

    2017-07-01

    We report the experimental observation of temperature-dependent fine structure splitting in semiconductor quantum dots using a non-polar (11-20) a-plane InGaN system, up to the on-chip Peltier cooling threshold of 200 K. At 5 K, a statistical average splitting of 443 ± 132 μeV has been found based on 81 quantum dots. The degree of fine structure splitting stays relatively constant for temperatures less than 100 K and only increases above that temperature. At 200 K, we find that the fine structure splitting ranges between 2 and 12 meV, which is an order of magnitude higher than that at low temperatures. Our investigations also show that phonon interactions at high temperatures might have a correlation with the degree of exchange interactions. The large fine structure splitting at 200 K makes it easier to isolate the individual components of the polarized emission spectrally, increasing the effective degree of polarization for potential on-chip applications of polarized single-photon sources.

  16. Is there correlation between fine structure and dark energy cosmic dipoles?

    Science.gov (United States)

    Mariano, Antonio; Perivolaropoulos, Leandros

    2012-10-01

    We present a detailed analysis (including redshift tomography) of the cosmic dipoles in the Keck+VLT quasar absorber and in the Union2 SnIa samples. We show that the fine structure constant cosmic dipole obtained through the Keck+VLT quasar absorber sample at 4.1σ level is anomalously aligned with the corresponding dark energy dipole obtained through the Union2 sample at 2σ level. The angular separation between the two dipole directions is 11.3°±11.8°. We use Monte Carlo simulations to find the probability of obtaining the observed dipole magnitudes with the observed alignment, in the context of an isotropic cosmological model with no correlation between dark energy and fine structure constant α. We find that this probability is less than one part in 106. We propose a simple physical model (extended topological quintessence) which naturally predicts a spherical inhomogeneous distribution for both dark energy density and fine structure constant values. The model is based on the existence of a recently formed giant global monopole with Hubble scale core which also couples nonminimally to electromagnetism. Aligned dipole anisotropies would naturally emerge for an off-center observer for both the fine structure constant and for dark energy density. This model smoothly reduces to ΛCDM for proper limits of its parameters. Two predictions of this model are (a) a correlation between the existence of strong cosmic electromagnetic fields and the value of α and (b) the existence of a dark flow on Hubble scales due to the repulsive gravity of the global defect core (“Great Repulser”) aligned with the dark energy and α dipoles. The direction of the dark flow is predicted to be towards the spatial region of lower accelerating expansion. Existing data about the dark flow are consistent with this prediction.

  17. Fine Structure of Solar Acoustic Oscillations Due to Rotation

    Science.gov (United States)

    Goode, P. R.; Dziembowski, W.

    1984-01-01

    The nature of the fine structure of high order, low degree five minute period solar oscillations following from various postulated forms of spherical rotation is predicted. The first and second order effects of rotation are included.

  18. Effect of diurnal photosynthetic activity on the fine structure of amylopectin from normal and waxy barley starch

    DEFF Research Database (Denmark)

    Goldstein, Avi; Annor, George; Blennow, Andreas

    2017-01-01

    The impact of diurnal photosynthetic activity on the fine structure of the amylopectin fraction of starch synthesized by normal barley (NBS) and waxy barley (WBS), the latter completely devoid of amylose biosynthesis, was determined following the cultivation under normal diurnal or constant light...... growing conditions. The amylopectin fine structures were analysed by characterizing its unit chain length profiles after enzymatic debranching as well as its φ,β-limit dextrins and its clusters and building blocks after their partial and complete hydrolysis with α-amylase from Bacillus amyloliquefaciens...... under constant light. Our data demonstrate that the diurnal light regime influences the fine structure of the amylopectin component both in amylose and non-amylose starch granules....

  19. Fine-Structured Plasma Flows in Prominences

    Science.gov (United States)

    Panasenco, O.; Velli, M.; Landi, S.

    2008-12-01

    Plasmas in prominences (filaments against the disk) exhibit a very wide spectrum of different kind of motions. Here we analyze the plasma motions inside prominences observed by Hinode/SOT during 2006-2007 with focus on two spectacular examples from 25 April 2007 in Halpha line and 30 November 2006 in CaH line and then carry out some simulations of the possible dynamics. Most filaments are composed of fine threads of similar dimensions rooted in the chromosphere/photosphere. Recent observations of counter-streaming motions together with oscillations along the threads provide strong evidence that the threads are field aligned. To more correctly interpret the nature of observed downward flows of dense and cool plasma as well as the upward dark flows of less dense plasma, we take into account the geometry of the prominence structures and the viewing angle. The dark upflows exhibit turbulent patterns such as vortex formation and shedding that are consistent with the motions predicted by instabilities of the interchange type. Sometimes an appearance of dark motions is generated by dark voids opened in the prominence sheet after initiation of nearby downflow streams, implying mass drainage in the downflows. Based on 304 A observations, there is more filament mass in prominences than is visible in either the Halpha or CaH lines. The source of the downward moving plasma may be located either higher above the visible upper edge of the prominence or on the far end of the prominence spine. The bright downward motions of the more cool and dense plasma may be partly due to the counter-streaming motion along the magnetic fields lines and also to the presence of Rayleigh-Taylor type or ballooning/interchange instabilities in the upper regions of the prominence. Transverse motions of filament threads caused by magnetic instabilities constantly provide the conditions for reconnection in the low part of the corona and the chromosphere. We suggest that the combination of flows along

  20. Effects of cellular fine structure on scattered light pattern.

    Science.gov (United States)

    Liu, Caigen; Capjack, Clarence E

    2006-06-01

    Biological cells are complex in both morphological and biochemical structure. The effects of cellular fine structure on light scattered from cells are studied by employing a three-dimensional code named AETHER which solves the full set of Maxwell equations by using the finite-difference time-domain method. It is shown that changes in cellular fine structure can cause significant changes in the scattered light pattern over particular scattering angles. These changes potentially provide the possibility for distinguishability of cellular intrastructures. The effects that features of different intrastructure have on scattered light are discussed from the viewpoint of diagnosing cellular fine structure. Finally, we discuss scattered light patterns for lymphocyte-like cells and basophil-like cells.

  1. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Gunár, Stanislav; Mackay, Duncan H. [School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom)

    2015-04-20

    We present the first 3D whole-prominence fine structure model. The model combines a 3D magnetic field configuration of an entire prominence obtained from nonlinear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Through the use of a novel radiative transfer visualization technique for the Hα line such plasma-loaded magnetic field model produces synthetic images of the modeled prominence comparable with high-resolution observations. This allows us for the first time to use a single technique to consistently study, in both emission on the limb and absorption against the solar disk, the fine structures of prominences/filaments produced by a magnetic field model.

  2. Distortion product otoacoustic emission fine structure of symphony orchestra musicians

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    2006-01-01

    Otoacoustic emissions (OAE) are sounds produced by the healthy inner ear. They can be measured as low-level signals in the ear canal and are used to monitor the functioning of outer hair cells. Many studies indicate that OAE might be a more sensitive measure to detect early noise-induced haring...... losses than pure-tone audiometry. The distortion product otoacoustic emission (DPOAE) fine structure is obtained when the ear is stiumulated by dual tone stimuli using a high frequency resolution. It is characterized by quasi-periodic variations across frequency, as it can be observed in the hearing...... threshold microstructure also. In this study the DPOAE fine structure is obtained for symphony orchestra musicians both for left and right ears and before and after the orchestra rehearsal. The DPOAE fine structure is analyzed in order to investigate, whether it contains more information about the state...

  3. Distortion product otoacoustic emission fine structure of symphony orchestra musicians

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    Otoacoustic emissions (OAE) are sounds produced by the healthy inner ear. They can be measured as low-level signals in the ear canal and are used to monitor the functioning of outer hair cells.Several studies indicate that OAE might be a more sensitive measure to detect early noise-induced hearing...... losses than puretone audiometry. The distortion product otoacoustic emission (DPOAE) fine structure is obtained when the ear is stimulated by dual tone stimuli using a high frequency resolution. It is characterized by quasi-periodic variations across frequency, as it can be observed in the hearing...... threshold microstructure also. In this study DPOAE fine structures and hearing thresholds are obtained for symphony orchestra musicians both for left and right ears and before and after the orchestra rehearsal. DPOAE fine structures are analyzed with an automatic classification algorithm, which describes...

  4. Fine structure of fields in 2D photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.

    2006-01-01

    We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis.......We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....

  5. Temporal variation of coupling constants and nucleosynthesis

    CERN Document Server

    Oberhummer, Heinz; Fairbairn, M; Schlattl, H; Sharma, M M

    2003-01-01

    We investigate the triple-alpha process and the Oklo phenomenon to obtain constraints on possible cosmological time variations of fundamental constants. Specifically we study cosmological temporal constraints for the fine structure constant and nucleon and meson masses.

  6. Temporal variation of coupling constants and nucleosynthesis

    Science.gov (United States)

    Oberhummer, H.; Csótó, A.; Fairbairn, M.; Schlattl, H.; Sharma, M. M.

    2003-05-01

    We investigate the triple-alpha process and the Oklo phenomenon to obtain constraints on possible cosmological time variations of fundamental constants. Specifically we study cosmological temporal constraints for the fine structure constant and nucleon and meson masses.

  7. Fine structure of fields in 2D photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.

    2006-01-01

    We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....

  8. Binding energy and fine structure of the He- ion

    Institute of Scientific and Technical Information of China (English)

    ZHUO; Lin; ZHU; Jing-jing; GOU; Bing-cong

    2007-01-01

    The variational method using a multiconfiguration wavefunction is carried out on the core-excited state 1s2s2p 4P0 for helium negative ion, including mass polarization and relativistic corrections. Binding energy and fine structure are reported. The results are compared with other theoretical and experimental date in the literature.

  9. UAl2 : Fine structure of the f bands

    NARCIS (Netherlands)

    Groot, R.A. de; Koelling, D.D.; Weger, M.

    1985-01-01

    The electronic structure of the C15, or cubic-Laves-phase material, UAl2 has been calculated using the linearized relativistic augmented-plane-wave method. The anomalous behavior of the electrical resistivity, specific heat, and magnetic susceptibility can be explained by the fine structure of the

  10. The Fine Structure of Equity-Index Option Dynamics

    DEFF Research Database (Denmark)

    Andersen, Torben G.; Bondarenko, Oleg; Todorov, Viktor;

    We analyze the high-frequency dynamics of S&P 500 equity-index option prices by constructing an assortment of implied volatility measures. This allows us to infer the underlying fine structure behind the innovations in the latent state variables driving the movements of the volatility surface. In...

  11. Catalog of fine-structured electron velocity distribution functions - Part 1: Antiparallel magnetic-field reconnection (Geospace Environmental Modeling case)

    Science.gov (United States)

    Bourdin, Philippe-A.

    2017-09-01

    To understand the essential physics needed to reproduce magnetic reconnection events in 2.5-D particle-in-cell (PIC) simulations, we revisit the Geospace Environmental Modeling (GEM) setup. We set up a 2-D Harris current sheet (that also specifies the initial conditions) to evolve the reconnection of antiparallel magnetic fields. In contrast to the GEM setup, we use a much smaller initial perturbation to trigger the reconnection and evolve it more self-consistently. From PIC simulation data with high-quality particle statistics, we study a symmetric reconnection site, including separatrix layers, as well as the inflow and the outflow regions. The velocity distribution functions (VDFs) of electrons have a fine structure and vary strongly depending on their location within the reconnection setup. The goal is to start cataloging multidimensional fine-structured electron velocity distributions showing different reconnection processes in the Earth's magnetotail under various conditions. This will enable a direct comparison with observations from, e.g., the NASA Magnetospheric MultiScale (MMS) mission, to identify reconnection-related events. We find regions with strong non-gyrotropy also near the separatrix layer and provide a refined criterion to identify an electron diffusion region in the magnetotail. The good statistical significance of this work for relatively small analysis areas reveals the gradual changes within the fine structure of electron VDFs depending on their sampling site.

  12. The origin of the distortion product otoacoustic emission fine structure

    Science.gov (United States)

    Piskorski, Pawel

    Distortion-product otoacoustic emissions (DPOAEs) are sounds detected in the ear canal which are generated by the nonlinear processes in the inner ear (cochlea) in response to the external stimulation of two or more tones (primaries). Their generation region in the cochlea can be systematically changed by varying the primary frequencies, and they are currently being evaluated for possible clinical use in screening for hearing defects. The phase and amplitude of various orders of DPOAEs of frequencies, f/sb [dp]=f1-n(f2-f1),/ (n=1,2,/...), were measured in human subjects for two- tone stimuli of frequencies f1 and f2 (>f1). A number of experimental paradigms (fixed primary ratio f2/f1, fixed f1, fixed f2, and fixed f/sb [dp]) were used to investigate the nature of peaks and valleys (fine structure) of DPOAEs in their phase and amplitude dependence on the primary frequencies. This fine structure must be taken into account in any potential clinical applications of DPOAEs. The experimental results largely support a model in which the fine structure stems from interference at the base of the cochlea between distortion product (DP) components coming from the primary DPOAE source region (around the f2 tonotopic place) and components coming from the DP tonotopic place (via reflection of an apically moving DP wave). The spectral periodicity of the fine structures for several orders of apical DPOAEs corresponds to a tonotopic displacement of about 0.4 mm along the basilar membrane (BM) (0.4 bark). In agreement with the reaction model, this spectral spacing is also characteristic of synchronous evoked and spontaneous otoacoustic emission spectra as well as the microstructure of the hearing threshold. Approximate analytic expressions for the mechanisms which are responsible for the fine structure are used to interpret the data.

  13. Study on Fine Structure of Gas Atomized LaNi5-based Alloys

    Institute of Scientific and Technical Information of China (English)

    Hai JING; Hong GUO; Shuguang ZHANG; Zili MA; Shaoming ZHANG

    2003-01-01

    The fine structure of hydrogen storage alloy powders MINi4.3-xCoxMn0.4Al0.3(x=0.75, 0.45, 0.10; MI: La-rich mischmetal) prepared by rapidly solidifying gas atomization was investigated using a Rietveld analysis method. Two setsof CaCu5-type crystal constants were observed in the studied alloys and one set was larger than the other. Withdecreasing powder radius the solidification rate of powder increased, and so did the percentage of a particle partwith larger crystal constants. The reason why there were two sets of crystal constants might be the difference ofsolidification rate between the outside and inside of a particle.

  14. Law of Localised Fine Structure with application in mass spectrometry

    CERN Document Server

    Łącki, Mateusz Krzysztof

    2014-01-01

    This paper presents a brand new methodology to deal with isotopic fine structure calculations. By using the Poisson approximation in an entirely novel way, we introduce mathematical elegance into the discussion on the trade-off between resolution and tractability. Our considerations unify the concepts of fine-structure, equatransneutronic configurations, and aggregate isotopic structure in a natural and simple way. We show how to boost the theoretical resolution in a seemingly costless way by several orders of magnitude with respect to the already very efficient algorithms operating on isotopic aggregates. We also develop an effective new way to obtain the important peaks in the most disaggregated isotopic structure localised in a precise region in the mass domain.

  15. Metallicity Diagnostics with Infrared Fine-Structure Lines

    CERN Document Server

    Nagao, Tohru; Marconi, Alessandro; Matsuhara, Hideo

    2010-01-01

    Although measuring the gas metallicity in galaxies at various redshifts is crucial to constrain galaxy evolutionary scenarios, only rest-frame optical emission lines have been generally used to measure the metallicity. This has prevented us to accurately measure the metallicity of dust-obscured galaxies, and accordingly to understand the chemical evolution of dusty populations, such as ultraluminous infrared galaxies. Here we propose diagnostics of the gas metallicity based on infrared fine structure emission lines, which are nearly unaffected by dust extinction even the most obscured systems. Specifically, we focus on fine-structure lines arising mostly from HII regions, not in photo-dissociation regions, to minimize the dependence and uncertainties of the metallicity diagnostics from various physical parameters. Based on photoionization models, we show that the emission-line flux ratio of ([OIII]51.80+[OIII]88.33)/[NIII]57.21 is an excellent tracer of the gas metallicity. The individual line ratios [OIII]51...

  16. Theory of the fine structure of auroral kilometric radiation

    Science.gov (United States)

    Grabbe, C. L.

    1982-01-01

    Recent data from ISEE 1 show auroral kilometric radiation (AKR) with finely separated bands in frequency. The observation that the AKR fine structure frequency separation is about equal to the ion cyclotron frequency at the AKR source is strong evidence for the interaction of AKR and electrostatic ion cyclotron (EIC) waves in the source, as proposed by Grabbe et al. (1980) to explain the origin of AKR. It is pointed out that no other wave of frequency close to the band separation is known to exist in the auroral source region. The fine structure observed in the source region AKR is the first evidence for EIC waves in the lower source region (3000 - 5000 km attitude), as required in the theory of Grabbe et al.

  17. A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    Science.gov (United States)

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…

  18. Fine structure of plastids during androgenesis in Hordeum vulgare L.

    OpenAIRE

    Fortunat Młodzianowski; Krystyna Idzikowska

    2014-01-01

    The fine structure of plastids was studied in the course of androgenesis in in the pollen of Hordeum vulgare L. It was found that these organelles occur in all stages of androgenesis. Their structure was simple and was frequently manifested on the cross section only by the presence of the envelope and matrix of different degree of density. Single thylakoids, nucleoid-like regions and starch grains were, however, also noted. The structure of plastids in embryoids formed from microspores of bar...

  19. Fine structure of the exciton electroabsorption in semiconductor superlattices

    Science.gov (United States)

    Monozon, B. S.; Schmelcher, P.

    2017-02-01

    Wannier-Mott excitons in a semiconductor layered superlattice (SL) are investigated analytically for the case that the period of the superlattice is much smaller than the 2D exciton Bohr radius. Additionally we assume the presence of a longitudinal external static electric field directed parallel to the SL axis. The exciton states and the optical absorption coefficient are derived in the tight-binding and adiabatic approximations. Strong and weak electric fields providing spatially localized and extended electron and hole states, respectively, are studied. The dependencies of the exciton states and the exciton absorption spectrum on the SL parameters and the electric field strength are presented in an explicit form. We focus on the fine structure of the ground quasi-2D exciton level formed by the series of closely spaced energy levels adjacent from the high frequencies. These levels are related to the adiabatically slow relative exciton longitudinal motion governed by the potential formed by the in-plane exciton state. It is shown that the external electric fields compress the fine structure energy levels, decrease the intensities of the corresponding optical peaks and increase the exciton binding energy. A possible experimental study of the fine structure of the exciton electroabsorption is discussed.

  20. Fine structures of type III radio bursts observed by LOFAR

    Science.gov (United States)

    Magdalenic, Jasmina; Marque, Christophe; Fallows, Richard; Mann, Gottfried; Vocks, Christian

    2017-04-01

    On August 25, 2014, NOAA AR 2146 produced the M2.0 class flare (peaked at 15:11 UT). The flare was associated with a coronal dimming, a EUV wave, a halo CME and a radio event observed by LOFAR (the LOw-Frequency Array). The radio event consisted of a type II, type III and type IV radio emissions. In this study, we focus on LOFAR observations of the type III bursts, generally considered to be radio signatures of fast electron beams propagating along open or quasi open field lines. The group of type III bursts was, as usually, observed during the impulsive phase of the flare. At first hand, type III bursts show no peculiarity, but the high frequency/time resolution LOFAR observations reveal that only few of these type III bursts have a smooth emission profile. The majority of bursts is strongly fragmented. Some show a structuring similar to type IIIb bursts, but on a smaller frequency scale, and others show a non-organized patchy structure which gives indication on the possibly related turbulence processes. Although fine structures of type III bursts were already reported, the wealth of fine structures, and the fragmentation of the radio emission observed in this August 25 event is unprecedented. We show that these LOFAR observations bring completely new insight and pose a new challenge for the physics of the acceleration of electron beams and associated emission processes.

  1. The fine structure line deficit in S 140

    CERN Document Server

    Ossenkopf, Volker; Okada, Yoko; Mookerjea, Bhaswati; van der Tak, Floris F S; Simon, Robert; Pütz, Patrick; Güsten, Rolf

    2015-01-01

    We try to understand the gas heating and cooling in the S 140 star forming region by spatially and spectrally resolving the distribution of the main cooling lines with GREAT/SOFIA. We mapped the fine structure lines of [OI] (63 {\\mu}m) and [CII] (158 {\\mu}m) and the rotational transitions of CO 13-12 and 16-15 with GREAT/SOFIA and analyzed the spatial and velocity structure to assign the emission to individual heating sources. We measure the optical depth of the [CII] line and perform radiative transfer computations for all observed transitions. By comparing the line intensities with the far-infrared continuum we can assess the total cooling budget and measure the gas heating efficiency. The main emission of fine structure lines in S 140 stems from a 8.3'' region close to the infrared source IRS 2 that is not prominent at any other wavelength. It can be explained by a photon-dominated region (PDR) structure around the embedded cluster if we assume that the [OI] line intensity is reduced by a factor seven due ...

  2. Solar Radio Bursts with Spectral Fine Structures in Preflares

    CERN Document Server

    Zhang, Yin; Karlický, Marian; Mészárosová, Hana; Huang, Jing; Tan, Chengming; Simões, Paulo

    2014-01-01

    A good observation of preflare activities is important for us to understand the origin and triggering mechanism of solar flares, and to predict the occurrence of solar flares. This work presents the characteristics of microwave spectral fine structures as preflare activities of four solar flares observed by Ond\\v{r}ejov radio spectrograph in the frequency range of 0.8--2.0 GHz. We found that these microwave bursts which occurred 1--4 minutes before the onset of flares have spectral fine structures with relatively weak intensities and very short timescales. They include microwave quasi-periodic pulsations (QPP) with very short period of 0.1-0.3 s and dot bursts with millisecond timescales and narrow frequency bandwidths. Accompanying these microwave bursts, there are filament motions, plasma ejection or loop brightening on the EUV imaging observations and non-thermal hard X-ray emission enhancements observed by RHESSI. These facts may reveal certain independent non-thermal energy releasing processes and partic...

  3. Herschel Galactic plane survey of [NII] fine structure emission

    CERN Document Server

    Goldsmith, Paul F; Langer, William D; Pineda, Jorge L

    2015-01-01

    We present the first large scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([NII]) at 122 $\\mu$m and 205 $\\mu$m. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines-of-sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10$^{-8}$ - 10$^{-7}$ $W$m$^{-2}$sr$^{-1}$ level over the range -60$^{o}$ $\\leq$ $l$ $\\leq$ 60$^{o}$. The $rms$ of the intensity among the 25 PACS spaxels of a given pointing is typically less than one third of the mean intensity, showing that the emission is extended. [NII] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding $n(e)$ largely in the range 10 to 50 cm$^{-3}$ with an average value of 29 cm$^{-3}$ and N$^+$ colum...

  4. Analysis of the fine structure of Sn$^{11+...14+}$ ions by optical spectroscopy in an electron beam ion trap

    CERN Document Server

    Windberger, A; Borschevsky, A; Ryabtsev, A; Dobrodey, S; Bekker, H; Eliav, E; Kaldor, U; Ubachs, W; Hoekstra, R; López-Urrutia, J R Crespo; Versolato, O O

    2016-01-01

    We experimentally re-evaluate the fine structure of Sn$^{11+...14+}$ ions. These ions are essential in bright extreme-ultraviolet (EUV) plasma-light sources for next-generation nanolithography, but their complex electronic structure is an open challenge for both theory and experiment. We combine optical spectroscopy of magnetic dipole $M1$ transitions, in a wavelength range covering 260\\,nm to 780\\,nm, with charge-state selective ionization in an electron beam ion trap. Our measurements confirm the predictive power of \\emph{ab initio} calculations based on Fock space coupled cluster theory. We validate our line identification using semi-empirical Cowan calculations with adjustable wavefunction parameters. Available Ritz combinations further strengthen our analysis. Comparison with previous work suggests that line identifications in the EUV need to be revisited.

  5. Laser Spectroscopy of the Fine-Structure Splitting in the 2 PJ 3 Levels of He 4

    Science.gov (United States)

    Zheng, X.; Sun, Y. R.; Chen, J.-J.; Jiang, W.; Pachucki, K.; Hu, S.-M.

    2017-02-01

    The fine-structure splitting in the 2 PJ 3 (J =0 , 1, 2) levels of He 4 is of great interest for tests of quantum electrodynamics and for the determination of the fine-structure constant α . The 2 P0 3 -2 P2 3 and 2 P1 3 -2 P2 3 intervals are measured by laser spectroscopy of the PJ 3 -2 S1 3 transitions at 1083 nm in an atomic beam, and are determined to be 31 908 130.98 ±0.13 kHz and 2 291 177.56 ±0.19 kHz , respectively. Compared with calculations, which include terms up to α5Ry , the deviation for the α -sensitive interval 2 P0 3 -2 P2 3 is only 0.22 kHz. It opens the window for further improvement of theoretical predictions and an independent determination of the fine-structure constant α with a precision of 2 ×10-9 .

  6. High resolution telescope and spectrograph observations of solar fine structure in the 1600 A region

    Science.gov (United States)

    Cook, J. W.; Brueckner, G. E.; Bartoe, J.-D. F.

    1983-01-01

    High spatial resolution spectroheliograms of the 1600 A region obtained during the HRTS rocket flight of 1978 February 13 are presented. The morphology, fine structure, and temporal behavior of emission bright points (BPs) in active and quiet regions are illustrated. In quiet regions, network elements persist as morphological units, although individual BPs may vary in intensity while usually lasting the flight duration. In cell centers, the BPs are highly variable on a 1 minute time scale. BPs in plages remain more constant in brightness over the observing sequence. BPs cover less than 4 percent of the quiet surface. The lifetime and degree of packing of BPs vary with the local strength of the magnetic field.

  7. Solution spectroelectrochemical cell for in situ X-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, M.R.; Soderholm, L. [Argonne National Lab., IL (United States). Chemistry Div.; Song, I. [Case Western Reserve Univ., Cleveland, OH (United States)

    1995-06-12

    A purpose-built spectroelectrochemical cell for in situ fluorescence XAFS (X-ray Absorption Fine Structure) measurements of bulk solution species during constant-potential electrolysis is described. The cell performance was demonstrated by the collection of europium L{sub 3}-edge XANES (X-ray Absorption Near Edge Structure) throughout the course of electrolysis of an aqueous solution of EuCl{sub 3}{center_dot}6H{sub 2}O in 1 M H{sub 2}SO{sub 4}. The europium L{sub 3}-edge resonances reported here for the Eu{sup III} and Eu{sup II} ions demonstrate that their 2p{sub 3/2} {yields} 5d electronic transition probabilities are not the same.

  8. Extended X-ray absorption fine structure of bimetallic nanoparticles

    Directory of Open Access Journals (Sweden)

    Carolin Antoniak

    2011-05-01

    Full Text Available Electronic and magnetic properties strongly depend on the structure of the material, especially on the crystal symmetry and chemical environment. In nanoparticles, the break of symmetry at the surface may yield different physical properties with respect to the corresponding bulk material. A useful tool to investigate the electronic structure, magnetic behaviour and local crystallographic structure is X-ray absorption spectroscopy. In this review, recent developments in the field of extended X-ray absorption fine structure measurements and in the analysis methods for structural investigations of bimetallic nanoparticles are highlighted. The standard analysis based on Fourier transforms is compared to the relatively new field of wavelet transforms that have the potential to outperform traditional analysis, especially in bimetallic alloys. As an example, the lattice expansion and inhomogeneous alloying found in FePt nanoparticles is presented, and this is discussed below in terms of the influence of employed density functional theory calculations on the magnetic properties.

  9. Fine structures in hearing thresholds and distortion product otoacoustic emissions

    DEFF Research Database (Denmark)

    Hammershøi, Dorte; Ordoñez, Rodrigo Pizarro; Torrente, Marina

    2010-01-01

    Otoacoustic emissions (OAEs) are weak sounds that can be recorded in the external ear. They are generated by the active amplification of the outer hair cells, and are by many believed to reflect the status of the most vulnerable part of the hearing better than ordinary behavioral thresholds...... of these two components. The result is characterized by a distinct fine structure pattern, and generally doesn't directly reflect the status of the hearing at one point on the basilar membrane. The behavioral threshold, on the other hand, is more directly related to given points along the basilar membrane......, but reflects the combined status of outer and inner hair cells. Thus the combination of DPOAE measurements and hearing thresholds has the potential to  provide better basis for hearing diagnosis. In the present study, both DPOAE measurements and hearing thresholds are determined with a fine frequency...

  10. [Morphogenesis and the fine structure of Stibiobacter senarmontii].

    Science.gov (United States)

    Pivovarova, T A; Lialikova, N N

    1980-01-01

    The morphogenesis and fine structure of Stibiobacter senarmontii were studied during its cultivation in the autotrophic conditions of growth in a mineral medium as well as in a medium containing yeast extract. The morphology of the organism was shown to be variable. A young culture was represented mainly by rods with three flagella. Coccoid, club-shaped and branching forms were observed during aging of the culture. The cells multiplied by irregular division and by breaking along the partition of the parent cell. The latter process yielded cell aggregates looking like rings and hieroglyphs. Electronograms revealed a complex membrane apparatus, polyribosomes, large electron-transparent inclusions, and unknown electron-dense inclusions in the nuclear zone. The cell wall looked on cross-sections as a three-layer structure. The assignment of St. senarmontii to Gram-positive bacteria is discussed. The morphogenesis of this organism suggests that it is related to the coryneform group of bacteria.

  11. Fine structure of plastids during androgenesis in Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Fortunat Młodzianowski

    2014-01-01

    Full Text Available The fine structure of plastids was studied in the course of androgenesis in in the pollen of Hordeum vulgare L. It was found that these organelles occur in all stages of androgenesis. Their structure was simple and was frequently manifested on the cross section only by the presence of the envelope and matrix of different degree of density. Single thylakoids, nucleoid-like regions and starch grains were, however, also noted. The structure of plastids in embryoids formed from microspores of barley was compared with embryos developed from fertilized egg cell, and we did not found any fundamental differences between them. However, only plastid ribosomes were difficult to identify on ultrathin sections in embryoids and in the embryos.

  12. HERSCHEL GALACTIC PLANE SURVEY OF [N ii] FINE STRUCTURE EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, Paul F.; Yıldız, Umut A.; Langer, William D.; Pineda, Jorge L., E-mail: Paul.F.Goldsmith@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2015-12-01

    We present the first large-scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([N ii]) at 122 and 205 μm. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines of sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10{sup −8}–10{sup −7} Wm{sup −2} sr{sup −1} level over the range –60° ≤ l ≤ 60°. The rms of the intensity among the 25 PACS spaxels of a given pointing is typically less than one third of the mean intensity, showing that the emission is extended. [N ii] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding n(e) largely in the range 10–50 cm{sup −3} with an average value of 29 cm{sup −3} and N{sup +} column densities 10{sup 16}–10{sup 17} cm{sup −2}. [N ii] emission is highly correlated with that of [C ii], and we calculate that between 1/3 and 1/2 of the [C ii] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [N ii] emission is not the warm ionized medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [N ii] include the ionized surfaces of dense atomic and molecular clouds, the extended low-density envelopes of H ii regions, and low-filling factor high-density fluctuations of the WIM.

  13. Astronomical constraints on the cosmic evolution of the fine structure constant and possible quantum dimensions

    NARCIS (Netherlands)

    Carilli, CL; Menten, KM; Stocke, JT; Perlman, E; Vermeulen, R; Briggs, F; de Bruyn, AG; Conway, J; Moore, CP

    2000-01-01

    We present measurements of absorption by the 21 cm hyperfine transition of neutral hydrogen toward radio sources at substantial look-back times. These data are used in combination with observations of rotational transitions of common interstellar molecules to set limits on the evolution of the fine

  14. Impact of instrumental systematic errors on fine-structure constant measurements with quasar spectra

    CERN Document Server

    Whitmore, J B

    2014-01-01

    We present a new `supercalibration' technique for measuring systematic distortions in the wavelength scales of high resolution spectrographs. By comparing spectra of `solar twin' stars or asteroids with a reference laboratory solar spectrum, distortions in the standard thorium--argon calibration can be tracked with $\\sim$10\\,m\\,s$^{-1}$ precision over the entire optical wavelength range on scales of both echelle orders ($\\sim$50--100\\,\\AA) and entire spectrographs arms ($\\sim$1000--3000\\,\\AA). Using archival spectra from the past 20 years we have probed the supercalibration history of the VLT--UVES and Keck--HIRES spectrographs. We find that systematic errors in their wavelength scales are ubiquitous and substantial, with long-range distortions varying between typically $\\pm$200\\,m\\,s$^{-1}$\\,per 1000\\,\\AA. We apply a simple model of these distortions to simulated spectra which characterize the large UVES and HIRES quasar samples which previously indicated possible evidence for cosmological variations in the ...

  15. VLT/UVES constraints on the cosmological variability of the fine-structure constant

    CERN Document Server

    Levshakov, S A; Molaro, P; D'Odorico, S

    2004-01-01

    A differential many-multiplet (DMM) technique is developed to probe the variability of alpha. Applied to the FeII lines of the metal absorption line system at zabs = 1.839 in the spectrum of Q1101-264 obtained by means of the UV-Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT), the DMM provides da/a = (4.3+/-7.8) 10^{-6}.The zabs = 1.15 FeII system toward HE0515-4414 has been re-analyzed by the DMM method thus obtaining for the combined sample da/a = (0.7+/-3.1) 10^{-6}. These values are shifted with respect to the Keck/HIRES mean da/a = (-5.7+/-1.1) 10^{-6} (Murphy et al. 2004) at very high confidence level (95%). The fundamental photon noise limitation in the da/a measurement with the VLT/UVES is discussed to figure the prospects for future observations. It is suggested that with a spectrograph of 10 times the UVES resolution coupled to a 100m class telescope the present Oklo level (da/a >= 4.5 10^{-8}) can be achieved along cosmological distances with differential measurements of da...

  16. VLT/UVES constraints on the cosmological variability of the fine-structure constant

    Science.gov (United States)

    Levshakov, S. A.; Centurión, M.; Molaro, P.; D'Odorico, S.

    2005-05-01

    We propose a new methodology for probing the cosmological variability of α from pairs of Fe II lines (SIDAM, single ion differential α measurement) observed in individual exposures from a high resolution spectrograph. By this we avoid the influence of the spectral shifts due to (i) ionization inhomogeneities in the absorbers; and (ii) non-zero offsets between different exposures. Applied to the Fe II lines of the metal absorption line system at z_abs = 1.839 in the spectrum of Q 1101-264 obtained by means of the UV-Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT), SIDAM provides Δα/α = (2.4±3.8_stat)×10-6. The z_abs = 1.15 Fe II system toward HE 0515-4414 has been re-analyzed by this method thus obtaining for the combined sample Δα/α = (0.4±1.5_stat)×10-6. These values are shifted with respect to the Keck/HIRES mean Δα/α = (-5.7 ± 1.1_stat)×10-6 (Murphy et al. 2004) at very high confidence level (95%). The fundamental photon noise limitation in the Δα/α measurement with the VLT/UVES is discussed to figure the prospects for future observations. It is suggested that with a spectrograph of ~10 times the UVES dispersion coupled to a 100 m class telescope the present Oklo level (Δα/α ≥ 4.5 × 10-8) can be achieved along cosmological distances with differential measurements of Δα/α.

  17. Quantum field theory and classical optics: determining the fine structure constant

    OpenAIRE

    Leuchs, Gerd; Hawton, Margaret; Sanchez-Soto, Luis L.

    2016-01-01

    The properties of the vacuum are described by quantum physics including the response to external fields such as electromagnetic radiation. Of the two parameters that govern the details of the electromagnetic field dynamics in vacuum, one is fixed by the requirement of Lorentz invariance $c= 1/\\sqrt{\\varepsilon_{0} \\mu_{0}}$. The other one, $Z_{0}= \\sqrt{\\mu_{0}/\\varepsilon_{0}} = 1/(c\\varepsilon_{0})$ and its relation to the quantum vacuum, is discussed in this contribution. Deriving $\\vareps...

  18. Rotational and Fine Structure of Pseudo-Jahn Molecules with C_1 Symmetry

    Science.gov (United States)

    Liu, Jinjun

    2016-06-01

    It has been found in our previous works that rotational and fine-structure analysis of spectra involving nearly degenerate electronic states may aid in interpretation and analysis of the vibronic structure, specifically in the case of pseudo-Jahn-Teller (pJT) molecules with C_s symmetry. The spectral analysis of pJT derivatives (isopropoxy and cyclohexoxy of a prototypical JT molecule (the methoxy radical) allowed for quantitative determination of various contributions to the energy separation between the nearly degenerate electronic states, including the relativistic spin-orbit (SO) effect, the electrostatic interaction, and their zero-point energy difference. These states are coupled by SO and Coriolis interactions, which can also be determined accurately in rotational and fine structure analysis. Most recently, the spectroscopic model for rotational analysis of pJT molecules has been extended for analysis of molecules with C_1 symmetry, i.e., no symmetry. This model includes the six independently determinable components of the spin-rotation (SR) tensor and the three components of the SO and Coriolis interactions. It has been employed to simulate and fit high-resolution laser-induced fluorescence (LIF) spectra of jet-cooled alkoxy radicals with C_1 symmetry, including the 2-hexoxy and the 2-pentoxy radicals, as well as previously recorded LIF spectrum of the trans-conformer (defined by its OCCC dihedral angle) of the 2-butoxy radical. Although the LIF spectra can be reproduced by using either the SR constants or SO and Coriolis constants, the latter simulation offers results that are physically more meaningful whereas the SR constants have to be regarded as effective constants. Furthermore, we will review the SO and Coriolis constants of alkoxy radicals that have been investigated, starting from the well-studied methoxy radical (CH_3O). J. Liu, D. Melnik, and T. A. Miller, J. Chem. Phys. 139, 094308 (2013) J. Liu and T. A. Miller, J. Phys. Chem. A 118, 11871

  19. Bumblebee Homing: The Fine Structure of Head Turning Movements.

    Directory of Open Access Journals (Sweden)

    Norbert Boeddeker

    Full Text Available Changes in flight direction in flying insects are largely due to roll, yaw and pitch rotations of their body. Head orientation is stabilized for most of the time by counter rotation. Here, we use high-speed video to analyse head- and body-movements of the bumblebee Bombus terrestris while approaching and departing from a food source located between three landmarks in an indoor flight-arena. The flight paths consist of almost straight flight segments that are interspersed with rapid turns. These short and fast yaw turns ("saccades" are usually accompanied by even faster head yaw turns that change gaze direction. Since a large part of image rotation is thereby reduced to brief instants of time, this behavioural pattern facilitates depth perception from visual motion parallax during the intersaccadic intervals. The detailed analysis of the fine structure of the bees' head turning movements shows that the time course of single head saccades is very stereotypical. We find a consistent relationship between the duration, peak velocity and amplitude of saccadic head movements, which in its main characteristics resembles the so-called "saccadic main sequence" in humans. The fact that bumblebee head saccades are highly stereotyped as in humans, may hint at a common principle, where fast and precise motor control is used to reliably reduce the time during which the retinal images moves.

  20. Fine structure in the cluster decay of radium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K P [School of Pure and Applied Physics, Kannur University, Payyanur Campus, Payyanur 670 327 (India)], E-mail: kpsanthosh@eth.net

    2010-01-15

    Half-life times for {sup 14}C cluster emission from various radium isotopes are computed taking interacting potential as the sum of Coulomb and proximity potentials. The half-life time values are compared with experimental data and with the values reported by Poenaru et al using the analytical super-asymmetric fission model (ASAFM). The lowest half-life time for {sup 222}Ra stresses the role of the doubly magic {sup 208}Pb daughter in the exotic decay process. It is found that neutron excess in the parent nucleus slows down the exotic decay process. The high hindrance factor (HF) of the {sup 14}C branch to the ground state (9/2{sup +}) and the low HF to the first excited state (11/2{sup +}) of the {sup 209}Pb daughter are in good agreement with the experimental result. The fine structure from {sup 223}Ra gives direct evidence of the presence of a spherical component in the deformed parent nucleus.

  1. Benzene at 1 GHz. Magnetic field-induced fine structure

    Science.gov (United States)

    Heist, L. M.; Poon, C.-D.; Samulski, E. T.; Photinos, D. J.; Jokisaari, J.; Vaara, J.; Emsley, J. W.; Mamone, S.; Lelli, M.

    2015-09-01

    The deuterium NMR spectrum of benzene-d6 in a high field spectrometer (1 GHz protons) exhibits a magnetic field-induced deuterium quadrupolar splitting Δν. The magnitude of Δν observed for the central resonance is smaller than that observed for the 13C satellite doublets Δν‧. This difference, Δ(Δν) = Δν‧ - Δν, is due to unresolved fine structure contributions to the respective resonances. We determine the origins of and simulate this difference, and report pulse sequences that exploit the connectivity of the peaks in the 13C and 2H spectra to determine the relative signs of the indirect coupling, JCD, and Δν. The positive sign found for Δν is consonant with the magnetic field biasing of an isolated benzene molecule-the magnetic energy of the aromatic ring is lowest for configurations where the C6 axis is normal to the field. In the neat liquid the magnitude of Δν is decreased by the pair correlations in this prototypical molecular liquid.

  2. Hymenolepis nana: the fine structure of the embryonic envelopes.

    Science.gov (United States)

    Fairweather, I; Threadgold, L T

    1981-06-01

    The fine structure of the envelopes surrounding hatched and unhatched oncospheres of Hymenolepis nana has been investigated by transmission and scanning electron microscopy (SEM), together with light microscope histochemical observations of JB-4 embedded material. The oncosphere is surrounded by 3 layers--the capsule, the outer envelope and the inner envelope, the latter giving rise to the embryophore and the 'oncospheral membrane'. An additional layer--the polar filament layer--lies between the 'oncospheral membrane' and the oncosphere. Shell material is deposited on the capsule as a thin layer. It is secreted by the outer envelope, which degenerates once shell formation is complete. The uterus may also contribute to shell formation. The embryophore forms a thin incomplete and peripheral layer within the inner envelope. In the basal region of this envelope, partial development of an 'oncospheral membrane' takes place, but it does not become detached as a separate layer. The polar filaments, which are characteristic of the oncosphere of H. nana, are derived from the epithelial covering of the oncosphere itself, which delaminates to form a separate polar filament layer. The filaments arise from knob-like projections at opposite poles of this layer. The design of the embryonic envelopes in H. nana show a number of modifications from the basic cyclophyllidean pattern, and these can be related to the demands of its 'direct' life-cycle.

  3. The Fine Structure Lines of Hydrogen in HII Regions

    CERN Document Server

    Dennison, B; Minter, A H; Dennison, Brian; Minter, Anthony H.

    2005-01-01

    The 2s_{1/2} state of hydrogen is metastable and overpopulated in HII regions. In addition, the 2p states may be pumped by ambient Lyman-alpha radiation. Fine structure transitions between these states may be observable in HII regions at 1.1 GHz (2s_{1/2}-2p_{1/2}) and/or 9.9 GHz (2s_{1/2}-2p_{3/2}), although the details of absorption versus emission are determined by the relative populations of the 2s and 2p states. The n=2 level populations are solved with a parameterization that allows for Lyman-alpha pumping of the 2p states. The density of Lyman-alpha photons is set by their creation rate, easily determined from the recombination rate, and their removal rate. Here we suggest that the dominant removal mechanism of Lyman-alpha radiation in HII regions is absorption by dust. This circumvents the need to solve the Lyman-alpha transfer problem, and provides an upper limit to the rate at which the 2p states are populated by Lyman-alpha photons. In virtually all cases of interest, the 2p states are predominantl...

  4. Fine structure behaviour of VVER-1000 RPV materials under irradiation

    Science.gov (United States)

    Gurovich, B. A.; Kuleshova, E. A.; Shtrombakh, Ya. I.; Erak, D. Yu.; Chernobaeva, A. A.; Zabusov, O. O.

    2009-06-01

    Changes in the fine structure and mechanical properties of the base metal (BM) and weld metal (WM) of VVER-1000 pressure vessels during accumulation of neutron dose in the range of fluences ˜(3.2-15) × 10 23 m -2 ( E > 0.5 MeV) at 290 °C are studied using methods of transmission electron microscopy, fractographic analysis, and Auger electron spectroscopy. A correlation was found between the changes of mechanical properties and the micro- and nano-structures of the studied steels. Accumulation of neutron dose considerably raises the strength characteristics and transition temperature of VVER-1000 pressure vessel steels. The rate of changes in the mechanical properties of the weld metal is significantly higher than that of the base metal. The slower growth of strength characteristics and transition temperature shift of the base metal under irradiation as compared with the weld metal is due to the slower growth of the density of radiation defects and radiation-induced precipitates. The level of intergranular embrittlement under irradiation in the weld metal is not higher then in the base metal in spite of the higher content of nickel.

  5. Fine structure of Pn velocity beneath Sichuan-Yunnan region

    Institute of Scientific and Technical Information of China (English)

    黄金莉; 宋晓东; 汪素云

    2003-01-01

    We use 23298 Pn arrival-time data from Chinese national and provincial earthquake bulletins to invert fine structure of Pn velocity and anisotropy at the top of the mantle beneath the Sichuan-Yunnan and its adjacent region. The results suggest that the Pn velocity in this region shows significant lateral variation; the Pn velocity varies from 7.7 to 8.3 km/s. The Pn-velocity variation correlates well with the tectonic activity and heat flow of the region. Low Pn velocity is observed in southwest Yunnan , Tengchong volcano area, and the Panxi tectonic area. These areas have very active seismicity and tectonic activity with high surface heat flow. On the other hand, high Pn velocity is observed in some stable regions, such as the central region of the Yangtze Platform; the most pronounced high velocity area is located in the Sichuan Basin, south of Chengdu. Pn anisotropy shows a complex pattern of regional deformation. The Pn fast direction shows a prominent clockwise rotation pattern from east of the Tibetan block to the Sichuan-Yunnan diamond block to southwest Yunnan, which may be related to southeastward escape of the Tibetan Plateau material due to the collision of the Indian Plate to the Eurasia Plate. Thus there appears to be strong correlation between the crustal deformation and the upper mantle structure in the region. The delay times of events and stations show that the crust thickness decreases from the Tibetan Plateau to eastern China, which is consistent with the results from deep seismic sounding.

  6. Does over-exposure modify the fine structure of distortion product otoacoustic emissions?

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    2008-01-01

    It is investigated, whether the pattern of distortion product otoacoustic emission (DPOAE) fine structure (quasi-periodic variations across frequency) is altered by an acoustical over-exposure. DPOAE fine structures are determined in 16 normal-hearing humans using a high frequency-resolution and ......It is investigated, whether the pattern of distortion product otoacoustic emission (DPOAE) fine structure (quasi-periodic variations across frequency) is altered by an acoustical over-exposure. DPOAE fine structures are determined in 16 normal-hearing humans using a high frequency...... within 20 minutes. The DPOAE fine structure pattern is analyzed by an automatic classification algorithm, which determines ripple center frequency, ripple spacing, ripple height and ripple prevalence. For some individuals, an alteration of some of the parameters could be observed after the exposure, i...

  7. Fine structure of high-power microwave-induced resistance oscillations

    Science.gov (United States)

    Shi, Q.; Zudov, M. A.; Dmitriev, I. A.; Baldwin, K. Â. W.; Pfeiffer, L. Â. N.; West, K. Â. W.

    2017-01-01

    We report on observation of a fine structure of microwave-induced resistance oscillations in an ultraclean two-dimensional electron gas. This fine structure is manifested by multiple secondary sharp extrema, residing beside the primary ones, which emerge at high radiation power. Theoretical considerations reveal that this fine structure originates from multiphoton-assisted scattering off short-range impurities. Unique properties of the fine structure allow us to access all experimental parameters, including microwave power, and to separate different contributions to photoresistance. Furthermore, we show that the fine structure offers a convenient means to quantitatively assess the correlation properties of the disorder potential in high-quality systems, allowing separation of short- and long-range disorder contributions to the electron mobility.

  8. The fundamental constants a mystery of physics

    CERN Document Server

    Fritzsch, Harald

    2009-01-01

    The speed of light, the fine structure constant, and Newton's constant of gravity — these are just three among the many physical constants that define our picture of the world. Where do they come from? Are they constant in time and across space? In this book, physicist and author Harald Fritzsch invites the reader to explore the mystery of the fundamental constants of physics in the company of Isaac Newton, Albert Einstein, and a modern-day physicist

  9. Helical motions of fine-structure prominence threads observed by Hinode and IRIS

    CERN Document Server

    Okamoto, Takenori J; Tsuneta, Saku

    2016-01-01

    Fine-structure dynamics in solar prominences holds critical clues to understanding their physical nature of significant space-weather implications. We report evidence of rotational motions of horizontal helical threads in two active-region prominences observed by the \\emph{Hinode} and/or \\emph{IRIS} satellites at high resolution. In the first event, we found transverse motions of brightening threads at speeds up to 55~km~s$^{-1}$ seen in the plane of the sky. Such motions appeared as sinusoidal space--time trajectories with a typical period of $\\sim$390~s, which is consistent with plane-of-sky projections of rotational motions. Phase delays at different locations suggest propagation of twists along the threads at phase speeds of 90--270~km~s$^{-1}$. At least 15 episodes of such motions occurred in two days, none associated with any eruption. For these episodes, the plane-of-sky speed is linearly correlated with the vertical travel distance, suggestive of a constant angular speed. In the second event, we found...

  10. Theoretical Study of Relativistic Retardation Effects: the Abnormal Fine Structure of O Ⅱ

    Institute of Scientific and Technical Information of China (English)

    CHEN Shao-Hao; HAN Xiao-Ying; WANG Xiao-Lu; LI Ji

    2007-01-01

    Using multi-configuration Dirac-Fock and relativistic configuration interaction methods with high-order corrections, we report our precise calculation results of the fine-structure energy levels of the ground-state configuration of OⅡ(1s22s22p3). Our calculated fine-structure splittings of 2D3/2,5/2 and 2P1/2,3/2 are abnormal. We elucidate that the transverse (Breit) interaction, i.e. relativistic retardation effect, plays an important role for the abnormal fine-structure splittings. Our calculation results are in good agreement with experimental measurements.

  11. The Fine Structure of Dyadically Badly Approximable Numbers

    CERN Document Server

    Nilsson, Johan

    2010-01-01

    We consider badly approximable numbers in the case of dyadic diophantine approximation. For the unit circle $\\mathbb{S}$ and the smallest distance to an integer $\\|\\cdot\\|$ we give elementary proofs that the set $F(c) = \\{x \\in \\mathbb{S}: \\|2^nx\\| \\geq c, n\\geq 0\\}$ is a fractal set whose Hausdorff dimension depends continuously on $c$, is constant on intervals which form a set of Lebesgue measure 1 and is self-similar. Hence it has a fractal graph. Moreover, the dimension of $F(c)$ is zero if and only if $c\\geq 1-2\\tau$, where $\\tau$ is the Thue-Morse constant. We completely characterise the intervals where the dimension remains unchanged. As a consequence we can completely describe the graph of $ c\\mapsto \\dim_H \\{x\\in[0,1]: \\|x-\\frac{m}{2^n}\\|< \\frac{c}{2^n} \\textnormal{finitely often}\\}$.

  12. The Faraday effect revisited

    DEFF Research Database (Denmark)

    Cornean, Horia; Nenciu, Gheorghe

    2009-01-01

    This paper is the second in a series revisiting the (effect of) Faraday rotation. We formulate and prove the thermodynamic limit for the transverse electric conductivity of Bloch electrons, as well as for the Verdet constant. The main mathematical tool is a regularized magnetic and geometric...

  13. Fine structure of the oesophageal and gastric glands of the red ...

    African Journals Online (AJOL)

    maculata Dumeril were studied uSing the electron microscope. The cells of the oesophageal glands contained abundant secretory granules, rough endoplasmic .... The normal human gastric epithelia. A fine structural study. Lab. Invest.

  14. Analysis of the fine structure of Sn11 +-Sn14 + ions by optical spectroscopy in an electron-beam ion trap

    Science.gov (United States)

    Windberger, A.; Torretti, F.; Borschevsky, A.; Ryabtsev, A.; Dobrodey, S.; Bekker, H.; Eliav, E.; Kaldor, U.; Ubachs, W.; Hoekstra, R.; Crespo López-Urrutia, J. R.; Versolato, O. O.

    2016-07-01

    We experimentally re-evaluate the fine structure of Sn11 +-Sn14 + ions. These ions are essential in bright extreme-ultraviolet (EUV) plasma-light sources for next-generation nanolithography, but their complex electronic structure is an open challenge for both theory and experiment. We combine optical spectroscopy of magnetic dipole M 1 transitions, in a wavelength range covering 260 to 780 nm, with charge-state selective ionization in an electron beam ion trap. Our measurements confirm the predictive power of ab initio calculations based on Fock space coupled cluster theory. We validate our line identification using semiempirical cowan calculations with adjustable wave-function parameters. Available Ritz combinations further strengthen our analysis. Comparison with previous work suggests that line identifications in the EUV need to be revisited.

  15. Quantum Theory without Planck's Constant

    CERN Document Server

    Ralston, John P

    2012-01-01

    Planck's constant was introduced as a fundamental scale in the early history of quantum mechanics. We find a modern approach where Planck's constant is absent: it is unobservable except as a constant of human convention. Despite long reference to experiment, review shows that Planck's constant cannot be obtained from the data of Ryberg, Davisson and Germer, Compton, or that used by Planck himself. In the new approach Planck's constant is tied to macroscopic conventions of Newtonian origin, which are dispensable. The precision of other fundamental constants is substantially improved by eliminating Planck's constant. The electron mass is determined about 67 times more precisely, and the unit of electric charge determined 139 times more precisely. Improvement in the experimental value of the fine structure constant allows new types of experiment to be compared towards finding "new physics." The long-standing goal of eliminating reliance on the artifact known as the International Prototype Kilogram can be accompl...

  16. Time-Varying Fundamental Constants

    Science.gov (United States)

    Olive, Keith

    2003-04-01

    Recent data from quasar absorption systems can be interpreted as arising from a time variation in the fine-structure constant. However, there are numerous cosmological, astro-physical, and terrestrial bounds on any such variation. These includes bounds from Big Bang Nucleosynthesis (from the ^4He abundance), the Oklo reactor (from the resonant neutron capture cross-section of Sm), and from meteoretic lifetimes of heavy radioactive isotopes. The bounds on the variation of the fine-structure constant are significantly strengthened in models where all gauge and Yukawa couplings vary in a dependent manner, as would be expected in unified theories. Models which are consistent with all data are severly challenged when Equivalence Principle constraints are imposed.

  17. Fine structure of defects in radial nematic droplets

    Science.gov (United States)

    Mkaddem; Gartland

    2000-11-01

    We investigate the structure of defects in nematic liquid crystals confined in spherical droplets and subject to radial strong anchoring. Equilibrium configurations of the order-parameter tensor field in a Landau-de Gennes free energy are numerically modeled using a finite-element package. Within the class of axially symmetric fields, we find three distinct solutions: the familiar radial hedgehog, the small ring (or loop) disclination predicted by Penzenstadler and Trebin, and a solution that consists of a short disclination line segment along the rotational symmetry axis terminating in isotropic end points. Phase and bifurcation diagrams are constructed to illustrate how the three competing configurations are related. They confirm that the transition from the hedgehog to the ring structure is first order. The third configuration is metastable (in our symmetry class) and forms an alternate solution branch bifurcating off the radial hedgehog branch at the temperature below which the hedgehog ceases to be metastable. Dependence on temperature, droplet size, and elastic constants is investigated, and comparisons with other studies are made.

  18. Excitonic fine structure of elongated InAs/InP quantum dots

    Science.gov (United States)

    Zieliński, M.

    2013-10-01

    The bright exciton splitting in nanosystems and its origins are of primary importance for quantum-dot-based entangled-photon-pair generation. In this paper, I investigate excitonic energies and fine structure for million-atom InAs/InP quantum dots using many-body theory in conjunction with the empirical tight-binding method. Whereas the phenomenological theories relate the fine-structure splitting to quantum-dot-shape asymmetry, using an atomistic approach I demonstrate that for certain elongated quantum-dot shapes the bright exciton splitting can be significantly reduced. I demonstrate that strain effects play an essential role as the main contribution to the bright exciton splitting in InAs/InP quantum dots and observe highly reduced fine-structure splitting for high-symmetry quantum dots without wetting layer. I report the “intrinsic” fine-structure splitting, due to the underlying crystal lattice, to be generally significantly larger than the values predicted by the empirical pseudopotential calculations. Finally, I study excitonic properties of alloyed InAsP quantum dots and demonstrate that alloying effects can significantly reduce fine-structure splitting even in significantly elongated quantum dots.

  19. Impaired perception of temporal fine structure and musical timbre in cochlear implant users.

    Science.gov (United States)

    Heng, Joseph; Cantarero, Gabriela; Elhilali, Mounya; Limb, Charles J

    2011-10-01

    Cochlear implant (CI) users demonstrate severe limitations in perceiving musical timbre, a psychoacoustic feature of sound responsible for 'tone color' and one's ability to identify a musical instrument. The reasons for this limitation remain poorly understood. In this study, we sought to examine the relative contributions of temporal envelope and fine structure for timbre judgments, in light of the fact that speech processing strategies employed by CI systems typically employ envelope extraction algorithms. We synthesized "instrumental chimeras" that systematically combined variable amounts of envelope and fine structure in 25% increments from two different source instruments with either sustained or percussive envelopes. CI users and normal hearing (NH) subjects were presented with 150 chimeras and asked to determine which instrument the chimera more closely resembled in a single-interval two-alternative forced choice task. By combining instruments with similar and dissimilar envelopes, we controlled the valence of envelope for timbre identification and compensated for envelope reconstruction from fine structure information. Our results show that NH subjects utilize envelope and fine structure interchangeably, whereas CI subjects demonstrate overwhelming reliance on temporal envelope. When chimeras were created from dissimilar envelope instrument pairs, NH subjects utilized a combination of envelope (p = 0.008) and fine structure information (p = 0.009) to make timbre judgments. In contrast, CI users utilized envelope information almost exclusively to make timbre judgments (p timbre judgments (p musical timbre in CI users.

  20. A simulation for gravity fine structure recovery from high-low GRAVSAT SST data

    Science.gov (United States)

    Estes, R. H.; Lancaster, E. R.

    1976-01-01

    Covariance error analysis techniques were applied to investigate estimation strategies for the high-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. Surface density blocks of 5 deg x 5 deg and 2 1/2 deg x 2 1/2 deg resolution were utilized to represent the high order geopotential with the drag-free GRAVSAT configured in a nearly circular polar orbit at 250 km. altitude. GEOPAUSE and geosynchronous satellites were considered as high relay spacecraft. It is demonstrated that knowledge of gravitational fine structure can be significantly improved at 5 deg x 5 deg resolution using SST data from a high-low configuration with reasonably accurate orbits for the low GRAVSAT. The gravity fine structure recoverability of the high-low SST mission is compared with the low-low configuration and shown to be superior.

  1. Distortion product otoacoustic emission fine-structure: An insight into the ear asymmetries

    Directory of Open Access Journals (Sweden)

    Bhamini Sharma

    2014-01-01

    Full Text Available Context: Use of distortion product otoacoustic emission (DPOAE as a measure of hearing sensitivity is common in clinical practice. However, use of a more informative DPOAE fine-structure has been limited due to non-reliability of DPOAE fine-structure. Aim: The current study was aimed at testing the interaural differences between the DPOAE fine-structure across three age groups. Settings and Design: Acoustically treated room with a calibrated dual channel audiometer (Orbiter 922 along with TDH-39 headphones and B-71 bone vibrator. GSI Tympstar was used for tympanometry and acoustic reflex measurements while ′ILO V6′ OAE analyzer was used for recording of DPOAE and DPOAE fine-structure. Material and Methods : A total of 98 subjects with normal peripheral hearing sensitivity were tested for DPOAE fine-structure. The three age groups consisted of young (8-18 years; n = 50, middle aged (30-40 years; n = 30, and elderly (50-60 years; n = 18. DPOAE fine-structure was studied at 8 points per octave on a total of 25 frequencies from 1000 to 8000 Hz. Statistical Analysis Used: Repeated measure analysis of variance. Results: There was a significant difference (P < 0.05 in the amplitudes at frequencies between 2000 and 3000 Hz. This was evident irrespective of the age groups. There was also a decrease in DPOAE amplitude in elderly group. Conclusions: Interaural asymmetry can be attributed as a reason to these findings and it occurred mostly in the speech perception frequencies. Reduced amplitude of DPAOE in the elderly group can be attributed to presbycusis.

  2. Fine structure in a strong magnetic field: Paschen-Back effect reconsidered in Rydberg atoms

    Science.gov (United States)

    Liu, Wenyu; Gu, Sihong; Li, Baiwen

    1996-05-01

    Using a kind of potential model wave function for alkali metal atoms, we nonperturbatively study the effect of fine structure on the Rydberg spectra of Cs atom in a strong magnetic field. Our numerical results reveal spectral structure dramatically different from the well-established Paschen-Back effect, and we argue that the fine structure of the Rydberg Cs atom cannot be neglected even in a magnetic field as strong as several teslas. We also give an error estimate of our results and a word on possible experimental verification.

  3. Reaction rate constant of CH2O + H = HCO + H2 revisited: a combined study of direct shock tube measurement and transition state theory calculation.

    Science.gov (United States)

    Wang, Shengkai; Dames, Enoch E; Davidson, David F; Hanson, Ronald K

    2014-11-06

    The rate constant of the H-abstraction reaction of formaldehyde (CH2O) by hydrogen atoms (H), CH2O + H = H2 + HCO, has been studied behind reflected shock waves with use of a sensitive mid-IR laser absorption diagnostic for CO, over temperatures of 1304-2006 K and at pressures near 1 atm. C2H5I was used as an H atom precursor and 1,3,5-trioxane as the CH2O precursor, to generate a well-controlled CH2O/H reacting system. By designing the experiments to maintain relatively constant H atom concentrations, the current study significantly boosted the measurement sensitivity of the target reaction and suppressed the influence of interfering reactions. The measured CH2O + H rate constant can be expressed in modified Arrhenius from as kCH2O+H(1304-2006 K, 1 atm) = 1.97 × 10(11)(T/K)(1.06) exp(-3818 K/T) cm(3) mol(-1)s(-1), with uncertainty limits estimated to be +18%/-26%. A transition-state-theory (TST) calculation, using the CCSD(T)-F12/VTZ-F12 level of theory, is in good agreement with the shock tube measurement and extended the temperature range of the current study to 200-3000 K, over which a modified Arrhenius fit of the rate constant can be expressed as kCH2O+H(200-3000 K) = 5.86 × 10(3)(T/K)(3.13) exp(-762 K/T) cm(3) mol(-1)s(-1).

  4. Variation of fundamental constants

    CERN Document Server

    Flambaum, V V

    2006-01-01

    We present a review of recent works devoted to the variation of the fine structure constant alpha, strong interaction and fundamental masses. There are some hints for the variation in quasar absorption spectra, Big Bang nucleosynthesis, and Oklo natural nuclear reactor data. A very promising method to search for the variation of the fundamental constants consists in comparison of different atomic clocks. Huge enhancement of the variation effects happens in transition between accidentally degenerate atomic and molecular energy levels. A new idea is to build a ``nuclear'' clock based on the ultraviolet transition between very low excited state and ground state in Thorium nucleus. This may allow to improve sensitivity to the variation up to 10 orders of magnitude! Huge enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feschbach resonance.

  5. Fossil turbulence revisited

    CERN Document Server

    Gibson, C H

    1999-01-01

    A theory of fossil turbulence presented in the 11th Liege Colloquium on Marine turbulence is "revisited" in the 29th Liege Colloquium "Marine Turbulence Revisited". The Gibson (1980) theory applied universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as it is constrained and fossilized by buoyancy forces. Towed oceanic microstructure measurements of Schedvin (1979) confirmed the predicted universal constants. Universal constants, spectra, hydrodynamic phase diagrams (HPDs) and other predictions of the theory have been reconfirmed by a wide variety of field and laboratory observations. Fossil turbulence theory has many applications; for example, in marine biology, laboratory and field measurements suggest phytoplankton species with different swimming abilities adjust their growth strategies differently by pattern recognition of several days of turbulence-fossil-turbulence dissipation and persistence times above thres...

  6. Molar absorption coefficients and stability constants of metal complexes of 4-(2-pyridylazo)resorcinol (PAR): Revisiting common chelating probe for the study of metalloproteins.

    Science.gov (United States)

    Kocyła, Anna; Pomorski, Adam; Krężel, Artur

    2015-11-01

    4-(2-Pyridylazo)resorcinol (PAR) is one of the most popular chromogenic chelator used in the determination of the concentrations of various metal ions from the d, p and f blocks and their affinities for metal ion-binding biomolecules. The most important characteristics of such a sensor are the molar absorption coefficient and the metal-ligand complex dissociation constant. However, it must be remembered that these values are dependent on the specific experimental conditions (e.g. pH, solvent components, and reactant ratios). If one uses these values to process data obtained in different conditions, the final result can be under- or overestimated. We aimed to establish the spectral properties and the stability of PAR and its complexes accurately with Zn(2+), Cd(2+), Hg(2+), Co(2+), Ni(2+), Cu(2+), Mn(2+) and Pb(2+) at a multiple pH values. The obtained results account for the presence of different species of metal-PAR complexes in the physiological pH range of 5 to 8 and have been frequently neglected in previous studies. The effective molar absorption coefficient at 492 nm for the ZnHx(PAR)2 complex at pH7.4 in buffered water solution is 71,500 M(-1) cm(-1), and the dissociation constant of the complex in these conditions is 7.08×10(-13) M(2). To confirm these values and estimate the range of the dissociation constants of zinc-binding biomolecules that can be measured using PAR, we performed several titrations of zinc finger peptides and zinc chelators. Taken together, our results provide the updated parameters that are applicable to any experiment conducted using inexpensive and commercially available PAR.

  7. On the relationship between multi-channel envelope and temporal fine structure

    DEFF Research Database (Denmark)

    2011-01-01

    The envelope of a signal is broadly defined as the slow changes in time of the signal, where as the temporal fine structure (TFS) are the fast changes in time, i.e. the carrier wave(s) of the signal. The focus of this paper is on envelope and TFS in multi-channel systems. We discuss the differenc...

  8. Distortion product otoacoustic emission fine structure as an early hearing loss predictor

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    2006-01-01

    Otoacoustic emissions (OAEs) are a promising method to monitor early noise-induced hearing losses. When distortion product otoacoustic emissions (DPOAEs) are obtained with a high-frequency resolution, a ripple structure across frequency can be seen, called DPOAE fine structure. In this study DPOA...

  9. Comment on ``Interpretation of the fine structure in the 14C radioactive decay of 223'

    Science.gov (United States)

    Hussonnois, M.; Le Du, J. F.; Brillard, L.; Ardisson, G.

    1991-12-01

    Priority of our interpretation of the fine structure in the 14C radioactive decay of 223Ra is asserted. It seems that the deformation parameter values, used in the framework of ARM to interpret properties of both 223Ra ground and excited states, partly allow for the qualitative interpretation of the experimental hindrance factors to the 209Pb states.

  10. Simulations of fine structures on the zero field steps of Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Scheuermann, M.; Chi, C. C.; Pedersen, Niels Falsig;

    1986-01-01

    are generated by the interaction of the bias current with the fluxon at the junction edges. On the first zero field step, the voltages of successive fine structures are given by Vn=[h-bar]/2e(2omegap/n), where n is an even integer. Applied Physics Letters is copyrighted by The American Institute of Physics....

  11. MULTIPLET FINE-STRUCTURE IN THE PHOTOEMISSION OF THE GADOLINIUM AND TERBIUM 5P LEVELS

    NARCIS (Netherlands)

    THOLE, BT; WANG, XD; HARMON, BN; LI, DQ; DOWBEN, PA

    1993-01-01

    Fine structure is observed in the photoemission of the gadolinium and terbium 5p levels. The 5p levels are split into multiplets due to spin-orbit splitting and to Coulomb and exchange interactions with the f shell. The calculated theoretical spectra are in good agreement with the experimental resul

  12. The plasma processes of some solar radio burst and their fine structures on the time

    Science.gov (United States)

    Ning, Z.-J.; Lu, Q.-K.; Fu, Q.-J.; Yan, Y.

    2003-04-01

    We present three special solar radio bursts or fine structures on the frequency band of 1.00-7.60Ghz. Firstly, we study the type III burst pair, which was recorded by spectrometer 1.00-2.00GHz at National Astronomical Observatory of China on Jan. 05, 1994. A plausible model might be thought that this event could be the observational evidence of two electron beams traveling bi-directions simultanuously due to the acceleration of magnetic reconnection in the corona. Secondly, a fine structure of microwave type IV bursts is microwave type M-burst on May 03 1999. Partial N-burst, which is a fine structure of solar III-V bursts recorded on August 251999 by both separated spectrometers 4.50-7.50 GHz at Purple Mountain observatory and 5.20-7.60GHz at NAO respectively, is the third phenomenon studied here. As the N-burst documented before, the last two fine structures are thought to the new observational evidences of electron beam reflected by magnetic mirror in the corona.

  13. Inflationary Phase with Time Varying Fundamental Constants

    CERN Document Server

    Berman, M S; Berman, Marcelo S.; Trevisan, Luis A.

    2002-01-01

    Following Barrow, and Barrow and collaborators, we find a cosmological JBD model, with varying speed of light and varying fine structure constant, where the deceleration parameter is -1,causing acceleration of the Universe.Indeed, we have an exponential inflationary phase. Plancks time, energy, length,etc.,might have had different numerical values in the past, than those available in the litterature, due to the varying values for speed of light, and gravitational constant.

  14. Revisiting the Dielectric Constant Effect on the Nucleophile and Leaving Group of Prototypical Backside Sn2 Reactions: a Reaction Force and Atomic Contribution Analysis.

    Science.gov (United States)

    Pedraza-González, Laura Milena; Galindo, Johan Fabian; Gonzalez, Ronald; Reyes, Andrés

    2016-10-09

    The solvent effect on the nucleophile and leaving group atoms of the prototypical F(-) + CH3Cl → CH3F + Cl(-) backside bimolecular nucleophilic substitution reaction (SN2) is analyzed employing the reaction force and the atomic contributions methods on the intrinsic reaction coordinate (IRC). Solvent effects were accounted for using the polarizable continuum solvent model. Calculations were performed employing eleven dielectric constants, ε, ranging from 1.0 to 78.5, to cover a wide spectrum of solvents. The reaction force data reveals that the solvent mainly influences the region of the IRC preceding the energy barrier, where the structural rearrangement to reach the transition state occurs. A detailed analysis of the atomic role in the reaction as a function of ε reveals that the nucleophile and the carbon atom are the ones that contribute the most to the energy barrier. In addition, we investigated the effect of the choice of nucleophile and leaving group on the ΔE0 and ΔE(↕) of Y(-) + CH3X → YCH3 + X(-) (X,Y= F, Cl, Br, I) in aqueous solution. Our analysis allowed us to find relationships between the atomic contributions to the activation energy and leaving group ability and nucleophilicity.

  15. Variation of Fundamental Constants

    Science.gov (United States)

    Flambaum, V. V.

    2006-11-01

    Theories unifying gravity with other interactions suggest temporal and spatial variation of the fundamental ``constants'' in expanding Universe. The spatial variation can explain a fine tuning of the fundamental constants which allows humans (and any life) to appear. We appeared in the area of the Universe where the values of the fundamental constants are consistent with our existence. We present a review of recent works devoted to the variation of the fine structure constant α, strong interaction and fundamental masses. There are some hints for the variation in quasar absorption spectra. Big Bang nucleosynthesis, and Oklo natural nuclear reactor data. A very promising method to search for the variation of the fundamental constants consists in comparison of different atomic clocks. Huge enhancement of the variation effects happens in transition between accidentally degenerate atomic and molecular energy levels. A new idea is to build a ``nuclear'' clock based on the ultraviolet transition between very low excited state and ground state in Thorium nucleus. This may allow to improve sensitivity to the variation up to 10 orders of magnitude! Huge enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feshbach resonance.

  16. Temporal integration near threshold fine structure - The role of cochlear processing

    DEFF Research Database (Denmark)

    Epp, Bastian; Mauermann, Manfred; Verhey, Jesko L.

    structure, but lack a decrease of thresholds with increased pulse duration. The model was extended by including a temporal integrator which introduces a low-pass behavior of the data with different slopes of the predicted threshold curves, producing good agreement with the data. On the basis of the model......The hearing thresholds of normal hearing listeners often show quasi-periodic variations when measured with a high frequency resolution. This hearing threshold fine structure is related to other frequency specific variations in the perception of sound such as loudness and amplitude modulated tones...... at low intensities. The detection threshold of a pulsed tone also depends not only on the pulse duration, but also on the position of its frequency within threshold fine structure. The present study investigates if psychoacoustical data on detection of a pulsed tone can be explained with a nonlinear...

  17. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    Science.gov (United States)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-01-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.

  18. TEM and HREM study on the fine structure and the interfacial structure of bainite

    Institute of Scientific and Technical Information of China (English)

    李凤照; 敖青; 顾英妮; 姜江; 孙东升; 戴吉岩; 彭红樱

    1996-01-01

    The fine structure of bainite,the morphology and distribution of carbide in steels and the morphology of bainite in Cu-Zn-Al alloys have been investigated with TEM.The interfacial structure ledges and interfacial crystal lattice images of Cu-Zn-Al alloys have also been investigated with HREM.The addition of alloying microelements can fine the structure of bainitic ferrite markedly.The bainitic ferrite is composed of subunits or subchunks.The carbides differ in morphologies and are distributed in between laths,inside the plates and on the boundaries of subunits.There are abundant fine structures in bainitic ferrite.In the primary bainite of Cu-Zn-Al alloy there are interfacial structure ledges,the height of which is about 3 -40 nm,equal to 15-200 atomic layers.The phase transformation mechanism of bainite is discussed.

  19. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Naftel, S.J.; Coulthard, I.; Hu, Y.; Sham, T.K.; Zinke-Allmang, M. [Univ. of Western Ontario, London, Ontario (Canada)

    1998-12-31

    Cobalt silicide thin films, prepared on Si(100) wafers, have been studied by X-ray absorption near edge structures (XANES) at the Si K-, L{sub 2,3}- and Co K-edges utilizing both total electron (TEY) and fluorescence yield (FLY) detection as well as extended X-ray absorption fine structure (EXAFS) at the Co K-edge. Samples made using DC sputter deposition on clean Si surfaces and MBE were studied along with a bulk CoSi{sub 2} sample. XANES and EXAFS provide information about the electronic structure and morphology of the films. It was found that the films studied have essentially the same structure as bulk CoSi{sub 2}. Both the spectroscopy and materials characterization aspects of XAFS (X-ray absorption fine structures) are discussed.

  20. Exciton fine structure splitting in InP quantum dots in GaInP.

    Science.gov (United States)

    Ellström, C; Seifert, W; Pryor, C; Samuelson, L; Pistol, M-E

    2007-07-25

    We have investigated the electronic structure of excitons in InP quantum dots in GaInP. The exciton is theoretically expected to have four states. Two of the states are allowed to optically decay to the ground (vacuum) state in the dipole approximation. We see these two lines in photoluminescence (PL) experiments and find that the splitting between the lines (the fine structure splitting) is 150(± 30) µeV. The lines were perpendicularly polarized. We verified that the lines arise from neutral excitons by using correlation spectroscopy. The theoretical calculations show that the polarization of the emission lines are along and perpendicular to the major axis of elongated dots. The fine structure splitting depends on the degree of elongation of the dots and is close to zero for dots of cylindrical symmetry, despite the influence of the piezoelectric polarization, which is included in the calculation.

  1. Topological map of the Hofstadter butterfly: Fine structure of Chern numbers and Van Hove singularities

    Science.gov (United States)

    Naumis, Gerardo G.

    2016-04-01

    The Hofstadter butterfly is a quantum fractal with a highly complex nested set of gaps, where each gap represents a quantum Hall state whose quantized conductivity is characterized by topological invariants known as the Chern numbers. Here we obtain simple rules to determine the Chern numbers at all scales in the butterfly fractal and lay out a very detailed topological map of the butterfly by using a method used to describe quasicrystals: the cut and projection method. Our study reveals the existence of a set of critical points that separates orderly patterns of both positive and negative Cherns that appear as a fine structure in the butterfly. This fine structure can be understood as a small tilting of the projection subspace in the cut and projection method and by using a Chern meeting formula. Finally, we prove that the critical points are identified with the Van Hove singularities that exist at every band center in the butterfly landscape.

  2. Fine-structure-resolved laser-photodetachment electron spectroscopy of In{sup {minus}}

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W.W.; Carpenter, D.L.; Covington, A.M.; Thompson, J.S. [Department of Physics and Chemical Physics Program, University of Nevada, Reno, Nevada, 89557-0058 (United States); Kvale, T.J. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, 43606-3390 (United States); Seely, D.G. [Department of Physics, Albion College, Albion, Michigan, 49224 (United States)

    1998-11-01

    The electron affinity of indium has been measured using the laser-photodetachment electron spectroscopy technique. Fine-structure-resolved photoelectron kinetic energy spectra of In{sup {minus}} were analyzed and the electron affinity of In({sup 2}P{sub 1/2}) was determined to be 0.404{plus_minus}0.009 eV. The fine-structure splittings in the ground state of In{sup {minus}}({sup 3}P{sub 0,1,2}) were determined to be 0.076{plus_minus}0.009 eV (J=0{r_arrow}J=1) and 0.175{plus_minus}0.009 eV (J=0{r_arrow}J=2). This measurement is compared to several recent calculations of the electron affinity of indium. {copyright} {ital 1998} {ital The American Physical Society}

  3. Origin of fine structure of the giant dipole resonance in sd-shell nuclei

    CERN Document Server

    Fearick, R W; Matsubara, H; von Neumann-Cosel, P; Richter, A; Roth, R; Tamii, A

    2014-01-01

    A set of high resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the Giant Dipole Resonance (GDR) in sd-shell nuclei. Understanding is provided by state-of-the-art theoretical Random Phase Approximation (RPA) calculatios for deformed nuclei using for the first time a realistic nucleon-nucleon interaction derived from the Argonne V18 potential with the unitary correlation operator method and supplemented by a phenomenological three-nucleon contact interaction. A wavelet analysis allows to extract significant scales both in the data and calculations characterizing the fine structure of the GDR. The fair agreement supports that the fine structure arises from ground-state deformation driven by alpha clustering.

  4. Fine structural analysis of the stinger in venom apparatus of the scorpion Euscorpius mingrelicus (Scorpiones: Euscorpiidae

    Directory of Open Access Journals (Sweden)

    N Yigit

    2010-01-01

    Full Text Available In this study, the morphology, histology and fine structure of the stinger, a part of the venom apparatus of Euscorpius mingrelicus (Kessler, 1874 (Scorpiones: Euscorpiidae were studied by light microscopy and transmission electron microscopy (TEM. The stinger, located at the end section of the telson, is sickle-shaped. The venom is ejected through a pair of venom pores on its subterminal portion. Both venom ducts extend along the stinger without contact with each other since they are separated by connective tissue cells. The stinger cuticle is composed of two layers. Additionally, there are many pore canals and some hemolymph vessels in the cuticle. This work constitutes the first histological and fine structure study on Euscorpius mingrelicus stinger.

  5. Ab initio self-consistent x-ray absorption fine structure analysis for metalloproteins.

    Science.gov (United States)

    Dimakis, Nicholas; Bunker, Grant

    2006-12-01

    X-ray absorption fine structure is a powerful tool for probing the structures of metals in proteins in both crystalline and noncrystalline environments. Until recently, a fundamental problem in biological XAFS has been that ad hoc assumptions must be made concerning the vibrational properties of the amino acid residues that are coordinated to the metal to fit the data. Here, an automatic procedure for accurate structural determination of active sites of metalloproteins is presented. It is based on direct multiple-scattering simulation of experimental X-ray absorption fine structure spectra combining electron multiple scattering calculations with density functional theory calculations of vibrational modes of amino acid residues and the genetic algorithm differential evolution to determine a global minimum in the space of fitting parameters. Structure determination of the metalloprotein active site is obtained through a self-consistent iterative procedure with only minimal initial information.

  6. The fine structure of Garnia gonadati and its association with the host cell.

    Science.gov (United States)

    Diniz, J A; Silva, E O; Lainson, R; de Souza, W

    2000-12-01

    Most of the studies on the fine structure of protozoa of the Apicomplexa group have been carried out with members of the ToxoPlasma, Eimeria, and Plasmodium genera. In the present study we analyzed the fine structure of Garnia gonadoti parasitizing the red blood cells of the Amazonian reptile Gonatodes humeralis (Reptilia; Lacertilia). Transmission electron microscopy of thin sections showed that G. gonadoti presented all structures characteristic of the group, including the apicoplast. However, four special features were observed: (1) absence of the hemozoin (malarial) pigment; (2) a group of microtubules associated with the mitochondrion; (3) a vacuole containing electron-dense material, which resembled the acidocalcisome described in trypanosomatids; and (4) a special array of the host-cell endoplasmic reticulum around the parasitophorous vacuole.

  7. Electronic fine structure and recombination dynamics in single InAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, R.

    2008-01-28

    In the work at hand single InAs/GaAs quantum dots (QDs) are examined via cathodoluminescence spectroscopy. A thorough analysis of the spectra leads to an unambiguous assignment of the lines to the decay of specific excitonic complexes. A special aspect of the Coulomb interaction, the exchange interaction, gives rise to a fine structure in the initial and final states of an excitonic decay. This leads to a fine structure in the emission spectra that again is unique for every excitonic complex. The exchange interaction is discussed in great detail in this work.QDs of different sizes are investigated and the influence on the electronic properties is monitored. Additionally, the structure is modified ex situ by a thermal annealing process. The changes of the spectra under different annealing temperatures are traced. Finally, recombination dynamics of different excitonic complexes are examined by performing time-resolved cathodoluminescence spectroscopy. (orig.)

  8. Energies, fine structures and transition wavelengths of the core-excited states in Be * ions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fine structures of doubly excited resonances of lithium-like beryllium are calculated using the saddle-point and saddle-point complex-rotation methods. A restricted variational method is used to obtain a more accurate value for the nonrelativistic energy. Relativistic and mass polarization corrections to the resonance energy are included. Transition wavelengths are also calculated and compared with other theories and experimental results.

  9. Photoconductivity measurement of polymers by x-ray absorption fine structure

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Photoconductivity spectra measurement of polymers at x-ray energies around the Zn and Co K edges,shows obvious x-ray absorption fine structure oscillations.The photoconductivity spectra obtained for gapped and sandwiched electrode geometric samples,indicate that the shape of photoconductivity spectrum depends on the electrode configuration of the samples.The thickness of the conduction layer can be estimated from the photoconductivity spectrum.

  10. The 16th International Conference on X-ray Absorption Fine Structure (XAFS16)

    Science.gov (United States)

    Grunwaldt, J.-D.; Hagelstein, M.; Rothe, J.

    2016-05-01

    This preface of the proceedings volume of the 16th International Conference on X- ray Absorption Fine Structure (XAFS16) gives a glance on the five days of cutting-edge X-ray science which were held in Karlsruhe, Germany, August 23 - 28, 2015. In addition, several satellite meetings took place in Hamburg, Berlin and Stuttgart, a Sino-German workshop, three data analysis tutorials as well as special symposia on industrial catalysis and XFELs were held at the conference venue.

  11. HRTS observations of the fine structure and dynamics of the solar chromosphere and transition zone

    Science.gov (United States)

    Dere, K. P.

    1983-01-01

    Arc-second UV observations of the Sun by the NRL High Resolution Telescope and Spectrograph (HRTS) have led to the discovery of dynamic fine structures such as 400 km/s coronal jets and chromospheric jets (spicules) and have provided new information about the structure and dynamics of the transition zone. These observations are reviewed and their relevance to the origin of the solar wind is discussed.

  12. An extended anomalous fine structure of X-ray quasi-Bragg diffuse scattering from multilayers

    CERN Document Server

    Chernov, V A; Mytnichenko, S V

    2001-01-01

    An X-ray quasi-Bragg diffuse scattering anomalous fine structure technique was probed near the absorption Ni K-edge to study the interfacial structure of the Ni/C multilayer deposited by the laser ablation. Like other combinations of the EXAFS and diffraction techniques, this method has a spatial selectivity and was shown qualitatively to provide atomic structural information from the mixed interfacial layers. The possibilities and advantages of this technique are discussed.

  13. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    Science.gov (United States)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  14. Determining the velocity fine structure by a laser anemometer with fixed orientation

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, Leif; Kirkegaard, P.; Mikkelsen, Torben

    2011-02-15

    We have studied the velocity structure functions and spectra which can be determined by a CW-laser anemometer and a (pulsed) lidar anemometer. We have found useful theoretical expressions for both types of anemometers and compared their filtering of the along-beam turbulent velocity. The purpose has been to establish a basis for remote determining of turbulence fine-structure in terms of the rate of dissipation of specific kinetic energy in the atmospheric boundary layer. (Author)

  15. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Pentlehner, D.; Slenczka, A., E-mail: alkwin.slenczka@chemie.uni-regensburg.de [Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg (Germany)

    2015-01-07

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broad (Δν > 100 cm{sup −1}) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time.

  16. Complete study of excitonic fine-structure splitting in GaN/AlN quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hoenig, Gerald; Winkelnkemper, Momme; Schliwa, Andrei; Hoffmann, Axel; Bimberg, Dieter [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany); Kindel, Christian [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany); Research Center for Advanced Science and Technology, University of Tokyo (Japan); Kako, Satoshi [Institute for Nano Quantum Information Electronics, University of Tokyo (Japan); Kawano, Takeshi; Oishi, Hiroaki [Research Center for Advanced Science and Technology, University of Tokyo (Japan); Arakawa, Yasuhiko [Research Center for Advanced Science and Technology, University of Tokyo (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo (Japan); Institute of Industrial Science, University of Tokyo, Komaba, Meguro, Tokyo (Japan)

    2010-07-01

    A detailed understanding of the excitonic fine structure in quantum dots (QDs) is indispensable for their use in quantum cryptography devices. While the fine structure in As-based QDs has been studied extensively, there is a lack of such investigations for N-based QDs, which might operate at room temperature. We present the first complete study of excitonic fine-structure splitting (FSS) in GaN/AlN QDs. Our experimental studies reveal a huge FSS of up to 7 meV with a strong dependence on the emission energy inverse to that in As-based QDs. Our theoretical studies, performed with a configuration-interaction method based on realistic 8-band-k.p Hartree-Fock states, confirm the experimental results and identify the origin of FSS as lattice strain induced. Based on our results it is possible to induce a strain gradient (by micro mechanic techniques or structuring methods), which will reduce the FSS to zero for the emission of entangled photon pairs.

  17. Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex.

    Science.gov (United States)

    Abdala, Carolina; Mishra, Srikanta K; Williams, Tracy L

    2009-03-01

    In humans, when the medial olivocochlear (MOC) pathway is activated by noise in the opposite ear, changes in distortion product otoacoustic emission (DPOAE) level, i.e., the MOC reflex, can be recorded in the test ear. Recent evidence suggests that DPOAE frequency influences the direction (suppression/enhancement) of the reflex. In this study, DPOAEs were recorded at fine frequency intervals from 500 to 2500 Hz, with and without contralateral acoustic stimulation (CAS) in a group of 15 adults. The MOC reflex was calculated only at DPOAE frequencies corresponding to peaks in the fine structure. Additionally, inverse fast-Fourier transform was conducted to evaluate MOC effects on individual DPOAE components. Results show the following: (1) When considering peaks only, the mean MOC reflex was -2.05 dB and 97% of observations reflected suppression, (2) CAS reduced distortion characteristic frequency component levels more than overlap component levels, and (3) CAS produced an upward shift in fine structure peak frequency. Results indicate that when the MOC reflex is recorded at DPOAE frequencies corresponding to fine structure maxima (i.e., when DPOAE components are constructive and in phase), suppression is reliably observed and level enhancement, which probably reflects component mixing in the ear canal rather than strength of the MOC reflex, is eliminated.

  18. Topological map of the Hofstadter butterfly: Fine structure of Chern numbers and Van Hove singularities

    Energy Technology Data Exchange (ETDEWEB)

    Naumis, Gerardo G., E-mail: naumis@fisica.unam.mx [Departamento de Física–Química, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 20-364, 01000 México, Distrito Federal (Mexico); Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Escuela Superior de Física y Matemáticas, ESIA-Zacatenco, Instituto Politécnico Nacional, México D.F. (Mexico)

    2016-04-29

    The Hofstadter butterfly is a quantum fractal with a highly complex nested set of gaps, where each gap represents a quantum Hall state whose quantized conductivity is characterized by topological invariants known as the Chern numbers. Here we obtain simple rules to determine the Chern numbers at all scales in the butterfly fractal and lay out a very detailed topological map of the butterfly by using a method used to describe quasicrystals: the cut and projection method. Our study reveals the existence of a set of critical points that separates orderly patterns of both positive and negative Cherns that appear as a fine structure in the butterfly. This fine structure can be understood as a small tilting of the projection subspace in the cut and projection method and by using a Chern meeting formula. Finally, we prove that the critical points are identified with the Van Hove singularities that exist at every band center in the butterfly landscape. - Highlights: • Use a higher dimensional approach to build a topological map of the Hofstadter butterfly. • There is a fine structure of Chern numbers around each rational flux. • Van Hove singularities are limiting points for topological sequences of the fine flux.

  19. Pressure-Dependent Anharmonic Correlated Einstein Model Extended X-ray Absorption Fine Structure Debye-Waller Factors

    Science.gov (United States)

    Van Hung, Nguyen

    2014-02-01

    A pressure-dependent anharmonic correlated Einstein model is derived for extended X-ray absorption fine structure (EXAFS) Debye-Waller factors (DWFs), which are presented in terms of cumulant expansion up to the third order. The model is based on quantum thermodynamic perturbation theory and includes anharmonic effects based on empirical potentials. Explicit analytical expressions of the pressure-dependent changes in the interatomic distance, anharmonic effective potential, thermodynamic parameters, first, second, and third EXAFS cumulants, and thermal expansion coefficient have been derived. This model avoids the use of extensive full lattice dynamical calculations, yet provides good and reasonable agreement of numerical results for Cu with experimental results of X-ray diffraction (XRD) analysis and pressure-dependent EXAFS. Significant pressure effects are shown by the decrease in the pressure-induced changes in the interatomic distance, EXAFS cumulants and thermal expansion coefficient, as well as by the increase in the pressure-induced changes in the interatomic effective potential, effective spring constant, correlated Einstein frequency, and temperature.

  20. Fine structure of the CCl3 UV absorption spectrum and CCl3 kinetics

    DEFF Research Database (Denmark)

    Ellermann, T.

    1992-01-01

    The UV gas-phase spectrum of CCl3 was recorded in the range 220-300 nm using pulse radiolysis of CHCl3/SF6 or CCl4/Ar gas mixtures. The UV spectrum exhibits a pronounced vibrational fine structure which is assigned to transition into the (C2A1'(3s)) Rydberg state. The vibronic progression has...... a band origin around 250 nm and the spacing of 569 +/- 63 cm-1 is ascribed to excitation of the out-of-plane bending mode. The absorption cross section with a maximum of sigma = (1.02 +/- 0.16) x 10(-17) cm2 molecule-1 at 224.80 +/- 0.16 nm was determined relative to sigma(CH3) and sigma(CH3O2). The rate...... constants for CCl3 + CCl3 + M --> C2Cl6 + M and CCl3 + Cl + M --> CCl4 + M are (5.9 +/- 1.3) x 10(-12) and (6.5 +/- 1.4) x 10(-11) cm3 molecule-1 s-1, respectively, at 298 +/- 2 K and 1 atm total pressure....

  1. Electronic fine structure calculation of metal complexes with three-open-shell s, d, and p configurations.

    Science.gov (United States)

    Ramanantoanina, Harry; Daul, Claude

    2017-08-01

    The ligand field density functional theory (LFDFT) algorithm is extended to treat the electronic structure and properties of systems with three-open-shell electron configurations, exemplified in this work by the calculation of the core and semi-core 1s, 2s, and 3s one-electron excitations in compounds containing transition metal ions. The work presents a model to non-empirically resolve the multiplet energy levels arising from the three-open-shell systems of non-equivalent ns, 3d, and 4p electrons and to calculate the oscillator strengths corresponding to the electric-dipole 3d (m)  → ns (1)3d (m) 4p (1) transitions, with n = 1, 2, 3 and m = 0, 1, 2, …, 10 involved in the s electron excitation process. Using the concept of ligand field, the Slater-Condon integrals, the spin-orbit coupling constants, and the parameters of the ligand field potential are determined from density functional theory (DFT). Therefore, a theoretical procedure using LFDFT is established illustrating the spectroscopic details at the atomic scale that can be valuable in the analysis and characterization of the electronic spectra obtained from X-ray absorption fine structure or electron energy loss spectroscopies.

  2. COLLISIONAL EXCITATION OF THE [C II] FINE STRUCTURE TRANSITION IN INTERSTELLAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, Paul F.; Langer, William D.; Pineda, Jorge L.; Velusamy, T., E-mail: Paul.F.Goldsmith@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2012-11-15

    We analyze the collisional excitation of the 158 {mu}m (1900.5 GHz) fine structure transition of ionized carbon in terms of line intensities produced by simple cloud models. The single C{sup +} fine structure transition is a very important coolant of the atomic interstellar medium (ISM) and of photon-dominated regions in which carbon is partially or completely in ionized form. The [C II] line is widely used as a tracer of star formation in the Milky Way and other galaxies. Excitation of the [C II] fine structure transition can be via collisions with hydrogen molecules, atoms, and electrons. Analysis of [C II] observations is complicated by the fact that it is difficult to determine the optical depth of the line. We discuss the excitation of the [C II] line, deriving analytic results for several limiting cases and carry out numerical solutions using a large velocity gradient model for a more inclusive analysis. For antenna temperatures up to 1/3 of the brightness temperature of the gas kinetic temperature, the antenna temperature is linearly proportional to the column density of C{sup +} irrespective of the optical depth of the transition. This is appropriately referred to as the effectively optically thin approximation. We review the critical densities for excitation of the [C II] line by various collision partners, briefly analyze C{sup +} absorption, and conclude with a discussion of C{sup +} cooling and how the considerations for line intensities affect the behavior of this important coolant of the ISM.

  3. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING. II. PROMINENCE EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Gunár, Stanislav; Mackay, Duncan H. [School of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom)

    2015-10-20

    We use the new three-dimensional (3D) whole-prominence fine structure model to study the evolution of prominences and their fine structures in response to changes in the underlying photospheric magnetic flux distribution. The applied model combines a detailed 3D prominence magnetic field configuration with a realistic description of the prominence plasma distributed along multiple fine structures. In addition, we utilize an approximate Hα visualization technique to study the evolution of the visible cool prominence plasma both in emission (prominence) and absorption (filament). We show that the initial magnetic field configuration of the modeled prominence is significantly disturbed by the changing position of a single polarity of a magnetic bipole as the bipole is advected toward the main body of the filament. This leads to the creation of a barb, which becomes the dominant feature visible in the synthetic Hα images of both the prominence and filament views. The evolution of the bipole also creates conditions that lead to the disappearance and reappearance of large portions of the main body. We also show that an arch-like region containing a dark void (a bubble) can be naturally produced in the synthetic prominence Hα images. While not visible in terms of the magnetic field lines, it is due to a lack of Hα emission from low-pressure, low-density plasma located in shallow magnetic dips lying along the lines of sight intersecting the dark void. In addition, a quasi-vertical small-scale feature consisting of short and deep dips, piled one above the other, is produced.

  4. Fine Structure in the Mm-Wavelength Spectra of the Active Region

    Science.gov (United States)

    Sawant, H. S.; Cecatto, J. R.

    1990-11-01

    RESUMEN. Faltan observaciones solares espectrosc6picas en la longitud de onda milimetrica. Hay sugerencias de que se puede superponer una fi na estructura en frecuencia a la componente-S de la regi6n solar activa, asi como a la componente del brote en las longitudes de onda milimetri- cas. Se ha desarrollado un receptor de alta sensibilidad de pasos de frecuencia que opera en el intervalo de 23-18 GHz con una resoluci6n de 1 GHz y resoluci6n de tiempo variable entre 1.2 y 96 sec, usando la an- tena de Itapetinga de 13.7-m para estudiar la estructura fina en frecuencia y tiempo. Discutimos el espectro en longitud de onda-mm en re- giones activas y su evoluci6n en el tiempo. El estudio de Ia evoluci6n en el tiempo de la regi6n activa en AR 5569 observada el 29 de junio de 1989, sugiere la existencia de estructuras finas como funci6n deltiempo. ABSTRACT. There is a lack of mm-wavelength spectroscopic solar observations. There are suggestions that a fine structure in frequency may be superimposed on the S-component of solar active region as well as on the burst component at inm-wavelengths. To study fine structure in frequency and time, a high sensitivity step frequency receiver operating in the frequency range 23-18 GHz with frequency resolution of 1 GHz and variable time resolution 1.2 to 96 sec, using 13.7 m diameter Itapetinga radome covered antenna, has been developed. Here, we discuss mm-wavelength spectra of active regions and their time evolution. Study of time evolution of an active region AR 5569 observed on 29th June, 1989 suggests existence of fine structures as a function of time. ( Ck : SUN-ACTIVITY - SUN-RADIO RADIATION

  5. Extended X-ray absorption fine structure investigation of nitrogen stabilized expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2010-01-01

    As-delivered austenitic stainless steel and nitrogen stabilized expanded austenite, both fully nitrided and denitrided (in H2), were investigated with Cr, Fe and Ni extended X-ray absorption fine structure. The data shows pronounced short-range ordering of Cr and N. For the denitrided specimen...... the N atoms remaining in the solid state after H2-reduction are trapped by Cr atoms. Quantitative interpretation in terms of the local distortions around Cr atoms and their N coordination number reveals that no Cr–N clusters or CrN platelets are present....

  6. X-ray reflection anomalous fine structure analysis of the stability of permalloy/copper multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Luo, G.M.; Mai, Z.H.; Hase, T.P.A. E-mail: t.p.a.hase@dur.ac.uk; Fulthorpe, B.D.; Tanner, B.K.; Marrows, C.H.; Hickey, B.J

    2001-05-01

    We report the application of reflection anomalous fine structure analysis to the study of the changes in the layer density and local environment in sputtered permalloy/copper multilayers. By fitting the smoothly varying component of the plot of multilayer Bragg peak intensity versus incident X-ray energy, we find a strained permalloy layer at the permalloy/copper but not the copper/permalloy interface. The density difference between copper and strained permalloy layers increases on annealing at 275 deg. C and from the oscillatory component of the spectrum, we show that it is the nearest-neighbour distance around the Ni atoms which decreases.

  7. Tailoring the exciton fine structure of cadmium selenide nanocrystals with shape anisotropy and magnetic field.

    Science.gov (United States)

    Sinito, Chiara; Fernée, Mark J; Goupalov, Serguei V; Mulvaney, Paul; Tamarat, Philippe; Lounis, Brahim

    2014-11-25

    We use nominally spheroidal CdSe nanocrystals with a zinc blende crystal structure to study how shape perturbations lift the energy degeneracies of the band-edge exciton. Nanocrystals with a low degree of symmetry exhibit splitting of both upper and lower bright state degeneracies due to valence band mixing combined with the isotropic exchange interaction, allowing active control of the level splitting with a magnetic field. Asymmetry-induced splitting of the bright states is used to reveal the entire 8-state band-edge fine structure, enabling complete comparison with band-edge exciton models.

  8. Prospect of China's Auroral Fine-structure Imaging System (CAFIS) at Zhongshan station in Antarctica

    Institute of Scientific and Technical Information of China (English)

    LIU Shun-lin; HAN De-sheng; HU Hong-qiao; HUANG De-hong; ZHANG Bei-chen; YANG Hui-gen

    2008-01-01

    A new auroral imaging system is reported which is planned to be deployed at Zhongshan Station in Antarctica in the end of 2009. The system will focus on study of optical auroras in small scales and be called China' s Auroral Fine-structure Imaging System (CAFIS). The project of CAFIS is carried out by support of 'the tenth five-year plan for capacity building' of China. CAFIS will be a powerful groundbased platform for aurora observational experiments. Composing and advantages of CAFIS are introduced in this brief report. Some potential study topics involved CAFIS are also considered.

  9. Tuning Photoluminescence Energy and Fine Structure Splitting in Single Quantum Dots by Uniaxial Stress

    Institute of Scientific and Technical Information of China (English)

    DOU Xiu-Ming; SUN Bao-Quan; WANG Bao-Rui; MA Shan-Shan; ZHOU Rong; HUANG She-Song; NI Hai-Qiao; NIU Zhi-Chuan

    2008-01-01

    @@ We report a photoluminescence (PL) energy red-shift of single quantum dots(QDs)by applying an in-plane compressive uniaxial stress along the[110]direction at a liquid nitrogen temperature.Uniaxial stress has an effect not only on the confinement potential in the growth direction which results in the PL shift,but also on the cylindrical symmetry of QDs which can be reflected by the change of the full width at half maximum of PL peak.This implies that uniaxial stress has an important role in tuning PL energy and fine structure splitting of QDs.

  10. The fine structure levels for ground states of negative ions of nitrogen and phosphorus

    Directory of Open Access Journals (Sweden)

    Leyla Özdemir

    2013-01-01

    Full Text Available The fine structure levels for negative ions (anions of nitrogen and phosphorus have been investigated using multiconfiguration Hartree-Fock method within the framework of Breit-Pauli Hamiltonian (MCHF+BP. Nitrogen and phosphorus have half-filled outer shell in ground state 1s22s22p3 4S and 1s22s22p33s23p3 4S, respectively. It has been stated in most works that the negative ion of nitrogen is instable whereas the negative ion of phosphorus is stable. The results obtained have been compared with other works.

  11. Morphology, fine structure, biochemistry, and function of the spermatic ducts in marine fish.

    Science.gov (United States)

    Lahnsteiner, Franz

    2003-10-01

    The spermatic ducts and the testicular efferent ducts were investigated in different marine teleost fish species (Diplodus sargus, Mullus barbatus, Thalassoma pavo, Trachinus draco, Uranuscopus scaber, Sparisoma cretense, Synodon saurus). From the morphological, histological, fine structural and biochemical investigations it appeared that the testicular main ducts and spermatic ducts of the investigated marine fish have the following functions: storage of spermatozoa, monosacharide synthesis for nutrition of spermatozoa, synthesis of steroid glucuronides, synthesis of seminal plasma proteins, formation of a ionic gradient in the seminal fluid and phagocytotic activity. Species-specific differences were only found in the morphology of the gonads and in the histology of the spermatic duct epithelium.

  12. Anisotropic Beam Model for the Spectral Observations of Radio Burst Fine Structures on 1998 April 15

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A fine structure consisting of three almost equidistant frequency bands was observed in the high frequency part of a solar burst on 1998 April 15 by the spectrometer of Beijing Astronomical Observatory in the range 2.6-3.8 GHz. A model for this event based on beam-anisotropic instability in the solar corona is presented. Longitudinal plasma waves are excited at cyclotron resonance and then transformed into radio emission at their second harmonic. The model is in accordance with the observations if we suppose a magnetic field strength in the region of emission generation of about 200 G.

  13. The fine structure of muscle attachments in a spider (Latrodectus mactans, Fabr.).

    Science.gov (United States)

    Smith, D S; Järlfors, U; Russell, F E

    1969-01-01

    The fine structure of a spider myo-apodeme junction is described, and discussed in terms of other arthropod muscle attachments. This is contrasted with the situation in the venom gland, equipped with muscle fibers that control expulsion of the secreted material. The latter involves a cell-free collagenous matrix, lying between the muscle cells and the sheath of the gland. As in other arthropods, skeletal fibers are attached to the apodeme cuticle via specialized epidermal cells, containing oriented microtubules. Interdigitations between these cells and muscle, basally, and cuticle, apically, are described. Extracellular tonofibrillae described elsewhere are inconspicuous in the apodeme cuticle.

  14. Calculation of the fine structure of the level in Rydberg state of lithium

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The level shift and level formula of lithium atom in Rydberg states are achieved by means of the calculation of polarization of the atomic core (including the contribution of dipole moment, quadrupole moment and octupole moment);meanwhile, the effect of relativity theory, the orbital angular momentum L and the spin angular momentum S coupling (LS coupling), and high order correction of the effective potential are considered. The some fine structures (N=5~12,L=4~9,J=L±1/2) and the corresponding level intervals in Rydberg states can be calculated by the above-mentioned level formula and compared with correlated experimental data.

  15. Ground-based and spaceborn observations of the type II burst with developed fine structure

    Science.gov (United States)

    Dorovskyy, V.; Melnik, V.; Konovalenko, A.; Brazhenko, A.; Rucker, H.; Stanislavskyy, A.; Panchenko, M.

    2012-09-01

    The combination of two huge ground-based radio telescopes (UTR-2 and URAN-2) operated in decameter wavelengths with three spatially separated spacecrafts (SOHO, STEREO-A and STEREO-B) equipped with white light coronagraphs, UV telescopes and decameter-hectometer band radio telescopes created a unique opportunity to investigate the high energy solar transients, such as CMEs and their manifestations in radio bands - type II bursts. In this paper we made detailed analysis of the powerful and complex event occurred on 7 June 2011 consisted of Halo-CME and type II burst with rich fine structure.

  16. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  17. From the Rydberg constant to the fundamental constants metrology; De la constante de Rydberg a la metrologie des constantes fondamentales

    Energy Technology Data Exchange (ETDEWEB)

    Nez, F

    2005-06-15

    This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)

  18. The Fine-Structure of the Net-Circular Polarization in a Sunspot Penumbra

    CERN Document Server

    Tritschler, A; Schlichenmaier, R; Hagenaar, H J

    2007-01-01

    We present novel evidence for a fine structure observed in the net-circular polarization (NCP) of a sunspot penumbra based on spectropolarimetric measurements utilizing the Zeeman sensitive FeI 630.2 nm line. For the first time we detect a filamentary organized fine structure of the NCP on spatial scales that are similar to the inhomogeneities found in the penumbral flow field. We also observe an additional property of the visible NCP, a zero-crossing of the NCP in the outer parts of the center-side penumbra, which has not been recognized before. In order to interprete the observations we solve the radiative transfer equations for polarized light in a model penumbra with embedded magnetic flux tubes. We demonstrate that the observed zero-crossing of the NCP can be explained by an increased magnetic field strength inside magnetic flux tubes in the outer penumbra combined with a decreased magnetic field strength in the background field. Our results strongly support the concept of the uncombed penumbra.

  19. Retinular fine structure in compound eyes of diurnal and nocturnal sphingid moths.

    Science.gov (United States)

    Eguchi, E

    1982-01-01

    Retinular fine structure has been compared in the superposition compound eyes of three sphingid moths, one nocturnal, Cechenena, and two diurnal, Cephonodes and Macroglossum. Cechenena and Cephonodes have tiered retinas with three kinds of retinular cells: two distal, six regular and one basal. The distal retinular cells in Cechenena are special in having a complex partially intracellular rhabdomere not present in Cephonodes. Macroglossum lacks the distal retinular cell. In Cephonodes a unique rhabdom type, formed by the six regular retinular cells in the middle region of the retinula, is divided into three separate longitudinal plates arranged closely parallel to one another. Their constituent microvilli are consequently all nearly unidirectional. The ratio of rhabdom volume to retinular cell volume in the two diurnal sphingids is 10-27%; this is about the same as that (25%) of skipper butterflies, but significantly smaller than in the nocturnal Cechenena (60%). In the diurnal sphingids retinular cell membranes show elongate meandering profiles with septate junctions between adjacent retinular cells. From the comparative fine structure of their eyes the diurnal sphingids and the skippers would appear to be phylogenetically closely related.

  20. Fine structure in the {alpha}-decay of odd-even nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P., E-mail: drkpsanthosh@gmail.com [School of Pure and Applied Physics, Kannur University, Payyanur Campus, Payyanur 670 327 (India); Joseph, Jayesh George; Priyanka, B. [School of Pure and Applied Physics, Kannur University, Payyanur Campus, Payyanur 670 327 (India)

    2012-03-01

    Systematic study on {alpha}-decay fine structure is presented for the first time in the case of odd-even nuclei in the range 83 Less-Than-Or-Slanted-Equal-To Z Less-Than-Or-Slanted-Equal-To 101. The model used for the study is the recently proposed Coulomb and proximity potential model for deformed nuclei (CPPMDN), which employs deformed Coulomb potential, deformed two term proximity potential and centrifugal potential. The computed partial half-lives, total half-lives and branching ratios are compared with experimental data and are in good agreement. The standard deviation of partial half-life is 1.08 and that for branching ratio is 1.21. Our formalism is also successful in predicting angular momentum hindered and structure hindered transitions. The present study reveals that CPPMDN is successful in explaining alpha-decay from ground and isomeric state; and alpha fine structure of even-even, even-odd and odd-even nuclei. Our study relights that the differences in the parent and daughter surfaces or the changes in the deformation parameters as well as the shell structure of the parent and daughter nuclei, influences the alpha decay probability.

  1. Fine structure in the {\\alpha}-decay of odd-even nuclei

    CERN Document Server

    Santhosh, K P; Priyanka, B

    2012-01-01

    Systematic study on {\\alpha}-decay fine structure is presented for the first time in the case of odd-even nuclei in the range 83 \\leq Z \\leq 101. The model used for the study is the recently proposed Coulomb and proximity potential model for deformed nuclei (CPPMDN), which employs deformed Coulomb potential, deformed two term proximity potential and centrifugal potential. The computed partial half lives, total half lives and branching ratios are compared with experimental data and are in good agreement. The standard deviation of partial half-life is 1.08 and that for branching ratio is 1.21. Our formalism is also successful in predicting angular momentum hindered and structure hindered transitions. The present study reveals that CPPMDN is a unified theory which is successful in explaining alpha decay from ground and isomeric state; and alpha fine structure of even-even, even-odd and odd-even nuclei. Our study relights that the differences in the parent and daughter surfaces or the changes in the deformation p...

  2. On the fine structure of the sunspot penumbrae. II. The nature of the Evershed flow

    CERN Document Server

    Borrero, J M; Solanki, S K; Collados, M

    2005-01-01

    We investigate the fine structure of the sunspot penumbra by means of a model that allows for a flux tube in horizontal pressure balance with the magnetic background atmosphere in which it is embedded. We apply this model to spectropolarimetric observations of two neutral iron lines at 1.56 $\\mu$m and invert several radial cuts in the penumbra of the same sunspot at two different heliocentric angles. In the inner part of the penumbra we find hot flux tubes that are somewhat inclined to the horizontal. They become gradually more horizontal and cooler with increasing radial distance. This is accompanied by an increase in the velocity of the plasma and a decrease of the gas pressure difference between flux tube and the background component. At large radial distances the flow speed exceeds the critical speed and evidence is found for the formation of a shock front. These results are in good agreement with simulations of the penumbral fine structure and provide strong support for the siphon flow as the physical me...

  3. Oscillatory behavior of chromospheric fine structures in a network and a semi-active regions

    CERN Document Server

    Bostanci, Z F; Al, N

    2014-01-01

    In the present work, we study the periodicities of oscillations in dark fine structures using observations of a network and a semi-active region close to the solar disk center. We simultaneously obtained spatially high resolution time series of white light images and narrow band images in the H$\\alpha$ line using the 2D G\\"ottingen spectrometer, which were based on two Fabry-Perot interferometers and mounted in the VTT/Observatorio del Teide/Tenerife. During the observations, the H$\\alpha$ line was scanned at 18 wavelength positions with steps of 125 m\\AA. We computed series of Doppler and intensity images by subtraction and addition of the H$\\alpha$ $\\pm$ 0.3 \\AA\\ and $\\pm$ 0.7 \\AA\\ pairs, sampling the upper chromosphere and the upper photosphere, respectively. Then we obtained power, coherence and phase difference spectra by performing a wavelet analysis to the Doppler fluctuations. Here, we present comparative results of oscillatory properties of dark fine structures seen in a network and a semi-active reg...

  4. Low-energy fine-structure resonances in photoionization of O ii

    Science.gov (United States)

    Nahar, Sultana N.; Montenegro, Maximiliano; Eissner, Werner; Pradhan, Anil K.

    2010-12-01

    Resonant features in low-energy photoionization cross sections are reported in coupled-channel calculations for O ii including relativistic fine structure. The calculations reveal extensive near-threshold resonant structures in the small energy region between the fine structure levels of the ground state 2p2(3P0,1,2) of the residual ion O iii. Although the resonances have not yet been observed, they are similar to other experimentally observed features. They are expected to significantly enhance the very-low-temperature dielectronic recombination rates, potentially leading to the resolution of an outstanding nebular abundances anomaly. Higher energy partial and total photoionization cross sections of the ground configuration levels 2p3(4S3/2o,2D3/2,5/2o,2P1/2,3/2o) are found to be in agreement with experimental measurements on synchrotron-based photon sources [1-3], thereby identifying the excited O iii levels present in the ion beams. These are also the first results from a recently developed version of Breit-Pauli R-matrix (BPRM) codes, with inclusion of two-body magnetic interaction terms. The improved relativistic treatment could be important for other astrophysical applications and for more precise benchmarking of experimental measurements.

  5. Fine structure of uterus and non-functioning paruterine organ in Orthoskrjabinia junlanae (Cestoda, Cyclophyllidea).

    Science.gov (United States)

    Korneva, Janetta V; Kornienko, Svetlana A; Jones, Malcolm K

    2016-06-01

    Some cyclophyllidean cestodes provide protection for their eggs in the external environment by providing them with additional protective layers around the egg membranes. In attempting to examine such adaptations, the microanatomy and fine structure of the uterus of pregravid and gravid proglottids of the cyclophyllidean cestode Orthoskrjabinia junlanae, a parasite of mammals that inhabit a terrestrial but moist environment, were studied. In the initial stages of uterine development, developing embryos locate freely in the lumen of a saccate uterus that later partitions into chambers. Each chamber that forms encloses several embryos. The chambers are surrounded by muscle cells that synthesize extracellular matrix actively. The paruterine organs consist of stacks of flattened long outgrowths of muscular cells, interspersed with small lipid droplets. In the gravid proglottids, the size of paruterine organ increases and consists of flattened basal and small rounded apical parts separated by constrictions. The fine structure of the organ wall remains the same: sparse nuclei and stacks of flattened cytoplasmic outgrowths but internal invaginations or lumen in the paruterine organ are absent. Completely developed eggs remain localized in the uterus. Based on the comparative morpho-functional analysis of uterine and paruterine organs and uterine capsules in cestodes, we conclude that these non-functioning paruterine organ in O. junlanae is an example of an atavism. We postulate that the life cycle of the parasite, which infects mammals living in wet habitats, where threats of desiccation of parasite ova is reduced, has favoured a reversion to a more ancestral form of uterine development.

  6. Sensitivity to temporal fine structure and hearing-aid outcomes in older adults

    Directory of Open Access Journals (Sweden)

    Elvira ePerez Vallejos

    2014-02-01

    Full Text Available Objective: to investigate the effect of sensitivity to temporal fine structure on subjective measures of hearing aid outcome.Design: Prior to receiving hearing aids, participants completed a test to assess sensitivity to temporal fine structure (TFS, the Glasgow Hearing Aid Benefit Profile (GHABP, and the Speech, Spatial and Qualities of hearing (SSQ-A. Follow-up appointments, comprised the GHABP, the SSQ-B , and the International Outcome Inventory for Hearing Aid Outcomes (IOI-HA.Study sample: 75 adults were recruited from direct referral clinics. Results: Two thirds of participants were found to have good sensitivity to TFS; listeners with good sensitivity to TFS rated their hearing abilities higher at pre-fitting (SSQ-A than those with poor sensitivity to TFS. At follow-up, participants with good sensitivity to TFS showed a small improvement on SSQ-B over listeners with poor sensitivity to TFS. Conclusions: The clinical identification of a patient’s ability to process TFS information at an early stage in the treatment pathway could prove useful in managing expectations about hearing aid outcomes.

  7. Neon Fine-Structure Line Emission By X-ray Irradiated Protoplanetary Disks

    CERN Document Server

    Glassgold, A E; Igea, J; Glassgold, Alfred E.; Najita, Joan R.; Igea, Javier

    2006-01-01

    Using a thermal-chemical model for the generic T-Tauri disk of D'Alessio et al. (1999), we estimate the strength of the fine-structure emission lines of NeII and NeIII at 12.81 and 15.55 microns that arise from the warm atmosphere of the disk exposed to hard stellar X-rays. The Ne ions are produced by the absorption of keV X-rays from the K shell of neutral Ne, followed by the Auger ejection of several additional electrons. The recombination cascade of the Ne ions is slow because of weak charge transfer with atomic hydrogen in the case of Ne2+ and by essentially no charge transfer for Ne+. For a distance of 140pc, the 12.81 micron line of Ne II has a flux of 1e-14 erg/cm2s, which should be observable with the Spitzer Infrared Spectrometer and suitable ground based instrumentation. The detection of these fine-structure lines would clearly demonstrate the effects of X-rays on the physical and chemical properties of the disks of young stellar objects and provide a diagnostic of the warm gas in protoplanetary dis...

  8. Lakatos Revisited.

    Science.gov (United States)

    Court, Deborah

    1999-01-01

    Revisits and reviews Imre Lakatos' ideas on "Falsification and the Methodology of Scientific Research Programmes." Suggests that Lakatos' framework offers an insightful way of looking at the relationship between theory and research that is relevant not only for evaluating research programs in theoretical physics, but in the social…

  9. Fine-structural changes in the midgut of old Drosophila melanogaster

    Science.gov (United States)

    Anton-Erxleben, F.; Miquel, J.; Philpott, D. E.

    1983-01-01

    Senescent fine-structural changes in the midgut of Drosophila melanogaster are investigated. A large number of midgut mitochondria in old flies exhibit nodular cristae and a tubular system located perpendicular to the normal cristae orientation. Anterior intestinal cells show a senescent accumulation of age pigment, either with a surrounding two-unit membrane or without any membrane. The predominant localization of enlarged mitochondria and pigment in the luminal gut region may be related to the polarized metabolism of the intestinal cells. Findings concur with previous observations of dense-body accumulations and support the theory that mitochondria are involved in the aging of fixed post-mitotic cells. Demonstrated by statistical analyses is that mitochondrial size increase is related to mitochondrial variation increase.

  10. The coefficient of bond thermal expansion measured by extended x-ray absorption fine structure.

    Science.gov (United States)

    Fornasini, P; Grisenti, R

    2014-10-28

    The bond thermal expansion is in principle different from the lattice expansion and can be measured by correlation sensitive probes such as extended x-ray absorption fine structure (EXAFS) and diffuse scattering. The temperature dependence of the coefficient α(bond)(T) of bond thermal expansion has been obtained from EXAFS for CdTe and for Cu. A coefficient α(tens)(T) of negative expansion due to tension effects has been calculated from the comparison of bond and lattice expansions. Negative lattice expansion is present in temperature intervals where α(bond) prevails over α(tens); this real-space approach is complementary but not equivalent to the Grüneisen theory. The relevance of taking into account the asymmetry of the nearest-neighbours distribution of distances in order to get reliable bond expansion values and the physical meaning of the third cumulant are thoroughly discussed.

  11. He I vector magnetic field maps of a sunspot and its superpenumbral fine-structure

    CERN Document Server

    Schad, T A; Lin, H; Tritschler, A

    2015-01-01

    Advanced inversions of high-resolution spectropolarimetric observations of the He I triplet at 1083 nm are used to generate unique maps of the chromospheric magnetic field vector across a sunspot and its superpenumbral canopy. The observations were acquired by the Facility Infrared Spectropolarimeter (FIRS) at the Dunn Solar Telescope (DST) on 29 January 2012. Multiple atmospheric models are employed in the inversions, as superpenumbral Stokes profiles are dominated by atomic-level polarization while sunspot profiles are Zeeman-dominated but also exhibit signatures perhaps induced by symmetry breaking effects of the radiation field incident on the chromospheric material. We derive the equilibrium magnetic structure of a sunspot in the chromosphere, and further show that the superpenumbral magnetic field does not appear finely structured, unlike the observed intensity structure. This suggests fibrils are not concentrations of magnetic flux but rather distinguished by individualized thermalization. We also dire...

  12. The tardigrade cuticle. I. Fine structure and the distribution of lipids.

    Science.gov (United States)

    Wright, J C

    1988-01-01

    Fine structure and lipid distribution are studied in cuticles of five tardigrade species using TEM and SEM. Double osmication using partitioning methods reveals a substantial lipid component in the intracuticle and in irregular granular regions within the procuticle. These results are substantiated by the loss of osmiophily following lipid extraction with chloroform and methanol. Other lipid components are revealed by osmication following unmasking of lipo-protein complexes with thymol. These occur in the outer epicuticle and in the trilaminar layer lying between the epi- and intracuticles. Anhydrous fixation of dehydrated tardigrades (tuns) reveals dense, superficial masses of osmiophilic material, apparently concentrated lumps of the surface mucopolysaccharide ('flocculent coat'). However, cryo-SEMs of tuns reveal similar dense aggregations which apparently exude from pores (not visible) and are removed by chloroform. These results suggest extruded lipids since the flocculent coat is unaffected by chloroform; likely functions of such lipids are discussed.

  13. Near-edge X-ray absorption fine structure spectroscopy of MDI and TDI polyurethane polymers

    Energy Technology Data Exchange (ETDEWEB)

    Urquhart, S.G.; Smith, A.P.; Ade, H.W. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics; Hitchcock, A.P. [McMaster Univ., Hamilton, Ontario (Canada). Brockhouse Inst. for Materials Research; Rightor, E.G. [Dow Chemical USA, Midland, MI (United States); Lidy, W. [Dow Chemical USA, Freeport, TX (United States)

    1999-06-03

    The sensitivity of near-edge X-ray absorption fine structure (NEXAFS) to differences in key chemical components of polyurethane polymers is presented. Carbon is NEXAFS spectra of polyurethane polymers made from 4,4{prime}-methylene di-p-phenylene isocyanate (MDI) and toluene diisocyanate (TDI) isocyanate monomers illustrate that there is an unambiguous spectroscopic fingerprint for distinguishing between MDI-based and TDI-based polyurethane polymers. NEXAFS spectra of MDI and TDI polyurea and polyurethane models show that the urea and carbamate (urethane) linkages in these polymers can be distinguished. The NEXAFS spectroscopy of the polyether component of these polymers is discussed, and the differences between the spectra of MDI and TDI polyurethanes synthesized with polyether polyols of different molecular composition and different molecular weight are presented. These polymer spectra reported herein provide appropriate model spectra to represent the pure components for quantitative microanalysis.

  14. Fine structures in Fe3Al alloy layer of a new hot dip aluminized steel

    Indian Academy of Sciences (India)

    Li Yajiang; Wang Juan; Zhang Yonglan; X Holly

    2002-12-01

    The fine structure in the Fe–Al alloy layer of a new hot dip aluminized steel (HDA) was examined by means of X-ray diffractometry (XRD), electron diffraction technique, etc. The test results indicated that the Fe–Al alloy layer of the new aluminized steel mainly composed of Fe3Al, FeAl and -Fe (Al) solid solution. There was no brittle phase containing higher aluminum content, such as FeAl3 (59.18% Al) and Fe2Al7 (62.93% Al). The tiny cracks and embrittlement, formerly caused by these brittle phases in the conventional aluminum-coated steel, were effectively eliminated. There was no microscopic defect (such as tiny cracks, pores or loose layer) in the coating. This is favourable to resist high temperature oxidation and corrosion of the aluminized steel.

  15. The fine structure splitting of the level of lithium in Rydberg states

    Institute of Scientific and Technical Information of China (English)

    胡先权; 胡文江; 孔春阳

    2002-01-01

    The Hamiltonian of the four-body problem for a lithium atom is expanded in series. The level shift and levelformula of a lithium atom in Rydberg states are achieved by means of the calculation of polarization of the atomic core(including the contribution of dipole, quadrupole and octupole components). We also consider the effect of relativitytheory, the orbital angular momentum L and the spin angular momentum S coupling scheme (LS coupling) and high-order correction of the effective potential to the level shift. The fine structure splitting (N=5-12, L=4-9, J=L±l/2)and level intervals in B ydberg states have been calculated by the above-mentioned formula and compared with recentexperimental data.

  16. Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mantouvalou, I., E-mail: ioanna.mantouvalou@tu-berlin.de; Witte, K.; Martyanov, W.; Jonas, A.; Grötzsch, D.; Kanngießer, B. [Institute for Optics and Atomic Physics, Technical University of Berlin, D-10623 Berlin (Germany); Streeck, C. [Physikalisch-Technische Bundesanstalt (PTB), D-10587 Berlin (Germany); Löchel, H.; Rudolph, I.; Erko, A. [Helmholtz-Zentrum Berlin, D-14109 Berlin (Germany); Stiel, H. [Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, D-12489 Berlin (Germany)

    2016-05-16

    With the help of adapted off-axis reflection zone plates, near edge X-ray absorption fine structure spectra at the C and N K-absorption edge have been recorded using a single 1.2 ns long soft X-ray pulse. The transmission experiments were performed with a laser-produced plasma source in the laboratory rendering time resolved measurements feasible independent on large scale facilities. A resolving power of E/ΔE ∼ 950 at the respective edges could be demonstrated. A comparison of single shot spectra with those collected with longer measuring time proves that all features of the used reference samples (silicon nitrate and polyimide) can be resolved in 1.2 ns. Hence, investigations of radiation sensitive biological specimen become possible due to the high efficiency of the optical elements enabling low dose experiments.

  17. Theory of the Lamb shift and Fine Structure in $\\boldsymbol{(\\mu{}^{4}\\mathrm{He})^{+}}$

    CERN Document Server

    Diepold, Marc; Franke, Beatrice; Antognini, Aldo; Kottmann, Franz; Pohl, Randolf

    2016-01-01

    An up to date review of the theoretical contributions to the $2S\\rightarrow{}2P$ Lamb shift and the fine structure of the $2P$-state in the $(\\mu^4\\mathrm{He})^+$ ion is given. This summary will serve as the basis for the extraction of the alpha particle charge radius from the muonic helium Lamb shift measurements at the Paul Scherrer Institute Switzerland. Individual theoretical contributions needed for a charge radius extraction were compared and compiled into a consistent summary using the already established framework we used for muonic hydrogen and deuterium. The influence of the alpha particle charge distribution on the elastic two-photon exchange is studied to rule out possible model dependencies of the energy levels on the electric form factor of the nucleus.

  18. Fine structure of inelastic electron scattering cross-section spectra for MN

    Science.gov (United States)

    Parshin, A. S.; Igumenov, A. Yu; Mikhlin, Yu L.; Pchelyakov, O. P.; Zhigalov, V. S.

    2016-04-01

    The comparative analysis of the reflection electron energy loss spectra and the inelastic electron scattering cross-section spectra for Mn was carried out. It is shown that inelastic electron scattering cross-section spectra have certain advantages in the study of the interaction of electrons with the substance as compared to the electron energy loss spectra. The inelastic electron scattering cross section spectra fine structure was analysed by fitting the experimental spectra using the 3 parameters Lorentzian-type formula of Tougaard. This method was used for the quantitative analysis of the contributions of various loss processes in the inelastic electron scattering cross section spectra, determination of the loss peaks energies and origin.

  19. Strain-driven growth of GaAs(111) quantum dots with low fine structure splitting

    Energy Technology Data Exchange (ETDEWEB)

    Yerino, Christopher D.; Jung, Daehwan; Lee, Minjoo Larry, E-mail: minjoo.lee@yale.edu [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520 (United States); Simmonds, Paul J. [Departments of Physics and Materials Science and Engineering, Boise State University, Boise, Idaho 83725 (United States); Liang, Baolai; Huffaker, Diana L. [California NanoSystems Institute and Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Schneider, Christian; Unsleber, Sebastian; Vo, Minh; Kamp, Martin [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Höfling, Sven [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS (United Kingdom)

    2014-12-22

    Symmetric quantum dots (QDs) on (111)-oriented surfaces are promising candidates for generating polarization-entangled photons due to their low excitonic fine structure splitting (FSS). However, (111) QDs are difficult to grow. The conventional use of compressive strain to drive QD self-assembly fails to form 3D nanostructures on (111) surfaces. Instead, we demonstrate that (111) QDs self-assemble under tensile strain by growing GaAs QDs on an InP(111)A substrate. Tensile GaAs self-assembly produces a low density of QDs with a symmetric triangular morphology. Coherent, tensile QDs are observed without dislocations, and the QDs luminescence at room temperature. Single QD measurements reveal low FSS with a median value of 7.6 μeV, due to the high symmetry of the (111) QDs. Tensile self-assembly thus offers a simple route to symmetric (111) QDs for entangled photon emitters.

  20. Engineering quantum dots for electrical control of the fine structure splitting

    Science.gov (United States)

    Pooley, M. A.; Bennett, A. J.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2013-07-01

    We have studied the variation in fine-structure splitting (FSS) under application of vertical electric field in a range of quantum dots grown by different methods. In each sample, we confirm that this energy splitting changes linearly over the field range we can access. We conclude that this linear tuning is a general feature of self-assembled quantum dots, observed under different growth conditions, emission wavelengths, and in different material systems. Statistical measurements of characteristic parameters such as emission energy, Stark shift, and FSS tuning are presented which may provide a guide for future attempts to increase the yield of quantum dots that can be tuned to a minimal value of FSS with vertical electric field.

  1. Fine structure in the cosmic ray spectrum: Further analysis and the next step

    CERN Document Server

    Erlykin, A D

    2011-01-01

    An analysis is made of the fine structure in the cosmic ray energy spectrum: new facets of present observations and their interpretation and the next step. It is argued that less than about 10% of the intensity of the helium `peak' at the knee at $\\simeq 5PeV$ is due to just a few sources (SNR) other than the single source. The apparent concavity in the rigidity spectra of protons and helium nuclei which have maximum curvature at about 200 GV is confirmed by a joint analysis of the PAMELA, CREAM and ATIC experiments. The spectra of heavier nuclei also show remarkable structure in the form of `ankles' at several hundred GeV/nucleon. Possible mechanisms are discussed. The search for `pulsar peaks' has not yet proved successful.

  2. Hemicellulose fine structure is affected differently during ripening of tomato lines with contrasted texture.

    Science.gov (United States)

    Lahaye, Marc; Quemener, Bernard; Causse, Mathilde; Seymour, Graham B

    2012-11-01

    The impact of genetic and fruit ripening on hemicelluloses fine structure was studied in twelve near isogenic lines of tomato fruits harboring firmness QTL. The sugar composition and the MALDI-TOF MS oligosaccharides profile after glucanase hydrolysis of the cell walls were determined from all green and red fruits pericarp tissue. MS profiles showed two major series of oligomers attributed to xyloglucan (XG) and glucomannan (GM) with minor peaks for xylan and ions attributed to galacto-oligomers. The oligosaccharides MS intensity varied significantly with the fruit genetic and ripening status. Correlations between MS intensity indicated structural regulations of both XG and GM structures with genetics and ripening. These results point to a region on the tomato chromosome 9 controlling cell wall galactose metabolism.

  3. Systematics of fine structure in the α decay of deformed odd-mass nuclei

    Science.gov (United States)

    Ren, Zhongzhou; Ni, Dongdong

    2014-12-01

    We present a detailed analysis of the a-decay fine structure in 32 deformed odd-mass nuclei from Z = 93 to Z = 102. The α-decay half-lives are systematically calculated within the multichannel cluster model (MCCM), which turns out to well reproduce the experimental data and show the neutron deformed shell structure. The branching ratios for various daughter states are investigated in the MCCM and in the WKB barrier penetration approach, respectively. It is found that the MCCM results agree well with the experimental data, while the WKB results have relatively large deviations from the experimental data for the α transitions to the high-lying members of the rotational band.

  4. Half-lives and fine structure for the α decay of deformed even-even nuclei

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The α-decay properties of well-deformed even-even nuclei are systematically calculated within the multichannel cluster model (MCCM). Instead of working in the WKB framework, the quasibound solution to the coupled Schro¨dinger equation is presented with outgoing wave boundary conditions, and the coupling potential is taken into full account in terms of the general quantum theories. The calculated α-decay half-lives are found to agree well with the experimental data with a mean factor of less than 2. The fine structure observed in α decay is also well reproduced by the four-channel microscopic calculation. Very strikingly, the MCCM can give relatively precise descriptions of the branching ratio to excited 4+ states, which is often overestimated in the usual WKB calculations. We expect it to be a significant development of theoretical models toward quantitative descriptions of α transitions to high-spin daughter states.

  5. Half-lives and fine structure for the α decay of deformed even-even nuclei

    Science.gov (United States)

    Ni, DongDong; Ren, ZhongZhou

    2011-08-01

    The α-decay properties of well-deformed even-even nuclei are systematically calculated within the multichannel cluster model (MCCM). Instead of working in the WKB framework, the quasibound solution to the coupled Schrödinger equation is presented with outgoing wave boundary conditions, and the coupling potential is taken into full account in terms of the general quantum theories. The calculated α-decay half-lives are found to agree well with the experimental data with a mean factor of less than 2. The fine structure observed in α decay is also well reproduced by the four-channel microscopic calculation. Very strikingly, the MCCM can give relatively precise descriptions of the branching ratio to excited 4+ states, which is often overestimated in the usual WKB calculations. We expect it to be a significant development of theoretical models toward quantitative descriptions of α transitions to high-spin daughter states.

  6. Theoretical description of fine structure in the α decay of heavy odd-odd nuclei

    Science.gov (United States)

    Ni, Dongdong; Ren, Zhongzhou

    2013-02-01

    The newly developed multichannel cluster model (MCCM), based on the coupled-channel Schrödinger equation with outgoing wave boundary conditions, is extended to study the α-decay fine structure in heavy odd-odd nuclei. Calculations are performed for the α transitions to favored rotational bands where the unpaired nucleons remain unchanged. The simple WKB barrier penetration formula is also used to evaluate the branching ratios for various daughter states. It is found that the WKB formula seems to overestimate the branching ratios for the second and third members of the favored rotational band, while the MCCM gives a precise description of them without any adjustable parameters. Moreover, the experimental total α-decay half-lives are well reproduced within the MCCM.

  7. THE FINE STRUCTURE OF STALKED BACTERIA BELONGING TO THE FAMILY CAULOBACTERACEAE.

    Science.gov (United States)

    STOVEPOINDEXTER, J L; COHEN-BAZIRE, G

    1964-12-01

    The fine structure of a series of stalked bacteria belonging to the genera Caulobacter and Asticcacaulis has been examined in thin sections. The cell wall has the multilayered structure typical of many Gram-negative bacteria, and continues without interruption throughout the length of the stalk. The core of the stalk, continuous with the cytoplasmic region of the cell, is enclosed in an extension of the cell membrane, and contains a system of internal membranes: it is devoid of ribosomes and nucleoplasm. A membranous organelle occupies the juncture of stalk and cell, separating the ribosomal region from the core of the stalk. Typical mesosomes also occur in the cell, being particularly frequent at the plane of division. The secreted holdfast is located at the tip of the stalk in Caulobacter, and at the pole of the cell adjacent to the stalk in Asticcacaulis.

  8. Impact of heavy hole-light hole coupling on the exciton fine structure in quantum dots

    Science.gov (United States)

    Tsitsishvili, E.

    2017-03-01

    We present analytical results which describe the properties of the exciton ground state in a single semiconductor quantum dot (QD). Calculations are performed within the Luttinger-Kohn and Bir-Pikus Hamiltonian theory. We show in an explicit form that an interplay of the exchange interaction and the heavy hole-light hole coupling, which is due to the in-plane asymmetries of the dot shape and the strain distribution, plays an essential role. For both the bright and dark exciton, this combined effect leads to a dependence of the fine structure splitting and polarizations on the main anisotropy axis direction relative to the dot orientation. Basing on the obtained analytical expressions, we discuss some special cases in details.

  9. Capturing a photoexcited molecular structure through time-domain x-ray absorption fine structure.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L. X.; Jaeger, W. J. H.; Jennings, G.; Gosztola, D. J.; Munkholm, A.; Hessler, J. P.

    2001-04-13

    The determination of the structure of transient molecules, such as photoexcited states, in disordered media (such as in solution) usually requires methods with high temporal resolution. The transient molecular structure of a reaction intermediate produced by photoexcitation of NiTPP-L{sub 2} (NiTPP, nickeltetraphenylporphyrin; L, piperidine) in solution was determined by x-ray absorption fine structure (XAFS) data obtained on a 14-nanosecond time scale from a third-generation synchrotron source. The XAFS measurements confirm that photoexcitation leads to the rapid removal of both axial ligands to produce a transient square-planar intermediate, NiTPP, with a lifetime of 28 nanoseconds. The transient structure of the photodissociated intermediate is nearly identical to that of the ground state NiTPP, suggesting that the intermediate adopts the same structure as the ground state in a noncoordinating solvent before it recombines with two ligands to form the more stable octahedrally coordinated NiTPP-L{sub 2}.

  10. Fine structure and immunocytochemistry of a new chemosensory system in the Chiton larva (Mollusca: Polyplacophora)

    DEFF Research Database (Denmark)

    Haszprunar, Gerhard; Friedrich, Stefan; Wanninger, Andreas;

    2002-01-01

    Combined electron microscopy and immunocytochemistry of the larvae of several polyplacophoran species (Chiton olivaceus, Lepidochitona aff. corrugata, Mopalia muscosa) revealed a sensory system new to science, a so-called "ampullary system." The cells of the "ampullary system" are arranged in four...... symmetrically situated pairs lying dorsolaterally and ventrolaterally in the pretrochal part of the trochophore-like larva and they send axons into the cerebral commissure. They are lost at metamorphosis. The fine structure of these cells strongly resembles that of so-called "ampullary cells" known from various...... sensory organs of other molluscs, such as the apical complex of gastropod and bivalve larvae, osphradia of vetigastropods, and olfactory organs of cephalopods, and nuchal organs of certain polychaetes. The ampullary cells and their nerves are densely stained by anti-FMRF-amide fluorescence dyes, whereas...

  11. `Fingerprint' Fine Structure in the Solar Decametric Radio Spectrum Solar Physics

    Science.gov (United States)

    Zlotnik, E. Y.; Zaitsev, V. V.; Melnik, V. N.; Konovalenko, A. A.; Dorovskyy, V. V.

    2015-07-01

    We study a unique fine structure in the dynamic spectrum of the solar radio emission discovered by the UTR-2 radio telescope (Kharkiv, Ukraine) in the frequency band of 20 - 30 MHz. The structure was observed against the background of a broadband type IV radio burst and consisted of parallel drifting narrow bands of enhanced emission and absorption on the background emission. The observed structure differs from the widely known zebra pattern at meter and decimeter wavelengths by the opposite directions of the frequency drift within a single stripe at a given time. We show that the observed properties can be understood in the framework of the radiation mechanism by virtue of the double plasma resonance effect in a nonuniform coronal magnetic trap. We propose a source model providing the observed frequency drift of the stripes.

  12. X-ray absorption fine structure spectroscopy of plutonium complexes with bacillus sphaericus

    Energy Technology Data Exchange (ETDEWEB)

    Panak, P.J.; Booth, C.H.; Caulder, D.L.; Bucher, J.J.; Shuh, D.K. [Lawrence Berkeley National Lab. (LBNL), Chemical Sciences Div., The Glenn T. Seaborg Center, Berkeley, CA (United States); Nitsche, H. [Lawrence Berkeley National Lab. (LBNL), Chemical Sciences Div., The Glenn T. Seaborg Center, Berkeley, CA (United States); Univ. of California at Berkeley, Dept. of Chemistry, Berkeley, CA (United States)

    2002-07-01

    Knowledge of the plutonium complexes formed with bacterial cells is critical for predicting the influence of microbial interactions on the migration behavior of actinides in the environment. This investigation describes the interaction of plutonium(VI) with cells of the aerobic soil bacteria, Bacillus sphaericus. The studies include the quantification of carboxylate and phosphate functional groups on the cell walls by potentiometric titration and the determination of the plutonium speciation by X-ray absorption fine structure (XAFS). Extended-XAFS (EXAFS) was used to determine the identity of the Pu(VI) interfacial complex with the bacteria, and the Pu(VI) was found primarily bound to phosphate groups on the cell surface. No carboxylate complexation was detected. (orig.)

  13. The Young Modulus of Black Strings and the Fine Structure of Blackfolds

    CERN Document Server

    Armas, Jay; Harmark, Troels; Obers, Niels A

    2011-01-01

    We explore corrections in the blackfold approach, which is a worldvolume theory capturing the dynamics of thin black branes. The corrections probe the fine structure of the branes, going beyond the approximation in which they are infinitely thin, and account for the dipole moment of worldvolume stress-energy as well as the internal spin degrees of freedom. We show that the dipole correction is induced elastically by bending a black brane. We argue that the long-wavelength transport coefficient capturing this response is a relativistic generalization of the Young modulus of elastic materials and we compute it analytically. Using this we draw predictions for black rings in dimensions greater than six. Furthermore, we employ our corrected blackfold equations to various multi-spinning black hole configurations in the blackfold limit, finding perfect agreement with known analytic solutions.

  14. Fine structure in the cosmic ray spectrum: Further analysis and the next step

    Science.gov (United States)

    Erlykin, A. D.; Wolfendale, A. W.

    2012-01-01

    An analysis is made of the fine structure in the cosmic ray energy spectrum: new facets of present observations and their interpretation and the next step. It is argued that less than about 10% of the intensity of the helium 'peak' at the knee at ≈5 PeV is due to just a few sources (SNR) other than the single source. The apparent concavity in the rigidity spectra of protons and helium nuclei which have maximum curvature at about 200 GV is confirmed by a joint analysis of the PAMELA, CREAM and ATIC experiments. The spectra of heavier nuclei also show remarkable structure in the form of 'ankles' at several hundred GeV/nucleon. Possible mechanisms are discussed. The search for 'pulsar peaks' has not yet proved successful.

  15. Relations between frequency selectivity, temporal fine-structure processing, and speech reception in impaired hearing

    DEFF Research Database (Denmark)

    Strelcyk, Olaf; Dau, Torsten

    2009-01-01

    and binaural TFS-processing deficits in the HI listeners, no relation was found between TFS processing and frequency selectivity. The effect of noise on TFS processing was not larger for the HI listeners than for the NH listeners. Finally, TFS-processing performance was correlated with speech reception......Frequency selectivity, temporal fine-structure (TFS) processing, and speech reception were assessed for six normal-hearing (NH) listeners, ten sensorineurally hearing-impaired (HI) listeners with similar high-frequency losses, and two listeners with an obscure dysfunction (OD). TFS processing...... was investigated at low frequencies in regions of normal hearing, through measurements of binaural masked detection, tone lateralization, and monaural frequency modulation (FM) detection. Lateralization and FM detection thresholds were measured in quiet and in background noise. Speech reception thresholds were...

  16. Fine-structure processing, frequency selectivity and speech perception in hearing-impaired listeners

    DEFF Research Database (Denmark)

    Strelcyk, Olaf; Dau, Torsten

    2008-01-01

    Hearing-impaired people often experience great difficulty with speech communication when background noise is present, even if reduced audibility has been compensated for. Other impairment factors must be involved. In order to minimize confounding effects, the subjects participating in this study...... consisted of groups with homogeneous, symmetric audiograms. The perceptual listening experiments assessed the intelligibility of full-spectrum as well as low-pass filtered speech in the presence of stationary and fluctuating interferers, the individual's frequency selectivity and the integrity of temporal...... modulation were obtained. In addition, these binaural and monaural thresholds were measured in a stationary background noise in order to assess the persistence of the fine-structure processing to interfering noise. Apart from elevated speech reception thresholds, the hearing impaired listeners showed poorer...

  17. New algorithm improves fine structure of the barley consensus SNP map

    Directory of Open Access Journals (Sweden)

    Endelman Jeffrey B

    2011-08-01

    Full Text Available Abstract Background The need to integrate information from multiple linkage maps is a long-standing problem in genetics. One way to visualize the complex ordinal relationships is with a directed graph, where each vertex in the graph is a bin of markers. When there are no ordering conflicts between the linkage maps, the result is a directed acyclic graph, or DAG, which can then be linearized to produce a consensus map. Results New algorithms for the simplification and linearization of consensus graphs have been implemented as a package for the R computing environment called DAGGER. The simplified consensus graphs produced by DAGGER exactly capture the ordinal relationships present in a series of linkage maps. Using either linear or quadratic programming, DAGGER generates a consensus map with minimum error relative to the linkage maps while remaining ordinally consistent with them. Both linearization methods produce consensus maps that are compressed relative to the mean of the linkage maps. After rescaling, however, the consensus maps had higher accuracy (and higher marker density than the individual linkage maps in genetic simulations. When applied to four barley linkage maps genotyped at nearly 3000 SNP markers, DAGGER produced a consensus map with improved fine structure compared to the existing barley consensus SNP map. The root-mean-squared error between the linkage maps and the DAGGER map was 0.82 cM per marker interval compared to 2.28 cM for the existing consensus map. Examination of the barley hardness locus at the 5HS telomere, for which there is a physical map, confirmed that the DAGGER output was more accurate for fine structure analysis. Conclusions The R package DAGGER is an effective, freely available resource for integrating the information from a set of consistent linkage maps.

  18. A study of fine structure of diffuse aurora with ALIS-FAST measurements

    Directory of Open Access Journals (Sweden)

    T. Sergienko

    2008-10-01

    Full Text Available We present results of an investigation of the fine structure of the night sector diffuse auroral zone, observed simultaneously with optical instruments (ALIS from the ground and the FAST electron spectrometer from space 16 February 1997. Both the optical and particle data show that the diffuse auroral zone consisted of two regions. The equatorward part of the diffuse aurora was occupied by a pattern of regular, parallel auroral stripes. The auroral stripes were significantly brighter than the background luminosity, had widths of approximately 5 km and moved southward with a velocity of about 100 m/s. The second region, located between the region with auroral stripes and the discrete auroral arcs to the north, was filled with weak and almost homogeneous luminosity, against which short-lived auroral rays and small patches appeared chaotically. From analysis of the electron differential fluxes corresponding to the different regions of the diffuse aurora and based on existing theories of the scattering process we conclude the following: Strong pitch angle diffusion by electron cyclotron harmonic waves (ECH of plasma sheet electrons in the energy range from a few hundred eV to 3–4 keV was responsible for the electron precipitation, that produced the background luminosity within the whole diffuse zone. The fine structure, represented by the auroral stripes, was created by precipitation of electrons above 3–4 keV as a result of pitch angle diffusion into the loss cone by whistler mode waves. A so called "internal gravity wave" (Safargaleev and Maltsev, 1986 may explain the formation of the regular spatial pattern formed by the auroral stripes in the equatorward part of the diffuse auroral zone.

  19. A study of fine structure of diffuse aurora with ALIS-FAST measurements

    Science.gov (United States)

    Sergienko, T.; Sandahl, I.; Gustavsson, B.; Andersson, L.; Brändström, U.; . Steen, Ã.

    2008-10-01

    We present results of an investigation of the fine structure of the night sector diffuse auroral zone, observed simultaneously with optical instruments (ALIS) from the ground and the FAST electron spectrometer from space 16 February 1997. Both the optical and particle data show that the diffuse auroral zone consisted of two regions. The equatorward part of the diffuse aurora was occupied by a pattern of regular, parallel auroral stripes. The auroral stripes were significantly brighter than the background luminosity, had widths of approximately 5 km and moved southward with a velocity of about 100 m/s. The second region, located between the region with auroral stripes and the discrete auroral arcs to the north, was filled with weak and almost homogeneous luminosity, against which short-lived auroral rays and small patches appeared chaotically. From analysis of the electron differential fluxes corresponding to the different regions of the diffuse aurora and based on existing theories of the scattering process we conclude the following: Strong pitch angle diffusion by electron cyclotron harmonic waves (ECH) of plasma sheet electrons in the energy range from a few hundred eV to 3 4 keV was responsible for the electron precipitation, that produced the background luminosity within the whole diffuse zone. The fine structure, represented by the auroral stripes, was created by precipitation of electrons above 3 4 keV as a result of pitch angle diffusion into the loss cone by whistler mode waves. A so called "internal gravity wave" (Safargaleev and Maltsev, 1986) may explain the formation of the regular spatial pattern formed by the auroral stripes in the equatorward part of the diffuse auroral zone.

  20. Spectral fine structure of the atomic ground states based on full relativistic theory

    Institute of Scientific and Technical Information of China (English)

    Zhenghe Zhu; Yongjian Tang

    2011-01-01

    @@ We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.%We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.

  1. Fine structure of Tibetan kefir grains and their yeast distribution, diversity, and shift.

    Directory of Open Access Journals (Sweden)

    Man Lu

    Full Text Available Tibetan kefir grains (TKGs, a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii the diversity of yeasts is relatively low on genus level with three dominant species--Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic

  2. On the Visibility of Prominence Fine Structures at Radio Millimeter Wavelengths

    Science.gov (United States)

    Heinzel, P.; Berlicki, A.; Bárta, M.; Karlický, M.; Rudawy, P.

    2015-07-01

    Prominence temperatures have so far mainly been determined by analyzing spectral line shapes, which is difficult when the spectral lines are optically thick. The radio spectra in the millimeter range offer a unique possibility to measure the kinetic temperature. However, studies in the past used data with insufficient spatial resolution to resolve the prominence fine structures. The aim of this article is to predict the visibility of prominence fine structures in the submillimeter/millimeter (SMM) domain, to estimate their brightness temperatures at various wavelengths, and to demonstrate the feasibility and usefulness of future high-resolution radio observations of solar prominences with ALMA ( Atacama Large Millimeter-submillimeter Array). Our novel approach is the conversion of H coronagraphic images into microwave spectral images. We show that the spatial variations of the prominence brightness both in the H line and in the SMM domain predominantly depend on the line-of-sight emission measure of the cool plasma, which we derive from the integrated intensities of the observed H line. This relation also offers a new possibility to determine the SMM optical thickness from simultaneous H observations with high resolution. We also describe how we determine the prominence kinetic temperature from SMM spectral images. Finally, we apply the ALMA image-processing software Common Astronomy Software Applications (CASA) to our simulated images to assess what ALMA would detect at a resolution level that is similar to the coronagraphic H images used in this study. Our results can thus help in preparations of first ALMA prominence observations in the frame of science and technical verification tests.

  3. Experimental fine-structure branching ratios for Na-rare-gas optical collisions

    Energy Technology Data Exchange (ETDEWEB)

    Havey, M.D.; Delahanty, F.T.; Vahala, L.L.; Copeland, G.E.

    1986-10-01

    Experimental ratios for branching into the fine-structure levels of the Na 3p multiplet, as a consequence of an optical collision with He, Ne, Ar, Kr, or Xe, are reported. The process studied is Na(3s /sup 2/S/sub 1/2/)+scrR+nh..nu -->..Na(3p /sup 2/P/sub j/)+scrR+(n-1)h..nu.., where scrR represents a rare-gas atom and where the laser frequency ..nu.. is tuned in the wings of the Na resonance transitions. The branching ratios are defined as I(D1)/I(D2) where I(D1) and I(D2) are measured intensities of the atomic Na D1 and D2 lines. The ratios are determined for detunings ranging from about 650 cm/sup -1/ in the blue wing to 170 cm/sup -1/ in the red wing of the Na 3p multiplet. The branching is found to be strongly detuning dependent in the vicinity of the NaAr, NaKr, and NaXe near-red-wing satellites. The blue-wing branching ratios show a detuning-dependent approach to a recoil, or sudden statistical, limit of 0.5, irrespective of the rare gas. Fine-structure changing cross sections have also been measured for resonant excitation of the Na 3p /sup 2/P/sub j/ state; the results are consistent with cross sections obtained from wing excitation.

  4. Fine Structure of Tibetan Kefir Grains and Their Yeast Distribution, Diversity, and Shift

    Science.gov (United States)

    Lu, Man; Wang, Xingxing; Sun, Guowei; Qin, Bing; Xiao, Jinzhou; Yan, Shuling; Pan, Yingjie; Wang, Yongjie

    2014-01-01

    Tibetan kefir grains (TKGs), a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i) yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii) the diversity of yeasts is relatively low on genus level with three dominant species – Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii) S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic associations between S

  5. Intelligence Revisited

    Science.gov (United States)

    2005-05-01

    environment (i.e., culture , class, family, educational 2 Chapter 23 Intelligence Revisited opportunities, gender) shapes our intellect, and there are no...connectivity is going to be rather problematic, to say the least. A single nano-bot cruising this Disneyland of synaptic wonderment is certainly... cultures ). Embodiment – A sense of being anchored to our physical bodies. Agency – A sense of free will, wherein we are in charge of our own

  6. Do the fundamental constants change with time ?

    CERN Document Server

    Kanekar, Nissim

    2008-01-01

    Comparisons between the redshifts of spectral lines from cosmologically-distant galaxies can be used to probe temporal changes in low-energy fundamental constants like the fine structure constant and the proton-electron mass ratio. In this article, I review the results from, and the advantages and disadvantages of, the best techniques using this approach, before focussing on a new method, based on conjugate satellite OH lines, that appears to be less affected by systematic effects and hence holds much promise for the future.

  7. Variations of fundamental constants and multidimensional gravity

    Science.gov (United States)

    Bronnikova, K. A.; Skvortsova, M. V.

    We try to explain the recently reported large-scale spatial variations of the fine structure constant α, in agreement with other cosmological observations, in the framework of curvature-nonlinear multidimensional gravity. The original theory is reduced to a scalar-tensor theory in four dimensions, and the corresponding isotropic cosmologies are considered in both Einstein and Jordan conformal frames. In the Jordan frame one obtains simultaneous variations of α and the gravitational constant G, equal in magnitude. Long-wave small inhomogeneous perturbations of isotropic models allow for explaining spatial variations of α.

  8. Observation of the fine structure for rovibronic spectral lines in visible part of emission spectra of $D_2$

    CERN Document Server

    Lavrov, B P; Zhukov, A S

    2011-01-01

    For the first time the fine structure of rovibronic spectral lines in visible part of emission spectra of $D_2$ molecule has been observed. Observed splitting in visible doublets is about 0.2 cm$^{-1}$ in good accordance with previous observations in the infrared part of the spectrum ($a^3\\Sigma_g^+ \\to c^3\\Pi_u$ electronic transition) by means of FTIR and laser spectroscopy. Relative intensities of the fine structure components are in agreement with our calculations of adiabatic line strengths for Hund's case "b" coupling scheme.

  9. Interesting Features of n2D Rydberg Series Fine-Structure Splittings along the Sodium-Like Isoelectronic Sequence

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Lu; LIU Ling-Tao; GAO Xiang; SHEN Chun; LI Jia-Ming

    2008-01-01

    @@ Using a simplified multi-configuration Dirac-Fock (SMCDF) scheme based on the multi-configuration Dirac-Fock (MCDF) theory, we study the systematic variations of the fine-structure splittings of n2 D3/2,5/2 Rydberg series along the sodium-like isoelectronic sequence, i.e.the fine-structure orderings vary with increasing atomic number Z.The competition between the spin-orbit interactions and the exchange interactions due to relativistic effects of the nd orbital wavefunctions well explain such variations.Furthermore, the effect of Breit interactions which plays the secondary role is studied.

  10. Theoretical Study of Interesting Fine-Structure Splittings for 23P0,1,2 States along Helium Isoelectronic Sequence

    Institute of Scientific and Technical Information of China (English)

    QING Bo; CHEN Shao-Hao; GAO Xiang; LI Jia-Ming

    2008-01-01

    Using the multi-configuration Dirac-Fock method including the Breit interactions and QED corrections, we calculate the fine-structure energy levels of the 23P,0,1,2 states along the helium isoelectronic sequence with atomic number up to Z=36, where LS-coupling is appropriate. Our calculation results agree with the experimental results within about 1%. We elucidate the mechanism of the interesting fine-structure splittings for the 23P,0,1,2 states along the helium isoelectronic sequence, I. E. The competitions between the spin-orbit interactions and the Breit interactions which represent the relativistic retardation effect of electromagnetic interactions.

  11. Model for the fine structure of zero field steps in long Josephson tunnel junctions and its comparison with experiment

    DEFF Research Database (Denmark)

    Barbara, Paola; Monaco, R.; Ustinov, A. V.

    1996-01-01

    The single fluxon dynamics in the resonant regime has been investigated on high-quality low-loss Nb/Al–AlOx/Nb window Josephson tunnel junctions. A new model accounting for the fine structure of zero field steps in linear junctions is proposed. Depending on the fluxon velocity and on the junction...... simulations, and experiments. The presence of the idle region has been proved to play a determinant role for the occurrence of the fine structure. ©1996 American Institute of Physics....

  12. Cluster model calculation of N near K-edge energy-loss fine structures in hexagonal GaN crystal

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A cluster model is used to calculate electron energy-loss fine structures in crystal. The multiple-scattering self-consistent-field method is employed in the calculation. Our theoretical results of N near K-edge energy loss fine structures in hexagonal GaN crystal are in good agreement with the experimental spectra. Future possible experiments in energy-filtered transmission electron microscopy (EFTEM) are discussed and proposed because our theoretical work can provide clear assignments for transmitted electrons with different energy losses.

  13. New Quasar Studies Keep Fundamental Physical Constant Constant

    Science.gov (United States)

    2004-03-01

    Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time Summary Detecting or constraining the possible time variations of fundamental physical constants is an important step toward a complete understanding of basic physics and hence the world in which we live. A step in which astrophysics proves most useful. Previous astronomical measurements of the fine structure constant - the dimensionless number that determines the strength of interactions between charged particles and electromagnetic fields - suggested that this particular constant is increasing very slightly with time. If confirmed, this would have very profound implications for our understanding of fundamental physics. New studies, conducted using the UVES spectrograph on Kueyen, one of the 8.2-m telescopes of ESO's Very Large Telescope array at Paranal (Chile), secured new data with unprecedented quality. These data, combined with a very careful analysis, have provided the strongest astronomical constraints to date on the possible variation of the fine structure constant. They show that, contrary to previous claims, no evidence exist for assuming a time variation of this fundamental constant. PR Photo 07/04: Relative Changes with Redshift of the Fine Structure Constant (VLT/UVES) A fine constant To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light. One of these constants is the so-called "fine structure constant", alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold

  14. String theory, cosmology and varying constants

    Science.gov (United States)

    Damour, Thibault

    In string theory the coupling `constants' appearing in the low-energy effective Lagrangian are determined by the vacuum expectation values of some (a priori) massless scalar fields (dilaton, moduli). This naturally leads one to expect a correlated variation of all the coupling constants, and an associated violation of the equivalence principle. We review some string-inspired theoretical models which incorporate such a spacetime variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring a very unnatural fine-tuning of parameters, a variation of the fine-structure constant as large as that recently `observed' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universality of free fall, such as MICROSCOPE and STEP.

  15. String theory, cosmology and varying constants

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume

    2002-01-01

    In string theory the coupling ``constants'' appearing in the low-energy effective Lagrangian are determined by the vacuum expectation values of some (a priori) massless scalar fields (dilaton, moduli). This naturally leads one to expect a correlated variation of all the coupling constants, and an associated violation of the equivalence principle. We review some string-inspired theoretical models which incorporate such a spacetime variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring a very unnatural fine-tuning of parameters, a variation of the fine-structure constant as large as that recently ``observed'' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universa...

  16. Environment-Dependent Fundamental Physical Constants

    CERN Document Server

    Terazawa, Hidezumi

    2012-01-01

    A theory of special inconstancy, in which some fundamental physical constants such as the fine-structure and gravitational constants may vary, is proposed in pregeometry. In the special theory of inconstancy, the \\alpha-G relation of \\alpha=3\\pi/[16ln(4\\pi/5GM_W^2)] between the varying fine-structure and gravitaional constants (where M_W is the charged weak boson mass) is derived from the hypothesis that both of these constants are related to the same fundamental length scale in nature. Furthermore, it leads to the prediction of dot{{\\alpha}}/\\alpha=(-0.8\\pm2.5)\\times10^{-14}yr^{-1} from the most precise limit of dot{G}/G=(-0.6\\pm2.0)\\times10^{-12}yr^{-1} by Thorsett, which is not only consistent with the recent observation of dot{{\\alpha}}/\\alpha=(0.5\\pm0.5)\\times10^{-14}yr^{-1} by Webb et al. but also feasible for future experimental tests. Also a theory of general inconstancy, in which any fundamental physical constants may vary, is proposed in "more general relativity", by assuming that the space-time is ...

  17. Changes in the Fine Structure of Stochastic Distributions as a Consequence of Space-Time Fluctuations

    Directory of Open Access Journals (Sweden)

    Shnoll S. E.

    2006-04-01

    Full Text Available This is a survey of the fine structure stochastic distributions in measurements obtained by me over 50 years. It is shown: (1 The forms of the histograms obtained at each geographic point (at each given moment of time are similar with high probability, even if we register phenomena of completely different nature — from biochemical reactions to the noise in a gravitational antenna, or α-decay. (2 The forms of the histograms change with time. The iterations of the same form have the periods of the stellar day (1.436 min, the solar day (1.440 min, the calendar year (365 solar days, and the sidereal year (365 solar days plus 6 hours and 9 min. (3 At the same instants of the local time, at different geographic points, the forms of the histograms are the same, with high probability. (4 The forms of the histograms depend on the locations of the Moon and the Sun with respect to the horizon. (5 All the facts are proof of the dependance of the form of the histograms on the location of the measured objects with respect to stars, the Sun, and the Moon. (6 At the instants of New Moon and the maxima of solar eclipses there are specific forms of the histograms. (7 It is probable that the observed correlations are not connected to flow power changes (the changes of the gravity force — we did not find the appropriate periods in changes in histogram form. (8 A sharp anisotropy of space was discovered, registered by α-decay detectors armed with collimators. Observations at 54◦ North (the collimator was pointed at the Pole Star showed no day-long periods, as was also the case for observations at 82◦ North, near the Pole. Histograms obtained by observations with an Easterly-directed collimator were determined every 718 minutes (half stellar day and with observations using a Westerly-directed collimator. (9 Collimators rotating counter-clockwise, in parallel with the celestial equator, gave the probability of changes in histograms as the number of the

  18. Changes in the Fine Structure of Stochastic Distributions as a Consequence of Space-Time Fluctuations

    Directory of Open Access Journals (Sweden)

    Shnoll S. E.

    2006-04-01

    Full Text Available This is a survey of the fine structure stochastic distributions in measurements obtained by me over 50 years. It is shown: (1 The forms of the histograms obtained at each geographic point (at each given moment of time are similar with high probability, even if we register phenomena of completely different nature --- from biochemical reactions to the noise in a gravitational antenna, or alpha-decay. (2 The forms of the histograms change with time. The iterations of the same form have the periods of the stellar day (1.436 min, the solar day (1.440 min, the calendar year (365 solar days, and the sidereal year (365 solar days plus 6 hours and 9 min. (3 At the same instants of the local time, at different geographic points, the forms of the histograms are the same, with high probability. (4 The forms of the histograms depend on the locations of the Moon and the Sun with respect to the horizon. (5 All the facts are proof of the dependance of the form of the histograms on the location of the measured objects with respect to stars, the Sun, and the Moon. (6 At the instants of New Moon and the maxima of solar eclipses there are specific forms of the histograms. (7 It is probable that the observed correlations are not connected to flow power changes (the changes of the gravity force --- we did not find the appropriate periods in changes in histogram form. (8 A sharp anisotropy of space was discovered, registered by alpha-decay detectors armed with collimators. Observations at 54 North (the collimator was pointed at the Pole Star showed no day-long periods, as was also the case for observations at 82 North, near the Pole. Histograms obtained by observations with an Easterly-directed collimator were determined every 718 minutes (half stellar day and with observations using a Westerly-directed collimator. (9 Collimators rotating counter-clockwise, in parallel with the celestial equator, gave the probability of changes in histograms as the number of the

  19. Periodicity extraction in the anuran auditory nerve. II: Phase and temporal fine structure.

    Science.gov (United States)

    Simmons, A M; Reese, G; Ferragamo, M

    1993-06-01

    Discharge patterns of single eighth nerve fibers in the bullfrog, Rana catesbeiana, were analyzed in response to signals consisting of multiple harmonics of a common, low-amplitude fundamental frequency. The signals were chosen to reflect the frequency and amplitude spectrum of the bullfrog's species-specific advertisement call. The phase spectrum of the signals was manipulated to produce envelopes that varied in their shapes from impulselike (sharp) to noiselike (flattened). Peripheral responses to these signals were analyzed by computing the autocorrelation functions of the spike trains and their power spectra, as well as by constructing period histograms over the time intervals of the low-frequency harmonics. In response to a phase aligned signal with an impulsive envelope, most fibers, regardless of their characteristic frequencies or place of origin within the inner ear, synchronize to the fundamental frequency of the signal. The temporal patterns of fiber discharge to these stimuli are not typically captured by that stimulus harmonic closet to the fiber characteristic frequency, as would be expected from a spectral coding mechanism for periodicity extraction, but instead directly reflect the periodicity of the stimulus envelope. Changing the phase relations between the individual harmonics constituting the signal produces changes in temporal discharge patterns of some fibers by shifting predominant synchronization away from the fundamental frequency to the low-frequency spectral peak in the complex stimuli. The proportion of fibers whose firing is captured by the fundamental frequency decreases as the waveform envelope becomes less impulselike. Fiber characteristic frequency is not highly correlated with the harmonic number to which synchronization is strongest. The higher-harmonic spectral fine structure of the signals is not reflected in fiber temporal response, regardless of the shape of the stimulus envelope, even for those harmonics within the range of

  20. Fine structure of the mineralized teeth of the chiton Acanthopleura echinata (Mollusca: Polyplacophora).

    Science.gov (United States)

    Wealthall, Rosamund J; Brooker, Lesley R; Macey, David J; Griffin, Brendan J

    2005-08-01

    The major lateral teeth of the chiton Acanthopleura echinata are composite structures composed of three distinct mineral zones: a posterior layer of magnetite; a thin band of lepidocrocite just anterior to this; and apatite throughout the core and anterior regions of the cusp. Biomineralization in these teeth is a matrix-mediated process, in which the minerals are deposited around fibers, with the different biominerals described as occupying architecturally discrete compartments. In this study, a range of scanning electron microscopes was utilized to undertake a detailed in situ investigation of the fine structure of the major lateral teeth. The arrangement of the organic and biomineral components of the tooth is similar throughout the three zones, having no discrete borders between them, and with crystallites of each mineral phase extending into the adjacent mineral zone. Along the posterior surface of the tooth, the organic fibers are arranged in a series of fine parallel lines, but just within the periphery their appearance takes on a "fish scale"-like pattern, reflective of the cross section of a series of units that are overlaid, and offset from each other, in adjacent rows. The units are approximately 2 microm wide and 0.6 microm thick and comprise biomineral plates separated by organic fibers. Two types of subunits make up each "fish scale": one is elongate and curved and forms a trough, in which the other, rod-like unit, is nestled. Adjacent rod and trough units are aligned into large sheets that define the fracture plane of the tooth. The alignment of the plates of rod-trough units is complex and exhibits extreme spatial variation within the tooth cusp. Close to the posterior surface the plates are essentially horizontal and lie in a lateromedial plane, while anteriorly they are almost vertical and lie in the posteroanterior plane. An understanding of the fine structure of the mineralized teeth of chitons, and of the relationship between the organic and

  1. Properties of the prominence magnetic field and plasma distributions as obtained from 3D whole-prominence fine structure modeling

    Science.gov (United States)

    Gunár, S.; Mackay, D. H.

    2016-07-01

    Aims: We analyze distributions of the magnetic field strength and prominence plasma (temperature, pressure, plasma β, and mass) using the 3D whole-prominence fine structure model. Methods: The model combines a 3D magnetic field configuration of an entire prominence, obtained from non-linear force-free field simulations, with a detailed semi-empirically derived description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Results: We show that in the modeled prominence, the variations of the magnetic field strength and its orientation are insignificant on scales comparable to the smallest dimensions of the observed prominence fine structures. We also show the ability of the 3D whole-prominence fine structure model to reveal the distribution of the prominence plasma with respect to its temperature within the prominence volume. This provides new insights into the composition of the prominence-corona transition region. We further demonstrate that the values of the plasma β are small throughout the majority of the modeled prominences when realistic photospheric magnetic flux distributions and prominence plasma parameters are assumed. While this is generally true, we also find that in the region with the deepest magnetic dips, the plasma β may increase towards unity. Finally, we show that the mass of the modeled prominence plasma is in good agreement with the mass of observed non-eruptive prominences.

  2. Fine structure of the entanglement entropy in the O(2) model

    Science.gov (United States)

    Yang, Li-Ping; Liu, Yuzhi; Zou, Haiyuan; Xie, Z. Y.; Meurice, Y.

    2016-01-01

    We compare two calculations of the particle density in the superfluid phase of the O(2) model with a chemical potential μ in 1+1 dimensions. The first relies on exact blocking formulas from the Tensor Renormalization Group (TRG) formulation of the transfer matrix. The second is a worm algorithm. We show that the particle number distributions obtained with the two methods agree well. We use the TRG method to calculate the thermal entropy and the entanglement entropy. We describe the particle density, the two entropies and the topology of the world lines as we increase μ to go across the superfluid phase between the first two Mott insulating phases. For a sufficiently large temporal size, this process reveals an interesting fine structure: the average particle number and the winding number of most of the world lines in the Euclidean time direction increase by one unit at a time. At each step, the thermal entropy develops a peak and the entanglement entropy increases until we reach half-filling and then decreases in a way that approximately mirrors the ascent. This suggests an approximate fermionic picture.

  3. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  4. ;Long-hissler; fine structure within auroral hiss: A review and synthesis

    Science.gov (United States)

    Kim, Howard F.; LaBelle, James; Spasojević, Maria

    2017-04-01

    One of the most prominent fine-structures of auroral hiss is the ;long-hissler;, defined here as a dispersed feature embedded within broadband auroral hiss emissions in the frequency range 1-40 kHz and lasting longer than 0.3 s. While theory is limited, there is evidence that hisslers can be used in remote sensing of density characteristics at altitudes of thousands of km. By applying an automatic threshold algorithm to VLF data collected at South Pole 2230-0130 UT daily during June-August 2014, 22 h of auroral hiss are identified on 49 of 93 days analyzed, for an occurrence rate of 9.7% during the applicable MLT interval. From manual inspection of these intervals, 414 groups (trains) of long hisslers are identified on 34 of the 49 days on which hiss occurred. Median lower (upper) frequency bounds of these features are 8 (22) kHz, median frequency-time slope is -10 kHz/s, and median hissler repetition time within a train (hissler period) is 1.2 s. Hissler period and frequency-time slope are inversely related. Data from previous studies are reviewed to provide a comprehensive description of the phenomenon. Contrary to some previous studies, subsequent long hissler features are found to commonly overlap in time, and no evidence is found for an inverse relationship between hissler train duration and geomagnetic activity.

  5. All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide

    Directory of Open Access Journals (Sweden)

    D. Simin

    2016-07-01

    Full Text Available We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-^{28}SiC and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3/2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100  nT/sqrt[Hz] within a volume of 3×10^{-7}mm^{3} at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3  mm^{3}, the projection noise limit is below 100  fT/sqrt[Hz].

  6. Fine structures and dynamics in auroral initial brightening at substorm onsets

    Directory of Open Access Journals (Sweden)

    K. Sakaguchi

    2009-02-01

    Full Text Available We show four auroral initial brightening events at substorm onsets focusing on fine structures and their longitudinal dynamics, which were observed by all-sky TV cameras (30-Hz sampling on January 2008, in Canada. For two initial brightenings started in the field of views of the cameras, we found that they started at longitudinal segments with a size of less than ~30–60 km. One brightening expanded with wavy structures and the other expanded as a straight arc. Although the two events had different structures, both brightening auroras expanded with an average speed of ~20 km/s in the first 10 s, and ~10 km/s in the following 10 s. The other two events show that brightening auroras developed with periodic structures, with longitudinal wavelengths of ~100–200 km. Assuming that the brightening auroras are mapped to the physical processes occurring in the plasma sheet, we found that the scale size (30–60 km and the expanding speed (20 km/s of brightening auroras correspond to the order of ion gyro radii (~500–1400 km and Alfvén speed or fast ion-flow speed (~400 km/s, respectively, in the plasma sheet.

  7. Radio Fiber Fine Structure During the Solar Flare on July 14,2000

    Institute of Scientific and Technical Information of China (English)

    钟晓春; 王蜀娟

    2004-01-01

    On July 14, 2000, a type IV solar radio burst was observed at 10:43-11:00 UT with the 1-2 GHz digital spectrometer of National Astronomical Observatories of China (NAOC). Many fiber fine structures superposed on the type IV burst were detected in the same interval. A theoretical interpretation for the fibers is performed based upon a model of magnetic-mirror loop configuration in the solar corona. In this model, the source of the fiber emission is considered as the ducting of whistler solitons within the magnetic-mirror loop. A quantitative estimation using the observed data indicats that the magnetic field strength of the radio source is about 1.451×10-2≤B0≤2.734×10-2 T, and that a fiber is composed of 4×1015 solitons occupying a volume of about 1.2×108 km3. For the duct through which the whistler solitons passed within the magnetic-mirror loop, its diameter and the length are worked out, namely, d≈120 km and Δr≈104 km, respectively.

  8. Propagation of whistler waves driven by fine structured ion beams in the magnetotail

    Science.gov (United States)

    Burinskaya, T.; Schriver, D.; Ashour-Abdalla, M.

    1994-01-01

    In a previous paper, which examined the propagation of low-frequency whistler waves generated by ion beams in the Earth's plasma sheet boundary layer (PSBL), it was found that whistler waves driven in the PSBL are focused toward the central plasma sheet due to the global magnetotail inhomogeneities; this finding may help explain the observations of magnetic noise bursts in the tail (Burinskaya et al., 1993). In this paper the same phenomenon is examined, but this time a much more realistic model is used for the ion beam in the PSBL. While the PSBL has been modeled as a solid, homogeneous ion beams with a width of one Earth radius, observations and theoretical considerations have shown that PSBL ion beams actually have a decreasing velocity profile toward the plasma sheet and that the density of the beams within the PSBL can vary locally. We consider again the propagation and generation of electromagnetic waves but in the presence of fine structured ion beams in the PSBL. Our results show that whistler waves, generated quasi-parallel to the background magnetic field, can be trapped locally within small spatial regions where the ion beam density is enhanced compared to the density of the adjacent PSBL region. Wave spectra and nonlinear saturation mechanisms are discussed.

  9. FDMX: extended X-ray absorption fine structure calculations using the finite difference method.

    Science.gov (United States)

    Bourke, Jay D; Chantler, Christopher T; Joly, Yves

    2016-03-01

    A new theoretical approach and computational package, FDMX, for general calculations of X-ray absorption fine structure (XAFS) over an extended energy range within a full-potential model is presented. The final-state photoelectron wavefunction is calculated over an energy-dependent spatial mesh, allowing for a complete representation of all scattering paths. The electronic potentials and corresponding wavefunctions are subject to constraints based on physicality and self-consistency, allowing for accurate absorption cross sections in the near-edge region, while higher-energy results are enabled by the implementation of effective Debye-Waller damping and new implementations of second-order lifetime broadening. These include inelastic photoelectron scattering and, for the first time, plasmon excitation coupling. This is the first full-potential package available that can calculate accurate XAFS spectra across a complete energy range within a single framework and without fitted parameters. Example spectra are provided for elemental Sn, rutile TiO2 and the FeO6 octahedron.

  10. Electronic fine structure in the nickel carbide superconductor Th2NiC2

    Science.gov (United States)

    Quan, Y.; Pickett, W. E.

    2013-07-01

    The recently reported nickel carbide superconductor body centered tetragonal I4/mmm Th2NiC2 with Tc=8.5 K increasing to 11.2 K upon alloying Th with Sc is found to have very fine structure in its electronic spectrum, according to density functional based first-principles calculations. The filled Ni 3d band complex is hybridized with C 2p and Th character to and through the Fermi level (EF), and a sharply structured density of states arises only when spin-orbit coupling is included, which splits a zone-center degeneracy, leaving a very flat band edge lying at the Fermi level. The flat part of the band corresponds to an effective mass mz*→∞ with large and negative mx*=my*. Although the region over which the effective mass characterization applies is less than 1% of the zone volume, it supplies on the order of half the states at (or just above) the Fermi level. The observed increase of Tc by hole doping is accounted for if the reference as-synthesized sample is minutely hole doped, which decreases the Fermi level density of states and will provide some stabilization. In this scenario, electron doping will increase the Fermi level density of states and the superconducting critical temperature. Vibrational properties are presented, and enough coupling to the C-Ni-C stretch mode at 70 meV is obtained to imply that superconductivity is electron-phonon mediated.

  11. Formation of galaxies in {\\Lambda}CDM cosmologies. I. The fine structure of disc galaxies

    CERN Document Server

    Doménech-Moral, Mariola; Domínguez-Tenreiro, Rosa; Serna, Arturo

    2012-01-01

    We present a detailed analysis of the global and fine structure of four middle-mass disc galaxies obtained from simulations in a $\\Lambda$CDM scenario. These objects have photometric D/T ratios in good agreement with those observed for late-type spirals, as well as kinematic properties in agreement with the observational Tully-Fisher relation. We identify the different dynamical components at z=0 on the basis of both orbital parameters and the binding energy of stars in the galaxy. In this way, we recognize a slowly rotating centrally concentrated spheroid, and two disc components supported by rotation: a thin disc with stars in nearly circular orbits, and a thick disc with orbital parameters transitional between the thin disc and the spheroid. The spheroidal component is composed mainly by old, metal-poor and {\\alpha}-enhanced stars. The distribution of metals in this component shows, however, a clear bimodality with a low-metallicity peak, which could be related to a classical bulge, and a high-metallicity ...

  12. Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope

    Science.gov (United States)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  13. Sorption mechanisms of zinc to calcium silicate hydrate: X-ray absorption fine structure (XAFS) investigation.

    Science.gov (United States)

    Ziegler, F; Scheidegger, A M; Johnson, C A; Dähn, R; Wieland, E

    2001-04-01

    In this study, X-ray absorption fine structure (XAFS) spectroscopy has been used to further elucidate the binding mechanisms of Zn(II) to calcium silicate hydrate (C-S-H), the quantitatively most important cement mineral. Such knowledge is essential for the assessment of the longterm behavior of cement-stabilized waste materials. XAFS spectra of the Zn(II) equilibrated with C-S-H(I) for up to 28 days are best modeled by tetrahedral coordination of Zn(II) by four O atoms in the first atomic shell. Beyond the first coordination shell, data analysis of more highly concentrated samples suggests the presence of two distinct Zn distances and possibly the presence of an Si shell. On the basis of the comparison with a set of reference compounds, this coordination environment can be reasonably related to the structure of hemimorphite, a naturally occurring zinc silicate, and/or the presence of gamma-Zn(OH)2. At the lowest Zn uptake, the above fitting approach failed and data could be described best with a Zn-Si and a Zn-Ca shell. Previous work has been able to show that Zn(II) diffuses into the C-S-H(I) particles and does not form discrete precipitates, so the findings appear to confirm the incorporation of Zn(II) in the interlayer of C-S-H(I).

  14. Fine structure and development of the collar enamel in gars ,Lepisosteus oculatus ,Actinopterygii

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The fine structure of collar enamel and the cells constituting the enamel organ during amelogenesis in Lepisosteus oculatus was observed by light,scanning electron and transmission electron microscopy.In the enamel,slender crystals were arranged perpendicular to the surface and the stripes that were parallel to the surface were observed,suggesting that the enamel in Lepisosteus shares common morphological features with that in sarcopterygian fish and amphibians.Ameloblasts containing developed Golgi apparatus,rough endoplasmic reticulum (rER) and secretory granules were found in the secretory stage.In the maturation stage,a ruffled border was not seen at the distal end of the ameloblasts,while many mitochondria and lysosome-like granules were obvious in the distal cytoplasm.The enamel organ consisted of the outer dental epithelial cells,stratum reticulum cells and ameloblasts,but there was no stratum intermedium.It is likely that the ameloblasts have less absorptive function in comparison with the inner dental epithelial cells facing cap enameloid.

  15. Synthesis, fine structural characterization, and CO2 adsorption capacity of metal organic frameworks-74.

    Science.gov (United States)

    Adhikari, Abhijit Krishna; Lin, Kuen-Song

    2014-04-01

    Two metal organic frameworks of MOF-74 group (zinc and copper-based) were successfully synthesized, characterized, and evaluated for CO2 adsorption. The both samples such as MOF-74(Zn) and MOF-74(Cu) were characterized with FE-SEM for morphology and particle size, XRD patterns for phase structure, FTIR for organic functional groups, nitrogen adsorption for pore textural properties, and X-ray absorption spectroscopy for fine structural parameters and oxidation states of central metal atoms. CO2 adsorption isotherms of MOF-74 samples were measured in a volumetric adsorption unit at 273 K and pressure up to 1.1 bar. The MOF-74(Zn) and MOF-74(Cu) adsorbents have the pore widths of 8.58 and 8.04 angstroms with the BET specific surface areas of 1,474 and 1,345 m2 g(-1), respectively. CO2 adsorption capacities of MOF-74(Zn) and MOF-74(Cu) were 4.10 and 3.38 mmol x g(-1), respectively measured at 273 K and 1.1 bar. The oxidation state of central atoms in MOF-74(Zn) was Zn(II) confirmed by XANES spectra while MOF-74(Cu) was composed of Cu(I) and Cu(II) central atoms. The bond distances of Zn--O and Cu--O were 1.98 and 1.94 angstroms, respectively.

  16. Scattering pulse of label free fine structure cells to determine the size scale of scattering structures

    Science.gov (United States)

    Zhang, Lu; Chen, Xingyu; Zhang, Zhenxi; Chen, Wei; Zhao, Hong; Zhao, Xin; Li, Kaixing; Yuan, Li

    2016-04-01

    Scattering pulse is sensitive to the morphology and components of each single label-free cell. The most direct detection result, label free cell's scattering pulse is studied in this paper as a novel trait to recognize large malignant cells from small normal cells. A set of intrinsic scattering pulse calculation method is figured out, which combines both hydraulic focusing theory and small particle's scattering principle. Based on the scattering detection angle ranges of widely used flow cytometry, the scattering pulses formed by cell scattering energy in forward scattering angle 2°-5° and side scattering angle 80°-110° are discussed. Combining the analysis of cell's illuminating light energy, the peak, area, and full width at half maximum (FWHM) of label free cells' scattering pulses for fine structure cells with diameter 1-20 μm are studied to extract the interrelations of scattering pulse's features and cell's morphology. The theoretical and experimental results show that cell's diameter and FWHM of its scattering pulse agree with approximate linear distribution; the peak and area of scattering pulse do not always increase with cell's diameter becoming larger, but when cell's diameter is less than about 16 μm the monotone increasing relation of scattering pulse peak or area with cell's diameter can be obtained. This relationship between the features of scattering pulse and cell's size is potentially a useful but very simple criterion to distinguishing malignant and normal cells by their sizes and morphologies in label free cells clinical examinations.

  17. The Potamophylax nigricornis group (Trichoptera, Limnephilidae: resolution of phylogenetic species by fine structure analysis

    Directory of Open Access Journals (Sweden)

    Oláh, J.

    2013-11-01

    Full Text Available Applying the phylogenetic species concept and the sexual selection theory we have reviewed some natal aspects of incipient species and their accelerated evolution. How can we recognise early stages of divergence? Which selection pressures are at work during speciation? Which pathways accelerate the speed of speciation? Which kinds of trait variabilities makes difficult to find initial split criteria? Elaborating the principles of Fine Structure Analysis (FSA and the morphological Initial Split Criteria (ISP it was discovered that the European spring dwelling caddisfly Potamophylax nigricornis doesn’tbelong to a single species. It represents an entire species group with seventeen peripatric species evolving on the southernperipheries of the distributional area. Four new species subgroups have been erected: Potamophylax nigricornis new species subgroup, P. elegantulus new species subgroup, P. horgos new species subgroup, P. simas new species subgroup. Eleven new species have been described: Potamophylax apados sp. nov., P. fules sp. nov., P. fureses sp. nov., P. hasas sp. novov., P. horgos sp. nov., P. kethas sp. nov., P. lemezes sp. nov., P. peremes sp. nov., P. simas sp. nov., P. tuskes sp. nov., P. ureges sp. nov. One Potamophylax sp. nov. has been differentiated and three new species status have been documented:Potamophylax elegantulus (Klapálek stat. n., P. mista (Navás stat. nov., P. testaceus (Zetterstedt stat. nov.

  18. Strain-tuning of the excitonic fine structure splitting in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Plumhof, Johannes D.; Ding, Fei; Herklotz, Andreas; Doerr, Kathrin; Rastelli, Armando; Schmidt, Oliver G. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Krapek, Vlastimil; Klenovsky, Petr [Institute of Condensed Matter Physics, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Joens, Klaus D.; Hafenbrak, Robert; Michler, Peter [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, University of Stuttgart, Allmandring 3, 70569 Stuttgart (Germany)

    2011-07-01

    For the creation of polarization entangled photon pairs from semiconductor quantum dots (QDs) it is important to decrease the fine structure splitting (FSS) of the neutral exciton to energies comparable to the emission linewidth. We employ a piezoelectric actuator (PMN-PT) to manipulate the excitonic emission of GaAs/AlGaAs as well as InGaAs/GaAs QDs embedded in {approx}200 nm thick (Al)GaAs membranes. By attaching the membranes on the PMN-PT we can apply anisotropic strain to the nanostructures. Polarization resolved {mu}-photoluminescence spectroscopy is used to estimate the excitonic FSS as well as the orientation of the linear polarization of the emitted light. The strain makes it possible to manipulate the FSS in a range of 70 {mu} eV. We also observe rotations of up to 70 of the linear polarization of the light emitted by neutral excitons. These effects can be explained as an strain-induced anticrossing of the bright excitonic states.

  19. Retinal pigment epithelial fine structure in the red-tailed hawk (Buto jamaicensis).

    Science.gov (United States)

    Braekevelt, C R

    1992-03-01

    As part of a comparative morphological study, the fine structure of the retinal epithelium (RPE), choriocapillaris and Bruch's membrane (complexus basalis) has been studied by electron microscopy in the red-tailed hawk (Buteo jamaicensis). In this species the RPE consists of a single layer of low cuboidal cells which display numerous basal (scleral) infoldings and extensive apical (vitreal) processes which interdigitate with photoreceptor outer segments. These epithelial cells are joined laterally by a series of basally located tight junctions. Internally SER is the most abundant cell organelle while only small amounts of RER are present. Polysomes are however abundant as are mitochondria. The RPE cell nucleus is large and vesicular. Melanosomes are mainly located in the apical processes of the RPE cells in light-adaptation. Myeloid bodies are large and numerous in light-adaptation and often show ribosomes on their outer border. Bruch's membrane (complexus basalis) shows the typical pentalaminate structure noted in most vertebrates but with only a poorly defined central elastic layer. The endothelium of the choriocapillaris is very thin facing the RPE but is only moderately fenestrated. The choriocapillaris in this species is unusual however in that many of the fenestrae show a double-layered diaphragm.

  20. Active region fine structure observed at 0.08 arcsec resolution

    CERN Document Server

    Schlichenmaier, R; Hoch, S; Soltau, D; Berkefeld, T; Schmidt, D; Schmidt, W; Denker, C; Balthasar, H; Hofmann, A; Strassmeier, K G; Staude, J; Feller, A; Lagg, A; Solanki, S K; Collados, M; Sigwarth, M; Volkmer, R; Waldmann, T; Kneer, F; Nicklas, H; Sobotka, M

    2016-01-01

    The various mechanisms of magneto-convective energy transport determines the structure of sunspots and active regions. We characterise the appearance of light bridges and other fine structure details and elaborate on their magneto-convective nature. We present speckle-reconstructed images taken with the broad band imager at the 1.5 m GREGOR telescope in the 486nm and 589nm bands. We estimate the spatial resolution from the noise characteristics of the image bursts and obtain 0.08" at 589nm. We describe structure details in individual best images as well as the temporal evolution of selected features. We find branched dark lanes extending along thin (~1") light bridges in sunspots at various heliocentric angles. In thick (~2") light bridges the branches are disconnected from the central lane and have a `Y' shape with a bright grain toward the umbra. The images reveal that light bridges exist on varying intensity levels and that their small-scale features evolve on time scales of minutes. Faint light bridges sh...

  1. Upper Chromospheric Magnetic Field of a Sunspot Penumbra: Observations of Fine Structure

    CERN Document Server

    Joshi, J; Solanki, S K; Feller, A; Collados, M; Suárez, D Orozco; Schlichenmaier, R; Franz, M; Balthasar, H; Denker, C; Berkefeld, T; Hofmann, A; Kiess, C; Nicklas, H; Yabar, A Pastor; Rezaei, R; Schmidt, D; Schmidt, W; Sobotka, M; Soltau, D; Staude, J; Strassmeier, K G; Volkmer, R; von der Lühe, O; Waldmann, T

    2016-01-01

    The fine-structure of magnetic field of a sunspot penumbra in the upper chromosphere is to be explored and compared to that in the photosphere. High spatial resolution spectropolarimetric observations were recorded with the 1.5-meter GREGOR telescope using the GREGOR Infrared Spectrograph (GRIS). The observed spectral domain includes the upper chromospheric He I triplet at 1083.0 nm and the photospheric Si I 1082.7 nm and Ca I 1083.3 nm spectral lines. The upper chromospheric magnetic field is obtained by inverting the He I triplet assuming a Milne-Eddington type model atmosphere. A height dependent inversion was applied to the Si I 1082.7 nm and Ca I 1083.3 nm lines to obtain the photospheric magnetic field. We find that the inclination of the magnetic field shows variations in the azimuthal direction both in the photosphere, but also in the upper chromosphere. The chromospheric variations remarkably well coincide with the variations in the inclination of the photospheric field and resemble the well-known sp...

  2. Fine Structure ENA Sources Beyond the Termination Shock: Observational Constraints and Detection Limits

    Science.gov (United States)

    Demajistre, R.; Janzen, P. H.; Allegrini, F.; Dayeh, M. A.; McComas, D. J.; Schwadron, N.

    2015-12-01

    High spatial resolution maps from the IBEX mission (McComas et al, Science, 2009) suggest the presence of "fine structure" in the signal from beyond the termination shock. That is, areas of enhanced ENA emission that span less than a degree in the IBEX sky map. If confirmed, this would suggest very concentrated areas of emission from sources with scales of a few AU embedded in the outer heliosphere (or proportionally larger if they are located beyond the heliopause). This, in turn, would require the presence of unanticipated structures (plasma or neutral) beyond the termination shock for which the physics is poorly defined. It is therefore crucial to confirm the presence of these structures through careful analysis, or to establish the detection limits if the data taken to date is not sufficient for such a confirmation. In this work, we use 5 years worth of IBEX data to examine the statistical significance of these enhancements. We examine correlations in time, ENA energy and coincidence type for evidence of these small-scale spatial structures. Then, using the known spatial response of the IBEX instrument, establish the conditions under which such structure, if present, would be detectable. This detection threshold analysis is fully applicable future measurements, such as those planned for IMAP.

  3. Fine structure of the landers fault zone: segmentation and the rupture process.

    Science.gov (United States)

    Li, Y G; Aki, K; Vidale, J E; Lee, W H; Marone, C J

    1994-07-15

    Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy.

  4. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance

    Science.gov (United States)

    Moritake, Y.; Kanamori, Y.; Hane, K.

    2016-09-01

    We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy in the order of 10 nm, resonant wavelengths of Fano resonance were controlled from 1296 to 1416 nm. Fluorescence of QDs embedded in a polymer layer on ADB metamaterials were modified due to coupling to Fano resonance and fine tuning from 1350 to 1376 nm was observed. Wavelength tuning of modified fluorescence was reproduced by analysis using absorption peaks of Fano resonance. Tuning range of modified fluorescence became narrow, which was interpreted by a simple Gaussian model and resulted from comparable FWHM in QD fluorescence and Fano resonant peaks. The results will help the design and fabrication of metamaterial devices with fluorophores such as light sources and biomarkers.

  5. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance.

    Science.gov (United States)

    Moritake, Y; Kanamori, Y; Hane, K

    2016-09-13

    We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy in the order of 10 nm, resonant wavelengths of Fano resonance were controlled from 1296 to 1416 nm. Fluorescence of QDs embedded in a polymer layer on ADB metamaterials were modified due to coupling to Fano resonance and fine tuning from 1350 to 1376 nm was observed. Wavelength tuning of modified fluorescence was reproduced by analysis using absorption peaks of Fano resonance. Tuning range of modified fluorescence became narrow, which was interpreted by a simple Gaussian model and resulted from comparable FWHM in QD fluorescence and Fano resonant peaks. The results will help the design and fabrication of metamaterial devices with fluorophores such as light sources and biomarkers.

  6. Properties and Modeling of Unresolved Fine Structure Loops Observed by IRIS

    CERN Document Server

    Brooks, David H; Warren, Harry P

    2016-01-01

    Recent observations from the Interface Region Imaging Spectrograph (IRIS) have discovered a new class of numerous low-lying dynamic loop structures, and it has been argued that they are the long-postulated unresolved fine structures (UFS) that dominate the emission of the solar transition region. In this letter, we combine IRIS measurements of the properties of a sample of 108 UFS (intensities, lengths, widths, lifetimes) with 1-D non-equilibrium ionization simulations using the HYDRAD hydrodynamic model to examine whether the UFS are now truly spatially resolved in the sense of being individual structures rather than composed of multiple magnetic threads. We find that a simulation of an impulsively heated single strand can reproduce most of the observed properties suggesting that the UFS may be resolved, and the distribution of UFS widths implies that they are structured on a spatial scale of 133km on average. Spatial scales of a few hundred km appear to be typical for a range of chromospheric and coronal st...

  7. Fine structure of the copulatory apparatus of the tapeworm Tetrabothrius erostris (Cestoda: Tetrabothriidea).

    Science.gov (United States)

    Korneva, Janetta V; Jones, Malcolm K; Kuklin, Vadim V

    2015-05-01

    The organization and fine structure of the complex copulatory apparatus of Tetrabothrius erostris (Tetrabothriidea) is investigated by light and transmission electron microscopy. A diversity of microstructures was found on the surface of genital ducts. The apical surfaces of male gonadoducts possess tubular and blade-like microtriches that have specific structure in each section of the duct. The apical part of the tubular microtriches contains numerous constrictions in the proximal section of the sperm duct; blade-like microtriches of cirrus possess longitudinal striation in the apical part, and their basal part is reinforced with electron-dense strands. Two types of microtriches occur on the surface of cirrus, and their presence may be considered as systematic features. Prostate glands containing granules of medium electron density (up to 130 nm diameter) are localized in the cirrus sac. The genital atrium contains numerous non-ciliated receptors. Paramyosin-like fibers (up to 200 nm) were found in the muscle fibers surrounding the male atrium canal. Microtriches on the surface of the distal region of the male atrial canal are covered by a glycocalyx. Electron-dense, membrane-like structures (up to 40 nm) lie under the apical membrane of the genital atrium and vagina. These structures do not form a continuous layer; its edges turn down and sink into the apical invaginations of epithelium. Hypotheses on the possible ways of copulation in T. erostris based on the observed ultrastructure are discussed.

  8. Preferred Compression Speed for Speech and Music and Its Relationship to Sensitivity to Temporal Fine Structure

    Science.gov (United States)

    Sęk, Aleksander

    2016-01-01

    Multichannel amplitude compression is widely used in hearing aids. The preferred compression speed varies across individuals. Moore (2008) suggested that reduced sensitivity to temporal fine structure (TFS) may be associated with preference for slow compression. This idea was tested using a simulated hearing aid. It was also assessed whether preferences for compression speed depend on the type of stimulus: speech or music. Twenty-two hearing-impaired subjects were tested, and the stimulated hearing aid was fitted individually using the CAM2A method. On each trial, a given segment of speech or music was presented twice. One segment was processed with fast compression and the other with slow compression, and the order was balanced across trials. The subject indicated which segment was preferred and by how much. On average, slow compression was preferred over fast compression, more so for music, but there were distinct individual differences, which were highly correlated for speech and music. Sensitivity to TFS was assessed using the difference limen for frequency at 2000 Hz and by two measures of sensitivity to interaural phase at low frequencies. The results for the difference limens for frequency, but not the measures of sensitivity to interaural phase, supported the suggestion that preference for compression speed is affected by sensitivity to TFS. PMID:27604778

  9. Extended x-ray absorption fine structure investigation of annealed carbon expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas L.; Somers, Marcel A. J.;

    2012-01-01

    Carbon expanded austenite synthesized through carburizing of austenitic stainless steel powder at 380°C was annealed at 470°C and investigated with extended X-ray absorption fine structure (EXAFS) and synchrotron powder diffraction (SPD). SPD showed that the samples consisted of carbon expanded...... austenite and Hägg carbide, Ξ-M5C2. EXAFS showed that the Cr atoms were mainly present in environments similar to the carbides Hägg Ξ-M5C2 and M23C6. The environments of the Fe and Ni atoms were concluded to be largely metallic austenite. Light optical micrograph of stainless steel AISI 316 gas......-carburized in a temperature regime around 470°C. The surface zone is converted into carbon expanded austenite; the high interstitial content of carbon dissolved in the surface results in highly favorable materials properties. In the present article the local atomic environment of (annealed) carbon expanded austenite...

  10. Universal Growth Scheme for Quantum Dots with Low Fine-Structure Splitting at Various Emission Wavelengths

    Science.gov (United States)

    Skiba-Szymanska, Joanna; Stevenson, R. Mark; Varnava, Christiana; Felle, Martin; Huwer, Jan; Müller, Tina; Bennett, Anthony J.; Lee, James P.; Farrer, Ian; Krysa, Andrey B.; Spencer, Peter; Goff, Lucy E.; Ritchie, David A.; Heffernan, Jon; Shields, Andrew J.

    2017-07-01

    Efficient sources of individual pairs of entangled photons are required for quantum networks to operate using fiber-optic infrastructure. Entangled light can be generated by quantum dots (QDs) with naturally small fine-structure splitting (FSS) between exciton eigenstates. Moreover, QDs can be engineered to emit at standard telecom wavelengths. To achieve sufficient signal intensity for applications, QDs have been incorporated into one-dimensional optical microcavities. However, combining these properties in a single device has so far proved elusive. Here, we introduce a growth strategy to realize QDs with small FSS in the conventional telecom band, and within an optical cavity. Our approach employs ``droplet-epitaxy'' of InAs quantum dots on (001) substrates. We show the scheme improves the symmetry of the dots by 72%. Furthermore, our technique is universal, and produces low FSS QDs by molecular beam epitaxy on GaAs emitting at ˜900 nm , and metal-organic vapor-phase epitaxy on InP emitting at ˜1550 nm , with mean FSS 4 × smaller than for Stranski-Krastanow QDs.

  11. Growth scheme for quantum dots with low fine structure splitting at telecom wavelengths (Conference Presentation)

    Science.gov (United States)

    Muller, Tina; Skiba-Szymanska, Joanna; Stevenson, R. Mark; Varnava, Christiana; Felle, Martin; Huwer, Jan; Farrer, Ian; Krysa, Andrey B.; Spencer, Peter; Ritchie, David A.; Heffernan, Jon; Shields, Andrew J.

    2017-02-01

    Quantum dots based on InAs/InP hold the promise to deliver entangled photons with wavelength suitable for the standard telecom window around 1550 nm, which makes them predestined to be used in future quantum networks applications based on existing fiber optics infrastructure. A prerequisite for the generation of such entangled photons is a small fine structure splitting (FSS) in the quantum dot excitonic eigenstates, as well as the ability to integrate the dot into photonic structures to enhance and direct its emission. Using optical spectroscopy, we show that a growth strategy based on droplet epitaxy can simultaneously address both issues. Contrary to the standard Stranski-Krastanow technique, droplet epitaxy dots do not rely on material strains during growth, which results in a drastic improvement in dot symmetry. As a consequence, the average exciton FSS is reduced by more than a factor 4, which in fact makes all the difference between easily finding a dot with the required FSS and not finding one at all. Furthermore, we demonstrate that droplet epitaxy dots can be grown on the necessary surface (001) for high quality optical microcavities, which increases dot emission count rates by more than a factor of five. Together, these properties make droplet epitaxy quantum dots readily suitable for the generation of entangled photons at telecom wavelengths.

  12. Molecular characterization of brominated persistent pollutants using extended X-ray absorption fine structure (EXAFS) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bergknut, Magnus; Skyllberg, Ulf [Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, Umeaa (Sweden); Persson, Per [Umeaa University, Department of Chemistry, Umeaa (Sweden)

    2008-02-15

    X-ray absorption fine structure (EXAFS) spectroscopy spectra were collected for three brominated persistent pollutants: 6-bromo-2,4,5-trichlorophenol (BrTriClP), pentabromophenol (PentaBrP) and 3,3',5,5'-tetrabromobisphenol A (TBBA). The substances were selected to be symmetrical (BrTriClP and TBBA) or asymmetrical (PentaBrP) with respect to the atomic Br positions and to differ in the number of bromine and other halide atoms, as well as their relative positions. The asymmetrical PentaBrP was modelled with special detail as not all bromine atoms have identical coordination environments. The studied substances displayed unique EXAFS spectra, which could be used to determine the molecular structure in fair detail. We conclude that EXAFS spectroscopy is a suitable technique for molecular characterization of the comparatively complex molecules within the class of compounds of brominated organic persistent pollutants. A detailed understanding of the EXAFS spectra of the pure compounds opens up possibilities to study the interactions with soil and sediment matrices by means of EXAFS spectroscopy. (orig.)

  13. Fine structure of Langmuir waves observed upstream of the bow shock at Venus

    Science.gov (United States)

    Hospodarsky, G. B.; Gurnett, D. A.; Kurth, W. S.; Kivelson, M. G.; Strangeway, R. J.; Bolton, S. J.

    1994-01-01

    Highly structured Langmuir waves, also known as electron plasma oscillations, have been observed in the foreshock of Venus using the plasma wave experiment on the Galileo spacecraft during the gravity assist flyby on February 10, 1990. The Galileo wideband sampling system provides digital electric field waveform measurements at sampling rates up to 201,600 samples per second, much higher than any previous instrument of this type. The main Langmuir wave emission band occurs near the local electron plasma frequency, which was approximately 43 kHz. The Langmuir waves are observed to shift above and below the plasma frequency, sometimes by as much as 20 kHz. The shifts in frequency are closely correlated with the downstream distance from the tangent field line, implying that the shifts are controlled by the electron beam velocity. Considerable fine structure is also evident, with timescales as short as 0.15 ms, corresponding to spatial scales of a few tens of Debye lengths. The frequency spectrum often consists of beat-type waveforms, with beat frequencies ranging from 0.2 to 7 kHz, and in a few cases, isolated wave packets. The peak electric field strengths are approximately 1 mV/m. These field strengths are too small for strongly nonlinear processes to be important. The beat-type waveforms are suggestive of a parametric decay process.

  14. All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide

    Science.gov (United States)

    Simin, D.; Soltamov, V. A.; Poshakinskiy, A. V.; Anisimov, A. N.; Babunts, R. A.; Tolmachev, D. O.; Mokhov, E. N.; Trupke, M.; Tarasenko, S. A.; Sperlich, A.; Baranov, P. G.; Dyakonov, V.; Astakhov, G. V.

    2016-07-01

    We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-28SiC) and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3 /2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100 nT /√{Hz } within a volume of 3 ×10-7m m3 at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3 mm3 , the projection noise limit is below 100 fT /√{Hz } .

  15. Excitonic fine structure and binding energies of excitonic complexes in single InAs quantum dashes

    Science.gov (United States)

    Mrowiński, P.; Zieliński, M.; Świderski, M.; Misiewicz, J.; Somers, A.; Reithmaier, J. P.; Höfling, S.; Sek, G.

    2016-09-01

    The fundamental electronic and optical properties of elongated InAs nanostructures embedded in quaternary InGaAlAs barrier are investigated by means of high-resolution optical spectroscopy and many-body atomistic tight-binding theory. These wire-like shaped, self-assembled nanostructures are known as quantum dashes and are typically formed during the molecular beam epitaxial growth on InP substrates. In this paper, we study properties of excitonic complexes confined in quantum dashes emitting in a broad spectral range from below 1.2 to 1.55 μm. We find peculiar trends for the biexciton and negative trion binding energies, with pronounced trion binding in smaller size quantum dashes. These experimental findings are then compared and qualitatively explained by atomistic theory. The theoretical analysis shows a fundamental role of correlation effects for the absolute values of excitonic binding energies. Eventually, we determine the bright exciton fine structure splitting (FSS), where both the experiment and theory predict a broad distribution of the splitting varying from below 50 to almost 180 μeV. We identify several key factors determining the FSS values in such nanostructures, including quantum dash size variation and composition fluctuations.

  16. Fine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium

    Directory of Open Access Journals (Sweden)

    Antonio Cigliano

    2012-01-01

    Full Text Available Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emerged to create cell repopulated decellularized scaffolds. This study was performed to determine the glycosaminoglycans content, distribution, and disaccharides composition in porcine aortic and pulmonary valves and in pericardium before and after a detergent-based decellularization procedure. The fine structural characteristics of galactosaminoglycans chondroitin sulfate and dermatan sulfate were examined by FACE. Furthermore, the mechanical properties of decellularized pericardium and its propensity to be repopulated by in vitro seeded fibroblasts were investigated. Results show that galactosaminoglycans and hyaluronan are differently distributed between pericardium and valves and within heart valves themselves before and after decellularization. The distribution of glycosaminoglycans is also dependent from the vascular district and topographic localization. The decellularization protocol adopted resulted in a relevant but not selective depletion of galactosaminoglycans. As a whole, data suggest that both decellularized porcine heart valves and bovine pericardium represent promising materials bearing the potential for future development of tissue engineered heart valve scaffolds.

  17. The morphology and fine structure of the giant interneurons of the wood cricket Nemobius sylvestris.

    Science.gov (United States)

    Insausti, T C; Lazzari, C R; Casas, J

    2011-02-01

    The structural and ultrastructural characteristics of giant interneurons in the terminal abdominal ganglion of the cricket Nemobius sylvestris were investigated by means of cobalt and fluorescent dye backfilling and transmission electron microscopy. The projections of the 8 eight pairs of the biggest ascending interneurons (giant interneurons) are described in detail. The somata of all interneurons analyzed are located contralateral to their axons, which project to the posterior region of the terminal ganglion and arborise in the cercal glomerulus. Neuron 7-1a is an exception, because its arborisation is restricted to the anterior region of the ganglion. The fine structure of giant interneurons shows typical features of highly active cells. We observed striking indentations in the perineural layer, enabling the somata of the giant interneurons to be very close to the haemolymph. The cercal glomerulus exhibits a high diversity of synaptic contacts (i.e. axo-dendritic, axo-axonic, dendro-axonic, and dendro-dendritic), as well as areas of tight junctions. Electrical synapses seem to be present, as well as mixed synapses. The anatomical organization of the giant interneurons is finally discussed in terms of functional implications and on a comparative basis.

  18. Fine structure and functional comments of mouthparts in Platypus cylindrus (Col., Curculionidae: Platypodinae).

    Science.gov (United States)

    Belhoucine, Latifa; Bouhraoua, Rachid T; Prats, Eva; Pulade-Villar, Juli

    2013-02-01

    Oak pinhole borer, Platypus cylindrus is seen in recent years as one of the biggest enemies directly involved in the observed decline of cork oak in Mediterranean forests with all the economic implications. As an ambrosia beetle, it has developed its effective drilling mouthpart enough to make tunnels in hardwood of the tree. The fine structural aspects of the mouthpart using the field emission scanning electron microscopy are analyzed about 23 adults collected in galleries of infested cork oak trees (Quercus suber) in a littoral forest of northwest Algeria. These adults are preserved in alcohol 70%, cleaned and coated with gold. The mouthparts of this beetle consist commonly of a labrum, a pair of mandibles, a pair of maxillae and the labium but with adapted structure to excavate galleries in the hardwood. In this role is also involved the first pair of legs. The function that present the different structures related to the construction of the tunnels is discussed. Both of maxillary and labial palpi direct the food to the mouth and hold it while the mandibles chew the food. The distal ends of these palpi are flattened and have shovel-like setae. Females have larger maxillary palpi than males and this is related to the particular biology of each sex.

  19. 65 Revisited

    OpenAIRE

    2010-01-01

    Pennebaker hat doch zurückgeblickt. In weiteren fünfundsechzig Minuten zeigt er mit 65 REVISITED neue und ergänzende Facetten von Bob Dylan auf seiner 1965er Tournee durch England aus bisher unveröffentlichtem und digital aufgearbeitetem Material. Couchman (2002, 94) betont, dass Dylan über vierzig Jahre nach DON‘T LOOK BACK (1965) noch immer nichts von seiner enigmatischen Ausstrahlung verloren habe. Das gleiche gilt auch für den Film und für seine Ergänzung.

  20. The Faraday effect revisited: General theory

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Nenciu, Gheorghe; Pedersen, Thomas Garm

    This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. For free electrons, the transverse...

  1. The Faraday effect revisited: General theory

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Nenciu, Gheorghe; Pedersen, Thomas Garm

    2006-01-01

    This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. At zero temperature and zero frequency...

  2. Planck intermediate results XXIV. Constraints on variations in fundamental constants

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.;

    2015-01-01

    Any variation in the fundamental physical constants, more particularly in the fine structure constant, a, or in the mass of the electron, me, affects the recombination history of the Universe and cause an imprint on the cosmic microwave background angular power spectra. We show that the Planck data...... of the electron, me, and in the simultaneous variation of the two constants. We examine in detail the degeneracies between fundamental constants and the cosmological parameters, in order to compare the limits obtained from Planck and WMAP and to determine the constraining power gained by including other...

  3. [Fine structural study of keratinization of the filiform papillae in the tongue in humans].

    Science.gov (United States)

    Placková, A; Skach, M

    1975-01-01

    The fine structure of the keratinization of the papilla filiformis of the human tongue was described for the first time; Two biopsies of normal tongue tissue were fixed in 2,5% phosphate-buffered glutaraldehyde, postfixed in 1% osmiumtetroxyde, embedded in Durcopan und contrasted ultrathin sections were examined by electron microscopes JEM 7A and 100B. The findings show a highly configurated epithel-connective tissue border with basal lamina and irregular hemidesmosomes. The epithelial structure of the interpapillary area is identical with the fine structure of the human buccal mucosa, which was classified as non-keratinized or incompletely keratinized. Accordingly, a stratum granulosum is missing. After loss of nucleus and organelles, surface cells become flattened, parallel to the surface of the tongue and have a fine fibrillar cytoplasm. The papilla filiformis is formed by cell growth along the secondary connective tissue papillae and consequently tube-like epithelial structures appear. In the papillary area basal and stratum spinosum cells show epidermal structural features. A difference from epidermal and other oral epithelial cells becomes apparent for the first time in the stratum granulosum by the appearance of a great number of round, small, electron-dense KHG, surrounded by ribosomes. The KHG are not associated with tonofilaments. In the area of the walls of the tubes 1...3 mum large, electron-dense structures are formed by fusion of several KHG. With further differentiation these large KHG disintegrate into bulky or granular masses, filling the cell cytoplasm and thus mask the tonofilaments. The cells at the borders of the tubes show a great structural variability. After the disintegration of nucleus and organelles, the cytoplasm is formed by randomly oriented filaments of different packing or by fiber-bundles. Yet the interfibrilla embedding substance, typical of orthokeratinization is mostly lackingmin some cells of the tubeborders, masses of

  4. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina; Alexander, Caroline [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Golub, Leon; DeLuca, Edward [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Schuler, Timothy, E-mail: amy.r.winebarger@nasa.gov [State University of New York College at Buffalo, 1300 Elmwood Avenue, Buffalo, NY 14222 (United States)

    2014-05-20

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  5. Observations and modeling of the fine structure of loops in the transition region and corona

    Science.gov (United States)

    Brooks, David

    2017-08-01

    The physical dimensions of loops hold important clues to the coronal heating process. Theoretical arguments universally indicate that coronal heating should operate on very small spatial scales and loops should be unresolvable by current instrumentation. There are a number of observational results, however, that suggest that coronal loops are organized on spatial scales of several hundred km. For example, recent observations from IRIS have discovered a new class of low-lying dynamic loops structures, and it has been argued that they are the long-postulated unresolved fine structures (UFS) that dominate the emission of the solar transition region. Here we show that the properties of the UFS (intensities, lengths, widths, lifetimes) are consistent with 1-D non-equilibrium ionization simulations of an impulsively heated single strand, suggesting that they are resolved, and that the distribution of UFS widths implies that like coronal loops they are also structured on a spatial scale of a few hundred km. Spatial scales of a few hundred kilometers appear to be typical for a range of chromospheric and coronal structures, but it is unclear whether the true distribution of loop widths is normalized around this scale, or whether it extends to much smaller scales - perhaps by a power-law - below the resolution of current instruments. We have extended our previous modeling of the cross-field intensity profiles of coronal loops observed by EIS and AIA, to investigate what the modeled profiles would look like at Hi-C resolution, what they would look like if loops are composed only of temperatures and densities, and the intensity profiles from the power-law simulations are dominated by emission from the largest strands.

  6. A New Catalogue of Fine Structures Superimposed on Solar Microwave Bursts

    Institute of Scientific and Technical Information of China (English)

    Qi-Jun Fu; Yi-Hua Yan; Yu-Ying Liu; Min Wang; Shu-Juan Wang

    2004-01-01

    The 2.6-3.8 GHz, 4.5-7.5 GHz, 5.2-7.6 GHz and 0.7-1.5 GHz component spectrometers of Solar Broadband Radio Spectrometer (SBRS) started routine observations, respectively, in late August 1996, August 1999, August 1999, and June 2000. They just managed to catch the coming 23rd solar active maximum. Consequently, a large amount of microwave burst data with high temporal and high spectral resolution and high sensitivity were obtained. A variety of fine structures (FS)superimposed on microwave bursts have been found. Some of them are known, such as microwave type Ⅲ bursts, microwave spike emission, but these were observed with more detail; some are new. Reported for the first time here are microwave type U bursts with similar spectral morphology to those in decimetric and metric wavelengths, and with outstanding characteristics such as very short durations(tens to hundreds ms), narrow bandwidths, higher frequency drift rates and higher degrees of polarization. Type N and type M bursts were also observed. Detailed zebra pattern and fiber bursts at the high frequency were found. Drifting pulsation structure (DPS) phenomena closely associated with CME are considered to manifest the initial phase of the CME, and quasi-periodic pulsation with periods of tens ms have been recorded. Microwave "patches", unlike those reported previously, were observed with very short durations (about 300 ms), very high flux densities (up to 1000 sfu), very high polarization (about 100% RCP), extremely narrow bandwidths(about 5%), and very high spectral indexes. These cannot be interpreted with the gyrosynchrotron process. A superfine structure in the form of microwave FS (ZPS,type U), consisting of microwave millisecond spike emission (MMS), was also found.

  7. A surface extended X-ray absorption fine structure study of tellurium adsorbed onto Si(100)

    Science.gov (United States)

    Burgess, S. R.; Cowie, B. C. C.; Wilks, S. P.; Dunstan, P. R.; Dunscombe, C. J.; Williams, R. H.

    1996-09-01

    The adsorption of tellurium on Si(100) has been studied using surface extended X-ray adsorption fine structure (SEXAFS) and X-ray standing wave spectroscopy (XSW). This particular system is of interest due to its potential applicability in the surfactant aided growth of CdHgTeCdTeSi(100) based infra-red detectors. The Te/Si(100) structure was generated by depositing a thick layer (˜ 100 Å) of CdTe onto a clean Si (2 × 1) double domain surface, and annealing the sample to 350°C. This resulted is a ˜ 1 ML Te terminated surface where the (2 × 1) reconstruction was lost in favour of a (1 × 1) symmetry. X-ray absorption of the Te L 3 edge ( E = 4341 eV), with a photon energy range of 4440-4700 eV, was probed using a total yield detection scheme. The SEXAFS results indicated that the Te atoms sat in 2-fold bridge sites directly above a fourth layer Si atom. The corresponding bond length was measured to be 2.52 ± 0.05 Å. The XSW measurements of the (400) reflection gave a coherent position of 1.63 ± 0.03 Å and a coherent fraction of 0.65. This is consistent with the breaking of the SiSi dimers and thus could be an example of the phenomena of adsorbate-induced dereconstruction of the surface. These results are compared with those of Bennet et al. who examined a similar system using soft X-ray photoemission (SXPS) and the STM study of Yoshikawa et al.

  8. Comparison of the coupled-channel calculation with the WKB method for α-decay fine structure

    Science.gov (United States)

    Ni, Dongdong; Ren, Zhongzhou

    2013-05-01

    The α-decay fine structures in heavy deformed even-even and odd-mass nuclei are investigated using the newly developed multichannel cluster model (MCCM) and the WKB barrier penetration formalism. The MCCM is based on the coupled-channel Schrödinger equation with outgoing wave boundary conditions. For even-even nuclei, the two methods yield comparable results concerning the branching ratios for 0+ and 2+ states but the WKB formula fails in reproducing the branching ratios for excited 4+ states. For odd-mass nuclei, it is hard to use the WKB formula to interpret the unexpected behavior BRI+1 >BRI while the MCCM succeeds. These emphasize that the coupling effects of decay channels cannot be ignored in describing the α-decay fine structure.

  9. Flare processes evolution and polarization changes of fine structures of solar radio emission in the April 11, 2013 event

    CERN Document Server

    Chernov, Gennady; Tan, Baolin; Yan, Yihua; Tan, Chengming; Fu, Qijun; Karlicky, Marian; Fomichev, Valery

    2015-01-01

    The measurement of positions and sizes of radio sources in the observations of solar radio spectral fine structures in an M6.5 flare on April 11, 2013 were observed simultaneously by several radio instruments at four different observatories: Chinese Solar Broadband Radio Spectrometers at Huairou (SBRS/Huairou), Ondrejov Radio spectrograph in the Czech Republic (ORSC/Ondrejov), Badary Broadband Microwave spectropolarimeter (BMS/Irkutsk), and spectrograph/IZMIRAN (Moscow, Troitsk). The fine structures include microwave zebra patterns (ZP), fast pulsations, and fibers. They were observed during the flare brightening located at the tops of a loop arcade. The dynamics of the polarization was associated with the motion of the flare exciter, which was observed in EUV images at 171A and 131A (SDO/AIA). Combining magnetograms observed by the SDO Helioseismic and Magnetic Imager (HMI) with the homologous assumption of EUV flare brightening and ZP bursts, we deduced that the observed ZPs correspond to the ordinary radio...

  10. Modeling of 1—D Lossy Fine Structures Using Transformed—Space Non—Uniform PSTD

    Institute of Scientific and Technical Information of China (English)

    LIQingliang; CHENYinchao

    2003-01-01

    Although the advantages of the pseu-dospectral time domain (PSTD) has been validated in di-verse applications of electromagnetic problems based on a uniform grid, it faces a difficulty when an electromagnetic structure involves highly conductivity due to the Gibbs phenomena. In addition, its efficiency will be greatly re-duced in solving a problem with fine structure, since a denser grid is needed. In this paper, we apply a newly de-veloped transformed-space non-uniform grid PSTD tech-nique (TSNU-PSTD) to handle an application with very fine structure. By using a quadratic interpolation, we transform an non-unlform grid into a uniform one, and then we simply implement the conventional PSTD by only utilizing the standard fast Fourier transform (FFT) to de-rive PSTD update equations.

  11. Symmetry Breaking and Fine Structure Splitting in Zincblende Quantum Dots: Atomistic Simulations of Long-Range Strain and Piezoelectric Field

    Science.gov (United States)

    Ahmed, Shaikh; Usman, Muhammad; Heitzinger, Clemens; Rahman, Rajib; Schliwa, Andrei; Klimeck, Gerhard

    2007-04-01

    Electrons and holes captured in self-assembled quantum dots (QDs) are subject to symmetry breaking that cannot be represented in with continuum material representations. Atomistic calculations reveal symmetry lowering due to effects of strain and piezo-electric fields. These effects are fundamentally based on the crystal topology in the quantum dots. This work studies these two competing effects and demonstrates the fine structure splitting that has been demonstrated experimentally can be attributed to the underlying atomistic structure of the quantum dots.

  12. R-matrix calculations for electron-impact excitation of C(+), N(2+), and O(3+) including fine structure

    Science.gov (United States)

    Luo, D.; Pradhan, A. K.

    1990-01-01

    The new R-matrix package for comprehensive close-coupling calculations for electron scattering with the first three ions in the boron isoelectronic sequence, the astrophysically significant C(+), N(2+), and O(3+), is presented. The collision strengths are calculated in the LS coupling approximation, as well as in pair-coupling scheme, for the transitions among the fine-structure sublevels. Calculations are carried out at a large number of energies in order to study the detailed effects of autoionizing resonances.

  13. Fine structure of the epidermal Leydig cells in the axolotl Ambystoma mexicanum in relation to their function.

    Science.gov (United States)

    Jarial, M S

    1989-12-01

    The fine structure of the Leydig cells in the epidermis of the strictly aquatic adult axolotl Ambystoma mexicanum resembles that of similar cells in larval salamanders. The major finding of this study is that the mucous secretion of the Leydig cells is released into the intercellular spaces from which it is discharged through pores onto the surface of the epidermis where it forms a mucous layer to protect the skin.

  14. FAR-INFRARED FINE-STRUCTURE LINE DIAGNOSTICS OF ULTRALUMINOUS INFRARED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Farrah, D.; Petty, S. M.; Harris, K. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Lebouteiller, V.; Spoon, H. W. W. [Cornell University, CRSR, Space Sciences Building, Ithaca, NY 14853 (United States); Bernard-Salas, J.; Pearson, C. [Department of Physics and Astronomy, The Open University, Milton Keynes MK7 6AA (United Kingdom); Rigopoulou, D. [RAL Space, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX (United Kingdom); Smith, H. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); González-Alfonso, E. [Universidad de Alcalá, Departamento de Física y Matemáticas, Campus Universitario, E-28871 Alcalá de Henares, Madrid (Spain); Clements, D. L. [Physics Department, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Efstathiou, A. [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Cormier, D. [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Afonso, J. [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisbon (Portugal); Hurley, P. [Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Borys, C. [Infrared Processing and Analysis Center, MS220-6, California Institute of Technology, Pasadena, CA 91125 (United States); Verma, A. [Oxford Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Rd, Oxford OX1 3RH (United Kingdom); Cooray, A.; Salvatelli, V. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

    2013-10-10

    We present Herschel observations of 6 fine-structure lines in 25 ultraluminous infrared galaxies at z < 0.27. The lines, [O III]52 μm, [N III]57 μm, [O I]63 μm, [N II]122 μm, [O I]145 μm, and [C II]158 μm, are mostly single Gaussians with widths <600 km s{sup –1} and luminosities of 10{sup 7}-10{sup 9} L{sub ☉}. There are deficits in the [O I]63/L{sub IR}, [N II]/L{sub IR}, [O I]145/L{sub IR}, and [C II]/L{sub IR} ratios compared to lower luminosity systems. The majority of the line deficits are consistent with dustier H II regions, but part of the [C II] deficit may arise from an additional mechanism, plausibly charged dust grains. This is consistent with some of the [C II] originating from photodissociation regions or the interstellar medium (ISM). We derive relations between far-IR line luminosities and both the IR luminosity and star formation rate. We find that [N II] and both [O I] lines are good tracers of the IR luminosity and star formation rate. In contrast, [C II] is a poor tracer of the IR luminosity and star formation rate, and does not improve as a tracer of either quantity if the [C II] deficit is accounted for. The continuum luminosity densities also correlate with the IR luminosity and star formation rate. We derive ranges for the gas density and ultraviolet radiation intensity of 10{sup 1} < n < 10{sup 2.5} and 10{sup 2.2} < G{sub 0} < 10{sup 3.6}, respectively. These ranges depend on optical type, the importance of star formation, and merger stage. We do not find relationships between far-IR line properties and several other parameters: active galactic nucleus (AGN) activity, merger stage, mid-IR excitation, and SMBH mass. We conclude that these far-IR lines arise from gas heated by starlight, and that they are not strongly influenced by AGN activity.

  15. Recovery and fine structure variability of RGII sub-domains in wine (Vitis vinifera Merlot).

    Science.gov (United States)

    Buffetto, F; Ropartz, D; Zhang, X J; Gilbert, H J; Guillon, F; Ralet, M-C

    2014-10-01

    Rhamnogalacturonan II (RGII) is a structurally complex pectic sub-domain composed of more than 12 different sugars and 20 different linkages distributed in five side chains along a homogalacturonan backbone. Although RGII has long been described as highly conserved over plant evolution, recent studies have revealed variations in the structure of the polysaccharide. This study examines the fine structure variability of RGII in wine, focusing on the side chains A and B obtained after sequential mild acid hydrolysis. Specifically, this study aims to differentiate intrinsic structural variations in these RGII side chains from structural variations due to acid hydrolysis. RGII from wine (Vitis vinifera Merlot) was sequentially hydrolysed with trifluoroacetic acid (TFA) and the hydrolysis products were separated by anion-exchange chromatography (AEC). AEC fractions or total hydrolysates were analysed by MALDI-TOF mass spectrometry. The optimal conditions to recover non-degraded side chain B, side chain A and RGII backbone were 0·1 m TFA at 40 °C for 16 h, 0·48 m TFA at 40 °C for 16 h (or 0·1 m TFA at 60 °C for 8 h) and 0·1 m TFA at 60 °C for 16 h, respectively. Side chain B was particularly prone to acid degradation. Side chain A and the RGII GalA backbone were partly degraded by 0·1 m TFA at 80 °C for 1-4 h. AEC allowed separation of side chain B, methyl-esterified side chain A and non-methyl-esterified side chain A. The structure of side chain A and the GalA backbone were highly variable. Several modifications to the RGII structure of wine were identified. The observed dearabinosylation and deacetylation were primarily the consequence of acidic treatment, while variation in methyl-esterification, methyl-ether linkages and oxidation reflect natural diversity. The physiological significance of this variability, however, remains to be determined. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights

  16. Structural studies of molecular and metallic overlayers using angle- resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.

    1992-10-01

    Angle-resolved photoemission extended fine structure (ARPEFS) was used to study molecular and metallic overlayers on metal surfaces through analysis of p2mg(2[times]1)CO/Ni(110) and the p(2[times]2)K/Ni(111) adsorption. For the dense p2mg(2[times]1)CO/Ni(110) surface layer, photoemission intensities from C 1s level were measured in three directions at photoelectron kinetic energies 60-400 eV. Using multiple-scattering spherical-wave (MSSW) modeling, it was found that CO molecules are adsorbed on short-bridge sites, with adjacent CO along the [110] direction displaced alternatively in opposite directions towards the [001] azimuths to form a zigzag chain geometry. The tilt angle is 16[plus minus]2[degree] from the surface normal for the direction linking the C atom and the center of the Ni bridge. The carbon C-Ni interatomic distance was determined to be 1.94[plus minus]0.02[Angstrom]. The first- to second-layer spacing of Ni is 1.27[plus minus]0.04[Angstrom], up from 1.10[Angstrom] for the clean Ni(110) surface, but close to the 1.25[Angstrom] Ni interlayer spacing in the bulk. The C-O bond length and tilt angle were varied within small ranges (1.10--1.20[Angstrom] and 15--23[degrees]) in our MSSW simulations. Best agreement between experiment and simulations was achieved at 1.16[Angstrom] and 19[degrees]. This yields an O-O distance of 2.95[Angstrom] for the two nearest CO molecules, (van der Waals' radius [approximately] 1.5 [Angstrom] for oxygen). Two different partial-wave phase-shifts were used in MSSW, and structural results from both are in very good agreement. For the p(2[times]2)K/Ni(111) overlayer, ARPEFS [chi](k) curves from K 1s level measured along [111] and [771] at 130K showed that the K atoms are preferentially adsorbed on the atop sites, in agreement with a LEED study of the same system.

  17. Structural studies of molecular and metallic overlayers using angle- resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.

    1992-10-01

    Angle-resolved photoemission extended fine structure (ARPEFS) was used to study molecular and metallic overlayers on metal surfaces through analysis of p2mg(2{times}1)CO/Ni(110) and the p(2{times}2)K/Ni(111) adsorption. For the dense p2mg(2{times}1)CO/Ni(110) surface layer, photoemission intensities from C 1s level were measured in three directions at photoelectron kinetic energies 60-400 eV. Using multiple-scattering spherical-wave (MSSW) modeling, it was found that CO molecules are adsorbed on short-bridge sites, with adjacent CO along the [110] direction displaced alternatively in opposite directions towards the [001] azimuths to form a zigzag chain geometry. The tilt angle is 16{plus_minus}2{degree} from the surface normal for the direction linking the C atom and the center of the Ni bridge. The carbon C-Ni interatomic distance was determined to be 1.94{plus_minus}0.02{Angstrom}. The first- to second-layer spacing of Ni is 1.27{plus_minus}0.04{Angstrom}, up from 1.10{Angstrom} for the clean Ni(110) surface, but close to the 1.25{Angstrom} Ni interlayer spacing in the bulk. The C-O bond length and tilt angle were varied within small ranges (1.10--1.20{Angstrom} and 15--23{degrees}) in our MSSW simulations. Best agreement between experiment and simulations was achieved at 1.16{Angstrom} and 19{degrees}. This yields an O-O distance of 2.95{Angstrom} for the two nearest CO molecules, (van der Waals` radius {approximately} 1.5 {Angstrom} for oxygen). Two different partial-wave phase-shifts were used in MSSW, and structural results from both are in very good agreement. For the p(2{times}2)K/Ni(111) overlayer, ARPEFS {chi}(k) curves from K 1s level measured along [111] and [771] at 130K showed that the K atoms are preferentially adsorbed on the atop sites, in agreement with a LEED study of the same system.

  18. Fine structure analysis of biocompatible ceramic materials based hydroxyapatite and metallic biomaterials 316L

    Energy Technology Data Exchange (ETDEWEB)

    Anghelina, F.V.; Ungureanu, D.N.; Bratu, V. [Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 18-24 Unirii Bd., 130082 (Romania); Popescu, I.N., E-mail: pinicoleta24@yahoo.com [Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 18-24 Unirii Bd., 130082 (Romania); Rusanescu, C.O. [Politehnica University, 060042 Bucharest (Romania)

    2013-11-15

    The aim of this paper was to obtain and characterize (surface morphology and fine structure) two types of materials: Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} hydroxyapatite powder (HAp) as biocompatible ceramic materials and AISI 316L austenitic stainless steels as metallic biomaterials, which are the components of the metal–ceramic composites used for medical implants in reconstructive surgery and prosthetic treatment. The HAp was synthesized by coprecipitation method, heat treated at 200 °C, 800 °C and 1200 °C for 4 h, analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The stainless steel 316L type was made by casting, annealing and machined with a low speed (100 mm/s) in order to obtain a smooth surface and after that has been studied from residual stresses point of view in three polishing regimes conditions: at low speed polishing (150 rpm), at high speed polishing (1500 rpm) and high speed-vibration contact polishing (1500 rpm) using wide angle X-ray diffractions (WAXD). The chemical compositions of AISI 316 steel samples were measured using a Foundry Master Spectrometer equipped with CCD detector for spectral lines and the sparking spots of AISI 316L samples were analyzed using SEM. By XRD the phases of HAp powders have been identified and also the degree of crystallinity and average size of crystallites, and with SEM, we studied the morphology of the HAp. It has been found from XRD analysis that we obtained HAp with a high degree of crystallinity at 800 °C and 1200 °C, no presence of impurity and from SEM analysis we noticed the influence of heat treatment on the ceramic particles morphology. From the study of residual stress profiles of 316L samples were observed that it differs substantially for different machining regimes and from the SEM analysis of sparking spots we revealed the rough surfaces of stainless steel rods necessary for a better adhesion of HAp on it.

  19. Close-coupling calculations of fine-structure excitation of Ne II due to H and electron collisions

    Science.gov (United States)

    Stancil, Phillip C.; Cumbee, Renata; Wang, Qianxia; Loch, Stuart; Pindzola, Michael; Schultz, David R.; Buenker, Robert; McLaughlin, Brendan; Ballance, Connor

    2016-06-01

    Fine-structure transitions within the ground term of ions and neutral atoms dominate the cooling in a variety of molecular regions and also provide important density and temperature diagnostics. While fine-structure rates due to electron collisions have been studied for many systems, data are generally sparse for elements larger than oxygen, at low temperatures, and for collisions due to heavy particles. We provide rate coefficients for H collisions for the first time. The calculations were performed using the quantum molecular-orbital close-coupling approach and the elastic approximation. The heavy-particle collisions use new potential energies for the lowest-lying NeH+ states computed with the MRDCI method. The focus of the electron-impact calculations is to provide fine-structure excitation rate coefficients down to 10 K. We compare with previous calculations at higher temperatures (Griffin et al. 2001), and use a range of calculations to provide an estimate of the uncertainty on our recommended rate coefficients. A brief discussion of astrophysical applications is also provided.Griffin, D.C., et al., 2001, J. Phys. B, 34, 4401This work partially supported by NASA grant No. NNX15AE47G.

  20. Quiescent Prominences in the Era of ALMA: Simulated Observations Using the 3D Whole-prominence Fine Structure Model

    Science.gov (United States)

    Gunár, Stanislav; Heinzel, Petr; Mackay, Duncan H.; Anzer, Ulrich

    2016-12-01

    We use the detailed 3D whole-prominence fine structure model to produce the first simulated high-resolution ALMA observations of a modeled quiescent solar prominence. The maps of synthetic brightness temperature and optical thickness shown in the present paper are produced using a visualization method for synthesis of the submillimeter/millimeter radio continua. We have obtained the simulated observations of both the prominence at the limb and the filament on the disk at wavelengths covering a broad range that encompasses the full potential of ALMA. We demonstrate here extent to which the small-scale and large-scale prominence and filament structures will be visible in the ALMA observations spanning both the optically thin and thick regimes. We analyze the relationship between the brightness and kinetic temperature of the prominence plasma. We also illustrate the opportunities ALMA will provide for studying the thermal structure of the prominence plasma from the cores of the cool prominence fine structure to the prominence-corona transition region. In addition, we show that detailed 3D modeling of entire prominences with their numerous fine structures will be important for the correct interpretation of future ALMA observations of prominences.

  1. Flaring loop parameters estimated from solar decimeter type U-like and type J-like fine structures

    Science.gov (United States)

    Fernandes, Francisco C. R.; Dutra, José Augusto S. S.; Cunha da Silva, Rafael D.; Sawant, Hanumant S.

    2012-06-01

    This work presents the analysis of five fine structures in the solar radio emission, observed between June 2000 and October 2001 by the Brazilian Solar Spectroscope (BSS), in the decimeter frequency band of 950-2500 MHz. Based on their morphological characteristics identified in the dynamic spectra, the fine structures had been classified as type U-like or type J-like bursts. Such emissions are variants of the type III bursts. They support the hypothesis of generation by plasma emission mechanism, from interaction of electron beams accelerated during solar flares, propagating along closed magnetic structures, within the trapped plasma of the solar corona. The spectral and temporal characteristics of the five fine structures had been obtained from the dynamic spectra and the parameters of the agent and the emitting source have been determined, assuming both fundamental and harmonic emissions. The analysis revealed the flux density of the structures is less than 20-80 s.f.u. For assumption of harmonic emission, the interval of values for the source parameters estimated are: the loop size is (0.3-5.1) × 1010 cm; the electron beam velocity is in the range of 0.16-0.53 c; the temperature of coronal loop top is of the order of (0.25-1.55) × 107 K; and the low limit for the magnetic field is of 7-26 G. These results are in agreement with previous determinations reported in the literature.

  2. A correlational method to concurrently measure envelope and temporal fine structure weights: effects of age, cochlear pathology, and spectral shaping.

    Science.gov (United States)

    Fogerty, Daniel; Humes, Larry E

    2012-09-01

    The speech signal may be divided into spectral frequency-bands, each band containing temporal properties of the envelope and fine structure. This study measured the perceptual weights for the envelope and fine structure in each of three frequency bands for sentence materials in young normal-hearing listeners, older normal-hearing listeners, aided older hearing-impaired listeners, and spectrally matched young normal-hearing listeners. The availability of each acoustic property was independently varied through noisy signal extraction. Thus, the full speech stimulus was presented with noise used to mask six different auditory channels. Perceptual weights were determined by correlating a listener's performance with the signal-to-noise ratio of each acoustic property on a trial-by-trial basis. Results demonstrate that temporal fine structure perceptual weights remain stable across the four listener groups. However, a different weighting typography was observed across the listener groups for envelope cues. Results suggest that spectral shaping used to preserve the audibility of the speech stimulus may alter the allocation of perceptual resources. The relative perceptual weighting of envelope cues may also change with age. Concurrent testing of sentences repeated once on a previous day demonstrated that weighting strategies for all listener groups can change, suggesting an initial stabilization period or susceptibility to auditory training.

  3. Planck intermediate results XXIV. Constraints on variations in fundamental constants

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.

    2015-01-01

    cosmological probes. We conclude that independent time variations of the fine structure constant and of the mass of the electron are constrained by Planck to Δ Α/Α = (3.6±3.7) x 10-3 and Δ me/me = (4 ±11) x 10-3 at the 68% confidence level. We also investigate the possibility of a spatial variation of the fine...

  4. Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells

    Science.gov (United States)

    Funda, Shuji; Ohki, Tatsuya; Liu, Qiming; Hossain, Jaker; Ishimaru, Yoshihiro; Ueno, Keiji; Shirai, Hajime

    2016-07-01

    We investigated the relationship between the fine structure of spin-coated conductive polymer poly(3,4-ethylenedioxythiphene):poly(styrene sulfonate) (PEDOT:PSS) films and the photovoltaic performance of PEDOT:PSS crystalline-Si (PEDOT:PSS/c-Si) heterojunction solar cells. Real-time spectroscopic ellipsometry revealed that there were two different time constants for the formation of the PEDOT:PSS network. Upon removal of the polar solvent, the PEDOT:PSS film became optically anisotropic, indicating a conformational change in the PEDOT and PSS chain. Polarized Fourier transform infrared attenuated total reflection absorption spectroscopy and Raman spectroscopy measurements also indicated that thermal annealing promoted an in-plane π-conjugated Cα = Cβ configuration attributed to a thiophene ring in PEDOT and an out-of-plane configuration of -SO3 groups in the PSS chain with increasing composition ratio of oxidized (benzoid) to neutral (quinoid) PEDOT, Iqui/Iben. The highest power conversion efficiency for the spin-coated PEDOT:PSS/c-Si heterojunction solar cells was 13.3% for Iqui/Iben = 9-10 without employing any light harvesting methods.

  5. Experimental and theoretical investigation of correlated fine structure branching ratios arising from state-selected predissociation of BrO (A2Π3/2).

    Science.gov (United States)

    Grubb, Michael P; Dooley, Kristin S; Freeman, C Daniel; Peterson, Kirk A; North, Simon W

    2014-01-14

    We present results for the v'-dependent predissociation dynamics of the BrO (A(2)Π3/2) state using velocity map ion imaging. Correlated fine structure branching ratios, Br((2)P(J)) + O((3)P(J)), have been measured for v' = 5-16 states. The experimental branching ratios are non-statistical and strongly dependent on the initial vibronic state. The current measurements represent an extensive dataset containing rich information about the predissociation dynamics of this system and should provide a stringent test for modern theory. New high level ab initio excited state potentials are presented and have been optimized using experimental v'-dependent predissociation lifetimes and calculated coupling constants. Comparisons between the experimental branching ratios and the predictions based on diabatic and adiabatic limiting models are presented. We find that the adiabatic model is most consistent with the observed trends in the correlated branching ratios, in contrast to previous studies on the related ClO system.

  6. Photoluminescence and extended X-ray absorption fine structure studies on cadmium telluride material

    Science.gov (United States)

    Liu, Xiangxin

    The direct-band-gap semiconductor CdTe is an important material for fabricating high efficiency, polycrystalline thin-film solar cells in a heterojunction configuration. The outstanding physical properties of this material such as its good band-gap match to the solar spectrum, ease of fabrication of stoichiometric films, and easy grain boundary passivation make it an important candidate for large area, thin-film solar cells. However, there are several poorly understood processing steps that are commonly utilized in cell fabrication. One of these is a CdCl2 treatment near 400°C in the presence of oxygen, which can improve the cell efficiency a factor of two or more. Another factor is the role of copper in cell performance. In high performance CdS/CdTe thin-film solar cells, copper is usually included in the fabrication of low-resistance back contacts to obtain heavy p-type doping of the absorber CdTe at the contact. However, most of the copper is not electrically active. For example, secondary ion mass spectroscopy (SIMS) on typical CdTe cells has shown Cu concentrations of 1019 atoms/cm3 and even higher, although capacitance-voltage (C-V) measurements indicate typical ionized acceptor levels on the order of 1014/cm 3. Thus, there is great interest in the location and role of this inactive copper in CdTe photovoltaic (PV) devices. In this thesis, I will describe results obtained on magnetron-sputtered CdTe films that were diffused with copper following the procedure used for creating a cell back contact. Extended X-ray Absorption Fine Structure (EXAFS) measurements identified the chemical environment of the majority of the copper and show major differences depending on whether the CdTe film has been treated with chloride prior to the Cu diffusion. The EXAFS data indicate that the Cu chemistry is strongly affected by the chloride treatments---predominantly Cu2Te when Cu was diffused into the as-deposited CdTe film, but a Cu2O environment when Cu was diffused after

  7. Variation of fundamental constants: theory

    Science.gov (United States)

    Flambaum, Victor

    2008-05-01

    Theories unifying gravity with other interactions suggest temporal and spatial variation of the fundamental ``constants'' in expanding Universe. There are some hints for the variation of different fundamental constants in quasar absorption spectra and Big Bang nucleosynthesis data. A large number of publications (including atomic clocks) report limits on the variations. We want to study the variation of the main dimensionless parameters of the Standard Model: 1. Fine structure constant alpha (combination of speed of light, electron charge and Plank constant). 2. Ratio of the strong interaction scale (LambdaQCD) to a fundamental mass like electron mass or quark mass which are proportional to Higgs vacuum expectation value. The proton mass is propotional to LambdaQCD, therefore, the proton-to-electron mass ratio comes into this second category. We performed necessary atomic, nuclear and QCD calculations needed to study variation of the fundamental constants using the Big Bang Nucleosynthsis, quasar spectra, Oklo natural nuclear reactor and atomic clock data. The relative effects of the variation may be enhanced in transitions between narrow close levels in atoms, molecules and nuclei. If one will study an enhanced effect, the relative value of systematic effects (which are not enhanced) may be much smaller. Note also that the absolute magnitude of the variation effects in nuclei (e.g. in very narrow 7 eV transition in 229Th) may be 5 orders of magnitude larger than in atoms. A different possibility of enhancement comes from the inversion transitions in molecules where splitting between the levels is due to the quantum tunneling amplitude which has strong, exponential dependence on the electron to proton mass ratio. Our study of NH3 quasar spectra has already given the best limit on the variation of electron to proton mass ratio.

  8. MATHEMATICAL CONSTANTS.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, H.P.; Potter, Elinor

    1971-03-01

    This collection of mathematical data consists of two tables of decimal constants arranged according to size rather than function, a third table of integers from 1 to 1000, giving some of their properties, and a fourth table listing some infinite series arranged according to increasing size of the coefficients of the terms. The decimal values of Tables I and II are given to 20 D.

  9. Hemaka's constant

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    As proposed in a previous paper, the decorations of ancient objects can provide some information on the approximate evaluations of constant {\\pi}, the ratio of circumference to diameter. Here we discuss some disks found in the tomb of Hemaka, the chancellor of a king of the First Dynasty of Egypt, about 3000 BC. The discussion is based on measurements of the dimensionless ratio of lengths.

  10. Counting Classes and the Fine Structure between NC 1 and L

    Science.gov (United States)

    Datta, Samir; Mahajan, Meena; Rao, B. V. Raghavendra; Thomas, Michael; Vollmer, Heribert

    The class NC 1of problems solvable by bounded fan-in circuit families of logarithmic depth is known to be contained in logarithmic space L, but not much about the converse is known. In this paper we examine the structure of classes in between NC 1 and L based on counting functions or, equivalently, based on arithmetic circuits. The classes PNC 1 and C = NC 1, defined by a test for positivity and a test for zero, respectively, of arithmetic circuit families of logarithmic depth, sit in this complexity interval. We study the landscape of Boolean hierarchies, constant-depth oracle hierarchies, and logarithmic-depth oracle hierarchies over PNC 1 and C = NC 1. We provide complete problems, obtain the upper bound L for all these hierarchies, and prove partial hierarchy collapses - in particular, the constant-depth oracle hierarchy over PNC 1 collapses to its first level PNC 1, and the constant-depth oracle hierarchy over C = NC 1 collapses to its second level.

  11. FS4, FS4-p, and FSP: a 4-month crossover study of 3 fine structure sound-coding strategies.

    Science.gov (United States)

    Riss, Dominik; Hamzavi, Jafar-Sasan; Blineder, Michaela; Honeder, Clemens; Ehrenreich, Isabella; Kaider, Alexandra; Baumgartner, Wolf-Dieter; Gstoettner, Wolfgang; Arnoldner, Christoph

    2014-01-01

    The aim of the present study was to compare two novel fine structure strategies "FS4" and "FS4-p" with the established fine structure processing (FSP) strategy. FS4 provides fine structure information on the apical four-electrode channels. With FS4-p, these electrodes may be stimulated in a parallel manner. The authors evaluated speech perception, sound quality, and subjective preference. A longitudinal crossover study was done on postlingually deafened adults (N = 33) who were using FSP as their default strategy. Each participant was fitted with FS4, FS4-p, and FSP, for 4 months in a randomized and blinded order. After each run, an Adaptive Sentence test in noise (Oldenburger Sentence Test [OLSA]) and a Monosyllable test in quiet (Freiburger Monosyllables) were performed, and subjective sound quality was determined with a Visual Analogue Scale. At the end of the study the preferred strategy was noted. Scores of the OLSA did not reveal any significant differences among the three strategies, but the Freiburger test showed a statistically significant effect (p = 0.03) with slightly worse scores for FS4 (49.7%) compared with FSP (54.3%). Performance of FS4-p (51.8%) was comparable with the other strategies. Both audiometric tests depicted a high variability among subjects. The number of best-performing strategies for each participant individually was as follows: (a) for the OLSA: FSP, N = 10.5; FS4, N = 10.5; and FS4-p, N = 12; and (b) for the Freiburger test: FSP, N = 14; FS4, N = 9; and FS4-p, N = 10. A moderate agreement was found in the best-performing strategies of the Speech tests within the participants. For sound quality, speech in quiet, classical, and pop music were assessed. No significant effects of strategy were found for speech in quiet and classical music, but auditory impression of pop music was rated as more natural in FSP compared with FS4 (p = 0.04). It is interesting that at the end of the study, a majority of the participants favored the new

  12. Fine structure of the epidermal Leydig cells in the axolotl Ambystoma mexicanum in relation to their function.

    Science.gov (United States)

    Jarial, M S

    1989-01-01

    The fine structure of the Leydig cells in the epidermis of the strictly aquatic adult axolotl Ambystoma mexicanum resembles that of similar cells in larval salamanders. The major finding of this study is that the mucous secretion of the Leydig cells is released into the intercellular spaces from which it is discharged through pores onto the surface of the epidermis where it forms a mucous layer to protect the skin. Images Figs. 1-2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Figs. 11-13 PMID:2630544

  13. The role of temporal fine structure information for the low pitch of high-frequency complex tones

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2011-01-01

    a matter of debate. For stimuli with components lying exclusively in high-frequency spectral regions, the slowly varying temporal envelope of sounds is often assumed to be the only information contained in auditory temporal representations, and it has remained controversial to what extent the fast...... amplitude fluctuations, or temporal fine structure (TFS), of the conveyed signal can be processed. Using a pitch-matching paradigm, the present study found that the low pitch of inharmonic transposed tones with unresolved components was consistent with the timing between the most prominent TFS maxima...

  14. Relativistic energy, fine structure and hyperfine structure of the low-lying excited states for Be-like system

    Institute of Scientific and Technical Information of China (English)

    Zhang Meng; Gou Bing-Cong

    2005-01-01

    Variational calculations are carried out with a multiconfiguration-interaction wavefunction on the 1s22p2p 1De and 1s22p3p 3pe states to obtain the energies including the mass polarization and relativistic corrections for the beryllium isoelectronic sequence (Z=4-10). The oscillator strengths, transition rates and wavelengths are also calculated. Our results are compared with other theoretical and experimental data in the literatures. The fine structure and hyperfine structure of 1s22p3p 3pe state are also explored.

  15. Atomic sulfur: Frequency measurement of the J = 0 left arrow 1 fine-structure transition at 56.3 microns by laser magnetic resonance

    Science.gov (United States)

    Brown, John M.; Evenson, Kenneth M.; Zink, Lyndon R.

    1994-01-01

    The J = 0 left arrow 1 fine-structure transition in atomic sulfur (S I) in its ground (3)P state has been detected in the laboratory by far-infrared laser magnetic resonance. The fine-structure interval has been measured accurately as 5,322,492.9 +/- 2.8 MHz which corresponds to a wavelength of 56.325572 +/- 0.000030 micrometers.

  16. PREFACE: The 15th International Conference on X-ray Absorption Fine Structure (XAFS15)

    Science.gov (United States)

    Wu, Z. Y.

    2013-04-01

    The 15th International Conference on X-ray Absorption Fine Structure (XAFS15) was held on 22-28 July 2012 in Beijing, P. R. China. About 340 scientists from 34 countries attended this important international event. Main hall Figure 1. Main hall of XAFS15. The rapidly increasing application of XAFS to the study of a large variety of materials and the operation of the new SR source led to the first meeting of XAFS users in 1981 in England. Following that a further 14 International Conferences have been held. Comparing a breakdown of attendees according to their national origin, it is clear that participation is spreading to include attendees from more and more countries every year. The strategy of development in China of science and education is increasing quickly thanks to the large investment in scientific and technological research and infrastructure. There are three Synchrotron Radiation facilities in mainland China, Hefei Light Source (HLS) in the National Natural Science Foundation of China (NSRL), Beijing Synchrotron Radiation Facility (BSRF) in the Institute of High Energy Physics, and Shanghai Synchrotron Radiation Facility (SSRF) in the Shanghai Institute of Applied Physics. More than 10000 users and over 5000 proposals run at these facilities. Among them, many teams from the USA, Japan, German, Italy, Russia, and other countries. More than 3000 manuscript were published in SCI journals, including (incomplete) Science (7), Nature (10), Nature Series (7), PNAS (3), JACS (12), Angew. Chem. Int. Ed. (15), Nano Lett. (2), etc. In XAFS15, the participants contributed 18 plenary invited talks, 16 parallel invited talks, 136 oral presentations, 12 special talks, and 219 poster presentations. Wide communication was promoted in the conference halls, the classical banquet restaurant, and the Great Wall. Parallel hallCommunicationPoster room Figure 2. Parallel hallFigure 3. CommunicationFigure 4. Poster room This volume contains 136 invited and contributed papers

  17. Direct observation of the M1 transition between the ground state fine structure splitting of W VIII

    CERN Document Server

    Mita, Momoe; Kato, Daiji; Murakami, Izumi; Nakamura, Nobuyuki

    2016-01-01

    We present direct observation of the M1 transition between the fine structure splitting in the 4f13 5s2 5p6 2F ground state of W VIII. The spectroscopic data of few-times ionized tungsten ions are important for the future ITER diagnostics, but there is a serious lack of data. The present study is part of an ongoing effort to solve this lack. Emission from the tungsten ions produced and trapped in a compact electron beam ion trap is observed with a Czerny-Turner visible spectrometer. Spectra in the EUV range are also observed at the same time to help the identification of the previously-unreported visible lines. The observed wavelength 574.47 pm 0.03 nm (air), which corresponds to the fine structure splitting of 17402.5 pm 0.9 cm-1, shows reasonable agreement with the previously reported value 17410 pm 5 cm-1 obtained indirectly through the analysis of EUV spectra [Ryabtsev et al., Atoms 3 (2015) 273].

  18. Study on the coordination structure of pt sorbed on bacterial cells using x-ray absorption fine structure spectroscopy.

    Directory of Open Access Journals (Sweden)

    Kazuya Tanaka

    Full Text Available Biosorption has been intensively investigated as a promising technology for the recovery of precious metals from solution. However, the detailed mechanism responsible for the biosorption of Pt on a biomass is not fully understood because of a lack of spectroscopic studies. We applied X-ray absorption fine structure spectroscopy to elucidate the coordination structure of Pt sorbed on bacterial cells. We examined the sorption of Pt(II and Pt(IV species on bacterial cells of Bacillus subtilis and Shewanella putrefaciens in NaCl solutions. X-ray absorption near-edge structure and extended X-ray absorption fine structure (EXAFS of Pt-sorbed bacteria suggested that Pt(IV was reduced to Pt(II on the cell's surface, even in the absence of an organic material as an exogenous electron donor. EXAFS spectra demonstrated that Pt sorbed on bacterial cells has a fourfold coordination of chlorine ions, similar to PtCl42-, which indicated that sorption on the protonated amine groups of the bacterial cells. This work clearly demonstrated the coordination structure of Pt sorbed on bacterial cells. The findings of this study will contribute to the understanding of Pt biosorption on biomass, and facilitate the development of recovery methods for rare metals using biosorbent materials.

  19. X-ray absorption fine structure analysis of the local environment of zinc in dentine treated with zinc compounds.

    Science.gov (United States)

    Takatsuka, Tsutomu; Hirano, Junko; Matsumoto, Hitoshi; Honma, Tetsuo

    2005-04-01

    It has been reported that zinc oxide (ZnO) inhibits dentine demineralization. By using the X-ray absorption fine structure (XAFS) technique, our aims in this study were to provide information about the local environment of zinc atoms in dentine that had been treated with zinc compounds. We measured the Zn K-edge X-ray absorption near-edge structure (XANES) and the extended X-ray absorption fine structure (EXAFS) of dentine specimens treated with zinc chloride or ZnO. In XAFS analyses, the spectra of dentine specimens treated with ZnO (D-ZO) or with zinc chloride (D-ZC) were similar and obviously different from the reference ZnO spectrum. This suggests that most of the zinc atoms detected in D-ZO are not derived from particles of ZnO. The spectra of D-ZO and D-ZC were similar to the spectrum of the synthetic, zinc-containing hydroxyapatite, but were not similar to that of zinc in ZnCl2-treated collagen. The results of this study suggest that most of the zinc atoms detected were attached to hydroxyapatite and not to collagen.

  20. An observation of further splitting of the new fine-structure in magneto-optical spectra of CuO

    Science.gov (United States)

    Masumi, Taizo; Imanaka, Yasutaka; Takehana, Kanji; Yamaguchi, Hiroyuki; Kido, Giyuu

    2001-04-01

    Regarding CuO first in 1998 (Masumi et al., J. Phys. Soc. Japan 67 (1998) 67), we reported an observation of the new fine structures near the optical absorption edge below 90 K. They consist of two sharp peaks A and B at EA=1.57511 eV and EB=1.58097 eV, respectively, at T=7 K. Two peaks emerge only below 90 K and their integrated intensity remarkably grows below 90 and 60 K. Here, we have started a magneto-optical study to seek further natures of these fine structures in the absorption edge of CuO by applying high magnetic fields up to B=25 T with a resolution of δE=1.24 meV, Δ ν=1 cm -1. Peaks A and B exhibit rather little variations up to 10 T. Above 12 T, however, there starts to emerge a potential splitting in the peak A, whereas peak B simply indicates a broadening. Finally, we clearly recognize new finer structures due to splitting in peak A at B=25 T. These results reveal a possibility of an existence of further peculiar magnetic characters in CuO even at lower temperature side besides the antiferromagnetic transitions at TN1=213 K and TN2=230 K.

  1. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope.

    Science.gov (United States)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-04-13

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  2. E 1 transitions from the. Upsilon. prime prime state and the fine structure of the. chi. sub b prime states

    Energy Technology Data Exchange (ETDEWEB)

    Narain, M.; Lovelock, D.M.J.; Heintz, U.; Lee-Franzini, J.; Schamberger, R.D.; Willins, J.; Yanagisawa, C. (State University of New York at Stony Brook, Stony Brook, New York 11794 (USA)); Franzini, P.; Tuts, P.M.; Kanekal, S.; Wu, Q.W. (Columbia University, New York, New York 10027 (USA))

    1991-06-17

    Using the CUSB-II detector at the Cornell Electron Storage Ring, we have made precision measurements of the electric dipole transition rates from {Upsilon}{prime}{prime} to {chi}{sub {ital b}}{sup {prime}}, which are in excellent agreement with theory. The fine-structure splitting is found to be {ital M}({chi}{sub {ital b}2}{sup {prime}}){minus}{ital M}({chi}{sub {ital b}1}{sup {prime}})=13.5{plus minus}0.4{plus minus}0.5 MeV and {ital M}({chi}{sub {ital b}1}{sup {prime}}){minus}{ital M}({chi}{sub {ital b}0}{sup {prime}})=23.3{plus minus}0.7{plus minus}0.7 MeV, leading to a ratio {ital R}=0.584{plus minus}0.024{plus minus}0.02. The fine structure measures the relative contributions of the spin-orbit interaction {ital a}=9.5{plus minus}0.2{plus minus}0.1 MeV and tensor interaction {ital b}=2.3{plus minus}0.1{plus minus}0.1 MeV. We also find that the long-range confining potential transforms as a Lorentz scalar.

  3. Polarized Light Scattering with the Paschen-Back Effect, Level-crossing of Fine Structure States, and Partial Frequency Redistribution

    Science.gov (United States)

    Sowmya, K.; Nagendra, K. N.; Sampoorna, M.; Stenflo, J. O.

    2014-10-01

    The quantum interference between the fine structure states of an atom modifies the shapes of the emergent Stokes profiles in the second solar spectrum. This phenomenon has been studied in great detail both in the presence and absence of magnetic fields. By assuming a flat-spectrum for the incident radiation, the signatures of this effect have been explored for arbitrary field strengths. Even though the theory which takes into account the frequency dependence of the incident radiation is well developed, it is restricted to the regime in which the magnetic splitting is much smaller than the fine structure splitting. In the present paper, we carry out a generalization of our scattering matrix formalism including the effects of partial frequency redistribution for arbitrary magnetic fields. We test the formalism using available benchmarks for special cases. In particular, we apply it to the Li I 6708 Å D1 and D2 line system, for which observable effects from the Paschen-Back regime are expected in the Sun's spectrum.

  4. Polarized light scattering with the Paschen-back effect, level-crossing of fine structure states, and partial frequency redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Sowmya, K.; Nagendra, K. N.; Sampoorna, M. [Indian Institute of Astrophysics, Koramangala, Bengaluru (India); Stenflo, J. O., E-mail: ksowmya@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: sampoorna@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2014-10-01

    The quantum interference between the fine structure states of an atom modifies the shapes of the emergent Stokes profiles in the second solar spectrum. This phenomenon has been studied in great detail both in the presence and absence of magnetic fields. By assuming a flat-spectrum for the incident radiation, the signatures of this effect have been explored for arbitrary field strengths. Even though the theory which takes into account the frequency dependence of the incident radiation is well developed, it is restricted to the regime in which the magnetic splitting is much smaller than the fine structure splitting. In the present paper, we carry out a generalization of our scattering matrix formalism including the effects of partial frequency redistribution for arbitrary magnetic fields. We test the formalism using available benchmarks for special cases. In particular, we apply it to the Li I 6708 Å D{sub 1} and D{sub 2} line system, for which observable effects from the Paschen-Back regime are expected in the Sun's spectrum.

  5. Polarized light scattering with Paschen-Back effect, level-crossing of fine structure states and partial frequency redistribution

    CERN Document Server

    Sowmya, K; Sampoorna, M; Stenflo, J O

    2014-01-01

    The quantum interference between the fine structure states of an atom modifies the shapes of the emergent Stokes profiles in the Second Solar Spectrum. This phenomenon has been studied in great detail both in the presence and absence of magnetic fields. By assuming a flat-spectrum for the incident radiation, the signatures of this effect have been explored for arbitrary field strengths. Even though the theory which takes into account the frequency dependence of the incident radiation is well developed, it is restricted to the regime in which the magnetic splitting is much smaller than the fine structure splitting. In the present paper, we carry out a generalization of our scattering matrix formalism including the effects of partial frequency redistribution (PRD) for arbitrary magnetic fields. We test the formalism using available benchmarks for special cases. In particular we apply it to the Li\\,{\\sc i} 6708\\,\\AA\\ D$_1$ and D$_2$ line system, for which observable effects from the Paschen-Back regime are expec...

  6. On the origin of fine structure in the photoluminescence spectra of the β-sialon:Eu2+ green phosphor

    Directory of Open Access Journals (Sweden)

    Kohsei Takahashi, Ken-ichi Yoshimura, Masamichi Harada, Yoshitaka Tomomura, Takashi Takeda, Rong-Jun Xie and Naoto Hirosaki

    2012-01-01

    Full Text Available The photoluminescence (PL and PL excitation (PLE spectra of Si6−zAlzOzN8−z (β-sialon:Eu2+ phosphors with small z values (z=0.025–0.24 were studied at room temperature and 6 K. The PL and PLE spectra exhibit fine structure with the PL lines being as sharp as 45–55 nm even at room temperature; this fine structure was enhanced by decreasing the z value. These results can be used for expanding the color gamut of liquid crystal displays, particularly in the blue–green region. From low-temperature measurements, the fine PLE structure was ascribed to discrete energy levels of 7FJ states. The 4f65d excited states of Eu2+ are considered to be localized near the 4f orbital. This is because the bonding of Eu2+ with surrounding atoms is ionic rather than covalent. Lattice phonon absorptions were also observed in the PLE spectrum, revealing that the optically active Eu2+ ions are located in the β-sialon crystal. The PL spectrum of the sample with the smallest z value (0.025 consists of a sharp zero-phonon line and lattice phonon replicas, which results in a sharp and asymmetric spectral shape.

  7. Frequency Combs in the XUV by Intra-Laser High Harmonic Generation for Ultra-Precise Measurements of the Fine Structure Constant

    Science.gov (United States)

    2015-06-03

    3,547.00 Total Cost of Proposal (US$) $150,000 Payment Information Check Paid To *This question is required University of Neuchatel...Street Address Faubourg du lac 5a City Neuchatel State Neuchatel Country CH Postal Code 2000 EOARD Point of Contact *This question ...of Physics, Leibniz Universität Hannover (D) 8/1996 – 9/1996 Research visit, Laboratoire Central de Recherches , Thompson-CSF, Orsay (F

  8. Constant force extensional rheometry of polymer solutions

    DEFF Research Database (Denmark)

    Szabo, Peter; McKinley, Gareth H.; Clasen, Christian

    2012-01-01

    We revisit the rapid stretching of a liquid filament under the action of a constant imposed tensile force, a problem which was first considered by Matta and Tytus [J. Non-Newton. Fluid Mech. 35 (1990) 215–229]. A liquid bridge formed from a viscous Newtonian fluid or from a dilute polymer solution...... filament can be probed. In particular, we show that with this constant force pull (CFP) technique it is possible to readily impose very large material strains and strain rates so that the maximum extensibility of the polymer molecules may be quantified. This unique characteristic of the experiment...

  9. Planck intermediate results. XXIV. Constraints on variation of fundamental constants

    CERN Document Server

    Ade, P A R; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Battaner, E.; Benabed, K.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Burigana, C.; Butler, R.C.; Calabrese, E.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombo, L.P.L.; Couchot, F.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J.M.; Dole, H.; Dore, O.; Dupac, X.; Ensslin, T.A.; Eriksen, H.K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, A.H.; Jones, W.C.; Keihanen, E.; Keskitalo, R.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.M.; Lasenby, A.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Mandolesi, N.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G.W.; Prunet, S.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L.D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Uzan, J.P.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2015-01-01

    Any variation of the fundamental physical constants, and more particularly of the fine structure constant, $\\alpha$, or of the mass of the electron, $m_e$, would affect the recombination history of the Universe and cause an imprint on the cosmic microwave background angular power spectra. We show that the Planck data allow one to improve the constraint on the time variation of the fine structure constant at redshift $z\\sim 10^3$ by about a factor of 5 compared to WMAP data, as well as to break the degeneracy with the Hubble constant, $H_0$. In addition to $\\alpha$, we can set a constraint on the variation of the mass of the electron, $m_{\\rm e}$, and on the simultaneous variation of the two constants. We examine in detail the degeneracies between fundamental constants and the cosmological parameters, in order to compare the limits obtained from Planck and WMAP and to determine the constraining power gained by including other cosmological probes. We conclude that independent time variations of the fine structu...

  10. Early Universe Constraints on Time Variation of Fundamental Constants

    CERN Document Server

    Landau, Susana J; Scoccola, Claudia G; Vucetich, Hector

    2008-01-01

    We study the time variation of fundamental constants in the early Universe. Using data from primordial light nuclei abundances, CMB and the 2dFGRS power spectrum, we put constraints on the time variation of the fine structure constant $\\alpha$, and the Higgs vacuum expectation value $$ without assuming any theoretical framework. A variation in $$ leads to a variation in the electron mass, among other effects. Along the same line, we study the variation of $\\alpha$ and the electron mass $m_e$. In a purely phenomenological fashion, we derive a relationship between both variations.

  11. Internationalization Revisited

    DEFF Research Database (Denmark)

    Pedersen, Torben; Shaver, Myles

    2011-01-01

    they venture abroad, and subsequent international operations are able to leverage this infrastructure. Thus, we hypothesize that the internationalization process is characterized by: (1) firms taking a long period to make their first international investment; and (2) firms taking shorter but constant periods......We refine internationalization theory by hypothesizing that international expansion is a discontinuous process characterized by an initial ‘big step.’ Firms have to build an infrastructure (e.g., architecture, management systems, and mind-set) to support international operations the first time...... for subsequent investments. We examine the international expansion activities of 176 Danish firms and find support for these arguments....

  12. Evidence of the nature of core-level photoemission satellites using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors present a unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level photoemission satellites by examining the satellite diffraction pattern in the Angle Resolved Photoemission Extended Fine Structure (ARPEFS) mode. They show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. They present ARPEFS data for the carbon 1s from ({radical}3x{radical}3)R30 CO/Cu(111) and p2mg(2xl)CO/Ni(110), nitrogen 1s from c(2x2) N{sub 2}/Ni(100), cobalt 1s from p(1x1)Co/Cu(100), and nickel 3p from clean nickel (111). The satellite peaks and tails of the Doniach-Sunjic line shapes in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature.

  13. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure.

    Science.gov (United States)

    Rybin, Mikhail V; Samusev, Kirill B; Lukashenko, Stanislav Yu; Kivshar, Yuri S; Limonov, Mikhail F

    2016-08-05

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters.

  14. Quantum beats and fine structure in atto-second chronoscopy of strong-field photoionization of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kazansky, A.K. [Sankt Petersburg State Univ., 1 Fock Institute of Physics (Russian Federation); Donostia International Physics Center, San Sebastian/Donostia, Basque Country (Spain); Kabachnik, N.M. [Bielefeld Univ., Fakultat fur Physik (Germany); Kabachnik, N.M.; Sazhina, I.P. [Moscow State Univ., Institute of Nuclear Physics (Russian Federation)

    2008-04-15

    A theoretical model is presented which describes the time evolution of strong-field photoionization as studied in recent extreme ultraviolet (XUV) pump-IR probe atto-second tunneling (atto-second chronoscopy) experiments. The excitation of intermediate weakly bound states by an ultra-short XUV pulse (pump) is described within a sudden approximation. The photoionization of these states by a delayed strong IR pulse (probe) is described by solving the non-stationary Schroedinger equation. The results of the calculations show that the coherence of the excited states plays an important role resulting in quantum beats when the XUV pulse precedes the IR pulse. For a large overlap of the pulses a pronounced fine structure in the cross-section is revealed. The calculations for Ne agree qualitatively with the experiment. (authors)

  15. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure

    Science.gov (United States)

    Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.

    2016-08-01

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters.

  16. Boron carbide: Consistency of components, lattice parameters, fine structure and chemical composition makes the complex structure reasonable

    Science.gov (United States)

    Werheit, Helmut

    2016-10-01

    The complex, highly distorted structure of boron carbide is composed of B12 and B11C icosahedra and CBC, CBB and B□B linear elements, whose concentration depends on the chemical composition each. These concentrations are shown to be consistent with lattice parameters, fine structure data and chemical composition. The respective impacts on lattice parameters are estimated and discussed. Considering the contributions of the different structural components to the energy of the overall structure makes the structure and its variation within the homogeneity range reasonable; in particular that of B4.3C representing the carbon-rich limit of the homogeneity range. Replacing in B4.3C virtually the B□B components by CBC yields the hypothetical moderately distorted B4.0C (structure formula (B11C)CBC). The reduction of lattice parameters related is compatible with recently reported uncommonly prepared single crystals, whose compositions deviate from B4.3C.

  17. Tuning exciton energy and fine-structure splitting in single InAs quantum dots by applying uniaxial stress

    Energy Technology Data Exchange (ETDEWEB)

    Su, Dan; Dou, Xiuming; Wu, Xuefei; Liao, Yongping; Zhou, Pengyu; Ding, Kun; Ni, Haiqiao; Niu, Zhichuan; Zhu, Haijun; Jiang, Desheng; Sun, Baoquan, E-mail: bqsun@semi.ac.cn [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2016-04-15

    Exciton and biexciton emission energies as well as excitonic fine-structure splitting (FSS) in single InAs/GaAs quantum dots (QDs) have been continuously tuned in situ in an optical cryostat using a developed uniaxial stress device. With increasing tensile stress, the red shift of excitonic emission is up to 5 nm; FSS decreases firstly and then increases monotonically, reaching a minimum value of approximately 10 μeV; biexciton binding energy decreases from 460 to 106 μeV. This technique provides a simple and convenient means to tune QD structural symmetry, exciton energy and biexciton binding energy and can be used for generating entangled and indistinguishable photons.

  18. Precision test of many-body QED in the Be$^{+} 2p$ fine structure doublet using short-lived isotopes

    CERN Document Server

    Nörtershäuser, Wilfried; Krieger, Andreas; Pachucki, Krzysztof; Puchalski, Mariusz; Blaum, Klaus; Bissell, Mark L; Frömmgen, Nadja; Hammen, Michael; Kowalska, Magdalena; Krämer, Jörg; Kreim, Kim; Neugart, Rainer; Neyens, Gerda; Sánchez, Rodolfo; Yordanov, Deyan T

    2015-01-01

    Absolute transition frequencies of the $2s\\; ^2{\\rm S}_{1/2} \\rightarrow 2p\\;^2\\mathrm{P}_{1/2,3/2}$ transitions in Be$^+$ were measured for the isotopes $^{7,9-12}$Be. The fine structure splitting of the $2p$ state and its isotope dependence are extracted and compared to results of \\textit{ab initio} calculations using explicitly correlated basis functions, including relativistic and quantum electrodynamics effects at the order of $m \\alpha^6$ and $m \\alpha^7 \\ln \\alpha$. Accuracy has been improved in both the theory and experiment by 2 orders of magnitude, and good agreement is observed. This represents one of the most accurate tests of quantum electrodynamics for many-electron systems, being insensitive to nuclear uncertainties.

  19. The influence of age and high-frequency hearing loss on sensitivity to temporal fine structure at low frequencies (L).

    Science.gov (United States)

    Moore, Brian C J; Glasberg, Brian R; Stoev, Martin; Füllgrabe, Christian; Hopkins, Kathryn

    2012-02-01

    Sensitivity to temporal fine structure (TFS) at low frequencies may be adversely affected by hearing loss at high frequencies even when absolute thresholds at low frequencies are within the normal range. However, in several studies suggesting this, the effects of hearing loss and age were confounded. Here, interaural phase discrimination (IPD) thresholds for pure tones at 500 and 750 Hz were measured for 39 subjects with ages from 61 to 83 yr. All subjects had near-normal audiometric thresholds at low frequencies, but thresholds varied across subjects at high frequencies. IPD thresholds were correlated with age. IPD thresholds for the test frequency of 750 Hz were weakly correlated with absolute thresholds at high frequencies, but these correlations became non-significant when the effect of age was partialed out. The results do not confirm that sensitivity to TFS at low frequencies is influenced by hearing loss at high frequencies, independently of age.

  20. Zinc cysteine active sites of metalloproteins: A density functional theory and x-ray absorption fine structure study

    Science.gov (United States)

    Dimakis, Nicholas; Farooqi, Mohammed Junaid; Garza, Emily Sofia; Bunker, Grant

    2008-03-01

    Density functional theory (DFT) and x-ray absorption fine structure (XAFS) spectroscopy are complementary tools for the biophysical study of active sites in metalloproteins. DFT is used to compute XAFS multiple scattering Debye Waller factors, which are then employed in genetic algorithm-based fitting process to obtain a global fit to the XAFS in the space of fitting parameters. Zn-Cys sites, which serve important functions as transcriptional switches in Zn finger proteins and matrix metalloproteinases, previously have proven intractable by this method; here these limitations are removed. In this work we evaluate optimal DFT nonlocal functionals and basis sets for determining optimal geometries and vibrational densities of states of mixed ligation Zn(His)4-n(Cys)n sites. Theoretical results are compared to experimental XAFS measurements and Raman spectra from the literature and tabulated for use.

  1. Near Edge X-Ray Absorption Fine Structure Spectroscopy with X-Ray Free-Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, D.P.; Acremann, Y.; Scherz, A.; Burkhardt, M.; Stohr, J.; /SLAC; Beye, M.; Schlotter, W.F.; Beeck, T.; Sorgenfrei, F.; Pietzsch, A.; Wurth, W.; Fohlisch, A.; /Hamburg U.

    2009-12-11

    We demonstrate the feasibility of Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy on solids by means of femtosecond soft x-ray pulses from a free-electron laser (FEL). Our experiments, carried out at the Free-Electron Laser at Hamburg (FLASH), used a special sample geometry, spectrographic energy dispersion, single shot position-sensitive detection and a data normalization procedure that eliminates the severe fluctuations of the incident intensity in space and photon energy. As an example we recorded the {sup 3}D{sub 1} N{sub 4,5}-edge absorption resonance of La{sup 3+}-ions in LaMnO{sub 3}. Our study opens the door for x-ray absorption measurements on future x-ray FEL facilities.

  2. Near-edge X-ray absorption fine structure spectroscopy-assisted purification of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan Dongwei [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Zhong Jun [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wang Chunru [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)], E-mail: crwang@iccas.ac.cn; Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: wuzy@ihep.ac.cn

    2007-07-15

    Single-walled carbon nanotubes were produced by the conventional arc discharge method, and purified with a two-step treatment. First, the raw soot containing single-walled carbon nanotubes was burned up at ca. 350 deg. C in air to remove amorphous carbon, and then it was treated by strong acidic solvents to remove metal catalysts. Near-edge X-ray absorption fine structure spectroscopy was applied to analyze the defects on single-walled carbon nanotubes in whole purification process, so the experimental conditions can be optimized, and finally high-purity single-walled carbon nanotubes were obtained as revealed by various spectroscopic characterizations such as scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and Raman spectroscopy.

  3. Zinc cysteine active sites of metalloproteins: a density functional theory and x-ray absorption fine structure study.

    Science.gov (United States)

    Dimakis, Nicholas; Farooqi, Mohammed Junaid; Garza, Emily Sofia; Bunker, Grant

    2008-03-21

    Density functional theory (DFT) and x-ray absorption fine structure (XAFS) spectroscopy are complementary tools for the biophysical study of active sites in metalloproteins. DFT is used to compute XAFS multiple scattering Debye Waller factors, which are then employed in genetic algorithm-based fitting process to obtain a global fit to the XAFS in the space of fitting parameters. Zn-Cys sites, which serve important functions as transcriptional switches in Zn finger proteins and matrix metalloproteinases, previously have proven intractable by this method; here these limitations are removed. In this work we evaluate optimal DFT nonlocal functionals and basis sets for determining optimal geometries and vibrational densities of states of mixed ligation Zn(His)(4-n)(Cys)(n) sites. Theoretical results are compared to experimental XAFS measurements and Raman spectra from the literature and tabulated for use.

  4. Extended x-ray absorption fine structure spectroscopy in Co{sub 0.013}NbSe{sub 2}.

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Castellan, J.-P.; Rosenkranz, S.; Osborn, R.; Rosenmann, D.; Iavarone, M.; Materials Science Division

    2010-01-01

    We present a study of the local environment of the Co atom in single crystalline Co{sub x}NbSe{sub 2}, x = 0.013, via Extended X-ray Absorption Fine Structure (EXAFS) measurements at the Co K-edge (7.7 keV) at various temperatures. Co intercalation quickly suppresses superconductivity and the charge-density wave (CDW) present in pure NbSe{sub 2}. In order to study the effect of impurities on superconducting and CDW states one has to verify the random distribution of the intercalated atoms in contrast to possible clustering which could lead to additional, e.g. magnetic, interactions in the case of Co intercalation. Our measurements show that the Co atoms are indeed randomly distributed in Co{sub 0.013}NbSe{sub 2}.

  5. Extended X-ray Absorption Fine Structure spectroscopy in Co{sub 0.013}NbSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F; Castellan, J-P; Rosenkranz, S; Osborn, R; Rosenmann, D; Iavarone, M, E-mail: fweber@anl.go [Materials Science Division, Argonne National Laboratory, Argonne, Illinois (United States)

    2010-01-15

    We present a study of the local environment of the Co atom in single crystalline Co{sub x}NbSe{sub 2}, x = 0.013, via Extended X-ray Absorption Fine Structure (EXAFS) measurements at the Co K-edge (7.7 keV) at various temperatures. Co intercalation quickly suppresses superconductivity and the charge-density wave (CDW) present in pure NbSe{sub 2}. In order to study the effect of impurities on superconducting and CDW states one has to verify the random distribution of the intercalated atoms in contrast to possible clustering which could lead to additional, e.g. magnetic, interactions in the case of Co intercalation. Our measurements show that the Co atoms are indeed randomly distributed in Co{sub 0.013}NbSe{sub 2}.

  6. Fine structure of the sensilla and immunolocalisation of odorant binding proteins in the cerci of the migratory locust, Locusta migratoria.

    Science.gov (United States)

    Yu, Yanxue; Zhou, Shuhui; Zhang, Shangan; Zhang, Long

    2011-01-01

    Using light and electron microscopy (both scanning and transmission), we observed the presence of sensilla chaetica and hairs on the cerci of the migratory locust, Locusta migratoria L. (Orthoptera: Acrididae). Based on their fine structures, three types of sensilla chaetica were identified: long, medium, and short. Males presented significantly more numbers of medium and short sensilla chaetica than females (pmigratoria (LmigOBP2) and chemosensory protein class I from the desert locust, Schistocerca gregaria Forsskål (SgreCSPI) strongly stained the outer lymph of sensilla chaetica of the cerci. The other two types of hairs were never labeled. The results indicate that the cerci might be involved in contact chemoreception processes.

  7. Fine structure and Ca-ATPase activity of the stratum intermedium cells during odontogenesis in gars, Lepisosteus, Actinopterygii.

    Science.gov (United States)

    Sasagawa, Ichiro; Ishiyama, Mikio

    2002-01-01

    This is the first report on the stratum intermedium in vertebrates other than mammals. The aim of this study is to elucidate the fine structure and cytochemical features of the stratum intermedium during the stages of enameloid formation in Lepisosteus. Inner dental epithelium, stratum intermedium, stellate reticulum, and outer dental epithelium are consistently present in the tooth germs of Lepisosteus. The stratum intermedium cells are oval in shape, contain elliptical nuclei, and extend many small processes. It is implied that the structure of the enamel organ is different among actinopterygians, and that constitution of the enamel organ in Lepisosteus resembles that in higher vertebrates. Marked Ca-ATPase activity is observed at the cell membrane of the stratum intermedium cells, suggesting that the cells are involved in calcium transport during the stages of enameloid formation.

  8. Fine-structure electron-impact excitation of Ne+ and Ne2+ for low temperature astrophysical plasmas

    CERN Document Server

    Wang, Qianxia; Li, Y; Pindzola, M S; Cumbee, R; Stancil, P; McLaughlin, B; Ballance, C P

    2016-01-01

    Collision strengths for electron-impact of fine-structure level excitation within the ground term of Ne+ and Ne2+ are calculated using the Breit-Pauli, Intermediate Coupling Frame Transformation, and DARC R-matrix methods. Maxwellian-averaged effective collision strengths and excitation rate coefficient qij are presented for each. The application of the current calculations is to very low temperature astrophysical plasmas, thus we examine the sensitivity of the effective collision strengths down to 10 K. The use of the various theoretical methods allows us to place estimated uncertainties on the recommended effective collision strengths. We also investigate the sensitivity of the collision strengths to the resonance positions and underlying atomic structure. Good agreement is found with previous R-matrix calculations at higher temperature.

  9. X-ray absorption fine structure spectroscopic determination of plutonium speciation at the Rocky Flats environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Lezama-pacheco, Juan S [Los Alamos National Laboratory; Conradson, Steven D [Los Alamos National Laboratory; Clark, David L [Los Alamos National Laboratory

    2008-01-01

    X-ray Absorption Fine Structure spectroscopy was used to probe the speciation of the ppm level Pu in thirteen soil and concrete samples from the Rocky Flats Environmental Technology Site in support of the site remediation effort that has been successfully completed since these measurements. In addition to X-ray Absorption Near Edge Spectra, two of the samples yielded Extended X-ray Absorption Fine Structure spectra that could be analyzed by curve-fits. Most of these spectra exhibited features consistent with PU(IV), and more specificaJly, PuO{sub 2+x}-type speciation. Two were ambiguous, possibly indicating that Pu that was originally present in a different form was transforming into PuO{sub 2+x}, and one was interpreted as demonstrating the presence of an unusual Pu(VI) compound, consistent with its source being spills from a PUREX purification line onto a concrete floor and the resultant extreme conditions. These experimental results therefore validated models that predicted that insoluble PuO{sub 2+x} would be the most stable form of Pu in equilibrium with air and water even when the source terms were most likely Pu metal with organic compounds or a Pu fire. A corollary of these models' predictions and other in situ observations is therefore that the minimal transport of Pu that occurred on the site was via the resuspension and mobilization of colloidal particles. Under these conditions, the small amounts of diffusely distributed Pu that were left on the site after its remediation pose only a negligible hazard.

  10. Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin et al

    2008-01-01

    Full Text Available The main objectives of the present study were to investigate the chemical reduction of nitrate or nitrite species by zero-valent iron nanoparticle (ZVIN in aqueous solution and related reaction kinetics or mechanisms using fine structure characterization. This work also exemplifies the utilization of field emission-scanning electron microscope (FE–SEM, transmission electron microscopy (TEM, and x-ray diffraction (XRD to reveal the speciation and possible reaction pathway in a very complex adsorption and redox reaction process. Experimentally, ZVIN of this study was prepared by sodium borohydride reduction method at room temperature and ambient pressure. The morphology of as-synthesized ZVIN shows that the nearly ball and ultrafine particles ranged of 20–50 nm were observed with FE–SEM or TEM analysis. The kinetic model of nitrites or nitrates reductive reaction by ZVIN is proposed as a pseudo first-order kinetic equation. The nitrite and nitrate removal efficiencies using ZVIN were found 65–83% and 51–68%, respectively, based on three different initial concentrations. Based on the XRD pattern analyses, it is found that the quantitative relationship between nitrite and Fe(III or Fe(II is similar to the one between nitrate and Fe(III in the ZVIN study. The possible reason is due to the faster nitrite reduction by ZVIN. In fact, the occurrence of the relative faster nitrite reductive reaction suggested that the passivation of the ZVIN have a significant contribution to iron corrosion. The extended x-ray absorption fine structure (EXAFS or x-ray absorption near edge structure (XANES spectra show that the nitrites or nitrates reduce to N2 or NH3 while oxidizing the ZVIN to Fe2O3 or Fe3O4 electrochemically. It is also very clear that decontamination of nitrate or nitrite species in groundwater via the in-situ remediation with a ZVIN permeable reactive barrier would be environmentally attractive.

  11. Effect of Electron Correlations and Breit Interactions on Ground-State Fine-Structures along the Nitrogen-Like Isoelectronic Sequence

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Lu; LU Wen-Lai; GAO Xiang; LI Jia-Ming

    2009-01-01

    @@ The accurate atomic data of nitrogen and nitrogen-like ions have an importance role in fusion plasma studies and astrophysics studies. The precise calculation of fine-structures is required to obtain such atomic data. Along the whole nitrogen isoelectronic sequence, the contributions of the electron correlations, the Breit interactions and the quantum electrodynamics corrections on the ground-state fine-structures are elucidated. When Z is low, the electron correlations are important, and the Breit interactions, which cannot be neglected cause interesting anomalous fine-structure splittings. When Z is high, the electron correlations are less important, and the Breit interactions are important in addition to spin-orbit interactions for precise calculations.

  12. Systematic harmonic power laws inter-relating multiple fundamental constants

    Science.gov (United States)

    Chakeres, Donald; Buckhanan, Wayne; Andrianarijaona, Vola

    2017-01-01

    Power laws and harmonic systems are ubiquitous in physics. We hypothesize that 2, π, the electron, Bohr radius, Rydberg constant, neutron, fine structure constant, Higgs boson, top quark, kaons, pions, muon, Tau, W, and Z when scaled in a common single unit are all inter-related by systematic harmonic powers laws. This implies that if the power law is known it is possible to derive a fundamental constant's scale in the absence of any direct experimental data of that constant. This is true for the case of the hydrogen constants. We created a power law search engine computer program that randomly generated possible positive or negative powers searching when the product of logical groups of constants equals 1, confirming they are physically valid. For 2, π, and the hydrogen constants the search engine found Planck's constant, Coulomb's energy law, and the kinetic energy law. The product of ratios defined by two constants each was the standard general format. The search engine found systematic resonant power laws based on partial harmonic fraction powers of the neutron for all of the constants with products near 1, within their known experimental precision, when utilized with appropriate hydrogen constants. We conclude that multiple fundamental constants are inter-related within a harmonic power law system.

  13. Faraday effect revisited: sum rules and convergence issues

    DEFF Research Database (Denmark)

    Cornean, Horia; Nenciu, Gheorghe

    2010-01-01

    This is the third paper of a series revisiting the Faraday effect. The question of the absolute convergence of the sums over the band indices entering the Verdet constant is considered. In general, sum rules and traces per unit volume play an important role in solid-state physics, and they give...

  14. Fine structure of histograms of alpha-activity measurements depends on direction of alpha particles flow and the Earth rotation: experiments with collimators

    CERN Document Server

    Shnoll, S E; Berulis, I I; Udaltsova, N V; Rubinstein, I A; Shnoll, Simon E.; Zenchenko, Konstantin I.; Berulis, Iosas I.; Udaltsova, Natalia V.; Rubinstein, Ilia A.

    2004-01-01

    The fine structure of histograms of measurements of 239Pu alpha-activity varies periodically, and the period of these variations is equal to sidereal day (1436 minutes). The periodicity is not observed in the experiments with collimator that restricts the alpha particles flow to be oriented to the Polar Star. Based on this study and other independent data, such as measurements conducted by the Arctic expedition, and similarity of the histograms in processes observed at different locations at the same local time, the conclusion was made, that the fine structure of statistical distributions of the observed processes depends on the celestial sphere.

  15. Recovery of distortion product otoacoustic emissions after a 2-kHz monaural sound-exposure in humans: effects on fine structures

    DEFF Research Database (Denmark)

    de Toro, Miguel Angel Aranda; Ordoñez, Rodrigo Pizarro; Reuter, Karen

    2010-01-01

    A better understanding of the vulnerability of the fine structures of distortion-product otoacoustic emissions (DPOAEs) after acoustic overexposure may improve the knowledge about DPOAE generation, cochlear damage, and lead to more efficient diagnostic tools. It is studied whether the DPOAE fine...... structures of 16 normal-hearing human subjects are systematically affected after a moderate monaural sound-exposure of 10 min to a 2-kHz tone normalized to an exposure level LEX,8h of 80 dBA. DPOAEs were measured before and in the following 70 min after the exposure. The experimental protocol allowed...

  16. Dynamics of flare processes and variety of the fine structure of solar radio emission over a wide frequency range of 30 - 7000 MHz

    CERN Document Server

    Chernov, Gennady; Tan, Baolin; Yan, Yihua; Tan, Chengming; Fu, Qijun

    2014-01-01

    Radiobursts exibiting fine structure observed over two years during the rising phase of Cycle 24 by the SBRS are analyzed. In five events zebra structure, various fiber bursts and fast pulsations were observed. Events on 15 and 24 February 2011 are of the greatest interest. The polarization of radio emission in all three cases is related to the ordinary wave mode of radio emission.Almost all events in the microwave range contain superfine structure. It is possible that each type of fine structure is excited by the same mechanism, and the broad variety of events is related to the dynamics of flare processes.

  17. X-ray absorption fine structure and X-ray excited optical luminescence studies of II-VI semiconducting nanostructures

    Science.gov (United States)

    Murphy, Michael Wayne

    2010-06-01

    Various II-VI semiconducting nanomaterials such as ZnO-ZnS nanoribbons (NRs), CdSxSe1-x nanostructures, ZnS:Mn NRs, ZnS:Mn,Eu nanoprsims (NPs), ZnO:Mn nanopowders, and ZnO:Co nanopowders were synthesized for study. These materials were characterized by techniques such as scanning electron microscopy, transmission electron microscopy, element dispersive X-ray spectroscopy, selected area electron diffraction, and X-ray diffraction. The electronic and optical properties of these nanomaterials were studied by X-ray absorption fine structure (XAFS) spectroscopy and X-ray excited optical luminescence (XEOL) techniques, using tuneable soft X-rays from a synchrotron light source. The complementary nature ofthe XAFS and XEOL techniques give site, element and chemical specific measurements which allow a better understanding of the interplay and role of each element in the system. Chemical vapour deposition (CVD) of ZnS powder in a limited oxygen environment resulted in side-by-side biaxial ZnO-ZnS NR heterostructures. The resulting NRs contained distinct wurtzite ZnS and wurtzite ZnO components with widths of 10--100 nm and 20 --500 nm, respectively and a uniform interface region of 5-15 nm. XAFS and XEOL measurements revealed the luminescence of ZnO-ZnS NRs is from the ZnO component. The luminescence of CdSxSe1-x nanostructures is shown to be dependent on the S to Se ratio, with the band-gap emission being tunable between that of pure CdS and CdSe. Excitation of the CdSxSe 1-x nanostructures by X-ray in XEOL has revealed new de-excitation channels which show a defect emission band not seen by laser excitation. CVD of Mn2+ doped ZnS results in nanostructures with luminescence dominated by the yellow Mn2+ emission due to energy transfer from the ZnS host to the Mn dopant sites. The addition of EuCl3 to the reactants in the CVD process results in a change in morphology from NR to NP. Zn1-xMnxO and Zn1-xCOxO nanopowders were prepared by sol-gel methods at dopant concentrations

  18. Sulfur X-ray absorption fine structure in porous Li–S cathode films measured under argon atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Matthias, E-mail: matthias.mueller@ptb.de [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Choudhury, Soumyadip [Leibniz-Institut für Polymerforschung, Hohe Strasse 6, 01069 Dresden (Germany); Technische Universität Dresden, Physical Chemistry of Polymeric Materials ,01062 Dresden (Germany); Gruber, Katharina [VARTA Micro Innovation GmbH, Stremayrgasse 9, 8010 Graz (Austria); Cruz, Valene B. [Universität Ulm, Institut für Elektrochemie, 89069 Ulm (Germany); Helmholtz-Institut Ulm (HIU), 89069 Ulm (Germany); Fuchsbichler, Bernd [VARTA Micro Innovation GmbH, Stremayrgasse 9, 8010 Graz (Austria); Jacob, Timo [Universität Ulm, Institut für Elektrochemie, 89069 Ulm (Germany); Helmholtz-Institut Ulm (HIU), 89069 Ulm (Germany); Koller, Stefan [VARTA Micro Innovation GmbH, Stremayrgasse 9, 8010 Graz (Austria); Stamm, Manfred [Leibniz-Institut für Polymerforschung, Hohe Strasse 6, 01069 Dresden (Germany); Technische Universität Dresden, Physical Chemistry of Polymeric Materials ,01062 Dresden (Germany); Ionov, Leonid [Leibniz-Institut für Polymerforschung, Hohe Strasse 6, 01069 Dresden (Germany); Beckhoff, Burkhard [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2014-04-01

    In this paper we present the first results for the characterization of highly porous cathode materials with pore sizes below 1 μm for Lithium Sulfur (Li–S) batteries by Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. A novel cathode material of porous carbon films fabricated with colloidal array templates has been investigated. In addition, an electrochemical characterization has been performed aiming on an improved correlation of physical and chemical parameters with the electrochemical performance. The performed NEXAFS measurements of cathode materials allowed for a chemical speciation of the sulfur content inside the cathode material. The aim of the presented investigation was to evaluate the potential of the NEXAFS technique to characterize sulfur in novel battery material. The long term goal for the characterization of the battery materials is the sensitive identification of undesired side reactions, such as the polysulfide shuttle, which takes place during charging and discharging of the battery. The main drawback associated with the investigation of these materials is the fact that NEXAFS measurements can usually only be performed ex situ due to the limited in situ instrumentation being available. For Li–S batteries this problem is more pronounced because of the low photon energies needed to study the sulfur K absorption edge at 2472 eV. We employed 1 μm thick Si{sub 3}N{sub 4} windows to construct sealed argon cells for NEXAFS measurements under ultra high vacuum (UHV) conditions as a first step towards in situ measurements. The cells keep the sample under argon atmosphere at any time and the X-ray beam passes mainly through vacuum which enables the detection of the low energy X-ray emission of sulfur. Using these argon cells we found indications for the presence of lithium polysulfides in the cathode films whereas the correlations to the offline electrochemical results remain somewhat ambiguous. As a consequence of these findings one

  19. Identification of the predicted 5s-4f level crossing optical lines with applications to metrology and searches for the variation of fundamental constants.

    Science.gov (United States)

    Windberger, A; Crespo López-Urrutia, J R; Bekker, H; Oreshkina, N S; Berengut, J C; Bock, V; Borschevsky, A; Dzuba, V A; Eliav, E; Harman, Z; Kaldor, U; Kaul, S; Safronova, U I; Flambaum, V V; Keitel, C H; Schmidt, P O; Ullrich, J; Versolato, O O

    2015-04-17

    We measure optical spectra of Nd-like W, Re, Os, Ir, and Pt ions of particular interest for studies of a possibly varying fine-structure constant. Exploiting characteristic energy scalings we identify the strongest lines, confirm the predicted 5s-4f level crossing, and benchmark advanced calculations. We infer two possible values for optical M2/E3 and E1 transitions in Ir^{17+} that have the highest predicted sensitivity to a variation of the fine-structure constant among stable atomic systems. Furthermore, we determine the energies of proposed frequency standards in Hf^{12+} and W^{14+}.

  20. The forms of trace metals in an Illinois basin coal by x-ray absorption fine structure spectroscopy

    Science.gov (United States)

    Chou, I.-Ming; Bruinius, J.A.; Lytle, J.M.; Ruch, R.R.; Huggins, Frank E.; Huffman, G.P.; Ho, K.K.

    1997-01-01

    Utilities burning Illinois coals currently do not consider trace elements in their flue gas emissions. After the US EPA completes an investigation on trace elements, however, this may change and flue gas emission standards may be established. The mode of occurrence of a trace element may determine its cleanability and Hue gas emission potential. X-ray Absorption Fine Structure (XAFS) is a spectroscopic technique that can differentiate the mode of occurrence of an element, even at the low concentrations that trace elements are found in coal. This is principally accomplished by comparing the XAFS spectra of a coal to a database of reference sample spectra. This study evaluated the technique as a potential tool to examine six trace elements in an Illinois #6 coal. For the elements As and Zn, the present database provides a definitive interpretation on their mode of occurrence. For the elements Ti, V, Cr, and Mn the database of XAFS spectra of trace elements in coal was still too limited to allow a definitive interpretation. The data obtained on these elements, however, was sufficient to rule out several of the mineralogical possibilities that have been suggested previously. The results indicate that XAFS is a promising technique for the study of trace elements in coal.

  1. Fine structures and ion images on fresh frozen dried ultrathin sections by transmission electron and scanning ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Takaya, K.; Okabe, M.; Sawataishi, M.; Takashima, H.; Yoshida, T

    2003-01-15

    Ion microscopy (IM) of air-dried or freeze-dried cryostat and semi-thin cryosections has provided ion images of elements and organic substances in wide areas of the tissue. For reproducible ion images by a shorter time of exposure to the primary ion beam, fresh frozen dried ultrathin sections were prepared by freezing the tissue in propane chilled with liquid nitrogen, cryocut at 60 nm, mounted on grids and silicon wafer pieces, and freeze-dried. Rat Cowper gland and sciatic nerve, bone marrow of the rat administered of lithium carbonate, tree frog and African toad spleen and buffy coat of atopic dermatitis patients were examined. Fine structures and ion images of the corresponding areas in the same or neighboring sections were observed by transmission electron microscopy (TEM) followed by sector type and time-of-flight type IM. Cells in the buffy coat contained larger amounts of potassium and magnesium while plasma had larger amounts of sodium and calcium. However, in the tissues, lithium, sodium, magnesium, calcium and potassium were distributed in the cell and calcium showed a granular appearance. A granular cell of the tree frog spleen contained sodium and potassium over the cell and magnesium and calcium were confined to granules.

  2. Effects of some inhibitors of protein synthesis on the chloroplast fine structure, CO2 fixation and the Hill reaction activity

    Directory of Open Access Journals (Sweden)

    S. Więckowski

    2015-01-01

    Full Text Available A comparative study concerning the effects of chloramphenicol (100 μg ml-1, actidione (10 μg ml-1, 5-bromouracil (190 μg ml-1, actinomycin D (30 μg ml-1 and DL-ethionine (800 μg ml-1 on the chloroplast fine structure, 14CO2 incorporation and the Hill reaction activity was the subject of the experiments presented in this paper. The experiments were conducted on bean seedlings under the conditions when chlorophyll accumulation was inhibited only partially. The results obtained indicate that chloromphenicol is responsible for the reduction of the number of grana per section of plastid and for the formation of numerous vesicles in the stroma. In the presence of actidione, actinomycin D or DL-ethionine the lamellae are poorly differentiated into .stroma and granum regions and there occur disturbances in the typical orientation of lamellae within chloroplasts. Only in the presence of 5-bromouracil the development of chloroplast structure resemble that in control plants. A comparison of the results obtained with those published earlier (Więckowski et al., 1974; Ficek and Więckowski, 1974 shows that such processes as assimilatory pigment accumulation, the rate of CO2 fixation, the Hill reaction activity, and the development of lamellar system are suppressed in a different extent by the inhibitors used.

  3. Determining Orientational Structure of Diamondoid Thiols Attached to Silver Using Near Edge X-ray Absorption Fine Structure Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Lee, J I; Fabbri, J D; Wang, D; Nielsen, M; Randel, J C; Schreiner, P R; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J P; Carlson, R K; Terminello, L J; Melosh, N A; van Buuren, T

    2008-10-07

    Near-edge x-ray absorption fine structure spectroscopy (NEXAFS) is a powerful tool for determination of molecular orientation in self-assembled monolayers and other surface-attached molecules. A general framework for using NEXAFS to simultaneously determine molecular tilt and twist of rigid molecules attached to surfaces is presented. This framework is applied to self-assembled monolayers of higher diamondoid, hydrocarbon molecules with cubic-diamond-cage structures. Diamondoid monolayers chemisorbed on metal substrates are known to exhibit interesting electronic and surface properties. This work compares molecular orientation in monolayers prepared on silver substrates using two different thiol positional isomers of [121]tetramantane, and thiols derived from two different pentamantane structural isomers, [1212]pentamantane and [1(2,3)4]pentamantane. The observed differences in monolayer structure demonstrate the utility and limitations of NEXAFS spectroscopy and the framework. The results also demonstrate the ability to control diamondoid assembly, in particular the molecular orientational structure, providing a flexible platform for the modification of surface properties with this exciting new class of nanodiamond materials.

  4. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6~m New Solar Telescope

    CERN Document Server

    Jing, Ju; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6~m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most curr...

  5. Fine structure of cells and their histologic organization within internodal pathways of the heart: clinical and electrocardiographic implications.

    Science.gov (United States)

    Sherf, L; James, T N

    1979-08-01

    The fine structure of the normal internodal pathways was studied in 1 human and 2 canine hearts and correlated with histologic observations on more than 100 human and 10 canine hearts. From the electron microscopic studies six different kinds of myocardial cells were classified from two locations: the Eustachian ridge (posterior internodal pathway) and the Bachmann bundle (anterior internodal pathway). Five of the six kinds of cells (working myocardial cells, Purkinje-like cells, either broad or slender transitional cells and P cells, all previously described) were present in both locations. A sixth cell, pleomorphic and dark in appearance, with a special intertwined relation to P cells, is newly designated as an ameboid cell. It was found solely in the Eustachian ridge. In the same area a rare direct contact between a nerve and a myocardial cell was observed. The importance of these different kinds of cells, their respective cell connections, and their topographic locations inside the internodal pathways are discussed relative to certain functions such as rapid conduction and subsidiary pacemaking. The possible influence of these factors on clinical electrocardiographic changes is considered.

  6. Non-patchy strategy for inter-atomic distances from Extended X-ray Absorption Fine Structure

    Science.gov (United States)

    Xu, Gu; Li, Guifang; LI, Xianya; Liang, Yi; Feng, Zhechuan

    2017-01-01

    Extended X-ray Absorption Fine Structure (EXAFS) has been one of the few structural probes available for crystalline, non-crystalline and even highly disordered specimens. However, the data analysis involves a patchy and tinkering process, including back-and-forth fitting and filtering, leading to ambiguous answers sometimes. Here we try to resolve this long standing problem, to extract the inter-atomic distances from the experimental data by a single step minimization, in order to replace the tedious and tinkering process. The new strategy is built firmly by the mathematical logic, and made straightforward and undeniable. The finding demonstrates that it is possible to break off from the traditional patchy model fitting, and to remove the logical confusion of a priori prediction of the structure to be matched with experimental data, making it a much more powerful technique than the existing methods. The new method is expected to benefit EXAFS users covering all disciplines. Also, it is anticipated that the current work to be the motivation and inspiration to the further efforts. PMID:28181529

  7. Non-patchy strategy for inter-atomic distances from Extended X-ray Absorption Fine Structure

    Science.gov (United States)

    Xu, Gu; Li, Guifang; Li, Xianya; Liang, Yi; Feng, Zhechuan

    2017-02-01

    Extended X-ray Absorption Fine Structure (EXAFS) has been one of the few structural probes available for crystalline, non-crystalline and even highly disordered specimens. However, the data analysis involves a patchy and tinkering process, including back-and-forth fitting and filtering, leading to ambiguous answers sometimes. Here we try to resolve this long standing problem, to extract the inter-atomic distances from the experimental data by a single step minimization, in order to replace the tedious and tinkering process. The new strategy is built firmly by the mathematical logic, and made straightforward and undeniable. The finding demonstrates that it is possible to break off from the traditional patchy model fitting, and to remove the logical confusion of a priori prediction of the structure to be matched with experimental data, making it a much more powerful technique than the existing methods. The new method is expected to benefit EXAFS users covering all disciplines. Also, it is anticipated that the current work to be the motivation and inspiration to the further efforts.

  8. 3-cm Fine Structure Masers: A Unique Signature of Supermassive Black Hole Formation via Direct Collapse in the Early Universe

    CERN Document Server

    Dijkstra, Mark; Loeb, Abraham

    2016-01-01

    The direct collapse black hole (DCBH) scenario describes the isothermal collapse of a pristine gas cloud directly into a massive, M_BH=10^4-10^6 M_sun black hole. In this paper we show that large HI column densities of primordial gas at T~10^4 K with low molecular abundance - which represent key aspects of the DCBH scenario - provide optimal conditions for pumping of the 2p-level of atomic hydrogen by trapped Lyman alpha (Lya) photons. This Lya pumping mechanism gives rise to inverted level population of the 2s_1/2-2p_3/2 transition, and therefore to stimulated fine structure emission at 3.04 cm (rest-frame). We show that simplified models of the DCBH scenario amplify the CMB by up to a factor of 10^5, above which the maser saturates. Hyperfine splitting of the 3-cm transition gives rise to a characteristic broad (FWHM ~ tens of MHz in the observers frame) asymmetric line profile. This signal subtends an angular scale of ~ 1-10 mas, which translates to a flux of ~ 0.3-3 microJy, which is detectable with ultra...

  9. Relationship of magnetic field strength and brightness of fine-structure elements in the solar temperature minimum region

    Science.gov (United States)

    Cook, J. W.; Ewing, J. A.

    1990-01-01

    A quantitative relationship was determined between magnetic field strength (or magnetic flux) from photospheric magnetograph observations and the brightness temperature of solar fine-structure elements observed at 1600 A, where the predominant flux source is continuum emission from the solar temperature minimum region. A Kitt Peak magnetogram and spectroheliograph observations at 1600 A taken during a sounding rocket flight of the High Resolution Telescope and Spectrograph from December 11, 1987 were used. The statistical distributions of brightness temperature in the quiet sun at 1600 A, and absolute value of magnetic field strength in the same area were determined from these observations. Using a technique which obtains the best-fit relationship of a given functional form between these two histogram distributions, a quantitative relationship was determined between absolute value of magnetic field strength B and brightness temperature which is essentially linear from 10 to 150 G. An interpretation is suggested, in which a basal heating occurs generally, while brighter elements are produced in magnetic regions with temperature enhancements proportional to B.

  10. Vanishing fine-structure splittings in telecommunication-wavelength quantum dots grown on (111)A surfaces by droplet epitaxy

    Science.gov (United States)

    Liu, Xiangming; Ha, Neul; Nakajima, Hideaki; Mano, Takaaki; Kuroda, Takashi; Urbaszek, Bernhard; Kumano, Hidekazu; Suemune, Ikuo; Sakuma, Yoshiki; Sakoda, Kazuaki

    2014-08-01

    The emission cascade of a single quantum dot is a promising source of entangled photons. A prerequisite for this source is the use of a symmetric dot analogous to an atom in a vacuum, but the simultaneous achievement of structural symmetry and emission in a telecom band poses a challenge. Here we report the growth and characterization of highly symmetric InAs/InAlAs quantum dots self-assembled on C3v symmetric InP(111)A. The broad emission spectra cover the O (λ ˜1.3 μm), C (λ ˜1.55 μm), and L (λ ˜1.6 μm) telecom bands. The distribution of the fine-structure splittings is considerably smaller than those reported in previous works on dots at similar wavelengths. The presence of dots with degenerate exciton lines is further confirmed by the optical orientation technique. Thus, our dot systems are expected to serve as efficient entangled photon emitters for long-distance fiber-based quantum key distribution.

  11. Near-edge x-ray absorption fine structure measurements using a laboratory-scale XUV source

    Science.gov (United States)

    Peth, Christian; Barkusky, Frank; Mann, Klaus

    2008-05-01

    We present a compact setup for near-edge x-ray absorption spectroscopy at the carbon K-edge based on a laser-driven plasma source. To generate the required broad-band emission in the spectral range of the 'water window' (λ = 2.2-4.4 nm) a krypton gas puff target was used. The table-top setup consisting basically of the laser-plasma source and a flat-field spectrometer can be used for near-edge x-ray absorption fine structure experiments in transmission as well as reflection under grazing incidence conditions (ReflEXAFS). The latter method offers the advantage that thin film preparation is not necessary and that the surface sensitivity is strongly enhanced. The results obtained for thin polymer films show good agreement with synchrotron data. Furthermore, we use the ReflEXAFS method to investigate changes in the chemical composition of PMMA induced by extreme ultraviolet (EUV) radiation. The spectra indicate a loss of the carbonyl functional group upon irradiation as well as crosslinking effects at high EUV radiation doses.

  12. Effects of steep high-frequency hearing loss on speech recognition using temporal fine structure in low-frequency region.

    Science.gov (United States)

    Li, Bei; Hou, Limin; Xu, Li; Wang, Hui; Yang, Guang; Yin, Shankai; Feng, Yanmei

    2015-08-01

    The present study examined the effects of steep high-frequency sensorineural hearing loss (SHF-SNHL) on speech recognition using acoustic temporal fine structure (TFS) in the low-frequency region where the absolute thresholds appeared to be normal. In total, 28 participants with SHF-SNHL were assigned to 3 groups according to the cut-off frequency (1, 2, and 4 kHz, respectively) of their pure-tone absolute thresholds. Fourteen age-matched normal-hearing (NH) individuals were enrolled as controls. For each Mandarin sentence, the acoustic TFS in 10 frequency bands (each 3-ERB wide) was extracted using the Hilbert transform and was further lowpass filtered at 1, 2, and 4 kHz. Speech recognition scores were compared among the NH and 1-, 2-, and 4-kHz SHF-SNHL groups using stimuli with varying bandwidths. Results showed that speech recognition with the same TFS-speech stimulus bandwidth differed significantly in groups and filtering conditions. Sentence recognition in quiet conditions was better than that in noise. Compared with the NH participants, nearly all the SHF-SNHL participants showed significantly poorer sentence recognition within their frequency regions with "normal hearing" (defined clinically by normal absolute thresholds) in both quiet and noisy conditions. These may result from disrupted auditory nerve function in the "normal hearing" low-frequency regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Neural representations of concurrent sounds with overlapping spectra in rat inferior colliculus: Comparisons between temporal-fine structure and envelope.

    Science.gov (United States)

    Luo, Lu; Wang, Qian; Li, Liang

    2017-09-01

    Perceptual segregation of multiple sounds, which overlap in both time and spectra, into individual auditory streams is critical for hearing in natural environments. Some cues such as interaural time disparities (ITDs) play an important role in the segregation, especially when sounds are separated in space. In this study, we investigated the neural representation of two uncorrelated narrowband noises that shared the identical spectrum in the rat inferior colliculus (IC) using frequency-following-response (FFR) recordings, when the ITD for each noise stimulus was manipulated. The results of this study showed that recorded FFRs exhibited two distinctive components: the fast-varying temporal fine structure (TFS) component (FFRTFS) and the slow-varying envelope component (FFRENV). When a single narrowband noise was presented alone, the FFRTFS, but not the FFRENV, was sensitive to ITDs. When two narrowband noises were presented simultaneously, the FFRTFS took advantage of the ITD disparity that was associated with perceived spatial separation between the two concurrent sounds, and displayed a better linear synchronization to the sound with an ipsilateral-leading ITD. However, no effects of ITDs were found on the FFRENV. These results suggest that the FFRTFS and FFRENV represent two distinct types of signal processing in the auditory brainstem and contribute differentially to sound segregation based on spatial cues: the FFRTFS is more critical to spatial release from masking. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Investigation of fine-structure dips in fission-fragment mass distribution: An asymmetric two centre shell model approach

    Science.gov (United States)

    Malik, Sham S.

    2017-04-01

    The fission fragment mass distribution followed by neutron emission is studied for the 208Pb (18O , f) reaction using the asymmetric two centre shell model. The measured mass distribution spectrum reveals new kind of systematics on shell structure and leads to an improved understanding of structure effects in nuclear fission. A detailed investigation of shell effects both in potential and cranking mass parameter has been carried out for explaining the observed fine structure dips (i.e., less probable distributions) corresponding to shell closure (Z = 50 and/or N = 82) of fission fragments and their complementary partners. The available energy states for the decay process are obtained by solving the Schrödinger equation and found that first-five eigenstates are sufficient in reproducing the observed mass distribution spectrum. An outcome of the asymmetric two centre shell model also completely favours the observed claim that ;the total number of emitted neutrons between correlated pairs of fission fragments should not exceed 6;. A complete observed spectrum is obtained by adding the mass distribution yields of all 6-neutron emission channels. This suggests a possible importance of extending these calculations to get new insight into an understanding of the dynamical behaviour of fragment formation in the fission process.

  15. Near-edge X-ray absorption fine-structure spectroscopy of naphthalene diimide-thiophene co-polymers

    Energy Technology Data Exchange (ETDEWEB)

    Gann, Eliot; McNeill, Christopher R., E-mail: christopher.mcneill@monash.edu [Department of Materials Engineering, Monash University, Wellington Road, Clayton, Victoria 3800 (Australia); Szumilo, Monika; Sirringhaus, Henning [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Sommer, Michael [Institute of Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg (Germany); Maniam, Subashani; Langford, Steven J. [School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800 (Australia); Thomsen, Lars [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2014-04-28

    Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy is an important tool for probing the structure of conjugated polymer films used in organic electronic devices. High-performance conjugated polymers are often donor-acceptor co-polymers which feature a repeat unit with multiple functional groups. To facilitate better application of NEXAFS spectroscopy to the study of such materials, improved understanding of the observed NEXAFS spectral features is required. In order to examine how the NEXAFS spectrum of a donor-acceptor co-polymer relates to the properties of the sub-units, a series of naphthalene diimide-thiophene-based co-polymers have been studied where the nature and length of the donor co-monomer has been systematically varied. The spectra of these materials are compared with that of a thiophene homopolymer and naphthalene diimide monomer enabling peak assignment and the influence of inter-unit electronic coupling to be assessed. We find that while it is possible to attribute peaks within the π* manifold as arising primarily due to the naphthalene diimide or thiophene sub-units, very similar dichroism of these peaks is observed indicating that it may not be possible to separately probe the molecular orientation of the separate sub-units with carbon K-edge NEXAFS spectroscopy.

  16. Characteristics of a tapered undulator for the X-ray absorption fine-structure technique at PLS-II.

    Science.gov (United States)

    Sung, Nark-Eon; Lee, Ik-Jae; Jeong, Sung-hoon; Kang, Seen-Woong

    2014-11-01

    An in-vacuum undulator (IVU) with a tapered configuration was installed in the 8C nanoprobe/XAFS beamlime (BL8C) of the Pohang Light Source in Korea for hard X-ray nanoprobe and X-ray absorption fine-structure (XAFS) experiments. It has been operated in planar mode for the nanoprobe experiments, while gap-scan and tapered modes have been used alternatively for XAFS experiments. To examine the features of the BL8C IVU for XAFS experiments, spectral distributions were obtained theoretically and experimentally as functions of the gap and gap taper. Beam profiles at a cross section of the X-ray beam were acquired using a slit to visualize the intensity distributions which depend on the gap, degree of tapering and harmonic energies. To demonstrate the effect of tapering around the lower limit of the third-harmonic energy, V K-edge XAFS spectra were obtained in each mode. Owing to the large X-ray intensity variation around this energy, XAFS spectra of the planar and gap-scan modes show considerable spectral distortions in comparison with the tapered mode. This indicates that the tapered mode, owing to the smooth X-ray intensity profile at the expense of the highest and most stable intensity, can be an alternative for XAFS experiments where the gap-scan mode gives a considerable intensity variation; it is also suitable for quick-XAFS scanning.

  17. Nutritional property of endosperm starches from maize mutants: a parabolic relationship between slowly digestible starch and amylopectin fine structure.

    Science.gov (United States)

    Zhang, Genyi; Ao, Zihua; Hamaker, Bruce R

    2008-06-25

    The relationship between the slow digestion property of cooked maize starch and its molecular fine structure was investigated. Results of the in vitro Englyst assay showed a range of rapidly digestible starch (RDS) (70.1-98.9%), slowly digestible starch (SDS) (0.2-20.3%), and resistant starch (RS) (0.0-13.7%) among the tested maize mutant flour samples. Further analysis showed that amylose content was significantly correlated ( R = 0.763, P analysis revealed a parabolic relationship between SDS content and the weight ratio of amylopectin short chains (DP /= 13, named LF), which means amylopectin with a higher amount of either short chains or long chains can produce relatively high amounts of SDS. Furthermore, debranching analysis of the SDS materials from samples with the highest and lowest weight ratios of SF/LF (both had a high amount SDS) showed significantly different profiles, indicating there is not a uniform molecular structure for SDS. Thus, genetic mutants of maize samples have a good potential to provide raw starch materials of high nutritional quality. An additional finding showed that a simple and comparably high-throughput technique of Rapid Visco-Analyzer (RVA) can be used to screen genetic mutants on the basis of their RVA profiles.

  18. Direct observation of fine structure in ion tracks in amorphous Si{sub 3}N{sub 4} by TEM

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, K.; Morita, Y.; Suzuki, M. [Department of Micro Engineering, Kyoto University, Kyoto 606-8501 (Japan); Narumi, K.; Saitoh, Y. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gumma 370-1292 (Japan); Ishikawa, N. [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Hojou, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Tsujimoto, M.; Isoda, S. [Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501 (Japan); Kimura, K., E-mail: kimura@kues.kyoto-u.ac.jp [Department of Micro Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2012-11-15

    Thin films of amorphous Si{sub 3}N{sub 4} (thickness 20 nm) were irradiated with 120-720 keV C{sub 60}{sup +,2+} ions and observed using transmission electron microscopy (TEM). The ion track produced in an amorphous material was directly observed by TEM. For quantitative analysis, the ion tracks were also observed using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). The observed ion track consists of a low density core (radius {approx}2.5 nm) and a high density shell (width {approx}2.5 nm), which is very similar to the ion tracks in amorphous SiO{sub 2} irradiated with high energy heavy ions observed by small angle X-ray scattering (SAXS). Although the observed ion tracks may be affected by surface effects, the present result indicates that TEM and HAADF-STEM have potential to observe directly the fine structures of ion tracks in amorphous materials.

  19. Quick extended x-ray absorption fine structure instrument with millisecond time scale, optimized for in situ applications.

    Science.gov (United States)

    Khalid, S; Caliebe, W; Siddons, P; So, I; Clay, B; Lenhard, T; Hanson, J; Wang, Q; Frenkel, A I; Marinkovic, N; Hould, N; Ginder-Vogel, M; Landrot, G L; Sparks, D L; Ganjoo, A

    2010-01-01

    In order to learn about in situ structural changes in materials at subseconds time scale, we have further refined the techniques of quick extended x-ray absorption fine structure (QEXAFS) and quick x-ray absorption near edge structure (XANES) spectroscopies at beamline X18B at the National Synchrotron Light Source. The channel cut Si (111) monochromator oscillation is driven through a tangential arm at 5 Hz, using a cam, dc motor, pulley, and belt system. The rubber belt between the motor and the cam damps the mechanical noise. EXAFS scan taken in 100 ms is comparable to standard data. The angle and the angular range of the monochromator can be changed to collect a full EXAFS or XANES spectrum in the energy range 4.7-40.0 KeV. The data are recorded in ascending and descending order of energy, on the fly, without any loss of beam time. The QEXAFS mechanical system is outside the vacuum system, and therefore changing the mode of operation from conventional to QEXAFS takes only a few minutes. This instrument allows the acquisition of time resolved data in a variety of systems relevant to electrochemical, photochemical, catalytic, materials, and environmental sciences.

  20. Can we test Dark Energy with Running Fundamental Constants ?

    CERN Document Server

    Doran, M

    2004-01-01

    We investigate a link between the running of the fine structure constant $\\alpha$ and a time evolving scalar dark energy field. Employing a versatile parameterization for the equation of state, we exhaustively cover the space of dark energy models. Under the assumption that the change in $\\alpha$ is to first order given by the evolution of the Quintessence field, we show that current Oklo, Quasi Stellar Objects and Equivalence Principle observations restrict the model parameters considerably stronger than observations of the Cosmic Microwave Background, Large Scale Structure and Supernovae Ia combined.

  1. Can we test dark energy with running fundamental constants?

    Science.gov (United States)

    Doran, Michael

    2005-04-01

    We investigate a link between the running of the fine structure constant α and a time evolving scalar dark energy field. Employing a versatile parametrization for the equation of state, we exhaustively cover the space of dark energy models. Under the assumption that the change in α is to first order given by the evolution of the quintessence field, we show that current Oklo, quasi-stellar object and equivalence principle observations restrict the model parameters considerably more strongly than observations of the cosmic microwave background, large scale structure and supernovae Ia combined.

  2. Antimony(III) complexing with O-bearing organic ligands in aqueous solution: An X-ray absorption fine structure spectroscopy and solubility study

    Science.gov (United States)

    Tella, Marie; Pokrovski, Gleb S.

    2009-01-01

    The stability and structure of aqueous complexes formed by trivalent antimony (Sb III) with carboxylic acids (acetic, adipic, malonic, lactic, oxalic, tartaric, and citric acid), phenols (catechol), and amino acids (glycine) having O- and N-functional groups (carboxyl, alcoholic hydroxyl, phenolic hydroxyl and amine) typical of natural organic matter, were determined at 20 and 60 °C from solubility and X-ray absorption fine structure (XAFS) spectroscopy measurements. In organic-free aqueous solutions and in the presence of acetic, adipic, malonic acids and glycine, both spectroscopic and solubility data are consistent with the dominant formation of Sb III hydroxide species, Sb(OH)3-nn+,Sb(OH)30andSb(OH)4-, at strongly acid, acid-to-neutral and basic pH, respectively, demonstrating negligible complexing with mono-functional organic ligands (acetic) or those having non adjacent carboxylic groups (adipic, malonic). In contrast, in the presence of poly-functional carboxylic and hydroxy-carboxylic acids and catechol, Sb III forms stable 1:1 and 1:2 complexes with the studied organic ligands over a wide pH range typical of natural waters (3 cycle. Stability constants for these species, generated from Sb 2O 3 (rhomb.) solubility experiments, were used to model Sb complexing with natural humic acids possessing the same functional groups as those investigated in this study. Our predictions show that in an aqueous solution of pH between 2 and 10, containing 1 μg/L of Sb and 5 mg/L of dissolved organic carbon (DOC), up to 35% of total dissolved Sb binds to aqueous organic matter via carboxylic and hydroxy-carboxylic groups. This amount of complexed Sb for typical natural DOC concentrations is in agreement with that estimated from dialysis experiments performed with commercial humic acid in our work and those available in the literature for a range of standardized IHSS humic acids. Our results imply that a significant part of Sb is likely to be bound with humic acids via

  3. The Schwinger formula revisited II (a mathematical treatment).

    OpenAIRE

    Haro Cases, Jaume

    2003-01-01

    In this paper we study the production of pairs in no-analytic potentials. It is a well-known fact that, when the potential is analytic the average number of produced pairs is exponentially small in ?. On the other hand, when the potential is no-analytic, using the W.K.B. method, we prove that the average number of produced pairs is ?????, where ? is the regularity of the potential and ? is the fine structure constant. Finally, we give a rigorous proof of the Schwinger’s formula.

  4. Silver structure environments in ion-exchanged silicate glasses studied by X-ray absorption fine structure.

    Science.gov (United States)

    Yang, X C; Li, W J; Dubiel, M; Huang, W H; Yano, T

    2009-02-01

    X-ray absorption fine structure (XAFS) technique was used to analyze structural geometry of Ag atoms introduced into soda-lime silicate glass and soda aluminosilicate glass by ion-exchange method. The results show that Ag+ ion in soda aluminosilicate glass takes a coordination number of 1.6 with a Ag-O distance of 2.20 A when the ion-exchange ratio x is smaller than 0.47 and of 2.28 A when x is larger than 0.47. The introduced Ag+ ions are stabilized at the non-bridge oxygen (NBO) sites when x is lower than 0.47. The Na+ ions in AlO4 (O4 represents the bridging oxygen) sites are exchanged by Ag+ ions after all Na+ in NBO sites are replaced. The disorder of Ag-O coordination increases gradually with increasing x from 0.24 to 0.47 in soda aluminosilicate glass and increases dramatically when x is larger than 0.47. Ag+ ions takes a coordination number of 1.6 in the ion-exchanged soda-lime silicate glass and of 1.3 after subsequently thermal treatment with the same Ag-O distance of 2.14 A. Debye-Waller factor (DWF) of Ag-O coordination in soda aluminosilicate glass is higher than that in soda-lime silicate glass. Small Ag cluster has a reduced interatomic distance and a larger DWF. Ag nanoparticle in sample Ag-7 is in a state of tensile stress.

  5. 3-cm Fine Structure Masers: A Unique Signature of Supermassive Black Hole Formation via Direct Collapse in the Early Universe

    Science.gov (United States)

    Dijkstra, Mark; Sethi, Shiv; Loeb, Abraham

    2016-03-01

    The direct collapse black hole (DCBH) scenario describes the isothermal collapse of a pristine gas cloud directly into a massive, {M}{BH} = 104-106{M}⊙ black hole. In this paper we show that large H i column densities of primordial gas at T˜ {10}4 K with low molecular abundance—which represent key aspects of the DCBH scenario—provide optimal conditions for the pumping of the 2p-level of atomic hydrogen by trapped Lyα photons. This Lyα pumping mechanism gives rise to an inverted level population of the 2{s}1/2-2{p}3/2 transition, and therefore also gives rise to stimulated fine structure emission at λ =3.04 {cm} (rest-frame). We show that simplified models of the DCBH scenario amplify the CMB by up to a factor of ˜ {10}5, above which the maser saturates. Hyperfine splitting of the 3 cm transition gives rise to a characteristic broad (FWHM ˜ tens of MHz in the observers frame) asymmetric line profile. This signal subtends an angular scale of ˜1-10 mas, which translates to a flux of ˜0.3-3 μJy, which is detectable with ultra-deep surveys being planned with SKA1-MID. While challenging, as the signal is visible for a fraction of the collapse time of the cloud, the matching required physical conditions imply that a detection of the redshifted 3-cm emission line could provide direct evidence for the DCBH scenario.

  6. Power of isotopic fine structure for unambiguous determination of metabolite elemental compositions: In silico evaluation and metabolomic application

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Tatsuhiko; Yukihira, Daichi [Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Fujimura, Yoshinori [Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Saito, Kazunori [Bruker Daltonics K.K., 3-9 Moriya-cho, Kanagawa-ku, Yokohama 221-0022 (Japan); Takahashi, Katsutoshi [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, 2-42 Aomi, Koutou-ku, Tokyo 135-0064 (Japan); Miura, Daisuke, E-mail: daipon@agr.kyushu-u.ac.jp [Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Wariishi, Hiroyuki, E-mail: hirowari@agr.kyushu-u.ac.jp [Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Faculty of Arts and Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2014-02-01

    Graphical abstract: - Highlights: • We developed a method to determine elemental composition of metabolites. • The method was based on mass spectral data and empirical constraints. • In the validation study, the method succeeded for 70% of detected peaks. - Abstract: In mass spectrometry (MS)-based metabolomics studies, reference-free identification of metabolites is still a challenging issue. Previously, we demonstrated that the elemental composition (EC) of metabolites could be unambiguously determined using isotopic fine structure, observed by ultrahigh resolution MS, which provided the relative isotopic abundance (RIA) of {sup 13}C, {sup 15}N, {sup 18}O, and {sup 34}S. Herein, we evaluated the efficacy of the RIA for determining ECs based on the MS peaks of 20,258 known metabolites. The metabolites were simulated with a ≤25% error in the isotopic peak area to investigate how the error size effect affected the rate of unambiguous determination of the ECs. The simulation indicated that, in combination with reported constraint rules, the RIA led to unambiguous determination of the ECs for more than 90% of the tested metabolites. It was noteworthy that, in positive ion mode, the process could distinguish alkali metal-adduct ions ([M + Na]{sup +} and [M + K]{sup +}). However, a significant degradation of the EC determination performance was observed when the method was applied to real metabolomic data (mouse liver extracts analyzed by infusion ESI), because of the influence of noise and bias on the RIA. To achieve ideal performance, as indicated in the simulation, we developed an additional method to compensate for bias on the measured ion intensities. The method improved the performance of the calculation, permitting determination of ECs for 72% of the observed peaks. The proposed method is considered a useful starting point for high-throughput identification of metabolites in metabolomic research.

  7. Luminescence and Valence of Tb Ions in Alkaline Earth Stannates and Zirconates Examined by X-ray Absorption Fine Structures.

    Science.gov (United States)

    Ueda, Kazushige; Shimizu, Yuhei; Nagamizu, Kouta; Matsuo, Masashi; Honma, Tetsuo

    2017-10-03

    The difference in Tb(3+) green luminescence intensities in doped perovskite(ABO3)-type alkaline earth stannates, AeSnO3 (Ae = Ca, Sr, Ba), and the Mg codoping effect on the luminescence intensities in doped CaMO3 (M = Sn, Zr) were investigated utilizing the X-ray absorption fine structures (XAFS) of the Tb LIII absorption edge. It is considered that the local symmetry at A sites is responsible for the different Tb(3+) luminescence intensities in AeSnO3 (Ae = Ca, Sr, Ba) doped with Tb ions at A sites. However, it was found from the XAFS spectra that some Tb ions are unintentionally stabilized at B sites as Tb(4+), especially in BaSnO3. Not only the central symmetry for Tb(3+) at A sites but also the presence of Tb(4+) at B sites were considered to bring about the absence of Tb(3+) luminescence in doped cubic BaSnO3. No obvious changes in the Tb(3+) local structure at A sites were detected between Tb single doped and Tb-Mg codoped CaMO3 (M = Sn, Zr) from the extended XAFS oscillation, but the trace of Tb(4+) at B sites in the Tb single doped sample was observed in the X-ray absorption near edge structures. It is, therefore, considered that the Tb(3+) luminescence enhancement by Mg codoping is primarily attributed to the charge compensation rather than the changes in the local structure around Tb(3+) at A sites.

  8. Extended x-ray absorption fine structure studies of the atomic structure of nanoparticles in different metallic matrices.

    Science.gov (United States)

    Baker, S H; Roy, M; Gurman, S J; Binns, C

    2009-05-06

    It has been appreciated for some time that the novel properties of particles in the size range 1-10 nm are potentially exploitable in a range of applications. In order to ultimately produce commercial devices containing nanosized particles, it is necessary to develop controllable means of incorporating them into macroscopic samples. One way of doing this is to embed the nanoparticles in a matrix of a different material, by co-deposition for example, to form a nanocomposite film. The atomic structure of the embedded particles can be strongly influenced by the matrix. Since some of the key properties of materials, including magnetism, strongly depend on atomic structure, the ability to determine atomic structure in embedded nanoparticles is very important. This review focuses on nanoparticles, in particular magnetic nanoparticles, embedded in different metal matrices. Extended x-ray absorption fine structure (EXAFS) provides an excellent means of probing atomic structure in nanocomposite materials, and an overview of this technique is given. Its application in probing catalytic metal clusters is described briefly, before giving an account of the use of EXAFS in determining atomic structure in magnetic nanocomposite films. In particular, we focus on cluster-assembled films comprised of Fe and Co nanosized particles embedded in various metal matrices, and show how the crystal structure of the particles can be changed by appropriate choice of the matrix material. The work discussed here demonstrates that combining the results of structural and magnetic measurements, as well as theoretical calculations, can play a significant part in tailoring the properties of new magnetic cluster-assembled materials.

  9. Heat flux at the base of lake ice cover estimated from fine structure of the ice-water boundary layer

    Science.gov (United States)

    Kirillin, Georgiy; Aslamov, Ilya; Kozlov, Vladimir; Granin, Nikolay; Engelhardt, Christof; Förster, Josephine

    2016-04-01

    Seasonal lake ice is a highly changeable part of the cryosphere undergoing remarkable impact by global warming. Vertical heat transport across the boundary layer under ice affects strongly the growth and melting of lake ice cover. The existing models of ice cover dynamics focus basically on the dependence of the ice thickness on the air temperature with implicit account of the snow cover effects. The heat flux at the water-ice boundary, in turn, is usually neglected or parameterized in a very simplistic form. However, neglecting of the basal ice melting due to heat flux at the ice-water interface produces appreciable errors in the modeled ice cover duration. We utilize fine-structure observations taken during 2009-2015 in ice-water boundary layers of Lake Baikal and arctic Lake Kilpisjärvi to reveal the major physical drivers of the heat exchange at the ice bottom and to explain the high geographical, spatial, and temporal variability in the heat flux magnitudes. The methods provide first detailed estimations of the heat exchange beneath the ice cover, available previously only from bulk estimations. The fluxes in Lake Baikal have magnitudes of 101 W m-2 and vary strongly between different parts of the lake being influenced by large-scale horizontal circulation with current velocities amounting at up to 7 cm s-1. The shallow lake fluxes, while an order of magnitude weaker, are highly non-stationary, being affected by the turbulence due to oscillating currents under ice. Our results demonstrate the role played by the boundary layer mixing in the ice growth and melting, as well as characterize the physical processes responsible for the vertical heat exchange and provide a basis for an improved parameterization of ice cover in coupled lake-atmosphere models.

  10. Nuclear magnetic resonance shielding constants in XH4 group XIV hydrides

    Science.gov (United States)

    Jaszuński, Michał; Ruud, Kenneth

    2006-07-01

    Self-consistent field and multiconfigurational self-consistent field wave functions are used to analyse NMR shielding constants in the XH4 hydrides, X = C, Si, Ge, Sn and Pb. All relativistic corrections to order α4, where α is the fine structure constant, are included in the evaluation of the perturbation corrections to the non-relativistic shielding constants. Each of the relativistic corrections is compared to the results obtained for group XVI and XVII hydrides and noble-gas atoms. For the heavy nuclei, the computed relativistic corrections can be used to improve the absolute shielding scale.

  11. Manifestations of a spatial variation of fundamental constants on atomic clocks, Oklo, meteorites, and cosmological phenomena

    CERN Document Server

    Berengut, J C

    2010-01-01

    The remarkable detection of a spatial variation in the fine-structure constant, alpha, from quasar absorption systems must be independently confirmed by complementary searches. In this letter, we discuss how terrestrial measurements of time-variation of the fundamental constants in the laboratory, meteorite data, and analysis of the Oklo nuclear reactor can be used to corroborate the spatial variation seen by astronomers. Furthermore, we show that spatial variation of the fundamental constants may be observable as spatial anisotropy in the cosmic microwave background, the accelerated expansion (dark energy), and large-scale structure of the Universe.

  12. Revisiting Okun's Relationship

    NARCIS (Netherlands)

    Dixon, R.; Lim, G.C.; van Ours, Jan

    2016-01-01

    Our paper revisits Okun's relationship between observed unemployment rates and output gaps. We include in the relationship the effect of labour market institutions as well as age and gender effects. Our empirical analysis is based on 20 OECD countries over the period 1985-2013. We find that the

  13. Revisiting city connectivity

    NARCIS (Netherlands)

    Mans, U.

    2014-01-01

    This article introduces a new perspective on city connectivity in order to analyze non-hub cities and their position in the world economy. The author revisits the different approaches discussed in the Global Commodity Chains (GCC), Global Production Networks (GPN) and World City Network (WCN) discou

  14. A Hydrostatic Paradox Revisited

    Science.gov (United States)

    Ganci, Salvatore

    2012-01-01

    This paper revisits a well-known hydrostatic paradox, observed when turning upside down a glass partially filled with water and covered with a sheet of light material. The phenomenon is studied in its most general form by including the mass of the cover. A historical survey of this experiment shows that a common misunderstanding of the phenomenon…

  15. Concept Image Revisited

    Science.gov (United States)

    Bingolbali, Erhan; Monaghan, John

    2008-01-01

    Concept image and concept definition is an important construct in mathematics education. Its use, however, has been limited to cognitive studies. This article revisits concept image in the context of research on undergraduate students' understanding of the derivative which regards the context of learning as paramount. The literature, mainly on…

  16. Revisiting the Okun relationship

    NARCIS (Netherlands)

    Dixon, R. (Robert); Lim, G.C.; J.C. van Ours (Jan)

    2017-01-01

    textabstractOur article revisits the Okun relationship between observed unemployment rates and output gaps. We include in the relationship the effect of labour market institutions as well as age and gender effects. Our empirical analysis is based on 20 OECD countries over the period 1985–2013. We

  17. A Hydrostatic Paradox Revisited

    Science.gov (United States)

    Ganci, Salvatore

    2012-01-01

    This paper revisits a well-known hydrostatic paradox, observed when turning upside down a glass partially filled with water and covered with a sheet of light material. The phenomenon is studied in its most general form by including the mass of the cover. A historical survey of this experiment shows that a common misunderstanding of the phenomenon…

  18. An upper limit to the variation in the fundamental constants at redshift z = 5.2

    CERN Document Server

    Levshakov, S A; Boone, F; Agafonova, I I; Reimers, D; Kozlov, M G

    2012-01-01

    Aims. We constrain a hypothetical variation in the fundamental physical constants over the course of cosmic time. Methods. We use unique observations of the CO(7-6) rotational line and the [CI] 3P_2 - 3P_1 fine-structure line towards a lensed galaxy at redshift z = 5.2 to constrain temporal variations in the constant F = alpha^2/mu, where mu is the electron-to-proton mass ratio and alpha is the fine-structure constant. The relative change in F between z = 0 and z = 5.2, dFF = (F_obs - F_lab)/F_lab, is estimated from the radial velocity offset, dV = V_rot - V_fs, between the rotational transitions in carbon monoxide and the fine-structure transition in atomic carbon. Results. We find a conservative value dV = 1 +/- 5 km/s (1sigma C.L.), which when interpreted in terms of dFF gives dFF < 2x10^-5. Independent methods restrict the mu-variations at the level of dmm < 1x10^-7 at z = 0.7 (look-back time t_z0.7 = 6.4 Gyr). Assuming that temporal variations in mu, if any, are linear, this leads to an upper limit...

  19. Magnetic field control of the neutral and charged exciton fine structure in single quantum dashes emitting at 1.55 μm

    Energy Technology Data Exchange (ETDEWEB)

    Mrowiński, P.; Musiał, A.; Maryński, A.; Syperek, M.; Misiewicz, J.; Sęk, G. [Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, Wrocław (Poland); Somers, A. [Technische Physik, University of Würzburg and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Am Hubland, D-97074 Würzburg (Germany); Reithmaier, J. P. [Technische Physik, University of Würzburg and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Am Hubland, D-97074 Würzburg (Germany); Institute of Nanostructure Technologies and Analytics (INA), CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany); Höfling, S. [Technische Physik, University of Würzburg and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, KY16 9SS St. Andrews (United Kingdom)

    2015-02-02

    We investigated the neutral and charged exciton fine structure in single InAs/InGaAlAs/InP quantum dashes emitting at 1.55 μm using polarization-resolved microphotoluminescence in a magnetic field. Inverted spin configuration of horizontally [1–10] and vertically [110] polarized transitions has been observed. An in-plane magnetic field of up to 5 Tesla has been applied to tailor the fine structure, and eventually to reduce the splitting of the bright exciton states down to zero. This inverted structure has been observed for all the investigated excitons, making it a characteristic feature for this class of nanostructures with the largest splitting reduction of 170 μeV.

  20. Fine structure and ionization energy of the 1s2s2p 4P state of the helium negative ion He-.

    Science.gov (United States)

    Wang, Liming; Li, Chun; Yan, Zong-Chao; Drake, G W F

    2014-12-31

    The fine structure and ionization energy of the 1s2s2p (4)P state of the helium negative ion He(-) are calculated in Hylleraas coordinates, including relativistic and QED corrections up to O(α(4)mc(2)), O((μ/M)α(4)mc(2)), O(α(5)mc(2)), and O((μ/M)α(5)mc(2)). Higher order corrections are estimated for the ionization energy. A comparison is made with other calculations and experiments. We find that the present results for the fine structure splittings agree with experiment very well. However, the calculated ionization energy deviates from the experimental result by about 1 standard deviation. The estimated theoretical uncertainty in the ionization energy is much less than the experimental accuracy.