WorldWideScience

Sample records for fine-scale oscillatory banding

  1. Lunar banding in the scleractinian coral Montastraea faveolata: Fine-scale structure and influence of temperature

    Science.gov (United States)

    Winter, Amos; Sammarco, Paul W.

    2010-10-01

    Lunar cycles play an important role in controlling biological rhythms in many organisms, including hermatypic corals. Coral spawning is correlated with environmental factors, including surface seawater temperature (SST) and lunar phase. Calcium carbonate skeletons of corals possess minute structures that, when viewed via X-radiography, produce high-density (HD) annual banding patterns. Some corals possess dissepiments that serve as the microstructural base for upward corallite growth. Here we report the results of detailed structural analysis of the skeleton of Montastraea faveolata (Scleractinia) (Ellis and Solander, 1786) and quantify the number of dissepiments that occur between HD bands, including interannual and intercorallite variability. Using a 30 year database, spanning from 1961 to 1991, we confirm earlier speculation by several authors that the frequencies of these microbands within a year is tightly linked to the lunar cycle. We also demonstrate that the frequency distribution of the number of these dissepiments per year is skewed to lower numbers. Extensive statistical analyses of long-term daily SST records (University of Puerto Rico, Mayaguez) revealed that precipitation of dissepiments is suppressed in years of cooler-than-average seawater temperature. We propose that dissepiment deposition is driven primarily by lunar cycle and seawater temperature, particularly at lower temperatures, and banding is generally unaffected by normal or high temperatures. These fine-scale banding patterns are also strongly correlated with the number of lunar months between reproductive spawning events in average or warmer-than-average seawater temperature years. This microbanding may represent another proxy for high-resolution estimates of variance in marine palaeo-temperatures, particularly during cooler SST years.

  2. Fine-Scale Skeletal Banding Can Distinguish Symbiotic from Asymbiotic Species among Modern and Fossil Scleractinian Corals.

    Science.gov (United States)

    Frankowiak, Katarzyna; Kret, Sławomir; Mazur, Maciej; Meibom, Anders; Kitahara, Marcelo V; Stolarski, Jarosław

    2016-01-01

    Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators-none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from ~40 to ~90% in azooxanthellate corals and from ~5 to ~15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil coral

  3. Word class and context affect alpha-band oscillatory dynamics in an older population

    Directory of Open Access Journals (Sweden)

    Monika eMellem

    2012-04-01

    Full Text Available Differences in the oscillatory EEG dynamics of reading open class and closed class words have previously been found (Bastiaansen et al., 2005 and are thought to reflect differences in lexical-semantic content between these word classes. In particular, the theta band (4–7 Hz seems to play a prominent role in lexical-semantic retrieval. We tested whether this theta effect is robust in an older population of subjects. Additionally, we examined how the context of a word can modulate the oscillatory dynamics underlying retrieval for the two different classes of words. Older participants (mean age 55 read words presented in either syntactically-correct sentences or in a scrambled order (scrambled sentence while their EEG was recorded. We performed time-frequency analysis to examine how power varied based on the context or class of the word. We observed larger power decreases in the alpha (8–12Hz band between 200–700 ms for the open class compared to closed class words, but this was true only for the scrambled sentence context. We did not observe differences in theta power between these conditions. Context exerted an effect on the alpha and low beta (13–18 Hz bands between 0–700 ms. These results suggest that the previously observed word class effects on theta power changes in a younger participant sample do not seem to be a robust effect in this older population. Though this is an indirect comparison between studies, it may suggest the existence of aging effects on word retrieval dynamics for different populations. Additionally, the interaction between word class and context suggests that word retrieval mechanisms interact with sentence-level comprehension mechanisms in the alpha band.

  4. Sexual recombination in Colletotrichum lindemuthianum occurs on a fine scale.

    Science.gov (United States)

    Souza, E A; Camargo, O A; Pinto, J M A

    2010-09-08

    Glomerella cingulata f. sp phaseoli is the sexual phase of the fungus Colletotrichum lindemuthianum, the causal agent of common bean anthracnose. This fungus is of great concern, because it causes large economic losses in common bean crops. RAPD markers of five populations of G. cingulata f. sp phaseoli from two Brazilian states were analyzed to determine if this population possesses the sexual reproductive potential to generate the genetic variation that is observed in this phytopathogen. We identified 128 polymorphic bands, amplified by 28 random primers. The estimates of genetic similarity in this analysis ranged from 0.43 to 1.00, and the dendrogram generated from analysis of all genotypes displayed five principal groups, coinciding with the five populations. Genetic differentiation was observed between the populations (GST=0.6455); 69% of the overall observed genetic variation was between individual populations and 31% of the variance was within the sub-populations. We identified significant levels of linkage disequilibrium in all populations. However, the values of the disequilibrium ranged from low to moderate, indicating that this pathogen maintains a genetic structure consistent with sexual reproduction. The mean contribution of sexual reproduction was determined by comparison of the amplitudes of genetic similarity of isolates from sexual and asexual phases. These results support the hypothesis that recombination plays an important role in determining the amplitude of variability in this pathogen population and that this determination occurs on a fine scale.

  5. Fine-scale genetic characterization of Plasmodium falciparum ...

    Indian Academy of Sciences (India)

    Fine-scale genetic characterization of Plasmodium falciparum chromosome 7 encompassing the antigenic var and the drug-resistant pfcrt genes. RUCHI BAJAJ1, SUJATA MOHANTY2, A. P. DASH1 and APARUP DAS1, ∗. 1Evolutionary Genomics and Bioinformatics Laboratory, National Institute of Malaria Research,.

  6. Brain oscillatory activity during motor preparation: Effect of directional uncertainty on beta, but not alpha, frequency band

    Directory of Open Access Journals (Sweden)

    Charidimos eTzagarakis

    2015-07-01

    Full Text Available In time-constraint activities, such as sports, it is advantageous to be prepared to act even before knowing precisely what action will be needed. Here, we studied the relation between neural oscillations during motor preparation and amount of uncertainty about the direction of the upcoming target. Ten right-handed volunteers participated in a cued center-out task. A brief visual cue identified the region of space in which the target would appear. Three cue sizes were used to vary the amount of information about the direction of the upcoming target. The target appeared at a random location within the region indicated by the cue, and the participants moved a joystick-controlled cursor towards it. Time-frequency analyses showed phasic increases of power in low (delta/theta: 30 Hz frequency-bands in relation to the onset of visual stimuli and of the motor response. More importantly in regard to motor preparation, there was a tonic reduction of power in the alpha (8-12 Hz and beta (14-30 Hz bands during the period between cue presentation and target onset. During motor preparation, the main source of change of power of the alpha band was localized over the contralateral sensorimotor region and both parietal cortices, whereas for the beta-band the main source was the contralateral sensorimotor region. During cue presentation, the reduction of power of the alpha-band in the occipital lobe showed a brief differentiation of condition: the wider the visual cue, the more the power of the alpha-band decreased. However during motor preparation, only the power of the beta-band was dependent on directional uncertainty: the less the directional uncertainty, the more the power of the beta-band decreased. In conclusion, the results indicate that the power in the alpha-band is associated briefly with cue size, but is otherwise an undifferentiated indication of neural activation, whereas the power of the beta-band reflects the level of motor preparation.

  7. Fine-Scale Movements of the Broadnose Sevengill Shark and Its Main Prey, the Gummy Shark

    Science.gov (United States)

    Barnett, Adam; Abrantes, Kátya G.; Stevens, John D.; Bruce, Barry D.; Semmens, Jayson M.

    2010-01-01

    Information on the fine-scale movement of predators and their prey is important to interpret foraging behaviours and activity patterns. An understanding of these behaviours will help determine predator-prey relationships and their effects on community dynamics. For instance understanding a predator's movement behaviour may alter pre determined expectations of prey behaviour, as almost any aspect of the prey's decisions from foraging to mating can be influenced by the risk of predation. Acoustic telemetry was used to study the fine-scale movement patterns of the Broadnose Sevengill shark Notorynchus cepedianus and its main prey, the Gummy shark Mustelus antarcticus, in a coastal bay of southeast Tasmania. Notorynchus cepedianus displayed distinct diel differences in activity patterns. During the day they stayed close to the substrate (sea floor) and were frequently inactive. At night, however, their swimming behaviour continually oscillated through the water column from the substrate to near surface. In contrast, M. antarcticus remained close to the substrate for the entire diel cycle, and showed similar movement patterns for day and night. For both species, the possibility that movement is related to foraging behaviour is discussed. For M. antarcticus, movement may possibly be linked to a diet of predominantly slow benthic prey. On several occasions, N. cepedianus carried out a sequence of burst speed events (increased rates of movement) that could be related to chasing prey. All burst speed events during the day were across the substrate, while at night these occurred in the water column. Overall, diel differences in water column use, along with the presence of oscillatory behaviour and burst speed events suggest that N. cepedianus are nocturnal foragers, but may opportunistically attack prey they happen to encounter during the day. PMID:21151925

  8. A FRAMEWORK FOR FINE-SCALE COMPUTATIONAL FLUID DYNAMICS AIR QUALITY MODELING AND ANALYSIS

    Science.gov (United States)

    Fine-scale Computational Fluid Dynamics (CFD) simulation of pollutant concentrations within roadway and building microenvironments is feasible using high performance computing. Unlike currently used regulatory air quality models, fine-scale CFD simulations are able to account rig...

  9. A quantitative analysis of fine scale distribution of intertidal meiofauna in response to food resources

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Gauns, M.

    Fine scale vertical and spatial distribution of meiofauna in relation to food abundance was studied in the intertidal sediment at Dias Beach. The major abiotic factors showed significant changes and progressive fine scale decrease in vertical...

  10. Strategies for transforming fine scale knowledge to management usability.

    Science.gov (United States)

    Wirtz, K W

    2001-01-01

    Simulation tools used for management purposes should fulfill several conditions by being computationally fast, user-friendly, realistic, generic and reliable. These traits are often counteracting since they simultaneously demand for model complexity as well as simplicity. Here we develop a strategy to overcome this general problem of environmental modelling for management use. Major ingredients are model analysis and reduction as new core components of the modelling process. In detail, a set of combined methods is proposed. Within a large class of models the set allows for automatically exploring model behaviour and for aggregating fine scale process knowledge together with spatio temporal resolution. Applications to a huge aquatic European regional seas ecosystem model (ERSEM), a complex photosynthesis model (PGEN) as well as a simple diagenetic model are presented. The analysis and aggregation methods provide first steps towards a new generation of decision support tools able to cope with an increase in scientific knowledge as well as management demands.

  11. MODELLING FINE SCALE MOVEMENT CORRIDORS FOR THE TRICARINATE HILL TURTLE

    Directory of Open Access Journals (Sweden)

    I. Mondal

    2016-06-01

    Full Text Available Habitat loss and the destruction of habitat connectivity can lead to species extinction by isolation of population. Identifying important habitat corridors to enhance habitat connectivity is imperative for species conservation by preserving dispersal pattern to maintain genetic diversity. Circuit theory is a novel tool to model habitat connectivity as it considers habitat as an electronic circuit board and species movement as a certain amount of current moving around through different resistors in the circuit. Most studies involving circuit theory have been carried out at small scales on large ranging animals like wolves or pumas, and more recently on tigers. This calls for a study that tests circuit theory at a large scale to model micro-scale habitat connectivity. The present study on a small South-Asian geoemydid, the Tricarinate Hill-turtle (Melanochelys tricarinata, focuses on habitat connectivity at a very fine scale. The Tricarinate has a small body size (carapace length: 127–175 mm and home range (8000–15000 m2, with very specific habitat requirements and movement patterns. We used very high resolution Worldview satellite data and extensive field observations to derive a model of landscape permeability at 1 : 2,000 scale to suit the target species. Circuit theory was applied to model potential corridors between core habitat patches for the Tricarinate Hill-turtle. The modelled corridors were validated by extensive ground tracking data collected using thread spool technique and found to be functional. Therefore, circuit theory is a promising tool for accurately identifying corridors, to aid in habitat studies of small species.

  12. Modelling Fine Scale Movement Corridors for the Tricarinate Hill Turtle

    Science.gov (United States)

    Mondal, I.; Kumar, R. S.; Habib, B.; Talukdar, G.

    2016-06-01

    Habitat loss and the destruction of habitat connectivity can lead to species extinction by isolation of population. Identifying important habitat corridors to enhance habitat connectivity is imperative for species conservation by preserving dispersal pattern to maintain genetic diversity. Circuit theory is a novel tool to model habitat connectivity as it considers habitat as an electronic circuit board and species movement as a certain amount of current moving around through different resistors in the circuit. Most studies involving circuit theory have been carried out at small scales on large ranging animals like wolves or pumas, and more recently on tigers. This calls for a study that tests circuit theory at a large scale to model micro-scale habitat connectivity. The present study on a small South-Asian geoemydid, the Tricarinate Hill-turtle (Melanochelys tricarinata), focuses on habitat connectivity at a very fine scale. The Tricarinate has a small body size (carapace length: 127-175 mm) and home range (8000-15000 m2), with very specific habitat requirements and movement patterns. We used very high resolution Worldview satellite data and extensive field observations to derive a model of landscape permeability at 1 : 2,000 scale to suit the target species. Circuit theory was applied to model potential corridors between core habitat patches for the Tricarinate Hill-turtle. The modelled corridors were validated by extensive ground tracking data collected using thread spool technique and found to be functional. Therefore, circuit theory is a promising tool for accurately identifying corridors, to aid in habitat studies of small species.

  13. Image-Based Fine-Scale Infrastructure Monitoring

    Science.gov (United States)

    Detchev, Ivan Denislavov

    Monitoring the physical health of civil infrastructure systems is an important task that must be performed frequently in order to ensure their serviceability and sustainability. Additionally, laboratory experiments where individual system components are tested on the fine-scale level provide essential information during the structural design process. This type of inspection, i.e., measurements of deflections and/or cracks, has traditionally been performed with instrumentation that requires access to, or contact with, the structural element being tested; performs deformation measurements in only one dimension or direction; and/or provides no permanent visual record. To avoid the downsides of such instrumentation, this dissertation proposes a remote sensing approach based on a photogrammetric system capable of three-dimensional reconstruction. The proposed system is low-cost, consists of off-the-shelf components, and is capable of reconstructing objects or surfaces with homogeneous texture. The scientific contributions of this research work address the drawbacks in currently existing literature. Methods for in-situ multi-camera system calibration and system stability analysis are proposed in addition to methods for deflection/displacement monitoring, and crack detection and characterization in three dimensions. The mathematical model for the system calibration is based on a single or multiple reference camera(s) and built-in relative orientation constraints where the interior orientation and the mounting parameters for all cameras are explicitly estimated. The methods for system stability analysis can be used to comprehensively check for the cumulative impact of any changes in the system parameters. They also provide a quantitative measure of this impact on the reconstruction process in terms of image space units. Deflection/displacement monitoring of dynamic surfaces in three dimensions is achieved with the system by performing an innovative sinusoidal fitting

  14. Quantitative rainfall metrics for comparing volumetric rainfall retrievals to fine scale models

    Science.gov (United States)

    Collis, Scott; Tao, Wei-Kuo; Giangrande, Scott; Fridlind, Ann; Theisen, Adam; Jensen, Michael

    2013-04-01

    Precipitation processes play a significant role in the energy balance of convective systems for example, through latent heating and evaporative cooling. Heavy precipitation "cores" can also be a proxy for vigorous convection and vertical motions. However, comparisons between rainfall rate retrievals from volumetric remote sensors with forecast rain fields from high-resolution numerical weather prediction simulations are complicated by differences in the location and timing of storm morphological features. This presentation will outline a series of metrics for diagnosing the spatial variability and statistical properties of precipitation maps produced both from models and retrievals. We include existing metrics such as Contoured by Frequency Altitude Diagrams (Yuter and Houze 1995) and Statistical Coverage Products (May and Lane 2009) and propose new metrics based on morphology, cell and feature based statistics. Work presented focuses on observations from the ARM Southern Great Plains radar network consisting of three agile X-Band radar systems with a very dense coverage pattern and a C Band system providing site wide coverage. By combining multiple sensors resolutions of 250m2 can be achieved, allowing improved characterization of fine-scale features. Analyses compare data collected during the Midlattitude Continental Convective Clouds Experiment (MC3E) with simulations of observed systems using the NASA Unified Weather Research and Forecasting model. May, P. T., and T. P. Lane, 2009: A method for using weather radar data to test cloud resolving models. Meteorological Applications, 16, 425-425, doi:10.1002/met.150, 10.1002/met.150. Yuter, S. E., and R. A. Houze, 1995: Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part II: Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity. Mon. Wea. Rev., 123, 1941-1963, doi:10.1175/1520-0493(1995)1232.0.CO;2.

  15. A Global Analysis of Fine-Scale Wadati-Benioff Zone Seismicity

    Science.gov (United States)

    Waldhauser, F.; Schaff, D. P.

    2016-12-01

    We investigate the fine-scale seismicity structure of subducting slabs worldwide using high-precision earthquake locations computed from a global, cross-correlation-based double-difference analysis of the complete ISC bulletin data and waveforms archived at IRIS. Correlation statistics of the more than 30 regional and teleseismic phase types processed vary greatly between different subduction zones, as does the distribution of correlated earthquakes along the slabs. Most of the correlated phases along the Aleutian arc, one of our initial focus regions, are first arriving P- and S-waves and core phases, with rapidly decaying numbers of correlated later arriving phases. In comparison, the South American subduction zone shows similar numbers of correlations for most phase types. The distribution of correlated earthquakes in the Aleutian subduction zone extends along a band in the center of the seismogenic zone, suggesting that brittle failure near the up-dip and down-dip edges of the mega thrust is more complex. The distribution of correlated earthquakes in more complicated settings like the South American and Sumatra-Andaman subduction zones is modulated by changes in slab geometry and structure, consistent with focal mechanisms of larger event in these areas. The relocations typically image a narrower and more clearly defined Wadatai-Benioff zone (WBZ) compared to the ISC locations. They delineate the subduction interface and reveal detailed seismicity structures within both the subducting and the overriding plates. With relative location uncertainties of a few km or better we are able to resolve and study the internal structure and spatio-temporal characteristics of WBZ seismicity. The new data is able to resolve the narrow (data, using Slab1.0 as a global proxy for slab geometry. An initial global search for DSZs did not indicate that DSZs are a characteristic feature of all subduction zones.

  16. Spatial Downscaling of TRMM Precipitation Using Geostatistics and Fine Scale Environmental Variables

    Directory of Open Access Journals (Sweden)

    No-Wook Park

    2013-01-01

    Full Text Available A geostatistical downscaling scheme is presented and can generate fine scale precipitation information from coarse scale Tropical Rainfall Measuring Mission (TRMM data by incorporating auxiliary fine scale environmental variables. Within the geostatistical framework, the TRMM precipitation data are first decomposed into trend and residual components. Quantitative relationships between coarse scale TRMM data and environmental variables are then estimated via regression analysis and used to derive trend components at a fine scale. Next, the residual components, which are the differences between the trend components and the original TRMM data, are then downscaled at a target fine scale via area-to-point kriging. The trend and residual components are finally added to generate fine scale precipitation estimates. Stochastic simulation is also applied to the residual components in order to generate multiple alternative realizations and to compute uncertainty measures. From an experiment using a digital elevation model (DEM and normalized difference vegetation index (NDVI, the geostatistical downscaling scheme generated the downscaling results that reflected detailed characteristics with better predictive performance, when compared with downscaling without the environmental variables. Multiple realizations and uncertainty measures from simulation also provided useful information for interpretations and further environmental modeling.

  17. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates.

    Science.gov (United States)

    Kaneko, Takuya; Ye, Bing

    2015-09-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and postsynaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography.

  18. Genetic and evolutionary correlates of fine-scale recombination rate variation in Drosophila persimilis.

    Science.gov (United States)

    Stevison, Laurie S; Noor, Mohamed A F

    2010-12-01

    Recombination is fundamental to meiosis in many species and generates variation on which natural selection can act, yet fine-scale linkage maps are cumbersome to construct. We generated a fine-scale map of recombination rates across two major chromosomes in Drosophila persimilis using 181 SNP markers spanning two of five major chromosome arms. Using this map, we report significant fine-scale heterogeneity of local recombination rates. However, we also observed "recombinational neighborhoods," where adjacent intervals had similar recombination rates after excluding regions near the centromere and telomere. We further found significant positive associations of fine-scale recombination rate with repetitive element abundance and a 13-bp sequence motif known to associate with human recombination rates. We noted strong crossover interference extending 5-7 Mb from the initial crossover event. Further, we observed that fine-scale recombination rates in D. persimilis are strongly correlated with those obtained from a comparable study of its sister species, D. pseudoobscura. We documented a significant relationship between recombination rates and intron nucleotide sequence diversity within species, but no relationship between recombination rate and intron divergence between species. These results are consistent with selection models (hitchhiking and background selection) rather than mutagenic recombination models for explaining the relationship of recombination with nucleotide diversity within species. Finally, we found significant correlations between recombination rate and GC content, supporting both GC-biased gene conversion (BGC) models and selection-driven codon bias models. Overall, this genome-enabled map of fine-scale recombination rates allowed us to confirm findings of broader-scale studies and identify multiple novel features that merit further investigation.

  19. Clonal growth and fine-scale genetic structure in tanoak (Notholithocarpus densiflorus: Fagaceae)

    Science.gov (United States)

    Richard S. Dodd; Wasima Mayer; Alejandro Nettel; Zara. Afzal-Rafii

    2013-01-01

    The combination of sprouting and reproduction by seed can have important consequences on fine-scale spatial distribution of genetic structure (SGS). SGS is an important consideration for species’ restoration because it determines the minimum distance among seed trees to maximize genetic diversity while not prejudicing locally adapted genotypes. Local environmental...

  20. Measuring Fine-Scale White-Tailed Deer Movements and Environmental Influences Using GPS Collars

    Directory of Open Access Journals (Sweden)

    Stephen L. Webb

    2010-01-01

    Full Text Available Few studies have documented fine-scale movements of ungulate species, including white-tailed deer (Odocoileus virginianus, despite the advent of global positioning system (GPS technology incorporated into tracking devices. We collected fine-scale temporal location estimates (i.e., 15 min/relocation attempt from 17 female and 15 male white-tailed deer over 7 years and 3 seasons in Oklahoma, USA. Our objectives were to document fine-scale movements of females and males and determine effects of reproductive phase, moon phase, and short-term weather patterns on movements. Female and male movements were primarily crepuscular. Male total daily movements were 20% greater during rut (7,363m±364 than postrut (6,156m±260. Female daily movements were greatest during postparturition (3,357m±91, followed by parturition (2,902m±107, and preparturition (2,682m±121. We found moon phase had no effect on daily, nocturnal, and diurnal deer movements and fine-scale temporal weather conditions had an inconsistent influence on deer movement patterns within season. Our data suggest that hourly and daily variation in weather events have minimal impact on movements of white-tailed deer in southern latitudes. Instead, routine crepuscular movements, presumed to maximize thermoregulation and minimize predation risk, appear to be the most important factors influencing movements.

  1. Fine-scale habitat characteristics related to occupancy of the Yosemite Toad, Anaxyrus canorus

    Science.gov (United States)

    Christina T. Liang; Robert L. Grasso; Julie J. Nelson-Paul; Kim E. Vincent; Amy J. Lind

    2017-01-01

    Fine-scale habitat information can provide insight into species occupancy and persistence that is not apparent at the landscape-scale. Such information is particularly important for rare species that are experiencing population declines, such as the threatened Yosemite Toad (Anaxyrus canorus). Our study examined differences in physical...

  2. Measuring Fine-Scale White-Tailed Deer Movements and Environmental Influences Using GPS Collars

    International Nuclear Information System (INIS)

    Webb, S.L.; Strickland, B.K.; Demarais, S.; Webb, S.L.; Gee, K.L.; DeYoung, R.W.

    2010-01-01

    Few studies have documented fine-scale movements of ungulate species, including white-tailed deer (Odocoileus virginianus), despite the advent of global positioning system (GPS) technology incorporated into tracking devices. We collected fine-scale temporal location estimates (i.e., 15 min/relocation attempt) from 17 female and 15 male white-tailed deer over 7 years and 3 seasons in Oklahoma, USA. Our objectives were to document fine-scale movements of females and males and determine effects of reproductive phase, moon phase, and short-term weather patterns on movements. Female and male movements were primarily crepuscular. Male total daily movements were 20% greater during rut (7,363? 364) than postrut (6,156 m±260). Female daily movements were greatest during post parturition (3,357 91), followed by parturition (2,902 m±107), and pre parturition (2,682 m±121). We found moon phase had no effect on daily, nocturnal, and diurnal deer movements and fine-scale temporal weather conditions had an inconsistent influence on deer movement patterns within season. Our data suggest that hourly and daily variation in weather events have minimal impact on movements of white-tailed deer in southern latitudes. Instead, routine crepuscular movements, presumed to maximize thermoregulation and minimize predation risk, appear to be the most important factors influencing movements.

  3. Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus

    DEFF Research Database (Denmark)

    Meyer, Kerstin B; O'Reilly, Martin; Michailidou, Kyriaki

    2013-01-01

    The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of...

  4. Fine-scale spatial variability of different stages of pelagic fish eggs ...

    African Journals Online (AJOL)

    Stage-dependent spatial distributions of anchovy Engraulis encrasicolus, sardine Sardinops sagax and round herring Etrumeus whiteheadi eggs over the western Agulhas Bank South Africa were examined from samples collected at a fine-scale (1.8 km) resolution using a continuous underway fish egg sampler (CUFES).

  5. GeneRecon—A coalescent based tool for fine-scale association mapping

    DEFF Research Database (Denmark)

    Mailund, Thomas; Schierup, Mikkel Heide; Pedersen, Christian Nørgaard Storm

    2006-01-01

    GeneRecon is a tool for fine-scale association mapping using a coalescence model. GeneRecon takes as input case-control data from phased or unphased SNP and micro-satellite genotypes. The posterior distribution of disease locus position is obtained by Metropolis Hastings sampling in the state space...

  6. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M.G.; Ouedraogo, T.; Kumar, L.; Sanou, S.; Langevelde, F. van; Kiema, A.; Koppel, J. van de; Andel, J. van; Hearne, J.; Skidmore, A.K.; Ridder, N. de; Stroosnijder, L.; Prins, H.H.T.

    2002-01-01

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  7. 75 FR 60407 - Gulf of the Farallones National Marine Sanctuary Permit Application Project Titled: Fine Scale...

    Science.gov (United States)

    2010-09-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Gulf of the Farallones National Marine Sanctuary Permit Application Project Titled: Fine Scale, Long-Term Tracking of Adult White Sharks AGENCY: Office of National...

  8. Fine scale heterogeneity in the Earth's upper mantle - observation and interpretation

    DEFF Research Database (Denmark)

    Thybo, Hans

    2014-01-01

    can be correlated to main plate tectonic features, such as oceanic spreading centres, continental rift zones and subducting slabs. Much seismological mantle research is now concentrated on imaging fine scale heterogeneity, which may be detected and imaged with high-resolution seismic data with dense...

  9. Fine-Scale Population Estimation by 3D Reconstruction of Urban Residential Buildings

    Science.gov (United States)

    Wang, Shixin; Tian, Ye; Zhou, Yi; Liu, Wenliang; Lin, Chenxi

    2016-01-01

    Fine-scale population estimation is essential in emergency response and epidemiological applications as well as urban planning and management. However, representing populations in heterogeneous urban regions with a finer resolution is a challenge. This study aims to obtain fine-scale population distribution based on 3D reconstruction of urban residential buildings with morphological operations using optical high-resolution (HR) images from the Chinese No. 3 Resources Satellite (ZY-3). Specifically, the research area was first divided into three categories when dasymetric mapping was taken into consideration. The results demonstrate that the morphological building index (MBI) yielded better results than built-up presence index (PanTex) in building detection, and the morphological shadow index (MSI) outperformed color invariant indices (CIIT) in shadow extraction and height retrieval. Building extraction and height retrieval were then combined to reconstruct 3D models and to estimate population. Final results show that this approach is effective in fine-scale population estimation, with a mean relative error of 16.46% and an overall Relative Total Absolute Error (RATE) of 0.158. This study gives significant insights into fine-scale population estimation in complicated urban landscapes, when detailed 3D information of buildings is unavailable. PMID:27775670

  10. L-theanine and caffeine in combination affect human cognition as evidenced by oscillatory alpha-band activity and attention task performance.

    Science.gov (United States)

    Kelly, Simon P; Gomez-Ramirez, Manuel; Montesi, Jennifer L; Foxe, John J

    2008-08-01

    Recent neuropharmacological research has suggested that certain constituents of tea may have modulatory effects on brain state. The bulk of this research has focused on either L-theanine or caffeine ingested alone (mostly the latter) and has been limited to behavioral testing, subjective rating, or neurophysiological assessments during resting. Here, we investigated the effects of both L-theanine and caffeine, ingested separately or together, on behavioral and electrophysiological indices of tonic (background) and phasic (event-related) visuospatial attentional deployment. Subjects underwent 4 d of testing, ingesting either placebo, 100 mg of L-theanine, 50 mg of caffeine, or these treatments combined. The task involved cued shifts of attention to the left or right visual hemifield in anticipation of an imperative stimulus requiring discrimination. In addition to behavioral measures, we examined overall, tonic attentional focus as well as phasic, cue-dependent anticipatory attentional biasing, as indexed by scalp-recorded alpha-band (8-14 Hz) activity. We found an increase in hit rate and target discriminability (d') for the combined treatment relative to placebo, and an increase in d' but not hit rate for caffeine alone, whereas no effects were detected for L-theanine alone. Electrophysiological results did not show increased differential biasing in phasic alpha across hemifields but showed lower overall tonic alpha power in the combined treatment, similar to previous findings at a larger dosage of L-theanine alone. This may signify a more generalized tonic deployment of attentional resources to the visual modality and may underlie the facilitated behavioral performance on the combined ingestion of these 2 major constituents of tea.

  11. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius)

    DEFF Research Database (Denmark)

    Milano, I.; Babbucci, M.; Cariani, A.

    2014-01-01

    even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess largeand fine-scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European...... fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (FCT = 0.016) and weak differentiation within basins......, outlier loci revealed a dramatic divergence between Atlantic and Mediterranean populations (FCT range 0.275–0.705) and fine-scale significant population structure. Outlier loci separated North Sea and Northern Portugal populations from all other Atlantic samples and revealed a strong differentiation among...

  12. Fine-scale population structure and the era of next-generation sequencing

    OpenAIRE

    Henn, Brenna M.; Gravel, Simon; Moreno-Estrada, Andres; Acevedo-Acevedo, Suehelay; Bustamante, Carlos D.

    2010-01-01

    Fine-scale population structure characterizes most continents and is especially pronounced in non-cosmopolitan populations. Roughly half of the world's population remains non-cosmopolitan and even populations within cities often assort along ethnic and linguistic categories. Barriers to random mating can be ecologically extreme, such as the Sahara Desert, or cultural, such as the Indian caste system. In either case, subpopulations accumulate genetic differences if the barrier is maintained ov...

  13. Clonal diversity and fine-scale genetic structure in a high andean treeline population

    Czech Academy of Sciences Publication Activity Database

    Peng, Y.; Macek, P.; Macková, Jana; Romoleroux, K.; Hensen, I.

    2015-01-01

    Roč. 47, č. 1 (2015), s. 59-65 ISSN 0006-3606 Grant - others:GA AV ČR(CZ) IAA601110702; GA MŠk(CZ) LM2010009 Program:IA Institutional support: RVO:60077344 Keywords : AFLP * clonal diversity * clonal propagation * fine-scale genetic structure * Polylepis reticulata * treeline Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.944, year: 2015

  14. Inferring oscillatory modulation in neural spike trains.

    Science.gov (United States)

    Arai, Kensuke; Kass, Robert E

    2017-10-01

    Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak.

  15. Strobes: An oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  16. Strobes: An Oscillatory Combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; van Lingen, J.N.J.; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  17. Emergence of Oscillatory Dynamics

    DEFF Research Database (Denmark)

    Laugesen, Jakob Lund; Mosekilde, Erik

    2012-01-01

    Besides their systems nature, as described in the preceding chapters, the single most characteristic feature of a living organism is the self-sustained activity it displays in the form of a wide variety of different oscillatory processes [25, 9, 22, 23]. The respiratory cycle and the beating of t...

  18. Contrasting patterns of fine-scale herb layer species composition in temperate forests

    Science.gov (United States)

    Chudomelová, Markéta; Zelený, David; Li, Ching-Feng

    2017-04-01

    Although being well described at the landscape level, patterns in species composition of forest herb layer are rarely studied at smaller scales. Here, we examined fine-scale environmental determinants and spatial structures of herb layer communities in thermophilous oak- and hornbeam dominated forests of the south-eastern part of the Czech Republic. Species composition of herb layer vegetation and environmental variables were recorded within a fixed grid of 2 × 2 m subplots regularly distributed within 1-ha quadrate plots in three forest stands. For each site, environmental models best explaining species composition were constructed using constrained ordination analysis. Spatial eigenvector mapping was used to model and account for spatial structures in community variation. Mean Ellenberg indicator values calculated for each subplot were used for ecological interpretation of spatially structured residual variation. The amount of variation explained by environmental and spatial models as well as the selection of variables with the best explanatory power differed among sites. As an important environmental factor, relative elevation was common to all three sites, while pH and canopy openness were shared by two sites. Both environmental and community variation was mostly coarse-scaled, as was the spatially structured portion of residual variation. When corrected for bias due to spatial autocorrelation, those environmental factors with already weak explanatory power lost their significance. Only a weak evidence of possibly omitted environmental predictor was found for autocorrelated residuals of site models using mean Ellenberg indicator values. Community structure was determined by different factors at different sites. The relative importance of environmental filtering vs. spatial processes was also site specific, implying that results of fine-scale studies tend to be shaped by local conditions. Contrary to expectations based on other studies, overall dominance of

  19. Modelling Soil-Landscapes in Coastal California Hills Using Fine Scale Terrestrial Lidar

    Science.gov (United States)

    Prentice, S.; Bookhagen, B.; Kyriakidis, P. C.; Chadwick, O.

    2013-12-01

    Digital elevation models (DEMs) are the dominant input to spatially explicit digital soil mapping (DSM) efforts due to their increasing availability and the tight coupling between topography and soil variability. Accurate characterization of this coupling is dependent on DEM spatial resolution and soil sampling density, both of which may limit analyses. For example, DEM resolution may be too coarse to accurately reflect scale-dependent soil properties yet downscaling introduces artifactual uncertainty unrelated to deterministic or stochastic soil processes. We tackle these limitations through a DSM effort that couples moderately high density soil sampling with a very fine scale terrestrial lidar dataset (20 cm) implemented in a semiarid rolling hillslope domain where terrain variables change rapidly but smoothly over short distances. Our guiding hypothesis is that in this diffusion-dominated landscape, soil thickness is readily predicted by continuous terrain attributes coupled with catenary hillslope segmentation. We choose soil thickness as our keystone dependent variable for its geomorphic and hydrologic significance, and its tendency to be a primary input to synthetic ecosystem models. In defining catenary hillslope position we adapt a logical rule-set approach that parses common terrain derivatives of curvature and specific catchment area into discrete landform elements (LE). Variograms and curvature-area plots are used to distill domain-scale terrain thresholds from short range order noise characteristic of very fine-scale spatial data. The revealed spatial thresholds are used to condition LE rule-set inputs, rendering a catenary LE map that leverages the robustness of fine-scale terrain data to create a generalized interpretation of soil geomorphic domains. Preliminary regressions show that continuous terrain variables alone (curvature, specific catchment area) only partially explain soil thickness, and only in a subset of soils. For example, at spatial

  20. GeneRecon Users' Manual — A coalescent based tool for fine-scale association mapping

    DEFF Research Database (Denmark)

    Mailund, T

    2006-01-01

    GeneRecon is a software package for linkage disequilibrium mapping using coalescent theory. It is based on Bayesian Markov-chain Monte Carlo (MCMC) method for fine-scale linkage-disequilibrium gene mapping using high-density marker maps. GeneRecon explicitly models the genealogy of a sample...... of the case chromosomes in the vicinity of a disease locus. Given case and control data in the form of genotype or haplotype information, it estimates a number of parameters, most importantly, the disease position....

  1. Development of a remote sensing network for time-sensitive detection of fine scale damage to transportation infrastructure : [final report].

    Science.gov (United States)

    2015-09-23

    This research project aimed to develop a remote sensing system capable of rapidly identifying fine-scale damage to critical transportation infrastructure following hazard events. Such a system must be pre-planned for rapid deployment, automate proces...

  2. Three-dimensional fine-scale genetic structure of the neotropical epiphytic orchid, Laelia rubescens.

    Science.gov (United States)

    Trapnell, Dorset W; Hamrick, J L; Nason, John D

    2004-05-01

    Epiphytic plants occupy three-dimensional space, which allows more individuals to be closely clustered spatially than is possible for populations occupying two dimensions. The unique characteristics of epiphytes can act in concert to influence the fine-scale genetic structure of their populations which can, in turn, influence mating patterns and other population phenomena. Three large populations of Laelia rubescens (Orchidaceae) in the Costa Rican seasonal dry forest were sampled at two levels of intensity to determine: (i) whether individual clusters contain more than one genotype, and (ii) the spatial distribution and fine-scale genetic structure of genotypes within populations. Samples were assayed for their multilocus allozyme genotypes and spatial autocorrelation analyses were performed. High levels of genetic diversity, high genotypic diversity and low among-population variation were found. In the larger clusters, multiple genets per cluster were common with discrete clusters containing up to nine genotypes. Spatial autocorrelation analyses indicated significant positive genetic structure at distances of

  3. Complex fine-scale diffusion coating formed at low temperature on high-speed steel substrate

    Science.gov (United States)

    Chaus, A. S.; Pokorný, P.; Čaplovič, Ľ.; Sitkevich, M. V.; Peterka, J.

    2018-04-01

    A complex B-C-N diffusion coating was produced at 580 °C for 1 h on AISI M35 steel substrate and compared with a reference coating formed at 880 °C for 2.5 h. The surface and the cross-sections of the samples were subjected to detailed characterisation. The surface roughness, hardness, residual stresses and adhesion of the coatings were also evaluated together with cutting tests using drills on coated and uncoated samples while monitoring cutting force and torque. The surface of the steel treated at 580 °C revealed Fe2B, boron nitride and boron iron carbide, but FeB was noted to be absent. The 580 °C coating had the fine-scale microstructure, which resulted in the excellent adhesion and enhanced wear resistance, relative to reference samples that contained coarse borides. The results established that a complex fine-scale diffusion coating enhanced the wear resistance and reduces the cutting force and torque during drilling, thereby increasing the drill life by a factor of 2.2.

  4. Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons.

    Directory of Open Access Journals (Sweden)

    Hirokazu Toju

    Full Text Available Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community succession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi, our knowledge of the assembly processes of belowground fungi has been limited. In particular, we still have limited knowledge of how diverse functional groups of fungi interact with each other in facilitative and competitive ways in soil. Based on the high-throughput sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how taxonomically and functionally diverse fungi showed correlated fine-scale distributions in soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, networks depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter and A (surface soil horizons. The results then led to the working hypothesis that mycorrhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (modular networks of facilitative, antagonistic, and/or competitive interactions in belowground ecosystems. Overall, this study provides a research basis for further understanding how interspecific interactions, along with sharing of niches among fungi, drive the dynamics of poorly explored biospheres in soil.

  5. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir.

    Science.gov (United States)

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-09-23

    The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.

  6. Magnetic Signatures of Fine-scale Processes in the Ocean Surface Layer

    Science.gov (United States)

    Soloviev, A.; Dean, C.; Avera, W. E.

    2015-12-01

    Fine-scale processes in the upper ocean turbulent boundary layer may have a measurable electromagnetic signature. In order to study magnetic signatures of these fine-scale processes, we have applied a magnetohydrodynamic (MHD) model combining a 3D computational fluid dynamics model and electromagnetic block, based on ANSYS Fluent software. In addition, the hydrodynamic component of the MHD model is coupled with a radar imaging algorithm, which potentially provides a link to synthetic aperture radar (SAR) satellite imagery. Capabilities of this model have been demonstrated using a simulation and observation of an internal wave soliton in the Straits of Florida, observed with in situ instrumentation (ADCP mooring) and COSMO Sky Med (SAR) satellite image. We have applied this model to study magnetic signatures of surface waves, freshwater lenses, spatially coherent organized motions in the near-surface layer of the ocean (Langmuir circulation and ramp-like structures), and bio-turbulence induced by diel vertical migrations of zooplankton in some areas of the ocean. Investigation of electromagnetic signatures in upper ocean processes offers a valuable new prospect in air-sea interaction.

  7. Theory and data for simulating fine-scale human movement in an urban environment.

    Science.gov (United States)

    Perkins, T Alex; Garcia, Andres J; Paz-Soldán, Valerie A; Stoddard, Steven T; Reiner, Robert C; Vazquez-Prokopec, Gonzalo; Bisanzio, Donal; Morrison, Amy C; Halsey, Eric S; Kochel, Tadeusz J; Smith, David L; Kitron, Uriel; Scott, Thomas W; Tatem, Andrew J

    2014-10-06

    Individual-based models of infectious disease transmission depend on accurate quantification of fine-scale patterns of human movement. Existing models of movement either pertain to overly coarse scales, simulate some aspects of movement but not others, or were designed specifically for populations in developed countries. Here, we propose a generalizable framework for simulating the locations that an individual visits, time allocation across those locations, and population-level variation therein. As a case study, we fit alternative models for each of five aspects of movement (number, distance from home and types of locations visited; frequency and duration of visits) to interview data from 157 residents of the city of Iquitos, Peru. Comparison of alternative models showed that location type and distance from home were significant determinants of the locations that individuals visited and how much time they spent there. We also found that for most locations, residents of two neighbourhoods displayed indistinguishable preferences for visiting locations at various distances, despite differing distributions of locations around those neighbourhoods. Finally, simulated patterns of time allocation matched the interview data in a number of ways, suggesting that our framework constitutes a sound basis for simulating fine-scale movement and for investigating factors that influence it.

  8. Fine-scale population structure of blue whale wintering aggregations in the Gulf of California.

    Science.gov (United States)

    Costa-Urrutia, Paula; Sanvito, Simona; Victoria-Cota, Nelva; Enríquez-Paredes, Luis; Gendron, Diane

    2013-01-01

    Population differentiation in environments without well-defined geographical barriers represents a challenge for wildlife management. Based on a comprehensive database of individual sighting records (1988-2009) of blue whales from the winter/calving Gulf of California, we assessed the fine-scale genetic and spatial structure of the population using individual-based approaches. Skin samples of 187 individuals were analyzed for nine microsatellite loci. A single population with no divergence among years and months and no isolation by distance (Rxy = 0.1-0.001, p>0.05) were found. We ran two bayesian clustering methods using Structure and Geneland softwares in two different ways: 1) a general analysis including all individuals in which a single cluster was identified with both softwares; 2) a specific analysis of females only in which two main clusters (Loreto Bay and northern areas, and San Jose-La Paz Bay area) were revealed by Geneland program. This study provides information indicating that blue whales wintering in the Gulf of California are part of a single population unit and showed a fine-scale structure among females, possibly associated with their high site fidelity, particularly when attending calves. It is likely that the loss of genetic variation is minimized by male mediated gene flow, which may reduce the genetic drift effect. Opportunities for kin selection may also influence calf survival and, in consequence, have a positive impact on population demography in this small and endangered population.

  9. Fine-scale genetic response to landscape change in a gliding mammal.

    Directory of Open Access Journals (Sweden)

    Ross L Goldingay

    Full Text Available Understanding how populations respond to habitat loss is central to conserving biodiversity. Population genetic approaches enable the identification of the symptoms of population disruption in advance of population collapse. However, the spatio-temporal scales at which population disruption occurs are still too poorly known to effectively conserve biodiversity in the face of human-induced landscape change. We employed microsatellite analysis to examine genetic structure and diversity over small spatial (mostly 1-50 km and temporal scales (20-50 years in the squirrel glider (Petaurus norfolcensis, a gliding mammal that is commonly subjected to a loss of habitat connectivity. We identified genetically differentiated local populations over distances as little as 3 km and within 30 years of landscape change. Genetically isolated local populations experienced the loss of genetic diversity, and significantly increased mean relatedness, which suggests increased inbreeding. Where tree cover remained, genetic differentiation was less evident. This pattern was repeated in two landscapes located 750 km apart. These results lend support to other recent studies that suggest the loss of habitat connectivity can produce fine-scale population genetic change in a range of taxa. This gives rise to the prediction that many other vertebrates will experience similar genetic changes. Our results suggest the future collapse of local populations of this gliding mammal is likely unless habitat connectivity is maintained or restored. Landscape management must occur on a fine-scale to avert the erosion of biodiversity.

  10. Fine scale distribution constrains cadmium accumulation rates in two geographical groups of Franciscana dolphin from Argentina

    International Nuclear Information System (INIS)

    Polizzi, P.S.; Chiodi Boudet, L.N.; Romero, M.B.; Denuncio, P.E.; Rodríguez, D.H.

    2013-01-01

    Highlights: • Fine scale distribution of two Argentine stocks constrains the Cd accumulation rates. • Cadmium levels and accumulation patterns were different between geographic groups. • Marine diet has a major influence than the impact degree of origin environment. • Engraulis anchoita is the main Cd vector species in Argentine shelf for Franciscana. • Information is valuable for the conservation of Franciscana, a vulnerable species. -- Abstract: Franciscana dolphin is an endemic cetacean in the southwestern Atlantic Ocean and is classified as Vulnerable A3d by the International Union for Conservation of Nature. Cadmium accumulation was assessed in two geographic groups from Argentina; one inhabits the La Plata River estuary, a high anthropogenic impacted environment, and the other is distributed in marine coastal, with negligible pollution. Despite the environment, marine dolphins showed an increase of renal Cd concentrations since trophic independence; while in estuarine dolphins was from 6 years. This is associated with dietary Argentine anchovy which was absent in the diet of estuarine dolphins, being a trophic vector of cadmium in shelf waters of Argentina. Cluster analysis also showed high levels of cd in association with the presence of anchovy in the stomach. The difference in the fine scale distribution of species influences dietary exposure to Cd and, along with other data, indicates two stocks in Argentina

  11. Synchronization in oscillatory networks

    CERN Document Server

    Osipov, Grigory V; Zhou, Changsong

    2007-01-01

    The formation of collective behavior in large ensembles or networks of coupled oscillatory elements is one of the oldest and most fundamental aspects of dynamical systems theory. Potential and present applications span a vast spectrum of fields ranging from physics, chemistry, geoscience, through life- and neurosciences to engineering, the economic and the social sciences. This work systematically investigates a large number of oscillatory network configurations that are able to describe many real systems such as electric power grids, lasers or the heart muscle - to name but a few. This book is conceived as an introduction to the field for graduate students in physics and applied mathematics as well as being a compendium for researchers from any field of application interested in quantitative models.

  12. Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon

    Science.gov (United States)

    Brennan, Sean R.; Zimmerman, Christian E.; Fernandez, Diego P.; Cerling, Thure E.; McPhee, Megan V.; Wooller, Matthew J.

    2015-01-01

    Highly migratory organisms present major challenges to conservation efforts. This is especially true for exploited anadromous fish species, which exhibit long-range dispersals from natal sites, complex population structures, and extensive mixing of distinct populations during exploitation. By tracing the migratory histories of individual Chinook salmon caught in fisheries using strontium isotopes, we determined the relative production of natal habitats at fine spatial scales and different life histories. Although strontium isotopes have been widely used in provenance research, we present a new robust framework to simultaneously assess natal sources and migrations of individuals within fishery harvests through time. Our results pave the way for investigating how fine-scale habitat production and life histories of salmon respond to perturbations—providing crucial insights for conservation.

  13. Fine-scale habitat modeling of a top marine predator: do prey data improve predictive capacity?

    Science.gov (United States)

    Torres, Leigh G; Read, Andrew J; Halpin, Patrick

    2008-10-01

    Predators and prey assort themselves relative to each other, the availability of resources and refuges, and the temporal and spatial scale of their interaction. Predictive models of predator distributions often rely on these relationships by incorporating data on environmental variability and prey availability to determine predator habitat selection patterns. This approach to predictive modeling holds true in marine systems where observations of predators are logistically difficult, emphasizing the need for accurate models. In this paper, we ask whether including prey distribution data in fine-scale predictive models of bottlenose dolphin (Tursiops truncatus) habitat selection in Florida Bay, Florida, U.S.A., improves predictive capacity. Environmental characteristics are often used as predictor variables in habitat models of top marine predators with the assumption that they act as proxies of prey distribution. We examine the validity of this assumption by comparing the response of dolphin distribution and fish catch rates to the same environmental variables. Next, the predictive capacities of four models, with and without prey distribution data, are tested to determine whether dolphin habitat selection can be predicted without recourse to describing the distribution of their prey. The final analysis determines the accuracy of predictive maps of dolphin distribution produced by modeling areas of high fish catch based on significant environmental characteristics. We use spatial analysis and independent data sets to train and test the models. Our results indicate that, due to high habitat heterogeneity and the spatial variability of prey patches, fine-scale models of dolphin habitat selection in coastal habitats will be more successful if environmental variables are used as predictor variables of predator distributions rather than relying on prey data as explanatory variables. However, predictive modeling of prey distribution as the response variable based on

  14. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Science.gov (United States)

    Roffler, Gretchen H.; Talbot, Sandra L.; Luikart, Gordon; Sage, George K.; Pilgrim, Kristy L.; Adams, Layne G.; Schwartz, Michael K.

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.

  15. Fine-scale population genetic structure in a fission-fusion society.

    Science.gov (United States)

    Archie, Elizabeth A; Maldonado, Jésus E; Hollister-Smith, Julie A; Poole, Joyce H; Moss, Cynthia J; Fleischer, Robert C; Alberts, Susan C

    2008-06-01

    Nonrandom patterns of mating and dispersal create fine-scale genetic structure in natural populations - especially of social mammals - with important evolutionary and conservation genetic consequences. Such structure is well-characterized for typical mammalian societies; that is, societies where social group composition is stable, dispersal is male-biased, and males form permanent breeding associations in just one or a few social groups over the course of their lives. However, genetic structure is not well understood for social mammals that differ from this pattern, including elephants. In elephant societies, social groups fission and fuse, and males never form permanent breeding associations with female groups. Here, we combine 33 years of behavioural observations with genetic information for 545 African elephants (Loxodonta africana), to investigate how mating and dispersal behaviours structure genetic variation between social groups and across age classes. We found that, like most social mammals, female matrilocality in elephants creates co-ancestry within core social groups and significant genetic differentiation between groups (Phi(ST) = 0.058). However, unlike typical social mammals, male elephants do not bias reproduction towards a limited subset of social groups, and instead breed randomly across the population. As a result, reproductively dominant males mediate gene flow between core groups, which creates cohorts of similar-aged paternal relatives across the population. Because poaching tends to eliminate the oldest elephants from populations, illegal hunting and poaching are likely to erode fine-scale genetic structure. We discuss our results and their evolutionary and conservation genetic implications in the context of other social mammals.

  16. Fine-scale features on bioreplicated decoys of the emerald ash borer provide necessary visual verisimilitude

    Science.gov (United States)

    Domingue, Michael J.; Pulsifer, Drew P.; Narkhede, Mahesh S.; Engel, Leland G.; Martín-Palma, Raúl J.; Kumar, Jayant; Baker, Thomas C.; Lakhtakia, Akhlesh

    2014-03-01

    The emerald ash borer (EAB), Agrilus planipennis, is an invasive tree-killing pest in North America. Like other buprestid beetles, it has an iridescent coloring, produced by a periodically layered cuticle whose reflectance peaks at 540 nm wavelength. The males perform a visually mediated ritualistic mating flight directly onto females poised on sunlit leaves. We attempted to evoke this behavior using artificial visual decoys of three types. To fabricate decoys of the first type, a polymer sheet coated with a Bragg-stack reflector was loosely stamped by a bioreplicating die. For decoys of the second type, a polymer sheet coated with a Bragg-stack reflector was heavily stamped by the same die and then painted green. Every decoy of these two types had an underlying black absorber layer. Decoys of the third type were produced by a rapid prototyping machine and painted green. Fine-scale features were absent on the third type. Experiments were performed in an American ash forest infested with EAB, and a European oak forest home to a similar pest, the two-spotted oak borer (TSOB), Agrilus biguttatus. When pinned to leaves, dead EAB females, dead TSOB females, and bioreplicated decoys of both types often evoked the complete ritualized flight behavior. Males also initiated approaches to the rapidly prototyped decoy, but would divert elsewhere without making contact. The attraction of the bioreplicated decoys was also demonstrated by providing a high dc voltage across the decoys that stunned and killed approaching beetles. Thus, true bioreplication with fine-scale features is necessary to fully evoke ritualized visual responses in insects, and provides an opportunity for developing insecttrapping technologies.

  17. Two-Locus Likelihoods Under Variable Population Size and Fine-Scale Recombination Rate Estimation.

    Science.gov (United States)

    Kamm, John A; Spence, Jeffrey P; Chan, Jeffrey; Song, Yun S

    2016-07-01

    Two-locus sampling probabilities have played a central role in devising an efficient composite-likelihood method for estimating fine-scale recombination rates. Due to mathematical and computational challenges, these sampling probabilities are typically computed under the unrealistic assumption of a constant population size, and simulation studies have shown that resulting recombination rate estimates can be severely biased in certain cases of historical population size changes. To alleviate this problem, we develop here new methods to compute the sampling probability for variable population size functions that are piecewise constant. Our main theoretical result, implemented in a new software package called LDpop, is a novel formula for the sampling probability that can be evaluated by numerically exponentiating a large but sparse matrix. This formula can handle moderate sample sizes ([Formula: see text]) and demographic size histories with a large number of epochs ([Formula: see text]). In addition, LDpop implements an approximate formula for the sampling probability that is reasonably accurate and scales to hundreds in sample size ([Formula: see text]). Finally, LDpop includes an importance sampler for the posterior distribution of two-locus genealogies, based on a new result for the optimal proposal distribution in the variable-size setting. Using our methods, we study how a sharp population bottleneck followed by rapid growth affects the correlation between partially linked sites. Then, through an extensive simulation study, we show that accounting for population size changes under such a demographic model leads to substantial improvements in fine-scale recombination rate estimation. Copyright © 2016 by the Genetics Society of America.

  18. Fine-Scale Relief in the Amazon Drives Large Scale Ecohydrological Processes

    Science.gov (United States)

    Nobre, A. D.; Cuartas, A.; Hodnett, M.; Saleska, S. R.

    2014-12-01

    Access to soil water by roots is a key ecophysiological factor for plant productivity in natural systems. Periodically during dry seasons or critically during episodic climate droughts, shortage of water supply can reduce or severely impair plant life. At the other extreme persistent soil waterlogging will limit root respiration and restrict local establishment to adapted species, usually leading to stunted and less productive communities. Soil-water availability is therefore a very important climate variable controlling plant physiology and ecosystem dynamics. Terra-firme, the non-seasonally floodable terrain that covers 82% of the landscape in Amazonia,[1] supports the most massive part of the rainforest ecosystem. The availability of soil water data for terra-firme is scant and very coarse. This lack of data has hampered observational and modeling studies aiming to develop a large-scale integrative ecohydrological picture of Amazonia and its vulnerability to climate change. We have mapped the Amazon basin with a new terrain model developed in our group (HAND, Height Above the Nearest drainage[2]), delineating soil water environments using topographical data from the SRTM digital elevation model (250 m horizontal interpolated resolution). The preliminary results show that more than 50% of Terra-firme has the water table very close to the surface (up to 2 m deep), while the remainder of the upland landscape has variable degree of dependence on non-saturated soil (vadose layer). The mapping also shows extremely heterogeneous patterns of fine-scale relief across the basin, which implies complex ecohydrological regional forcing on the forest physiology. Ecoclimate studies should therefore take into account fine-scale relief and its implications for soil-water availability to plant processes. [1] Melack, J. M., & Hess, L. L. (2011). Remote sensing of the distribution and extent of wetlands in the Amazon basin. In W. J. Junk & M. Piedade (Eds.), Amazonian floodplain

  19. Oscillatory neural networks.

    Science.gov (United States)

    Selverston, A I; Moulins, M

    1985-01-01

    Despite the fact that a large number of neuronal oscillators have been described, there are only a few good examples that illustrate how they operate at the cellular level. For most, there is some isolated information about different aspects of the oscillator network, but too little to explain the whole mechanism. Two quite remarkable features do seem to be emerging from ongoing studies, however. One is that there are very few generalizable features common to neural oscillators. Many utilize reciprocal inhibitory circuits and endogenous burst-generating currents to some extent. All that have been well worked out utilize a combination of both cellular and network properties, but little else in the way of common mechanism is noteworthy. Perhaps the most interesting aspect of recent work is the ability of a particular oscillator to produce a large repertoire of different outputs. This is separate and in addition to changes occurring via phasic sensory feedback. It is in fact a radical functional "rewiring" of the network in response to neuromodulators. The CPG circuits represent only the most basic form of a given pattern. Finally, concerning the role of sensory feedback in generating oscillatory patterns, the concept of the CPG as a group of neurons able to produce oscillatory patterns without any sensory feedback is, in our opinion, still valid. There is no doubt that some oscillators may be quite weak when isolated, but they can still produce bursts with firing sequences similar to those seen in vivo. The fact that sensory feedback can both control and enhance the oscillations has never been in doubt. Similarly, entrainment of the pattern by sensory feedback does not mean that the receptor is part of the generator, only that it has access to it (as do command and coordinating fibers). The real question remains: Can a group of cells produce an oscillatory pattern without phasic sensory input? We must answer this affirmatively even for the insect-flight motor CPG

  20. Oscillatory Threshold Logic

    Science.gov (United States)

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory. PMID:23173034

  1. High Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    AC Bryan

    1996-01-01

    Full Text Available High frequency oscillatory (HFO ventilation using low tidal volume and peak airway pressures is extremely efficient at eliminating carbon dioxide and raising pH in the newborn infant with acute respiratory failure. Improvement in oxygenation requires a strategy of sustained or repetitive inflations to 25 to 30 cm H2O in order to place the lung on the deflation limb of the pressure-volume curve. This strategy has also been shown to decrease the amount of secondary lung injury in animal models. Experience of the use of HFO ventilation as a rescue therapy as well as several published controlled trials have shown improved outcomes and a decrease in the use of extracorporeal membrane oxygenation when it has been used in newborns.

  2. Mapping to Support Fine Scale Epidemiological Cholera Investigations: A Case Study of Spatial Video in Haiti

    Directory of Open Access Journals (Sweden)

    Andrew Curtis

    2016-02-01

    Full Text Available The cartographic challenge in many developing world environments suffering a high disease burden is a lack of granular environmental covariates suitable for modeling disease outcomes. As a result, epidemiological questions, such as how disease diffuses at intra urban scales are extremely difficult to answer. This paper presents a novel geospatial methodology, spatial video, which can be used to collect and map environmental covariates, while also supporting field epidemiology. An example of epidemic cholera in a coastal town of Haiti is used to illustrate the potential of this new method. Water risks from a 2012 spatial video collection are used to guide a 2014 survey, which concurrently included the collection of water samples, two of which resulted in positive lab results “of interest” (bacteriophage specific for clinical cholera strains to the current cholera situation. By overlaying sample sites on 2012 water risk maps, a further fifteen proposed water sample locations are suggested. These resulted in a third spatial video survey and an additional “of interest” positive water sample. A potential spatial connection between the “of interest” water samples is suggested. The paper concludes with how spatial video can be an integral part of future fine-scale epidemiological investigations for different pathogens.

  3. Limited Dispersal and Significant Fine - Scale Genetic Structure in a Tropical Montane Parrot Species.

    Directory of Open Access Journals (Sweden)

    Nadine Klauke

    Full Text Available Tropical montane ecosystems are biodiversity hotspots harbouring many endemics that are confined to specific habitat types within narrow altitudinal ranges. While deforestation put these ecosystems under threat, we still lack knowledge about how heterogeneous environments like the montane tropics promote population connectivity and persistence. We investigated the fine-scale genetic structure of the two largest subpopulations of the endangered El Oro parakeet (Pyrrhura orcesi endemic to the Ecuadorian Andes. Specifically, we assessed the genetic divergence between three sites separated by small geographic distances but characterized by a heterogeneous habitat structure. Although geographical distances between sites are small (3-17 km, we found genetic differentiation between all sites. Even though dispersal capacity is generally high in parrots, our findings indicate that dispersal is limited even on this small geographic scale. Individual genotype assignment revealed similar genetic divergence across a valley (~ 3 km distance compared to a continuous mountain range (~ 13 km distance. Our findings suggest that geographic barriers promote genetic divergence even on small spatial scales in this endangered endemic species. These results may have important implications for many other threatened and endemic species, particularly given the upslope shift of species predicted from climate change.

  4. The Irish DNA Atlas: Revealing Fine-Scale Population Structure and History within Ireland.

    Science.gov (United States)

    Gilbert, Edmund; O'Reilly, Seamus; Merrigan, Michael; McGettigan, Darren; Molloy, Anne M; Brody, Lawrence C; Bodmer, Walter; Hutnik, Katarzyna; Ennis, Sean; Lawson, Daniel J; Wilson, James F; Cavalleri, Gianpiero L

    2017-12-08

    The extent of population structure within Ireland is largely unknown, as is the impact of historical migrations. Here we illustrate fine-scale genetic structure across Ireland that follows geographic boundaries and present evidence of admixture events into Ireland. Utilising the 'Irish DNA Atlas', a cohort (n = 194) of Irish individuals with four generations of ancestry linked to specific regions in Ireland, in combination with 2,039 individuals from the Peoples of the British Isles dataset, we show that the Irish population can be divided in 10 distinct geographically stratified genetic clusters; seven of 'Gaelic' Irish ancestry, and three of shared Irish-British ancestry. In addition we observe a major genetic barrier to the north of Ireland in Ulster. Using a reference of 6,760 European individuals and two ancient Irish genomes, we demonstrate high levels of North-West French-like and West Norwegian-like ancestry within Ireland. We show that that our 'Gaelic' Irish clusters present homogenous levels of ancient Irish ancestries. We additionally detect admixture events that provide evidence of Norse-Viking gene flow into Ireland, and reflect the Ulster Plantations. Our work informs both on Irish history, as well as the study of Mendelian and complex disease genetics involving populations of Irish ancestry.

  5. Population density and sex do not influence fine-scale natal dispersal in roe deer

    Science.gov (United States)

    Gaillard, J.-M; Hewison, A.J.M; Kjellander, P; Pettorelli, N; Bonenfant, C; Van Moorter, B; Liberg, O; Andren, H; Van Laere, G; Klein, F; Angibault, J.-M; Coulon, A; Vanpé, C

    2008-01-01

    It is commonly assumed that the propensity to disperse and the dispersal distance of mammals should increase with increasing density and be greater among males than among females. However, most empirical evidence, especially on large mammals, has focused on highly polygynous and dimorphic species displaying female-defence mating tactics. We tested these predictions on roe deer, a weakly polygynous species of large herbivore exhibiting a resource-defence mating tactic at a fine spatial scale. Using three long-term studies of populations that were subject to the experimental manipulation of size, we did not find any support for either prediction, whether in terms of dispersal probability or dispersal distance. Our findings of similar dispersal patterns in both sexes of roe deer suggest that the underlying cause of natal dispersal is not related to inbreeding avoidance in this species. The absence of positive density dependence in fine-scale dispersal behaviour suggests that roe deer natal dispersal is a pre-saturation process that is shaped by heterogeneities in habitat quality rather than by density per se. PMID:18505718

  6. Revealing the fine-scale structure of the North Atlantic ITCZ using ICON and observations

    Science.gov (United States)

    Brueck, Matthias; Klocke, Daniel; Stevens, Bjorn

    2017-04-01

    The long standing question if the ITCZ is one elongated entity or a co-location of individual convective clusters is reviewed by exploring convection permitting simulations for the tropical Atlantic region (9000x3300 km) using the icosahedral non-hydrostatic (ICON) general circulation model with 2.5 km grid spacing. Deactivating the convection parameterization facilitates the explicit evolution of convection across horizontal scales, enabling rich interactions with their environment and neighboring convective cells. The emerging fine scale structure of the ITCZ allows to answer the questions: are precipitation and surface convergence aligned?; does the ITCZ have different characteristics in different regions?; and to what extent is the ITCZ defined by its disturbances? The analysis is supported using a wide range of observations and a segmentation method to identify individual convective objects. The convection permitting simulations offer the potential to make the "un-observable" visible, i.e. the internal structure of deep convective objects is usually hidden by cirrus anvils (looking from top) and by precipitation (looking from ground). Therefore, the question 'how high resolution simulations can bridge different observational perspectives' is explored.

  7. Restricted gene flow and fine-scale population structuring in tool using New Caledonian crows

    Science.gov (United States)

    Rutz, C.; Ryder, T. B.; Fleischer, R. C.

    2012-04-01

    New Caledonian crows Corvus moneduloides are the most prolific avian tool users. It has been suggested that some aspects of their complex tool use behaviour are under the influence of cultural processes, involving the social transmission—and perhaps even progressive refinement—of tool designs. Using microsatellite and mt-haplotype profiling of crows from three distinct habitats (dry forest, farmland and beachside habitat), we show that New Caledonian crow populations can exhibit significant fine-scale genetic structuring. Our finding that some sites of cultural isolation of crow groups. Restricted movement of birds between local populations at such small spatial scales, especially across habitat boundaries, illustrates how specific tool designs could be preserved over time, and how tool technologies of different crow groups could diverge due to drift and local selection pressures. Young New Caledonian crows have an unusually long juvenile dependency period, during which they acquire complex tool-related foraging skills. We suggest that the resulting delayed natal dispersal drives population-divergence patterns in this species. Our work provides essential context for future studies that examine the genetic makeup of crow populations across larger geographic areas, including localities with suspected cultural differences in crow tool technologies.

  8. Fine-Scale Human Population Structure in Southern Africa Reflects Ecogeographic Boundaries.

    Science.gov (United States)

    Uren, Caitlin; Kim, Minju; Martin, Alicia R; Bobo, Dean; Gignoux, Christopher R; van Helden, Paul D; Möller, Marlo; Hoal, Eileen G; Henn, Brenna M

    2016-09-01

    Recent genetic studies have established that the KhoeSan populations of southern Africa are distinct from all other African populations and have remained largely isolated during human prehistory until ∼2000 years ago. Dozens of different KhoeSan groups exist, belonging to three different language families, but very little is known about their population history. We examine new genome-wide polymorphism data and whole mitochondrial genomes for >100 South Africans from the ≠Khomani San and Nama populations of the Northern Cape, analyzed in conjunction with 19 additional southern African populations. Our analyses reveal fine-scale population structure in and around the Kalahari Desert. Surprisingly, this structure does not always correspond to linguistic or subsistence categories as previously suggested, but rather reflects the role of geographic barriers and the ecology of the greater Kalahari Basin. Regardless of subsistence strategy, the indigenous Khoe-speaking Nama pastoralists and the N|u-speaking ≠Khomani (formerly hunter-gatherers) share ancestry with other Khoe-speaking forager populations that form a rim around the Kalahari Desert. We reconstruct earlier migration patterns and estimate that the southern Kalahari populations were among the last to experience gene flow from Bantu speakers, ∼14 generations ago. We conclude that local adoption of pastoralism, at least by the Nama, appears to have been primarily a cultural process with limited genetic impact from eastern Africa. Copyright © 2016 by the Genetics Society of America.

  9. Fine scale microstructure in cast and aged duplex stainless steels investigated by small angle neutron scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Lin, J.S.; Spooner, S.

    1986-02-01

    Small angle neutron scattering (SANS) allows clustering phenomena to be studied in systems for which the constituent atoms do not differ greatly in atomic number. This investigation used SANS to characterize the fine scale microstructure in two cast and aged duplex stainless steels; aging times extended up to eight years. The steels differed in ferrite content by about a factor of two. The scattering at lowest q was dominated by magnetic scattering effects associated with the ferrite phase. In the range 0.025 less than or equal to q less than or equal to 0.2A -1 , additional scattering due to a precipitating phase rich in Ni and Si was observed. This scattering was rather intense and revealed a volume fraction of precipitate, in the ferrite, estimated to be 12 to 18% after long time aging. After about 70,000 hours at 400 0 C, there were about 10 18 precipitate particles per cm 3 some 50A in mean diameter, and they were distributed in a nonrandom manner, i.e., spatially, short-range-ordered. This investigation suggests that after aging some 70,000 hours at 400 0 C, the precipitate in the ferrite phase is undergoing Ostwald ripening. The present data are insufficient to indicate at what time this ripening process began

  10. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Héloïse Bastide

    2013-06-01

    Full Text Available Various approaches can be applied to uncover the genetic basis of natural phenotypic variation, each with their specific strengths and limitations. Here, we use a replicated genome-wide association approach (Pool-GWAS to fine-scale map genomic regions contributing to natural variation in female abdominal pigmentation in Drosophila melanogaster, a trait that is highly variable in natural populations and highly heritable in the laboratory. We examined abdominal pigmentation phenotypes in approximately 8000 female European D. melanogaster, isolating 1000 individuals with extreme phenotypes. We then used whole-genome Illumina sequencing to identify single nucleotide polymorphisms (SNPs segregating in our sample, and tested these for associations with pigmentation by contrasting allele frequencies between replicate pools of light and dark individuals. We identify two small regions near the pigmentation genes tan and bric-à-brac 1, both corresponding to known cis-regulatory regions, which contain SNPs showing significant associations with pigmentation variation. While the Pool-GWAS approach suffers some limitations, its cost advantage facilitates replication and it can be applied to any non-model system with an available reference genome.

  11. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster.

    Science.gov (United States)

    Bastide, Héloïse; Betancourt, Andrea; Nolte, Viola; Tobler, Raymond; Stöbe, Petra; Futschik, Andreas; Schlötterer, Christian

    2013-06-01

    Various approaches can be applied to uncover the genetic basis of natural phenotypic variation, each with their specific strengths and limitations. Here, we use a replicated genome-wide association approach (Pool-GWAS) to fine-scale map genomic regions contributing to natural variation in female abdominal pigmentation in Drosophila melanogaster, a trait that is highly variable in natural populations and highly heritable in the laboratory. We examined abdominal pigmentation phenotypes in approximately 8000 female European D. melanogaster, isolating 1000 individuals with extreme phenotypes. We then used whole-genome Illumina sequencing to identify single nucleotide polymorphisms (SNPs) segregating in our sample, and tested these for associations with pigmentation by contrasting allele frequencies between replicate pools of light and dark individuals. We identify two small regions near the pigmentation genes tan and bric-à-brac 1, both corresponding to known cis-regulatory regions, which contain SNPs showing significant associations with pigmentation variation. While the Pool-GWAS approach suffers some limitations, its cost advantage facilitates replication and it can be applied to any non-model system with an available reference genome.

  12. Fabrication of 3D fine scale PZT components by ink-jet prototyping process

    Science.gov (United States)

    Noguera, R.; Dossou-Yovo, C.; Lejeune, M.; Chartier, T.

    2005-09-01

    Different investigations have been carried out to optimize an ink-jet printing technique, devoted to the fabrication of 3D fine scale PZT parts, by adjustment of the fluid properties of the ceramic suspensions and by controlling the ejection and impact phenomena. A 10 vol% PZT loaded suspension characterized by a Newtonian behavior, corresponding to a viscosity of 10mPa.s and to a ratio Re/We1/2 of 5.98 has been selected. The ejection and impact phenomena strongly depend on the driving parameters of the printing head, in particular the formation of the droplet, with satellite or not, as well as its velocity and volume which are function of the pulse amplitude. Moreover, the conditions of ejection (droplet velocity and volume) control the characteristics of the deposit (definition, spreading, thickness uniformity). Sintered PZT pillar array has been achieved by ink-jet printing with a definition equal to 50μm. These structures could be very useful to improve the performances of 1-3 ceramic polymer composites for imaging probes or more generally for ultrasonic transducers and also of micro-deformable mirrors for optical adaptive systems.

  13. Agent Based Modeling: Fine-Scale Spatio-Temporal Analysis of Pertussis

    Science.gov (United States)

    Mills, D. A.

    2017-10-01

    In epidemiology, spatial and temporal variables are used to compute vaccination efficacy and effectiveness. The chosen resolution and scale of a spatial or spatio-temporal analysis will affect the results. When calculating vaccination efficacy, for example, a simple environment that offers various ideal outcomes is often modeled using coarse scale data aggregated on an annual basis. In contrast to the inadequacy of this aggregated method, this research uses agent based modeling of fine-scale neighborhood data centered around the interactions of infants in daycare and their families to demonstrate an accurate reflection of vaccination capabilities. Despite being able to prevent major symptoms, recent studies suggest that acellular Pertussis does not prevent the colonization and transmission of Bordetella Pertussis bacteria. After vaccination, a treated individual becomes a potential asymptomatic carrier of the Pertussis bacteria, rather than an immune individual. Agent based modeling enables the measurable depiction of asymptomatic carriers that are otherwise unaccounted for when calculating vaccination efficacy and effectiveness. Using empirical data from a Florida Pertussis outbreak case study, the results of this model demonstrate that asymptomatic carriers bias the calculated vaccination efficacy and reveal a need for reconsidering current methods that are widely used for calculating vaccination efficacy and effectiveness.

  14. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  15. Introducing close-range photogrammetry for characterizing forest understory plant diversity and surface fuel structure at fine scales

    Science.gov (United States)

    Benjamin C. Bright; E. Louise Loudermilk; Scott M. Pokswinski; Andrew T. Hudak; Joseph J. O' Brien

    2016-01-01

    Methods characterizing fine-scale fuels and plant diversity can advance understanding of plant-fire interactions across scales and help in efforts to monitor important ecosystems such as longleaf pine (Pinus palustris Mill.) forests of the southeastern United States. Here, we evaluate the utility of close-range photogrammetry for measuring fuels and plant...

  16. Polygamy and an absence of fine-scale structure in Dendroctonus ponderosae (Hopk.) (Coleoptera: Curcilionidae) confirmed using molecular markers.

    Science.gov (United States)

    Janes, J K; Roe, A D; Rice, A V; Gorrell, J C; Coltman, D W; Langor, D W; Sperling, F A H

    2016-01-01

    An understanding of mating systems and fine-scale spatial genetic structure is required to effectively manage forest pest species such as Dendroctonus ponderosae (mountain pine beetle). Here we used genome-wide single-nucleotide polymorphisms to assess the fine-scale genetic structure and mating system of D. ponderosae collected from a single stand in Alberta, Canada. Fine-scale spatial genetic structure was absent within the stand and the majority of genetic variation was best explained at the individual level. Relatedness estimates support previous reports of pre-emergence mating. Parentage assignment tests indicate that a polygamous mating system better explains the relationships among individuals within a gallery than the previously reported female monogamous/male polygynous system. Furthermore, there is some evidence to suggest that females may exploit the galleries of other females, at least under epidemic conditions. Our results suggest that current management models are likely to be effective across large geographic areas based on the absence of fine-scale genetic structure.

  17. Cultural transmission of tool use combined with habitat specializations leads to fine-scale genetic structure in bottlenose dolphins

    NARCIS (Netherlands)

    Kopps, Anna M.; Ackermann, Corinne Y.; Sherwin, William B.; Allen, Simon J.; Bejder, Lars; Kruetzen, Michael

    2014-01-01

    Socially learned behaviours leading to genetic population structure have rarely been described outside humans. Here, we provide evidence of fine-scale genetic structure that has probably arisen based on socially transmitted behaviours in bottlenose dolphins (Tursiops sp.) in western Shark Bay,

  18. Separation of transient and oscillatory cerebral activities using over-complete rational dilation wavelet transforms

    International Nuclear Information System (INIS)

    Chaibi, S.; Lajnef, T.; Samet, M.; Kachouri, A.

    2011-01-01

    Many natural signals EEG are comprised frequency overlapping of oscillatory and transient components. In our study the intracranial EEG signals of epilepsy are composed of the superposition of oscillatory signals (HFOs: High Frequency oscillations) and a transient signals (spikes and sharp waves, etc.). The oscillatory components (HFOs) exist in the frequency band 80-500Hz. The transient components comes from nonrhythmic brain activities (spikes, sharp waves and vertex waves of varying amplitude, shape and duration) and cover a continuous wide bandwidth from low to high frequencies and resemble an HFOs events when filtered using a band pass classical filter. The classical filtering methods based on FIR filters, Wavelet transforms and the Matching Pursuit cannot separate the oscillatory from transient activities. This paper describes an approach for decomposing an iEEG signals of epilepsy into the sum of oscillatory components and a transient components based on overcomplete rational dilation wavelet transforms (overcomplete RADWT) in conjunction with morphological component analysis (MCA).

  19. Ultra-Fine Scale Spatially-Integrated Mapping of Habitat and Occupancy Using Structure-From-Motion.

    Directory of Open Access Journals (Sweden)

    Philip McDowall

    Full Text Available Organisms respond to and often simultaneously modify their environment. While these interactions are apparent at the landscape extent, the driving mechanisms often occur at very fine spatial scales. Structure-from-Motion (SfM, a computer vision technique, allows the simultaneous mapping of organisms and fine scale habitat, and will greatly improve our understanding of habitat suitability, ecophysiology, and the bi-directional relationship between geomorphology and habitat use. SfM can be used to create high-resolution (centimeter-scale three-dimensional (3D habitat models at low cost. These models can capture the abiotic conditions formed by terrain and simultaneously record the position of individual organisms within that terrain. While coloniality is common in seabird species, we have a poor understanding of the extent to which dense breeding aggregations are driven by fine-scale active aggregation or limited suitable habitat. We demonstrate the use of SfM for fine-scale habitat suitability by reconstructing the locations of nests in a gentoo penguin colony and fitting models that explicitly account for conspecific attraction. The resulting digital elevation models (DEMs are used as covariates in an inhomogeneous hybrid point process model. We find that gentoo penguin nest site selection is a function of the topography of the landscape, but that nests are far more aggregated than would be expected based on terrain alone, suggesting a strong role of behavioral aggregation in driving coloniality in this species. This integrated mapping of organisms and fine scale habitat will greatly improve our understanding of fine-scale habitat suitability, ecophysiology, and the complex bi-directional relationship between geomorphology and habitat use.

  20. Seed gene flow and fine-scale structure in a Mediterranean pine ( Pinus pinaster Ait.) using nuclear microsatellite markers.

    Science.gov (United States)

    González-Martínez, C.; Gerber, S.; Cervera, T.; Martínez-Zapater, M.; Gil, L.; Alía, R.

    2002-06-01

    The Mediterranean populations of maritime pine ( Pinus pinaster Ait.) are typically small and have a scattered distribution, being threatened by human activities and forest fires. In the framework of the genetic-resources conservation program of this species, a native multi-age stand located in a Mediterranean area (central Spain) was studied using three highly polymorphic nuclear microsatellites (SSRs). Spatial autocorrelation analysis was conducted using Moran's index in order to detect fine-scale structure in both natural regeneration and mature trees. The spatial pattern of seed flow based on dispersed progeny was studied using a highly reliable subset of parent-offspring matches obtained by means of parentage analysis and simulation-based calculation of statistical confidence. Maritime pine showed a fine-scale structure at the seedling stage. In natural regeneration, the autocorrelograms indicated a patch size of approximately 10 m. The fine-scale structure seems to be produced by a restricted seed gene flow. In fact, there was an excess of parent-offspring matches in a radius of 15 m from the parent trees. Pines with a heavy seed, such as P. pinaster, are expected to have a short dispersal distance, thus producing a fine-scale structure. However, the fine-scale structure did not persist in the mature trees. Within-population genetic structure in Mediterranean pines may be affected by a number of post-dispersal events (e.g. mortality due to the severity of the Mediterranean climate and animal-mediated secondary dispersal during the summer period). Thus, great alteration in the pattern produced by the initial seed rain and differences in genetic structure between tree cohorts are expected.

  1. A standard cytogenetic map of Culex quinquefasciatus polytene chromosomes in application for fine-scale physical mapping.

    Science.gov (United States)

    Unger, Maria F; Sharakhova, Maria V; Harshbarger, Adam J; Glass, Patrick; Collins, Frank H

    2015-06-06

    Southern house mosquito Culex quinquefasciatus belongs to the C. pipiens cryptic species complex, with global distribution and unclear taxonomy. Mosquitoes of the complex can transmit human and animal pathogens, such as filarial worm, West Nile virus and avian malarial Plasmodium. Physical gene mapping is crucial to understanding genome organization, function, and systematic relationships of cryptic species, and is a basis for developing new vector control strategies. However, physical mapping was not established previously for Culex due to the lack of well-structured polytene chromosomes. Inbreeding was used to diminish inversion polymorphism and asynapsis of chromosomal homologs. Identification of larvae of the same developmental stage using the shape of imaginal discs allowed achievement of uniformity in chromosomal banding pattern. This together with high-resolution phase-contrast photography enabled the development of a cytogenetic map. Fluorescent in situ hybridization was used for gene mapping. A detailed cytogenetic map of C. quinquefasciatus polytene chromosomes was produced. Landmarks for chromosome recognition and cytological boundaries for two inversions were identified. Locations of 23 genes belonging to 16 genomic supercontigs, and 2 cDNA were established. Six supercontigs were oriented and one was found putatively misassembled. The cytogenetic map was linked to the previously developed genetic linkage groups by corresponding positions of 2 genetic markers and 10 supercontigs carrying genetic markers. Polytene chromosomes were numbered according to the genetic linkage groups. This study developed a new standard cytogenetic photomap of the polytene chromosomes for C. quinquefasciatus and was applied for the fine-scale physical mapping. It allowed us to infer chromosomal position of 1333 of annotated genes belonging to 16 genomic supercontigs and find orientation of 6 of these supercontigs; the new cytogenetic and previously developed genetic linkage

  2. Oscillatory dependence of tunneling conductance on the barrier thickness

    Science.gov (United States)

    Lee, B. C.

    2017-11-01

    Oscillatory dependence of tunneling conductance on the barrier thickness is investigated theoretically for the metal/insulator/metal junctions. The tunneling transmission is expressed with the reflection and the transmission amplitudes of each separated metal/insulator interface and the wavevectors inside the barrier. An analytical formula is obtained for the tunneling conductance. The oscillatory behavior of the tunneling conductance is possible with the complex band structure of the insulator. The oscillation period is determined not directly from the real part of the complex wavevector in the insulator, but from the extremal complex spanning vector of the complex Fermi surface of the insulator.

  3. Fine-scale genetic structure of Triatoma infestans in the Argentine Chaco.

    Science.gov (United States)

    Piccinali, Romina Valeria; Gürtler, Ricardo Esteban

    2015-08-01

    The patterns of genetic structure in natural populations provide essential information for the improvement of pest management strategies including those targeting arthropod vectors of human diseases. We analyzed the patterns of fine-scale genetic structure in Triatoma infestans in a well-defined rural area close to Pampa del Indio, in the Argentine Arid-Humid Chaco transition, where a longitudinal study on house infestation and wing geometric morphometry is being conducted since 2007. A total of 228 insects collected in 16 domestic and peridomestic sites from two rural communities was genotyped for 10 microsatellite loci and analyzed. We did not find departures from Hardy-Weinberg expectations in collection sites, with three exceptions probably due to null alleles and substructuring. Domestic sites were more variable than peridomestic sites suggesting the presence of older bug populations in domestic sites or higher effective population sizes. Significant genetic structure was detected using F-statistics, a discriminant analysis of principal components and Bayesian clustering algorithms in an area of only 6.32 km(2). Microsatellite markers detected population structuring at a finer geographic scale (180-6300 m) than a previous study based on wing geometric morphometry (>4000 m). The spatial distribution of genetic variability was more properly explained by a hierarchical island than by an isolation-by-distance model. This study illustrates that, despite more than a decade without vector control interventions enhancing differentiation, genetic structure can be detected in T. infestans populations, particularly applying spatial information. This supports the potential of genetic studies to provide key information for hypothesis testing of the origins of house reinfestation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Are patterns of fine-scale spatial genetic structure consistent between sites within tropical tree species?

    Science.gov (United States)

    Smith, James R; Ghazoul, Jaboury; Burslem, David F R P; Itoh, Akira; Khoo, Eyen; Lee, Soon Leong; Maycock, Colin R; Nanami, Satoshi; Ng, Kevin Kit Siong; Kettle, Chris J

    2018-01-01

    Documenting the scale and intensity of fine-scale spatial genetic structure (FSGS), and the processes that shape it, is relevant to the sustainable management of genetic resources in timber tree species, particularly where logging or fragmentation might disrupt gene flow. In this study we assessed patterns of FSGS in three species of Dipterocarpaceae (Parashorea tomentella, Shorea leprosula and Shorea parvifolia) across four different tropical rain forests in Malaysia using nuclear microsatellite markers. Topographic heterogeneity varied across the sites. We hypothesised that forests with high topographic heterogeneity would display increased FSGS among the adult populations driven by habitat associations. This hypothesis was not supported for S. leprosula and S. parvifolia which displayed little variation in the intensity and scale of FSGS between sites despite substantial variation in topographic heterogeneity. Conversely, the intensity of FSGS for P. tomentella was greater at a more topographically heterogeneous than a homogeneous site, and a significant difference in the overall pattern of FSGS was detected between sites for this species. These results suggest that local patterns of FSGS may in some species be shaped by habitat heterogeneity in addition to limited gene flow by pollen and seed dispersal. Site factors can therefore contribute to the development of FSGS. Confirming consistency in species' FSGS amongst sites is an important step in managing timber tree genetic diversity as it provides confidence that species specific management recommendations based on species reproductive traits can be applied across a species' range. Forest managers should take into account the interaction between reproductive traits and site characteristics, its consequences for maintaining forest genetic resources and how this might influence natural regeneration across species if management is to be sustainable.

  5. Predicting fine-scale distributions of peripheral aquatic species in headwater streams

    Science.gov (United States)

    DeRolph, Christopher R.; Nelson, S.; Kwak, Thomas J.; Hain, Ernie F.

    2015-01-01

    Headwater species and peripheral populations that occupy habitat at the edge of a species range may hold an increased conservation value to managers due to their potential to maximize intraspecies diversity and species' adaptive capabilities in the context of rapid environmental change. The southern Appalachian Mountains are the southern extent of the geographic range of native Salvelinus fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern North America. We predicted distributions of these peripheral, headwater wild trout populations at a fine scale to serve as a planning and management tool for resource managers to maximize resistance and resilience of these populations in the face of anthropogenic stressors. We developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated to capture a more consistent representation of headwater streams. Each of the final models had four significant metrics in common: stream order, fragmentation, precipitation, and land cover. Strahler stream order was found to be the most influential variable in two of the three final models and the second most influential variable in the other model. Greater than 70% presence accuracy was achieved for all three models. The underrepresentation of headwater streams in commonly used hydrography datasets is an important consideration that warrants close examination when forecasting headwater species distributions and range estimates. Additionally, it appears that a relative watershed position metric (e.g., stream order) is an important surrogate variable (even when elevation is included) for biotic interactions across the landscape in areas where headwater species distributions are influenced by topographical gradients.

  6. Fine-scale tracking of marine turtles using GPS-Argos PTTs.

    Science.gov (United States)

    Yasuda, Tohya; Arai, Nobuaki

    2005-05-01

    High-accuracy location data of wildlife telemetry using conventional satellite location systems are difficult to obtain. However, such data are necessary to clarify the nature of movements and home range sizes of animals. In order to measure the high-accuracy location data, we developed new GPS-Argos Platform Terminal Transmitters (PTTs) which transmit both the conventional location and GPS location simultaneously. Two experiments, one in an artificial rearing pond and the other in the open sea, were performed. First, two hawksbill turtles were tracked with the PTTs in a 5 ha breeding pond in Thailand. Their home ranges using both data were calculated and found to be 2.96 ha and 0.93 ha by the GPS data, and 156,740 ha and 184,478 ha by a conventional data. Secondly, a female green turtle attached with the GPS-Argos was released from the coast of Pangnga Province, Thailand. There was a relationship between depth and speed of travel based on the GPS data. The data from the PTT showed that the turtle moved south along the coastline at the depth of less than 20 m for 5 days, and then stayed at a depth of less than 10 m for 4 days. However, we could not find any clear relationship using conventional data. Only a meandering movement at a variety of depths was observed. The results of the two experiments indicated the PTTs have an enormous potential for enhancing our understanding of fine-scale movement patterns and home ranges of marine turtles.

  7. Regulation of the demographic structure in isomorphic biphasic life cycles at the spatial fine scale.

    Directory of Open Access Journals (Sweden)

    Vasco Manuel Nobre de Carvalho da Silva Vieira

    Full Text Available Isomorphic biphasic algal life cycles often occur in the environment at ploidy abundance ratios (Haploid:Diploid different from 1. Its spatial variability occurs within populations related to intertidal height and hydrodynamic stress, possibly reflecting the niche partitioning driven by their diverging adaptation to the environment argued necessary for their prevalence (evolutionary stability. Demographic models based in matrix algebra were developed to investigate which vital rates may efficiently generate an H:D variability at a fine spatial resolution. It was also taken into account time variation and type of life strategy. Ploidy dissimilarities in fecundity rates set an H:D spatial structure miss-fitting the ploidy fitness ratio. The same happened with ploidy dissimilarities in ramet growth whenever reproductive output dominated the population demography. Only through ploidy dissimilarities in looping rates (stasis, breakage and clonal growth did the life cycle respond to a spatially heterogeneous environment efficiently creating a niche partition. Marginal locations were more sensitive than central locations. Related results have been obtained experimentally and numerically for widely different life cycles from the plant and animal kingdoms. Spore dispersal smoothed the effects of ploidy dissimilarities in fertility and enhanced the effects of ploidy dissimilarities looping rates. Ploidy dissimilarities in spore dispersal could also create the necessary niche partition, both over the space and time dimensions, even in spatial homogeneous environments and without the need for conditional differentiation of the ramets. Fine scale spatial variability may be the key for the prevalence of isomorphic biphasic life cycles, which has been neglected so far.

  8. Environmental effects on fine-scale spatial genetic structure in four Alpine keystone forest tree species.

    Science.gov (United States)

    Mosca, Elena; Di Pierro, Erica A; Budde, Katharina B; Neale, David B; González-Martínez, Santiago C

    2018-02-01

    Genetic responses to environmental changes take place at different spatial scales. While the effect of environment on the distribution of species' genetic diversity at large geographical scales has been the focus of several recent studies, its potential effects on genetic structure at local scales are understudied. Environmental effects on fine-scale spatial genetic structure (FSGS) were investigated in four Alpine conifer species (five to eight populations per species) from the eastern Italian Alps. Significant FSGS was found for 11 of 25 populations. Interestingly, we found no significant differences in FSGS across species but great variation among populations within species, highlighting the importance of local environmental factors. Interannual variability in spring temperature had a small but significant effect on FSGS of Larix decidua, probably related to species-specific life history traits. For Abies alba, Picea abies and Pinus cembra, linear models identified spring precipitation as a potentially relevant climate factor associated with differences in FSGS across populations; however, models had low explanatory power and were strongly influenced by a P. cembra outlier population from a very dry site. Overall, the direction of the identified effects is according to expectations, with drier and more variable environments increasing FSGS. Underlying mechanisms may include climate-related changes in the variance of reproductive success and/or environmental selection of specific families. This study provides new insights on potential changes in local genetic structure of four Alpine conifers in the face of environmental changes, suggesting that new climates, through altering FSGS, may also have relevant impacts on plant microevolution. © 2017 John Wiley & Sons Ltd.

  9. Fine Scale ANUClimate Data for Ecosystem Modeling and Assessment of Plant Functional Types

    Science.gov (United States)

    Hutchinson, M. F.; Kesteven, J. L.; Xu, T.; Evans, B. J.; Togashi, H. F.; Stein, J. L.

    2015-12-01

    High resolution spatially extended values of climate variables play a central role in the assessment of climate and projected future climate in ecosystem modeling. The ground based meteorological network remains a key resource for deriving these spatially extended climate variables. We report on the production, and applications, of new anomaly based fine scale spatial interpolations of key climate variables at daily and monthly time scale, across the Australian continent. The methods incorporate several innovations that have significantly improved spatial predictive accuracy, as well as providing a platform for the incorporation of additional remotely sensed data. The interpolated climate data are supporting many continent-wide ecosystem modeling applications and are playing a key role in testing optimality hypotheses associated with plant functional types (PFTs). The accuracy, and robustness to data error, of anomaly-based interpolation has been enhanced by incorporating physical process aspects of the different climate variables and employing robust statistical methods implemented in the ANUSPLIN package. New regression procedures have also been developed to estimate "background" monthly climate normals from all stations with minimal records to substantially increase the density of supporting spatial networks. Monthly mean temperature interpolation has been enhanced by incorporating process based coastal effects that have reduced predictive error by around 10%. Overall errors in interpolated monthly temperature fields are around 25% less than errors reported by an earlier study. For monthly and daily precipitation, a new anomaly structure has been devised to take account of the skewness in precipitation data and the large proportion of zero values that present significant challenges to standard interpolation methods. The many applications include continent-wide Gross Primary Production modeling and assessing constraints on light and water use efficiency derived

  10. The wildland fuel cell concept: an approach to characterize fine-scale variation in fuels and fire in frequently burned longleaf pine forests

    Science.gov (United States)

    J. Kevin Hiers; Joseph J. O’Brien; R. J. Mitchell; John M. Grego; E. Louise Loudermilk

    2009-01-01

    In ecosystems with frequent surface fire regimes, fire and fuel heterogeneity has been largely overlookedowing to the lack of unburned patches and the difficulty in measuring fire behavior at fine scales (0.1–10 m). The diversevegetation in these ecosystems varies at these fine scales. This diversity could be...

  11. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA

    Science.gov (United States)

    Roger D. Ottmar; John I. Blake; William T. Crolly

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuel beds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for...

  12. Encapsulation Efficiency, Oscillatory Rheometry

    Directory of Open Access Journals (Sweden)

    Z. Mohammad Hassani

    2014-01-01

    Full Text Available Nanoliposomes are one of the most important polar lipid-based nanocarriers which can be used for encapsulation of both hydrophilic and hydrophobic active compounds. In this research, nanoliposomes based on lecithin-polyethylene glycol-gamma oryzanol were prepared by using a modified thermal method. Only one melting peak in DSC curve of gamma oryzanol bearing liposomes was observed which could be attributed to co-crystallization of both compounds. The addition of gamma oryzanol, caused to reduce the melting point of 5% (w/v lecithin-based liposome from 207°C to 163.2°C. At high level of lecithin, increasing of liposome particle size (storage at 4°C for two months was more obvious and particle size increased from 61 and 113 to 283 and 384 nanometers, respectively. The encapsulation efficiency of gamma oryzanol increased from 60% to 84.3% with increasing lecithin content. The encapsulation stability of oryzanol in liposome was determined at different concentrations of lecithin 3, 5, 10, 20% (w/v and different storage times (1, 7, 30 and 60 days. In all concentrations, the encapsulation stability slightly decreased during 30 days storage. The scanning electron microscopy (SEM images showed relatively spherical to elliptic particles which indicated to low extent of particles coalescence. The oscillatory rheometry showed that the loss modulus of liposomes were higher than storage modulus and more liquid-like behavior than solid-like behavior. The samples storage at 25°C for one month, showed higher viscoelastic parameters than those having been stored at 4°C which were attributed to higher membrane fluidity at 25°C and their final coalescence.Nanoliposomes are one of the most important polar lipid based nanocarriers which can be used for encapsulation of both hydrophilic and hydrophobic active compounds. In this research, nanoliposomes based on lecithin-polyethylene glycol-gamma oryzanol were prepared by using modified thermal method. Only one

  13. Fine-scale temporal recovery, reconstruction and evolution of a post-supereruption magmatic system

    Science.gov (United States)

    Barker, Simon J.; Wilson, Colin J. N.; Allan, Aidan S. R.; Schipper, C. Ian

    2015-07-01

    Supereruptions (>1015 kg ≈ 450 km3 of ejected magma) have received much attention because of the challenges in explaining how and over what time intervals such large volumes of magma are accumulated, stored and erupted. However, the processes that follow supereruptions, particularly those focused around magmatic recovery, are less fully documented. We present major and trace-element data from whole-rock, glass and mineral samples from eruptive products from Taupo volcano, New Zealand, to investigate how the host magmatic system reestablished and evolved following the Oruanui supereruption at 25.4 ka. Taupo's young eruptive units are precisely constrained chronostratigraphically, providing uniquely fine-scale temporal snapshots of a post-supereruption magmatic system. After only ~5 kyr of quiescence following the Oruanui eruption, Taupo erupted three small volume (~0.1 km3) dacitic pyroclastic units from 20.5 to 17 ka, followed by another ~5-kyr-year time break, and then eruption of 25 rhyolitic units starting at ~12 ka. The dacites show strongly zoned minerals and wide variations in melt-inclusion compositions, consistent with early magma mixing followed by periods of cooling and crystallisation at depths of >8 km, overlapping spatially with the inferred basal parts of the older Oruanui silicic mush system. The dacites reflect the first products of a new silicic system, as most of the Oruanui magmatic root zone was significantly modified in composition or effectively destroyed by influxes of hot mafic magmas following caldera collapse. The first rhyolites erupted between 12 and 10 ka formed through shallow (4-5 km depth) cooling and fractionation of melts from a source similar in composition to that generating the earlier dacites, with overlapping compositions for melt inclusions and crystal cores between the two magma types. For the successively younger rhyolite units, temporal changes in melt chemistry and mineral phase stability are observed, which reflect the

  14. Fine-scale structure of the mid-mantle characterised by global stacks of PP precursors

    Science.gov (United States)

    Bentham, H. L. M.; Rost, S.; Thorne, M. S.

    2017-08-01

    Subduction zones are likely a major source of compositional heterogeneities in the mantle, which may preserve a record of the subduction history and mantle convection processes. The fine-scale structure associated with mantle heterogeneities can be studied using the scattered seismic wavefield that arrives as coda to or as energy preceding many body wave arrivals. In this study we analyse precursors to PP by creating stacks recorded at globally distributed stations. We create stacks aligned on the PP arrival in 5° distance bins (with range 70-120°) from 600 earthquakes recorded at 193 stations stacking a total of 7320 seismic records. As the energy trailing the direct P arrival, the P coda, interferes with the PP precursors, we suppress the P coda by subtracting a best fitting exponential curve to this energy. The resultant stacks show that PP precursors related to scattering from heterogeneities in the mantle are present for all distances. Lateral variations are explored by producing two regional stacks across the Atlantic and Pacific hemispheres, but we find only negligible differences in the precursory signature between these two regions. The similarity of these two regions suggests that well mixed subducted material can survive at upper and mid-mantle depth. To describe the scattered wavefield in the mantle, we compare the global stacks to synthetic seismograms generated using a Monte Carlo phonon scattering technique. We propose a best-fitting layered heterogeneity model, BRT2017, characterised by a three layer mantle with a background heterogeneity strength (ɛ = 0.8%) and a depth-interval of increased heterogeneity strength (ɛ = 1%) between 1000 km and 1800 km. The scalelength of heterogeneity is found to be 8 km throughout the mantle. Since mantle heterogeneity of 8 km scale may be linked to subducted oceanic crust, the detection of increased heterogeneity at mid-mantle depths could be associated with stalled slabs due to increases in viscosity

  15. Fine-scale spatial and interannual cadmium isotope variability in the subarctic northeast Pacific

    Science.gov (United States)

    Janssen, D. J.; Abouchami, W.; Galer, S. J. G.; Cullen, J. T.

    2017-08-01

    that cannot be explained by a closed-system Rayleigh model. These results correspond with a warm water surface anomaly found along Line P in 2014 and demonstrate that there is interannual variability in the biogeochemical cycling of Cd and its isotopes in the subarctic North Pacific. In contrast to other ocean basins where vertical variability in ε 112 / 110Cd is observed at depth, deep and intermediate waters in the North Pacific have a near-uniform ε 112 / 110Cd value (mean of 1.14 ± 0.37, n = 43, 2SD) representative of nearly all samples at or below 1000 m depth. Imprinted upon this nearly homogeneous intermediate and deep North Pacific ε 112 / 110Cd signature are fine-scale spatial trends, with heavier values observed toward the coastal end of Line P than the oceanic end at intermediate depths, and with slightly heavier values in subtropical North Pacific deep water compared to the subarctic North Pacific. The nearly constant Cd isotopic composition of North Pacific deep waters is consistent with the inflow of Circumpolar Deep Water at depth in the Pacific basin, along with deep remineralization, and supports the potential of ε 112 / 110Cd as a tracer of global deepwater circulation.

  16. Fine-scale ignimbrite morphology revealed in LiDAR at Crater Lake, OR

    Science.gov (United States)

    Robinson, J. E.; Bacon, C. R.; Wright, H. M.

    2011-12-01

    Mount Mazama erupted ~7,700 years ago resulting in the collapse of Crater Lake caldera, ash fall across the Pacific Northwest, and emplacement of compositionally zoned ignimbrite. Early climactic ignimbrite contains uniform rhyodacitic pumice and traveled far from the vent, whereas late, less mobile ignimbrite is dominated by crystal-rich andesitic scoria and mafic crystal mush. Funded by the USGS, NPS, and FHWA, the DOGAMI-led Oregon LiDAR Consortium contracted with Watershed Services to collect ~800 km2 of LiDAR over Crater Lake National Park from Aug 2010 to Sept 2010. Ground laser returns have an average density of 1.63 returns/m2 over the heavily forested area of interest. The data have a lateral RMSE and vertical accuracy of 0.05 m. A bare earth terrain model allows a virtual removal of the forest, revealing fine-scale surface morphology, notably in the climactic ignimbrite. Secondary pyroclastic flows, explosion craters, erosion by water, and compaction-related deformation modified the originally smooth ignimbrite surface. Distinct pyroclastic flow fronts are evident in the LiDAR in Annie Creek valley. Leveed flows stand approximately 5 m above the lower ignimbrite surface, and individual toes are about 1-2 m high. Preliminary field checking indicates that rhyodacitic pumice dominates the lower ignimbrite surface, but the leveed flows are a subequal mix of locally oxidized rhyodacitic pumice and andesitic scoria. We hypothesize that these deposits were secondary pyroclastic flows formed by gravitational failure of late ignimbrite. In the Castle Creek valley, is a 2-meter collapse scarp that may have spawned a small secondary pyroclastic flow; several such headwall scarps are present in Sand Creek valley. Differential compaction features are common in many thick ignimbrites. We suggest this caused the deformation of the ignimbrite apparent in the LiDAR. In Annie Creek valley are a series of flow parallel asymmetric ridges, with shallower slopes toward the

  17. Oscillatory integration windows in neurons

    Science.gov (United States)

    Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark

    2016-01-01

    Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking. PMID:27976720

  18. Psychoacoustic Tinnitus Loudness and Tinnitus-Related Distress Show Different Associations with Oscillatory Brain Activity

    Science.gov (United States)

    Balkenhol, Tobias; Wallhäusser-Franke, Elisabeth; Delb, Wolfgang

    2013-01-01

    Background The phantom auditory perception of subjective tinnitus is associated with aberrant brain activity as evidenced by magneto- and electroencephalographic studies. We tested the hypotheses (1) that psychoacoustically measured tinnitus loudness is related to gamma oscillatory band power, and (2) that tinnitus loudness and tinnitus-related distress are related to distinct brain activity patterns as suggested by the distinction between loudness and distress experienced by tinnitus patients. Furthermore, we explored (3) how hearing impairment, minimum masking level, and (4) psychological comorbidities are related to spontaneous oscillatory brain activity in tinnitus patients. Methods and Findings Resting state oscillatory brain activity recorded electroencephalographically from 46 male tinnitus patients showed a positive correlation between gamma band oscillations and psychoacoustic tinnitus loudness determined with the reconstructed tinnitus sound, but not with the other psychoacoustic loudness measures that were used. Tinnitus-related distress did also correlate with delta band activity, but at electrode positions different from those associated with tinnitus loudness. Furthermore, highly distressed tinnitus patients exhibited a higher level of theta band activity. Moreover, mean hearing loss between 0.125 kHz and 16 kHz was associated with a decrease in gamma activity, whereas minimum masking levels correlated positively with delta band power. In contrast, psychological comorbidities did not express significant correlations with oscillatory brain activity. Conclusion Different clinically relevant tinnitus characteristics show distinctive associations with spontaneous brain oscillatory power. Results support hypothesis (1), but exclusively for the tinnitus loudness derived from matching to the reconstructed tinnitus sound. This suggests to preferably use the reconstructed tinnitus spectrum to determine psychoacoustic tinnitus loudness. Results also support

  19. Spatial and seasonal patterns of fine-scale to mesoscale upper ocean dynamics in an Eastern Boundary Current System

    Science.gov (United States)

    Grados, Daniel; Bertrand, Arnaud; Colas, François; Echevin, Vincent; Chaigneau, Alexis; Gutiérrez, Dimitri; Vargas, Gary; Fablet, Ronan

    2016-03-01

    The physical forcing of the ocean surface includes a variety of energetic processes, ranging from internal wave (IW) to submesoscale and mesoscale, associated with characteristic horizontal scales. While the description of mesoscale ocean dynamics has greatly benefited from the availability of satellite data, observations of finer scale patterns remain scarce. Recent studies showed that the vertical displacements of the oxycline depth, which separates the well-mixed oxygenated surface layer from the less oxygenated deeper ocean, estimated by acoustics, provide a robust proxy of isopycnal displacements over a wide range of horizontal scales. Using a high-resolution and wide-range acoustic data set in the Northern Humboldt Current System (NHCS) off Peru, the spatial and temporal patterns of fine-scale-to-mesoscale upper ocean dynamics are investigated. The spectral content of oxycline/pycnocline profiles presents patterns characteristic of turbulent flows, from the mesoscale to the fine scale, and an energization at the IW scale (2 km-200 m). On the basis of a typology performed on 35,000 structures we characterized six classes of physical structures according to their shape and scale range. The analysis reveals the existence of distinct features for the fine-scale range below ∼2-3 km, and clearly indicates the existence of intense IW and submesoscale activity over the entire NHCS region. Structures at scales smaller than ∼2 km were more numerous and energetic in spring than in summer. Their spatiotemporal variability supports the interpretation that these processes likely relate to IW generation by interactions between tidal flows, stratification and the continental slope. Given the impact of the physical forcing on the biogeochemical and ecological dynamics in EBUS, these processes should be further considered in future ecosystem studies based on observations and models. The intensification of upper ocean stratification resulting from climate change makes such

  20. Fine-Scale Bacterial Beta Diversity within a Complex Ecosystem (Zodletone Spring, OK, USA): The Role of the Rare Biosphere

    Science.gov (United States)

    Youssef, Noha H.; Couger, M. B.; Elshahed, Mostafa S.

    2010-01-01

    Background The adaptation of pyrosequencing technologies for use in culture-independent diversity surveys allowed for deeper sampling of ecosystems of interest. One extremely well suited area of interest for pyrosequencing-based diversity surveys that has received surprisingly little attention so far, is examining fine scale (e.g. micrometer to millimeter) beta diversity in complex microbial ecosystems. Methodology/Principal Findings We examined the patterns of fine scale Beta diversity in four adjacent sediment samples (1mm apart) from the source of an anaerobic sulfide and sulfur rich spring (Zodletone spring) in southwestern Oklahoma, USA. Using pyrosequencing, a total of 292,130 16S rRNA gene sequences were obtained. The beta diversity patterns within the four datasets were examined using various qualitative and quantitative similarity indices. Low levels of Beta diversity (high similarity indices) were observed between the four samples at the phylum-level. However, at a putative species (OTU0.03) level, higher levels of beta diversity (lower similarity indices) were observed. Further examination of beta diversity patterns within dominant and rare members of the community indicated that at the putative species level, beta diversity is much higher within rare members of the community. Finally, sub-classification of rare members of Zodletone spring community based on patterns of novelty and uniqueness, and further examination of fine scale beta diversity of each of these subgroups indicated that members of the community that are unique, but non novel showed the highest beta diversity within these subgroups of the rare biosphere. Conclusions/Significance The results demonstrate the occurrence of high inter-sample diversity within seemingly identical samples from a complex habitat. We reason that such unexpected diversity should be taken into consideration when exploring gamma diversity of various ecosystems, as well as planning for sequencing-intensive metagenomic

  1. Fine-scale flight strategies of gulls in urban airflows indicate risk and reward in city living.

    Science.gov (United States)

    Shepard, Emily L C; Williamson, Cara; Windsor, Shane P

    2016-09-26

    Birds modulate their flight paths in relation to regional and global airflows in order to reduce their travel costs. Birds should also respond to fine-scale airflows, although the incidence and value of this remains largely unknown. We resolved the three-dimensional trajectories of gulls flying along a built-up coastline, and used computational fluid dynamic models to examine how gulls reacted to airflows around buildings. Birds systematically altered their flight trajectories with wind conditions to exploit updraughts over features as small as a row of low-rise buildings. This provides the first evidence that human activities can change patterns of space-use in flying birds by altering the profitability of the airscape. At finer scales still, gulls varied their position to select a narrow range of updraught values, rather than exploiting the strongest updraughts available, and their precise positions were consistent with a strategy to increase their velocity control in gusty conditions. Ultimately, strategies such as these could help unmanned aerial vehicles negotiate complex airflows. Overall, airflows around fine-scale features have profound implications for flight control and energy use, and consideration of this could lead to a paradigm-shift in the way ecologists view the urban environment.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).

  2. Fine-scale spatial genetic structure in predominantly selfing plants with limited seed dispersal: A rule or exception?

    Directory of Open Access Journals (Sweden)

    Sergei Volis

    2016-04-01

    Full Text Available Gene flow at a fine scale is still poorly understood despite its recognized importance for plant population demographic and genetic processes. We tested the hypothesis that intensity of gene flow will be lower and strength of spatial genetic structure (SGS will be higher in more peripheral populations because of lower population density. The study was performed on the predominantly selfing Avena sterilis and included: (1 direct measurement of dispersal in a controlled environment; and (2 analyses of SGS in three natural populations, sampled in linear transects at fixed increasing inter-plant distances. We found that in A. sterilis major seed dispersal is by gravity in close (less than 2 m vicinity of the mother plant, with a minor additional effect of wind. Analysis of SGS with six nuclear SSRs revealed a significant autocorrelation for the distance class of 1 m only in the most peripheral desert population, while in the two core populations with Mediterranean conditions, no genetic structure was found. Our results support the hypothesis that intensity of SGS increases from the species core to periphery as a result of decreased within-population gene flow related to low plant density. Our findings also show that predominant self-pollination and highly localized seed dispersal lead to SGS at a very fine scale, but only if plant density is not too high.

  3. Fine-scale habitat associations of a terrestrial salamander: the role of environmental gradients and implications for population dynamics.

    Directory of Open Access Journals (Sweden)

    William E Peterman

    Full Text Available Environmental gradients are instrumental in shaping the distribution and local abundance of species because at the most fundamental level, an organism's performance is constrained by the environment it inhabits. In topographically complex landscapes, slope, aspect, and vegetative cover interact to affect solar exposure, creating temperature-moisture gradients and unique microclimates. The significance of the interaction of abiotic gradients and biotic factors such as competition, movement, or physiology has long been recognized, but the scale at which these factors vary on the landscape has generally precluded their inclusion in spatial abundance models. We used fine-scale spatial data relating to surface-soil moisture, temperature, and canopy cover to describe the spatial distribution of abundance of a terrestrial salamander, Plethodon albagula, across the landscape. Abundance was greatest in dense-canopy ravine habitats with high moisture and low solar exposure, resulting in a patchy distribution of abundance. We hypothesize that these patterns reflect the physiological constraints of Plethodontid salamanders. Furthermore, demographic cohorts were not uniformly distributed among occupied plots on the landscape. The probability of gravid female occurrence was nearly uniform among occupied plots, but juveniles were much more likely to occur on plots with lower surface temperatures. The disconnect between reproductive effort and recruitment suggests that survival differs across the landscape and that local population dynamics vary spatially. Our study demonstrates a connection between abundance, fine-scale environmental gradients, and population dynamics, providing a foundation for future research concerning movement, population connectivity, and physiology.

  4. Ecological Niche Modeling Identifies Fine-Scale Areas at High Risk of Dengue Fever in the Pearl River Delta, China.

    Science.gov (United States)

    Li, Qiaoxuan; Ren, Hongyan; Zheng, Lan; Cao, Wei; Zhang, An; Zhuang, Dafang; Lu, Liang; Jiang, Huixian

    2017-06-09

    Dengue fever (DF) is one of the most common and rapidly spreading mosquito-borne viral diseases in tropical and subtropical regions. In recent years, this imported disease has posed a serious threat to public health in China, especially in the Pearl River Delta (PRD). Although the severity of DF outbreaks in the PRD is generally associated with known risk factors, fine scale assessments of areas at high risk for DF outbreaks are limited. We built five ecological niche models to identify such areas including a variety of climatic, environmental, and socioeconomic variables, as well as, in some models, extracted principal components. All the models we tested accurately identified the risk of DF, the area under the receiver operating characteristic curve (AUC) were greater than 0.8, but the model using all original variables was the most accurate (AUC = 0.906). Socioeconomic variables had a greater impact on this model (total contribution 55.27%) than climatic and environmental variables (total contribution 44.93%). We found the highest risk of DF outbreaks on the border of Guangzhou and Foshan (in the central PRD), and in northern Zhongshan (in the southern PRD). Our fine-scale results may help health agencies to focus epidemic monitoring tightly on the areas at highest risk of DF outbreaks.

  5. Phylogeography of var gene repertoires reveals fine-scale geospatial clustering of Plasmodium falciparum populations in a highly endemic area.

    Science.gov (United States)

    Tessema, Sofonias K; Monk, Stephanie L; Schultz, Mark B; Tavul, Livingstone; Reeder, John C; Siba, Peter M; Mueller, Ivo; Barry, Alyssa E

    2015-01-01

    Plasmodium falciparum malaria is a major global health problem that is being targeted for progressive elimination. Knowledge of local disease transmission patterns in endemic countries is critical to these elimination efforts. To investigate fine-scale patterns of malaria transmission, we have compared repertoires of rapidly evolving var genes in a highly endemic area. A total of 3680 high-quality DBLα-sequences were obtained from 68 P. falciparum isolates from ten villages spread over two distinct catchment areas on the north coast of Papua New Guinea (PNG). Modelling of the extent of var gene diversity in the two parasite populations predicts more than twice as many var gene alleles circulating within each catchment (Mugil = 906; Wosera = 1094) than previously recognized in PNG (Amele = 369). In addition, there were limited levels of var gene sharing between populations, consistent with local parasite population structure. Phylogeographic analyses demonstrate that while neutrally evolving microsatellite markers identified population structure only at the catchment level, var gene repertoires reveal further fine-scale geospatial clustering of parasite isolates. The clustering of parasite isolates by village in Mugil, but not in Wosera was consistent with the physical and cultural isolation of the human populations in the two catchments. The study highlights the microheterogeneity of P. falciparum transmission in highly endemic areas and demonstrates the potential of var genes as markers of local patterns of parasite population structure. © 2014 John Wiley & Sons Ltd.

  6. Tracking fine-scale seasonal evolution of surface water extent in Central Alaska and the Canadian Shield

    Science.gov (United States)

    Cooley, S. W.; Smith, L. C.; Pitcher, L. H.; Pavelsky, T.; Topp, S.

    2017-12-01

    Quantifying spatial and temporal variability in surface water storage at high latitudes is critical for assessing environmental sensitivity to climate change. Traditionally the tradeoff between high spatial and high temporal resolution space-borne optical imagery has limited the ability to track fine-scale changes in surface water extent. However, the recent launch of hundreds of earth-imaging CubeSats by commercial satellite companies such as Planet opens up new possibilities for monitoring surface water from space. In this study we present a comparison of seasonal evolution of surface water extent in two study areas with differing geologic, hydrologic and permafrost regimes, namely, the Yukon Flats in Central Alaska and the Canadian Shield north of Yellowknife, N.W.T. Using near-daily 3m Planet CubeSat imagery, we track individual lake surface area from break-up to freeze-up during summer 2017 and quantify the spatial and temporal variability in inundation extent. We validate our water delineation method and inundation extent time series using WorldView imagery, coincident in situ lake shoreline mapping and pressure transducer data for 19 lakes in the Northwest Territories and Alaska collected during the NASA Arctic Boreal Vulnerability Experiment (ABoVE) 2017 field campaign. The results of this analysis demonstrate the value of CubeSat imagery for dynamic surface water research particularly at high latitudes and illuminate fine-scale drivers of cold regions surface water extent.

  7. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers

    Science.gov (United States)

    Ponti, Luigi; Gutierrez, Andrew Paul; Ruti, Paolo Michele; Dell’Aquila, Alessandro

    2014-01-01

    The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests. PMID:24706833

  8. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers.

    Science.gov (United States)

    Ponti, Luigi; Gutierrez, Andrew Paul; Ruti, Paolo Michele; Dell'Aquila, Alessandro

    2014-04-15

    The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests.

  9. Ecological Niche Modeling Identifies Fine-Scale Areas at High Risk of Dengue Fever in the Pearl River Delta, China

    Directory of Open Access Journals (Sweden)

    Qiaoxuan Li

    2017-06-01

    Full Text Available Dengue fever (DF is one of the most common and rapidly spreading mosquito-borne viral diseases in tropical and subtropical regions. In recent years, this imported disease has posed a serious threat to public health in China, especially in the Pearl River Delta (PRD. Although the severity of DF outbreaks in the PRD is generally associated with known risk factors, fine scale assessments of areas at high risk for DF outbreaks are limited. We built five ecological niche models to identify such areas including a variety of climatic, environmental, and socioeconomic variables, as well as, in some models, extracted principal components. All the models we tested accurately identified the risk of DF, the area under the receiver operating characteristic curve (AUC were greater than 0.8, but the model using all original variables was the most accurate (AUC = 0.906. Socioeconomic variables had a greater impact on this model (total contribution 55.27% than climatic and environmental variables (total contribution 44.93%. We found the highest risk of DF outbreaks on the border of Guangzhou and Foshan (in the central PRD, and in northern Zhongshan (in the southern PRD. Our fine-scale results may help health agencies to focus epidemic monitoring tightly on the areas at highest risk of DF outbreaks.

  10. Identifying Where REDD+ Financially Out-Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach.

    Science.gov (United States)

    Abram, Nicola K; MacMillan, Douglas C; Xofis, Panteleimon; Ancrenaz, Marc; Tzanopoulos, Joseph; Ong, Robert; Goossens, Benoit; Koh, Lian Pin; Del Valle, Christian; Peter, Lucy; Morel, Alexandra C; Lackman, Isabelle; Chung, Robin; Kler, Harjinder; Ambu, Laurentius; Baya, William; Knight, Andrew T

    2016-01-01

    Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e) would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e) would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380-416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD

  11. Identifying Where REDD+ Financially Out-Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach

    Science.gov (United States)

    MacMillan, Douglas C.; Xofis, Panteleimon; Ancrenaz, Marc; Tzanopoulos, Joseph; Ong, Robert; Goossens, Benoit; Koh, Lian Pin; Del Valle, Christian; Peter, Lucy; Morel, Alexandra C.; Lackman, Isabelle; Chung, Robin; Kler, Harjinder; Ambu, Laurentius; Baya, William; Knight, Andrew T.

    2016-01-01

    Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e) would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e) would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380–416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD

  12. Novel Bio-Logging Tool for Studying Fine-Scale Behaviors of Marine Turtles in Response to Sound

    Directory of Open Access Journals (Sweden)

    Reny B. Tyson

    2017-07-01

    Full Text Available Increases in the spatial scale and intensity of activities that produce marine anthropogenic sound highlight the importance of understanding the impacts and effects of sound on threatened species such as marine turtles. Marine turtles detect and behaviorally respond to low-frequency sounds, however few studies have directly examined their behavioral responses to specific types or intensities of anthropogenic or natural sounds. Recent advances in the development of bio-logging tools, which combine acoustic and fine-scale movement measurements, have allowed for evaluations of animal responses to sound. Here, we describe these tools and present a case study demonstrating the potential application of a newly developed technology (ROTAG, Loggerhead Instruments, Inc. to examine behavioral responses of freely swimming marine turtles to sound. The ROTAG incorporates a three-axis accelerometer, gyroscope, and magnetometer to record the turtle's pitch, roll, and heading; a pressure sensor to record turtle depth; a hydrophone to record the turtle's received underwater acoustic sound field; a temperature gauge; and two VHF radio telemetry transmitters and antennas for tag and turtle tracking. Tags can be programmed to automatically release via a timed corrodible link several hours or days after deployment. We describe an example of the data collected with these tags and present a case study of a successful ROTAG deployment on a juvenile green turtle (Chelonia mydas in the Paranaguá Estuary Complex, Brazil. The tag was deployed for 221 min, during which several vessels passed closely (<2 km by the turtle. The concurrent movement and acoustic data collected by the ROTAG were examined during these times to determine if the turtle responded to these anthropogenic sound sources. While fine-scale behavioral responses were not apparent (second-by-second, the turtle did appear to perform dives during which it remained still on or near the sea floor during several

  13. Identifying Where REDD+ Financially Out-Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach.

    Directory of Open Access Journals (Sweden)

    Nicola K Abram

    Full Text Available Reducing Emissions from Deforestation and forest Degradation (REDD+ aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380-416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia. Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by

  14. Role of synchronized oscillatory brain activity for human pain perception.

    Science.gov (United States)

    Hauck, Michael; Lorenz, Jürgen; Engel, Andreas K

    2008-01-01

    The understanding of cortical pain processing in humans has significantly improved since the development of modern neuroimaging techniques. Non-invasive electrophysiological approaches such as electro- and magnetoencephalography have proven to be helpful tools for the real-time investigation of neuronal signals and synchronous communication between cortical areas. In particular, time-frequency decomposition of signals recorded with these techniques seems to be a promising approach because different pain-related oscillatory changes can be observed within different frequency bands, which are likely to be linked to specific sensory and motor functions. In this review we discuss the latest evidence on pain-induced time-frequency signals and propose that changes in oscillatory activity reflect an essential communication mechanism in the brain that is modulated during pain processing. The importance of synchronization processes for normal and pathological pain processing, such as chronic pain states, is discussed.

  15. Statistical models of summer rainshowers derived from fine-scale radar observations. [for spacecraft microwave communications attenuation

    Science.gov (United States)

    Konrad, T. G.

    1978-01-01

    A statistical modeling of rain cell characteristics is presented; the modeling is based on high-resolution radar measurements of the cell structure. The analysis of the fine-scale three-dimensional structure of summer rainshowers in the mid-Atlantic region leads to statistical descriptions of the rain cells in terms of a variety of physical cell parameters. Core reflectivity profiles, contour area, and altitude extent of the cells have been determined along with the frequency of occurrence for various storm classes and categories. The statistical descriptions of the rain cells for the mid-Atlantic region were compared to descriptions for other areas, and the similarities and differences are described. Simplified models of rain cells based on the statistical descriptions are developed for the different rain categories as a function of frequency of occurrence.

  16. Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks

    Science.gov (United States)

    Kanno, Yoichiro; Vokoun, Jason C.; Letcher, Benjamin H.

    2011-01-01

    Linear and heterogeneous habitat makes headwater stream networks an ideal ecosystem in which to test the influence of environmental factors on spatial genetic patterns of obligatory aquatic species. We investigated fine-scale population structure and influence of stream habitat on individual-level genetic differentiation in brook trout (Salvelinus fontinalis) by genotyping eight microsatellite loci in 740 individuals in two headwater channel networks (7.7 and 4.4 km) in Connecticut, USA. A weak but statistically significant isolation-by-distance pattern was common in both sites. In the field, many tagged individuals were recaptured in the same 50-m reaches within a single field season (summer to fall). One study site was characterized with a hierarchical population structure, where seasonal barriers (natural falls of 1.5–2.5 m in height during summer base-flow condition) greatly reduced gene flow and perceptible spatial patterns emerged because of the presence of tributaries, each with a group of genetically distinguishable individuals. Genetic differentiation increased when pairs of individuals were separated by high stream gradient (steep channel slope) or warm stream temperature in this site, although the evidence of their influence was equivocal. In a second site, evidence for genetic clusters was weak at best, but genetic differentiation between individuals was positively correlated with number of tributary confluences. We concluded that the population-level movement of brook trout was limited in the study headwater stream networks, resulting in the fine-scale population structure (genetic clusters and clines) even at distances of a few kilometres, and gene flow was mitigated by ‘riverscape’ variables, particularly by physical barriers, waterway distance (i.e. isolation-by-distance) and the presence of tributaries.

  17. How Elephant Seals (Mirounga leonina Adjust Their Fine Scale Horizontal Movement and Diving Behaviour in Relation to Prey Encounter Rate.

    Directory of Open Access Journals (Sweden)

    Yves Le Bras

    Full Text Available Understanding the diving behaviour of diving predators in relation to concomitant prey distribution could have major practical applications in conservation biology by allowing the assessment of how changes in fine scale prey distribution impact foraging efficiency and ultimately population dynamics. The southern elephant seal (Mirounga leonina, hereafter SES, the largest phocid, is a major predator of the southern ocean feeding on myctophids and cephalopods. Because of its large size it can carry bio-loggers with minimal disturbance. Moreover, it has great diving abilities and a wide foraging habitat. Thus, the SES is a well suited model species to study predator diving behaviour and the distribution of ecologically important prey species in the Southern Ocean. In this study, we examined how SESs adjust their diving behaviour and horizontal movements in response to fine scale prey encounter densities using high resolution accelerometers, magnetometers, pressure sensors and GPS loggers. When high prey encounter rates were encountered, animals responded by (1 diving and returning to the surface with steeper angles, reducing the duration of transit dive phases (thus improving dive efficiency, and (2 exhibiting more horizontally and vertically sinuous bottom phases. In these cases, the distance travelled horizontally at the surface was reduced. This behaviour is likely to counteract horizontal displacement from water currents, as they try to remain within favourable prey patches. The prey encounter rate at the bottom of dives decreased with increasing diving depth, suggesting a combined effect of decreased accessibility and prey density with increasing depth. Prey encounter rate also decreased when the bottom phases of dives were spread across larger vertical extents of the water column. This result suggests that the vertical aggregation of prey can regulate prey density, and as a consequence impact the foraging success of SESs. To our knowledge

  18. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    Science.gov (United States)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access

  19. Fine-scale genetic structure and cryptic associations reveal evidence of kin-based sociality in the African forest elephant.

    Directory of Open Access Journals (Sweden)

    Stephanie G Schuttler

    Full Text Available Spatial patterns of relatedness within animal populations are important in the evolution of mating and social systems, and have the potential to reveal information on species that are difficult to observe in the wild. This study examines the fine-scale genetic structure and connectivity of groups within African forest elephants, Loxodonta cyclotis, which are often difficult to observe due to forest habitat. We tested the hypothesis that genetic similarity will decline with increasing geographic distance, as we expect kin to be in closer proximity, using spatial autocorrelation analyses and Tau K(r tests. Associations between individuals were investigated through a non-invasive genetic capture-recapture approach using network models, and were predicted to be more extensive than the small groups found in observational studies, similar to fission-fusion sociality found in African savanna (Loxodonta africana and Asian (Elephas maximus species. Dung samples were collected in Lopé National Park, Gabon in 2008 and 2010 and genotyped at 10 microsatellite loci, genetically sexed, and sequenced at the mitochondrial DNA control region. We conducted analyses on samples collected at three different temporal scales: a day, within six-day sampling sessions, and within each year. Spatial autocorrelation and Tau K(r tests revealed genetic structure, but results were weak and inconsistent between sampling sessions. Positive spatial autocorrelation was found in distance classes of 0-5 km, and was strongest for the single day session. Despite weak genetic structure, individuals within groups were significantly more related to each other than to individuals between groups. Social networks revealed some components to have large, extensive groups of up to 22 individuals, and most groups were composed of individuals of the same matriline. Although fine-scale population genetic structure was weak, forest elephants are typically found in groups consisting of kin and

  20. Fronts and Fine-Scale Distribution of Three Cetacean Species within the Dynamic Mid-Atlantic Bight Shelf Break System

    Science.gov (United States)

    LaBrecque, E.; Lawson, G. L.; Halpin, P. N.

    2016-02-01

    The Mid-Atlantic Bight (MAB) shelf break region is a highly dynamic and productive area that provides a wide range of habitat to many marine species over every trophic level. At least 23 cetacean species occur in the MAB shelf break region and their distributions are thought to be influenced by the MAB shelf break front. This research characterizes the spatial distribution of common dolphins (Delphinus delphis), Risso's dolphins (Grampus griseus), and sperm whales (Physeter macrocephalus) through multi-dimensional scaling (MDS), classification tree analysis and random forest analysis of marine mammal line-transect survey data, multi-frequency active acoustic data and fine-scale in situ hydrographic data. Multi-frequency active acoustic data were broadly classified into proxies of middle trophic level groups through frequency response methods. Surface temperature fronts were observed in all sections of the shelf break region. The strongest surface fronts were within 15 km of the shelf break ( 150 meter isobath) on 10 of the 19 cross shelf transects. MDS presented clear environmental distinction between common dolphins and Risso's dolphins and sperm whales. Environmental separation between Risso's dolphins and sperm whales was evident but less distinct. In both the classification tree and random forest analyzes, the common dolphin models had the least error (0.33 and 0.28 respectively). Depths less than 145 meters and area within 10 km shelf-side of the shelf break were the primary variables that described common dolphin habitat. Risso's dolphin habitat was selected as the area between 20 km shelf-side to 20 km offshore of the strongest surface thermal gradient. Offshore salinity and distances greater than 26 km to density fronts were the primary variables selected to describe sperm whale habitat. When mapped back into geographic space, these three cetacean species occupy different fine-scale habitats within the dynamic Mid-Atlantic Bight shelf break system.

  1. Fine-scale patterns of vegetation assembly in the monitoring of changes in coastal sand-dune landscapes

    Directory of Open Access Journals (Sweden)

    J. Honrado

    2010-02-01

    Full Text Available Understanding dune ecosystem responses to multi-scale environmental changes can provide the framework for reliable forecasts and cost-efficient protocols for detecting shifts in prevailing coastal dynamics. Based on the hypothesis that stress and disturbance interact as primary community controls in coastal dunes, we studied the fine-scale floristic assembly of foredune vegetation, in its relation to topography, along regional and local environmental gradients in the 200 km long coastline of northern Portugal, encompassing a major biogeographic transition in western Europe. Thirty topographic profiles perpendicular to the shoreline were recorded at ten sites along the regional climate gradient, and vegetation was sampled by recording the frequency of plant species along those profiles. Quantitative topographic attributes of vegetated dune profiles (e.g. length or height exhibited wide variations relatable to differences in prevailing coastal dynamics. Metrics of taxonomic diversity (e.g. total species richness and its additive beta component and of the functional composition of vegetation were highly correlated to attributes of dune topography. Under transgressive dynamics, vegetation profiles have fewer species, increased dominance, lower turnover rates, and lower total vegetation cover. These changes may drive a decrease in structural and functional diversity, with important consequences for resistance, resilience and other ecosystem properties. Moreover, differences in both vegetation assembly (in meta-stable dunes and response to increased disturbance (in eroding dunes between distinct biogeographic contexts highlight a possible decline in facilitation efficiency under extreme physical stress (i.e. under Mediterranean climate and support the significance of functional approaches in the study of local ecosystem responses to disturbance along regional gradients. Our results strongly suggest that assessing fine-scale community assembly can

  2. Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping.

    Science.gov (United States)

    Mitchell, Matthew G E; Johansen, Kasper; Maron, Martine; McAlpine, Clive A; Wu, Dan; Rhodes, Jonathan R

    2018-05-01

    Urban areas are sources of land use change and CO 2 emissions that contribute to global climate change. Despite this, assessments of urban vegetation carbon stocks often fail to identify important landscape-scale drivers of variation in urban carbon, especially the potential effects of landscape structure variables at different spatial scales. We combined field measurements with Light Detection And Ranging (LiDAR) data to build high-resolution models of woody plant aboveground carbon across the urban portion of Brisbane, Australia, and then identified landscape scale drivers of these carbon stocks. First, we used LiDAR data to quantify the extent and vertical structure of vegetation across the city at high resolution (5×5m). Next, we paired this data with aboveground carbon measurements at 219 sites to create boosted regression tree models and map aboveground carbon across the city. We then used these maps to determine how spatial variation in land cover/land use and landscape structure affects these carbon stocks. Foliage densities above 5m height, tree canopy height, and the presence of ground openings had the strongest relationships with aboveground carbon. Using these fine-scale relationships, we estimate that 2.2±0.4 TgC are stored aboveground in the urban portion of Brisbane, with mean densities of 32.6±5.8MgCha -1 calculated across the entire urban land area, and 110.9±19.7MgCha -1 calculated within treed areas. Predicted carbon densities within treed areas showed strong positive relationships with the proportion of surrounding tree cover and how clumped that tree cover was at both 1km 2 and 1ha resolutions. Our models predict that even dense urban areas with low tree cover can have high carbon densities at fine scales. We conclude that actions and policies aimed at increasing urban carbon should focus on those areas where urban tree cover is most fragmented. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Multisensory stimuli elicit altered oscillatory brain responses at gamma frequencies in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    David B. Stone

    2014-11-01

    Full Text Available Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46 and healthy controls (N = 57 using magnetoencephalography (MEG. Time-frequency decomposition was performed to determine regions of significant changes in gamma band power by group in response to unisensory and multisensory stimuli relative to baseline levels. Results showed significant behavioral differences between groups in response to unisensory and multisensory stimuli. In addition, time-frequency analysis revealed significant decreases and increases in gamma-band power in schizophrenia patients relative to healthy controls, which emerged both early and late over both sensory and frontal regions in response to unisensory and multisensory stimuli. Unisensory gamma-band power predicted multisensory gamma-band power differently by group. Furthermore, gamma-band power in these regions predicted performance in select measures of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS test battery differently by group. These results reveal a unique pattern of task-related gamma-band power in schizophrenia patients relative to controls that may indicate reduced inhibition in combination with impaired oscillatory mechanisms in patients with schizophrenia.

  4. Changes of spontaneous oscillatory activity to tonic heat pain.

    Directory of Open Access Journals (Sweden)

    Weiwei Peng

    Full Text Available Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A resting condition; (B innoxious-distracted condition; (C noxious-distracted condition; (D noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes.

  5. Fine-scale habitat use of reintroduced black-footed ferrets on prairie dog colonies in New Mexico

    Science.gov (United States)

    Chipault, Jennifer G.; Biggins, Dean E.; Detling, James K.; Long, Dustin H.; Reich, Robin M.

    2012-01-01

    Black-footed ferrets (Mustela nigripes) are among the most endangered animals in North America. Reintroductions of captive-born ferrets onto prairie dog (Cynomys spp.) colonies are crucial to the conservation of the species. In September 2007, captive-born ferrets were released on a black-tailed prairie dog (Cynomys ludovicianus) colony at the Vermejo Park Ranch, New Mexico. Ferret kits experimentally released in areas of comparatively low and high prairie dog burrow densities were located via spotlight surveys. Some maturing ferret kits were subsequently translocated to areas of low and high burrow densities on nearby prairie dog colonies. For 2 months, fine-scale habitat use was quantified by mapping all burrow openings within a 30-m radius of each ferret location. Spatial statistics accounted for autocorrelation in the burrow densities in areas used by ferrets. It was hypothesized that ferrets would select areas of high burrow densities within colonies; however, burrow densities in areas used by ferrets were generally similar to the available burrow densities. Because ferrets used areas with burrow densities similar to densities available at the colony level and because of the potential energetic benefits for ferrets using areas with high burrow densities, releasing ferrets on colonies with high burrow densities might increase reintroduction success.

  6. Resource selection models are useful in predicting fine-scale distributions of black-footed ferrets in prairie dog colonies

    Science.gov (United States)

    Eads, David A.; Jachowski, David S.; Biggins, Dean E.; Livieri, Travis M.; Matchett, Marc R.; Millspaugh, Joshua J.

    2012-01-01

    Wildlife-habitat relationships are often conceptualized as resource selection functions (RSFs)—models increasingly used to estimate species distributions and prioritize habitat conservation. We evaluated the predictive capabilities of 2 black-footed ferret (Mustela nigripes) RSFs developed on a 452-ha colony of black-tailed prairie dogs (Cynomys ludovicianus) in the Conata Basin, South Dakota. We used the RSFs to project the relative probability of occurrence of ferrets throughout an adjacent 227-ha colony. We evaluated performance of the RSFs using ferret space use data collected via postbreeding spotlight surveys June–October 2005–2006. In home ranges and core areas, ferrets selected the predicted "very high" and "high" occurrence categories of both RSFs. Count metrics also suggested selection of these categories; for each model in each year, approximately 81% of ferret locations occurred in areas of very high or high predicted occurrence. These results suggest usefulness of the RSFs in estimating the distribution of ferrets throughout a black-tailed prairie dog colony. The RSFs provide a fine-scale habitat assessment for ferrets that can be used to prioritize releases of ferrets and habitat restoration for prairie dogs and ferrets. A method to quickly inventory the distribution of prairie dog burrow openings would greatly facilitate application of the RSFs.

  7. Fine-scale spatial genetic structure analysis of the black truffle Tuber aestivum and its link to aroma variability.

    Science.gov (United States)

    Molinier, Virginie; Murat, Claude; Frochot, Henri; Wipf, Daniel; Splivallo, Richard

    2015-08-01

    Truffles are symbiotic fungi in high demand by food connoisseurs. Improving yield and product quality requires a better understanding of truffle genetics and aroma biosynthesis. One aim here was to investigate the diversity and fine-scale spatial genetic structure of the Burgundy truffle Tuber aestivum. The second aim was to assess how genetic structuring along with fruiting body maturation and geographical origin influenced single constituents of truffle aroma. A total of 39 Burgundy truffles collected in two orchards were characterized in terms of aroma profile (SPME-GC/MS) and genotype (microsatellites). A moderate genetic differentiation was observed between the populations of the two orchards. An important seasonal and spatial genetic structuring was detected. Within one orchard, individuals belonging to the same genet were generally collected during a single season and in the close vicinity from each other. Maximum genet size nevertheless ranged from 46 to 92 m. Geographical origin or maturity only had minor effects on aroma profiles but genetic structuring, specifically clonal identity, had a pronounced influence on the concentrations of C8 - and C4 -VOCs. Our results highlight a high seasonal genetic turnover and indicate that the aroma of Burgundy truffle is influenced by the identity of single clones/genets. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Mother-offspring distances reflect sex differences in fine-scale genetic structure of eastern grey kangaroos.

    Science.gov (United States)

    King, Wendy J; Garant, Dany; Festa-Bianchet, Marco

    2015-05-01

    Natal dispersal affects life history and population biology and causes gene flow. In mammals, dispersal is usually male-biased so that females tend to be philopatric and surrounded by matrilineal kin, which may lead to preferential associations among female kin. Here we combine genetic analyses and behavioral observations to investigate spatial genetic structure and sex-biased dispersal patterns in a high-density population of mammals showing fission-fusion group dynamics. We studied eastern grey kangaroos (Macropus giganteus) over 2 years at Wilsons Promontory National Park, Australia, and found weak fine-scale genetic structure among adult females in both years but no structure among adult males. Immature male kangaroos moved away from their mothers at 18-25 months of age, while immature females remained near their mothers until older. A higher proportion of male (34%) than female (6%) subadults and young adults were observed to disperse, although median distances of detected dispersals were similar for both sexes. Adult females had overlapping ranges that were far wider than the maximum extent of spatial genetic structure found. Female kangaroos, although weakly philopatric, mostly encounter nonrelatives in fission-fusion groups at high density, and therefore kinship is unlikely to strongly affect sociality.

  9. Fine-scale spatial genetic structure of Dalbergia nigra (Fabaceae), a threatened and endemic tree of the Brazilian Atlantic Forest.

    Science.gov (United States)

    de Oliveira Buzatti, Renata Santiago; Ribeiro, Renata Acácio; de Lemos Filho, José Pires; Lovato, Maria Bernadete

    2012-12-01

    The Atlantic Forest is one of the most diverse ecosystems in the world and considered a hotspot of biodiversity conservation. Dalbergia nigra (Fabaceae) is a tree endemic to the Brazilian Atlantic Forest, and has become threatened due to overexploitation of its valuable timber. In the present study, we analyzed the genetic diversity and fine-scale spatial genetic structure of D. nigra in an area of primary forest of a large reserve. All adult individuals (N = 112) were sampled in a 9.3 ha plot, and genotyped for microsatellite loci. Our results indicated high diversity with a mean of 8.6 alleles per locus, and expected heterozygosity equal to 0.74. The co-ancestry coefficients were significant for distances among trees up to 80 m. The Sp value was equal to 0.017 and indirect estimates of gene dispersal distances ranged from 89 to 144 m. No strong evidence of bottleneck or effects of human-disturbance was found. This study highlights that long-term efforts to protect a large area of Atlantic Forest have been effective towards maintaining the genetic diversity of D. nigra. The results of this study are important towards providing a guide for seed collection for ex-situ conservation and reforestation programmes of this threatened species.

  10. Adaptive modelling of long-distance wave propagation and fine-scale flooding during the Tohoku tsunami

    Directory of Open Access Journals (Sweden)

    S. Popinet

    2012-04-01

    Full Text Available The 11 March 2011 Tohoku tsunami is simulated using the quadtree-adaptive Saint-Venant solver implemented within the Gerris Flow Solver. The spatial resolution is adapted dynamically from 250 m in flooded areas up to 250 km for the areas at rest. Wave fronts are tracked at a resolution of 1.8 km in deep water. The simulation domain extends over 73° of both latitude and longitude and covers a significant part of the north-west Pacific. The initial wave elevation is obtained from a source model derived using seismic data only. Accurate long-distance wave prediction is demonstrated through comparison with DART buoys timeseries and GLOSS tide gauges records. The model also accurately predicts fine-scale flooding compared to both satellite and survey data. Adaptive mesh refinement leads to orders-of-magnitude gains in computational efficiency compared to non-adaptive methods. The study confirms that consistent source models for tsunami initiation can be obtained from seismic data only. However, while the observed extreme wave elevations are reproduced by the model, they are located further south than in the surveyed data. Comparisons with inshore wave buoys data indicate that this may be due to an incomplete understanding of the local wave generation mechanisms.

  11. Fine-scale acoustic telemetry reveals unexpected lake trout, Salvelinus namaycush, spawning habitats in northern Lake Huron, North America

    Science.gov (United States)

    Binder, Thomas; Farha, Steve A.; Thompson, Henry T.; Holbrook, Christopher; Bergstedt, Roger A.; Riley, Stephen; Bronte, Charles R.; He, Ji; Krueger, Charles C.

    2018-01-01

    Previous studies of lake trout, Salvelinus namaycush, spawning habitat in the Laurentian Great Lakes have used time- and labour-intensive survey methods and have focused on areas with historic observations of spawning aggregations and on habitats prejudged by researchers to be suitable for spawning. As an alternative, we used fine-scale acoustic telemetry to locate, describe and compare lake trout spawning habitats. Adult lake trout were implanted with acoustic transmitters and tracked during five consecutive spawning seasons in a 19–27 km2 region of the Drummond Island Refuge, Lake Huron, using the VEMCO Positioning System. Acoustic telemetry revealed discrete areas of aggregation on at least five reefs in the study area, subsequently confirmed by divers to contain deposited eggs. Notably, several identified spawning sites would likely not have been discovered using traditional methods because either they were too small and obscure to stand out on a bathymetric map or because they did not conform to the conceptual model of spawning habitat held by many biologists. Our most unique observation was egg deposition in gravel and rubble substrates located at the base of and beneath overhanging edges of large boulders. Spawning sites typically comprised over the 5-year study. Evaluation of habitat selection from the perspective of fish behaviour through use of acoustic transmitters offers potential to expand current conceptual models of critical spawning habitat.

  12. Fine-scale population structure of Malays in Peninsular Malaysia and Singapore and implications for association studies.

    Science.gov (United States)

    Hoh, Boon-Peng; Deng, Lian; Julia-Ashazila, Mat Jusoh; Zuraihan, Zakaria; Nur-Hasnah, Ma'amor; Nur-Shafawati, Ab Rajab; Hatin, Wan Isa; Endom, Ismail; Zilfalil, Bin Alwi; Khalid, Yusoff; Xu, Shuhua

    2015-07-22

    Fine scale population structure of Malays - the major population in Malaysia, has not been well studied. This may have important implications for both evolutionary and medical studies. Here, we investigated the population sub-structure of Malay involving 431 samples collected from all states from peninsular Malaysia and Singapore. We identified two major clusters of individuals corresponding to the north and south peninsular Malaysia. On an even finer scale, the genetic coordinates of the geographical Malay populations are in correlation with the latitudes (R(2) = 0.3925; P = 0.029). This finding is further supported by the pairwise FST of Malay sub-populations, of which the north and south regions showed the highest differentiation (FST [North-south] = 0.0011). The collective findings therefore suggest that population sub-structure of Malays are more heterogenous than previously expected even within a small geographical region, possibly due to factors like different genetic origins, geographical isolation, could result in spurious association as demonstrated in our analysis. We suggest that cautions should be taken during the stage of study design or interpreting the association signals in disease mapping studies which are expected to be conducted in Malay population in the near future.

  13. Fine scale spatial genetic structure in Pouteria reticulata (Engl. Eyma (Sapotaceae, a dioecious, vertebrate dispersed tropical rain forest tree species

    Directory of Open Access Journals (Sweden)

    John W. Schroeder

    2014-08-01

    Full Text Available Dioecious tropical tree species often have small flowers and fleshy fruits indicative of small-insect pollination and vertebrate seed dispersal. We hypothesize that seed mediated gene flow should be exceed pollen-mediated gene flow in such species, leading to weak patterns of fine scale spatial genetic structure (SGS. In the present study, we characterize novel microsatellite DNA markers and test for SGS in sapling (N=100 and adult trees (N=99 of the dioecious canopy tree Pouteria reticulata (Sapotaceae in a 50 ha forest dynamics plot on Barro Colorado Island (BCI, Panama. The five genetic markers contained between five and 15 alleles per locus, totaling 51 alleles in the sample population. Significant SGS at local spatial scales (<100m was detected in the sapling (dbh≈1cm and adult (dbh≥20cm size classes, but was stronger in the former (sapling Sp=0.010±0.004, adult Sp=0.006±0.002, suggesting demographic thinning. The degree of SGS was lower than the value expected for non-vertebrate dispersed tropical trees (Sp=0.029, but similar to the average value for vertebrate dispersed tropical trees (Sp=0.009 affirming the dispersal potential of vertebrate dispersed tropical trees in faunally intact forests.

  14. Kinship, inbreeding and fine-scale spatial structure influence gut microbiota in a hindgut-fermenting tortoise.

    Science.gov (United States)

    Yuan, Michael L; Dean, Samantha H; Longo, Ana V; Rothermel, Betsie B; Tuberville, Tracey D; Zamudio, Kelly R

    2015-05-01

    Herbivorous vertebrates rely on complex communities of mutualistic gut bacteria to facilitate the digestion of celluloses and hemicelluloses. Gut microbes are often convergent based on diet and gut morphology across a phylogenetically diverse group of mammals. However, little is known about microbial communities of herbivorous hindgut-fermenting reptiles. Here, we investigate how factors at the individual level might constrain the composition of gut microbes in an obligate herbivorous reptile. Using multiplexed 16S rRNA gene sequencing, we characterized the faecal microbial community of a population of gopher tortoises (Gopherus polyphemus) and examined how age, genetic diversity, spatial structure and kinship influence differences among individuals. We recovered phylotypes associated with known cellulolytic function, including candidate phylum Termite Group 3, suggesting their importance for gopher tortoise digestion. Although host genetic structure did not explain variation in microbial composition and community structure, we found that fine-scale spatial structure, inbreeding, degree of relatedness and possibly ontogeny shaped patterns of diversity in faecal microbiomes of gopher tortoises. Our findings corroborate widespread convergence of faecal-associated microbes based on gut morphology and diet and demonstrate the role of spatial and demographic structure in driving differentiation of gut microbiota in natural populations. © 2015 John Wiley & Sons Ltd.

  15. Aviation Model: A Fine-Scale Numerical Weather Prediction System for Aviation Applications at the Hong Kong International Airport

    Directory of Open Access Journals (Sweden)

    Wai-Kin Wong

    2013-01-01

    Full Text Available The Hong Kong Observatory (HKO is planning to implement a fine-resolution Numerical Weather Prediction (NWP model for supporting the aviation weather applications at the Hong Kong International Airport (HKIA. This new NWP model system, called Aviation Model (AVM, is configured at a horizontal grid spacing of 600 m and 200 m. It is based on the WRF-ARW (Advance Research WRF model that can have sufficient computation efficiency in order to produce hourly updated forecasts up to 9 hours ahead on a future high performance computer system with theoretical peak performance of around 10 TFLOPS. AVM will be nested inside the operational mesoscale NWP model of HKO with horizontal resolution of 2 km. In this paper, initial numerical experiment results in forecast of windshear events due to seabreeze and terrain effect are discussed. The simulation of sea-breeze-related windshear is quite successful, and the headwind change observed from flight data could be reproduced in the model forecast. Some impacts of physical processes on generating the fine-scale wind circulation and development of significant convection are illustrated. The paper also discusses the limitations in the current model setup and proposes methods for the future development of AVM.

  16. Fine-scale distribution of ectomycorrhizal fungi colonizing Tsuga diversifolia seedlings growing on rocks in a subalpine Abies veitchii forest.

    Science.gov (United States)

    Yoshida, Naohiro; Son, Joung A; Matsushita, Norihisa; Iwamoto, Kojiro; Hogetsu, Taizo

    2014-05-01

    Numerous species of ectomycorrhizal (ECM) fungi coexist under the forest floor. To explore the mechanisms of coexistence, we investigated the fine-scale distribution of ECM fungal species colonizing root tips in the root system of Tsuga diversifolia seedlings in a subalpine forest. ECM root tips of three seedlings growing on the flat top surface of rocks were sampled after recording their positions in the root system. After the root tips were grouped by terminal-restriction fragment length polymorphism (T-RFLP) analysis of ITS rDNA, the fungal species representing each T-RFLP group were identified using DNA sequencing. Based on the fungal species identification, the distribution of root tips colonized by each ECM fungus was mapped. Significant clustering of root tips was estimated for each fungal species by comparing actual and randomly simulated distributions. In total, the three seedlings were colonized by 40 ECM fungal species. The composition of colonizing fungal species was quite different among the seedlings. Twelve of the 15 major ECM fungal species clustered significantly within a few centimeters. Some clusters overlapped or intermingled, while others were unique. Areas with high fungal species diversity were also identified in the root system. In this report, the mechanisms underlying generation of these ECM root tip clusters in the root system are discussed.

  17. Intraspecific differences in lipid content of calanoid copepods across fine-scale depth ranges within the photic layer.

    Directory of Open Access Journals (Sweden)

    Margarita Zarubin

    Full Text Available Copepods are among the most abundant and diverse groups of mesozooplankton in the world's oceans. Each species has a certain depth range within which different individuals (of the same life stage and sex are found. Lipids are accumulated in many calanoid copepods for energy storage and reproduction. Lipid content in some species increases with depth, however studies so far focused mostly on temperate and high-latitude seasonal vertically migrating copepods and compared lipid contents among individuals either from coarse layers or between diapausing, deep-dwelling copepods and individuals found in the photic, near-surface layer. Here we examined whether lipid contents of individual calanoid copepods of the same species, life stage/sex differ between finer depth layers within the upper water column of subtropical and Arctic seas. A total of 6 calanoid species were collected from samples taken at precise depths within the photic layer in both cold eutrophic and warm oligotrophic environments using SCUBA diving, MOCNESS and Multinet. Measurements of lipid content were obtained from digitized photographs of the collected individuals. The results revealed significant differences in lipid content across depth differences as small as 12-15 meters for Mecynocera clausi C5 and Ctenocalanus vanus C5 (Red Sea, Clausocalanus furcatus males and two clausocalanid C5s (Mediterranean Sea, and Calanus glacialis C5 (Arctic. We suggest two possible explanations for the differences in lipid content with depth on such a fine scale: predator avoidance and buoyancy.

  18. Activity patterns and fine-scale resource partitioning in the gregarious Kihansi spray toad Nectophrynoides asperginis in captivity.

    Science.gov (United States)

    Rija, Alfan A; Goboro, Ezekiel M; Mwamende, Kuruthumu A; Said, Abubakari; Kohi, Edward M; Hassan, Shombe N

    2014-01-01

    Understanding the behavior of species threatened with extinction is important for conservation planning and for solving problems facing species in captivity and the wild. We examined diurnal activity budgets and habitat use of the extinct in the wild Kihansi spray toad to provide insights into ongoing conservation initiatives for this species. Observations on eight target behaviors were made each morning and evening for 14 days, in two subpopulations at Kihansi and University of Dar es Salaam captive breeding centers. There were significantly more bouts of resting than calling, amplexing, hunting, walking, climbing, or feeding. There was no difference in mean time spent in each activity between the two subpopulations. The use of habitat was variable between age classes, subpopulations and sampling time. Young toads spent significantly more time resting at the top of vegetation and on walls while adults rested more on logs. Further, adults foraged more on the walls and vegetation in the morning and on the ground in the evening. Contrastingly, young toads foraged more on the ground in the morning and switched to elevated patches during evening. The similarity of the toads' behavior suggests that important biological traits are still maintained in captivity and retained across toad generations. Furthermore, temporal and spatial variations in the use of habitat structures between age groups suggest fine-scale resource partitioning to reduce competition in this gregarious species. These results highlight the importance of maintaining diverse habitat structures in captivity and are useful for planning species reintroduction and future restocking programs. © 2014 Wiley Periodicals, Inc.

  19. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA

    International Nuclear Information System (INIS)

    Ottmar, Roger D.; Blake, John I.; Crolly, William T.

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuelbeds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for building fuelbeds and mapping fire behavior potential, evaluating fuel treatment options for effectiveness, and providing a comparative analysis of landscape modeled fire behavior using three different data sources including the Fuel Characteristic Classification System, LANDFIRE, and the Southern Wildfire Risk Assessment. The research demonstrates that fine scale fuel measurements associated with fuel inventories repeated over time can be used to assess broad scale wildland fire potential and hazard mitigation treatment effectiveness in the southeastern USA and similar fire prone regions. Additional investigations will be needed to modify and improve these processes and capture the true potential of these fine scale data sets for fire and fuel management planning.

  20. Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus

    NARCIS (Netherlands)

    Zeng, Chenjie; Guo, Xingyi; Long, Jirong; Kuchenbaecker, Karoline B.; Droit, Arnaud; Michailidou, Kyriaki; Ghoussaini, Maya; Kar, Siddhartha; Freeman, Adam; Hopper, John L.; Milne, Roger L.; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Agata, Simona; Ahmed, Shahana; Aittomaki, Kristiina; Andrulis, Irene L.; Anton-Culver, Hoda; Antonenkova, Natalia N.; Arason, Adalgeir; Arndt, Volker; Arun, Banu K.; Arver, Brita; Bacot, Francois; Barrowdale, Daniel; Baynes, Caroline; Beeghly-Fadiel, Alicia; Benitez, Javier; Bermisheva, Marina; Blomqvist, Carl; Blot, William J.; Bogdanova, Natalia V.; Bojesen, Stig E.; Bonanni, Bernardo; Borresen-Dale, Anne-Lise; Brand, Judith S.; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Broeks, Annegien; Bruening, Thomas; Burwinkel, Barbara; Buys, Saundra S.; Cai, Qiuyin; Caldes, Trinidad; Campbell, Ian; Carpenter, Jane; Chang-Claude, Jenny; Choi, Ji-Yeob; Claes, Kathleen B. M.; Clarke, Christine; Cox, Angela; Cross, Simon S.; Czene, Kamila; Daly, Mary B.; de la Hoya, Miguel; De Leeneer, Kim; Devilee, Peter; Diez, Orland; Domchek, Susan M.; Doody, Michele; Dorfling, Cecilia M.; Doerk, Thilo; dos-Santos-Silva, Isabel; Dumont, Martine; Dwek, Miriam; Dworniczak, Bernd; Egan, Kathleen; Eilber, Ursula; Einbeigi, Zakaria; Ejlertsen, Bent; Ellis, Steve; Frost, Debra; Lalloo, Fiona; Fasching, Peter A.; Figueroa, Jonine; Flyger, Henrik; Friedlander, Michael; Friedman, Eitan; Gambino, Gaetana; Gao, Yu-Tang; Garber, Judy; Garcia-Closas, Montserrat; Gehrig, Andrea; Damiola, Francesca; Lesueur, Fabienne; Mazoyer, Sylvie; Stoppa-Lyonnet, Dominique; Giles, Graham G.; Godwin, Andrew K.; Goldgar, David E.; Gonzalez-Neira, Anna; Greene, Mark H.; Guenel, Pascal; Haeberle, Lothar; Haiman, Christopher A.; Hallberg, Emily; Hamann, Ute; Hansen, Thomas V. O.; Hart, Steven; Hartikainen, Jaana M.; Hartman, Mikael; Hassan, Norhashimah; Healey, Sue; Hogervorst, Frans B. L.; Verhoef, Senno; Hendricks, Carolyn B.; Hillemanns, Peter; Hollestelle, Antoinette; Hulick, Peter J.; Hunter, David J.; Imyanitov, Evgeny N.; Isaacs, Claudine; Ito, Hidemi; Jakubowska, Anna; Janavicius, Ramunas; Jaworska-Bieniek, Katarzyna; Jensen, Uffe Birk; John, Esther M.; Beauparlant, Charles Joly; Jones, Michael; Kabisch, Maria; Kang, Daehee; Karlan, Beth Y.; Kauppila, Saila; Kerin, Michael J.; Khan, Sofia; Khusnutdinova, Elza; Knight, Julia A.; Konstantopoulou, Irene; Kraft, Peter; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Le Marchand, Loic; Lee, Chuen Neng; Lee, Min Hyuk; Lester, Jenny; Li, Jingmei; Liljegren, Annelie; Lindblom, Annika; Lophatananon, Artitaya; Lubinski, Jan; Mai, Phuong L.; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Matsuo, Keitaro; McGuffog, Lesley; Meindl, Alfons; Menegaux, Florence; Montagna, Marco; Muir, Kenneth; Mulligan, Anna Marie; Nathanson, Katherine L.; Neuhausen, Susan L.; Nevanlinna, Heli; Newcomb, Polly A.; Nord, Silje; Nussbaum, Robert L.; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I.; Olswold, Curtis; Osorio, Ana; Papi, Laura; Park-Simon, Tjoung-Won; Paulsson-Karlsson, Ylva; Peeters, Stephanie; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Pfeiler, Georg; Phelan, Catherine M.; Presneau, Nadege; Radice, Paolo; Rahman, Nazneen; Ramus, Susan J.; Rashid, Muhammad Usman; Rennert, Gad; Rhiem, Kerstin; Rudolph, Anja; Salani, Ritu; Sangrajrang, Suleeporn; Sawyer, Elinor J.; Schmidt, Marjanka K.; Schmutzler, Rita K.; Schoemaker, Minouk J.; Schuermann, Peter; Seynaeve, Caroline; Shen, Chen-Yang; Shrubsole, Martha J.; Shu, Xiao-Ou; Sigurdson, Alice; Singer, Christian F.; Slager, Susan; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Swerdlow, Anthony; Szabo, Csilla I.; Tchatchou, Sandrine; Teixeira, Manuel R.; Teo, Soo H.; Terry, Mary Beth; Tessier, Daniel C.; Teule, Alex; Thomassen, Mads; Tihomirova, Laima; Tischkowitz, Marc; Toland, Amanda E.; Tung, Nadine; Turnbull, Clare; van den Ouweland, Ans M. W.; van Rensburg, Elizabeth J.; ven den Berg, David; Vijai, Joseph; Wang-Gohrke, Shan; Weitzel, Jeffrey N.; Whittemore, Alice S.; Winqvist, Robert; Wong, Tien Y.; Wu, Anna H.; Yannoukakos, Drakoulis; Yu, Jyh-Cherng; Pharoah, Paul D. P.; Hall, Per; Chenevix-Trench, Georgia; Dunning, Alison M.; Simard, Jacques; Couch, Fergus J.; Antoniou, Antonis C.; Easton, Douglas F.; Zheng, Wei; Ligtenberg, Jakobus; Oosterwijk, Jan; van der Hout, Annemarie

    2016-01-01

    Background: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. Method: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300

  1. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    NARCIS (Netherlands)

    Vigorito, E.; Kuchenbaecker, K.B.; Beesley, J.; Adlard, J.; Agnarsson, B.A.; Andrulis, I.L.; Arun, B.K.; Barjhoux, L.; Belotti, M.; Benitez, J.; Berger, A.; Bojesen, A.; Bonanni, B.; Brewer, C.; Caldes, T.; Caligo, M.A.; Campbell, I.; Chan, S.B.; Claes, K.B.; Cohn, D.E.; Cook, J.; Daly, M.B.; Damiola, F.; Davidson, R.; Pauw, A. de; Delnatte, C.; Diez, O.; Domchek, S.M.; Dumont, M.; Durda, K.; Dworniczak, B.; Easton, D.F.; Eccles, D.; Edwinsdotter Ardnor, C.; Eeles, R.; Ejlertsen, B.; Ellis, S.; Evans, D.G.; Feliubadalo, L.; Fostira, F.; Foulkes, W.D.; Friedman, E.; Frost, D.; Gaddam, P.; Ganz, P.A.; Garber, J.; Garcia-Barberan, V.; Gauthier-Villars, M.; Gehrig, A.; Gerdes, A.M.; Giraud, S.; Godwin, A.K.; Goldgar, D.E.; Hake, C.R.; Hansen, T.V.; Healey, S.; Hodgson, S.; Hogervorst, F.B.; Houdayer, C.; Hulick, P.J.; Imyanitov, E.N.; Isaacs, C.; Izatt, L.; Izquierdo, A.; Jacobs, L; Jakubowska, A.; Janavicius, R.; Jaworska-Bieniek, K.; Jensen, U.B.; John, E.M.; Vijai, J.; Karlan, B.Y.; Kast, K.; Khan, S.; Kwong, A.; Laitman, Y.; Lester, J.; Lesueur, F.; Liljegren, A.; Lubinski, J.; Mai, P.L.; Manoukian, S.; Mazoyer, S.; Meindl, A.; Mensenkamp, A.R.; Montagna, M.; Nathanson, K.L.; Neuhausen, S.L.; Nevanlinna, H.; Niederacher, D.; Olah, E.; Olopade, O.I.; Ong, K.R.; Osorio, A.; Park, S.K.; Paulsson-Karlsson, Y.; Pedersen, I.S.; Peissel, B.; Peterlongo, P.; et al.,

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2

  2. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Vigorito, Elena; Kuchenbaecker, Karoline B; Beesley, Jonathan

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 ...

  3. Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus

    NARCIS (Netherlands)

    C. Zeng (Chenjie); Guo, X. (Xingyi); J. Long (Jirong); K.B. Kuchenbaecker (Karoline); A. Droit (Arnaud); K. Michailidou (Kyriaki); M. Ghoussaini (Maya); S. Kar (Siddhartha); Freeman, A. (Adam); J.L. Hopper (John); R.L. Milne (Roger); M.K. Bolla (Manjeet K.); Wang, Q. (Qin); J. Dennis (Joe); S. Agata (Simona); S. Ahmed (Shahana); K. Aittomäki (Kristiina); I.L. Andrulis (Irene); H. Anton-Culver (Hoda); Antonenkova, N.N. (Natalia N.); A. Arason (Adalgeir); Arndt, V. (Volker); B.K. Arun (Banu); B. Arver (Brita Wasteson); F. Bacot (Francois); D. Barrowdale (Daniel); Baynes, C. (Caroline); A. Beeghly-Fadiel (Alicia); J. Benítez (Javier); M. Bermisheva (Marina); C. Blomqvist (Carl); W.J. Blot (William); N.V. Bogdanova (Natalia); S.E. Bojesen (Stig); B. Bonnani (Bernardo); A.-L. Borresen-Dale (Anne-Lise); J.S. Brand (Judith S.); H. Brauch (Hiltrud); P. Brennan (Paul); H. Brenner (Hermann); A. Broeks (Annegien); T. Brüning (Thomas); B. Burwinkel (Barbara); S.S. Buys (Saundra); Q. Cai (Qiuyin); T. Caldes (Trinidad); I. Campbell (Ian); T.A. Carpenter (Adrian); J. Chang-Claude (Jenny); Choi, J.-Y. (Ji-Yeob); K.B.M. Claes (Kathleen B.M.); C. Clarke (Christine); A. Cox (Angela); S.S. Cross (Simon); K. Czene (Kamila); M.B. Daly (Mary B.); M. de La Hoya (Miguel); K. De Leeneer (Kim); P. Devilee (Peter); O. Díez (Orland); S.M. Domchek (Susan); M. Doody (Michele); C.M. Dorfling (Cecilia); T. Dörk (Thilo); I. dos Santos Silva (Isabel); M. Dumont (Martine); M. Dwek (Miriam); Dworniczak, B. (Bernd); K.M. Egan (Kathleen); U. Eilber (Ursula); Z. Einbeigi (Zakaria); B. Ejlertsen (Bent); S.D. Ellis (Steve); D. Frost (Debra); F. Lalloo (Fiona); P.A. Fasching (Peter); J.D. Figueroa (Jonine); H. Flyger (Henrik); M. Friedlander (Michael); E. Friedman (Eitan); Gambino, G. (Gaetana); Gao, Y.-T. (Yu-Tang); J. Garber (Judy); M. García-Closas (Montserrat); P.A. Gehrig (Paola A.); F. Damiola (Francesca); F. Lesueur (Fabienne); S. Mazoyer (Sylvie); D. Stoppa-Lyonnet (Dominique); Giles, G.G. (Graham G.); A.K. Godwin (Andrew K.); D. Goldgar (David); A. González-Neira (Anna); M.H. Greene (Mark H.); P. Guénel (Pascal); L. Haeberle (Lothar); C.A. Haiman (Christopher A.); Hallberg, E. (Emily); U. Hamann (Ute); T.V.O. Hansen (Thomas); S. Hart (Stewart); J.M. Hartikainen (J.); J.M. Hartman (Joost); N. Hassan (Norhashimah); S. Healey (Sue); F.B.L. Hogervorst (Frans); S. Verhoef; Hendricks, C.B. (Carolyn B.); P. Hillemanns (Peter); A. Hollestelle (Antoinette); P.J. Hulick (Peter); D. Hunter (David); E.N. Imyanitov (Evgeny); C. Isaacs (Claudine); H. Ito (Hidemi); A. Jakubowska (Anna); R. Janavicius (Ramunas); Jaworska-Bieniek, K. (Katarzyna); U.B. Jensen; E.M. John (Esther); Joly Beauparlant, C. (Charles); M. Jones (Michael); M. Kabisch (Maria); D. Kang (Daehee); Karlan, B.Y. (Beth Y.); S. Kauppila (Saila); M. Kerin (Michael); S. Khan (Sofia); E.K. Khusnutdinova (Elza); J.A. Knight (Julia); I. Konstantopoulou (I.); P. Kraft (Peter); A. Kwong (Ava); Y. Laitman (Yael); Lambrechts, D. (Diether); C. Lazaro (Conxi); L. Le Marchand (Loic); C.N. Lee (Chuen); M.H. Lee (Min Hyuk); K.J. Lester (Kathryn); J. Li (Jingmei); A. Liljegren (Annelie); A. Lindblom (Annika); A. Lophatananon (Artitaya); J. Lubinski (Jan); P.L. Mai (Phuong); A. Mannermaa (Arto); S. Manoukian (Siranoush); S. Margolin (Sara); Marme, F. (Frederik); K. Matsuo (Keitaro); L. McGuffog (Lesley); A. Meindl (Alfons); F. Menegaux (Florence); M. Montagna (Marco); K.R. Muir (K.); A.-M. Mulligan (Anna-Marie); K.L. Nathanson (Katherine); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); P. Newcomb (Polly); S. Nord (Silje); R.L. Nussbaum (Robert L.); K. Offit (Kenneth); E. Olah; O.I. Olopade (Olufunmilayo I.); C. Olswold (Curtis); A. Osorio (Ana); L. Papi (Laura); T.-W. Park-Simon; Paulsson-Karlsson, Y. (Ylva); S.T.H. Peeters (Stephanie); B. Peissel (Bernard); P. Peterlongo (Paolo); J. Peto (Julian); G. Pfeiler (Georg); C. Phelan (Catherine); Presneau, N. (Nadege); P. Radice (Paolo); N. Rahman (Nazneen); S.J. Ramus (Susan); M.U. Rashid (Muhammad); G. Rennert (Gad); K. Rhiem (Kerstin); Rudolph, A. (Anja); R. Salani (Ritu); Sangrajrang, S. (Suleeporn); E.J. Sawyer (Elinor); M.K. Schmidt (Marjanka); R.K. Schmutzler (Rita); M. Schoemaker (Minouk); P. Schürmann (Peter); C.M. Seynaeve (Caroline); C.-Y. Shen (Chen-Yang); M. Shrubsole (Martha); X.-O. Shu (Xiao-Ou); A.J. Sigurdson (Alice); C.F. Singer (Christian); S. Slager (Susan); Soucy, P. (Penny); M.C. Southey (Melissa); D. Steinemann (Doris); A.J. Swerdlow (Anthony ); C. Szabo (Csilla); Tchatchou, S. (Sandrine); P.J. Teixeira; S.-H. Teo; M.B. Terry (Mary Beth); D.C. Tessier (Daniel C.); A. Teulé (A.); M. Thomassen (Mads); L. Tihomirova (Laima); M. Tischkowitz (Marc); A.E. Toland (Amanda); N. Tung (Nadine); C. Turnbull (Clare); A.M.W. van den Ouweland (Ans); E.J. van Rensburg (Elizabeth); ven den Berg, D. (David); J. Vijai (Joseph); S. Wang-Gohrke (Shan); J.N. Weitzel (Jeffrey); A.S. Whittemore (Alice); R. Winqvist (Robert); Wong, T.Y. (Tien Y.); A.H. Wu (Anna); Yannoukakos, D. (Drakoulis); J-C. Yu (Jyh-Cherng); P.D.P. Pharoah (Paul); P. Hall (Per); G. Chenevix-Trench (Georgia); A.M. Dunning (Alison); J. Simard (Jacques); F.J. Couch (Fergus); A.C. Antoniou (Antonis C.); D.F. Easton (Douglas F.); W. Zheng (Wei)

    2016-01-01

    textabstractBackground: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. Method: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more

  4. Oscillatory Reinstatement Enhances Declarative Memory.

    Science.gov (United States)

    Javadi, Amir-Homayoun; Glen, James C; Halkiopoulos, Sara; Schulz, Mei; Spiers, Hugo J

    2017-10-11

    Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding. Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating current stimulation over the left dorsolateral prefrontal cortex of human participants [ n = 70, 45 females; age mean (SD) = 22.12 (2.16)] during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60-60 or 90-90 Hz) or different frequencies (60-90 or 90-60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and 90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of oscillatory reinstatement in memory retrieval. SIGNIFICANCE STATEMENT Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent with the proposal that reinstatement of neural oscillations during retrieval

  5. Effect of prolonged wakefulness on electroencephalographic oscillatory activity during sleep.

    Science.gov (United States)

    Olbrich, Eckehard; Landolt, Hans Peter; Achermann, Peter

    2014-06-01

    The human sleep electroencephalogram (EEG) is characterized by the occurrence of distinct oscillatory events such as delta waves, sleep spindles and alpha activity. We applied a previously proposed algorithm for the detection of such events and investigated their incidence and frequency in baseline and recovery sleep after 40 h of sustained wakefulness in 27 healthy young subjects. The changes in oscillatory events induced by sleep deprivation were compared to the corresponding spectral changes. Both approaches revealed, on average, an increase in low frequency activity and a decrease in spindle activity after sleep deprivation. However, the increase of oscillatory events in the delta range and decrease in the sigma range occurred in a more restricted frequency range compared to spectral changes. The mean relative power spectra showed a significant increase in theta and alpha activity after sleep deprivation while, on average, the event analysis showed only a weak effect in the theta band. The reason for this discrepancy is that the spectral analysis does not distinguish between diffuse activity and clearly visible temporally localized oscillations, while the event analysis would detect only the latter. Additionally, only a few individuals clearly showed activity in the theta or alpha frequency bands. Conversely, event analysis revealed that some individuals showed an increased rate of sleep spindles after sleep deprivation, a fact that was not evident in the relative power spectra due to a decrease in background activity. The two methods complement each other and facilitate the interpretation of distinct changes induced by prolonged wakefulness in sleep EEG. © 2013 European Sleep Research Society.

  6. Fine-scale community structure analysis of ANME in Nyegga sediments with high and low methane flux

    Directory of Open Access Journals (Sweden)

    Irene eRoalkvam

    2012-06-01

    Full Text Available To obtain knowledge on how regional variations in methane seepage rates influence the stratification, abundance and diversity of anaerobic methanotrophs (ANME we analyzed the vertical microbial stratification in a gravity core from a methane micro-seeping area at Nyegga by using 454-pyrosequencing of 16S rRNA gene tagged amplicons and quantitative PCR. The results were compared with previously obtained data from the more active G11 pockmark, characterized by higher methane flux. A downcore stratification and high relative abundance of ANME was observed in both cores, with transition from an ANME-2a/b dominated community in low-sulfide and low-methane horizons to ANME-1 dominance in horizons near the sulfate methane transition zone (SMTZ. The stratification was over a wider spatial region and at greater depth in the core with lower methane flux, and the total 16S rRNA copy numbers were two orders of magnitude lower than in the sediments at G11 pockmark. A fine-scale view into the ANME communities at each location was achieved through OTU clustering of ANME-affiliated sequences. The majority of ANME-1 sequences from both sampling sites clustered within one OTU, while ANME-2a/b sequences were represented in unique OTUs. We suggest that free living ANME-1 is the most abundant taxon in Nyegga cold seeps, and also the main consumer of methane. The specific ANME-2a/b ecotypes could reflect adaptations to the geochemical composition at each location, with different affinities to methane. Given that the ANME-2a/b population could be sustained in less active seepage areas, this subgroup could be potential seed populations in newly developed methane-enriched environments.

  7. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    Directory of Open Access Journals (Sweden)

    Florian Holon

    Full Text Available Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m. It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures

  8. Remote sensing of the Ionosphere over the Murchison Radio Observatory, Western Australia, Leading to an Understanding of Fine Scale Behaviour

    Science.gov (United States)

    Herne, D. E.; Lynch, M. J.; Coster, A. J.; Oberoi, D.; Carrano, C. S.; Williams, J.; Kennewell, J.; Groves, K. M.

    2010-12-01

    The Murchison Radio Observatory (MRO) is the home of radio astronomy in Australia. Projects currently under development at the MRO include a low-frequency instrument, the Murchison Widefield Array (MWA). The MWA is an aperture synthesis, imaging array that when complete will comprise approximately 8,000 dipole antennas operating in the frequency range, 80 to 300 MHz. Signals in this frequency range are subject to distortions caused by the ionosphere. The effects of scintillation and faraday rotation degrade image quality. In order to ‘unwind’ faraday rotation, the distribution of the electron content in the ionosphere must be determined. Knowledge of the absolute total electron content (TEC) provides information about this distribution. This step is necessary in order to study processes in space involving magnetism. Over a period of two years, TEC measurements have been made over the MRO using high-precision, dual-frequency, GPS systems. Continuous measurements were performed for 12 months and campaign-based measurements at other times, due to the remote location of the MRO. The determination of the GPS receiver biases used to calculate TEC were studied with respect to changing temperatures. TEC measurements are compared to the results of modelling conducted previously (Kennewell et. al. 2005) as part of Australia’s bid to host the Square Kilometre Array radio telescope (SKA). Further, due to the fine grained nature of measurements (on the order of 0.01-0.03 TEC units), fine-scale structure can be resolved in the behaviour of the ionosphere in both temporal and spatial domains and is discussed. This work too, is laying a foundation for the accurate characterisation of the ionosphere over the MRO which is also the possible future site of the SKA. Plans to extend this work and the implementation of useful new measurement regimes are discussed, enabled by facilities currently being established as part of Australia’s ongoing commitment to radio astronomy on the

  9. Fine-scale tracking and diet information of a marine predator reveals the origin and contrasting spatial distribution of prey

    Science.gov (United States)

    Alonso, Hany; Granadeiro, José P.; Dias, Maria P.; Catry, Teresa; Catry, Paulo

    2018-03-01

    The distribution of many marine organisms is still poorly understood, particularly in oceanic regions. Seabirds, as aerial predators which cover extensive areas across the oceans, can potentially be used to enhance our knowledge on the distribution and abundance of their prey. In this study, we combined tracking data and dietary data from individual Cory's shearwaters Calonectris borealis (n = 68) breeding in Selvagens archipelago, Madeira, Portugal, during the chick-rearing periods of 2011 and 2016, in order to infer prey origin within shearwaters' main foraging areas. The digestion state of each prey item in the diet was assessed and classified; and compared to digestion states from known prey items fed to captive birds. In a novel approach, we combined tracking data with information on the prey digestion duration and data on the transit times from foraging grounds to the colony to estimate the location of prey capture. We found a consistent heterogeneity in prey distribution across four different marine domains: Selvagens, deep-sea, seamounts, and continental shelf. In oceanic areas, the chub mackerel Scomber colias, the main prey of Cory's shearwaters, was strongly associated with seamounts and insular shelves, whereas oceanic species like pilot-fish, flying-squid, flying-fish were clearly associated with deep-sea waters. Sardines Sardina pilchardus, anchovies Engraulis encrasicolus and other coastal species were associated with the African shelf. Prey origin assignment was robust across three different sets of assumptions, and was also supported by information on the digestion state of prey collected over a large independent sampling period (671 samples, collected in 2008-2010). The integration of fine-scale dietary and foraging trip data from marine predators provides a new framework to gain insights into the distribution and abundance of prey species in poorly known oceanic areas.

  10. Seasonal effects and fine-scale population dynamics of Aedes taeniorhynchus, a major disease vector in the Galapagos Islands.

    Science.gov (United States)

    Bataille, Arnaud; Cunningham, Andrew A; Cruz, Marilyn; Cedeno, Virna; Goodman, Simon J

    2010-10-01

    Characterization of the fine-scale population dynamics of the mosquito Aedes taeniorhynchus is needed to improve our understanding of its role as a disease vector in the Galapagos Islands. We used microsatellite data to assess the genetic structure of coastal and highland mosquito populations and patterns of gene flow between the two habitats through time on Santa Cruz Island. In addition, we assessed possible associations of mosquito abundance and genetic diversity with environmental variables. The coastal and highland mosquito populations were highly differentiated from each other all year round, with some gene flow detected only during periods of increased precipitation. The results support the hypothesis that selection arising from ecological differences between habitats is driving adaptation and divergence in A. taeniorhynchus, and maintaining long-term genetic differentiation of the populations against gene flow. The highland and lowland populations may constitute an example of incipient speciation in progress. Highland populations were characterized by lower observed heterozygosity and allelic richness, suggesting a founder effect and/or lower breeding site availability in the highlands. A lack of reduction in genetic diversity over time in highland populations suggests that they survive dry periods as dormant eggs. Association between mosquito abundance and precipitation was strong in the highlands, whereas tide height was the main factor affecting mosquito abundance on the coast. Our findings suggests differences in the infection dynamics of mosquito-borne parasites in the highlands compared to the coast, and a higher risk of mosquito-driven disease spread across these habitats during periods of increased precipitation. © 2010 Blackwell Publishing Ltd.

  11. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    Science.gov (United States)

    Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie

    2015-01-01

    Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant

  12. Human Social Behavior and Demography Drive Patterns of Fine-Scale Dengue Transmission in Endemic Areas of Colombia.

    Directory of Open Access Journals (Sweden)

    Harish Padmanabha

    Full Text Available Dengue is known to transmit between humans and A. aegypti mosquitoes living in neighboring houses. Although transmission is thought to be highly heterogeneous in both space and time, little is known about the patterns and drivers of transmission in groups of houses in endemic settings. We carried out surveys of PCR positivity in children residing in 2-block patches of highly endemic cities of Colombia. We found high levels of heterogeneity in PCR positivity, varying from less than 30% in 8 of the 10 patches to 56 and 96%, with the latter patch containing 22 children simultaneously PCR positive (PCR22 for DEN2. We then used an agent-based model to assess the likely eco-epidemiological context of this observation. Our model, simulating daily dengue dynamics over a 20 year period in a single two block patch, suggests that the observed heterogeneity most likely derived from variation in the density of susceptible people. Two aspects of human adaptive behavior were critical to determining this density: external social relationships favoring viral introduction (by susceptible residents or infectious visitors and immigration of households from non-endemic areas. External social relationships generating frequent viral introduction constituted a particularly strong constraint on susceptible densities, thereby limiting the potential for explosive outbreaks and dampening the impact of heightened vectorial capacity. Dengue transmission can be highly explosive locally, even in neighborhoods with significant immunity in the human population. Variation among neighborhoods in the density of local social networks and rural-to-urban migration is likely to produce significant fine-scale heterogeneity in dengue dynamics, constraining or amplifying the impacts of changes in mosquito populations and cross immunity between serotypes.

  13. Novel oscillatory flow reactors for biotechnological applications

    OpenAIRE

    Reis, N.

    2006-01-01

    Tese de Doutoramento em Engenharia Química e Biológica This thesis explores the biotechnological applications of two novel scale-down oscillatory flow reactors (OFRs). A micro-bioreactor (working mostly in batch) and a continuous meso-reactor systems were developed based on a 4.4 mm internal diameter tube with smooth periodic constrictions (SPC), both operating under oscillatory flow mixing (OFM). The first part is dedicated to the flow characterisation in the novel SPC geom...

  14. Characterization of Oscillatory Lift in MFC Airfoils

    OpenAIRE

    Lang Jr, Joseph Reagle

    2014-01-01

    The purpose of this research is to characterize the response of an airfoil with an oscillatory morphing, Macro-fiber composite (MFC) trailing edge. Correlation of the airfoil lift with the oscillatory input is presented. Modal analysis of the test airfoil and apparatus is used to determine the frequency response function. The effects of static MFC inputs on the FRF are presented and compared to the unactuated airfoil. The transfer function is then used to determine the lift component du...

  15. Spatially explicit multi-threat assessment of food tree species in Burkina Faso: A fine-scale approach.

    Directory of Open Access Journals (Sweden)

    Hannes Gaisberger

    Full Text Available Over the last decades agroforestry parklands in Burkina Faso have come under increasing demographic as well as climatic pressures, which are threatening indigenous tree species that contribute substantially to income generation and nutrition in rural households. Analyzing the threats as well as the species vulnerability to them is fundamental for priority setting in conservation planning. Guided by literature and local experts we selected 16 important food tree species (Acacia macrostachya, Acacia senegal, Adansonia digitata, Annona senegalensis, Balanites aegyptiaca, Bombax costatum, Boscia senegalensis, Detarium microcarpum, Lannea microcarpa, Parkia biglobosa, Sclerocarya birrea, Strychnos spinosa, Tamarindus indica, Vitellaria paradoxa, Ximenia americana, Ziziphus mauritiana and six key threats to them (overexploitation, overgrazing, fire, cotton production, mining and climate change. We developed a species-specific and spatially explicit approach combining freely accessible datasets, species distribution models (SDMs, climate models and expert survey results to predict, at fine scale, where these threats are likely to have the greatest impact. We find that all species face serious threats throughout much of their distribution in Burkina Faso and that climate change is predicted to be the most prevalent threat in the long term, whereas overexploitation and cotton production are the most important short-term threats. Tree populations growing in areas designated as 'highly threatened' due to climate change should be used as seed sources for ex situ conservation and planting in areas where future climate is predicting suitable habitats. Assisted regeneration is suggested for populations in areas where suitable habitat under future climate conditions coincides with high threat levels due to short-term threats. In the case of Vitellaria paradoxa, we suggest collecting seed along the northern margins of its distribution and considering assisted

  16. Spatially explicit multi-threat assessment of food tree species in Burkina Faso: A fine-scale approach.

    Science.gov (United States)

    Gaisberger, Hannes; Kindt, Roeland; Loo, Judy; Schmidt, Marco; Bognounou, Fidèle; Da, Sié Sylvestre; Diallo, Ousmane Boukary; Ganaba, Souleymane; Gnoumou, Assan; Lompo, Djingdia; Lykke, Anne Mette; Mbayngone, Elisée; Nacoulma, Blandine Marie Ivette; Ouedraogo, Moussa; Ouédraogo, Oumarou; Parkouda, Charles; Porembski, Stefan; Savadogo, Patrice; Thiombiano, Adjima; Zerbo, Guibien; Vinceti, Barbara

    2017-01-01

    Over the last decades agroforestry parklands in Burkina Faso have come under increasing demographic as well as climatic pressures, which are threatening indigenous tree species that contribute substantially to income generation and nutrition in rural households. Analyzing the threats as well as the species vulnerability to them is fundamental for priority setting in conservation planning. Guided by literature and local experts we selected 16 important food tree species (Acacia macrostachya, Acacia senegal, Adansonia digitata, Annona senegalensis, Balanites aegyptiaca, Bombax costatum, Boscia senegalensis, Detarium microcarpum, Lannea microcarpa, Parkia biglobosa, Sclerocarya birrea, Strychnos spinosa, Tamarindus indica, Vitellaria paradoxa, Ximenia americana, Ziziphus mauritiana) and six key threats to them (overexploitation, overgrazing, fire, cotton production, mining and climate change). We developed a species-specific and spatially explicit approach combining freely accessible datasets, species distribution models (SDMs), climate models and expert survey results to predict, at fine scale, where these threats are likely to have the greatest impact. We find that all species face serious threats throughout much of their distribution in Burkina Faso and that climate change is predicted to be the most prevalent threat in the long term, whereas overexploitation and cotton production are the most important short-term threats. Tree populations growing in areas designated as 'highly threatened' due to climate change should be used as seed sources for ex situ conservation and planting in areas where future climate is predicting suitable habitats. Assisted regeneration is suggested for populations in areas where suitable habitat under future climate conditions coincides with high threat levels due to short-term threats. In the case of Vitellaria paradoxa, we suggest collecting seed along the northern margins of its distribution and considering assisted regeneration in the

  17. Fine-Scale Microclimatic Variation Can Shape the Responses of Organisms to Global Change in Both Natural and Urban Environments.

    Science.gov (United States)

    Pincebourde, Sylvain; Murdock, Courtney C; Vickers, Mathew; Sears, Michael W

    2016-07-01

    abilities of ectotherms in setting their overall performance. We used a random walk framework to show that the thermal heterogeneity allows a more precise behavioral thermoregulation and a narrower temperature distribution of the ectotherm compared to less heterogeneous microhabitats. Finally, we discuss the potential impacts of global change on the fine scale mosaics of microclimates. The amplitude of change may differ between spatial scales. In heterogeneous microhabitats, the amplitude of change at micro-scale, caused by atmospheric warming, can be substantial while it can be limited at the local and landscape scales. We suggest that the warming signal will influence species performance and biotic interactions by modulating the mosaic of microclimates. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  18. Advantages of Oscillatory Hydraulic Tomography

    Science.gov (United States)

    Kitanidis, P. K.; Bakhos, T.; Cardiff, M. A.; Barrash, W.

    2012-12-01

    Characterizing the subsurface is significant for most hydrogeologic studies, such as those involving site remediation and groundwater resource explo¬ration. A variety of hydraulic and geophysical methods have been developed to estimate hydraulic conductivity and specific storage. Hydraulic methods based on the analysis of conventional pumping tests allow the estimation of conductivity and storage without need for approximate petrophysical relations, which is an advantage over most geophysical methods that first estimate other properties and then infer values of hydraulic parameters. However, hydraulic methods have the disadvantage that the head-change signal decays with distance from the pumping well and thus becomes difficult to separate from noise except in close proximity to the source. Oscillatory hydraulic tomography (OHT) is an emerging technology to im¬age the subsurface. This method utilizes the idea of imposing sinusoidally varying pressure or discharge signals at several points, collecting head observations at several other points, and then processing these data in a tomographic fashion to estimate conductivity and storage coefficients. After an overview of the methodology, including a description of the most important potential advantages and challenges associated with this approach, two key promising features of the approach will be discussed. First, the signal at an observation point is orthogonal to and thus can be separated from nuisance inputs like head fluctuation from production wells, evapotranspiration, irrigation, and changes in the level of adjacent streams. Second, although the signal amplitude may be weak, one can extract the phase and amplitude of the os¬cillatory signal by collecting measurements over a longer time, thus compensating for the effect of large distance through longer sampling period.

  19. How brain oscillations form memories--a processing based perspective on oscillatory subsequent memory effects.

    Science.gov (United States)

    Hanslmayr, Simon; Staudigl, Tobias

    2014-01-15

    Brain oscillations are increasingly recognized by memory researchers as a useful tool to unravel the neural mechanisms underlying the formation of a memory trace. However, the increasing numbers of published studies paint a rather complex picture of the relation between brain oscillations and memory formation. Concerning oscillatory amplitude, for instance, increases as well as decreases in various frequency bands (theta, alpha, beta and gamma) were associated with memory formation. These results cast doubt on frameworks putting forward the idea of an oscillatory signature that is uniquely related to memory formation. In an attempt to clarify this issue we here provide an alternative perspective, derived from classic cognitive frameworks/principles of memory. On the basis of Craik's levels of processing framework and Tulving's encoding specificity principle we hypothesize that brain oscillations during encoding might primarily reflect the perceptual and cognitive processes engaged by the encoding task. These processes may then lead to later successful retrieval depending on their overlap with the processes engaged by the memory test. As a consequence, brain oscillatory correlates of memory formation could vary dramatically depending on how the memory is encoded, and on how it is being tested later. Focusing on oscillatory amplitude changes and on theta-to-gamma cross-frequency coupling, we here review recent evidence showing how brain oscillatory subsequent memory effects can be modulated, and sometimes even be reversed, by varying encoding tasks, and the contextual overlap between encoding and retrieval. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Oscillatory EEG correlates of arithmetic strategies: A training study

    Directory of Open Access Journals (Sweden)

    Roland H. Grabner

    2012-10-01

    Full Text Available There has been a long tradition of research on mathematics education showing that children and adults use different strategies to solve arithmetic problems. Neurophysiological studies have recently begun to investigate the brain correlates of these strategies. The existing body of data, however, reflect static end points of the learning process and do not provide information on how brain activity changes in response to training or intervention. In this study, we explicitly address this issue by training participants in using fact retrieval strategies. We also investigate whether brain activity related to arithmetic fact learning is domain-specific or whether this generalizes to other learning materials, such as the solution of figural-spatial problems. Twenty adult students were trained on sets of two-digit multiplication problems and figural-spatial problems. After the training, they were presented with the trained and untrained problems while their brain activity was recorded by means of electroencephalography (EEG . In both problem types, the training resulted in accuracies over 90 % and significant decreases in solution times. Analyses of the oscillatory EEG data also revealed training effects across both problem types. Specifically, we observed training-related activity increases in the theta band (3-6 Hz and decreases in the lower alpha band (8-10 Hz, especially over parieto-occipital and parietal brain regions. These results provide the first evidence that a short term fact retrieval training results in significant changes in oscillatory EEG activity. These findings further corroborate the role of the theta band in the retrieval of semantic information from memory and suggest that theta activity is not only sensitive to fact retrieval in mental arithmetic but also in other domains.

  1. Oscillatory EEG Correlates of Arithmetic Strategies: A Training Study

    Science.gov (United States)

    Grabner, Roland H.; De Smedt, Bert

    2012-01-01

    There has been a long tradition of research on mathematics education showing that children and adults use different strategies to solve arithmetic problems. Neurophysiological studies have recently begun to investigate the brain correlates of these strategies. The existing body of data, however, reflect static end points of the learning process and do not provide information on how brain activity changes in response to training or intervention. In this study, we explicitly address this issue by training participants in using fact retrieval strategies. We also investigate whether brain activity related to arithmetic fact learning is domain-specific or whether this generalizes to other learning materials, such as the solution of figural-spatial problems. Twenty adult students were trained on sets of two-digit multiplication problems and figural-spatial problems. After the training, they were presented with the trained and untrained problems while their brain activity was recorded by means of electroencephalography (EEG). In both problem types, the training resulted in accuracies over 90% and significant decreases in solution times. Analyses of the oscillatory EEG data also revealed training effects across both problem types. Specifically, we observed training-related activity increases in the theta band (3–6 Hz) and decreases in the lower alpha band (8–10 Hz), especially over parietooccipital and parietal brain regions. These results provide the first evidence that a short-term fact retrieval training results in significant changes in oscillatory EEG activity. These findings further corroborate the role of the theta band in the retrieval of semantic information from memory and suggest that theta activity is sensitive to fact retrieval not only in mental arithmetic but also in other domains. PMID:23162495

  2. Abnormal Task Modulation of Oscillatory Neural Activity in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Elisa C Dias

    2013-08-01

    Full Text Available Schizophrenia patients have deficits in cognitive function that are a core feature of the disorder. AX-CPT is commonly used to study cognition in schizophrenia, and patients have characteristic pattern of behavioral and ERP response. In AX-CPT subjects respond when a flashed cue A is followed by a target X, ignoring other letter combinations. Patients show reduced hit rate to go trials, and increased false alarms to sequences that require inhibition of a prepotent response. EEG recordings show reduced sensory (P1/N1, as well as later cognitive components (N2, P3, CNV. Behavioral deficits correlate most strongly with sensory dysfunction. Oscillatory analyses provide critical information regarding sensory/cognitive processing over and above standard ERP analyses. Recent analyses of induced oscillatory activity in single trials during AX-CPT in healthy volunteers showed characteristic response patterns in theta, alpha and beta frequencies tied to specific sensory and cognitive processes. Alpha and beta modulated during the trials and beta modulation over the frontal cortex correlated with reaction time. In this study, EEG data was obtained from 18 schizophrenia patients and 13 controls during AX-CPT performance, and single trial decomposition of the signal yielded power in the target wavelengths.Significant task-related event-related desynchronization (ERD was observed in both alpha and beta frequency bands over parieto-occipital cortex related to sensory encoding of the cue. This modulation was reduced in patients for beta, but not for alpha. In addition, significant beta ERD was observed over motor cortex, related to motor preparation for the response, and was also reduced in patients. These findings demonstrate impaired dynamic modulation of beta frequency rhythms in schizophrenia, and suggest that failures of oscillatory activity may underlie impaired sensory information processing in schizophrenia that in turn contributes to cognitive deficits.

  3. Higher fine-scale genetic structure in peripheral than in core populations of a long-lived and mixed-mating conifer - eastern white cedar (Thuja occidentalis L.)

    Science.gov (United States)

    2012-01-01

    Background Fine-scale or spatial genetic structure (SGS) is one of the key genetic characteristics of plant populations. Several evolutionary and ecological processes and population characteristics influence the level of SGS within plant populations. Higher fine-scale genetic structure may be expected in peripheral than core populations of long-lived forest trees, owing to the differences in the magnitude of operating evolutionary and ecological forces such as gene flow, genetic drift, effective population size and founder effects. We addressed this question using eastern white cedar (Thuja occidentalis) as a model species for declining to endangered long-lived tree species with mixed-mating system. Results We determined the SGS in two core and two peripheral populations of eastern white cedar from its Maritime Canadian eastern range using six nuclear microsatellite DNA markers. Significant SGS ranging from 15 m to 75 m distance classes was observed in the four studied populations. An analysis of combined four populations revealed significant positive SGS up to the 45 m distance class. The mean positive significant SGS observed in the peripheral populations was up to six times (up to 90 m) of that observed in the core populations (15 m). Spatial autocorrelation coefficients and correlograms of single and sub-sets of populations were statistically significant. The extent of within-population SGS was significantly negatively correlated with all genetic diversity parameters. Significant heterogeneity of within-population SGS was observed for 0-15 m and 61-90 m between core and peripheral populations. Average Sp, and gene flow distances were higher in peripheral (Sp = 0.023, σg = 135 m) than in core (Sp = 0.014, σg = 109 m) populations. However, the mean neighborhood size was higher in the core (Nb = 82) than in the peripheral (Nb = 48) populations. Conclusion Eastern white cedar populations have significant fine-scale genetic structure at short distances. Peripheral

  4. Higher fine-scale genetic structure in peripheral than in core populations of a long-lived and mixed-mating conifer - eastern white cedar (Thuja occidentalis L.

    Directory of Open Access Journals (Sweden)

    Pandey Madhav

    2012-04-01

    Full Text Available Abstract Background Fine-scale or spatial genetic structure (SGS is one of the key genetic characteristics of plant populations. Several evolutionary and ecological processes and population characteristics influence the level of SGS within plant populations. Higher fine-scale genetic structure may be expected in peripheral than core populations of long-lived forest trees, owing to the differences in the magnitude of operating evolutionary and ecological forces such as gene flow, genetic drift, effective population size and founder effects. We addressed this question using eastern white cedar (Thuja occidentalis as a model species for declining to endangered long-lived tree species with mixed-mating system. Results We determined the SGS in two core and two peripheral populations of eastern white cedar from its Maritime Canadian eastern range using six nuclear microsatellite DNA markers. Significant SGS ranging from 15 m to 75 m distance classes was observed in the four studied populations. An analysis of combined four populations revealed significant positive SGS up to the 45 m distance class. The mean positive significant SGS observed in the peripheral populations was up to six times (up to 90 m of that observed in the core populations (15 m. Spatial autocorrelation coefficients and correlograms of single and sub-sets of populations were statistically significant. The extent of within-population SGS was significantly negatively correlated with all genetic diversity parameters. Significant heterogeneity of within-population SGS was observed for 0-15 m and 61-90 m between core and peripheral populations. Average Sp, and gene flow distances were higher in peripheral (Sp = 0.023, σg = 135 m than in core (Sp = 0.014, σg = 109 m populations. However, the mean neighborhood size was higher in the core (Nb = 82 than in the peripheral (Nb = 48 populations. Conclusion Eastern white cedar populations have significant fine-scale genetic structure at short

  5. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris) population in central India.

    Science.gov (United States)

    Sarkar, Mriganka Shekhar; Krishnamurthy, Ramesh; Johnson, Jeyaraj A; Sen, Subharanjan; Saha, Goutam Kumar

    2017-01-01

    Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals' ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger ( Panthera tigris ), which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly's selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D 2 method and the Boyce index. There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory and settled periods. Based on threshold limits

  6. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris population in central India

    Directory of Open Access Journals (Sweden)

    Mriganka Shekhar Sarkar

    2017-11-01

    Full Text Available Background Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals’ ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger (Panthera tigris, which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. Methods We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly’s selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D2 method and the Boyce index. Results There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory

  7. Assessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris) population in central India

    Science.gov (United States)

    Sarkar, Mriganka Shekhar; Johnson, Jeyaraj A.; Sen, Subharanjan

    2017-01-01

    Background Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals’ ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choices are more pronounced in large carnivores such as tiger (Panthera tigris), which exhibits competitive exclusion in habitat and mate selection strategies. Although landscape level policies and conservation strategies are increasingly promoted for tiger conservation, specific management interventions require knowledge of the habitat correlates at fine scale. Methods We studied nine radio-collared individuals of a successfully reintroduced tiger population in Panna Tiger Reserve, central India, focussing on the species-habitat relationship at fine scales. With 16 eco-geographical variables, we performed Manly’s selection ratio and K-select analyses to define population-level and individual-level variation in resource selection, respectively. We analysed the data obtained during the exploratory period of six tigers and during the settled period of eight tigers separately, and compared the consequent results. We further used the settled period characteristics to model and map habitat suitability based on the Mahalanobis D2 method and the Boyce index. Results There was a clear difference in habitat selection by tigers between the exploratory and the settled period. During the exploratory period, tigers selected dense canopy and bamboo forests, but also spent time near villages and relocated village sites. However, settled tigers predominantly selected bamboo forests in complex terrain, riverine forests and teak-mixed forest, and totally avoided human settlements and agriculture areas. There were individual variations in habitat selection between exploratory and settled periods

  8. Oscillatory correlates of moral decision-making: Effect of personality.

    Science.gov (United States)

    Knyazev, Gennady G; Savostyanov, Alexander N; Bocharov, Andrey V; Dorosheva, Elena A; Tamozhnikov, Sergey S; Saprigyn, Alexander E

    2016-01-01

    The role of emotion in moral decision-making is still a matter of debate. Greene, Sommerville, Nystrom, Darley, and Cohen (2001) argue that 'personal' moral judgments are driven by emotional responses, while 'impersonal' judgments are largely driven by cognitive processes. In this study, oscillatory correlates of decision-making were compared in moral personal, moral impersonal, and nonmoral conditions, as well as in trials associated with utilitarian (i.e., favoring the 'greater good' over individual rights) and non-utilitarian choices. Event-related synchronization in delta and theta bands was greater in the right temporal lobe in personal than in both nonmoral and impersonal moral condition. Graph-theoretical analysis of connectivity patterns showed the prominent role of the orbitofrontal and cingulate cortices in personal moral decision-making, implying greater emotional and self-processing. Higher conscientiousness and intellect and lower behavioral activation were associated with greater difference in oscillatory responses between utilitarian and non-utilitarian choices in personal than in impersonal condition, indicating that sensitivity to moral issues and the ability to grasp the nuances of moral situation are essential for understanding the implications of utilitarian choices in personal and impersonal conditions.

  9. Oscillatory correlates of vibrotactile frequency processing in human working memory.

    Science.gov (United States)

    Spitzer, Bernhard; Wacker, Evelin; Blankenburg, Felix

    2010-03-24

    Previous animal research has revealed neuronal activity underlying short-term retention of vibrotactile stimuli, providing evidence for a parametric representation of stimulus frequency in primate tactile working memory (Romo et al., 1999). Here, we investigated the neural correlates of vibrotactile frequency processing in human working memory, using noninvasive electroencephalography (EEG). Participants judged the frequencies of vibrotactile stimuli delivered to the fingertip in a delayed match-to-sample frequency discrimination task. As expected, vibrotactile stimulation elicited pronounced steady-state evoked potentials, which were source-localized in primary somatosensory cortex. Furthermore, parametric analysis of induced EEG responses revealed that the frequency of stimulation was reflected by systematic modulations of synchronized oscillatory activity in nonprimary cortical areas. Stimulus processing was accompanied by frequency-dependent alpha-band responses (8-12 Hz) over dorsal occipital cortex. The critical new finding was that, throughout the retention interval, the stimulus frequency held in working memory was systematically represented by a modulation in prefrontal beta activity (20-25 Hz), which was source-localized to the inferior frontal gyrus. This modulation in oscillatory activity during stimulus retention was related to successful frequency discrimination, thus reflecting behaviorally relevant information. Together, the results complement previous findings of parametric working memory correlates in nonhuman primates and suggest that the quantitative representation of vibrotactile frequency in sensory memory entails systematic modulations of synchronized neural activity in human prefrontal cortex.

  10. Catalyst Initiation in the Oscillatory Carbonylation Reaction

    Directory of Open Access Journals (Sweden)

    Katarina Novakovic

    2011-01-01

    Full Text Available Palladium(II iodide is used as a catalyst in the phenylacetylene oxidative carbonylation reaction that has demonstrated oscillatory behaviour in both pH and heat of reaction. In an attempt to extract the reaction network responsible for the oscillatory nature of this reaction, the system was divided into smaller parts and they were studied. This paper focuses on understanding the reaction network responsible for the initial reactions of palladium(II iodide within this oscillatory reaction. The species researched include methanol, palladium(II iodide, potassium iodide, and carbon monoxide. Several chemical reactions were considered and applied in a modelling study. The study revealed the significant role played by traces of water contained in the standard HPLC grade methanol used.

  11. Design principles for robust oscillatory behavior.

    Science.gov (United States)

    Castillo-Hair, Sebastian M; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.

  12. Brain oscillatory signatures of motor tasks.

    Science.gov (United States)

    Ramos-Murguialday, Ander; Birbaumer, Niels

    2015-06-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  13. Brain oscillatory signatures of motor tasks

    Science.gov (United States)

    Birbaumer, Niels

    2015-01-01

    Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral

  14. Temporal changes in vegetation of a virgin beech woodland remnant: stand-scale stability with intensive fine-scale dynamics governed by stand dynamic events

    Directory of Open Access Journals (Sweden)

    Tibor Standovár

    2017-03-01

    Full Text Available The aim of this resurvey study is to check if herbaceous vegetation on the forest floor exhibits overall stability at the stand-scale in spite of intensive dynamics at the scale of individual plots and stand dynamic events (driven by natural fine scale canopy gap dynamics. In 1996, we sampled a 1.5 ha patch using 0.25 m² plots placed along a 5 m × 5 m grid in the best remnant of central European montane beech woods in Hungary. All species in the herbaceous layer and their cover estimates were recorded. Five patches representing different stand developmental situations (SDS were selected for resurvey. In 2013, 306 plots were resurveyed by using blocks of four 0.25 m² plots to test the effects of imperfect relocation. We found very intensive fine-scale dynamics in the herbaceous layer with high species turnover and sharp changes in ground layer cover at the local-scale (< 1 m2. A decrease in species richness and herbaceous layer cover, as well as high species turnover, characterized the closing gaps. Colonization events and increasing species richness and herbaceous layer cover prevailed in the two newly created gaps. A pronounced decrease in the total cover, but low species turnover and survival of the majority of the closed forest specialists was detected by the resurvey at the stand-scale. The test aiming at assessing the effect of relocation showed a higher time effect than the effect of imprecise relocation. The very intensive fine-scale dynamics of the studied beech forest are profoundly determined by natural stand dynamics. Extinction and colonisation episodes even out at the stand-scale, implying an overall compositional stability of the herbaceous vegetation at the given spatial and temporal scale. We argue that fine-scale gap dynamics, driven by natural processes or applied as a management method, can warrant the survival of many closed forest specialist species in the long-run. Nomenclature: Flora Europaea (Tutin et al. 2010 for

  15. Fine-scale heat flow, shallow heat sources, and decoupled circulation systems at two sea-floor hydrothermal sites, Middle Valley, northern Juan de Fuca Ridge

    Science.gov (United States)

    Stein, J. S.; Fisher, A. T.; Langseth, M.; Jin, W.; Iturrino, G.; Davis, E.

    1998-12-01

    Fine-scale heat-flow patterns at two areas of active venting in Middle Valley, a sedimented rift on the northern Juan de Fuca Ridge, provide thermal evidence of shallow hydrothermal reservoirs beneath the vent fields. The extreme variability of heat flow is explained by conductive heating immediately adjacent to vents and shallow circulation within sediments above the reservoir. This secondary circulation is hydrologically separated from the deeper system feeding the vents by a shallow conductive lid within the sediments. A similar separation of shallow and deep circulation may also occur at sediment-free ridge-crest hydrothermal environments.

  16. Oscillatory regime of avalanche particle detectors

    International Nuclear Information System (INIS)

    Lukin, K.A.; Cerdeira, H.A.; Colavita, A.A.

    1995-06-01

    We describe the model of an avalanche high energy particle detector consisting of two pn-junctions, connected through an intrinsic semiconductor with a reverse biased voltage applied. We show that this detector is able to generate the oscillatory response on the single particle passage through the structure. The possibility of oscillations leading to chaotic behaviour is pointed out. (author). 15 refs, 7 figs

  17. Solution of IVP of Second Order ODE with Oscillatory Solutions ...

    African Journals Online (AJOL)

    Solution of IVP of Second Order ODE with Oscillatory Solutions using Variational Iterative Method (VIM) ... Abstract. A Numerical method for solution of IVP of second order with oscillatory solutions using VIM is developed. The method ... Keywords: Variational Iteration Method, Lagrange multiplier, oscillatory solutions, ODE.

  18. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata

    Directory of Open Access Journals (Sweden)

    Meghann K. Devlin-Durante

    2017-11-01

    Full Text Available The advent of next-generation sequencing tools has made it possible to conduct fine-scale surveys of population differentiation and genome-wide scans for signatures of selection in non-model organisms. Such surveys are of particular importance in sharply declining coral species, since knowledge of population boundaries and signs of local adaptation can inform restoration and conservation efforts. Here, we use genome-wide surveys of single-nucleotide polymorphisms in the threatened Caribbean elkhorn coral, Acropora palmata, to reveal fine-scale population structure and infer the major barrier to gene flow that separates the eastern and western Caribbean populations between the Bahamas and Puerto Rico. The exact location of this break had been subject to discussion because two previous studies based on microsatellite data had come to differing conclusions. We investigate this contradiction by analyzing an extended set of 11 microsatellite markers including the five previously employed and discovered that one of the original microsatellite loci is apparently under selection. Exclusion of this locus reconciles the results from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data detected 13 candidate loci under positive selection, however there was no correlation between available environmental parameters and genetic distance. Together, these results suggest that reef restoration efforts should use local sources and utilize existing functional variation among geographic regions in ex situ crossing experiments to improve stress resistance of this species.

  19. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata.

    Science.gov (United States)

    Devlin-Durante, Meghann K; Baums, Iliana B

    2017-01-01

    The advent of next-generation sequencing tools has made it possible to conduct fine-scale surveys of population differentiation and genome-wide scans for signatures of selection in non-model organisms. Such surveys are of particular importance in sharply declining coral species, since knowledge of population boundaries and signs of local adaptation can inform restoration and conservation efforts. Here, we use genome-wide surveys of single-nucleotide polymorphisms in the threatened Caribbean elkhorn coral, Acropora palmata , to reveal fine-scale population structure and infer the major barrier to gene flow that separates the eastern and western Caribbean populations between the Bahamas and Puerto Rico. The exact location of this break had been subject to discussion because two previous studies based on microsatellite data had come to differing conclusions. We investigate this contradiction by analyzing an extended set of 11 microsatellite markers including the five previously employed and discovered that one of the original microsatellite loci is apparently under selection. Exclusion of this locus reconciles the results from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data detected 13 candidate loci under positive selection, however there was no correlation between available environmental parameters and genetic distance. Together, these results suggest that reef restoration efforts should use local sources and utilize existing functional variation among geographic regions in ex situ crossing experiments to improve stress resistance of this species.

  20. Stepwise oscillatory circuits of a DNA molecule.

    Science.gov (United States)

    Xu, Kunming

    2009-08-01

    A DNA molecule is characterized by a stepwise oscillatory circuit where every base pair is a capacitor, every phosphate bridge is an inductance, and every deoxyribose is a charge router. The circuitry accounts for DNA conductivity through both short and long distances in good agreement with experimental evidence that has led to the identification of the so-called super-exchange and multiple-step hopping mechanisms. However, in contrast to the haphazard hopping and super-exchanging events, the circuitry is a well-defined charge transport mechanism reflecting the great reliability of the genetic substance in delivering electrons. Stepwise oscillatory charge transport through a nucleotide sequence that directly modulates the oscillation frequency may have significant biological implications.

  1. Stability of Armour Units in Oscillatory Flow

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Thompson, A. C.

    Despite numerous breakwater model tests very little is known today about the various phenomena and parameters that determine the hydraulic stability characteristics of different types of armour. This is because separation of parameters is extremely difficult in traditional tests.With the object...... of separating some of the factors a deterministic test, in which horizontal beds of armour units were exposed to oscillatory flow, was performed in a pulsating water tunnel....

  2. Digital data reduction of oscillatory signals

    Science.gov (United States)

    Bebelaar, F.; Schoyer, H. F. R.

    1981-11-01

    A newly developed procedure for determining in an efficient, digital manner the amplitudes and frequencies of the oscillatory components of arbitrary signals is presented. The method is found to be especially useful in those cases where varying amplitudes and frequencies are encountered. The possibility of assigning a noise level criterion, such as minimum double amplitude (MDA) or minimum relative amplitude (MRA), enlarges the versatility of this procedure in comparison with other methods. Even for large amounts of data, computer times remain limited.

  3. Oscillatory Convection in Rotating Liquid Metals

    Science.gov (United States)

    Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan

    2016-11-01

    We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.

  4. Fine-scale mapping of a locus for severe bipolar mood disorder on chromosome 18p11.3 in the Costa Rican population

    Science.gov (United States)

    McInnes, L. Alison; Service, Susan K.; Reus, Victor I.; Barnes, Glenn; Charlat, Olga; Jawahar, Satya; Lewitzky, Steve; Yang, Qing; Duong, Quyen; Spesny, Mitzi; Araya, Carmen; Araya, Xinia; Gallegos, Alvaro; Meza, Luis; Molina, Julio; Ramirez, Rolando; Mendez, Roxana; Silva, Sandra; Fournier, Eduardo; Batki, Steven L.; Mathews, Carol A.; Neylan, Thomas; Glatt, Charles E.; Escamilla, Michael A.; Luo, David; Gajiwala, Paresh; Song, Terry; Crook, Stephen; Nguyen, Jasmine B.; Roche, Erin; Meyer, Joanne M.; Leon, Pedro; Sandkuijl, Lodewijk A.; Freimer, Nelson B.; Chen, Hong

    2001-01-01

    We have searched for genes predisposing to bipolar disorder (BP) by studying individuals with the most extreme form of the affected phenotype, BP-I, ascertained from the genetically isolated population of the Central Valley of Costa Rica (CVCR). The results of a previous linkage analysis on two extended CVCR BP-I pedigrees, CR001 and CR004, and of linkage disequilibrium (LD) analyses of a CVCR population sample of BP-I patients implicated a candidate region on 18p11.3. We further investigated this region by creating a physical map and developing 4 new microsatellite and 26 single-nucleotide polymorphism markers for typing in the pedigree and population samples. We report the results of fine-scale association analyses in the population sample, as well as evaluation of haplotypes in pedigree CR001. Our results suggest a candidate region containing six genes but also highlight the complexities of LD mapping of common disorders. PMID:11572994

  5. Modelling Deep Water Habitats to Develop a Spatially Explicit, Fine Scale Understanding of the Distribution of the Western Rock Lobster, Panulirus cygnus

    Science.gov (United States)

    Hovey, Renae K.; Van Niel, Kimberly P.; Bellchambers, Lynda M.; Pember, Matthew B.

    2012-01-01

    Background The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. Methods and Findings Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables) were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand) and dominant biota (kelp, sessile invertebrates and macroalgae) within a 40 km2 area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D2 of 64 and an 80% correct classification. Conclusions Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical lobster habitats. PMID

  6. Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia River Basin.

    Science.gov (United States)

    Hess, J E; Matala, A P; Narum, S R

    2011-03-01

    Genetic stock identification (GSI) is an important tool in fisheries management. Microsatellites (μSATs) have been the dominant genetic marker for GSI; however, increasing availability and numerous advantages of single-nucleotide polymorphism (SNP) markers make them an appealing alternative. We tested performance of 13 μSAT vs. 92 SNP loci in a fine-scale application of GSI, using a new baseline for Chinook salmon consisting of 49 collections (n = 4014) distributed across the Columbia River Basin. In GSI, baseline genotypes for both marker sets were used independently to analyse a real fishery mixture (n = 2731) representing the total run of Chinook salmon passing Bonneville Dam in the Columbia River. Marker sets were evaluated using three criteria: (i) ability to differentiate reporting groups, (ii) proportion of correct assignment in mixture simulation tests and baseline leave-one-out analyses and (iii) individual assignment and confidence intervals around estimated stock proportions of a real fishery mixture. The μSATs outperformed the SNPs in resolving fine-scale relationships, but all 105 markers combined provided greatest power for GSI. SNPs were ranked by relative information content based on both an iterative procedure that optimized correct assignment to the baseline and ranking by minor allele frequency. For both methods, we identified a subset of the top 50 ranked loci, which were similar in assignment accuracy, and both reached maximum available power of the total 92 SNP loci (correct assignment = 73%). Our estimates indicate that between 100 and 200 highly informative SNP loci are required to meet management standards (correct assignment > 90%) for resolving stocks in finer-scale GSI applications. © 2011 Blackwell Publishing Ltd.

  7. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta Forests.

    Directory of Open Access Journals (Sweden)

    Anne C S McIntosh

    Full Text Available Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs and multiple carbon-source substrate-induced respiration (MSIR of the forest floor microbial community environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis showed that two above-ground (mean tree diameter, litter cover and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs properties were associated with variation in understory plant community composition. These results provide

  8. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests.

    Science.gov (United States)

    McIntosh, Anne C S; Macdonald, S Ellen; Quideau, Sylvie A

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  9. Natural selection drives the fine-scale divergence of a coevolutionary arms race involving a long-mouthed weevil and its obligate host plant

    Directory of Open Access Journals (Sweden)

    Toju Hirokazu

    2009-01-01

    Full Text Available Abstract Background One of the major recent advances in evolutionary biology is the recognition that evolutionary interactions between species are substantially differentiated among geographic populations. To date, several authors have revealed natural selection pressures mediating the geographically-divergent processes of coevolution. How local, then, is the geographic structuring of natural selection in coevolutionary systems? Results I examined the spatial scale of a "geographic selection mosaic," focusing on a system involving a seed-predatory insect, the camellia weevil (Curculio camelliae, and its host plant, the Japanese camellia (Camellia japonica. In this system, female weevils excavate camellia fruits with their extremely-long mouthparts to lay eggs into seeds, while camellia seeds are protected by thick pericarps. Quantitative evaluation of natural selection demonstrated that thicker camellia pericarps are significantly favored in some, but not all, populations within a small island (Yakushima Island, Japan; diameter ca. 30 km. At the extreme, camellia populations separated by only several kilometers were subject to different selection pressures. Interestingly, in a population with the thickest pericarps, camellia individuals with intermediate pericarp thickness had relatively high fitness when the potential costs of producing thick pericarps were considered. Also importantly, some parameters of the weevil - camellia interaction such as the severity of seed infestation showed clines along temperature, suggesting the effects of climate on the fine-scale geographic differentiation of the coevolutionary processes. Conclusion These results show that natural selection can drive the geographic differentiation of interspecific interactions at surprisingly small spatial scales. Future studies should reveal the evolutionary/ecological outcomes of the "fine scale geographic mosaics" in biological communities.

  10. SAETTA: fine-scale observation of the total lightning activity in the framework of the CORSiCA atmospheric observatory

    Science.gov (United States)

    Coquillat, Sylvain; Defer, Eric; Lambert, Dominique; Martin, Jean-Michel; Pinty, Jean-Pierre; Pont, Véronique; Prieur, Serge

    2015-04-01

    Located in the West Mediterranean basin, Corsica is strategically positioned for atmospheric studies referred by MISTRALS/HyMeX and MISTRALS/CHARMEX programs. The implementation of the project of atmospheric observatory CORSiCA (supported by the Collectivité Territoriale de Corse via CPER/FEDER funds) was an opportunity to strengthen the potential observation of convective events causing heavy rainfall and flash floods, by acquiring a total lightning activity detection system adapted to storm tracking at a regional scale. This detection system called SAETTA (Suivi de l'Activité Electrique Tridimensionnelle Totale de l'Atmosphère) is a network of 12 LMA stations (Lightning Mapping Array). Developed by New Mexico Tech (USA), the instrument allows observing lightning flashes in 3D and real time, at high temporal and spatial resolutions. It detects the radiations emitted by cloud discharges in the 60-66 MHz band, in a radius of about 300 km from the centre of the network, in passive mode and standalone (solar panel and battery). Each LMA station samples the signal at high rate (80 microseconds), records data on internal hard disk, and transmits a decimated signal in real-time via the 3G phone network. The decimated data are received on a server that calculates the position of the detected sources by the time-of-arrival method and manages a quasi real-time display on a website. The non decimated data intended for research applications are recovered later on the field. Deployed in May and June 2014, SAETTA operated nominally from July 13 to October 20, 2014. It is to be definitively re-installed in spring 2015 after a hardware updating. The operation of SAETTA is contractually scheduled until the end of 2019, but it is planned to continue well beyond to obtain longer-term observations for addressing issues related to climatic trends. SAETTA has great scientific potential in a broad range of topics: physics of discharge; monitoring and simulation of storm systems

  11. Bidirectional Frontoparietal Oscillatory Systems Support Working Memory.

    Science.gov (United States)

    Johnson, Elizabeth L; Dewar, Callum D; Solbakk, Anne-Kristin; Endestad, Tor; Meling, Torstein R; Knight, Robert T

    2017-06-19

    The ability to represent and select information in working memory provides the neurobiological infrastructure for human cognition. For 80 years, dominant views of working memory have focused on the key role of prefrontal cortex (PFC) [1-8]. However, more recent work has implicated posterior cortical regions [9-12], suggesting that PFC engagement during working memory is dependent on the degree of executive demand. We provide evidence from neurological patients with discrete PFC damage that challenges the dominant models attributing working memory to PFC-dependent systems. We show that neural oscillations, which provide a mechanism for PFC to communicate with posterior cortical regions [13], independently subserve communications both to and from PFC-uncovering parallel oscillatory mechanisms for working memory. Fourteen PFC patients and 20 healthy, age-matched controls performed a working memory task where they encoded, maintained, and actively processed information about pairs of common shapes. In controls, the electroencephalogram (EEG) exhibited oscillatory activity in the low-theta range over PFC and directional connectivity from PFC to parieto-occipital regions commensurate with executive processing demands. Concurrent alpha-beta oscillations were observed over parieto-occipital regions, with directional connectivity from parieto-occipital regions to PFC, regardless of processing demands. Accuracy, PFC low-theta activity, and PFC → parieto-occipital connectivity were attenuated in patients, revealing a PFC-independent, alpha-beta system. The PFC patients still demonstrated task proficiency, which indicates that the posterior alpha-beta system provides sufficient resources for working memory. Taken together, our findings reveal neurologically dissociable PFC and parieto-occipital systems and suggest that parallel, bidirectional oscillatory systems form the basis of working memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Frequency-offset separated oscillatory fields technique

    Science.gov (United States)

    Bezginov, N.; Vutha, A. C.; Ferchichi, I.; Storry, C. H.; Hessels, E. A.

    2015-05-01

    Improved measurements in atomic hydrogen are needed to shed light on the proton radius puzzle. We are measuring the Lamb shift in hydrogen (n = 2 ,S1 / 2 -->P1 / 2) using a frequency-offset separated oscillatory fields (FOSOF) method. The advantages of this method include its insensitivity to atomic beam intensity fluctuations and the microwave-system frequency response. We present experimental results obtained with this method, towards a new measurement of the proton charge radius. We acknowledge funding from NSERC, CFI, CRC, ORF, and NIST.

  13. Power System Oscillatory Behaviors: Sources, Characteristics, & Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Follum, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tuffner, Francis K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dosiek, Luke A. [Union College, Schenectady, NY (United States); Pierre, John W. [Univ. of Wyoming, Laramie, WY (United States)

    2017-05-17

    This document is intended to provide a broad overview of the sources, characteristics, and analyses of natural and forced oscillatory behaviors in power systems. These aspects are necessarily linked. Oscillations appear in measurements with distinguishing characteristics derived from the oscillation’s source. These characteristics determine which analysis methods can be appropriately applied, and the results from these analyses can only be interpreted correctly with an understanding of the oscillation’s origin. To describe oscillations both at their source within a physical power system and within measurements, a perspective from the boundary between power system and signal processing theory has been adopted.

  14. Enhancing Rotational Diffusion Using Oscillatory Shear

    KAUST Repository

    Leahy, Brian D.

    2013-05-29

    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.

  15. Learning in AN Oscillatory Cortical Model

    Science.gov (United States)

    Scarpetta, Silvia; Li, Zhaoping; Hertz, John

    We study a model of generalized-Hebbian learning in asymmetric oscillatory neural networks modeling cortical areas such as hippocampus and olfactory cortex. The learning rule is based on the synaptic plasticity observed experimentally, in particular long-term potentiation and long-term depression of the synaptic efficacies depending on the relative timing of the pre- and postsynaptic activities during learning. The learned memory or representational states can be encoded by both the amplitude and the phase patterns of the oscillating neural populations, enabling more efficient and robust information coding than in conventional models of associative memory or input representation. Depending on the class of nonlinearity of the activation function, the model can function as an associative memory for oscillatory patterns (nonlinearity of class II) or can generalize from or interpolate between the learned states, appropriate for the function of input representation (nonlinearity of class I). In the former case, simulations of the model exhibits a first order transition between the "disordered state" and the "ordered" memory state.

  16. Three-dimensional Oscillatory Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Thurgood, Jonathan O.; McLaughlin, James A. [Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 1ST (United Kingdom); Pontin, David I., E-mail: jonathan.thurgood@northumbria.ac.uk [Division of Mathematics, University of Dundee, Dundee, DD1 4HN (United Kingdom)

    2017-07-20

    Here we detail the dynamic evolution of localized reconnection regions about 3D magnetic null points using numerical simulation. We demonstrate for the first time that reconnection triggered by the localized collapse of a 3D null point that is due to an external magnetohydrodynamic (MHD) wave involves a self-generated oscillation, whereby the current sheet and outflow jets undergo a reconnection reversal process during which back-pressure formation at the jet heads acts to prise open the collapsed field before overshooting the equilibrium into an opposite-polarity configuration. The discovery that reconnection at fully 3D nulls can proceed naturally in a time-dependent and periodic fashion suggests that oscillatory reconnection mechanisms may play a role in explaining periodicity in astrophysical phenomena associated with magnetic reconnection, such as the observed quasi-periodicity of solar and stellar flare emission. Furthermore, we find that a consequence of oscillatory reconnection is the generation of a plethora of freely propagating MHD waves that escape the vicinity of the reconnection region.

  17. Resting state EEG oscillatory power differences in ADHD college students and their peers

    Directory of Open Access Journals (Sweden)

    Woltering Steven

    2012-12-01

    Full Text Available Abstract Background Among the most robust neural abnormalities differentiating individuals with Attention-Deficit/Hyperactivity Disorder (ADHD from typically developing controls are elevated levels of slow oscillatory activity (e.g., theta and reduced fast oscillatory activity (e.g., alpha and beta during resting-state electroencephalography (EEG. However, studies of resting state EEG in adults with ADHD are scarce and yield inconsistent findings. Methods EEG profiles, recorded during a resting-state with eyes-open and eyes-closed conditions, were compared for college students with ADHD (n = 18 and a nonclinical comparison group (n = 17. Results The ADHD group showed decreased power for fast frequencies, especially alpha. This group also showed increased power in the slow frequency bands, however, these effects were strongest using relative power computations. Furthermore, the theta/beta ratio measure was reliably higher for the ADHD group. All effects were more pronounced for the eyes-closed compared to the eyes-open condition. Measures of intra-individual variability suggested that brains of the ADHD group were less variable than those of controls. Conclusions The findings of this pilot study reveal that college students with ADHD show a distinct neural pattern during resting state, suggesting that oscillatory power, especially alpha, is a useful index for reflecting differences in neural communication of ADHD in early adulthood.

  18. Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems

    OpenAIRE

    Cohen, David

    2017-01-01

    Modulated Fourier expansion is used to show long-time near-conservation of the total and oscillatory energies of numerical methods for Hamiltonian systems with highly oscillatory solutions. The numerical methods considered are an extension of the trigonometric methods. A brief discussion of conservation properties in the continuous problem and in the multi-frequency case is also given

  19. Eye contact during live social interaction modulates infants' oscillatory brain activity.

    Science.gov (United States)

    Hoehl, Stefanie; Michel, Christine; Reid, Vincent M; Parise, Eugenio; Striano, Tricia

    2014-01-01

    We examined infants' oscillatory brain activity during a live interaction with an adult who showed them novel objects. Activation in the alpha frequency range was assessed. Nine-month-old infants responded with desynchronization of alpha-band activity when looking at an object together with an adult during a social interaction involving eye contact. When infant and experimenter only looked at the object without engaging in eye contact, no such effect was observed. Results are interpreted in terms of activation of a generic semantic knowledge system induced by eye contact during a social interaction.

  20. Oscillatory high hydrostatic pressure inactivation of Zygosaccharomyces bailii.

    Science.gov (United States)

    Palou, E; López-Malo, A; Barbosa-Cánovas, G V; Welti-Chanes, J; Swanson, B G

    1998-09-01

    Zygosaccharomyces bailii inactivation was evaluated in oscillatory high hydrostatic pressure (HHP) treatments at sublethal pressures (207, 241, or 276 MPa) and compared with continuous HHP treatments in laboratory model systems with a water activity (aw) of 0.98 and pH 3.5. The yeast was inoculated into laboratory model systems and subjected to HHP in sterile bags. Two HHP treatments were conducted: continuous (holding times of 5, 10, 15, 20, 30, 60, or 90 min) and oscillatory (two, three, or four cycles with holding times of 5 min and two cycles with holding times of 10 min). Oscillatory pressure treatments increased the effectiveness of HHP processing. For equal holding times, Z. bailii counts decreased as the number of cycles increased. Holding times of 20 min in HHP oscillatory treatments at 276 MPa assured inactivation (bailii initial inoculum. Oscillatory pressurization could be useful to decrease Z. bailii inactivation time.

  1. Structure-preserving algorithms for oscillatory differential equations

    CERN Document Server

    Wu, Xinyuan; Wang, Bin

    2013-01-01

    Structure-Preserving Algorithms for Oscillatory Differential Equations describes a large number of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations by using theoretical analysis and numerical validation. Structure-preserving algorithms for differential equations, especially for oscillatory differential equations, play an important role in the accurate simulation of oscillatory problems in applied sciences and engineering. The book discusses novel advances in the ARKN, ERKN, two-step ERKN, Falkner-type and energy-preserving methods, etc. for oscillatory differential equations. The work is intended for scientists, engineers, teachers and students who are interested in structure-preserving algorithms for differential equations. Xinyuan Wu is a professor at Nanjing University; Xiong You is an associate professor at Nanjing Agricultural University; Bin Wang is a joint Ph.D student of Nanjing University and University of Cambridge.

  2. Toward an operational framework for fine-scale urban land-cover mapping in Wallonia using submeter remote sensing and ancillary vector data

    Science.gov (United States)

    Beaumont, Benjamin; Grippa, Tais; Lennert, Moritz; Vanhuysse, Sabine; Stephenne, Nathalie; Wolff, Eléonore

    2017-07-01

    Encouraged by the EU INSPIRE directive requirements and recommendations, the Walloon authorities, similar to other EU regional or national authorities, want to develop operational land-cover (LC) and land-use (LU) mapping methods using existing geodata. Urban planners and environmental monitoring stakeholders of Wallonia have to rely on outdated, mixed, and incomplete LC and LU information. The current reference map is 10-years old. The two object-based classification methods, i.e., a rule- and a classifier-based method, for detailed regional urban LC mapping are compared. The added value of using the different existing geospatial datasets in the process is assessed. This includes the comparison between satellite and aerial optical data in terms of mapping accuracies, visual quality of the map, costs, processing, data availability, and property rights. The combination of spectral, tridimensional, and vector data provides accuracy values close to 0.90 for mapping the LC into nine categories with a minimum mapping unit of 15 m2. Such a detailed LC map offers opportunities for fine-scale environmental and spatial planning activities. Still, the regional application poses challenges regarding automation, big data handling, and processing time, which are discussed.

  3. Fine-scale spatio-temporal variation in tiger Panthera tigris diet: Effect of study duration and extent on estimates of tiger diet in Chitwan National Park, Nepal

    Science.gov (United States)

    Kapfer, Paul M.; Streby, Henry M.; Gurung, B.; Simcharoen, A.; McDougal, C.C.; Smith, J.L.D.

    2011-01-01

    Attempts to conserve declining tiger Panthera tigris populations and distributions have experienced limited success. The poaching of tiger prey is a key threat to tiger persistence; a clear understanding of tiger diet is a prerequisite to conserve dwindling populations. We used unpublished data on tiger diet in combination with two previously published studies to examine fine-scale spatio-temporal changes in tiger diet relative to prey abundance in Chitwan National Park, Nepal, and aggregated data from the three studies to examine the effect that study duration and the size of the study area have on estimates of tiger diet. Our results correspond with those of previous studies: in all three studies, tiger diet was dominated by members of Cervidae; small to medium-sized prey was important in one study. Tiger diet was unrelated to prey abundance, and the aggregation of studies indicates that increasing study duration and study area size both result in increased dietary diversity in terms of prey categories consumed, and increasing study duration changed which prey species contributed most to tiger diet. Based on our results, we suggest that managers focus their efforts on minimizing the poaching of all tiger prey, and that future studies of tiger diet be of long duration and large spatial extent to improve our understanding of spatio-temporal variation in estimates of tiger diet. ?? 2011 Wildlife Biology, NKV.

  4. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Vigorito, E.; Kuchenbaecker, Karoline B; Beesley, J

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2...... mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA2 mutation carriers respectively...... of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95% CI: 0.59 to 0.80, p-value 1.0 x 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest...

  5. Fine-scale movements of rural free-ranging dogs in conservation areas in the temperate rainforest of the coastal range of southern Chile

    Science.gov (United States)

    Sepulveda, Maximiliano; Pelican, Katherine; Cross, Paul C.; Eguren, Antonieta; Singer, Randall S.

    2015-01-01

    Domestic dogs can play a variety of important roles for farmers. However, when in proximity to conservation areas, the presence of rural free-ranging dogs can be problematic due to the potential for predation of, competition with, or transmission of infectious disease to local threatened fauna. We used a frequent location radio tracking technology to study rural free-ranging dog movements and habitat use into sensitive conservation habitats. To achieve a better understanding of foray behaviors in dogs we monitored dogs (n = 14) in rural households located in an isolated area between the Valdivian Coastal Reserve and the Alerce Costero National Park in southern Chile. Dogs were mostly located near households (Dogs spent, on average, 5.3% of their time in forays with average per dog foray distances from the house ranging 0.5–1.9 km (maximum distance detected 4.3 km). Foraying behavior was positively associated with pasture habitat compared to forest habitat including protected lands. Foraying dogs rarely used forest habitat and, when entered, trails and/or roads were selected for movement. Our study provides important information about how dogs interact in a fine-scale with wildlife habitat, and, in particular, protected lands, providing insight into how dog behavior might drive wildlife interactions, and, in turn, how an understanding of dog behavior can be used to manage these interactions.

  6. Modulation of habitat-based conservation plans by fishery opportunity costs: a New Caledonia case study using fine-scale catch data.

    Science.gov (United States)

    Deas, Marilyn; Andréfouët, Serge; Léopold, Marc; Guillemot, Nicolas

    2014-01-01

    Numerous threats impact coral reefs and conservation actions are urgently needed. Fast production of marine habitat maps promotes the use of habitat-only conservation plans, where a given percentage of the area of each habitat is set as conservation objectives. However, marine reserves can impact access to fishing grounds and generate opportunity costs for fishers that need to be minimized. In New Caledonia (Southwest Pacific), we used fine-scale fishery catch maps to define nineteen opportunity costs layers (expressed as biomass catch loss) considering i) total catches, ii) target fish families, iii) local marine tenure, and iv) gear type. The expected lower impacts on fishery catch when using the different cost constraints were ranked according to effectiveness in decreasing the costs generated by the habitat-only scenarios. The exercise was done for two habitat maps with different thematic richness. In most cases, habitat conservation objectives remained achievable, but effectiveness varied widely between scenarios and between habitat maps. The results provide practical guidelines for coral reef conservation and management. Habitat-only scenarios can be used to initiate conservation projects with stakeholders but the costs induced by such scenarios can be lowered by up to 50-60% when detailed exhaustive fishery data are used. When using partial data, the gain would be only in the 15-25% range. The best compromises are achieved when using local data.

  7. Resolving the fine-scale deformation structure of continental hyperextension at the deep Galicia rift margin using seismic full waveform inversion.

    Science.gov (United States)

    Davy, R. G.; Morgan, J. V.; Minshull, T. A.; Bull, J. M.; Bayrakci, G.

    2016-12-01

    Hyperextension of the continental crust during ultra-slow, magma-poor rifting is accommodated by a series of complex fault geometries, preceding continental breakup. At such margins there exists a discrepancy between the extension observed along these fault systems and the total observed thinning of the continental lithosphere, with several competing hypotheses on the responsible mechanism. Despite this, it is agreed that a significant amount of the observed discrepancy is the result of unaccounted sub-seismic fault structure. In order to seismically image these fine scale structures it is imperative to develop accurate and well resolved velocity models of the subsurface, for the purpose of migrating reflection seismic images. Velocity models with the required resolution are unattainable using classic travel time tomography. However, seismic full waveform inversion could provide a suitable alternative to produce the required velocity models, with the method having the ability to resolve velocity structure up to an order of magnitude greater than that of travel time tomography. In this study we apply acoustic full waveform inversion to a 2D wide-angle seismic data set, collected at the hyperextended domain of the deep Galicia rift margin. Despite the challenging environment and dataset, our results show promising increases in the resolution of existing velocity models, particularly in correlation to the normal faulting associated with highly deformed continental fault blocks in the distal hyperextended domain.

  8. Localized Oscillatory Energy Conversion in Magnetopause Reconnection

    Science.gov (United States)

    Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.

    2018-02-01

    Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).

  9. Automatic control of oscillatory penetration apparatus

    Science.gov (United States)

    Lucon, Peter A

    2015-01-06

    A system and method for controlling an oscillatory penetration apparatus. An embodiment is a system and method for controlling a sonic drill having a displacement and an operating range and operating at a phase difference, said sonic drill comprising a push-pull piston and eccentrics, said method comprising: operating the push-pull piston at an initial push-pull force while the eccentrics are operated at a plurality of different operating frequencies within the operating range of the sonic drill and measuring the displacement at each operating frequency; determining an efficient operating frequency for the material being drilled and operating the eccentrics at said efficient operating frequency; determining the phase difference at which the sonic drill is operating; and if the phase difference is not substantially equal to minus ninety degrees, operating the push-pull piston at another push-pull force.

  10. Laser velocimeter application to oscillatory liquid flows

    Science.gov (United States)

    Gartrell, L. R.

    1978-01-01

    A laser velocimeter technique was used to measure the mean velocity and the frequency characteristics of an oscillatory flow component generated with a rotating flapper in liquid flow system at Reynolds numbers approximating 93,000. The velocity information was processed in the frequency domain using a tracker whose output was used to determine the flow spectrum. This was accomplished with the use of an autocorrelator/Fourier transform analyzer and a spectrum averaging analyzer where induced flow oscillations up to 40 Hz were detected. Tests were conducted at a mean flow velocity of approximately 2 m/s. The experimental results show that the laser velocimeter can provide quantitative information such as liquid flow velocity and frequency spectrum with a possible application to cryogenic fluid flows.

  11. Common oscillatory mechanisms across multiple memory systems

    Science.gov (United States)

    Headley, Drew B.; Paré, Denis

    2017-01-01

    The cortex, hippocampus, and striatum support dissociable forms of memory. While each of these regions contains specialized circuitry supporting their respective functions, all structure their activities across time with delta, theta, and gamma rhythms. We review how these oscillations are generated and how they coordinate distinct memory systems during encoding, consolidation, and retrieval. First, gamma oscillations occur in all regions and coordinate local spiking, compressing it into short population bursts. Second, gamma oscillations are modulated by delta and theta oscillations. Third, oscillatory dynamics in these memory systems can operate in either a "slow" or "fast" mode. The slow mode happens during slow-wave sleep and is characterized by large irregular activity in the hippocampus and delta oscillations in cortical and striatal circuits. The fast mode occurs during active waking and rapid eye movement (REM) sleep and is characterized by theta oscillations in the hippocampus and its targets, along with gamma oscillations in the rest of cortex. In waking, the fast mode is associated with the efficacious encoding and retrieval of declarative and procedural memories. Theta and gamma oscillations have similar relationships with encoding and retrieval across multiple forms of memory and brain regions, despite regional differences in microcircuitry and information content. Differences in the oscillatory coordination of memory systems during sleep might explain why the consolidation of some forms of memory is sensitive to slow-wave sleep, while others depend on REM. In particular, theta oscillations appear to support the consolidation of certain types of procedural memories during REM, while delta oscillations during slow-wave sleep seem to promote declarative and procedural memories.

  12. Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983-2008: a case-series analysis

    Directory of Open Access Journals (Sweden)

    Hondula David M

    2012-03-01

    Full Text Available Abstract Background High temperature and humidity conditions are associated with short-term elevations in the mortality rate in many United States cities. Previous research has quantified this relationship in an aggregate manner over large metropolitan areas, but within these areas the response may differ based on local-scale variability in climate, population characteristics, and socio-economic factors. Methods We compared the mortality response for 48 Zip Code Tabulation Areas (ZCTAs comprising Philadelphia County, PA to determine if certain areas are associated with elevated risk during high heat stress conditions. A randomization test was used to identify mortality exceedances for various apparent temperature thresholds at both the city and local scale. We then sought to identify the environmental, demographic, and social factors associated with high-risk areas via principal components regression. Results Citywide mortality increases by 9.3% on days following those with apparent temperatures over 34°C observed at 7:00 p.m. local time. During these conditions, elevated mortality rates were found for 10 of the 48 ZCTAs concentrated in the west-central portion of the County. Factors related to high heat mortality risk included proximity to locally high surface temperatures, low socioeconomic status, high density residential zoning, and age. Conclusions Within the larger Philadelphia metropolitan area, there exists statistically significant fine-scale spatial variability in the mortality response to high apparent temperatures. Future heat warning systems and mitigation and intervention measures could target these high risk areas to reduce the burden of extreme weather on summertime morbidity and mortality.

  13. Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape.

    Directory of Open Access Journals (Sweden)

    Margarita M López-Uribe

    Full Text Available Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei's GST = 0.011. Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting

  14. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    Science.gov (United States)

    Vigorito, Elena; Kuchenbaecker, Karoline B.; Beesley, Jonathan; Adlard, Julian; Agnarsson, Bjarni A.; Andrulis, Irene L.; Arun, Banu K.; Barjhoux, Laure; Belotti, Muriel; Benitez, Javier; Berger, Andreas; Bojesen, Anders; Bonanni, Bernardo; Brewer, Carole; Caldes, Trinidad; Caligo, Maria A.; Campbell, Ian; Chan, Salina B.; Claes, Kathleen B. M.; Cohn, David E.; Cook, Jackie; Daly, Mary B.; Damiola, Francesca; Davidson, Rosemarie; de Pauw, Antoine; Delnatte, Capucine; Diez, Orland; Domchek, Susan M.; Dumont, Martine; Durda, Katarzyna; Dworniczak, Bernd; Easton, Douglas F.; Eccles, Diana; Edwinsdotter Ardnor, Christina; Eeles, Ros; Ejlertsen, Bent; Ellis, Steve; Evans, D. Gareth; Feliubadalo, Lidia; Fostira, Florentia; Foulkes, William D.; Friedman, Eitan; Frost, Debra; Gaddam, Pragna; Ganz, Patricia A.; Garber, Judy; Garcia-Barberan, Vanesa; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Giraud, Sophie; Godwin, Andrew K.; Goldgar, David E.; Hake, Christopher R.; Hansen, Thomas V. O.; Healey, Sue; Hodgson, Shirley; Hogervorst, Frans B. L.; Houdayer, Claude; Hulick, Peter J.; Imyanitov, Evgeny N.; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jacobs, Lauren; Jakubowska, Anna; Janavicius, Ramunas; Jaworska-Bieniek, Katarzyna; Jensen, Uffe Birk; John, Esther M.; Vijai, Joseph; Karlan, Beth Y.; Kast, Karin; Investigators, KConFab; Khan, Sofia; Kwong, Ava; Laitman, Yael; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lubinski, Jan; Mai, Phuong L.; Manoukian, Siranoush; Mazoyer, Sylvie; Meindl, Alfons; Mensenkamp, Arjen R.; Montagna, Marco; Nathanson, Katherine L.; Neuhausen, Susan L.; Nevanlinna, Heli; Niederacher, Dieter; Olah, Edith; Olopade, Olufunmilayo I.; Ong, Kai-ren; Osorio, Ana; Park, Sue Kyung; Paulsson-Karlsson, Ylva; Pedersen, Inge Sokilde; Peissel, Bernard; Peterlongo, Paolo; Pfeiler, Georg; Phelan, Catherine M.; Piedmonte, Marion; Poppe, Bruce; Pujana, Miquel Angel; Radice, Paolo; Rennert, Gad; Rodriguez, Gustavo C.; Rookus, Matti A.; Ross, Eric A.; Schmutzler, Rita Katharina; Simard, Jacques; Singer, Christian F.; Slavin, Thomas P.; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I.; Tea, Muy-Kheng; Teixeira, Manuel R.; Teo, Soo-Hwang; Terry, Mary Beth; Thomassen, Mads; Tibiletti, Maria Grazia; Tihomirova, Laima; Tognazzo, Silvia; van Rensburg, Elizabeth J.; Varesco, Liliana; Varon-Mateeva, Raymonda; Vratimos, Athanassios; Weitzel, Jeffrey N.; McGuffog, Lesley; Kirk, Judy; Toland, Amanda Ewart; Hamann, Ute; Lindor, Noralane; Ramus, Susan J.; Greene, Mark H.; Couch, Fergus J.; Offit, Kenneth; Pharoah, Paul D. P.; Chenevix-Trench, Georgia; Antoniou, Antonis C.

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10−16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10−6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population. PMID:27463617

  15. Fine-Scale Vertical Stratification and Guild Composition of Saproxylic Beetles in Lowland and Montane Forests: Similar Patterns despite Low Faunal Overlap

    Science.gov (United States)

    Weiss, Matthias; Procházka, Jiří; Schlaghamerský, Jiří; Cizek, Lukas

    2016-01-01

    Objective The finer scale patterns of arthropod vertical stratification in forests are rarely studied and poorly understood. Further, there are no studies investigating whether and how altitude affects arthropod vertical stratification in temperate forests. We therefore investigated the fine-scale vertical stratification of diversity and guild structure of saproxylic beetles in temperate lowland and montane forests and compared the resulting patterns between the two habitats. Methods The beetles were sampled with flight intercept traps arranged into vertical transects (sampling heights 0.4, 1.2, 7, 14, and 21 m). A triplet of such transects was installed in each of the five sites in the lowland and in the mountains; 75 traps were used in each forest type. Results 381 species were collected in the lowlands and 236 species in the mountains. Only 105 species (21%) were found at both habitats; in the montane forest as well as in the lowlands, the species richness peaked at 1.2 m, and the change in assemblage composition was most rapid near the ground. The assemblages clearly differed between the understorey (0.4 m, 1.2 m) and the canopy (7 m, 14 m, 21 m) and between the two sampling heights within the understorey, but less within the canopy. The stratification was better pronounced in the lowland, where canopy assemblages were richer than those near the forest floor (0.4 m). In the mountains the samples from 14 and 21 m were more species poor than those from the lower heights. The guild structure was similar in both habitats. Conclusions The main patterns of vertical stratification and guild composition were strikingly similar between the montane and the lowland forest despite the low overlap of their faunas. The assemblages of saproxylic beetles were most stratified near ground. The comparisons of species richness between canopy and understorey may thus give contrasting results depending on the exact sampling height in the understorey. PMID:26978783

  16. The Challenge of Planning Conservation Strategies in Threatened Seascapes: Understanding the Role of Fine Scale Assessments of Community Response to Cumulative Human Pressures.

    Directory of Open Access Journals (Sweden)

    Giuseppe Guarnieri

    Full Text Available Assessing the distribution and intensity of human threats to biodiversity is a prerequisite for effective spatial planning, harmonizing conservation purposes with sustainable development. In the Mediterranean Sea, the management of Marine Protected Areas (MPAs is rarely based on explicit consideration of the distribution of multiple stressors, with direct assessment of their effects on ecosystems. This gap limits the effectiveness of protection and is conducive to conflicts among stakeholders. Here, a fine scale assessment of the potential effects of different combinations of stressors (both land- and marine-based on vulnerable rocky habitats (i.e. lower midlittoral and shallow infralittoral along 40 km of coast in the western Mediterranean (Ionian Sea has been carried out. The study area is a paradigmatic example of socio-ecological interactions, where several human uses and conservation measures collide. Significant differences in the structure of assemblages according to different combinations of threats were observed, indicating distinct responses of marine habitats to different sets of human pressures. A more complex three-dimensional structure, higher taxon richness and β-diversity characterized assemblages subject to low versus high levels of human pressure, consistently across habitats. In addition, the main drivers of change were: closeness to the harbour, water quality, and the relative extension of beaches. Our findings suggest that, although efforts to assess cumulative impacts at large scale may help in individuating priority areas for conservation purposes, the fact that such evaluations are often based on expert opinions and not on actual studies limits their ability to represent real environmental conditions at local scale. Systematic evaluations of local scale effects of anthropogenic drivers of change on biological communities should complement broad scale management strategies to achieve effective sustainability of human

  17. An Efficient Upscaling Process Based on a Unified Fine-scale Multi-Physics Model for Flow Simulation in Naturally Fracture Carbonate Karst Reservoirs

    KAUST Repository

    Bi, Linfeng

    2009-01-01

    The main challenges in modeling fluid flow through naturally-fractured carbonate karst reservoirs are how to address various flow physics in complex geological architectures due to the presence of vugs and caves which are connected via fracture networks at multiple scales. In this paper, we present a unified multi-physics model that adapts to the complex flow regime through naturally-fractured carbonate karst reservoirs. This approach generalizes Stokes-Brinkman model (Popov et al. 2007). The fracture networks provide the essential connection between the caves in carbonate karst reservoirs. It is thus very important to resolve the flow in fracture network and the interaction between fractures and caves to better understand the complex flow behavior. The idea is to use Stokes-Brinkman model to represent flow through rock matrix, void caves as well as intermediate flows in very high permeability regions and to use an idea similar to discrete fracture network model to represent flow in fracture network. Consequently, various numerical solution strategies can be efficiently applied to greatly improve the computational efficiency in flow simulations. We have applied this unified multi-physics model as a fine-scale flow solver in scale-up computations. Both local and global scale-up are considered. It is found that global scale-up has much more accurate than local scale-up. Global scale-up requires the solution of global flow problems on fine grid, which generally is computationally expensive. The proposed model has the ability to deal with large number of fractures and caves, which facilitate the application of Stokes-Brinkman model in global scale-up computation. The proposed model flexibly adapts to the different flow physics in naturally-fractured carbonate karst reservoirs in a simple and effective way. It certainly extends modeling and predicting capability in efficient development of this important type of reservoir.

  18. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease.

    Directory of Open Access Journals (Sweden)

    Courtney C Murdock

    2017-05-01

    Full Text Available Most statistical and mechanistic models used to predict mosquito-borne disease transmission incorporate climate drivers of disease transmission by utilizing environmental data collected at geographic scales that are potentially coarser than what mosquito populations may actually experience. Temperature and relative humidity can vary greatly between indoor and outdoor environments, and can be influenced strongly by variation in landscape features. In the Aedes albopictus system, we conducted a proof-of-concept study in the vicinity of the University of Georgia to explore the effects of fine-scale microclimate variation on mosquito life history and vectorial capacity (VC. We placed Ae. albopictus larvae in artificial pots distributed across three replicate sites within three different land uses-urban, suburban, and rural, which were characterized by high, intermediate, and low proportions of impervious surfaces. Data loggers were placed into each larval environment and in nearby vegetation to record daily variation in water and ambient temperature and relative humidity. The number of adults emerging from each pot and their body size and sex were recorded daily. We found mosquito microclimate to significantly vary across the season as well as with land use. Urban sites were in general warmer and less humid than suburban and rural sites, translating into decreased larval survival, smaller body sizes, and lower per capita growth rates of mosquitoes on urban sites. Dengue transmission potential was predicted to be higher in the summer than the fall. Additionally, the effects of land use on dengue transmission potential varied by season. Warm summers resulted in a higher predicted VC on the cooler, rural sites, while warmer, urban sites had a higher predicted VC during the cooler fall season.

  19. Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape.

    Science.gov (United States)

    López-Uribe, Margarita M; Morreale, Stephen J; Santiago, Christine K; Danforth, Bryan N

    2015-01-01

    Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei's GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for enhancing

  20. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.

    Directory of Open Access Journals (Sweden)

    Elena Vigorito

    Full Text Available Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases BRCA1 and 8,211 (631 ovarian cancer cases BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16. These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6. The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.

  1. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.

    Science.gov (United States)

    Vigorito, Elena; Kuchenbaecker, Karoline B; Beesley, Jonathan; Adlard, Julian; Agnarsson, Bjarni A; Andrulis, Irene L; Arun, Banu K; Barjhoux, Laure; Belotti, Muriel; Benitez, Javier; Berger, Andreas; Bojesen, Anders; Bonanni, Bernardo; Brewer, Carole; Caldes, Trinidad; Caligo, Maria A; Campbell, Ian; Chan, Salina B; Claes, Kathleen B M; Cohn, David E; Cook, Jackie; Daly, Mary B; Damiola, Francesca; Davidson, Rosemarie; Pauw, Antoine de; Delnatte, Capucine; Diez, Orland; Domchek, Susan M; Dumont, Martine; Durda, Katarzyna; Dworniczak, Bernd; Easton, Douglas F; Eccles, Diana; Edwinsdotter Ardnor, Christina; Eeles, Ros; Ejlertsen, Bent; Ellis, Steve; Evans, D Gareth; Feliubadalo, Lidia; Fostira, Florentia; Foulkes, William D; Friedman, Eitan; Frost, Debra; Gaddam, Pragna; Ganz, Patricia A; Garber, Judy; Garcia-Barberan, Vanesa; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Giraud, Sophie; Godwin, Andrew K; Goldgar, David E; Hake, Christopher R; Hansen, Thomas V O; Healey, Sue; Hodgson, Shirley; Hogervorst, Frans B L; Houdayer, Claude; Hulick, Peter J; Imyanitov, Evgeny N; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jacobs, Lauren; Jakubowska, Anna; Janavicius, Ramunas; Jaworska-Bieniek, Katarzyna; Jensen, Uffe Birk; John, Esther M; Vijai, Joseph; Karlan, Beth Y; Kast, Karin; Investigators, KConFab; Khan, Sofia; Kwong, Ava; Laitman, Yael; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lubinski, Jan; Mai, Phuong L; Manoukian, Siranoush; Mazoyer, Sylvie; Meindl, Alfons; Mensenkamp, Arjen R; Montagna, Marco; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Niederacher, Dieter; Olah, Edith; Olopade, Olufunmilayo I; Ong, Kai-Ren; Osorio, Ana; Park, Sue Kyung; Paulsson-Karlsson, Ylva; Pedersen, Inge Sokilde; Peissel, Bernard; Peterlongo, Paolo; Pfeiler, Georg; Phelan, Catherine M; Piedmonte, Marion; Poppe, Bruce; Pujana, Miquel Angel; Radice, Paolo; Rennert, Gad; Rodriguez, Gustavo C; Rookus, Matti A; Ross, Eric A; Schmutzler, Rita Katharina; Simard, Jacques; Singer, Christian F; Slavin, Thomas P; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I; Tea, Muy-Kheng; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Mary Beth; Thomassen, Mads; Tibiletti, Maria Grazia; Tihomirova, Laima; Tognazzo, Silvia; van Rensburg, Elizabeth J; Varesco, Liliana; Varon-Mateeva, Raymonda; Vratimos, Athanassios; Weitzel, Jeffrey N; McGuffog, Lesley; Kirk, Judy; Toland, Amanda Ewart; Hamann, Ute; Lindor, Noralane; Ramus, Susan J; Greene, Mark H; Couch, Fergus J; Offit, Kenneth; Pharoah, Paul D P; Chenevix-Trench, Georgia; Antoniou, Antonis C

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.

  2. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease.

    Science.gov (United States)

    Murdock, Courtney C; Evans, Michelle V; McClanahan, Taylor D; Miazgowicz, Kerri L; Tesla, Blanka

    2017-05-01

    Most statistical and mechanistic models used to predict mosquito-borne disease transmission incorporate climate drivers of disease transmission by utilizing environmental data collected at geographic scales that are potentially coarser than what mosquito populations may actually experience. Temperature and relative humidity can vary greatly between indoor and outdoor environments, and can be influenced strongly by variation in landscape features. In the Aedes albopictus system, we conducted a proof-of-concept study in the vicinity of the University of Georgia to explore the effects of fine-scale microclimate variation on mosquito life history and vectorial capacity (VC). We placed Ae. albopictus larvae in artificial pots distributed across three replicate sites within three different land uses-urban, suburban, and rural, which were characterized by high, intermediate, and low proportions of impervious surfaces. Data loggers were placed into each larval environment and in nearby vegetation to record daily variation in water and ambient temperature and relative humidity. The number of adults emerging from each pot and their body size and sex were recorded daily. We found mosquito microclimate to significantly vary across the season as well as with land use. Urban sites were in general warmer and less humid than suburban and rural sites, translating into decreased larval survival, smaller body sizes, and lower per capita growth rates of mosquitoes on urban sites. Dengue transmission potential was predicted to be higher in the summer than the fall. Additionally, the effects of land use on dengue transmission potential varied by season. Warm summers resulted in a higher predicted VC on the cooler, rural sites, while warmer, urban sites had a higher predicted VC during the cooler fall season.

  3. Fine-scale mapping of the FGFR2 breast cancer risk locus: putative functional variants differentially bind FOXA1 and E2F1.

    Science.gov (United States)

    Meyer, Kerstin B; O'Reilly, Martin; Michailidou, Kyriaki; Carlebur, Saskia; Edwards, Stacey L; French, Juliet D; Prathalingham, Radhika; Dennis, Joe; Bolla, Manjeet K; Wang, Qin; de Santiago, Ines; Hopper, John L; Tsimiklis, Helen; Apicella, Carmel; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien; Van 't Veer, Laura J; Hogervorst, Frans B; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Fasching, Peter A; Lux, Michael P; Ekici, Arif B; Beckmann, Matthias W; Peto, Julian; Dos Santos Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Zamora, M Pilar; Arias, Jose I; Benitez, Javier; Neuhausen, Susan; Anton-Culver, Hoda; Ziogas, Argyrios; Dur, Christina C; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Meindl, Alfons; Schmutzler, Rita K; Engel, Christoph; Ditsch, Nina; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Dörk, Thilo; Helbig, Sonja; Bogdanova, Natalia V; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Chenevix-Trench, Georgia; Wu, Anna H; Tseng, Chiu-Chen; Van Den Berg, David; Stram, Daniel O; Lambrechts, Diether; Thienpont, Bernard; Christiaens, Marie-Rose; Smeets, Ann; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Bonanni, Bernardo; Bernard, Loris; Couch, Fergus J; Olson, Janet E; Wang, Xianshu; Purrington, Kristen; Giles, Graham G; Severi, Gianluca; Baglietto, Laura; McLean, Catriona; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Teo, Soo-Hwang; Yip, Cheng-Har; Phuah, Sze-Yee; Kristensen, Vessela; Grenaker Alnæs, Grethe; Børresen-Dale, Anne-Lise; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Tchatchou, Sandrine; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline M; García-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J; Lissowska, Jolanta; Czene, Kamila; Darabi, Hartef; Eriksson, Kimael; Hooning, Maartje J; Martens, John W M; van den Ouweland, Ans M W; van Deurzen, Carolien H M; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Reed, Malcolm W R; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Pharoah, Paul D P; Ghoussaini, Maya; Harrington, Patricia; Tyrer, Jonathan; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Noh, Dong-Young; Hartman, Mikael; Hui, Miao; Lim, Wei-Yen; Buhari, Shaik A; Hamann, Ute; Försti, Asta; Rüdiger, Thomas; Ulmer, Hans-Ulrich; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Vachon, Celine; Slager, Susan; Fostira, Florentia; Pilarski, Robert; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Ponder, Bruce A J; Dunning, Alison M; Easton, Douglas F

    2013-12-05

    The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of European ancestry, 9 Asian ancestry studies (n = 13,983), and 2 African ancestry studies (n = 2,028) from the Breast Cancer Association Consortium. We identified three statistically independent risk signals within the locus. Within risk signals 1 and 3, genetic analysis identified five and two variants, respectively, highly correlated with the most strongly associated SNPs. By using a combination of genetic fine mapping, data on DNase hypersensitivity, and electrophoretic mobility shift assays to study protein-DNA binding, we identified rs35054928, rs2981578, and rs45631563 as putative functional SNPs. Chromatin immunoprecipitation showed that FOXA1 preferentially bound to the risk-associated allele (C) of rs2981578 and was able to recruit ERα to this site in an allele-specific manner, whereas E2F1 preferentially bound the risk variant of rs35054928. The risk alleles were preferentially found in open chromatin and bound by Ser5 phosphorylated RNA polymerase II, suggesting that the risk alleles are associated with changes in transcription. Chromatin conformation capture demonstrated that the risk region was able to interact with the promoter of FGFR2, the likely target gene of this risk region. A role for FOXA1 in mediating breast cancer susceptibility at this locus is consistent with the finding that the FGFR2 risk locus primarily predisposes to estrogen-receptor-positive disease. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Fine-scale monitoring of routine deep dives by gravid leatherback turtles during the internesting interval indicate a capital breeding strategy

    Directory of Open Access Journals (Sweden)

    Junichi Okuyama

    2016-09-01

    Full Text Available The dive behavior of gravid leatherback turtles (Dermochelys coriacea was studied during the internesting interval in two western Pacific nesting regions: Papua Barat, Indonesia, and the Solomon Islands in 2006, 2007 and 2010. We used three types of dive data: time-at-depth data (Papua Barat: N = 4; Solomon Islands: N = 6, intermittent dive data (Papua Barat: N = 6 obtained from ARGOS satellite transmitters, and continuous dive data obtained from recovered semi-archival tags (Papua Barat: N = 1, Solomon Islands: N = 1. All dive data demonstrated that the leatherback turtles routinely dove to deep waters (around 150 m throughout the internesting interval. The continuous dive data showed that turtles spent 37.3% of their time in routine deep dives and that they stayed in cold waters below the thermocline. Fine-scale monitoring (1-s interval, 0.5 m of resolution suggested that these routine deep dives were not accompanied with any wiggles (up-and-down undulations in the depth profile or flat-bottom phases, and they reached deep waters by gliding, which suggests that these dives may have served to conserve energy and/or to thermoregulate. Comparison with the dive behavior in other regions (Costa Rica, French Guiana, Grenada, Malaysia, and St. Croix suggests that gravid leatherback turtles in all regions except French Guiana assume an energy-saving strategy during the internesting interval that involves gliding to or resting on the sea floor in colder water. The behavioral tactics (dive patterns they use, however, differ because of bathymetric constraints.

  5. Fine-scale foraging movements by fish-eating killer whales (Orcinus orca) relate to the vertical distributions and escape responses of salmonid prey (Oncorhynchusspp.).

    Science.gov (United States)

    Wright, Brianna M; Ford, John K B; Ellis, Graeme M; Deecke, Volker B; Shapiro, Ari Daniel; Battaile, Brian C; Trites, Andrew W

    2017-01-01

    We sought to quantitatively describe the fine-scale foraging behavior of northern resident killer whales ( Orcinus orca ), a population of fish-eating killer whales that feeds almost exclusively on Pacific salmon ( Oncorhynchus spp.). To reconstruct the underwater movements of these specialist predators, we deployed 34 biologging Dtags on 32 individuals and collected high-resolution, three-dimensional accelerometry and acoustic data. We used the resulting dive paths to compare killer whale foraging behavior to the distributions of different salmonid prey species. Understanding the foraging movements of these threatened predators is important from a conservation standpoint, since prey availability has been identified as a limiting factor in their population dynamics and recovery. Three-dimensional dive tracks indicated that foraging ( N  = 701) and non-foraging dives ( N  = 10,618) were kinematically distinct (Wilks' lambda: λ 16  = 0.321, P  killer whales dove deeper, remained submerged longer, swam faster, increased their dive path tortuosity, and rolled their bodies to a greater extent than during other activities. Maximum foraging dive depths reflected the deeper vertical distribution of Chinook (compared to other salmonids) and the tendency of Pacific salmon to evade predators by diving steeply. Kinematic characteristics of prey pursuit by resident killer whales also revealed several other escape strategies employed by salmon attempting to avoid predation, including increased swimming speeds and evasive maneuvering. High-resolution dive tracks reconstructed using data collected by multi-sensor accelerometer tags found that movements by resident killer whales relate significantly to the vertical distributions and escape responses of their primary prey, Pacific salmon.

  6. Fine-scale genetic structure patterns in two freshwater fish species, Geophagus brasiliensis (Osteichthyes, Cichlidae) and Astyanax altiparanae (Osteichthyes, Characidae) throughout a Neotropical stream.

    Science.gov (United States)

    Ferreira, D G; Lima, S C; Frantine-Silva, W; Silva, J F; Apolinário-Silva, C; Sofia, S H; Carvalho, S; Galindo, B A

    2016-10-24

    Streams are very important environments for Neotropical freshwater fish fauna, and possess a high number of species. These small drainages are also highlighted by their intrinsic biological and physicochemical features; however, knowledge on the genetic distribution of fish in these drainages is limited. Therefore, in the present study, RAPD (random amplified polymorphic DNA) and microsatellite markers were used to analyze population differentiation and gene flow of Astyanax altiparanae and Geophagus brasiliensis from three sites (high, medium, and low) throughout the Penacho stream (about 32 km long), which is a Neotropical stream. Both markers revealed higher levels of genetic diversity levels for A. altiparanae (: 90.05; H S : 0.350) compared to G. brasiliensis (: 30.43; H S : 0.118), which may be related to the particular biology of each species. AMOVA revealed significant genetic variation among populations of each species. All pairwise Φ ST values were significant, ranging from 0.020 to 0.056 for A. altiparanae samples, and from 0.065 to 0.190 for G. brasiliensis samples. Bayesian clustering analysis corroborated these results and revealed clusters of both A. altiparanae (two based on RAPD data) and G. brasiliensis (two based on RAPD data and three on microsatellite data). Gene flow estimates showed that there were similar rates of migration among A. altiparanae samples and low rates of migration among some G. brasiliensis samples. These results suggest patterns of fine-scale genetic structure for both species in the Penacho stream. This information may enhance knowledge of Neotropical streams and may be useful for future management and conservation activities.

  7. Fine-scale population genetic structure of the Bengal tiger (Panthera tigris tigris) in a human-dominated western Terai Arc Landscape, India.

    Science.gov (United States)

    Singh, Sujeet Kumar; Aspi, Jouni; Kvist, Laura; Sharma, Reeta; Pandey, Puneet; Mishra, Sudhanshu; Singh, Randeep; Agrawal, Manoj; Goyal, Surendra Prakash

    2017-01-01

    Despite massive global conservation strategies, tiger populations continued to decline until recently, mainly due to habitat loss, human-animal conflicts, and poaching. These factors are known to affect the genetic characteristics of tiger populations and decrease local effective population sizes. The Terai Arc Landscape (TAL) at the foothills of the Himalaya is one of the 42 source sites of tigers around the globe. Therefore, information on how landscape features and anthropogenic factors affect the fine-scale spatial genetic structure and variation of tigers in TAL is needed to develop proper management strategies for achieving long-term conservation goals. We document, for the first time, the genetic characteristics of this tiger population by genotyping 71 tiger samples using 13 microsatellite markers from the western region of TAL (WTAL) of 1800 km2. Specifically, we aimed to estimate the genetic variability, population structure, and gene flow. The microsatellite markers indicated that the levels of allelic diversity (MNA = 6.6) and genetic variation (Ho = 0.50, HE = 0.64) were slightly lower than those reported previously in other Bengal tiger populations. We observed moderate gene flow and significant genetic differentiation (FST= 0.060) and identified the presence of cryptic genetic structure using Bayesian and non-Bayesian approaches. There was low and significantly asymmetric migration between the two main subpopulations of the Rajaji Tiger Reserve and the Corbett Tiger Reserve in WTAL. Sibship relationships indicated that the functionality of the corridor between these subpopulations may be retained if the quality of the habitat does not deteriorate. However, we found that gene flow is not adequate in view of changing land use matrices. We discuss the need to maintain connectivity by implementing the measures that have been suggested previously to minimize the level of human disturbance, including relocation of villages and industries, prevention of

  8. Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948-2013)

    Science.gov (United States)

    Andresen, Christian G.; Lougheed, Vanessa L.

    2015-03-01

    Long-term fine-scale dynamics of surface hydrology in Arctic tundra ponds (less than 1 ha) are largely unknown; however, these small water bodies may contribute substantially to carbon fluxes, energy balance, and biodiversity in the Arctic system. Change in pond area and abundance across the upper Barrow Peninsula, Alaska, was assessed by comparing historic aerial imagery (1948) and modern submeter resolution satellite imagery (2002, 2008, and 2010). This was complemented by photogrammetric analysis of low-altitude kite-borne imagery in combination with field observations (2010-2013) of pond water and thaw depth transects in seven ponds of the International Biological Program historic research site. Over 2800 ponds in 22 drained thaw lake basins (DTLB) with different geological ages were analyzed. We observed a net decrease of 30.3% in area and 17.1% in number of ponds over the 62 year period. The inclusion of field observations of pond areas in 1972 from a historic research site confirms the linear downward trend in area. Pond area and number were dependent on the age of DTLB; however, changes through time were independent of DTLB age, with potential long-term implications for the hypothesized geomorphologic landscape succession of the thaw lake cycle. These losses were coincident with increases in air temperature, active layer, and density and cover of aquatic emergent plants in ponds. Increased evaporation due to warmer and longer summers, permafrost degradation, and transpiration from encroaching aquatic emergent macrophytes are likely the factors contributing to the decline in surface area and number of ponds.

  9. Fine-scale population genetic structure of the Bengal tiger (Panthera tigris tigris in a human-dominated western Terai Arc Landscape, India.

    Directory of Open Access Journals (Sweden)

    Sujeet Kumar Singh

    Full Text Available Despite massive global conservation strategies, tiger populations continued to decline until recently, mainly due to habitat loss, human-animal conflicts, and poaching. These factors are known to affect the genetic characteristics of tiger populations and decrease local effective population sizes. The Terai Arc Landscape (TAL at the foothills of the Himalaya is one of the 42 source sites of tigers around the globe. Therefore, information on how landscape features and anthropogenic factors affect the fine-scale spatial genetic structure and variation of tigers in TAL is needed to develop proper management strategies for achieving long-term conservation goals. We document, for the first time, the genetic characteristics of this tiger population by genotyping 71 tiger samples using 13 microsatellite markers from the western region of TAL (WTAL of 1800 km2. Specifically, we aimed to estimate the genetic variability, population structure, and gene flow. The microsatellite markers indicated that the levels of allelic diversity (MNA = 6.6 and genetic variation (Ho = 0.50, HE = 0.64 were slightly lower than those reported previously in other Bengal tiger populations. We observed moderate gene flow and significant genetic differentiation (FST= 0.060 and identified the presence of cryptic genetic structure using Bayesian and non-Bayesian approaches. There was low and significantly asymmetric migration between the two main subpopulations of the Rajaji Tiger Reserve and the Corbett Tiger Reserve in WTAL. Sibship relationships indicated that the functionality of the corridor between these subpopulations may be retained if the quality of the habitat does not deteriorate. However, we found that gene flow is not adequate in view of changing land use matrices. We discuss the need to maintain connectivity by implementing the measures that have been suggested previously to minimize the level of human disturbance, including relocation of villages and industries

  10. Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species.

    Directory of Open Access Journals (Sweden)

    Paloma Torroba-Balmori

    Full Text Available The analysis of fine-scale spatial genetic structure (FSGS within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS in seven African and Neotropical populations of the late-successional rain forest tree Symphonia globulifera L. f. (Clusiaceae to discriminate the influence of drift-dispersal vs. landscape/ecological features and historical processes on FSGS. We used spatial principal component analysis and Bayesian clustering to assess spatial genetic heterogeneity at SSRs and examined its association with plastid DNA and habitat features. African populations (from Cameroon and São Tomé displayed a stronger FSGS than Neotropical populations at both marker types (mean Sp = 0.025 vs. Sp = 0.008 at SSRs and had a stronger spatial genetic heterogeneity. All three African populations occurred in pronounced altitudinal gradients, possibly restricting animal-mediated seed dispersal. Cyto-nuclear disequilibria in Cameroonian populations also suggested a legacy of biogeographic history to explain these genetic patterns. Conversely, Neotropical populations exhibited a weaker FSGS, which may reflect more efficient wide-ranging seed dispersal by Neotropical bats and other dispersers. The population from French Guiana displayed an association of plastid haplotypes with two morphotypes characterized by differential habitat preferences. Our results highlight the importance of the microenvironment for eco-evolutionary processes within persistent tropical tree populations.

  11. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness

    Science.gov (United States)

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-01-01

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly “domain general” conflict processing mechanisms, instead of conflict source specific effects. PMID:26169473

  12. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness.

    Science.gov (United States)

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-07-14

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly "domain general" conflict processing mechanisms, instead of conflict source specific effects.

  13. Understanding the benefits of musical training: effects on oscillatory brain activity.

    Science.gov (United States)

    Trainor, Laurel J; Shahin, Antoine J; Roberts, Larry E

    2009-07-01

    A number of studies suggest that musical training has benefits for other cognitive domains, such as language and mathematics, and studies of children and adults indicate structural as well as functional differences between the brains of musicians and nonmusicians. The induced gamma-band response has been associated with attentional, expectation, memory retrieval, and integration of top-down, bottom-up, and multisensory processes. Here we report data indicating that the induced gamma-band response to musical sounds is larger in adult musicians than in nonmusicians and that it develops in children after 1 year of musical training beginning at age 4.5 years, but not in children of this age who are not engaged in musical lessons. We conclude that musical training affects oscillatory networks in the brain associated with executive functions, and that superior executive functioning could enhance learning and performance in many cognitive domains.

  14. Non-Steady Oscillatory Flow in Coarse Granular Materials

    DEFF Research Database (Denmark)

    Andersen, O. H.; Gent, M. R. A. van; Meer, J. W. van der

    1992-01-01

    Stationary and oscillatory flow through coarse granular materials have been investigated experimentally at Delft Hydraulics in their oscillating water tunnel with the objective of determining the coefficients of the extended Forchheimer equation. Cylinders, spheres and different types of rock have...

  15. Oscillatory activity in the basal ganglia.

    Science.gov (United States)

    Eusebio, Alexandre; Brown, Peter

    2007-01-01

    The exact mechanisms underlying the dysfunction of the basal ganglia (BG) that leads to movement disorders such as Parkinson's disease (PD) and dystonia still remain unclear. The classic model, based on two distinct pathways and described nearly 20 years ago by Albin and Delong, fails to explain why lesion or stimulation of the globus pallidus interna improves dyskinesias and why lesion or stimulation of the thalamus does not cause prominent bradykinesia. These paradoxes, initially highlighted out by Marsden and Obeso, led to the proposition that the pattern of neuronal discharge determines pathological function. Accordingly, over the past decade, attention has switched from considerations of discharge rate to the characterisation of synchronised activity within BG networks. Here we would like to briefly review current knowledge about synchronised oscillatory activity in the BG and focus on its relationship to abnormal motor function. In particular, we hypothesise that the frequency of synchronisation helps determine the nature of any motor deficit, perhaps as a consequence of the different tuning properties of basal ganglia-cortical sub-circuits.

  16. Processing Oscillatory Signals by Incoherent Feedforward Loops.

    Science.gov (United States)

    Zhang, Carolyn; Tsoi, Ryan; Wu, Feilun; You, Lingchong

    2016-09-01

    From the timing of amoeba development to the maintenance of stem cell pluripotency, many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression. While the networks underlying this signal decoding are diverse, many are built around a common motif, the incoherent feedforward loop (IFFL), where an input simultaneously activates an output and an inhibitor of the output. With appropriate parameters, this motif can exhibit temporal adaptation, where the system is desensitized to a sustained input. This property serves as the foundation for distinguishing input signals with varying temporal profiles. Here, we use quantitative modeling to examine another property of IFFLs-the ability to process oscillatory signals. Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints. The kinetics of the IFFL components dictate the input range for which the network is able to decode pulsatile dynamics. In addition, a match between the network parameters and input signal characteristics is required for optimal "counting". We elucidate one potential mechanism by which information processing occurs in natural networks, and our work has implications in the design of synthetic gene circuits for this purpose.

  17. Plant shoots exhibit synchronized oscillatory motions.

    Science.gov (United States)

    Ciszak, Marzena; Masi, Elisa; Baluška, František; Mancuso, Stefano

    2016-01-01

    In animals, the ability to move has evolved as an important means of protection from predators and for enhancing nutrient uptake. In the animal kingdom, an individual's movements may become coordinated with those of other individuals that belong to the same group, which leads, for example, to the beautiful collective patterns that are observed in flocks of birds and schools of fish or in animal migration. Land plants, however, are fixed to the ground, which limits their movement and, apparently, their interactions and collective behaviors. We show that emergent maize plants grown in a group exhibit synchronized oscillatory motions that may be in-phase or anti-phase. These oscillations occur in short bursts and appear when the leaves rupture from the coleoptile tip. The appearance of these oscillations indicates an abrupt increase in the plant growth rate, which may be associated with a sudden change in the energy uptake for photosynthesis. Our results suggest that plant shoots behave as a complex network of biological oscillators, interacting through biophysical links, e.g. chemical substances or electric signals.

  18. Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Matthew S. [Department; Ding, Wendu [Department; Li, Yuxiu [Center; College; Chapman, Craig T. [Department; Lei, Aiwen [College; Lin, Xiao-Min [Center; Chen, Lin X. [Department; Chemical; Schatz, George C. [Department; Schaller, Richard D. [Department; Center

    2017-12-08

    We demonstrate that coherent acoustic phonons derived from plasmonic nanoparticles can modulate electronic interactions with proximal excitonic molecular species. A series of gold bipyramids with systematically varied aspect ratios and corresponding localized surface plasmon resonance energies, functionalized with a J-aggregated thiacarbocyanine dye molecule, produce two hybridized states that exhibit clear anti-crossing behavior with a Rabi splitting energy of 120 meV. In metal nanoparticles, photoexcitation generates coherent acoustic phonons that cause oscillations in the plasmon resonance energy. In the coupled system, these photo-generated oscillations alter the metal nanoparticle’s energetic contribution to the hybridized system and, as a result, change the coupling between the plasmon and exciton. We demonstrate that such modulations in the hybridization is consistent across a wide range of bipyramid ensembles. We also use Finite-Difference Time Domain calculations to develop a simple model describing this behavior. Such oscillatory plasmonic-excitonic nanomaterials (OPENs) offer a route to manipulate and dynamically-tune the interactions of plasmonic/excitonic systems and unlock a range of potential applications.

  19. Oscillatory Stokes Flow Past a Slip Cylinder

    Science.gov (United States)

    Palaniappan, D.

    2013-11-01

    Two-dimensional transient slow viscous flow past a circular cylinder with Navier slip boundary conditions is considered in the limit of low-Reynolds number. The oscillatory Stokes flow problem around a cylinder is solved using the stream function method leading to an analytic solution in terms of modified Bessel functions of the second kind. The corresponding steady-state behavior yields the familiar paradoxical result first detected by Stokes. It is noted that the two key parameters, viz., the frequency λ, and the slip coefficient ξ have a significant impact on the flow field in the vicinity of the cylinder contour. In the limit of very low frequency, the flow is dominated by a term containing a well-known biharmonic function found by Stokes that has a singular behavior at infinity. Local streamlines for small times show interesting flow patterns. Attached eddies due to flow separation - observed in the no-slip case - either get detached or pushed away from the cylinder surface as ξ is varied. Computed asymptotic results predict that the flow exhibits inviscid behavior far away from the cylinder in the frequency range 0 < λ << 1 . Although the frequency of oscillations is finite, our exact solutions reveal fairly rapid transitions in the flow domain. Research Enhancement grant, TAMUCC.

  20. Effect of prolonged wakefulness on electroencephalographic oscillatory activity during sleep

    OpenAIRE

    2013-01-01

    The human sleep electroencephalogram (EEG) is characterized by the occurrence of distinct oscillatory events such as delta waves sleep spindles and alpha activity. We applied a previously proposed algorithm for the detection of such events and investigated their incidence and frequency in baseline and recovery sleep after 40 h of sustained wakefulness in 27 healthy young subjects. The changes in oscillatory events induced by sleep deprivation were compared to the corresponding spectral change...

  1. Fine-Scale Structure Analysis Shows Epidemic Patterns of Clonal Complex 95, a Cosmopolitan Escherichia coli Lineage Responsible for Extraintestinal Infection.

    Science.gov (United States)

    Gordon, David M; Geyik, Sarah; Clermont, Olivier; O'Brien, Claire L; Huang, Shiwei; Abayasekara, Charmalie; Rajesh, Ashwin; Kennedy, Karina; Collignon, Peter; Pavli, Paul; Rodriguez, Christophe; Johnston, Brian D; Johnson, James R; Decousser, Jean-Winoc; Denamur, Erick

    2017-01-01

    The Escherichia coli lineage known as clonal complex 95 (CC95) is a cosmopolitan human-associated lineage responsible for a significant fraction of extraintestinal infections of humans. Whole-genome sequence data of 200 CC95 strains from various origins enabled determination of the CC95 pangenome. The pangenome analysis revealed that strains of the complex could be assigned to one of five subgroups that vary in their serotype, extraintestinal virulence, virulence gene content, and antibiotic resistance gene profile. A total of 511 CC95 strains isolated from humans living in France, Australia, and the United States were screened for their subgroup membership using a PCR-based method. The CC95 subgroups are nonrandomly distributed with respect to their geographic origin. The relative frequency of the subgroups was shown to change through time, although the nature of the changes varies with continent. Strains of the subgroups are also nonrandomly distributed with respect to source of isolation (blood, urine, or feces) and host sex. Collectively, the evidence indicates that although strains belonging to CC95 may be cosmopolitan, human movement patterns have been insufficient to homogenize the distribution of the CC95 subgroups. Rather, the manner in which CC95 strains evolve appears to vary both spatially and temporally. Although CC95 strains appeared globally as pandemic, fine-scale structure analysis shows epidemic patterns of the CC95 subgroups. Furthermore, the observation that the relative frequency of CC95 subgroups at a single locality has changed over time indicates that the relative fitness of the subgroups has changed. IMPORTANCE Escherichia coli clonal complex 95 represents a cosmopolitan, genetically diverse lineage, and the extensive substructure observed in this lineage is epidemiologically and clinically relevant. The frequency with which CC95 strains are responsible for extraintestinal infection appears to have been stable over the past 15

  2. Higher fine-scale genetic structure in peripheral than in core populations of a long-lived and mixed-mating conifer--eastern white cedar (Thuja occidentalis L.).

    Science.gov (United States)

    Pandey, Madhav; Rajora, Om P

    2012-04-05

    Fine-scale or spatial genetic structure (SGS) is one of the key genetic characteristics of plant populations. Several evolutionary and ecological processes and population characteristics influence the level of SGS within plant populations. Higher fine-scale genetic structure may be expected in peripheral than core populations of long-lived forest trees, owing to the differences in the magnitude of operating evolutionary and ecological forces such as gene flow, genetic drift, effective population size and founder effects. We addressed this question using eastern white cedar (Thuja occidentalis) as a model species for declining to endangered long-lived tree species with mixed-mating system. We determined the SGS in two core and two peripheral populations of eastern white cedar from its Maritime Canadian eastern range using six nuclear microsatellite DNA markers. Significant SGS ranging from 15 m to 75 m distance classes was observed in the four studied populations. An analysis of combined four populations revealed significant positive SGS up to the 45 m distance class. The mean positive significant SGS observed in the peripheral populations was up to six times (up to 90 m) of that observed in the core populations (15 m). Spatial autocorrelation coefficients and correlograms of single and sub-sets of populations were statistically significant. The extent of within-population SGS was significantly negatively correlated with all genetic diversity parameters. Significant heterogeneity of within-population SGS was observed for 0-15 m and 61-90 m between core and peripheral populations. Average Sp, and gene flow distances were higher in peripheral (Sp = 0.023, σg = 135 m) than in core (Sp = 0.014, σg = 109 m) populations. However, the mean neighborhood size was higher in the core (Nb = 82) than in the peripheral (Nb = 48) populations. Eastern white cedar populations have significant fine-scale genetic structure at short distances. Peripheral populations have several

  3. Oscillatory activity reflects differential use of spatial reference frames by sighted and blind individuals in tactile attention.

    Science.gov (United States)

    Schubert, Jonathan T W; Buchholz, Verena N; Föcker, Julia; Engel, Andreas K; Röder, Brigitte; Heed, Tobias

    2015-08-15

    Touch can be localized either on the skin in anatomical coordinates, or, after integration with posture, in external space. Sighted individuals are thought to encode touch in both coordinate systems concurrently, whereas congenitally blind individuals exhibit a strong bias for using anatomical coordinates. We investigated the neural correlates of this differential dominance in the use of anatomical and external reference frames by assessing oscillatory brain activity during a tactile spatial attention task. The EEG was recorded while sighted and congenitally blind adults received tactile stimulation to uncrossed and crossed hands while detecting rare tactile targets at one cued hand only. In the sighted group, oscillatory alpha-band activity (8-12Hz) in the cue-target interval was reduced contralaterally and enhanced ipsilaterally with uncrossed hands. Hand crossing attenuated the degree of posterior parietal alpha-band lateralization, indicating that attention deployment was affected by external spatial coordinates. Beamforming suggested that this posture effect originated in the posterior parietal cortex. In contrast, cue-related lateralization of central alpha-band as well as of beta-band activity (16-24Hz) were unaffected by hand crossing, suggesting that these oscillations exclusively encode anatomical coordinates. In the blind group, central alpha-band activity was lateralized, but did not change across postures. The pattern of beta-band activity was indistinguishable between groups. Because the neural mechanisms for posterior alpha-band generation seem to be linked to developmental vision, we speculate that the lack of this neural mechanism in blind individuals is related to their preferred use of anatomical over external spatial codes in sensory processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Nonlinear oscillatory rheology and structure of wormlike micellar solutions and colloidal suspensions

    Science.gov (United States)

    Gurnon, Amanda Kate

    this constitutive model are tested by comparison with experiments on model WLM solutions. Further comparisons to the nonlinear oscillatory shear responses measured from colloidal suspensions establishes this analysis as a promising, quantitative method for understanding the underlying mechanisms responsible for the nonlinear dynamic response of complex fluids. A new experimental technique is developed to measure the microstructure of complex fluids during steady and transient shear flow using small-angle neutron scattering (SANS). The Flow-SANS experimental method is now available to the broader user communities at the NIST Center for Neutron Research, Gaithersburg, MD and the Institut Laue-Langevin, Grenoble, France. Using this new method, a model shear banding WLM solution is interrogated under steady and oscillatory shear. For the first time, the flow-SANS methods identify new metastable states for shear banding WLM solutions, thus establishing the method as capable of probing new states not accessible using traditional steady or linear oscillatory shear methods. The flow-induced three-dimensional microstructure of a colloidal suspension under steady and dynamic oscillatory shear is also measured using these rheo- and flow-SANS methods. A new structure state is identified in the shear thickening regime that proves critical for defining the "hydrocluster" microstructure state of the suspension that is responsible for shear thickening. For both the suspensions and the WLM solutions, stress-SANS rules with the measured microstructures define the individual stress components arising separately from conservative and hydrodynamic forces and these are compared with the macroscopic rheology. Analysis of these results defines the crucial length- and time-scales of the transient microstructure response. The novel dynamic microstructural measurements presented in this dissertation provide new insights into the complexities of shear thickening and shear banding flow phenomena

  5. Oscillatory brain dynamics during sentence reading: A Fixation-related spectral perturbation analysis.

    Directory of Open Access Journals (Sweden)

    Lorenzo eVignali

    2016-04-01

    Full Text Available The present study investigated oscillatory brain dynamics during self-paced sentence-level processing. Participants read fully correct sentences, sentences containing a semantic violation and sentences in which the order of the words was randomized. At the target word level, fixations on semantically unrelated words elicited a lower-beta band (13-18 Hz desynchronization. At the sentence level, gamma power (31-55 Hz increased linearly for syntactically correct sentences, but not when the order of the words was randomized. In the 300 to 900 ms time window after sentence onsets, theta power (4-7 Hz was greater for syntactically correct sentences as compared to sentences where no syntactic structure was preserved (random words condition. We interpret our results as conforming with a recently formulated predictive-coding framework for oscillatory neural dynamics during sentence-level language comprehension. Additionally, we discuss how our results relate to previous findings with serial visual presentation versus self-paced reading.

  6. Linearly and nonlinearly optimized weighted essentially non-oscillatory methods for compressible turbulence

    Science.gov (United States)

    Taylor, Ellen Meredith

    Weighted essentially non-oscillatory (WENO) methods have been developed to simultaneously provide robust shock-capturing in compressible fluid flow and avoid excessive damping of fine-scale flow features such as turbulence. This is accomplished by constructing multiple candidate numerical stencils that adaptively combine so as to provide high order of accuracy and high bandwidth-resolving efficiency in continuous flow regions while averting instability-provoking interpolation across discontinuities. Under certain conditions in compressible turbulence, however, numerical dissipation remains unacceptably high even after optimization of the linear optimal stencil combination that dominates in smooth regions. The remaining nonlinear error arises from two primary sources: (i) the smoothness measurement that governs the application of adaptation away from the optimal stencil and (ii) the numerical properties of individual candidate stencils that govern numerical accuracy when adaptation engages. In this work, both of these sources are investigated, and corrective modifications to the WENO methodology are proposed and evaluated. Excessive nonlinear error due to the first source is alleviated through two separately considered procedures appended to the standard smoothness measurement technique that are designated the "relative smoothness limiter" and the "relative total variation limiter." In theory, appropriate values of their associated parameters should be insensitive to flow configuration, thereby sidestepping the prospect of costly parameter tuning; and this expectation of broad effectiveness is assessed in direct numerical simulations (DNS) of one-dimensional inviscid test problems, three-dimensional compressible isotropic turbulence of varying Reynolds and turbulent Mach numbers, and shock/isotropic-turbulence interaction (SITI). In the process, tools for efficiently comparing WENO adaptation behavior in smooth versus shock-containing regions are developed. The

  7. Oscillatory instability of interstellar medium radiative shock waves

    International Nuclear Information System (INIS)

    Imamura, J.N.

    1984-01-01

    Observations of the radiative shock waves produced during the late stages of supernova remnant evolution cannot be understood in the context of steady state shock models. As a result, several more complicated scenarios have been suggested. For example, it has been proposed that several shocks are producing the emission or that one shock, which is in the process of making the transition between the adiabatic and the radiative phases of its evolution, produces the emission. In this paper, we suggest another explanation. We propose that supernova remnant shock waves are subject to an oscillatory instability. By an oscillatory instability, we mean one where the postshock cooling region periodically varies in size on a time scale determined by the postshock plasma cooling time. An oscillatory instability may be able to produce the types of behavior exhibited by supernova remnant radiative shocks in a natural way. 16 refs., 1 fig

  8. Two-scale approach to oscillatory singularly perturbed transport equations

    CERN Document Server

    Frénod, Emmanuel

    2017-01-01

    This book presents the classical results of the two-scale convergence theory and explains – using several figures – why it works. It then shows how to use this theory to homogenize ordinary differential equations with oscillating coefficients as well as oscillatory singularly perturbed ordinary differential equations. In addition, it explores the homogenization of hyperbolic partial differential equations with oscillating coefficients and linear oscillatory singularly perturbed hyperbolic partial differential equations. Further, it introduces readers to the two-scale numerical methods that can be built from the previous approaches to solve oscillatory singularly perturbed transport equations (ODE and hyperbolic PDE) and demonstrates how they can be used efficiently. This book appeals to master’s and PhD students interested in homogenization and numerics, as well as to the Iter community.

  9. Temporal entrainment of cognitive functions: musical mnemonics induce brain plasticity and oscillatory synchrony in neural networks underlying memory.

    Science.gov (United States)

    Thaut, Michael H; Peterson, David A; McIntosh, Gerald C

    2005-12-01

    In a series of experiments, we have begun to investigate the effect of music as a mnemonic device on learning and memory and the underlying plasticity of oscillatory neural networks. We used verbal learning and memory tests (standardized word lists, AVLT) in conjunction with electroencephalographic analysis to determine differences between verbal learning in either a spoken or musical (verbal materials as song lyrics) modality. In healthy adults, learning in both the spoken and music condition was associated with significant increases in oscillatory synchrony across all frequency bands. A significant difference between the spoken and music condition emerged in the cortical topography of the learning-related synchronization. When using EEG measures as predictors during learning for subsequent successful memory recall, significantly increased coherence (phase-locked synchronization) within and between oscillatory brain networks emerged for music in alpha and gamma bands. In a similar study with multiple sclerosis patients, superior learning and memory was shown in the music condition when controlled for word order recall, and subjects were instructed to sing back the word lists. Also, the music condition was associated with a significant power increase in the low-alpha band in bilateral frontal networks, indicating increased neuronal synchronization. Musical learning may access compensatory pathways for memory functions during compromised PFC functions associated with learning and recall. Music learning may also confer a neurophysiological advantage through the stronger synchronization of the neuronal cell assemblies underlying verbal learning and memory. Collectively our data provide evidence that melodic-rhythmic templates as temporal structures in music may drive internal rhythm formation in recurrent cortical networks involved in learning and memory.

  10. Large Amplitude Oscillatory Extension of Soft Polymeric Networks

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Rasmussen, Henrik K.; Skov, Anne Ladegaard

    2010-01-01

    sing a filament stretching rheometer (FSR) surrounded by a thermostatic chamber and equipped with a micrometric laser it is possible to measure large amplitude oscillatory elongation (LAOE) on elastomeric based networks with no base flow as in the LAOE method for polymer melts. Poly(dimethylsilox......sing a filament stretching rheometer (FSR) surrounded by a thermostatic chamber and equipped with a micrometric laser it is possible to measure large amplitude oscillatory elongation (LAOE) on elastomeric based networks with no base flow as in the LAOE method for polymer melts. Poly...

  11. Oscillatory decoupling differentiates auditory encoding deficits in children with listening problems.

    Science.gov (United States)

    Gilley, Phillip M; Sharma, Mridula; Purdy, Suzanne C

    2016-02-01

    We sought to examine whether oscillatory EEG responses to a speech stimulus in both quiet and noise were different in children with listening problems than in children with normal hearing. We employed a high-resolution spectral-temporal analysis of the cortical auditory evoked potential in response to a 150 ms speech sound /da/ in quiet and 3 dB SNR in 21 typically developing children (mean age=10.7 years, standard deviation=1.7) and 44 children with reported listening problems (LP) with absence of hearing loss (mean age=10.3 years, standard deviation=1.6). Children with LP were assessed for auditory processing disorder (APD) by which 24 children had APD, and 20 children did not. Peak latencies, magnitudes, and frequencies were compared between these groups. Children with LP had frequency shifts in the theta, and alpha bands (plistening problems in this population of children. Published by Elsevier Ireland Ltd.

  12. Oscillatory activity in the human basal ganglia: more than just beta, more than just Parkinson's disease.

    Science.gov (United States)

    Alegre, Manuel; Valencia, Miguel

    2013-10-01

    The implantation of deep brain stimulators in different structures of the basal ganglia to treat neurological and psychiatric diseases has allowed the recording of local field potential activity in these structures. The analysis of these signals has helped our understanding of basal ganglia physiology in health and disease. However, there remain some major challenges and questions for the future. In a recent work, Tan et al. (Tan, H., Pogosyan, A., Anam, A., Foltynie, T., Limousin, P., Zrinzo, L., et al. 2013. Frequency specific activity in subthalamic nucleus correlates with hand bradykinesia in Parkinson's disease. Exp. Neurol. 240,122-129) take profit of these recordings to study the changes in subthalamic oscillatory activity during the hold and release phases of a grasping paradigm, and correlate the changes in different frequency bands with performance parameters. They found that beta activity was related to the release phase, while force maintenance related most to theta and gamma/HFO activity. There was no significant effect of the motor state of the patient on this latter association. These findings suggest that the alterations in the oscillatory activity of the basal ganglia in Parkinson's disease are not limited to the beta band, and they involve aspects different from movement preparation and initiation. Additionally, these results highlight the usefulness of the combination of well-designed paradigms with recordings in off and on motor states (in Parkinson's disease), or in different pathologies, in order to understand not only the pathophysiology of the diseases affecting the patients, but also the normal physiology of the basal ganglia. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Increased low- and high-frequency oscillatory activity in the prefrontal cortex of fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    Manyoel eLim

    2016-03-01

    Full Text Available Recent human neuroimaging studies have suggested that fibromyalgia (FM, a chronic widespread pain disorder, exhibits altered thalamic structure and function. Since the thalamus has extensive reciprocal connection with the cortex, structural and functional thalamic alterations in FM might be linked to aberrant thalamocortical oscillation. This study investigated the presence of abnormal brain rhythmicity in low- and high-frequency bands during resting state in patients with FM and their relationship to clinical pain symptom. Spontaneous magnetoencephalography activity was recorded in 18 females with FM and 18 age- and sex-matched healthy control subjects. The most remarkable finding was that FM patients had general increases in theta, beta and gamma power along with a slowing of the dominant alpha peak. Increased spectral powers in the theta-band were primarily localized to the left dorsolateral prefrontal (DLPFC and orbitofrontal cortex (OFC. Beta and gamma over-activation were localized to insular, primary motor and primary and secondary somatosensory cortices, as well as the DLPFC and OFC. Furthermore, enhanced high-frequency oscillatory activities in the DLPFC and OFC were associated with higher affective pain scores in patients with FM. Our results demonstrate that FM patients feature enhanced low- and high-frequency oscillatory activity in the brain areas related to cognitive and emotional modulation of pain. Increased low- and high-frequency activity of the prefrontal cortex may contribute to persistent perception of pain in FM. Therapeutic intervention based on manipulating neural oscillation to restore normal thalamocortical rhythmicity may be beneficial to pain relief in FM.

  14. Resting-state oscillatory activity in children born small for gestational age: a magnetoencephalographic study

    Directory of Open Access Journals (Sweden)

    Maria eBoersma

    2013-09-01

    Full Text Available Growth restriction in utero during a period that is critical for normal growth of the brain, has previously been associated with deviations in cognitive abilities and brain anatomical and functional changes. We measured magnetoencephalography (MEG in 4-7 year old children to test if children born small for gestational age (SGA show deviations in resting-state brain oscillatory activity. Children born SGA children with postnatally spontaneous catch-up growth (SGA+; 6 boys, 7 girls; mean age 6.3 y (SD=0.9 and children born appropriate for gestational age (AGA; 7 boys, 3 girls; mean age 6.0 y (SD=1.2 participated in a resting-state MEG study. We calculated absolute and relative power spectra and used nonparametric statistics to test for group differences. SGA+ and AGA born children showed no significant differences in absolute and relative power except for reduced absolute gamma band power in SGA children. At time of MEG investigation, SGA+ children showed was significantly lower head circumference (HC and a trend toward lower IQ, however there was no association of HC or IQ with absolute or relative power. Except for reduced absolute gamma band power, our findings suggest normal brain activity patterns at school age in a group of children born SGA in which spontaneous catch-up growth of bodily length after birth occurred. Although previous findings suggest that being born SGA alters brain oscillatory activity early in neonatal life, we show that these neonatal alterations do not persist at early school age when spontaneous postnatal catch-up growth occurs after birth.

  15. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  16. Frequency-Dependent Enhancement of Fluid Intelligence Induced by Transcranial Oscillatory Potentials

    Energy Technology Data Exchange (ETDEWEB)

    Santarnecchi, Emiliano [Univ. of Siena (Italy). Dept. of Medicine, Surgery and Neuroscience; Polizzotto, Nicola Riccardo [Univ. of Pittsburgh, PA (United States). Dept. of Psychiatry; Godone, Marco [Univ. of Siena (Italy). Dept. of Medicine, Surgery and Neuroscience; Giovannelli, Fabio [San Giovanni di Dio Hospital, Florence (Italy). Complex Unit of Neurology; Feurra, Matteo [Univ. of Siena (Italy). Dept. of Medicine, Surgery and Neuroscience; Matzen, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rossi, Alessandro [Univ. of Siena (Italy). Dept. of Medicine, Surgery and Neuroscience; Rossi, Simone [Univ. of Siena (Italy). Dept. of Medicine, Surgery and Neuroscience

    2013-08-05

    Everyday problem solving requires the ability to go beyond experience by efficiently encoding and manipulating new information, i.e., fluid intelligence (Gf) [1]. Performance in tasks involving Gf, such as logical and abstract reasoning, has been shown to rely on distributed neural networks, with a crucial role played by prefrontal regions [2]. Synchronization of neuronal activity in the gamma band is a ubiquitous phenomenon within the brain; however, no evidence of its causal involvement in cognition exists to date [3]. Here, we show an enhancement of Gf ability in a cognitive task induced by exogenous rhythmic stimulation within the gamma band. Imperceptible alternating current [4] delivered through the scalp over the left middle frontal gyrus resulted in a frequency-specific shortening of the time required to find the correct solution in a visuospatial abstract reasoning task classically employed to measure Gf abilities (i.e., Raven’s matrices) [5]. Crucially, gamma-band stimulation (γ-tACS) selectively enhanced performance only on more complex trials involving conditional/logical reasoning. The finding presented here supports a direct involvement of gamma oscillatory activity in the mechanisms underlying higher-order human cognition.

  17. Oscillatory and electrohydrodynamic instabilities in flow over a ...

    Indian Academy of Sciences (India)

    The stability of oscillatory flows over compliant surfaces is studied analytically and numerically. The type of compliant surfaces studied is the incompressible viscoelastic gel model. The stability is determined using the Floquet analysis, where amplitude of perturbations at time intervals separated by one time period is ...

  18. Oscillatory and electrohydrodynamic instabilities in flow over a ...

    Indian Academy of Sciences (India)

    is encountered in the flow of cardiovascular fluids through flexible blood vessels which are driven by the pumping of the heart. The Reynolds numbers for these flows vary over a wide range between Re < 1 and Re = 4000 (Ku 1997). The oscillatory nature of the blood flow in the vascular system is characterized by a number ...

  19. On stellar collapse: continual or oscillatory. A short comment

    International Nuclear Information System (INIS)

    Leung, P.T.

    1980-01-01

    We comment on a previously published paper on the oscillatory dynamics of stellar collapse and conclude that the Schwarzschild interior solution applied to the 'inflection points' can never give rise to a 'turning back' motion, in spite of the fact that the geodesic equation really does not always describe an attractive gravitational acceleration

  20. Unstable oscillatory Pierce modes of neutralized electron beams

    International Nuclear Information System (INIS)

    Cary, J.R.; Lemons, D.S.

    1982-01-01

    Oscillatory modes of the Pierce system have been calculated. These modes are found to have growth rates comparable to the previously investigated purely growing modes. When these modes are included, it is found that the Pierce system is unstable for most values of ω/sub p/ L/V 0 >π

  1. Molecular dynamics simulations of oscillatory flows in microfluidic channels

    DEFF Research Database (Denmark)

    Hansen, J.S.; Ottesen, Johnny T.

    2006-01-01

    In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, hi...

  2. Oscillatory and electrohydrodynamic instabilities in flow over a ...

    Indian Academy of Sciences (India)

    and oscillatory experiments on the flow past a gel, the gel is placed on the bottom Peltier plate, and the fluid is placed on the gel. The top plate is lowered to obtain a fluid film of the desired thickness, and the viscosity measurements are conducted. The stress is increased at a constant rate, and the viscosity is calculated by ...

  3. Numerical integrators for Stiff and Stiff oscillatory First Order initial ...

    African Journals Online (AJOL)

    Numerical integrators for Stiff and Stiff oscillatory First Order initial value problems. ... Journal of the Nigerian Association of Mathematical Physics ... In this paper, efforts are geared towards the numerical solution of the first order initial value problem (I.V.P) of the form Y\\' = F(X,Y), X∈[ a, b] , Y(a) = Y0, where Y\\' is the total ...

  4. Strobes: Pyrotechnic Compositions That Show a Curious Oscillatory Combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.|info:eu-repo/dai/nl/341356034; van Lingen, J.N.J.|info:eu-repo/dai/nl/311441769; Zevenbergen, J.F.; Gijzeman, O.L.J.|info:eu-repo/dai/nl/073464708; Meijerink, A.|info:eu-repo/dai/nl/075044986

    2013-01-01

    Strobes are pyrotechnic compositions which show an oscillatory combustion; a dark phase and a flash phase alternate periodically. The strobe effect has applications in various fields, most notably in the fireworks industry and in the military area. All strobe compositions mentioned in the literature

  5. New insights into strobe reactions: An intriguing oscillatory combustion phenomenon

    NARCIS (Netherlands)

    Corbel, J.M.L.

    2013-01-01

    Strobes are self-sustained oscillatory combustions that have various applications in the fireworks industry and also in the military area (signaling, missile decoys and crowd control). However, most of the strobe compositions were discovered using trial and error methods. The fundamentals mechanisms

  6. Effect of vertical oscillatory pressure on disability of patients with ...

    African Journals Online (AJOL)

    Effect of vertical oscillatory pressure on disability of patients with chronic mechanical low back pain using Roland Morris Disability questionnaire. ... VOP was then administered to each patient twice in a week for 6 weeks making 12 treatment sessions. Pain intensity and disability were assessed regularly every week of ...

  7. Oscillatory interlayer magnetic coupling and induced magnetism in ...

    Indian Academy of Sciences (India)

    Unknown

    Oscillatory interlayer magnetic coupling and induced magnetism in. Fe/Nb multilayers. NITYA NATH SHUKLA and R PRASAD*. Department of Physics, Indian Institute of Technology, Kanpur 208 016, India. Abstract. We present an ab initio calculation of interlayer magnetic coupling for Fe/Nb multilayers using the.

  8. Oscillatory variation of anomalous diffusion in pendulum systems

    Indian Academy of Sciences (India)

    ... exponent , which is the rate of divergence of the mean square displacement with time, is found to vary in an oscillatory manner. We show the presence of such a variation in other statistical measures such as variance of position, kurtosis, and exponents in the power-exponential law of probability distribution of position.

  9. oscillatory ripples, evaluation of ancient wave climates and ...

    African Journals Online (AJOL)

    DJFLEX

    the ripples have provided useful data in the evaluation of local paleowave climates and trends in ancient wave dominated environments as well as in the prediction of epierogenic movement related to basin subsidence. (Harms, 1969; Diem, 1985). Evans (1941) on the basis of studies on wave–induced oscillatory ripples, ...

  10. Oscillatory behaviour of solutions of linear neutral differential ...

    African Journals Online (AJOL)

    The paper considers the contribution of space-time noise to the oscillatory behaviour of solutions of a linear neutral stochastic delay differential equation. It was established that under certain conditions on the time lags and their speed of adjustments, the presence of noise generates oscillation in the solution of the equation ...

  11. Oscillatory Dynamics Related to the Unagreement Pattern in Spanish

    Science.gov (United States)

    Perez, Alejandro; Molinaro, Nicola; Mancini, Simona; Barraza, Paulo; Carreiras, Manuel

    2012-01-01

    Unagreement patterns consist in a person feature mismatch between subject and verb that is nonetheless grammatical in Spanish. The processing of this type of construction gives new insights into the understanding of agreement processes during language comprehension. Here, we contrasted oscillatory brain activity triggered by Unagreement in…

  12. Deterministic oscillatory search: a new meta-heuristic optimization ...

    Indian Academy of Sciences (India)

    N Archana

    and UPSEB 75 bus system. Results show better performance over other standard algorithms in terms of voltage stability, real power loss and sizing and cost of FACTS devices. Keywords. Artificial intelligence; global optimization; oscillatory search; meta-heuristic optimization; power system problem. 1. Introduction.

  13. Cortical oscillatory activity during spatial echoic memory.

    Science.gov (United States)

    Kaiser, Jochen; Walker, Florian; Leiberg, Susanne; Lutzenberger, Werner

    2005-01-01

    In human magnetoencephalogram, we have found gamma-band activity (GBA), a putative measure of cortical network synchronization, during both bottom-up and top-down auditory processing. When sound positions had to be retained in short-term memory for 800 ms, enhanced GBA was detected over posterior parietal cortex, possibly reflecting the activation of higher sensory storage systems along the hypothesized auditory dorsal space processing stream. Additional prefrontal GBA increases suggested an involvement of central executive networks in stimulus maintenance. The present study assessed spatial echoic memory with the same stimuli but a shorter memorization interval of 200 ms. Statistical probability mapping revealed posterior parietal GBA increases at 80 Hz near the end of the memory phase and both gamma and theta enhancements in response to the test stimulus. In contrast to the previous short-term memory study, no prefrontal gamma or theta enhancements were detected. This suggests that spatial echoic memory is performed by networks along the putative auditory dorsal stream, without requiring an involvement of prefrontal executive regions.

  14. A fine-scale recombination map of the human-chimpanzee ancestor reveals faster change in humans than in chimpanzees and a strong impact of GC-biased gene conversion.

    Science.gov (United States)

    Munch, Kasper; Mailund, Thomas; Dutheil, Julien Y; Schierup, Mikkel Heide

    2014-03-01

    Recombination is a major determinant of adaptive and nonadaptive evolution. Understanding how the recombination landscape has evolved in humans is thus key to the interpretation of human genomic evolution. Comparison of fine-scale recombination maps of human and chimpanzee has revealed large changes at fine genomic scales and conservation over large scales. Here we demonstrate how a fine-scale recombination map can be derived for the ancestor of human and chimpanzee, allowing us to study the changes that have occurred in human and chimpanzee since these species diverged. The map is produced from more than one million accurately determined recombination events. We find that this new recombination map is intermediate to the maps of human and chimpanzee but that the recombination landscape has evolved more rapidly in the human lineage than in the chimpanzee lineage. We use the map to show that recombination rate, through the effect of GC-biased gene conversion, is an even stronger determinant of base composition evolution than previously reported.

  15. A fine-scale recombination map of the human–chimpanzee ancestor reveals faster change in humans than in chimpanzees and a strong impact of GC-biased gene conversion

    Science.gov (United States)

    Munch, Kasper; Mailund, Thomas; Dutheil, Julien Y.; Schierup, Mikkel Heide

    2014-01-01

    Recombination is a major determinant of adaptive and nonadaptive evolution. Understanding how the recombination landscape has evolved in humans is thus key to the interpretation of human genomic evolution. Comparison of fine-scale recombination maps of human and chimpanzee has revealed large changes at fine genomic scales and conservation over large scales. Here we demonstrate how a fine-scale recombination map can be derived for the ancestor of human and chimpanzee, allowing us to study the changes that have occurred in human and chimpanzee since these species diverged. The map is produced from more than one million accurately determined recombination events. We find that this new recombination map is intermediate to the maps of human and chimpanzee but that the recombination landscape has evolved more rapidly in the human lineage than in the chimpanzee lineage. We use the map to show that recombination rate, through the effect of GC-biased gene conversion, is an even stronger determinant of base composition evolution than previously reported. PMID:24190946

  16. Functional localization and effective connectivity of cortical theta and alpha oscillatory activity during an attention task

    Directory of Open Access Journals (Sweden)

    Yuichi Kitaura

    Full Text Available Objectives: The aim of this paper is to investigate cortical electric neuronal activity as an indicator of brain function, in a mental arithmetic task that requires sustained attention, as compared to the resting state condition. The two questions of interest are the cortical localization of different oscillatory activities, and the directional effective flow of oscillatory activity between regions of interest, in the task condition compared to resting state. In particular, theta and alpha activity are of interest here, due to their important role in attention processing. Methods: We adapted mental arithmetic as an attention ask in this study. Eyes closed 61-channel EEG was recorded in 14 participants during resting and in a mental arithmetic task (“serial sevens subtraction”. Functional localization and connectivity analyses were based on cortical signals of electric neuronal activity estimated with sLORETA (standardized low resolution electromagnetic tomography. Functional localization was based on the comparison of the cortical distributions of the generators of oscillatory activity between task and resting conditions. Assessment of effective connectivity was based on the iCoh (isolated effective coherence method, which provides an appropriate frequency decomposition of the directional flow of oscillatory activity between brain regions. Nine regions of interest comprising nodes from the dorsal and ventral attention networks were selected for the connectivity analysis. Results: Cortical spectral density distribution comparing task minus rest showed significant activity increase in medial prefrontal areas and decreased activity in left parietal lobe for the theta band, and decreased activity in parietal-occipital regions for the alpha1 band. At a global level, connections among right hemispheric nodes were predominantly decreased during the task condition, while connections among left hemispheric nodes were predominantly increased. At more

  17. Parkinsonism and vigilance: alteration in neural oscillatory activity and phase-amplitude coupling in the basal ganglia and motor cortex.

    Science.gov (United States)

    Escobar Sanabria, David; Johnson, Luke A; Nebeck, Shane D; Zhang, Jianyu; Johnson, Matthew D; Baker, Kenneth B; Molnar, Gregory F; Vitek, Jerrold L

    2017-11-01

    Oscillatory neural activity in different frequency bands and phase-amplitude coupling (PAC) are hypothesized to be biomarkers of Parkinson's disease (PD) that could explain dysfunction in the motor circuit and be used for closed-loop deep brain stimulation (DBS). How these putative biomarkers change from the normal to the parkinsonian state across nodes in the motor circuit and within the same subject, however, remains unknown. In this study, we characterized how parkinsonism and vigilance altered oscillatory activity and PAC within the primary motor cortex (M1), subthalamic nucleus (STN), and globus pallidus (GP) in two nonhuman primates. Static and dynamic analyses of local field potential (LFP) recordings indicate that 1 ) after induction of parkinsonism using the neurotoxin MPTP, low-frequency power (8-30 Hz) increased in the STN and GP in both subjects, but increased in M1 in only one subject; 2 ) high-frequency power (~330 Hz) was present in the STN in both normal subjects but absent in the parkinsonian condition; 3 ) elevated PAC measurements emerged in the parkinsonian condition in both animals, but in different sites in each animal (M1 in one subject and GPe in the other); and 4 ) the state of vigilance significantly impacted how oscillatory activity and PAC were expressed in the motor circuit. These results support the hypothesis that changes in low- and high-frequency oscillatory activity and PAC are features of parkinsonian pathophysiology and provide evidence that closed-loop DBS systems based on these biomarkers may require subject-specific configurations as well as adaptation to changes in vigilance. NEW & NOTEWORTHY Chronically implanted electrodes were used to record neural activity across multiple nodes in the basal ganglia-thalamocortical circuit simultaneously in a nonhuman primate model of Parkinson's disease, enabling within-subject comparisons of electrophysiological biomarkers between normal and parkinsonian conditions and different

  18. Bias-dependent oscillatory electron transport of monatomic sulfur chains

    KAUST Repository

    Yu, Jing-Xin

    2012-01-01

    The bias-dependent oscillatory electron transport of monatomic sulfur chains sandwiched between gold electrodes is investigated with density functional theory and non-equilibrium Green\\'s function method. At zero bias, in contrast to the typical odd-even oscillations observed in most metallic chains, we find that the conductance oscillates with a period of four atoms. However, as the bias voltage is increased the current displays a two-atom periodicity. This emerges gradually, first for the longer chains and then, at voltages larger than 0.7 V, for lengths. The oscillatory behaviors are analyzed by the density of states and the energy-dependent and bias-dependent transmission coefficients. © 2012 American Institute of Physics.

  19. What basal ganglia changes underlie the parkinsonian state? The significance of neuronal oscillatory activity

    Science.gov (United States)

    Quiroga-Varela, A.; Walters, J.R.; Brazhnik, E.; Marin, C.; Obeso, J.A.

    2014-01-01

    One well accepted functional feature of the parkinsonian state is the recording of enhanced beta oscillatory activity in the basal ganglia. This has been demonstrated in patients with Parkinson's disease (PD) and in animal models such as the rat with 6-hydroxydopamine (6-OHDA)-induced lesion and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys, all of which are associated with severe striatal dopamine depletion. Neuronal hyper-synchronization in the beta (or any other) band is not present despite the presence of bradykinetic features in the rat and monkey models, suggesting that increased beta band power may arise when nigro-striatal lesion is advanced and that it is not an essential feature of the early parkinsonian state. Similar observations and conclusions have been previously made for increased neuronal firing rate in the subthalamic and globus pallidus pars interna nuclei. Accordingly, it is suggested that early parkinsonism may be associated with dynamic changes in basal ganglia output activity leading to reduced movement facilitation that may be an earlier feature of the parkinsonian state. PMID:23727447

  20. Oscillatory Brain Responses Reflect Anticipation during Comprehension of Speech Acts in Spoken Dialog.

    Science.gov (United States)

    Gisladottir, Rosa S; Bögels, Sara; Levinson, Stephen C

    2018-01-01

    Everyday conversation requires listeners to quickly recognize verbal actions, so-called speech acts , from the underspecified linguistic code and prepare a relevant response within the tight time constraints of turn-taking. The goal of this study was to determine the time-course of speech act recognition by investigating oscillatory EEG activity during comprehension of spoken dialog. Participants listened to short, spoken dialogs with target utterances that delivered three distinct speech acts (Answers, Declinations, Pre-offers). The targets were identical across conditions at lexico-syntactic and phonetic/prosodic levels but differed in the pragmatic interpretation of the speech act performed. Speech act comprehension was associated with reduced power in the alpha/beta bands just prior to Declination speech acts, relative to Answers and Pre-offers. In addition, we observed reduced power in the theta band during the beginning of Declinations, relative to Answers. Based on the role of alpha and beta desynchronization in anticipatory processes, the results are taken to indicate that anticipation plays a role in speech act recognition. Anticipation of speech acts could be critical for efficient turn-taking, allowing interactants to quickly recognize speech acts and respond within the tight time frame characteristic of conversation. The results show that anticipatory processes can be triggered by the characteristics of the interaction, including the speech act type.

  1. Oscillatory Brain Responses Reflect Anticipation during Comprehension of Speech Acts in Spoken Dialog

    Directory of Open Access Journals (Sweden)

    Rosa S. Gisladottir

    2018-02-01

    Full Text Available Everyday conversation requires listeners to quickly recognize verbal actions, so-called speech acts, from the underspecified linguistic code and prepare a relevant response within the tight time constraints of turn-taking. The goal of this study was to determine the time-course of speech act recognition by investigating oscillatory EEG activity during comprehension of spoken dialog. Participants listened to short, spoken dialogs with target utterances that delivered three distinct speech acts (Answers, Declinations, Pre-offers. The targets were identical across conditions at lexico-syntactic and phonetic/prosodic levels but differed in the pragmatic interpretation of the speech act performed. Speech act comprehension was associated with reduced power in the alpha/beta bands just prior to Declination speech acts, relative to Answers and Pre-offers. In addition, we observed reduced power in the theta band during the beginning of Declinations, relative to Answers. Based on the role of alpha and beta desynchronization in anticipatory processes, the results are taken to indicate that anticipation plays a role in speech act recognition. Anticipation of speech acts could be critical for efficient turn-taking, allowing interactants to quickly recognize speech acts and respond within the tight time frame characteristic of conversation. The results show that anticipatory processes can be triggered by the characteristics of the interaction, including the speech act type.

  2. Spontaneous spiral formation in two-dimensional oscillatory media

    Science.gov (United States)

    Kettunen, Petteri; Amemiya, Takashi; Ohmori, Takao; Yamaguchi, Tomohiko

    1999-08-01

    Computational studies of pattern formation in a modified Oregonator model of the Belousov-Zhabotinsky reaction is described. Initially inactive two-dimensional reaction media with an immobilized catalyst is connected to a reservoir of fresh reactants through a set of discrete points distributed randomly over the interphase surface. It is shown that the diffusion of reactants combined with oscillatory reaction kinetics can give rise to spontaneous spiral formation and phase waves.

  3. Oscillatory thermocapillary instability in liquid layer with insoluble surfactant

    Science.gov (United States)

    Allias, Razihan; Nasir, Mohd. Agos Salim; Kechil, Seripah Awang

    2017-11-01

    Oscillatory convective flow is undesirable because it can produce bubbles, striation and dendrites in the manufactured products. The ability to control the complex convective flow patterns is important in technological processes and fundamental science. One of the factors that can alter the dynamics of the surface tension of thin fluid film is the surface-active agents. In this work, the influence of the insoluble surface-active agents on thermocapillary convective instability in a liquid layer for non-deformable free surface is examined. Uniform temperature and uniform heat flux for the temperature condition at the bottom surface are considered. The linear stability analysis is used to assess the effects of elasticity number, Lewis number, Prandtl number and Biot number on the onset of oscillatory convection. The existence of insoluble surfactant stabilizes the fluid layer system. The system is more stable in the case of uniform temperature. The presence of surfactant and temperature setting at the bottom boundary can suppress the onset of oscillatory instability.

  4. Enhanced heat transfer using oscillatory flows in solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, A.A.; Cuevas, S.; Rio, J.A. del [Centro de Investigacion en Energia, UNAM, A.P. 34, 62580 Temixco, Mor. (Mexico)

    2006-10-15

    In this work, we propose the use of oscillatory laminar flows to enhance the transfer of heat from solar collectors. The idea is to explore the possibility of transferring the heat collected from a solar device to a storage tank by means of a zero-mean oscillating fluid contained in a tube. This method takes advantage of the fact that the effective thermal diffusivity of a fluid in oscillatory motion is several orders of magnitude higher than the fluid molecular diffusivity. Therefore, the axial transport of heat along the tube is substantially higher when the fluid oscillates than when the fluid is static. Also, preliminary estimations show a dramatic heat transfer enhancement using oscillatory flows compared with the forced convection of heat by standard unidirectional flows. We explore the behavior of the effective thermal diffusivity using both Newtonian and viscoelastic fluids. For the Newtonian fluid a single maximum value of this quantity is exhibited for a given oscillation frequency. In contrast, several maxima for different resonant frequencies are observed for the viscoelastic fluid. Further, the absolute maximum of the enhanced thermal diffusivity for the viscoelastic fluid is several orders of magnitude larger than that of the Newtonian fluid. (author)

  5. Effect of oscillatory breathing on the variability of the RR Intervals and its prognostic importance in individuals with left ventricular global systolic dysfunction

    Directory of Open Access Journals (Sweden)

    Barbosa Paulo Roberto Benchimol

    2003-01-01

    Full Text Available OBJECTIVE: To assess the effect of the oscillatory breathing on the variability of RR intervals (VRR and on prognostic significance after one year follow-up in subjects with left ventricular global systolic dysfunction. METHODS: We studied 76 subjects, whose age ranged from 40 to 80 years, paired for age and gender, divided into two groups: group I - 34 healthy subjects; group II - 42 subjects with left ventricular global systolic dysfunction (ejection fraction < 0.40. The ECG signals were acquired during 600s in supine position, and analyzed the variation of the thoracic amplitude and the VRR. Clinical and V-RR variables were applied into a logistic multivariate model to foretell survival after one year follow-up. RESULTS: Oscillatory breathing was detected in 35.7% of subjects in vigil state of group II, with a concentration of the spectral power in the very low frequency band, and was independent of the presence of diabetes, functional class, ejection fraction, cause of ventricular dysfunction and survival after one year follow-up. In the logistic regression model, ejection fraction was the only independent variable to predict survival. CONCLUSION: 1 Oscillatory breathing pattern is frequent during wakefulness in the left ventricular global systolic dysfunction and concentrates spectral power in the very low band of V-RR; 2 it does not relate to severity and cause of left ventricular dysfunction; 3 ejection fraction is the only independent predictive variable for survival in this group of subjects.

  6. Pharmacological characterization of the involvement of protein kinase C in oscillatory and non-oscillatory calcium increases in astrocytes

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Morita

    2015-09-01

    Full Text Available Evidence increasingly shows that astrocytes play a pivotal role in brain physiology and pathology via calcium dependent processes, thus the characterization of the calcium dynamics in astrocytes is of growing importance. We have previously reported that the epidermal growth factor and basic fibroblast growth factor up-regulate the oscillation of the calcium releases that are induced by stimuli, including glutamate in cultured astrocytes. This calcium oscillation is assumed to involve protein kinase C (PKC, which is activated together with the calcium releases as a consequence of inositol phospholipid hydrolysis. In the present study, this issue has been investigated pharmacologically by using astrocytes cultured with and without the growth factors. The pharmacological activation of PKC largely reduced the glutamate-induced oscillatory and non-oscillatory calcium increases. Meanwhile, PKC inhibitors increased the total amounts of both calcium increases without affecting the peak amplitudes and converted the calcium oscillations to non-oscillatory sustained calcium increases by abolishing the falling phases of the repetitive calcium increases. Furthermore, the pharmacological effects were consistent between both glutamate- and histamine-induced calcium oscillations. These results suggest that PKC up-regulates the removal of cytosolic calcium in astrocytes, and this up-regulation is essential for calcium oscillation in astrocytes cultured with growth factors.

  7. Auto-OBSD: Automatic parameter selection for reliable Oscillatory Behavior-based Signal Decomposition with an application to bearing fault signature extraction

    Science.gov (United States)

    Huang, Huan; Baddour, Natalie; Liang, Ming

    2017-03-01

    Bearing signals are often contaminated by in-band interferences and random noise. Oscillatory Behavior-based Signal Decomposition (OBSD) is a new technique which decomposes a signal according to its oscillatory behavior, rather than frequency or scale. Due to the low oscillatory transients of bearing fault-induced signals, the OBSD can be used to effectively extract bearing fault signatures from a blurred signal. However, the quality of the result highly relies on the selection of method-related parameters. Such parameters are often subjectively selected and a systematic approach has not been reported in the literature. As such, this paper proposes a systematic approach to automatic selection of OBSD parameters for reliable extraction of bearing fault signatures. The OBSD utilizes the idea of Morphological Component Analysis (MCA) that optimally projects the original signal to low oscillatory wavelets and high oscillatory wavelets established via the Tunable Q-factor Wavelet Transform (TQWT). In this paper, the effects of the selection of each parameter on the performance of the OBSD for bearing fault signature extraction are investigated. It is found that some method-related parameters can be fixed at certain values due to the nature of bearing fault-induced impulses. To adaptively tune the remaining parameters, index-guided parameter selection algorithms are proposed. A Convergence Index (CI) is proposed and a CI-guided self-tuning algorithm is developed to tune the convergence-related parameters, namely, penalty factor and number of iterations. Furthermore, a Smoothness Index (SI) is employed to measure the effectiveness of the extracted low oscillatory component (i.e. bearing fault signature). It is shown that a minimum SI implies an optimal result with respect to the adjustment of relevant parameters. Thus, two SI-guided automatic parameter selection algorithms are also developed to specify two other parameters, i.e., Q-factor of high-oscillatory wavelets and

  8. Effects of musical expertise on oscillatory brain activity in response to emotional sounds.

    Science.gov (United States)

    Nolden, Sophie; Rigoulot, Simon; Jolicoeur, Pierre; Armony, Jorge L

    2017-08-01

    Emotions can be conveyed through a variety of channels in the auditory domain, be it via music, non-linguistic vocalizations, or speech prosody. Moreover, recent studies suggest that expertise in one sound category can impact the processing of emotional sounds in other sound categories as they found that musicians process more efficiently emotional musical and vocal sounds than non-musicians. However, the neural correlates of these modulations, especially their time course, are not very well understood. Consequently, we focused here on how the neural processing of emotional information varies as a function of sound category and expertise of participants. Electroencephalogram (EEG) of 20 non-musicians and 17 musicians was recorded while they listened to vocal (speech and vocalizations) and musical sounds. The amplitude of EEG-oscillatory activity in the theta, alpha, beta, and gamma band was quantified and Independent Component Analysis (ICA) was used to identify underlying components of brain activity in each band. Category differences were found in theta and alpha bands, due to larger responses to music and speech than to vocalizations, and in posterior beta, mainly due to differential processing of speech. In addition, we observed greater activation in frontal theta and alpha for musicians than for non-musicians, as well as an interaction between expertise and emotional content of sounds in frontal alpha. The results reflect musicians' expertise in recognition of emotion-conveying music, which seems to also generalize to emotional expressions conveyed by the human voice, in line with previous accounts of effects of expertise on musical and vocal sounds processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Oscillatory Nature of Rotating Convection in Liquid Metal

    Science.gov (United States)

    Aurnou, J. M.; Bertin, V. L.; Grannan, A. M.

    2016-12-01

    Earth's magnetic field is assumed to be generated by fluid motions in its liquid metal core. In this fluid, the heat diffuses significantly more than momentum and thus, the ratio of these two diffusivities, the Prandtl number Pr=ν/Κ, is well below unity. The convective flow dynamics of liquid metal is very different from Pr ≈ 1 fluids like water and those used in current dynamo simulations. In order to characterize rapidly rotating thermal convection in low Pr number fluids, we have performed laboratory experiments in a cylinder using liquid gallium (Pr ≈ 0.023) as the working fluid. The Ekman number, which characterizes the effect of rotation, varies from E = 4 10-5 to 4 10-6 and the dimensionless buoyancy forcing (Rayleigh number, Ra) varies from Ra =3 105 to 2 107. Using heat transfer measurements (Nusselt number, Nu) as well as temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes are identified for the first time in liquid metal laboratory experiments. These wall modes coexist with the bulk inertial oscillatory modes. When the strengh of the buoyancy increases, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr ≈ 1 dynamo models, but in the form of oscillatory motions. Therefore, the flows that drive thermally-driven dynamo action in low Pr geophysical and astrophysical fluids can differ substantively than those occuring in current-day Pr ≈ 1 numerical models. In addition, our results suggest that relatively low wavenumber, wall-attached modes may be dynamically important in rapidly-rotating convection in liquid metals.

  10. Characterization of vertical mixing in oscillatory vegetated flows

    Science.gov (United States)

    Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.

    2016-02-01

    Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy

  11. Molecular dynamics simulations of oscillatory flows in microfluidic channels

    DEFF Research Database (Denmark)

    Hansen, J.S.; Ottesen, Johnny T.

    2006-01-01

    In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, high...... density and low temperature. Further simulations for high temperature and low density show that the non-slip boundary condition traditionally used in the macroscopic equation is greatly compromised when the fluid–wall interactions are the same as the fluid–fluid interactions. Simulations of a system...

  12. Oscillatory flow about a cylinder pair with unequal radii

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, W, E-mail: wcoenen@ing.uc3m.es [Área de Mecánica de Fluidos, Universidad Carlos III de Madrid, Avenida Universidad 30, E-28911 Leganés, Madrid (Spain)

    2013-10-15

    We consider the oscillating flow about a pair of circular cylinders of unequal diameter. In addition to the relative size of the cylinders, the distance between them can be varied, as can the angle that the undisturbed oscillatory flow makes with the line joining the cylinder centres. For small-amplitude vibrations a time-independent, or steady streaming, motion develops that persists beyond the Stokes layer that forms at the solid boundary. This persistent streaming is considered for large values of a suitably defined streaming Reynolds number. (paper)

  13. A simple mechanical system for studying adaptive oscillatory neural networks

    DEFF Research Database (Denmark)

    Jouffroy, Guillaume; Jouffroy, Jerome

    that the network oscillates in a suitable way, this tuning being a non trivial task. It also appears that the link with the physical body that these oscillatory entities control has a fundamental importance, and it seems that most bodies used for experimental validation in the literature (walking robots, lamprey...... model, etc.) might be too complex to study. In this paper, we use a comparatively simple mechanical system, the nonholonomic vehicle referred to as the Roller-Racer, as a means towards testing different learning strategies for an Recurrent Neural Network-based (RNN) controller/guidance system. After...

  14. Numerical solution of highly oscillatory ordinary differential equations

    Science.gov (United States)

    Petzold, Linda R.; Jay, Laurent O.; Yen, Jeng

    One of the most difficult problems in the numerical solution of ordinary differential equations (ODEs) and in differential-algebraic equations (DAEs) is the development of methods for dealing with highly oscillatory systems. These types of systems arise, for example, in vehicle simulation when modelling the suspension system or tyres, in models for contact and impact, in flexible body simulation from vibrations in the structural model, in molecular dynamics, in orbital mechanics, and in circuit simulation. Standard numerical methods can require a huge number of time-steps to track the oscillations, and even with small stepsizes they can alter the dynamics, unless the method is chosen very carefully.

  15. Oscillatory squeeze flow for the study of linear viscoelastic behavior

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    2016-01-01

    of molten polymers and suspensions. The principal advantage of squeeze flow rheometer over rotational devices is the simplicity of the apparatus. It has no air bearing and is much less expensive and easier to use. Accuracy may be somewhat reduced, but for quality control purposes, it could be quite useful....... It might also find application as the central component of a high-throughput rheometer for evaluating experimental materials. The deformation is not simple shear, but equations have been derived to show that the oscillatory compressive (normal) force that is measured can serve as a basis for calculating...

  16. Ultrafine grained Cu processed by compression with oscillatory torsion

    OpenAIRE

    K. Rodak

    2007-01-01

    Purpose: The aim of this work is a study of Cu microstructure after severe plastic deformation process by usingcompression with oscillatory torsion test.Design/methodology/approach: Cu samples were deformed at torsion frequency (f) changed from 0 Hz(compression) to 1.8 Hz under a constant torsion angle (α) ≈8° and compression speed (v)=0.1mm/s. Structuralinvestigations were conducted by using light microscopy (LM) and transmission electron microscopy (TEM).Findings: The structural analysis ma...

  17. HYBASE : HYperspectral BAnd SElection

    NARCIS (Netherlands)

    Schwering, P.B.W.; Bekman, H.H.P.T.; Seijen, H.H. van

    2009-01-01

    Band selection is essential in the design of multispectral sensor systems. This paper describes the TNO hyperspectral band selection tool HYBASE. It calculates the optimum band positions given the number of bands and the width of the spectral bands. HYBASE is used to assess the minimum number of

  18. Understanding the Generation of Network Bursts by Adaptive Oscillatory Neurons

    Directory of Open Access Journals (Sweden)

    Tanguy Fardet

    2018-02-01

    Full Text Available Experimental and numerical studies have revealed that isolated populations of oscillatory neurons can spontaneously synchronize and generate periodic bursts involving the whole network. Such a behavior has notably been observed for cultured neurons in rodent's cortex or hippocampus. We show here that a sufficient condition for this network bursting is the presence of an excitatory population of oscillatory neurons which displays spike-driven adaptation. We provide an analytic model to analyze network bursts generated by coupled adaptive exponential integrate-and-fire neurons. We show that, for strong synaptic coupling, intrinsically tonic spiking neurons evolve to reach a synchronized intermittent bursting state. The presence of inhibitory neurons or plastic synapses can then modulate this dynamics in many ways but is not necessary for its appearance. Thanks to a simple self-consistent equation, our model gives an intuitive and semi-quantitative tool to understand the bursting behavior. Furthermore, it suggests that after-hyperpolarization currents are sufficient to explain bursting termination. Through a thorough mapping between the theoretical parameters and ion-channel properties, we discuss the biological mechanisms that could be involved and the relevance of the explored parameter-space. Such an insight enables us to propose experimentally-testable predictions regarding how blocking fast, medium or slow after-hyperpolarization channels would affect the firing rate and burst duration, as well as the interburst interval.

  19. Brain oscillatory substrates of visual short-term memory capacity.

    Science.gov (United States)

    Sauseng, Paul; Klimesch, Wolfgang; Heise, Kirstin F; Gruber, Walter R; Holz, Elisa; Karim, Ahmed A; Glennon, Mark; Gerloff, Christian; Birbaumer, Niels; Hummel, Friedhelm C

    2009-11-17

    The amount of information that can be stored in visual short-term memory is strictly limited to about four items. Therefore, memory capacity relies not only on the successful retention of relevant information but also on efficient suppression of distracting information, visual attention, and executive functions. However, completely separable neural signatures for these memory capacity-limiting factors remain to be identified. Because of its functional diversity, oscillatory brain activity may offer a utile solution. In the present study, we show that capacity-determining mechanisms, namely retention of relevant information and suppression of distracting information, are based on neural substrates independent of each other: the successful maintenance of relevant material in short-term memory is associated with cross-frequency phase synchronization between theta (rhythmical neural activity around 5 Hz) and gamma (> 50 Hz) oscillations at posterior parietal recording sites. On the other hand, electroencephalographic alpha activity (around 10 Hz) predicts memory capacity based on efficient suppression of irrelevant information in short-term memory. Moreover, repetitive transcranial magnetic stimulation at alpha frequency can modulate short-term memory capacity by influencing the ability to suppress distracting information. Taken together, the current study provides evidence for a double dissociation of brain oscillatory correlates of visual short-term memory capacity.

  20. Propulsion of a microsubmarine using a thermally oscillatory approach

    Science.gov (United States)

    Qiao, Lei; Luo, Cheng

    2013-10-01

    In this paper, motivated by the driving mechanism of a putt-putt toy boat, we explore the feasibility to propel a microsubmarine using a thermally oscillatory approach, which only requires a simple design and does not involve any complicated propulsive systems. We investigate the design, fabrication, actuation and horizontal motions of the corresponding microsubmarines. Based on the understanding gained through preliminary tests on two manually fabricated putt-putt boats, we designed and fabricated the prototype of a microsubmarine. Similar to a putt-putt boat, the prototype also uses a thermally oscillatory process for propulsion. In a cyclic period of this process, due to the expansion and shrinkage of a vapor bubble inside the reservoir of the submarine, liquid is first ejected outside and then sucked into the reservoir. Due to the difference in liquid flow directions between ejection and suction stages, a thrust is produced to propel the submarine. At an applied voltage of 16 V and pulse frequency of 100 Hz, the submarine was found to have the highest speed of 1.8 mm s-1 and longest travel distance of 12.6 mm. The corresponding thrust was estimated to be 67.6 nN.

  1. Evidence of nonuniqueness and oscillatory solutions in computational fluid mechanics

    International Nuclear Information System (INIS)

    Nunziato, J.W.; Gartling, D.K.; Kipp, M.E.

    1985-01-01

    We will review some of our recent experiences in computing solutions for nonlinear fluids in relatively simple, two-dimensional geometries. The purpose of this discussion will be to display by example some of the interesting but difficult questions that arise when ill-behaved solutions are obtained numerically. We will consider two examples. As the first example, we will consider a nonlinear elastic (compressible) fluid with chemical reactions and discuss solutions for detonation and detonation failure in a two-dimensional cylinder. In this case, the numerical algorithm utilizes a finite-difference method with artificial viscosity (von Neumann-Richtmyer method) and leads to two, distinctly different, stable solutions depending on the time step criterion used. The second example to be considered involves the convection of a viscous fluid in a rectangular container as a result of an exothermic polymerization reaction. A solidification front develops near the top of the container and propagates down through the fluid, changing the aspect ratio of the region ahead of the front. Using a Galerkin-based finite element method, a numerical solution of the partial differential equations is obtained which tracks the front and correctly predicts the fluid temperatures near the walls. However, the solution also exhibits oscillatory behavior with regard to the number of cells in the fluid ahead of the front and in the strength of the cells. More definitive experiments and analysis are required to determine whether this oscillatory phenomena is a numerical artifact or a physical reality. 20 refs., 14 figs

  2. Global bifurcation criterion for oscillatory crack path instability.

    Science.gov (United States)

    Pham, Van-Bac; Bahr, Hans-Achim; Bahr, Ute; Balke, Herbert; Weiss, Hans-Jürgen

    2008-06-01

    A bifurcation criterion for the transition from straight to oscillatory quasistatic crack propagation in an isotropic material is derived from the requirement of pure mode I stress fields at the crack tip (K_{II}=0) on the entire crack path, henceforth called global bifurcation criterion. For a small-amplitude sine-shaped crack path which is observed in experiments at the transition, it is shown to be sufficient to postulate K_{II}=0 only for two phases of the crack path instead, which simplifies calculations. By using the measured temperature fields to solve the thermoelastic problem of dipping a hot thin glass slab into cold water, critical wavelengths of the oscillating crack growth obtained with the derived global bifurcation criterion agree remarkably well with those observed in experiments by Ronsin and Perrin. It is also shown that local bifurcation criteria, which do not take into account K_{II}=0 on the entire crack path, lead to incorrect results for the oscillatory crack path instability.

  3. Cellular and oscillatory substrates of fear extinction learning.

    Science.gov (United States)

    Davis, Patrick; Zaki, Yosif; Maguire, Jamie; Reijmers, Leon G

    2017-11-01

    The mammalian brain contains dedicated circuits for both the learned expression and suppression of fear. These circuits require precise coordination to facilitate the appropriate expression of fear behavior, but the mechanisms underlying this coordination remain unclear. Using a combination of chemogenetics, activity-based neuronal-ensemble labeling and in vivo electrophysiology, we found that fear extinction learning confers on parvalbumin-expressing (PV) interneurons in the basolateral amygdala (BLA) a dedicated role in the selective suppression of a previously encoded fear memory and BLA fear-encoding neurons. In addition, following extinction learning, PV interneurons enable a competing interaction between a 6-12 Hz oscillation and a fear-associated 3-6 Hz oscillation within the BLA. Loss of this competition increases a 3-6 Hz oscillatory signature, with BLA→medial prefrontal cortex directionality signaling the recurrence of fear expression. The discovery of cellular and oscillatory substrates of fear extinction learning that critically depend on BLA PV interneurons could inform therapies aimed at preventing the pathological recurrence of fear following extinction learning.

  4. Reflood modeling under oscillatory flow conditions with Cathare

    International Nuclear Information System (INIS)

    Kelly, J.M.; Bartak, J.; Janicot, A.

    1993-01-01

    The problems and the current status in oscillatory reflood modelling with the CATHARE code are presented. The physical models used in CATHARE for reflood modelling predicted globally very well the forced reflood experiments. Significant drawbacks existed in predicting experiments with oscillatory flow (both forced and gravity driven). First, the more simple case of forced flow oscillations was analyzed. Modelling improvements within the reflooding package resolved the problem of quench front blockages and unphysical oscillations. Good agreements with experiment for the ERSEC forced oscillations reflood tests is now obtained. For gravity driven reflood, CATHARE predicted sustained flow oscillations during 100-150 s after the start of the reflood, whereas in the experiment flow oscillations were observed only during 25-30 s. Possible areas of modeling improvements are identified and several new correlations are suggested. The first test calculations of the BETHSY test 6.7A4 have shown that the oscillations are mostly sensitive to heat flux modeling downstream of the quench front. A much better agreement between CATHARE results and the experiment was obtained. However, further effort is necessary to obtain globally satisfactory predictions of gravity driven system reflood tests. (authors) 6 figs., 35 refs

  5. Normal forces of magnetorheological fluids under oscillatory shear

    International Nuclear Information System (INIS)

    Guo Chaoyang; Gong Xinglong; Xuan Shouhu; Zong Luhang; Peng Chao

    2012-01-01

    The normal forces of magnetorheological fluids under oscillatory shear are investigated by a commercial magneto-rheometer with plate–plate geometry. At the constant strain amplitude and frequency, the normal forces almost keep a steady value with the testing time if the strain amplitude is smaller than the critical value. When a larger strain is applied, they will fluctuate periodically. Under the strain sweep mode, the relationships between normal forces and strain amplitude can be divided into three regions: linear viscoelastic region, nonlinear viscoelastic region and the viscoplastic region. Under the frequency sweep method, it is found that the angular frequency show little influence on the normal forces. At last, the normal forces increase with increasing of the temperature under a low magnetic field, while they decrease under a high magnetic field. - Highlights: ► Normal forces under oscillatory shear mode are firstly systematically investigated. ► In linear viscoelastic region the normal forces keep a firm value while in nonlinear viscoelastic region the normal forces fluctuate clearly ► Three regions can be obtained through the plot of normal forces with strain amplitude. ► Temperature effect on the normal forces is opposite for the low and high magnetic field.

  6. Origin of spontaneous wave generation in an oscillatory chemical system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi-Xue; Foerster, P.; Ross, J. [Stanford Univ., CA (United States)

    1992-10-29

    The origin of spontaneously generated chemical waves in an oscillatory Belousov-Zhabotinskii reaction has been investigated by numerical calculations of the deterministic reaction-diffusion equations of a modified Oregonator model and by equilibrium stochastic calculations. From numerical calculations, we obtain threshold perturbations in the phase of oscillations and in the concentrations of HBrO{sub 2} and Br{sup {minus}} within areas of space with varying radii necessary to initiate trigger waves. Inward propagating trigger waves initiated by a phase shift in the perturbed region with respect to the bulk solution have been observed in the calculations for the first time. Perturbations smaller than the threshold perturbations or in regions with smaller radii lead to phase-diffusion waves. Our equilibrium stochastic calculations show that the recurrence time for a thermal fluctuation to induce a change in the HBrO{sub 2} concentration of sufficient magnitude within a sufficient volume for a trigger wave to propagate is many orders of magnitude larger than the observation time of traveling wave experiments. We concluded that an internal thermal fluctuation is highly unlikely to generate a trigger wave in an oscillatory chemical solution. 22 refs., 5 figs., 7 tabs.

  7. 3D LDV Measurements in Oscillatory Boundary Layers

    Science.gov (United States)

    Mier, J. M.; Garcia, M. H.

    2012-12-01

    The oscillatory boundary layer represents a particular case of unsteady wall-bounded flows in which fluid particles follow a periodic sinusoidal motion. Unlike steady boundary layer flows, the oscillatory flow regime and bed roughness character change in time along the period for every cycle, a characteristic that introduces a high degree of complexity in the analysis of these flows. Governing equations can be derived from the general Navier-Stokes equations for the motion of fluids, from which the exact solution for the laminar oscillatory boundary layer is obtained (also known as the 2nd Stokes problem). No exact solution exists for the turbulent case, thus, understanding of the main flow characteristics comes from experimental work. Several researchers have reported experimental work in oscillatory boundary layers since the 1960's; however, larger scale facilities and the development of newer measurement techniques with improved temporal and spatial resolution in recent years provides a unique opportunity to achieve a better understanding about this type of flows. Several experiments were performed in the Large Oscillatory Water and Sediment Tunnel (LOWST) facility at the Ven Te Chow Hydrosystems Laboratory, for a range of Reynolds wave numbers between 6x10^4 3D Laser Doppler Velocimetry (LDV) system was used to measure instantaneous flow velocities with a temporal resolution up to ~ 1,000 Hz. It was mounted on a 3-axis traverse with a spatial resolution of 0.01 mm in all three directions. The closest point to the bottom was measured at z = 0.2 mm (z+ ≈ 4), which allowed to capture boundary layer features with great detail. In order to achieve true 3D measurements, 2 probes were used on a perpendicular configuration, such that u and w components were measured from a probe on the side of the flume and v component was measured from a probe pointing down through and access window on top of the flume. The top probe was submerged in a water container, such that the

  8. Oscillatory brain activity related to control mechanisms during laboratory-induced reactive aggression.

    Science.gov (United States)

    Krämer, Ulrike M; Kopyciok, Robert P J; Richter, Sylvia; Münte, Thomas F

    2009-01-01

    Aggressive behavior is a common reaction in humans after an interpersonal provocation, but little is known about the underlying brain mechanisms. The present study analyzed oscillatory brain activity while participants were involved in an aggressive interaction to examine the neural processes subserving the associated decision and evaluation processes. Participants were selected from a larger sample because of their high scores in trait aggressiveness. We used a competitive reaction time task that induces aggressive behavior through provocation. Each trial is separated in a decision phase, during which the punishment for the opponent is set, and an outcome phase, during which the actual punishment is applied or received. We observed provocation-related differences during the decision phase in the theta band which differed depending on participants' aggressive behavior: high provocation was associated with an increased frontal theta response in participants refraining from retaliation, but with reduced theta power in those who got back to the opponent. Moreover, more aggressive decisions after being punished were associated with a decrease of frontal theta power. Non-aggressive and aggressive participants differed also in their outcome-related response: being punished led to an increased frontal theta power compared to win trials in the latter only, pointing to differences in evaluation processes associated with their different behavioral reactions. The data thus support previous evidence for a role of prefrontal areas in the control of reactive aggression and extend behavioral studies on associations between aggression or violence and impaired prefrontal functions.

  9. Microstructural Origins of Nonlinear Response in Associating Polymers under Oscillatory Shear

    Directory of Open Access Journals (Sweden)

    Mark A. Wilson

    2017-10-01

    Full Text Available The response of associating polymers with oscillatory shear is studied through large-scale simulations. A hybrid molecular dynamics (MD, Monte Carlo (MC algorithm is employed. Polymer chains are modeled as a coarse-grained bead-spring system. Functionalized end groups, at both ends of the polymer chains, can form reversible bonds according to MC rules. Stress-strain curves show nonlinearities indicated by a non-ellipsoidal shape. We consider two types of nonlinearities. Type I occurs at a strain amplitude much larger than one, type II at a frequency at which the elastic storage modulus dominates the viscous loss modulus. In this last case, the network topology resembles that of the system at rest. The reversible bonds are broken and chains stretch when the system moves away from the zero-strain position. For type I, the chains relax and the number of reversible bonds peaks when the system is near an extreme of the motion. During the movement to the other extreme of the cycle, first a stress overshoot occurs, then a yield accompanied by shear-banding. Finally, the network restructures. Interestingly, the system periodically restores bonds between the same associating groups. Even though major restructuring occurs, the system remembers previous network topologies.

  10. Intensive Training Induces Longitudinal Changes in Meditation State-related EEG Oscillatory Activity

    Directory of Open Access Journals (Sweden)

    Manish eSaggar

    2012-09-01

    Full Text Available The capacity to focus one’s attention for an extended period of time can be increased through training in contemplative practices. However, the cognitive processes engaged during meditation that support trait changes in cognition are not well characterized. We conducted a longitudinal wait-list controlled study of intensive meditation training. Retreat participants practiced focused attention meditation techniques for three months during an initial retreat. Wait-list participants later undertook formally identical training during a second retreat. Dense-array scalp-recorded electroencephalogram (EEG data were collected during six minutes of mindfulness of breathing meditation at three assessment points during each retreat. Second-order blind source separation, along with a novel semi-automatic artifact removal tool, was used for data preprocessing. We observed replicable reductions in meditative state-related beta-band power bilaterally over anteriocentral and posterior scalp regions. In addition, individual alpha frequency decreased across both retreats and in direct relation to the amount of meditative practice. These findings provide evidence for replicable longitudinal changes in brain oscillatory activity during meditation and increase our understanding of the cortical processes engaged during meditation that may support long-term improvements in cognition.

  11. Intensive training induces longitudinal changes in meditation state-related EEG oscillatory activity

    Science.gov (United States)

    Saggar, Manish; King, Brandon G.; Zanesco, Anthony P.; MacLean, Katherine A.; Aichele, Stephen R.; Jacobs, Tonya L.; Bridwell, David A.; Shaver, Phillip R.; Rosenberg, Erika L.; Sahdra, Baljinder K.; Ferrer, Emilio; Tang, Akaysha C.; Mangun, George R.; Wallace, B. Alan; Miikkulainen, Risto; Saron, Clifford D.

    2012-01-01

    The capacity to focus one's attention for an extended period of time can be increased through training in contemplative practices. However, the cognitive processes engaged during meditation that support trait changes in cognition are not well characterized. We conducted a longitudinal wait-list controlled study of intensive meditation training. Retreat participants practiced focused attention (FA) meditation techniques for three months during an initial retreat. Wait-list participants later undertook formally identical training during a second retreat. Dense-array scalp-recorded electroencephalogram (EEG) data were collected during 6 min of mindfulness of breathing meditation at three assessment points during each retreat. Second-order blind source separation, along with a novel semi-automatic artifact removal tool (SMART), was used for data preprocessing. We observed replicable reductions in meditative state-related beta-band power bilaterally over anteriocentral and posterior scalp regions. In addition, individual alpha frequency (IAF) decreased across both retreats and in direct relation to the amount of meditative practice. These findings provide evidence for replicable longitudinal changes in brain oscillatory activity during meditation and increase our understanding of the cortical processes engaged during meditation that may support long-term improvements in cognition. PMID:22973218

  12. Intensive training induces longitudinal changes in meditation state-related EEG oscillatory activity.

    Science.gov (United States)

    Saggar, Manish; King, Brandon G; Zanesco, Anthony P; Maclean, Katherine A; Aichele, Stephen R; Jacobs, Tonya L; Bridwell, David A; Shaver, Phillip R; Rosenberg, Erika L; Sahdra, Baljinder K; Ferrer, Emilio; Tang, Akaysha C; Mangun, George R; Wallace, B Alan; Miikkulainen, Risto; Saron, Clifford D

    2012-01-01

    The capacity to focus one's attention for an extended period of time can be increased through training in contemplative practices. However, the cognitive processes engaged during meditation that support trait changes in cognition are not well characterized. We conducted a longitudinal wait-list controlled study of intensive meditation training. Retreat participants practiced focused attention (FA) meditation techniques for three months during an initial retreat. Wait-list participants later undertook formally identical training during a second retreat. Dense-array scalp-recorded electroencephalogram (EEG) data were collected during 6 min of mindfulness of breathing meditation at three assessment points during each retreat. Second-order blind source separation, along with a novel semi-automatic artifact removal tool (SMART), was used for data preprocessing. We observed replicable reductions in meditative state-related beta-band power bilaterally over anteriocentral and posterior scalp regions. In addition, individual alpha frequency (IAF) decreased across both retreats and in direct relation to the amount of meditative practice. These findings provide evidence for replicable longitudinal changes in brain oscillatory activity during meditation and increase our understanding of the cortical processes engaged during meditation that may support long-term improvements in cognition.

  13. Oscillatory brain activity related to control mechanisms during laboratory-induced reactive aggression

    Directory of Open Access Journals (Sweden)

    Ulrike M Krämer

    2009-11-01

    Full Text Available Aggressive behavior is a common reaction in humans after an interpersonal provocation, but little is known about the underlying brain mechanisms. The present study analyzed oscillatory brain activity while participants were involved in an aggressive interaction to examine the neural processes subserving the associated decision and evaluation processes. Participants were selected from a larger sample because of their high scores in trait aggressiveness. We used a competitive reaction time task that induces aggressive behavior through provocation. Each trial is separated in a decision phase, during which the punishment for the opponent is set, and an outcome phase, during which the actual punishment is applied or received. We observed provocation-related differences during the decision phase in the theta band which differed depending on participants’ aggressive behavior: High provocation was associated with an increased frontal theta response in participants refraining from retaliation, but with reduced theta power in those who got back to the opponent. Moreover, more aggressive decisions after being punished were associated with a decrease of frontal theta power. Non-aggressive and aggressive participants differed also in their outcome-related response: Being punished led to an increased frontal theta power compared to win trials in the latter only, pointing to differences in evaluation processes associated with their different behavioral reactions. The data thus support previous evidence for a role of prefrontal areas in the control of reactive aggression and extend behavioral studies on associations between aggression or violence and impaired prefrontal functions.

  14. Does suppression of oscillatory synchronisation mediate some of the therapeutic effects of DBS in patients with Parkinson's disease?

    Science.gov (United States)

    Eusebio, Alexandre; Cagnan, Hayriye; Brown, Peter

    2012-01-01

    There is growing evidence for exaggerated oscillatory neuronal synchronisation in patients with Parkinson's disease (PD). In particular, oscillations at around 20 Hz, in the so-called beta frequency band, relate to the cardinal symptoms of bradykinesia and rigidity. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) can significantly improve these motor impairments. Recent evidence has demonstrated reduction of beta oscillations concurrent with alleviation of PD motor symptoms, raising the possibility that suppression of aberrant activity may mediate the effects of DBS. Here we review the evidence supporting suppression of pathological oscillations during stimulation and discuss how this might underlie the efficacy of DBS. We also consider how beta activity may provide a feedback signal suitable for next generation closed-loop and intelligent stimulators.

  15. Does suppression of oscillatory synchronisation mediate some of the therapeutic effects of DBS in patients with Parkinson’s disease?

    Directory of Open Access Journals (Sweden)

    Alexandre eEusebio

    2012-07-01

    Full Text Available There is growing evidence for exaggerated oscillatory neuronal synchronisation in patients with Parkinson’s disease. In particular, oscillations at around 20 Hz, in the so-called beta frequency band, relate to the cardinal symptoms of bradykinesia and rigidity. Deep brain stimulation of the subthalamic nucleus can significantly improve these motor impairments. Recent evidence has demonstrated reduction of beta oscillations concurrent with alleviation of PD motor symptoms, raising the possibility that suppression of aberrant activity may mediate the effects of DBS. Here we review the evidence supporting suppression of pathological oscillations during stimulation and discuss how this might underlie the efficacy of DBS. We also consider how beta activity may provide a feedback signal suitable for next generation closed loop and intelligent stimulators.

  16. Measurements of sheet flow transport in acceleration-skewed oscillatory flow and comparison with practical formulations

    NARCIS (Netherlands)

    van der A, Dominic A.; O'Donoghue, Tom; Ribberink, Jan S.

    2010-01-01

    Near-bed oscillatory flows with acceleration skewness are characteristic of steep and breaking waves in shallow water. In order to isolate the effects of acceleration skewness on sheet flow sand transport, new experiments are carried out in the Aberdeen Oscillatory Flow Tunnel. The experiments have

  17. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  18. Stimulus presentation at specific neuronal oscillatory phases experimentally controlled with tACS: implementation and applications

    Directory of Open Access Journals (Sweden)

    Sanne Ten Oever

    2016-10-01

    Full Text Available In recent years it has become increasingly clear that both the power and phase of oscillatory brain activity can influence the processing and perception of sensory stimuli. Transcranial alternating current stimulation (tACS can phase-align and amplify endogenous brain oscillations and has often been used to control and thereby study oscillatory power. Causal investigation of oscillatory phase is more difficult, as it requires precise real-time temporal control over both oscillatory phase and sensory stimulation. Here, we present hardware and software solutions allowing temporally precise presentation of sensory stimuli during tACS at desired tACS phases, enabling causal investigations of oscillatory phase. We developed freely available and easy to use software, which can be coupled with standard commercially available hardware to allow flexible and multi-modal stimulus presentation (visual, auditory, magnetic stimuli, etc. at pre-determined tACS-phases, opening up a range of new research opportunities. We validate that stimulus presentation at tACS phase in our setup is accurate to the sub-millisecond level with high inter-trial consistency. Conventional methods investigating the role of oscillatory phase such as magneto-/electroencephalography can only provide correlational evidence. Using brain stimulation with the described methodology enables investigations of the causal role of oscillatory phase. This setup turns oscillatory phase into an independent variable, allowing innovative and systematic studies of its functional impact on perception and cognition.

  19. Stimulus Presentation at Specific Neuronal Oscillatory Phases Experimentally Controlled with tACS: Implementation and Applications.

    Science.gov (United States)

    Ten Oever, Sanne; de Graaf, Tom A; Bonnemayer, Charlie; Ronner, Jacco; Sack, Alexander T; Riecke, Lars

    2016-01-01

    In recent years, it has become increasingly clear that both the power and phase of oscillatory brain activity can influence the processing and perception of sensory stimuli. Transcranial alternating current stimulation (tACS) can phase-align and amplify endogenous brain oscillations and has often been used to control and thereby study oscillatory power. Causal investigation of oscillatory phase is more difficult, as it requires precise real-time temporal control over both oscillatory phase and sensory stimulation. Here, we present hardware and software solutions allowing temporally precise presentation of sensory stimuli during tACS at desired tACS phases, enabling causal investigations of oscillatory phase. We developed freely available and easy to use software, which can be coupled with standard commercially available hardware to allow flexible and multi-modal stimulus presentation (visual, auditory, magnetic stimuli, etc.) at pre-determined tACS-phases, opening up a range of new research opportunities. We validate that stimulus presentation at tACS phase in our setup is accurate to the sub-millisecond level with high inter-trial consistency. Conventional methods investigating the role of oscillatory phase such as magneto-/electroencephalography can only provide correlational evidence. Using brain stimulation with the described methodology enables investigations of the causal role of oscillatory phase. This setup turns oscillatory phase into an independent variable, allowing innovative, and systematic studies of its functional impact on perception and cognition.

  20. Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow

    NARCIS (Netherlands)

    van der A, D.A.; O' Donoghue, T.; Davies, A.G; Ribberink, Jan S.

    2011-01-01

    Experiments have been conducted in a large oscillatory flow tunnel to investigate the effects of acceleration skewness on oscillatory boundary layer flow over fixed beds. As well as enabling experimental investigation of the effects of acceleration skewness, the new experiments add substantially to

  1. Oscillatory variations in the Q factors of high quality micropillar cavities

    DEFF Research Database (Denmark)

    Reitzenstein, S.; Gregersen, Niels; Kistner, C.

    2009-01-01

    We report on the observation of oscillatory variations in the quality Q factor of quantum dot-micropillar cavities based on planar Bragg reflectors. The oscillatory behavior in the Q versus diameter dependence appears in the diameter range between 1.0 and 4.0 m, has a characteristic period of a few...

  2. Fine-Scale Genetic Structure in Finland

    Directory of Open Access Journals (Sweden)

    Sini Kerminen

    2017-10-01

    Full Text Available Coupling dense genotype data with new computational methods offers unprecedented opportunities for individual-level ancestry estimation once geographically precisely defined reference data sets become available. We study such a reference data set for Finland containing 2376 such individuals from the FINRISK Study survey of 1997 both of whose parents were born close to each other. This sampling strategy focuses on the population structure present in Finland before the 1950s. By using the recent haplotype-based methods ChromoPainter (CP and FineSTRUCTURE (FS we reveal a highly geographically clustered genetic structure in Finland and report its connections to the settlement history as well as to the current dialectal regions of the Finnish language. The main genetic division within Finland shows striking concordance with the 1323 borderline of the treaty of Nöteborg. In general, we detect genetic substructure throughout the country, which reflects stronger regional genetic differences in Finland compared to, for example, the UK, which in a similar analysis was dominated by a single unstructured population. We expect that similar population genetic reference data sets will become available for many more populations in the near future with important applications, for example, in forensic genetics and in genetic association studies. With this in mind, we report those extensions of the CP + FS approach that we found most useful in our analyses of the Finnish data.

  3. Analyzing the proximity to cover in a landscape of fear: a new approach applied to fine-scale habitat use by rabbits facing feral cat predation on Kerguelen archipelago

    Directory of Open Access Journals (Sweden)

    Pierrick Blanchard

    2016-03-01

    Full Text Available Although proximity to cover has been routinely considered as an explanatory variable in studies investigating prey behavioral adjustments to predation pressure, the way it shapes risk perception still remains equivocal. This paradox arises from both the ambivalent nature of cover as potentially both obstructive and protective, making its impact on risk perception complex and context-dependent, and from the choice of the proxy used to measure proximity to cover in the field, which leads to an incomplete picture of the landscape of fear experienced by the prey. Here, we study a simple predator-prey-habitat system, i.e., rabbits Oryctolagus cuniculus facing feral cat Felis catus predation on Kerguelen archipelago. We assess how cover shapes risk perception in prey and develop an easily implementable field method to improve the estimation of proximity to cover. In contrast to protocols considering the “distance to nearest cover”, we focus on the overall “area to cover”. We show that fine-scale habitat use by rabbits is clearly related to our measure, in accordance with our hypothesis of higher risk in patches with smaller area to cover in this predator-prey-habitat system. In contrast, classical measures of proximity to cover are not retained in the best predictive models of habitat use. The use of this new approach, together with a more in-depth consideration of contrasting properties of cover, could help to better understand the role of this complex yet decisive parameter for predator-prey ecology.

  4. Multigrid methods for differential equations with highly oscillatory coefficients

    Science.gov (United States)

    Engquist, Bjorn; Luo, Erding

    1993-01-01

    New coarse grid multigrid operators for problems with highly oscillatory coefficients are developed. These types of operators are necessary when the characters of the differential equations on coarser grids or longer wavelengths are different from that on the fine grid. Elliptic problems for composite materials and different classes of hyperbolic problems are practical examples. The new coarse grid operators can be constructed directly based on the homogenized differential operators or hierarchically computed from the finest grid. Convergence analysis based on the homogenization theory is given for elliptic problems with periodic coefficients and some hyperbolic problems. These are classes of equations for which there exists a fairly complete theory for the interaction between shorter and longer wavelengths in the problems. Numerical examples are presented.

  5. Attractor in Circular Structure of Oscillatory Generalized Neural Elements

    Directory of Open Access Journals (Sweden)

    E. V. Konovalov

    2014-01-01

    Full Text Available A perspective model of a neuron cell — the generalized neural element (GNE is studied in this article. The model has an universal character. It combines properties of a neuron-oscillator and a neuron-detector. In this structure cyclic sequential pulse generation elements of the ring are studied. A nonlinear mapping for mismatches between pulses of neighboring elements is constructed. We prove the existence of a fixed point of this mapping (threshold value of mismatches and its stability in a small neighborhood of the fixed point. In doing so the existence of a stable oscillatory mode of neural activity (attractor of a certain type is proved. The parameters of the attractor (threshold values of mismatches can be controlled in advance, due to the choice of synaptic weights of the links in the ring.

  6. Model of oscillatory instability in vertically-homogeneous atmosphere

    Directory of Open Access Journals (Sweden)

    P. B. Rutkevich

    2009-02-01

    Full Text Available Existence and repeatability of tornadoes could be straightforwardly explained if there existed instability, responsible for their formation. However, it is well known that convection is the only instability in initially stable air, and the usual convective instability is not applicable for these phenomena. In the present paper we describe an instability in the atmosphere, which can be responsible for intense vortices. This instability appears in a fluid with Coriolis force and dissipation and has oscillatory behaviour, where the amplitude growth is accompanied by oscillations with frequency comparable to the growth rate of the instability. In the paper, both analytical analysis of the linear phase of the instability and nonlinear simulation of the developed stage of the air motion are addressed. This work was supported by the RFBR grant no. 09-05-00374-a.

  7. Introduction to the oscillatory movement based on the rediscovery

    International Nuclear Information System (INIS)

    Concari, S.B.; Carreri, R.A.; Giorgi, S.M.; Camara, C.N.; Alzugaray, G.E.; Pozzo, R.L.

    1997-01-01

    In this work we present a proposal of a classroom in treating the them oscillatory movement for a basic university physics course for engineering students at university. The proposal is based on the rediscovery strategy and the active participation of the students. It is oriented to promote in the students the development of his/her operating capacities through the systematic application of a scientific method to the study of the dynamics of different types of pendulums. The criteria used to design the proposal have their fundament in the identification of psychological, didactic and epistemological variables that determine the way the student makes his/her learning process. The epistemological Gowin's V was applied as a tool to determine goals and to organizer activities. (Author) 23 refs

  8. Coherent structures in wave boundary layers. Part 1. Oscillatory motion

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen

    2010-01-01

    ) Vortex tubes, essentially two-dimensional vortices close to the bed extending across the width of the boundary-layer flow, caused by an inflectional-point shear layer instability. The imprint of these vortices in the bed shear stress is a series of small, insignificant kinks and dips. (ii) Turbulent......This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i...... spots, isolated arrowhead-shaped areas close to the bed in an otherwise laminar boundary layer where the flow ‘bursts’ with violent oscillations. The emergence of the turbulent spots marks the onset of turbulence. Turbulent spots cause single or multiple violent spikes in the bed shear stress signal...

  9. Nonequilibrium structure of colloidal dumbbells under oscillatory shear.

    Science.gov (United States)

    Heptner, Nils; Chu, Fangfang; Lu, Yan; Lindner, Peter; Ballauff, Matthias; Dzubiella, Joachim

    2015-11-01

    We investigate the nonequilibrium behavior of dense, plastic-crystalline suspensions of mildly anisotropic colloidal hard dumbbells under the action of an oscillatory shear field by employing Brownian dynamics computer simulations. In particular, we extend previous investigations, where we uncovered nonequilibrium phase transitions, to other aspect ratios and to a larger nonequilibrium parameter space, that is, a wider range of strains and shear frequencies. We compare and discuss selected results in the context of scattering and rheological experiments. Both simulations and experiments demonstrate that the previously found transitions from the plastic crystal phase with increasing shear strain also occur at other aspect ratios. We explore the transition behavior in the strain-frequency phase and summarize it in a nonequilibrium phase diagram. Additionally, the experimental rheology results hint at a slowing down of the colloidal dynamics with higher aspect ratio.

  10. Inhomogeneous oscillatory electric field time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Carrico, J.P.

    1977-01-01

    The mass-to-charge ratio of an ion can be determined from the measurement of its flight time in an inhomogeneous, oscillatory electric field produced by the potential distribution V(x, y, t) = Vsub(DC) + Vsub(AC) cos ωt) (αsub(x)X 2 + αsub(y)Y 2 + αsub(z)Z 2 ). The governing equation of motion is the Mathieu equation. The principle of operation of this novel mass spectrometer is described and results of computer calculations of the flight time and resolution are reported. An experimental apparatus and results and results demonstrating the feasibility of this mass spectrometer principle are described. (author)

  11. Structure-preserving algorithms for oscillatory differential equations II

    CERN Document Server

    Wu, Xinyuan; Shi, Wei

    2015-01-01

    This book describes a variety of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations. Such systems arise in many branches of science and engineering, and the examples in the book include systems from quantum physics, celestial mechanics and electronics. To accurately simulate the true behavior of such systems, a numerical algorithm must preserve as much as possible their key structural properties: time-reversibility, oscillation, symplecticity, and energy and momentum conservation. The book describes novel advances in RKN methods, ERKN methods, Filon-type asymptotic methods, AVF methods, and trigonometric Fourier collocation methods.  The accuracy and efficiency of each of these algorithms are tested via careful numerical simulations, and their structure-preserving properties are rigorously established by theoretical analysis. The book also gives insights into the practical implementation of the methods. This book is intended for engineers and sc...

  12. Lateral migration of electrospun hydrogel nanofilaments in an oscillatory flow

    Science.gov (United States)

    Nakielski, Paweł; Zembrzycki, Krzysztof

    2017-01-01

    The recent progress in bioengineering has created great interest in the dynamics and manipulation of long, deformable macromolecules interacting with fluid flow. We report experimental data on the cross-flow migration, bending, and buckling of extremely deformable hydrogel nanofilaments conveyed by an oscillatory flow into a microchannel. The changes in migration velocity and filament orientation are related to the flow velocity and the filament’s initial position, deformation, and length. The observed migration dynamics of hydrogel filaments qualitatively confirms the validity of the previously developed worm-like bead-chain hydrodynamic model. The experimental data collected may help to verify the role of hydrodynamic interactions in molecular simulations of long molecular chains dynamics. PMID:29141043

  13. Oscillatory instabilities in the electrooxidation of borohydride on platinum

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Eduardo G.; Varela, Hamilton, E-mail: varela@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica

    2014-03-15

    The borohydride ion has been pointed as a promising alternative fuel. Most of the investigation on its electrochemistry is devoted to the electrocatalytic aspects of its electrooxidation on platinum and gold surfaces. Besides the known kinetic limitations and intricate mechanism, our Group has recently found the occurrence of two regions of bi-stability and autocatalysis in the electrode potential during the open circuit interaction of borohydride and oxidized platinum surfaces. Following this previous contribution, the occurrence of more complicated phenomena is here presented: namely the presence of electrochemical oscillations during the electrooxidation of borohydride on platinum in alkaline media. Current oscillations were found to be associated to two distinct instability windows and characterized in the resistance-potential parameter plane. The dynamic features of such oscillations suggest the existence of distinct mechanisms according to the potential region. Previously published results obtained under non-oscillatory regime were used to give some hints on the surface chemistry behind the observed dynamics. (author)

  14. High frequency oscillatory ventilation in meconium aspiration syndrome

    Directory of Open Access Journals (Sweden)

    José Nona

    2009-03-01

    Full Text Available Objective: To evaluate and compare the management and associated morbidity in inborn and outborn babies with meconium aspiration syndrome admitted to the Neonatal Intensive Care Unit and ventilated with high frequency oscillatory ventilation. Methods: A retrospective cohort study with a review of clinical data from newborns, admitted to the Neonatal Intensive Care Unit during a six-year period (from 1999 to 2004 and ventilated with early high frequency oscillatory ventilation, first intention in inborns and immediately after Neonatal Intensive Care Unit arrival in outborns. Rresults: In the present study, 27 newborns were included: 12 inborn and 15 outborn infants. Severity criteria were similar in both groups. The pulmonary morbidity associated was severe persistent pulmonary hypertension - 12 (seven outborns, pneumothorax - five (three outborns, interstitial emphysema – two (one outborn and pulmonary hemorrhage – one outborn. Hypoxic-ischemic encephalopathy II-III occurred in six newborns (four outborns. The therapeutic procedures were surfactant administration in 22 newborns (13 outborns, nitric oxide in 12 newborns (7 outborns and magnesium sulphate in four newborns (three outborns. The median length of ventilation was six days (inborn infants: four and half days; outborn infants: ten days and the median length of oxygenation supply was ten days (inborn infants: four and half days; outborn infants: 15 days. The median length of stay was 13 days (inborn infants: 11 days; outborn infants: 16 days. One outborn infant died. Cconclusions: With this ventilation strategy, we have found no significant statistical differences between the two newborn groups, except for the length of oxygenation supply that was longer in the Outborn Group.

  15. The Role of Oscillatory Phase in Determining the Temporal Organization of Perception: Evidence from Sensory Entrainment.

    Science.gov (United States)

    Ronconi, Luca; Melcher, David

    2017-11-01

    Recent behavioral, neuroimaging, and neurophysiological studies have renewed the idea that the information processing within different temporal windows is linked to the phase and/or frequency of the ongoing oscillations, predominantly in the theta/alpha band (∼4-7 and 8-12 Hz, respectively). However, being correlational in nature, this evidence might reflect a nonfunctional byproduct rather than having a causal role. A more direct link can be shown with methods that manipulate oscillatory activity. Here, we used audiovisual entrainment at different frequencies in the prestimulus period of a temporal integration/segregation task. We hypothesized that entrainment would align ongoing oscillations and drive them toward the stimulation frequency. To reveal behavioral oscillations in temporal perception after the entrainment, we sampled the segregation/integration performance densely in time. In Experiment 1, two groups of human participants (both males and females) received stimulation either at the lower or the upper boundary of the alpha band (∼8.5 vs 11.5 Hz). For both entrainment frequencies, we found a phase alignment of the perceptual oscillation across subjects, but with two different power spectra that peaked near the entrainment frequency. These results were confirmed when perceptual oscillations were characterized in the time domain with sinusoidal fittings. In Experiment 2, we replicated the findings in a within-subject design, extending the results for frequencies in the theta (∼6.5 Hz), but not in the beta (∼15 Hz), range. Overall, these findings show that temporal segregation can be modified by sensory entrainment, providing evidence for a critical role of ongoing oscillations in the temporal organization of perception. SIGNIFICANCE STATEMENT The continuous flow of sensory input is not processed in an analog fashion, but rather is grouped by the perceptual system over time. Recent studies pinpointed the phase and/or frequency of the neural

  16. Oscillatory domain wall velocity of current-induced domain wall motion

    International Nuclear Information System (INIS)

    Kim, W.J.; Seo, S.M.; Lee, T.D.; Lee, K.J.

    2007-01-01

    We studied the effect of Oersted field (H Oe ) on current-induced domain wall motion (CIDWM) in magnetic nanowires. We found that H Oe generates spin waves. Because of interaction between domain wall (DW) and spin wave, time-dependent wall velocity is oscillatory at the early stage of wall motion. The period of the oscillatory DW motion is in antiphase with the period of out-of-plane (OOP) magnetization oscillation inside the DW. The oscillatory wall velocity is suppressed as the thickness of nanowire decreases because of strong demagnetization field

  17. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  18. Numerical calculation of a class of highly oscillatory integrals with the Mathieu function

    International Nuclear Information System (INIS)

    Long Yongxing

    1992-01-01

    The author describes a method for computing highly oscillatory integrals with the Mathieu function. The practice proves that not only the results are highly satisfactory, but also the method is time-saving

  19. Phenomenological approach to describe oscillatory growth or decay in different dynamical systems

    Science.gov (United States)

    Biswas, Dibyendu; Poria, Swarup; Patra, Sankar Narayan

    2016-12-01

    The approach of the phenomenological universalities of growth is considered to describe the behaviour of a system showing an oscillatory growth. Two phenomenological classes are proposed to consider the oscillatory behaviour of a system. One of them is showing oscillatory nature with constant amplitude and the other represents oscillatory nature with a change in amplitude. The term responsible for decay (or growth) in amplitude in the proposed class is also been identified. The variations in the nature of oscillation with the dependent parameters are studied in this communication. In this connection, the variation of a specific growth rate is also been considered. The significance of the presence and the absence of each term involved in the phenomenological description are also taken into consideration. These proposed classes might be useful for the experimentalists to extract a characteristic feature from the data set and to develop a suitable model consistent with their data set.

  20. On the Existence of Oscillatory-Convective Thermohaline Flow in Sedimentary Basins

    Science.gov (United States)

    Graf, T.; Diersch, H. G.; Simmons, C. T.

    2009-05-01

    In the Earth's crust, both groundwater temperature and salinity increase with depth. As a consequence, water density is variable, thereby creating density-driven thermohaline groundwater flow. While prior steady-state studies of thermohaline flow in porous media identified conductive, oscillatory and convective thermohaline flow modes, the present study numerically analyzes thermohaline flow using a transient approach. We discovered the existence of an oscillatory-convective flow mode within a specific range of thermal and haline Raleigh numbers. Oscillatory-convective thermohaline flow only exists when water temperature and salinity increase with depth (positive RaT, negative RaS). Candidate sedimentary basins of oscillatory-convective thermohaline flow may be found in Western Canada (Alberta), in the Gulf of Mexico, in Northern Germany, or in Australia.

  1. Resting-state EEG oscillatory dynamics in fragile X syndrome: abnormal functional connectivity and brain network organization.

    Directory of Open Access Journals (Sweden)

    Melle J W van der Molen

    Full Text Available Disruptions in functional connectivity and dysfunctional brain networks are considered to be a neurological hallmark of neurodevelopmental disorders. Despite the vast literature on functional brain connectivity in typical brain development, surprisingly few attempts have been made to characterize brain network integrity in neurodevelopmental disorders. Here we used resting-state EEG to characterize functional brain connectivity and brain network organization in eight males with fragile X syndrome (FXS and 12 healthy male controls. Functional connectivity was calculated based on the phase lag index (PLI, a non-linear synchronization index that is less sensitive to the effects of volume conduction. Brain network organization was assessed with graph theoretical analysis. A decrease in global functional connectivity was observed in FXS males for upper alpha and beta frequency bands. For theta oscillations, we found increased connectivity in long-range (fronto-posterior and short-range (frontal-frontal and posterior-posterior clusters. Graph theoretical analysis yielded evidence of increased path length in the theta band, suggesting that information transfer between brain regions is particularly impaired for theta oscillations in FXS. These findings are discussed in terms of aberrant maturation of neuronal oscillatory dynamics, resulting in an imbalance in excitatory and inhibitory neuronal circuit activity.

  2. Aberrant Modulation of Brain Oscillatory Activity and Attentional Impairment in Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Lenartowicz, Agatha; Mazaheri, Ali; Jensen, Ole; Loo, Sandra K

    2018-01-01

    Electroencephalography and magnetoencephalography are noninvasive neuroimaging techniques that have been used extensively to study various resting-state and cognitive processes in the brain. The purpose of this review is to highlight a number of recent studies that have investigated the alpha band (8-12 Hz) oscillatory activity present in magnetoencephalography and electroencephalography, to provide new insights into the maladaptive network activity underlying attentional impairments in attention-deficit/hyperactivity disorder (ADHD). Studies reviewed demonstrate that event-related decrease in alpha is attenuated during visual selective attention, primarily in ADHD inattentive type, and is often significantly associated with accuracy and reaction time during task performance. Furthermore, aberrant modulation of alpha activity has been reported across development and may have abnormal or atypical lateralization patterns in ADHD. Modulations in the alpha band thus represent a robust, relatively unexplored putative biomarker of attentional impairment and a strong prospect for future studies aimed at examining underlying neural mechanisms and treatment response among individuals with ADHD. Potential limitations of its use as a diagnostic biomarker and directions for future research are discussed. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Oscillatory frontal theta responses are increased upon bisensory stimulation.

    Science.gov (United States)

    Sakowitz, O W; Schürmann, M; Başar, E

    2000-05-01

    To investigate the functional correlation of oscillatory EEG components with the interaction of sensory modalities following simultaneous audio-visual stimulation. In an experimental study (15 subjects) we compared auditory evoked potentials (AEPs) and visual evoked potentials (VEPs) to bimodal evoked potentials (BEPs; simultaneous auditory and visual stimulation). BEPs were assumed to be brain responses to complex stimuli as a marker for intermodal associative functioning. Frequency domain analysis of these EPs showed marked theta-range components in response to bimodal stimulation. These theta components could not be explained by linear addition of the unimodal responses in the time domain. Considering topography the increased theta-response showed a remarkable frontality in proximity to multimodal association cortices. Referring to methodology we try to demonstrate that, even if various behavioral correlates of brain oscillations exist, common patterns can be extracted by means of a systems-theoretical approach. Serving as an example of functionally relevant brain oscillations, theta responses could be interpreted as an indicator of associative information processing.

  4. Particle and Blood Cell Dynamics in Oscillatory Flows Final Report

    International Nuclear Information System (INIS)

    Restrepo, Juan M.

    2008-01-01

    Our aim has been to uncover fundamental aspects of the suspension and dislodgement of particles in wall-bounded oscillatory flows, in flows characterized by Reynolds numbers encompassing the situation found in rivers and near shores (and perhaps in some industrial processes). Our research tools are computational and our coverage of parameter space fairly broad. Computational means circumvent many complications that make the measurement of the dynamics of particles in a laboratory setting an impractical task, especially on the broad range of parameter space we plan to report upon. The impact of this work on the geophysical problem of sedimentation is boosted considerably by the fact that the proposed calculations can be considered ab-initio, in the sense that little to no modeling is done in generating dynamics of the particles and of the moving fluid: we use a three-dimensional Navier Stokes solver along with straightforward boundary conditions. Hence, to the extent that Navier Stokes is a model for an ideal incompressible isotropic Newtonian fluid, the calculations yield benchmark values for such things as the drag, buoyancy, and lift of particles, in a highly controlled environment. Our approach will be to make measurements of the lift, drag, and buoyancy of particles, by considering progressively more complex physical configurations and physics.

  5. DYNAMICS OF FLUID IN OSCILLATORY FLOW: THE Z COMPONENT

    Directory of Open Access Journals (Sweden)

    V. C. -C. LEE

    2015-10-01

    Full Text Available In an oscillatory flow, the resistance to flow, more appropriately defined as the impedance to flow, is a function of oscillating frequency, which refers to the harmonic composition of the driving pressure wave. Flow in an elastic tube may be resisted in numerous ways such as the fluid viscosity, fluid inertia and tube elasticity. The concept of impedance arises in the dynamics of the ResistanceInductance-Capacitance. In oscillating flow, these represent the fluid viscosity, inertia and tube elasticity. This paper describes the effects of impedance, or the Z component as described in-text of an oscillating flow in a valveless impedance pump using numerical simulation. A one-dimensional lumpedsystem model is chosen to perform the analysis in this study. The simulation domain is a mimic to known experimental model previously conducted by Lee et.al. [18-21]. Impedance-induced flow has shown to be combined effects of fluid viscosity, inertia and tube elasticity. Results presented are in reasonable agreement with experimental results presented in Ref [21] with an estimate of 16% variance. This simple model has shown to predict results with significant values, using simple approximations; and further the understanding of fluid impedance’s role in a valveless impedance pump.

  6. Microstructure characterization of Cu processed by compression with oscillatory torsion

    International Nuclear Information System (INIS)

    Rodak, K.; Pawlicki, J.

    2014-01-01

    High purity Cu (99.9%) was subjected to severe plastic deformation up to a total effective strain ε ft = 130 through compression with the oscillatory torsion method at room temperature. This method produces an ultrafine grain microstructure. The microstructure evolution was investigated with respect to the value of the total effective strain using a scanning electron microscope with an electron-backscattered diffraction technique and a scanning transmission electron microscope. The results of the structural analyses show that increasing ε ft from 2 to 50 causes progress in the grain refinement. A quantitative study of the microstructure parameters, such as fraction of high angle boundaries, grain and subgrain diameter, and the area fraction of grains up to 1 μm, shows that deformation at ε ft = 45 guaranteed the best conditions for refining the microstructure of Cu. Using high values of ε ft in the range 60 to 130 restricts grain refinement because intensive recovery begins to dominate in the microstructure. - Highlights: • Cu was processed by SPD metodto an effective strain 130. • The microstructure evolution has been investigated. • The method allows to produce an ultrafine grain microstructure

  7. Microstructure characterization of Cu processed by compression with oscillatory torsion

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, K., E-mail: kinga.rodak@polsl.pl [Institute of Materials Science, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice (Poland); Pawlicki, J., E-mail: jacek.pawlicki@polsl.pl [Department of Automotive Vehicle Construction, Silesian University of Technology, Krasińskiego 8, 40–019 Katowice (Poland)

    2014-08-15

    High purity Cu (99.9%) was subjected to severe plastic deformation up to a total effective strain ε{sub ft} = 130 through compression with the oscillatory torsion method at room temperature. This method produces an ultrafine grain microstructure. The microstructure evolution was investigated with respect to the value of the total effective strain using a scanning electron microscope with an electron-backscattered diffraction technique and a scanning transmission electron microscope. The results of the structural analyses show that increasing ε{sub ft} from 2 to 50 causes progress in the grain refinement. A quantitative study of the microstructure parameters, such as fraction of high angle boundaries, grain and subgrain diameter, and the area fraction of grains up to 1 μm, shows that deformation at ε{sub ft} = 45 guaranteed the best conditions for refining the microstructure of Cu. Using high values of ε{sub ft} in the range 60 to 130 restricts grain refinement because intensive recovery begins to dominate in the microstructure. - Highlights: • Cu was processed by SPD metodto an effective strain 130. • The microstructure evolution has been investigated. • The method allows to produce an ultrafine grain microstructure.

  8. [Emotional intelligence and oscillatory responses on the emotional facial expressions].

    Science.gov (United States)

    Kniazev, G G; Mitrofanova, L G; Bocharov, A V

    2013-01-01

    Emotional intelligence-related differences in oscillatory responses to emotional facial expressions were investigated in 48 subjects (26 men and 22 women) in age 18-30 years. Participants were instructed to evaluate emotional expression (angry, happy and neutral) of each presented face on an analog scale ranging from -100 (very hostile) to + 100 (very friendly). High emotional intelligence (EI) participants were found to be more sensitive to the emotional content of the stimuli. It showed up both in their subjective evaluation of the stimuli and in a stronger EEG theta synchronization at an earlier (between 100 and 500 ms after face presentation) processing stage. Source localization using sLORETA showed that this effect was localized in the fusiform gyrus upon the presentation of angry faces and in the posterior cingulate gyrus upon the presentation of happy faces. At a later processing stage (500-870 ms) event-related theta synchronization in high emotional intelligence subject was higher in the left prefrontal cortex upon the presentation of happy faces, but it was lower in the anterior cingulate cortex upon presentation of angry faces. This suggests the existence of a mechanism that can be selectively increase the positive emotions and reduce negative emotions.

  9. A nonlinear two-species oscillatory system: bifurcation and stability analysis

    Directory of Open Access Journals (Sweden)

    C. G. Chakrabarti

    2003-06-01

    Full Text Available The present paper dealing with the nonlinear bifurcation analysis of two-species oscillatory system consists of three parts. The first part deals with Hopf-bifurcation and limit cycle analysis of the homogeneous system. The second consists of travelling wave train solution and its linear stability analysis of the system in presence of diffusion. The last deals with an oscillatory chemical system as an illustrative example.

  10. PRELIMINARY DESIGN OF OSCILLATORY FLOW BIODIESEL REACTOR FOR CONTINUOUS BIODIESEL PRODUCTION FROM JATROPHA TRIGLYCERIDES

    OpenAIRE

    AZHARI T. I. MOHD. GHAZI; M. F. M. GUNAM RESUL; R. YUNUS; T. C. SHEAN YAW

    2008-01-01

    The concept of a continuous process in producing biodiesel from jatropha oil by using an Oscillatory Flow Biodiesel Reactor (OFBR) is discussed in this paper. It has been recognized that the batch stirred reactor is a primary mode used in the synthesis of biodiesel. However, pulsatile flow has been extensively researcehed and the fundamental principles have been successfully developed upon which its hydrodynamics are based. Oscillatory flow biodiesel reactor offers precise control of mixing b...

  11. Oscillatory integrals on Hilbert spaces and Schroedinger equation with magnetic fields

    International Nuclear Information System (INIS)

    Albeverio, S.; Brzezniak, Z.

    1994-01-01

    We extend the theory of oscillatory integrals on Hilbert spaces (the mathematical version of ''Feynman path integrals'') to cover more general integrable functions, preserving the property of the integrals to have converging finite dimensional approximations. We give an application to the representation of solutions of the time dependent Schroedinger equation with a scalar and a magnetic potential by oscillatory integrals on Hilbert spaces. A relation with Ramer's functional in the corresponding probabilistic setting is found. (orig.)

  12. Fine-Scale Evaluation of Giant Panda Habitats and Countermeasures against the Future Impacts of Climate Change and Human Disturbance (2015–2050: A Case Study in Ya’an, China

    Directory of Open Access Journals (Sweden)

    Jing Zhen

    2018-04-01

    Full Text Available The accelerating impact of climate change on giant panda (Ailuropoda melanoleuca habitats have become an international research topic. Recently, many studies have also focused on medium-sized mountain ranges or entire giant panda habitats to predict how habitats will change as the climate warms, but few say in detail what to do or where to focus efforts. To fill this gap, this paper presents a new method to take comprehensive, fine-scale evaluations incorporating climate change, human disturbance, and current conservation networks and translate them into practical countermeasures in order to help decision-makers set priority regions for conservation. This study looked at the core area of the Sichuan Giant Panda Sanctuaries United Nations Educational, Scientific and Cultural Organisation (UNESCO World Natural Heritage site, namely Ya’an Prefecture, as a case study. The research employs the Maximum Entropy (MaxEnt modeling algorithm to analyze how climate change will affect the habitats by 2050 under two scenarios: only considering the influence of climate change, and thinking about the coupled influence of climate change and human disturbance together. The results showed the following: (1 only considering climate change, the overall habitat that can be used by giant pandas in this region will increase, which differs from most of the previous results showing a decrease; (2 the new suitable habitat will shift westward, northward and eastward in this region; (3 conversely, the suitable habitat will be significantly reduced (about 58.56% and fragmentized when taking into account human disturbance factors; (4 at present, the three small nature reserves are far from each other and cannot cover the present habitat well nor protect the potentially suitable habitats. Based on the comprehensive analysis of habitat shifts and our two field investigations, we suggest two regions that can be expanded into the conservation network to contain more potentially

  13. Task-dependent modulation of oscillatory neural activity during movements

    DEFF Research Database (Denmark)

    Herz, D. M.; Christensen, M. S.; Reck, C.

    2011-01-01

    Neural oscillations in different frequency bands have been observed in a range of sensorimotor tasks and have been linked to coupling of spatially distinct neurons. The goal of this study was to detect a general motor network that is activated during phasic and tonic movements and to study the ta...

  14. Fluid mechanics experiments in oscillatory flow. Volume 1: Report

    Science.gov (United States)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).

  15. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions

    Science.gov (United States)

    Semenov, Sergey N.; Kraft, Lewis J.; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E.; Kang, Kyungtae; Fox, Jerome M.; Whitesides, George M.

    2016-09-01

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving

  16. Exercise Oscillatory Ventilation: Interreviewer Agreement and a Novel Determination.

    Science.gov (United States)

    Brawner, Clinton A; Ehrman, Jonathan K; Myers, Jonathan; Chase, Paul; Vainshelboim, Baruch; Farha, Shadi; Saval, Matthew A; McGuire, Rita; Pozehl, Bunny; Keteyian, Steven J

    2018-02-01

    Determination of exercise oscillatory ventilation (EOV) is subjective, and the interreviewer agreement has not been reported. The purposes of this study were, among patients with heart failure (HF), as follows: 1) to determine the interreviewer agreement for EOV and 2) to describe a novel, objective, and quantifiable measure of EOV. This was a secondary analysis of the HEART Camp: Promoting Adherence to Exercise in Patients with Heart Failure study. EOV was determined through a blinded review by six individuals on the basis of their interpretation of the EOV literature. Interreviewer agreement was assessed using Fleiss kappa (κ). Final determination of EOV was based on agreement by four of the six reviewers. A new measure (ventilation dispersion index; VDI) was calculated for each test, and its ability to predict EOV was assessed with the receiver operator characteristics curve. Among 243 patients with HF (age, 60 ± 12 yr; 45% women), the interreviewer agreement for EOV was fair (κ = 0.303) with 10-s discrete data averages and significantly better, but only moderate (κ = 0.429) with 30-s rolling data averages. Prevalence rates of positive and indeterminate EOVs were 18% and 30% with the 10-s discrete averages and 14% and 13% with the 30-s rolling averages, respectively. VDI was strongly associated with EOV, with areas under the receiver operator characteristics curve of 0.852 to 0.890. Interreviewer agreement for EOV in patients with HF is fair to moderate, which can negatively affect risk stratification. VDI has strong predictive validity with EOV; as such, it might be a useful measure of prognosis in patients with HF.

  17. Fluid mechanics experiments in oscillatory flow. Volume 1

    International Nuclear Information System (INIS)

    Seume, J.; Friedman, G.; Simon, T.W.

    1992-03-01

    Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re max , Re W , and A R , embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation)

  18. Wide Band to ''Double Band'' upgrade

    International Nuclear Information System (INIS)

    Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.

    1988-06-01

    The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs

  19. Interactions among oscillatory pathways in NF-kappa B signaling

    Directory of Open Access Journals (Sweden)

    White Michael RH

    2011-02-01

    Full Text Available Abstract Background Sustained stimulation with tumour necrosis factor alpha (TNF-alpha induces substantial oscillations—observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B system. Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer and its inhibitor I-kappa B-alpha. Many authors have suggested that this core oscillator should couple to other oscillatory pathways. Results First we analyse single-cell data from experiments in which the NF-kappa B system is forced by short trains of strong pulses of TNF-alpha. Power spectra of the ratio of nuclear-to-cytoplasmic concentration of NF-kappa B suggest that the cells' responses are entrained by the pulsing frequency. Using a recent model of the NF-kappa B system due to Caroline Horton, we carried out extensive numerical simulations to analyze the response frequencies induced by trains of pulses of TNF-alpha stimulation having a wide range of frequencies and amplitudes. These studies suggest that for sufficiently weak stimulation, various nonlinear resonances should be observable. To explore further the possibility of probing alternative feedback mechanisms, we also coupled the model to sinusoidal signals with a wide range of strengths and frequencies. Our results show that, at least in simulation, frequencies other than those of the forcing and the main NF-kappa B oscillator can be excited via sub- and superharmonic resonance, producing quasiperiodic and even chaotic dynamics. Conclusions Our numerical results suggest that the entrainment phenomena observed in pulse-stimulated experiments is a consequence of the high intensity of the stimulation. Computational studies based on current models suggest that resonant interactions between periodic pulsatile forcing and the system's natural frequencies may become evident for sufficiently

  20. Separating Fractal and Oscillatory Components in the Power Spectrum of Neurophysiological Signal.

    Science.gov (United States)

    Wen, Haiguang; Liu, Zhongming

    2016-01-01

    Neurophysiological field-potential signals consist of both arrhythmic and rhythmic patterns indicative of the fractal and oscillatory dynamics arising from likely distinct mechanisms. Here, we present a new method, namely the irregular-resampling auto-spectral analysis (IRASA), to separate fractal and oscillatory components in the power spectrum of neurophysiological signal according to their distinct temporal and spectral characteristics. In this method, we irregularly resampled the neural signal by a set of non-integer factors, and statistically summarized the auto-power spectra of the resampled signals to separate the fractal component from the oscillatory component in the frequency domain. We tested this method on simulated data and demonstrated that IRASA could robustly separate the fractal component from the oscillatory component. In addition, applications of IRASA to macaque electrocorticography and human magnetoencephalography data revealed a greater power-law exponent of fractal dynamics during sleep compared to wakefulness. The temporal fluctuation in the broadband power of the fractal component revealed characteristic dynamics within and across the eyes-closed, eyes-open and sleep states. These results demonstrate the efficacy and potential applications of this method in analyzing electrophysiological signatures of large-scale neural circuit activity. We expect that the proposed method or its future variations would potentially allow for more specific characterization of the differential contributions of oscillatory and fractal dynamics to distributed neural processes underlying various brain functions.

  1. Band - Weg interactie

    NARCIS (Netherlands)

    de Boer, Andries; ter Huerne, Henderikus L.; Noordermeer, Jacobus W.M.; Schipper, Dirk J.; prof.dr.ir. Molenaar, A.A.A.

    2008-01-01

    De huidige infrastructuur van wegen waarover men zich snel en comfortabel kan verplaatsen is niet meer weg te denken uit onze maatschappij. Twee “componenten” die hierbij een belangrijke rol spelen zijn het wegdek en de band. Het contact tussen band en wegdek is mede bepalend voor de veiligheid. De

  2. Photonic band structure computations.

    Science.gov (United States)

    Hermann, D; Frank, M; Busch, K; Wolfle, P

    2001-01-29

    We introduce a novel algorithm for band structure computations based on multigrid methods. In addition, we demonstrate how the results of these band structure calculations may be used to compute group velocities and effective photon masses. The results are of direct relevance to studies of pulse propagation in such materials.

  3. ZEBRAFISH CHROMOSOME-BANDING

    NARCIS (Netherlands)

    PIJNACKER, LP; FERWERDA, MA

    1995-01-01

    Banding techniques were carried out on metaphase chromosomes of zebrafish (Danio rerio) embryos. The karyotypes with the longest chromosomes consist of 12 metacentrics, 26 submetacentrics, and 12 subtelocentrics (2n = 50). All centromeres are C-band positive. Eight chromosomes have a pericentric

  4. Pseudo-inverse Jacobian control with grey relational analysis for robot manipulators mounted on oscillatory bases

    Science.gov (United States)

    Lin, J.; Lin, C. C.; Lo, H.-S.

    2009-10-01

    Interest in complex robotic systems is growing in new application areas. An example of such a robotic system is a dexterous manipulator mounted on an oscillatory base. In literature, such systems are known as macro/micro systems. This work proposes pseudo-inverse Jacobian feedback control laws and applies grey relational analysis for tuning outer-loop PID control parameters of Cartesian computed-torque control law for robotic manipulators mounted on oscillatory bases. The priority when modifying controller parameters should be the top ranking importance among parameters. Grey relational grade is utilized to investigate the sensitivity of tuning the auxiliary signal PID of the Cartesian computed-torque law to achieve desired performance. Results of this study can be feasible to numerous mechanical systems, such as mobile robots, gantry cranes, underwater robots, and other dynamic systems mounted on oscillatory bases, for moving the end-effector to a desired Cartesian position.

  5. Approximate damped oscillatory solutions and error estimates for the perturbed Klein–Gordon equation

    International Nuclear Information System (INIS)

    Ye, Caier; Zhang, Weiguo

    2015-01-01

    Highlights: • Analyze the dynamical behavior of the planar dynamical system corresponding to the perturbed Klein–Gordon equation. • Present the relations between the properties of traveling wave solutions and the perturbation coefficient. • Obtain all explicit expressions of approximate damped oscillatory solutions. • Investigate error estimates between exact damped oscillatory solutions and the approximate solutions and give some numerical simulations. - Abstract: The influence of perturbation on traveling wave solutions of the perturbed Klein–Gordon equation is studied by applying the bifurcation method and qualitative theory of dynamical systems. All possible approximate damped oscillatory solutions for this equation are obtained by using undetermined coefficient method. Error estimates indicate that the approximate solutions are meaningful. The results of numerical simulations also establish our analysis

  6. Shear and loading in channels: Oscillatory shearing and edge currents of superconducting vortices

    Science.gov (United States)

    Wambaugh, J. F.; Marchesoni, F.; Nori, Franco

    2003-04-01

    Via computer simulations we study the motion of quantized magnetic flux-lines, or vortices, confined to a straight pin-free channel in a strong-pinning superconducting sample. We find that, when a constant current is applied across this system, a very unusual oscillatory shearing appears, in which the vortices moving at the edges of the channel periodically trail behind and then suddenly leapfrog past the vortices moving in the inner rows. For small enough driving forces, this oscillatory shearing dynamic phase is replaced by a continuous shearing phase in which the distance between initially-nearby vortices grows in time, quickly destroying the order of the lattice. An animation of this novel “oscillatory leapfrogging shear” effect of the vortex edge currents appears in http://www-personal.engin.umich.edu/˜nori/channel/

  7. The effect of a laser beam displacement on parametric oscillatory instabilities for Advanced LIGO

    International Nuclear Information System (INIS)

    Heinert, D.; Strigin, S.E.

    2011-01-01

    The arm cavities of real gravitational wave detectors can show small deviations like a tilt or a spatial shift between the cavity mirrors. These deviations lead to a separation of the optical mode centres with respect to the mirror's centre. In this Letter we perform the computation of parametric instable modes considering the described displacement. We further analyse the possibility of parametric oscillatory instability in the Advanced LIGO interferometer for the case of a displaced arm cavity. Our results reveal an additional number of optical and elastic mode combinations due to a displacement that can give rise to the undesirable effect of parametric oscillatory instability. -- Highlights: → We analyse the possibility of parametric oscillatory instability in the Advanced LIGO interferometer. → We perform the computation of parametric instable modes considering the mirror displacement. → Our results reveal an additional number of optical and elastic mode unstable combinations.

  8. Neural oscillatory deficits in schizophrenia predict behavioral and neurocognitive impairments

    Directory of Open Access Journals (Sweden)

    Antigona eMartinez

    2015-07-01

    Full Text Available Paying attention to visual stimuli is typically accompanied by event-related desynchronizations (ERD of ongoing alpha (7-14 Hz activity in visual cortex. The present study used time-frequency based analyses to investigate the role of impaired alpha ERD in visual processing deficits in schizophrenia (Sz. Subjects viewed sinusoidal gratings of high (HSF and low (LSF spatial frequency designed to test functioning of the parvo- versus magnocellular pathways, respectively. Patients with Sz and healthy controls paid attention selectively to either the LSF or HSF gratings which were presented in random order. Event-related brain potentials (ERPs were recorded to all stimuli. As in our previous study, it was found that Sz patients were selectively impaired at detecting LSF target stimuli and that ERP amplitudes to LSF stimuli were diminished, both for the early sensory-evoked components and for the attend minus unattend difference component (the Selection Negativity, which is generally regarded as a specific index of feature-selective attention. In the time-frequency domain, the differential ERP deficits to LSF stimuli were echoed in a virtually absent theta-band phase locked response to both unattended and attended LSF stimuli (along with relatively intact theta-band activity for HSF stimuli. In contrast to the theta-band evoked responses which were tightly stimulus locked, stimulus-induced desynchronizations of ongoing alpha activity were not tightly stimulus locked and were apparent only in induced power analyses. Sz patients were significantly impaired in the attention-related modulation of ongoing alpha activity for both HSF and LSF stimuli. These deficits correlated with patients’ behavioral deficits in visual information processing as well as with visually based neurocognitive deficits. These findings suggest an additional, pathway-independent, mechanism by which deficits in early visual processing contribute to overall cognitive impairment in

  9. Oscillatory Onset and Offset in Young Vocally Healthy Adults Across Various Measurement Methods.

    Science.gov (United States)

    Patel, Rita R; Walker, Reuben; Döllinger, Michael

    2017-07-01

    This study aimed to investigate the relationship between (1) oscillatory onset-offset time across various approaches that use different measurement criteria and (2) oscillatory onset and offset times in vocally healthy young adults. Oscillatory onset-offset times were obtained from 71 vocally normal adults, using high-speed videoendoscopy. Comparisons between the different onset methods involved measurement of the oscillatory onset time (OOT), voice initiation period (VIP), and the phonation onset time (POT), and for offset methods involved computation of the oscillatory offset time (OOT off ) and the phonation offset time. Correlation of the OOT with the VIP was 0.240 (P = 0.04) and with the POT form glottal area waveform was 0.248 (P = 0.04); however, correlation between the VIP and the POT glottal area waveform was 0.661 (P time was longest for the OOT followed by the VIP and the POT. There was no correlation between onset and offset for all methods. A framework for quantification of oscillatory onset-offset time was developed for /hi/ tasks, which can be used for future measurements of disordered voice. A positive relationship was observed between VIP and POT and between OOT off and vocal offset period. There was a nonlinear relationship between the OOT, VIP, and POT measures. Onset-offset times are strongly influenced by the calculation method used, the pros and cons of which are discussed in this paper. Vibratory onset and offset represent physiologically different phenomena. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  10. Characteristic effects of stochastic oscillatory forcing on neural firing: analytical theory and comparison to paddlefish electroreceptor data.

    Directory of Open Access Journals (Sweden)

    Christoph Bauermeister

    Full Text Available Stochastic signals with pronounced oscillatory components are frequently encountered in neural systems. Input currents to a neuron in the form of stochastic oscillations could be of exogenous origin, e.g. sensory input or synaptic input from a network rhythm. They shape spike firing statistics in a characteristic way, which we explore theoretically in this report. We consider a perfect integrate-and-fire neuron that is stimulated by a constant base current (to drive regular spontaneous firing, along with Gaussian narrow-band noise (a simple example of stochastic oscillations, and a broadband noise. We derive expressions for the nth-order interval distribution, its variance, and the serial correlation coefficients of the interspike intervals (ISIs and confirm these analytical results by computer simulations. The theory is then applied to experimental data from electroreceptors of paddlefish, which have two distinct types of internal noisy oscillators, one forcing the other. The theory provides an analytical description of their afferent spiking statistics during spontaneous firing, and replicates a pronounced dependence of ISI serial correlation coefficients on the relative frequency of the driving oscillations, and furthermore allows extraction of certain parameters of the intrinsic oscillators embedded in these electroreceptors.

  11. Characteristic effects of stochastic oscillatory forcing on neural firing: analytical theory and comparison to paddlefish electroreceptor data.

    Science.gov (United States)

    Bauermeister, Christoph; Schwalger, Tilo; Russell, David F; Neiman, Alexander B; Lindner, Benjamin

    2013-01-01

    Stochastic signals with pronounced oscillatory components are frequently encountered in neural systems. Input currents to a neuron in the form of stochastic oscillations could be of exogenous origin, e.g. sensory input or synaptic input from a network rhythm. They shape spike firing statistics in a characteristic way, which we explore theoretically in this report. We consider a perfect integrate-and-fire neuron that is stimulated by a constant base current (to drive regular spontaneous firing), along with Gaussian narrow-band noise (a simple example of stochastic oscillations), and a broadband noise. We derive expressions for the nth-order interval distribution, its variance, and the serial correlation coefficients of the interspike intervals (ISIs) and confirm these analytical results by computer simulations. The theory is then applied to experimental data from electroreceptors of paddlefish, which have two distinct types of internal noisy oscillators, one forcing the other. The theory provides an analytical description of their afferent spiking statistics during spontaneous firing, and replicates a pronounced dependence of ISI serial correlation coefficients on the relative frequency of the driving oscillations, and furthermore allows extraction of certain parameters of the intrinsic oscillators embedded in these electroreceptors.

  12. Band parameters of phosphorene

    DEFF Research Database (Denmark)

    Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...... are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene....

  13. Design principle of multi-cluster and desynchronized states in oscillatory media via nonlinear global feedback

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yasuaki [Meme Media Laboratory, Hokkaido University, Sapporo 060-0813 (Japan); Kori, Hiroshi [Division of Advanced Sciences, Ochadai Academic Production, Ochanomizu University, Tokyo 112-8610 (Japan)], E-mail: kobayashi@nsc.es.hokudai.ac.jp, E-mail: kori.hiroshi@ocha.ac.jp

    2009-03-15

    A theoretical framework is developed for the precise control of spatial patterns in oscillatory media using nonlinear global feedback, where a proper form of the feedback function corresponding to a specific pattern is predicted through the analysis of a phase diffusion equation with global coupling. In particular, feedback functions that generate the following spatial patterns are analytically given: (i) 2-cluster states with an arbitrary population ratio, (ii) equally populated multi-cluster states and (iii) a desynchronized state. Our method is demonstrated numerically by using the Brusselator model in the oscillatory regime. Experimental realization is also discussed.

  14. Complex-plane methods for evaluating highly oscillatory integrals in nuclear physics: Pt. 2

    International Nuclear Information System (INIS)

    Davies, K.T.R.

    1988-01-01

    Products of Green functions for pion-nucleon interactions can most naturally be evaluated by transforming to a momentum-space representation. Such transformations often involve an integral whose integrand is highly oscillatory. By deforming the contour of integration in the complex plane, such an integral can be made to converge rapidly. All oscillatory terms are converted into pure damping terms which decrease exponentially. Examples are given for simple integrals, for the integral of three spherical Bessel functions, and for the Fourier and spherical Bessel function transforms of the Woods-Saxon potential (Fermi-Dirac distribution function). (author)

  15. Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects

    International Nuclear Information System (INIS)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-01-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2 , where M   =  Mo, W; X   =  S, Se, Te) while including spin–orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed. (paper)

  16. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  17. INFLUENCE OF OSCILLATORY IMPACT ON MOVEMENT IN LIQUID AND GRINDING OF WOOD PULP USED FOR PACKAGING PRODUCTION

    Directory of Open Access Journals (Sweden)

    I. I. Karpunin

    2011-01-01

    Full Text Available The paper investigates an influence of oscillatory impacts on wood pulp grinding which is used for packaging production.It has been established that plate oscillatory impact promotes better quality of the obtained paper sheet made of grind plant fiber.

  18. Laparoscopic gastric banding

    Science.gov (United States)

    ... eat by making you feel full after eating small amounts of food. After surgery, your doctor can adjust the band ... You will feel full after eating just a small amount of food. The food in the small upper pouch will ...

  19. Decay of superdeformed bands

    International Nuclear Information System (INIS)

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-01-01

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in 194 Hg. 42 refs., 5 figs

  20. HYBASE - HYperspectral BAnd SElection tool

    NARCIS (Netherlands)

    Schwering, P.B.W.; Bekman, H.H.P.T.; Seijen, H.H. van

    2008-01-01

    Band selection is essential in the design of multispectral sensor systems. This paper describes the TNO hyperspectral band selection tool HYBASE. It calculates the optimum band positions given the number of bands and the width of the spectral bands. HYBASE is used to calculate the minimum number of

  1. Assignment of quasi-Landau levels in magneto-oscillatory spectra in cuprous oxide to classical unstable trajectories of hydrogen type atoms

    Science.gov (United States)

    Hammura, Kiyotaka; Sakai, Kazuo; Kobayashi, Masaaki; Misu, Akira

    1998-05-01

    It is found, for the first time in the field of solid state spectroscopy, that quasi-Landau levels in magneto-oscillatory spectra in cuprous oxide reflect “classical non-integrability.” Cuprous oxide is well known to exhibit excitonic absorption spectra of typical wannier type near the absorption edge in yellow spectral region. Magneto-oscillatory spectra are observed in the region above the limiting energy of the exciton series in magnetic fields. The spectra are measured at liquid helium temperature with right and left circularly polarized light in magnetic fields up to 4.5 T generated by a superconducting magnet. The observed spectra look like “Landau levels” corresponding to the optical transitions between states of the hole in a valence band and those of the electron in a conduction band without Coulomb attraction between them qualitatively, but never coincide with the Landau levels quantitatively. By calculating inverse Fourier transform of the observed spectra (IFFT spectra), three peaks are found in the auto-correlation function of the excited excitonic state. These spectra are interpreted as those of a hydrogen type atom with the effective masses of the electron-hole pair in homogeneous magnetic field, which is known to be a typical non-integrable system in classical mechanics. Instead of obtaining the quantum mechanical motions of wave packet, the classical trajectories are numerically calculated. First peak of the IFFT spectra is assigned to the trajectories on which the wave packet circulates and returns to approximately to the starting point after the duration corresponding to the first peak. Immediately after that, the trajectories are rapidly apart from the starting point on account of their instability, which reflects the classical non-integrability of the system.

  2. Hurricane Spiral Bands.

    Science.gov (United States)

    Guinn, Thomas A.; Schubert, Wayne H.

    1993-10-01

    The spiral bands that occur in tropical cyclones can be conveniently divided into two classes-outer bands and inner bands. Evidence is presented here that the outer bands form as the result of nonlinear effects during the breakdown of the intertropical convergence zone (ITCZ) through barotropic instability. In this process a zonal strip of high potential vorticity (the ITCZ shear zone or monsoon trough) begins to distort in a varicose fashion, with the potential vorticity (PV) becoming pooled in local regions that are connected by filaments of high PV. As the pooled regions become more axisymmetric, the filaments become thinner and begin to wrap around the PV centers.It is argued that inner bands form in a different manner. As a tropical cyclone intensifies due to latent heat release, the PV field becomes nearly circular with the highest values of PV in the cyclone center. The radial gradient of PV provides a state on which PV waves (the generalization of Rossby waves) can propagate. The nonlinear breaking of PV waves then leads to an irreversible distortion of the PV contours and a downgradient flux of PV. The continuation of this proem tends to erode the high PV core of the tropical cyclone, to produce a surrounding surf zone, and hence to spread the PV horizontally. In a similar fashion, inner bands can also form by the merger of a vortex with a patch of relatively high PV air. As the merger proem occurs the patch of PV is quickly elongated and wrapped around the vortex. The resulting vortex is generally larger in horizontal extent and exhibits a spiral band of PV.When the formation of outer and inner bands is interpreted in the context of a normal-mode spectral model, they emerge as slow manifold phenomena; that is, they have both rotational and (balanced or slaved) gravitational mode aspects. In this sense, regarding them as simply gravity waves leads to an incomplete dynamical picture.

  3. Age-related changes in oscillatory power affect motor action.

    Directory of Open Access Journals (Sweden)

    Liqing Liu

    Full Text Available With increasing age cognitive performance slows down. This includes cognitive processes essential for motor performance. Additionally, performance of motor tasks becomes less accurate. The objective of the present study was to identify general neural correlates underlying age-related behavioral slowing and the reduction in motor task accuracy. To this end, we continuously recorded EEG activity from 18 younger and 24 older right-handed healthy participants while they were performing a simple finger tapping task. We analyzed the EEG records with respect to local changes in amplitude (power spectrum as well as phase locking between the two age groups. We found differences between younger and older subjects in the amplitude of post-movement synchronization in the β band of the sensory-motor and medial prefrontal cortex (mPFC. This post-movement β amplitude was significantly reduced in older subjects. Moreover, it positively correlated with the accuracy with which subjects performed the motor task at the electrode FCz, which detects activity of the mPFC and the supplementary motor area. In contrast, we found no correlation between the accurate timing of local neural activity, i.e. phase locking in the δ-θ frequency band, with the reaction and movement time or the accuracy with which the motor task was performed. Our results show that only post-movement β amplitude and not δ-θ phase locking is involved in the control of movement accuracy. The decreased post-movement β amplitude in the mPFC of older subjects hints at an impaired deactivation of this area, which may affect the cognitive control of stimulus-induced motor tasks and thereby motor output.

  4. Age-related changes in oscillatory power affect motor action.

    Science.gov (United States)

    Liu, Liqing; Rosjat, Nils; Popovych, Svitlana; Wang, Bin A; Yeldesbay, Azamat; Toth, Tibor I; Viswanathan, Shivakumar; Grefkes, Christian B; Fink, Gereon R; Daun, Silvia

    2017-01-01

    With increasing age cognitive performance slows down. This includes cognitive processes essential for motor performance. Additionally, performance of motor tasks becomes less accurate. The objective of the present study was to identify general neural correlates underlying age-related behavioral slowing and the reduction in motor task accuracy. To this end, we continuously recorded EEG activity from 18 younger and 24 older right-handed healthy participants while they were performing a simple finger tapping task. We analyzed the EEG records with respect to local changes in amplitude (power spectrum) as well as phase locking between the two age groups. We found differences between younger and older subjects in the amplitude of post-movement synchronization in the β band of the sensory-motor and medial prefrontal cortex (mPFC). This post-movement β amplitude was significantly reduced in older subjects. Moreover, it positively correlated with the accuracy with which subjects performed the motor task at the electrode FCz, which detects activity of the mPFC and the supplementary motor area. In contrast, we found no correlation between the accurate timing of local neural activity, i.e. phase locking in the δ-θ frequency band, with the reaction and movement time or the accuracy with which the motor task was performed. Our results show that only post-movement β amplitude and not δ-θ phase locking is involved in the control of movement accuracy. The decreased post-movement β amplitude in the mPFC of older subjects hints at an impaired deactivation of this area, which may affect the cognitive control of stimulus-induced motor tasks and thereby motor output.

  5. Motion of a sphere in an oscillatory boundary layer: an optical ...

    Indian Academy of Sciences (India)

    Shankar Ghosh

    2006-11-12

    Nov 12, 2006 ... Introduction. WATER. Strong distortion of motion of the sphere at high frequencies. GLYCEROL. Motion of the sphere is sinusoidal and monochromatic. Shankar Ghosh. Motion of a sphere in an oscillatory boundary layer: an optical tweezer based study ...

  6. Oscillatory Shear Rheology in Examining the Drug-Polymer Interactions Relevant in Hot Melt Extrusion

    DEFF Research Database (Denmark)

    Aho, Johanna; Edinger, Magnus; Botker, Johan

    2016-01-01

    ), ibuprofen (IBU), or indomethacin (IND), and 70% of polyethylene oxide, by using small amplitude oscillatory shear rheology. The initial evaluation of the drug:polyethylene oxide solubility was estimated by differential scanning calorimetry of the physical mixtures containing a wide range of weight fractions...

  7. Slowing of oscillatory brain activity is a stable characteristic of Parkinson's disease without dementia

    NARCIS (Netherlands)

    Stoffers, D.; Bosboom, JL; Deijen, J.B.; Wolters, E.C.M.J.; Berendse, H.W.; Stam, L.

    2007-01-01

    Extensive changes in resting-state oscillatory brain activity have recently been demonstrated using magnetoencephalography (MEG) in moderately advanced, non-demented Parkinson's disease patients relative to age-matched controls. The aim of the present study was to determine the onset and evolution

  8. Cortical oscillatory activity associated with the perception of illusory and real visual contours

    NARCIS (Netherlands)

    Kinsey, K.; Anderson, S.J.; Hadjipapas, A.; Nevado, A.; Hillebrand, A.; Holliday, I.E.

    2009-01-01

    We used magnetoencephalography (MEG) to examine the nature of oscillatory brain rhythms when passively viewing both illusory and real visual contours. Three stimuli were employed: a Kanizsa triangle; a Kanizsa triangle with a real triangular contour superimposed; and a control figure in which the

  9. Analysis of Wind Tunnel Longitudinal Static and Oscillatory Data of the F-16XL Aircraft

    Science.gov (United States)

    Klein, Vladislav; Murphy, Patrick C.; Curry, Timothy J.; Brandon, Jay M.

    1997-01-01

    Static and oscillatory wind tunnel data are presented for a 10-percent-scale model of an F-16XL aircraft. Static data include the effect of angle of attack, sideslip angle, and control surface deflections on aerodynamic coefficients. Dynamic data from small-amplitude oscillatory tests are presented at nominal values of angle of attack between 20 and 60 degrees. Model oscillations were performed at five frequencies from 0.6 to 2.9 Hz and one amplitude of 5 degrees. A simple harmonic analysis of the oscillatory data provided Fourier coefficients associated with the in-phase and out-of-phase components of the aerodynamic coefficients. A strong dependence of the oscillatory data on frequency led to the development of models with unsteady terms in the form of indicial functions. Two models expressing the variation of the in-phase and out-of-phase components with angle of attack and frequency were proposed and their parameters estimated from measured data.

  10. Regional respiratory time constants during lung recruitment in high-frequency oscillatory ventilated preterm infants

    NARCIS (Netherlands)

    Miedema, Martijn; de Jongh, Frans H.; Frerichs, Inez; van Veenendaal, Mariëtte B.; van Kaam, Anton H.

    2012-01-01

    To assess the regional respiratory time constants of lung volume changes during stepwise lung recruitment before and after surfactant treatment in high-frequency oscillatory ventilated preterm infants. A stepwise oxygenation-guided recruitment procedure was performed before and after surfactant

  11. The Nonlinear Distortions in the Oscillatory System of Generator on CFOA

    Directory of Open Access Journals (Sweden)

    Yuriy Konstantinovich Rybin

    2012-01-01

    Full Text Available In recent years, many articles came out where one could find the analysis of oscillatory systems of electric sinusoid signals generators with amplifiers called CFOA—current feedback operational amplifiers. As a rule, the analysis of such systems is made by applying mathematical modeling methods on the basis of the amplifier linear model, which does not allow estimating advantages and disadvantages of the systems realized with those amplifiers in comparison with classical systems. A nonlinear model of a current feedback operational amplifier (CFOA is introduced in the paper; nonlinearity of “current mirror” is reflected in the form of current double limiting. The analysis of two known oscillatory systems has been carried out with the use of this non-linear model. Dependence between current limiting level, output voltage amplitude, and maximum oscillation frequency has been obtained. The paper shows that output current limiting under current output connection of capacitive load reduces frequency range and output voltage amplitude considerably and increases harmonic distortions in comparison with classical oscillatory systems. The research done has found that the application of new amplifiers does not give considerable advantages to the oscillatory systems with CFOA.

  12. Air-flow sensitive hairs: boundary layers in oscillatory flows around arthropod appendages

    NARCIS (Netherlands)

    Steinmann, T.; Casas, J.; Krijnen, Gijsbertus J.M.; Dangles, O.

    2006-01-01

    The aim of this work is to characterize the boundary layer over small appendages in insects in longitudinal and transverse oscillatory flows. The problem of immediate interest is the early warning system in crickets perceiving flying predators using air-flow-sensitive hairs on cerci, two long

  13. Oscillatory water sorption test for determining water uptake behavior in bread crust

    NARCIS (Netherlands)

    Nieuwenhuijzen, N.H. van; Tromp, R.H.; Hamer, R.J.; Vliet, T. van

    2007-01-01

    In this work, water sorption kinetics of bread crust are described using an oscillatory sorption test in combination with a Langmuir type equation. Both kinetic and thermodynamic information could be obtained at the same time. An advantage of applying a Langmuir type equation for a quantitative

  14. Shadows of Music-Language Interaction on Low Frequency Brain Oscillatory Patterns

    Science.gov (United States)

    Carrus, Elisa; Koelsch, Stefan; Bhattacharya, Joydeep

    2011-01-01

    Electrophysiological studies investigating similarities between music and language perception have relied exclusively on the signal averaging technique, which does not adequately represent oscillatory aspects of electrical brain activity that are relevant for higher cognition. The current study investigated the patterns of brain oscillations…

  15. Oscillatory Solutions for Second-Order Difference Equations in Hilbert Spaces

    Directory of Open Access Journals (Sweden)

    González Cristóbal

    2007-01-01

    Full Text Available We consider the difference equation , , in the context of a Hilbert space. In this setting, we propose a concept of oscillation with respect to a direction and give sufficient conditions so that all its solutions be directionally oscillatory, as well as conditions which guarantee the existence of directionally positive monotone increasing solutions.

  16. Solid-state autocatalysis and oscillatory reactions in silicate glass systems

    DEFF Research Database (Denmark)

    Canning, John; Sørensen, Henrik Rokkjær; Kristensen, Martin

    2006-01-01

    We report the first demonstration of autocatalysis and oscillatory behaviour in the solid-state where no decomposition process is involved. Our material system is solid-state silica glass impregnated with hydrogen. It is at the heart of photosensitivity in glass-based optical waveguides and devic...

  17. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, I.; Stam, C.; Douw, L.; Bartolomei, F.; Heimans, J.; Dijk, van B.; Postma, T.; Klein, M.; Reijneveld, J.

    2008-01-01

    Purpose: In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain

  18. Impact of Heat and Mass Transfer on MHD Oscillatory Flow of Jeffery ...

    African Journals Online (AJOL)

    The objective of this paper is to study Dufour, Soret and thermal conductivity on unsteady heat and mass transfer of magneto hydrodynamic (MHD) oscillatory flow of Jeffery fluid through a porous medium in a channel. The partial differential equations governing the flow have been solved numerically using semi-implicit ...

  19. Solid-State Autocatalysis and Oscillatory Reactions in Thermally Processed Hydrogen Loaded Germanosilicate Fibres

    DEFF Research Database (Denmark)

    Canning, John; Sørensen, Henrik Rokkjær; Kristensen, Martin

    2005-01-01

    Solid-state autocatalysis leading to oscillatory behaviour in GeOH and SiOH formation is demonstrated in optical fibres processed at 500o C. The results confirm the proposed view that hydrogen accelerates change in processed optical fibres principally through autocatalysis. Diffusion of OH throug...

  20. Grasping hand verbs: oscillatory beta and alpha correlates of action-word processing.

    Science.gov (United States)

    Niccolai, Valentina; Klepp, Anne; Weissler, Hannah; Hoogenboom, Nienke; Schnitzler, Alfons; Biermann-Ruben, Katja

    2014-01-01

    The grounded cognition framework proposes that sensorimotor brain areas, which are typically involved in perception and action, also play a role in linguistic processing. We assessed oscillatory modulation during visual presentation of single verbs and localized cortical motor regions by means of isometric contraction of hand and foot muscles. Analogously to oscillatory activation patterns accompanying voluntary movements, we expected a somatotopically distributed suppression of beta and alpha frequencies in the motor cortex during processing of body-related action verbs. Magnetoencephalographic data were collected during presentation of verbs that express actions performed using the hands (H) or feet (F). Verbs denoting no bodily movement (N) were used as a control. Between 150 and 500 msec after visual word onset, beta rhythms were suppressed in H and F in comparison with N in the left hemisphere. Similarly, alpha oscillations showed left-lateralized power suppression in the H-N contrast, although at a later stage. The cortical oscillatory activity that typically occurs during voluntary movements is therefore found to somatotopically accompany the processing of body-related verbs. The combination of a localizer task with the oscillatory investigation applied to verb reading as in the present study provides further methodological possibilities of tracking language processing in the brain.

  1. Grasping hand verbs: oscillatory beta and alpha correlates of action-word processing.

    Directory of Open Access Journals (Sweden)

    Valentina Niccolai

    Full Text Available The grounded cognition framework proposes that sensorimotor brain areas, which are typically involved in perception and action, also play a role in linguistic processing. We assessed oscillatory modulation during visual presentation of single verbs and localized cortical motor regions by means of isometric contraction of hand and foot muscles. Analogously to oscillatory activation patterns accompanying voluntary movements, we expected a somatotopically distributed suppression of beta and alpha frequencies in the motor cortex during processing of body-related action verbs. Magnetoencephalographic data were collected during presentation of verbs that express actions performed using the hands (H or feet (F. Verbs denoting no bodily movement (N were used as a control. Between 150 and 500 msec after visual word onset, beta rhythms were suppressed in H and F in comparison with N in the left hemisphere. Similarly, alpha oscillations showed left-lateralized power suppression in the H-N contrast, although at a later stage. The cortical oscillatory activity that typically occurs during voluntary movements is therefore found to somatotopically accompany the processing of body-related verbs. The combination of a localizer task with the oscillatory investigation applied to verb reading as in the present study provides further methodological possibilities of tracking language processing in the brain.

  2. Efficient Estimation of the Robustness Region of Biological Models with Oscillatory Behavior

    NARCIS (Netherlands)

    Apri, M.; Molenaar, J.; Gee, de M.; Voorn, van G.A.K.

    2010-01-01

    Robustness is an essential feature of biological systems, and any mathematical model that describes such a system should reflect this feature. Especially, persistence of oscillatory behavior is an important issue. A benchmark model for this phenomenon is the Laub-Loomis model, a nonlinear model for

  3. iTBS-induced LTP-like plasticity parallels oscillatory activity changes in the primary sensory and motor areas of macaque monkeys.

    Directory of Open Access Journals (Sweden)

    Odysseas Papazachariadis

    Full Text Available Recently, neuromodulation techniques based on the use of repetitive transcranial magnetic stimulation (rTMS have been proposed as a non-invasive and efficient method to induce in vivo long-term potentiation (LTP-like aftereffects. However, the exact impact of rTMS-induced perturbations on the dynamics of neuronal population activity is not well understood. Here, in two monkeys, we examine changes in the oscillatory activity of the sensorimotor cortex following an intermittent theta burst stimulation (iTBS protocol. We first probed iTBS modulatory effects by testing the iTBS-induced facilitation of somatosensory evoked potentials (SEP. Then, we examined the frequency information of the electrocorticographic signal, obtained using a custom-made miniaturised multi-electrode array for electrocorticography, after real or sham iTBS. We observed that iTBS induced facilitation of SEPs and influenced spectral components of the signal, in both animals. The latter effect was more prominent on the θ band (4-8 Hz and the high γ band (55-90 Hz, de-potentiated and potentiated respectively. We additionally found that the multi-electrode array uniformity of β (13-26 Hz and high γ bands were also afflicted by iTBS. Our study suggests that enhanced cortical excitability promoted by iTBS parallels a dynamic reorganisation of the interested neural network. The effect in the γ band suggests a transient local modulation, possibly at the level of synaptic strength in interneurons. The effect in the θ band suggests the disruption of temporal coordination on larger spatial scales.

  4. Photonic band gap materials

    Science.gov (United States)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  5. Restrictive techniques: gastric banding

    Directory of Open Access Journals (Sweden)

    Katia Cristina da Cunha

    2006-03-01

    Full Text Available Surgery for the treatment of severe obesity has a definite role onthe therapeutic armamentarium all over the world. Initiated 40years ago, bariatric surgery has already a long way thanks tohundred of surgeons, who had constantly searched for the besttechnique for the adequate control of severe obesity. Among theimportant breakthroughs in obesity surgery there is theadjustable gastric band. It is a sylastic band, inflatable andadjustable, which is placed on the top of the stomach in order tocreate a 15-20 cc pouch, with an outlet of 1.3cm. The adjustablegastric band has also a subcutaneous reservoir through whichadjustments can be made, according to the patient evolution.The main feature of the adjustable gastric band is the fact thatis minimal invasive, reversible, adjustable and placedlaparoscopically. Then greatly diminishing the surgical traumato the severe obese patient. Belachew and Favretti’s techniqueof laparoscopic application of the adjustable gastric band isdescribed and the evolution of the technique during this years,as we has been practiced since 1998. The perioperative care ofthe patient is also described, as well as the follow-up and shortand long term controls.

  6. Oscillatory transenantiomerization of the selected 2-arylpropionic acid (2-APAs) in vitro as a spontaneous phenomenon

    International Nuclear Information System (INIS)

    Sajewicz, M.; Alska, T.K.

    2006-01-01

    In this paper, we summarize the results of our earlier investigations on an attempted enantioseparation of the selected 2-arylpropionic acids (2-APAs) by means of the chiral thin layer chromatography (TLC). These results have been originally presented in a series of the research papers published in several chromatography journals. In the current article it was reminded that the prolonged storage of the investigated 2-APAs in the aqueous and the non-aqueous solutions results in an oscillatory change of the respective retardation factor (RF) and the specific rotation (alfa)/sub P/) values. An assumption is introduced as to the chemical nature of the observed phenomenon. It is assumed that the observed oscillations are due to the repeated structural inversion (in our study labelled as oscillatory transenantiomerization) of one enantiomer to its respective antimer. One attempts to at least roughly explain the molecular mechanism of transenantiomerization either by keto-enol tautomerism, or by formation of an intermediate enolic anion, any of these two reaction mechanisms possible only in the basic environment. Then one reflects on the most probable mechanism responsible for the oscillatory nature of the observed structural inversion. It is concluded that the oscillations could be due to an enhanced viscosity of the investigated 2-APA solutions (as compared with those of the respective pure solvents) and/or due to the molecular self-organization within these solutions, resulting in anisotropic properties thereof. Finally, it is concluded that an ultimate explanation of the observed oscillatory transenantiomerization of the selected 2-APAs could probably be offered by the Brusselator-type kinetic model implemented with the diffusion term. In the last section of this paper, argumentation is presented strongly in favour of this particular model and against any alternative speculation as to the supramolecular nature of the observed oscillatory phenomena. (author)

  7. Structural state diagram of concentrated suspensions of jammed soft particles in oscillatory shear flow

    Science.gov (United States)

    Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.

    2018-03-01

    In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via

  8. ANALYSIS OF DEBRIS FLOW DISASTER DUE TO HEAVY RAIN BY X-BAND MP RADAR DATA

    Directory of Open Access Journals (Sweden)

    M. Nishio

    2016-06-01

    Full Text Available On August 20 of 2014, Hiroshima City (Japan was struck by local heavy rain from an autumnal rain front. The resultant debris flow disaster claimed 75 victims and destroyed many buildings. From 1:30 am to 4:30 am on August 20, the accumulated rainfall in Hiroshima City exceeded 200 mm. Serious damage occurred in the Asakita and Asaminami wards of Hiroshima City. As a disaster prevention measure, local heavy rain (localized torrential rains is usually observed by the Automated Meteorological Data Acquisition System (AMeDAS operated by the Japan Meteorological Agency (JMA and by the C-band radar operated by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT of Japan, with spatial resolutions of 2.5 km and 1 km, respectively. The new X-band MP radar system enables more detailed rainfall observations than the C-band radar. In fact, this radar can observe local rainfall throughout Japan in near-real time over a minimum mesh size of 250 m. A fine-scale accumulated rainfall monitoring system is crucial for disaster prevention, and potential disasters can be alerted by the hazard levels of the accumulated rainfall.

  9. Oscillatory dynamics of Gestalt perception in schizophrenia revisited

    Science.gov (United States)

    Spencer, Kevin M.; Ghorashi, Shahab

    2014-01-01

    Background: Abnormalities in γ oscillations (30–100 Hz) in the scalp-recorded electroencephalogram (EEG) have been proposed to reflect neural circuitry abnormalities in schizophrenia. Oscillations in the γ band are thought to play an important role in visual perception, mediating the binding of visual features into coherent objects. However, there is relatively little evidence to date of deficits in γ-mediated processes associated with Gestalt perception in schizophrenia. Methods: Fourteen healthy control subjects (HC) and 17 chronic schizophrenia patients (SZ) discriminated between illusory Kanisza Squares and No-Square control stimuli, indicating their judgment with a manual button press. Time-frequency decomposition of the EEG was computed with the Morlet wavelet transform. Time-frequency maps of phase locking factor (PLF) values were calculated for stimulus- and response-locked oscillations. Results: HC and SZ did not differ in reaction time, error rate, an early ERP effect associated with Gestalt processing, nor an early visual-evoked γ oscillation. Two response-locked high γ effects had greater PLF for Square than No-Square stimuli in HC, and the reverse pattern in SZ. One of these effects was correlated with thought disorder symptom ratings in SZ. Conclusions: SZ demonstrated abnormalities in γ oscillations associated with the perception of Gestalt objects, while their early visual-evoked γ activity was mostly normal, contrary to previous results. This study supports the hypothesis that high-frequency oscillations are sensitive to aspects of psychosis. PMID:24550878

  10. The effects of neurofeedback on oscillatory processes related to tinnitus.

    Science.gov (United States)

    Hartmann, Thomas; Lorenz, Isabel; Müller, Nadia; Langguth, Berthold; Weisz, Nathan

    2014-01-01

    Although widely used, no proof exists for the feasibility of neurofeedback for reinstating the disordered excitatory-inhibitory balance, marked by a decrease in auditory alpha power, in tinnitus patients. The current study scrutinizes the ability of neurofeedback to focally increase alpha power in auditory areas in comparison to the more common rTMS. Resting-state MEG was measured before and after neurofeedback (n = 8) and rTMS (n = 9) intervention respectively. Source level power and functional connectivity were analyzed with a focus on the alpha band. Only neurofeedback produced a significant decrease in tinnitus symptoms and-more important for the context of the study-a spatially circumscribed increase in alpha power in right auditory regions. Connectivity analysis revealed higher outgoing connectivity in a region ultimately neighboring the area in which power increases were observed. Neurofeedback decreases tinnitus symptoms and increases alpha power in a spatially circumscribed manner. In addition, compared to a more established brain stimulation-based intervention, neurofeedback is a promising approach to renormalize the excitatory-inhibitory imbalance putatively underlying tinnitus. This study is the first to demonstrate the feasibility of focally enhancing alpha activity in tinnitus patients by means of neurofeedback.

  11. Oscillatory Dynamics of Gestalt Perception in Schizophrenia Revisited

    Directory of Open Access Journals (Sweden)

    Kevin M Spencer

    2014-02-01

    Full Text Available Background: Abnormalities in γ oscillations (30-100 Hz in the scalp-recorded electroencephalogram (EEG have been proposed to reflect neural circuitry abnormalities in schizophrenia. Oscillations in the γ band are thought to play an important role in visual perception, mediating the binding of visual features into coherent objects. However, there is relatively little evidence to date of deficits in γ-mediated processes associated with Gestalt perception in schizophrenia.Methods: Fourteen healthy control subjects (HC and 17 chronic schizophrenia patients (SZ discriminated between illusory Kanisza Squares and No-Square control stimuli, indicating their judgment with a manual button press. Time-frequency decomposition of the EEG was computed with the Morlet wavelet transform. Time-frequency maps of phase locking factor (PLF values were calculated for stimulus- and response-locked oscillations.Results: HC and SZ did not differ in reaction time, error rate, an early ERP effect associated with Gestalt processing, nor an early visual-evoked γ oscillation. Two response-locked high γ effects had greater PLF for Square than No-Square stimuli in HC, and the reverse pattern in SZ. One of these effects was correlated with thought disorder symptom ratings in SZ.Conclusions: SZ demonstrated abnormalities in γ oscillations associated with the perception of Gestalt objects, while their early visual-evoked γ activity was mostly normal, contrary to previous results. This study supports the hypothesis that high-frequency oscillations are sensitive to aspects of psychosis.

  12. Oscillatory dynamics of Gestalt perception in schizophrenia revisited.

    Science.gov (United States)

    Spencer, Kevin M; Ghorashi, Shahab

    2014-01-01

    Abnormalities in γ oscillations (30-100 Hz) in the scalp-recorded electroencephalogram (EEG) have been proposed to reflect neural circuitry abnormalities in schizophrenia. Oscillations in the γ band are thought to play an important role in visual perception, mediating the binding of visual features into coherent objects. However, there is relatively little evidence to date of deficits in γ-mediated processes associated with Gestalt perception in schizophrenia. Fourteen healthy control subjects (HC) and 17 chronic schizophrenia patients (SZ) discriminated between illusory Kanisza Squares and No-Square control stimuli, indicating their judgment with a manual button press. Time-frequency decomposition of the EEG was computed with the Morlet wavelet transform. Time-frequency maps of phase locking factor (PLF) values were calculated for stimulus- and response-locked oscillations. HC and SZ did not differ in reaction time, error rate, an early ERP effect associated with Gestalt processing, nor an early visual-evoked γ oscillation. Two response-locked high γ effects had greater PLF for Square than No-Square stimuli in HC, and the reverse pattern in SZ. One of these effects was correlated with thought disorder symptom ratings in SZ. SZ demonstrated abnormalities in γ oscillations associated with the perception of Gestalt objects, while their early visual-evoked γ activity was mostly normal, contrary to previous results. This study supports the hypothesis that high-frequency oscillations are sensitive to aspects of psychosis.

  13. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  14. Determining Tidal Phase Differences from X-Band Radar Images

    Science.gov (United States)

    Newman, Kieran; Bell, Paul; Brown, Jennifer; Plater, Andrew

    2017-04-01

    Introduction Previous work by Bell et. al. (2016) has developed a method using X-band marine radar to measure intertidal bathymetry, using the waterline as a level over a spring-neap tidal cycle. This has been used in the Dee Estuary to give a good representation of the bathymetry in the area. However, there are some sources of inaccuracy in the method, as a uniform spatial tidal signal is assumed over the entire domain. Motivation The method used by Bell et. al. (2016) applies a spatially uniform tidal signal to the entire domain. This fails to account for fine-scale variations in water level and tidal phase. While methods are being developed to account for small-scale water level variations using high resolution modelling, a method to determine tidal phase variations directly from the radar intensity images could be advantageous operationally. Methods The tidal phase has been computed using two different methods, with hourly averaged images from 2008. In the first method, the cross-correlation between each raw pixel time series and a tidal signal at a number of lags is calculated, and the lag with the highest correlation to the pixel series is recorded. For the second method, the same method of correlation is used on signals generated by tracking movement of buoys, which show up strongly in the radar image as they move on their moorings with the tidal currents. There is a broad agreement between the two methods, but validation is needed to determine the relative accuracy. The phase has also been calculated using a Fourier decomposition, and agrees broadly with the above methods. Work also needs to be done to separate areas where the recorded phase is due to tidal current (mostly subtidal areas) or due to elevation (mostly the wetting/drying signal in intertidal areas), by classifying radar intensities by the phases and amplitudes of the tides. Filtering out signal variations due to wind strength and attenuation of the radar signal will also be applied. Validation

  15. Motor System Interactions in the Beta Band Decrease during Loss of Consciousness.

    Science.gov (United States)

    Swann, Nicole C; de Hemptinne, Coralie; Maher, Ryan B; Stapleton, Catherine A; Meng, Lingzhong; Gelb, Adrian W; Starr, Philip A

    2016-01-01

    Communication between brain areas and how they are influenced by changes in consciousness are not fully understood. One hypothesis is that brain areas communicate via oscillatory processes, utilizing network-specific frequency bands, that can be measured with metrics that reflect between-region interactions, such as coherence and phase amplitude coupling (PAC). To evaluate this hypothesis and understand how these interactions are modulated by state changes, we analyzed electrophysiological recordings in humans at different nodes of one well-studied brain network: the basal ganglia-thalamocortical loops of the motor system during loss of consciousness induced by anesthesia. We recorded simultaneous electrocorticography over primary motor cortex (M1) with local field potentials from subcortical motor regions (either basal ganglia or thalamus) in 15 movement disorder patients during anesthesia (propofol) induction as a part of their surgery for deep brain stimulation. We observed reduced coherence and PAC between M1 and the subcortical nuclei, which was specific to the beta band (∼18-24 Hz). The fact that this pattern occurs selectively in beta underscores the importance of this frequency band in the motor system and supports the idea that oscillatory interactions at specific frequencies are related to the capacity for normal brain function and behavior.

  16. Boosting Cortical Activity at Beta-Band Frequencies Slows Movement in Humans

    Science.gov (United States)

    Pogosyan, Alek; Gaynor, Louise Doyle; Eusebio, Alexandre; Brown, Peter

    2009-01-01

    Summary Neurons have a striking tendency to engage in oscillatory activities. One important type of oscillatory activity prevalent in the motor system occurs in the beta frequency band, at about 20 Hz. It is manifest during the maintenance of tonic contractions and is suppressed prior to and during voluntary movement [1–7]. This and other correlative evidence suggests that beta activity might promote tonic contraction, while impairing motor processing related to new movements [3, 8, 9]. Hence, bursts of beta activity in the cortex are associated with a strengthening of the motor effects of sensory feedback during tonic contraction and with reductions in the velocity of voluntary movements [9–11]. Moreover, beta activity is increased when movement has to be resisted or voluntarily suppressed [7, 12, 13]. Here we use imperceptible transcranial alternating-current stimulation to entrain cortical activity at 20 Hz in healthy subjects and show that this slows voluntary movement. The present findings are the first direct evidence of causality between any physiological oscillatory brain activity and concurrent motor behavior in the healthy human and help explain how the exaggerated beta activity found in Parkinson's disease can lead to motor slowing in this illness [14]. PMID:19800236

  17. Band-notched spiral antenna

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  18. Increased long distance event-related gamma band connectivity in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Erol Başar

    2017-01-01

    Conclusion: The present study demonstrated that an increase of gamma coherences was present in response to both visual sensory and cognitive stimulation in AD patients in all gamma sub-bands. Therefore, gamma oscillatory activity seems to be fundamental in brain functions at both the sensory and cognitive levels. The increase of gamma coherence values was not due to cholinergic treatment to any significant extent, as both treated and untreated AD patients had increased gamma coherence values compared to healthy controls. The use of coherence values reflecting brain connectivity holds potential for neuroimaging of AD and understanding brain dynamics related to the effects of medication.

  19. Modulation of Beta-Band Activity in the Subgenual Anterior Cingulate Cortex during Emotional Empathy in Treatment-Resistant Depression.

    Science.gov (United States)

    Merkl, Angela; Neumann, Wolf-Julian; Huebl, Julius; Aust, Sabine; Horn, Andreas; Krauss, Joachim K; Dziobek, Isabel; Kuhn, Jens; Schneider, Gerd-Helge; Bajbouj, Malek; Kühn, Andrea A

    2016-06-01

    Deep brain stimulation (DBS) is a promising approach in treatment-resistant depression (TRD). TRD is associated with problems in interpersonal relationships, which might be linked to impaired empathy. Here, we investigate the influence of DBS in the subgenual anterior cingulate cortex (sgACC) on empathy in patients with TRD and explore the pattern of oscillatory sgACC activity during performance of the multifaceted empathy test. We recorded local field potential activity directly from sgACC via DBS electrodes in patients. Based on previous behavioral findings, we expected disrupted empathy networks. Patients showed increased empathic involvement ratings toward negative stimuli as compared with healthy subjects that were significantly reduced after 6 months of DBS. Stimulus-related oscillatory activity pattern revealed a broad desynchronization in the beta (14-35 Hz) band that was significantly larger during patients' reported emotional empathy for negative stimuli than when patients reported to have no empathy. Beta desynchronization for empathic involvement correlated with self-reported severity of depression. Our results indicate a "negativity bias" in patients that can be reduced by DBS. Moreover, direct recordings show activation of the sgACC area during emotional processing and propose that changes in beta-band oscillatory activity in the sgACC might index empathic involvement of negative emotion in TRD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Experimental visualization of temperature fields and study of heat transfer enhancement in oscillatory flow in a grooved channel

    Energy Technology Data Exchange (ETDEWEB)

    Herman, C.; Kang, E. [Dept. of Mechanical Engineering, Johns Hopkins Univ., Baltimore, MD (United States)

    2001-01-01

    An experimental study was conducted of incompressible, moderate Reynolds number flow of air over heated rectangular blocks in a two-dimensional, horizontal channel. Holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in self- sustained oscillatory flow. Experiments were conducted in the laminar, transitional and turbulent flow regimes for Reynolds numbers in the range from Re = 520 to Re = 6600. Interferometric measurements were obtained in the thermally and fluiddynamically periodically fully developed flow region on the ninth heated block. Flow oscillations were first observed between Re = 1054 and Re = 1318. The period of oscillations, wavelength and propagation speed of the Tollmien-Schlichting waves in the main channel were measured at two characteristic flow velocities, Re = 1580 and Re = 2370. For these Reynolds numbers it was observed that two to three waves span one geometric periodicity length. At Re = 1580 the dominant oscillation frequency was found to be around 26 Hz and at Re = 2370 the frequency distribution formed a band around 125 Hz. Results regarding heat transfer and pressure drop are presented as a function of the Reynolds number, in terms of the block-average Nusselt number and the local Nusselt number as well as the friction factor. Measurements of the local Nusselt number together with visual observations indicate that the lateral mixing caused by flow instabilities is most pronounced along the upstream vertical wall of the heated block in the groove region, and it is accompanied by high heat transfer coefficients. At Reynolds numbers beyond the onset of oscillations the heat transfer in the grooved channel exceeds the performance of the reference geometry, the asymmetrically heated parallel plate channel. (orig.)

  1. Changes of oscillatory activity in pitch processing network and related tinnitus relief induced by acoustic CR neuromodulation

    Directory of Open Access Journals (Sweden)

    Ilya eAdamchic

    2012-04-01

    Full Text Available Chronic subjective tinnitus is characterized by abnormal neuronal synchronization in the central auditory system. As shown in a controlled clinical trial, acoustic coordinated reset (CR neuromodulation causes a significant relief of tinnitus symptoms along with a significant decrease of pathological oscillatory activity in a network comprising auditory and non-auditory brain areas, which is often accompanied with a significant tinnitus pitch change. Here, we studied if the tinnitus pitch change correlates with a reduction of tinnitus loudness and/or annoyance as assessed by visual analogue scale (VAS scores. Furthermore, we studied if the changes of the pattern of brain synchrony in tinnitus patients induced by 12 weeks of CR-therapy depend on whether or not the patients undergo a pronounced tinnitus pitch change. For this, we applied standardized low-resolution brain electromagnetic tomography (sLORETA to EEG recordings from two groups of patients with a sustained CR-induced relief of tinnitus symptoms with and without tinnitus pitch change. We found that absolute changes of VAS loudness and VAS annoyance scores significantly correlate with the modulus of the tinnitus pitch change. Moreover, as opposed to patients with weak or no pitch change we found a significantly stronger decrease in gamma power in patients with pronounced tinnitus pitch change in right parietal cortex (BA 1, 40, right frontal cortex (BA 8, 9, 46, and left frontal cortex (BA 4, 6, combined with a significantly stronger increase of alpha (10-12 Hz activity in the right anterior cingulate cortex (BA 32, 24. In addition, we revealed a significantly lower functional connectivity in the gamma band between the right dorsolateral prefrontal cortex (BA 9 and the right anterior cingulate cortex (BA 32 after 12 weeks of CR-therapy in patients with pronounced pitch change. Our results indicate a substantial, CR-induced reduction of tinnitus-related auditory binding in a pitch

  2. Harnessing functional segregation across brain rhythms as a means to detect EEG oscillatory multiplexing during music listening.

    Science.gov (United States)

    Adamos, Dimitrios A; Laskaris, Nikolaos A; Micheloyannis, Sifis

    2018-06-01

    Music, being a multifaceted stimulus evolving at multiple timescales, modulates brain function in a manifold way that encompasses not only the distinct stages of auditory perception, but also higher cognitive processes like memory and appraisal. Network theory is apparently a promising approach to describe the functional reorganization of brain oscillatory dynamics during music listening. However, the music induced changes have so far been examined within the functional boundaries of isolated brain rhythms. Using naturalistic music, we detected the functional segregation patterns associated with different cortical rhythms, as these were reflected in the surface electroencephalography (EEG) measurements. The emerged structure was compared across frequency bands to quantify the interplay among rhythms. It was also contrasted against the structure from the rest and noise listening conditions to reveal the specific components stemming from music listening. Our methodology includes an efficient graph-partitioning algorithm, which is further utilized for mining prototypical modular patterns, and a novel algorithmic procedure for identifying 'switching nodes' (i.e. recording sites) that consistently change module during music listening. Our results suggest the multiplex character of the music-induced functional reorganization and particularly indicate the dependence between the networks reconstructed from the δ and β H rhythms. This dependence is further justified within the framework of nested neural oscillations and fits perfectly within the context of recently introduced cortical entrainment to music. Complying with the contemporary trends towards a multi-scale examination of the brain network organization, our approach specifies the form of neural coordination among rhythms during music listening. Considering its computational efficiency, and in conjunction with the flexibility of in situ electroencephalography, it may lead to novel assistive tools for real

  3. Oscillatory blood pressure response to the onset of cycling exercise in men

    DEFF Research Database (Denmark)

    Barbosa, Thales C; Fernandes, Igor A; Magalhães-Jr, Nisval

    2015-01-01

    to this pattern is unclear. What is the main finding and its importance? We demonstrate that attenuation of group III/IV muscle afferent feedback by spinal fentanyl impairs the pressor response after 10 s of moderate leg cycling exercise, but this afferent feedback does not appear to be necessary for induction...... of the oscillatory pattern of blood pressure at the onset of exercise. We investigated whether attenuation of the central projections of group III/IV skeletal muscle afferents via lumbar intrathecal administration of the μ-opioid receptor agonist fentanyl affects the oscillatory blood pressure (BP) response...... to the onset of dynamic exercise. Eight healthy, recreationally active men (28 ± 3 years old) performed 40 s of cycling at 80 W (60 r.p.m.) before (control) and after fentanyl administration, while heart rate, stroke volume, cardiac output, systolic, mean and diastolic BP and total vascular conductance were...

  4. Automatic detection and treatment of oscillatory and/or stiff ordinary differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gear, C. W.

    1980-06-01

    The next generation of ODE software can be expected to detect special problems and to adapt to their needs. The low-cost, automatic detection of oscillatory behavior, the determination of its period, and methods for its subsequent efficient integration are addressed here, along with stiffness detection. In the first phase, the method for oscillatory problems discussed examines the output of any integrator to determine if the output is nearly periodic. At the point this answer is positive, the second phase is entered and an automatic, nonstiff, multirevolutionary method is invoked. This requires the occasional solution of a nearly periodic initial-value problem over one period by a standard method and the re-determination of its period. Because the multirevolutionary method uses a very large step, the problem has a high probability of being stiff in this second phase. Hence, it is important to detect if stiffness is present so that an appropriate stiff, multirevolutionary method can be selected. 6 figures.

  5. Oscillatory and Steady Flows in the Annular Fluid Layer inside a Rotating Cylinder

    Directory of Open Access Journals (Sweden)

    Veronika Dyakova

    2016-01-01

    Full Text Available The dynamics of a low-viscosity fluid inside a rapidly rotating horizontal cylinder were experimentally studied. In the rotating frame, the force of gravity induces azimuthal fluid oscillations at a frequency equal to the velocity of the cylinder’s rotation. This flow is responsible for a series of phenomena, such as the onset of centrifugal instability in the Stokes layer and the growth of the relief at the interface between the fluid and the granular medium inside the rotating cylinder. The phase inhomogeneity of the oscillatory fluid flow in the viscous boundary layers near the rigid wall and the free surface generates the azimuthal steady streaming. We studied the relative contribution of the viscous boundary layers in the generation of the steady streaming. It is revealed that the velocity of the steady streaming can be calculated using the velocity of the oscillatory fluid motion.

  6. Wave fronts, pulses and wave trains in photoexcited superlattices behaving as excitable or oscillatory media

    International Nuclear Information System (INIS)

    Arana, J I; Bonilla, L L; Grahn, H T

    2011-01-01

    Undoped and strongly photoexcited semiconductor superlattices with field-dependent recombination behave as excitable or oscillatory media with spatially discrete nonlinear convection and diffusion. Infinitely long, dc-current-biased superlattices behaving as excitable media exhibit wave fronts with increasing or decreasing profiles, whose velocities can be calculated by means of asymptotic methods. These superlattices can also support pulses of the electric field. Pulses moving downstream with the flux of electrons can be constructed from their component wave fronts, whereas pulses advancing upstream do so slowly and experience saltatory motion: they change slowly in long intervals of time separated by fast transitions during which the pulses jump to the previous superlattice period. Photoexcited superlattices can also behave as oscillatory media and exhibit wave trains. (paper)

  7. Application of the lattice Boltzmann method to transition in oscillatory channel flow

    CERN Document Server

    Cosgrove, J A; Tonge, S J; Munro, C G; Greated, C A; Campbell, D M

    2003-01-01

    In this study the applicability of the lattice Boltzmann method to oscillatory channel flow with a zero mean velocity has been evaluated. The model has been compared to exact analytical solutions in the laminar case (Re subdelta < 100, where Re subdelta is the Reynolds number based on the Stokes layer) for the Womersley parameter 1 < alpha < 31. In this regime, there was good agreement between numerical and exact analytical solutions. The model was then applied to study the primary instability of oscillatory channel flow with a zero mean velocity. For these transitionary flows the parameters were varied in the range 400 < Re subdelta < 1000 and 4 < alpha < 16. Disturbances superimposed on the numerical solution triggered the two-dimensional primary instability. This phenomenon has not been numerically evaluated over the range of alpha or Re subdelta currently investigated. The results are consistent with quasi-steady linear stability theories and previous numerical investigations.

  8. Recent developments in structure-preserving algorithms for oscillatory differential equations

    CERN Document Server

    Wu, Xinyuan

    2018-01-01

    The main theme of this book is recent progress in structure-preserving algorithms for solving initial value problems of oscillatory differential equations arising in a variety of research areas, such as astronomy, theoretical physics, electronics, quantum mechanics and engineering. It systematically describes the latest advances in the development of structure-preserving integrators for oscillatory differential equations, such as structure-preserving exponential integrators, functionally fitted energy-preserving integrators, exponential Fourier collocation methods, trigonometric collocation methods, and symmetric and arbitrarily high-order time-stepping methods. Most of the material presented here is drawn from the recent literature. Theoretical analysis of the newly developed schemes shows their advantages in the context of structure preservation. All the new methods introduced in this book are proven to be highly effective compared with the well-known codes in the scientific literature. This book also addre...

  9. Simulations of oscillatory systems with award-winning software, physics of oscillations

    CERN Document Server

    Butikov, Eugene I

    2015-01-01

    Deepen Your Students' Understanding of Oscillations through Interactive Experiments Simulations of Oscillatory Systems: with Award-Winning Software, Physics of Oscillations provides a hands-on way of visualizing and understanding the fundamental concepts of the physics of oscillations. Both the textbook and software are designed as exploration-oriented supplements for courses in general physics and the theory of oscillations. The book is conveniently structured according to mathematical complexity. Each chapter in Part I contains activities, questions, exercises, and problems of varying levels of difficulty, from straightforward to quite challenging. Part II presents more sophisticated, highly mathematical material that delves into the serious theoretical background for the computer-aided study of oscillations. The software package allows students to observe the motion of linear and nonlinear mechanical oscillatory systems and to obtain plots of the variables that describe the systems along with phase diagram...

  10. Warm inflation with an oscillatory inflaton in the non-minimal kinetic coupling model

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Parviz [University of Ayatollah Ozma Borujerdi, Department of Science, Boroujerd (Iran, Islamic Republic of); Sadjadi, H.M. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of)

    2017-07-15

    In the cold inflation scenario, the slow roll inflation and reheating via coherent rapid oscillation, are usually considered as two distinct eras. When the slow roll ends, a rapid oscillation phase begins and the inflaton decays to relativistic particles reheating the Universe. In another model dubbed warm inflation, the rapid oscillation phase is suppressed, and we are left with only a slow roll period during which the reheating occurs. Instead, in this paper, we propose a new picture for inflation in which the slow roll era is suppressed and only the rapid oscillation phase exists. Radiation generation during this era is taken into account, so we have warm inflation with an oscillatory inflaton. To provide enough e-folds, we employ the non-minimal derivative coupling model. We study the cosmological perturbations and compute the temperature at the end of warm oscillatory inflation. (orig.)

  11. Analysis of oscillatory rocking curve by dynamical diffraction in protein crystals.

    Science.gov (United States)

    Suzuki, Ryo; Koizumi, Haruhiko; Hirano, Keiichi; Kumasaka, Takashi; Kojima, Kenichi; Tachibana, Masaru

    2018-04-03

    High-quality protein crystals meant for structural analysis by X-ray diffraction have been grown by various methods. The observation of dynamical diffraction in protein crystals is an interesting topic because dynamical diffraction generally occurs in perfect crystals such as Si crystals. However, to our knowledge, there is no report yet on protein crystals showing clear dynamical diffraction. We wonder whether the perfection of protein crystals might still be low compared with that of high-quality Si crystals. Here, we present observations of the oscillatory profile of rocking curves for protein crystals such as glucose isomerase crystals. The oscillatory profiles are in good agreement with those predicted by the dynamical theory of diffraction. We demonstrate that dynamical diffraction occurs even in protein crystals. This suggests the possibility of the use of dynamical diffraction for the determination of the structure and charge density of proteins.

  12. Warm inflation with an oscillatory inflaton in the non-minimal kinetic coupling model

    International Nuclear Information System (INIS)

    Goodarzi, Parviz; Sadjadi, H.M.

    2017-01-01

    In the cold inflation scenario, the slow roll inflation and reheating via coherent rapid oscillation, are usually considered as two distinct eras. When the slow roll ends, a rapid oscillation phase begins and the inflaton decays to relativistic particles reheating the Universe. In another model dubbed warm inflation, the rapid oscillation phase is suppressed, and we are left with only a slow roll period during which the reheating occurs. Instead, in this paper, we propose a new picture for inflation in which the slow roll era is suppressed and only the rapid oscillation phase exists. Radiation generation during this era is taken into account, so we have warm inflation with an oscillatory inflaton. To provide enough e-folds, we employ the non-minimal derivative coupling model. We study the cosmological perturbations and compute the temperature at the end of warm oscillatory inflation. (orig.)

  13. A Note on the bottom shear stress in oscillatory planetary boundary layer flow

    Directory of Open Access Journals (Sweden)

    Dag Myrhaug

    1988-07-01

    Full Text Available A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974 measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.

  14. Age-associated modulations of cerebral oscillatory patterns related to attention control.

    Science.gov (United States)

    Deiber, Marie-Pierre; Ibañez, Vicente; Missonnier, Pascal; Rodriguez, Cristelle; Giannakopoulos, Panteleimon

    2013-11-15

    Visual attention depends on bottom-up sensory activation and top-down attentional guidance. Although aging is known to affect sensory processing, its impact on the top-down control of attention remains a matter of debate. We investigated age-related modulations of brain oscillatory activity during visual attention using a variant of the attention network test (ANT) in 20 young and 28 elderly adults. We examined the EEG oscillatory responses to warning and target signals, and explored the correlates of temporal and spatial orienting as well as conflict resolution at target presentation. Time-frequency analysis was performed between 4 and 30 Hz, and the relationship between behavioral and brain oscillatory responses was analyzed. Whereas temporal cueing and conflict had similar reaction time effects in both age groups, spatial cueing was more beneficial to older than younger subjects. In the absence of cue, posterior alpha activation was drastically reduced in older adults, pointing to an age-related decline in anticipatory attention. Following both cues and targets, older adults displayed pronounced motor-related activation in the low beta frequency range at the expense of attention-related posterior alpha activation prominent in younger adults. These findings support the recruitment of alternative motor-related circuits in the elderly, in line with the dedifferentiation hypothesis. Furthermore, older adults showed reduced midparietal alpha inhibition induced by temporal orienting as well as decreased posterior alpha activation associated with both spatial orienting and conflict resolution. Altogether, the results are consistent with an overall reduction of task-related alpha activity in the elderly, and provide functional evidence that younger and older adults engage distinct brain circuits at different oscillatory frequencies during attentional functions. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Multifrequency Oscillatory Ventilation in the Premature Lung: Effects on Gas Exchange, Mechanics, and Ventilation Distribution.

    Science.gov (United States)

    Kaczka, David W; Herrmann, Jacob; Zonneveld, C Elroy; Tingay, David G; Lavizzari, Anna; Noble, Peter B; Pillow, J Jane

    2015-12-01

    Despite the theoretical benefits of high-frequency oscillatory ventilation (HFOV) in preterm infants, systematic reviews of randomized clinical trials do not confirm improved outcomes. The authors hypothesized that oscillating a premature lung with multiple frequencies simultaneously would improve gas exchange compared with traditional single-frequency oscillatory ventilation (SFOV). The goal of this study was to develop a novel method for HFOV, termed "multifrequency oscillatory ventilation" (MFOV), which relies on a broadband flow waveform more suitable for the heterogeneous mechanics of the immature lung. Thirteen intubated preterm lambs were randomly assigned to either SFOV or MFOV for 1 h, followed by crossover to the alternative regimen for 1 h. The SFOV waveform consisted of a pure sinusoidal flow at 5 Hz, whereas the customized MFOV waveform consisted of a 5-Hz fundamental with additional energy at 10 and 15 Hz. Per standardized protocol, mean pressure at airway opening ((Equation is included in full-text article.)) and inspired oxygen fraction were adjusted as needed, and root mean square of the delivered oscillatory volume waveform (Vrms) was adjusted at 15-min intervals. A ventilatory cost function for SFOV and MFOV was defined as (Equation is included in full-text article.), where Wt denotes body weight. Averaged over all time points, MFOV resulted in significantly lower VC (246.9 ± 6.0 vs. 363.5 ± 15.9 ml mmHg kg) and (Equation is included in full-text article.)(12.8 ± 0.3 vs. 14.1 ± 0.5 cm H2O) compared with SFOV, suggesting more efficient gas exchange and enhanced lung recruitment at lower mean airway pressures. Oscillation with simultaneous multiple frequencies may be a more efficient ventilator modality in premature lungs compared with traditional single-frequency HFOV.

  16. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness

    OpenAIRE

    Jiang, J.; Zhang, Q.; van Gaal, S.

    2015-01-01

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict a...

  17. Oscillatory barrier-assisted Langmuir–Blodgett deposition of large-scale quantum dot monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shicheng, E-mail: johnxu@stanford.edu [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Dadlani, Anup L. [Department of Chemistry, Stanford University, Stanford, CA 94305 (United States); Acharya, Shinjita; Schindler, Peter [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Department of Material Science and Engineering, Stanford University, Stanford, CA 94305 (United States)

    2016-03-30

    Graphical abstract: - Highlights: • Large-scale monolayers of quantum dots with full coverage up to several millimeters have been achieved by incorporating oscillatory barriers in the commonly used Langmuir–Blodgett method. • By examining dilatational moduli as a function of average particle density, one can obtain an appropriate density and proper timing for depositing desired films. • Time evolution of dilatational moduli gives a clear indication of the film morphology and its stability. - Abstract: Depositing continuous, large-scale quantum dot films with low pinhole density is an inevitable but nontrivial step for studying their properties for applications in catalysis, electronic devices, and optoelectronics. This rising interest in high-quality quantum dot films has provided research impetus to improve the deposition technique. We show that by incorporating oscillatory barriers in the commonly used Langmuir–Blodgett method, large-scale monolayers of quantum dots with full coverage up to several millimeters have been achieved. With assistance of perturbation provided by the oscillatory barriers, the film has been shown to relax towards thermal equilibrium, and this physical process has been supported by molecular dynamics simulation. In addition, time evolution of dilatational moduli has been shown to give a clear indication of the film morphology and its stability.

  18. Sequence learning modulates neural responses and oscillatory coupling in human and monkey auditory cortex.

    Directory of Open Access Journals (Sweden)

    Yukiko Kikuchi

    2017-04-01

    Full Text Available Learning complex ordering relationships between sensory events in a sequence is fundamental for animal perception and human communication. While it is known that rhythmic sensory events can entrain brain oscillations at different frequencies, how learning and prior experience with sequencing relationships affect neocortical oscillations and neuronal responses is poorly understood. We used an implicit sequence learning paradigm (an "artificial grammar" in which humans and monkeys were exposed to sequences of nonsense words with regularities in the ordering relationships between the words. We then recorded neural responses directly from the auditory cortex in both species in response to novel legal sequences or ones violating specific ordering relationships. Neural oscillations in both monkeys and humans in response to the nonsense word sequences show strikingly similar hierarchically nested low-frequency phase and high-gamma amplitude coupling, establishing this form of oscillatory coupling-previously associated with speech processing in the human auditory cortex-as an evolutionarily conserved biological process. Moreover, learned ordering relationships modulate the observed form of neural oscillatory coupling in both species, with temporally distinct neural oscillatory effects that appear to coordinate neuronal responses in the monkeys. This study identifies the conserved auditory cortical neural signatures involved in monitoring learned sequencing operations, evident as modulations of transient coupling and neuronal responses to temporally structured sensory input.

  19. Oscillatory device for use with linear tribometer, for tribological evaluation of biomaterials

    Science.gov (United States)

    Athayde, J. N.; Siqueira, C. J. M.; Kuromoto, N. K.; Cambraia, H. N.

    2017-07-01

    Orthopedic implants still have limitations regarding their durability, despite being in use for over fifty years. Particles arising from wear due to the relative motion of their surfaces remain responsible for aseptic failure. This paper presents a device to be coupled with a reciprocal linear tribometer to reproduce the ex vivo wear of biomaterials, allowing the measurement of force and coefficient of friction. The device consists of a structure connected to the tribometer that transforms its reciprocal linear motion into one that is oscillatory for the mechanical assembly that contains the samples to test the desired biomaterials. The tribological pair used for testing consisted of Ultra High Molecular Weight Polyethylene (UHMWPE) in conjunction with the austenitic stainless steel AISI 316L in dry lubrication. The results showed that the values of the coefficient of friction in the linear mode and oscillatory mode and the UHMWPE life curve in the oscillatory mode were consistent with those cited in the literature for tests in a dry lubrication environment. Moreover, the UHMWPE sample life curve showed a reduction in the wear rate that can be explained by the preponderance of a wear mechanism over the others. The volumetric wear showed an increase with the number of cycles.

  20. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress

    Science.gov (United States)

    McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.

    2003-01-01

    Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

  1. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    OpenAIRE

    Jeong-Man Kim; Jang-Young Choi; Kyu-Seok Lee; Sung-Ho Lee

    2017-01-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the effi...

  2. Theoretical band alignment in an intermediate band chalcopyrite based material

    Science.gov (United States)

    Castellanos Águila, J. E.; Palacios, P.; Conesa, J. C.; Arriaga, J.; Wahnón, P.

    2017-12-01

    Band alignment is key to enhance the performance of heterojunction for chalcopyrite thin film solar cells. In this paper we report ab initio calculations of the electronic structures of CuGaS2:Cr with various Cr compositions, CuAlSe2 and ZnSe and the band alignment between their interfaces. We use density functional theory and the more accurate self-consistent GW scheme to obtain improved bulk band-gaps and band offsets. Band alignments of the interfacial region for CuGaS2:Cr/CuAlSe2 and CuGaS2:Cr/ZnSe systems were aligned with respect of an average electrostatic potential. Our results are in good agreement with experimental values for the bulk band-gaps. These theoretical band alignments show a characteristic staggered band alignment for the design of heterojunction devices in photovoltaic applications.

  3. EEG oscillatory patterns are associated with error prediction during music performance and are altered in musician's dystonia.

    Science.gov (United States)

    Ruiz, María Herrojo; Strübing, Felix; Jabusch, Hans-Christian; Altenmüller, Eckart

    2011-04-15

    Skilled performance requires the ability to monitor ongoing behavior, detect errors in advance and modify the performance accordingly. The acquisition of fast predictive mechanisms might be possible due to the extensive training characterizing expertise performance. Recent EEG studies on piano performance reported a negative event-related potential (ERP) triggered in the ACC 70 ms before performance errors (pitch errors due to incorrect keypress). This ERP component, termed pre-error related negativity (pre-ERN), was assumed to reflect processes of error detection in advance. However, some questions remained to be addressed: (i) Does the electrophysiological marker prior to errors reflect an error signal itself or is it related instead to the implementation of control mechanisms? (ii) Does the posterior frontomedial cortex (pFMC, including ACC) interact with other brain regions to implement control adjustments following motor prediction of an upcoming error? (iii) Can we gain insight into the electrophysiological correlates of error prediction and control by assessing the local neuronal synchronization and phase interaction among neuronal populations? (iv) Finally, are error detection and control mechanisms defective in pianists with musician's dystonia (MD), a focal task-specific dystonia resulting from dysfunction of the basal ganglia-thalamic-frontal circuits? Consequently, we investigated the EEG oscillatory and phase synchronization correlates of error detection and control during piano performances in healthy pianists and in a group of pianists with MD. In healthy pianists, the main outcomes were increased pre-error theta and beta band oscillations over the pFMC and 13-15 Hz phase synchronization, between the pFMC and the right lateral prefrontal cortex, which predicted corrective mechanisms. In MD patients, the pattern of phase synchronization appeared in a different frequency band (6-8 Hz) and correlated with the severity of the disorder. The present

  4. Assessment of dynamic mechanical properties of the respiratory system during high-frequency oscillatory ventilation*.

    Science.gov (United States)

    Dellacà, Raffaele L; Zannin, Emanuela; Ventura, Maria L; Sancini, Giulio; Pedotti, Antonio; Tagliabue, Paolo; Miserocchi, Giuseppe

    2013-11-01

    1) To investigate the possibility of estimating respiratory system impedance (Zrs, forced oscillation technique) by using high-amplitude pressure oscillations delivered during high-frequency oscillatory ventilation; 2) to characterize the relationship between Zrs and continuous distending pressure during an increasing/decreasing continuous distending pressure trial; 3) to evaluate how the optimal continuous distending pressure identified by Zrs relates to the point of maximal curvature of the deflation limb of the quasi-static pressure-volume curve. Prospective laboratory animal investigation. Experimental medicine laboratory. Eight New Zealand rabbits. The rabbits were ventilated with high-frequency oscillatory ventilation. Zrs was measured while continuous distending pressure was increased and decreased between 2 and 26 cm H2O in 1-minute steps of 4 cm H2O. At each step, a low-amplitude (6 cm H2O) sinusoidal signal was alternated with a high-amplitude (18 cm H2O) asymmetric high-frequency oscillatory ventilation square pressure waveform. Pressure-volume curves were determined at the end of the continuous distending pressure trial. All measurements were repeated after bronchoalveolar lavage. Zrs was estimated from flow and pressure measured at the inlet of the tracheal tube and expressed as resistance (Rrs) and reactance (Xrs). Linear correlation between the values, measured by applying the small-amplitude sinusoidal signal and the ventilator waveform, was good for Xrs (r = 0.95 ± 0.04) but not for Rrs (r = 0.60 ± 0.34). Following lavage, the Xrs-continuous distending pressure curves presented a maximum on the deflation limb, identifying an optimal continuous distending pressure that was, on average, 1.1 ± 1.7 cm H2O below the point of maximal curvature of the deflation limb of the pressure-volume curves. Xrs can be accurately measured during high-frequency oscillatory ventilation without interrupting ventilation and/or connecting additional devices. An optimal

  5. Coherent multiple Pc1 pulsation bands: possible evidence for the ionospheric Alfvén resonator

    Directory of Open Access Journals (Sweden)

    F. Z. Feygin

    Full Text Available A fair fraction of Pc1 pulsation events observed on the ground includes more than one simultaneous pulsation band. In most such multiband events the bands display different characteristics and, therefore, come from different source regions via horizontal ducting in the ionosphere. However, in this report we identify a new "coherent" subclass of multiband Pc1 events where the pearls of the simultaneous bands have the same group velocities (repetition rates as well as dispersion and other properties, thus implying that the bands are produced by the same source. Studying one example of such a coherent multiband event in more detail, we argue that these events defy an explanation in terms of band splitting by magnetospheric heavy ions because the observed frequency gap between the bands is smaller than would result in such a case. We interpret these events to be due to the frequency dependence of the ionospheric reflection coefficient of Alfvén waves. An oscillatory frequency dependence of the coefficient is a natural consequence of the idea that the ionosphere acts as a resonator for Alfvén waves. We also discuss other predictions of this interpretation.

  6. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K

    2013-01-01

    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  7. Microstrip microwave band gap structures

    Indian Academy of Sciences (India)

    Microwave band gap structures exhibit certain stop band characteristics based on the periodicity, impedance contrast and effective refractive index contrast. These structures though formed in one-, two- and three-dimensional periodicity, are huge in size. In this paper, microstrip-based microwave band gap structures are ...

  8. Morphologies of omega band auroras

    Science.gov (United States)

    Sato, Natsuo; Yukimatu, Akira Sessai; Tanaka, Yoshimasa; Hori, Tomoaki

    2017-08-01

    We examined the morphological signatures of 315 omega band aurora events observed using the Time History of Events and Macroscale Interactions during Substorm ground-based all-sky imager network over a period of 8 years. We find that omega bands can be classified into the following three subtypes: (1) classical (O-type) omega bands, (2) torch or tongue (T-type) omega bands, and (3) combinations of classical and torch or tongue (O/T-type) omega bands. The statistical results show that T-type bands occur the most frequently (45%), followed by O/T-type bands (35%) and O-type bands (18%). We also examined the morphologies of the omega bands during their formation, from the growth period to the declining period through the maximum period. Interestingly, the omega bands are not stable, but rather exhibit dynamic changes in shape, intensity, and motion. They grow from small-scale bumps (seeds) at the poleward boundary of preexisting east-west-aligned auroras, rather than via the rotation or shear motion of preexisting east-west-aligned auroras, and do not exhibit any shear motion during the periods of auroral activity growth. Furthermore, the auroral luminosity is observed to increase during the declining period, and the total time from the start of the growth period to the end of the declining period is found to be about 20 min. Such dynamical signatures may be important in determining the mechanism responsible for omega band formation.

  9. Wide band ENDOR spectrometer

    International Nuclear Information System (INIS)

    Mendonca Filho, C.

    1973-01-01

    The construction of an ENDOR spectrometer operating from 0,5 to 75 MHz within a single band, with ore Klystron and homodine detection, and no fundamental changes on the electron spin resonance spectrometer was described. The ENDOR signal can be detected both by amplitude modulation of the frequency field, or direct detection of the ESR output, which is taken to a signal analyser. The signal-to-noise ratio is raised by averaging rather than filtering avoiding the use of long time constants, providing natural line widths. The experimental apparatus and the spectra obtained are described. A discussion, relating the ENDOR line amplitudes with the experimental conditions is done and ENDOR mechanism, in which there is a relevant presence of cross relaxation is proposed

  10. Wide Band Artificial Pulsar

    Science.gov (United States)

    Parsons, Zackary

    2017-01-01

    The Wide Band Artificial Pulsar (WBAP) is an instrument verification device designed and built by the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virgina. The site currently operates the Green Bank Ultimate Pulsar Processing Instrument (GUPPI) and the Versatile Green Bank Astronomical Spectrometer (VEGAS) digital backends for their radio telescopes. The commissioning and continued support for these sophisticated backends has demonstrated a need for a device capable of producing an accurate artificial pulsar signal. The WBAP is designed to provide a very close approximation to an actual pulsar signal. This presentation is intended to provide an overview of the current hardware and software implementations and to also share the current results from testing using the WBAP.

  11. Kinetic insights over a PEMFC operating on stationary and oscillatory states.

    Science.gov (United States)

    Mota, Andressa; Gonzalez, Ernesto R; Eiswirth, Markus

    2011-12-01

    Kinetic investigations in the oscillatory state have been carried out in order to shed light on the interplay between the complex kinetics exhibited by a proton exchange membrane fuel cell fed with poisoned H(2) (108 ppm of CO) and the other in serie process. The apparent activation energy (E(a)) in the stationary state was investigated in order to clarify the E(a) observed in the oscillatory state. The apparent activation energy in the stationary state, under potentiostatic control, rendered (a) E(a) ≈ 50-60 kJ mol(-1) over 0.8 V < E < 0.6 V and (b) E(a) ≈ 10 kJ mol(-1) at E = 0.3 V. The former is related to the H(2) adsorption in the vacancies of the surface poisoned by CO and the latter is correlated to the process of proton conductivity in the membrane. The dependence of the period-one oscillations on the temperature yielded a genuine Arrhenius dependence with two E(a) values: (a) E(a) around 70 kJ mol(-1), at high temperatures, and (b) E(a) around 10-15 kJ mol(-1), at lower temperatures. The latter E(a) indicates the presence of protonic mass transport coupled to the essential oscillatory mechanism. These insights point in the right direction to predict spatial couplings between anode and cathode as having the highest strength as well as to speculate the most likely candidates to promote spatial inhomogeneities. © 2011 American Chemical Society

  12. Exact solutions for oscillatory shear sweep behaviors of complex fluids from the Oldroyd 8-constant framework

    Science.gov (United States)

    Saengow, Chaimongkol; Giacomin, A. Jeffrey

    2018-03-01

    In this paper, we provide a new exact framework for analyzing the most commonly measured behaviors in large-amplitude oscillatory shear flow (LAOS), a popular flow for studying the nonlinear physics of complex fluids. Specifically, the strain rate sweep (also called the strain sweep) is used routinely to identify the onset of nonlinearity. By the strain rate sweep, we mean a sequence of LAOS experiments conducted at the same frequency, performed one after another, with increasing shear rate amplitude. In this paper, we give exact expressions for the nonlinear complex viscosity and the corresponding nonlinear complex normal stress coefficients, for the Oldroyd 8-constant framework for oscillatory shear sweeps. We choose the Oldroyd 8-constant framework for its rich diversity of popular special cases (we list 18 of these). We evaluate the Fourier integrals of our previous exact solution to get exact expressions for the real and imaginary parts of the complex viscosity, and for the complex normal stress coefficients, as functions of both test frequency and shear rate amplitude. We explore the role of infinite shear rate viscosity on strain rate sweep responses for the special case of the corotational Jeffreys fluid. We find that raising η∞ raises the real part of the complex viscosity and lowers the imaginary. In our worked examples, we thus first use the corotational Jeffreys fluid, and then, for greater accuracy, we use the Johnson-Segalman fluid, to describe the strain rate sweep response of molten atactic polystyrene. For our comparisons with data, we use the Spriggs relations to generalize the Oldroyd 8-constant framework to multimode. Our generalization yields unequivocally, a longest fluid relaxation time, used to assign Weissenberg and Deborah numbers to each oscillatory shear flow experiment. We then locate each experiment in the Pipkin space.

  13. The impact of the perception of rhythmic music on oscillatory self-paced movements

    Directory of Open Access Journals (Sweden)

    Mathieu ePeckel

    2014-09-01

    Full Text Available Inspired by theories of perception-action coupling and embodied music cognition, we investigated how rhythmic music perception impacts self-paced oscillatory movements. In a pilot study, we examined the kinematic parameters of self-paced oscillatory movements, walking and finger tapping using optical motion capture. In accordance with biomechanical constraints accounts of motion, we found that movements followed a hierarchical organization depending on the proximal/distal characteristic of the limb used. Based on these findings, we were interested in knowing how and when the perception of rhythmic music could resonate with the motor system in the context of these constrained oscillatory movements. In order to test this, we conducted an experiment where participants performed four different effector-specific movements (lower leg, whole arm and forearm oscillation and finger tapping while rhythmic music was playing in the background. Musical stimuli consisted of computer-generated MIDI musical pieces with a 4/4 metrical structure. The musical tempo of each song increased from 60 BPM to 120 BPM by 6 BPM increments. A specific tempo was maintained for 20s before a 2s transition to the higher tempo. The task of the participant was to maintain a comfortable pace for the four movements (self-paced while not paying attention to the music. No instruction on whether to synchronize with the music was given. Results showed that participants were distinctively influenced by the background music depending on the movement used with the tapping task being consistently the most influenced. Furthermore, eight strategies put in place by participants to cope with task were unveiled. Despite not instructed to do so, participants also occasionally synchronized with music. Results are discussed in terms of the link between perception and action (i.e. motor/perceptual resonance. In general, our results give support to the notion that rhythmic music is processed in a

  14. The impact of the perception of rhythmic music on self-paced oscillatory movements.

    Science.gov (United States)

    Peckel, Mathieu; Pozzo, Thierry; Bigand, Emmanuel

    2014-01-01

    Inspired by theories of perception-action coupling and embodied music cognition, we investigated how rhythmic music perception impacts self-paced oscillatory movements. In a pilot study, we examined the kinematic parameters of self-paced oscillatory movements, walking and finger tapping using optical motion capture. In accordance with biomechanical constraints accounts of motion, we found that movements followed a hierarchical organization depending on the proximal/distal characteristic of the limb used. Based on these findings, we were interested in knowing how and when the perception of rhythmic music could resonate with the motor system in the context of these constrained oscillatory movements. In order to test this, we conducted an experiment where participants performed four different effector-specific movements (lower leg, whole arm and forearm oscillation and finger tapping) while rhythmic music was playing in the background. Musical stimuli consisted of computer-generated MIDI musical pieces with a 4/4 metrical structure. The musical tempo of each song increased from 60 BPM to 120 BPM by 6 BPM increments. A specific tempo was maintained for 20 s before a 2 s transition to the higher tempo. The task of the participant was to maintain a comfortable pace for the four movements (self-paced) while not paying attention to the music. No instruction on whether to synchronize with the music was given. Results showed that participants were distinctively influenced by the background music depending on the movement used with the tapping task being consistently the most influenced. Furthermore, eight strategies put in place by participants to cope with the task were unveiled. Despite not instructed to do so, participants also occasionally synchronized with music. Results are discussed in terms of the link between perception and action (i.e., motor/perceptual resonance). In general, our results give support to the notion that rhythmic music is processed in a motoric

  15. Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow

    Science.gov (United States)

    Giacomin, A. J.; Gilbert, P. H.; Schmalzer, A. M.

    2015-01-01

    In our previous work, we explored the dynamics of a dilute suspension of rigid dumbbells as a model for polymeric liquids in large-amplitude oscillatory shear flow, a flow experiment that has gained a significant following in recent years. We chose rigid dumbbells since these are the simplest molecular model to give higher harmonics in the components of the stress response. We derived the expression for the dumbbell orientation distribution, and then we used this function to calculate the shear stress response, and normal stress difference responses in large-amplitude oscillatory shear flow. In this paper, we deepen our understanding of the polymer motion underlying large-amplitude oscillatory shear flow by decomposing the orientation distribution function into its first five Fourier components (the zeroth, first, second, third, and fourth harmonics). We use three-dimensional images to explore each harmonic of the polymer motion. Our analysis includes the three most important cases: (i) nonlinear steady shear flow (where the Deborah number λω is zero and the Weissenberg number λγ˙0 is above unity), (ii) nonlinear viscoelasticity (where both λω and λγ˙0 exceed unity), and (iii) linear viscoelasticity (where λω exceeds unity and where λγ˙0 approaches zero). We learn that the polymer orientation distribution is spherical in the linear viscoelastic regime, and otherwise tilted and peanut-shaped. We find that the peanut-shaping is mainly caused by the zeroth harmonic, and the tilting, by the second. The first, third, and fourth harmonics of the orientation distribution make only slight contributions to the overall polymer motion. PMID:26798789

  16. Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow

    Directory of Open Access Journals (Sweden)

    A. J. Giacomin

    2015-03-01

    Full Text Available In our previous work, we explored the dynamics of a dilute suspension of rigid dumbbells as a model for polymeric liquids in large-amplitude oscillatory shear flow, a flow experiment that has gained a significant following in recent years. We chose rigid dumbbells since these are the simplest molecular model to give higher harmonics in the components of the stress response. We derived the expression for the dumbbell orientation distribution, and then we used this function to calculate the shear stress response, and normal stress difference responses in large-amplitude oscillatory shear flow. In this paper, we deepen our understanding of the polymer motion underlying large-amplitude oscillatory shear flow by decomposing the orientation distribution function into its first five Fourier components (the zeroth, first, second, third, and fourth harmonics. We use three-dimensional images to explore each harmonic of the polymer motion. Our analysis includes the three most important cases: (i nonlinear steady shear flow (where the Deborah number λω is zero and the Weissenberg number λγ̇0 is above unity, (ii nonlinear viscoelasticity (where both λω and λγ̇0 exceed unity, and (iii linear viscoelasticity (where λω exceeds unity and where λγ̇0 approaches zero. We learn that the polymer orientation distribution is spherical in the linear viscoelastic regime, and otherwise tilted and peanut-shaped. We find that the peanut-shaping is mainly caused by the zeroth harmonic, and the tilting, by the second. The first, third, and fourth harmonics of the orientation distribution make only slight contributions to the overall polymer motion.

  17. One central oscillatory drive is compatible with experimental motor unit behaviour in essential and Parkinsonian tremor

    Science.gov (United States)

    Dideriksen, Jakob L.; Gallego, Juan A.; Holobar, Ales; Rocon, Eduardo; Pons, Jose L.; Farina, Dario

    2015-08-01

    Objective. Pathological tremors are symptomatic to several neurological disorders that are difficult to differentiate and the way by which central oscillatory networks entrain tremorogenic contractions is unknown. We considered the alternative hypotheses that tremor arises from one oscillator (at the tremor frequency) or, as suggested by recent findings from the superimposition of two separate inputs (at the tremor frequency and twice that frequency). Approach. Assuming one central oscillatory network we estimated analytically the relative amplitude of the harmonics of the tremor frequency in the motor neuron output for different temporal behaviors of the oscillator. Next, we analyzed the bias in the relative harmonics amplitude introduced by superimposing oscillations at twice the tremor frequency. These findings were validated using experimental measurements of wrist angular velocity and surface electromyography (EMG) from 22 patients (11 essential tremor, 11 Parkinson’s disease). The ensemble motor unit action potential trains identified from the EMG represented the neural drive to the muscles. Main results. The analytical results showed that the relative power of the tremor harmonics in the analytical models of the neural drive was determined by the variability and duration of the tremor bursts and the presence of the second oscillator biased this power towards higher values. The experimental findings accurately matched the analytical model assuming one oscillator, indicating a negligible functional role of secondary oscillatory inputs. Furthermore, a significant difference in the relative power of harmonics in the neural drive was found across the patient groups, suggesting a diagnostic value of this measure (classification accuracy: 86%). This diagnostic power decreased substantially when estimated from limb acceleration or the EMG. Signficance. The results indicate that the neural drive in pathological tremor is compatible with one central network

  18. The Benefits of the Ka-Band as Evidenced from the SARAL/AltiKa Altimetric Mission: Scientific Applications

    Directory of Open Access Journals (Sweden)

    Jacques Verron

    2018-01-01

    Full Text Available The India–France SARAL/AltiKa mission is the first Ka-band altimetric mission dedicated primarily to oceanography. The mission objectives were firstly the observation of the oceanic mesoscales but also global and regional sea level monitoring, including the coastal zone, data assimilation, and operational oceanography. SARAL/AltiKa proved also to be a great opportunity for inland waters applications, for observing ice sheet or icebergs, as well as for geodetic investigations. The mission ended its nominal phase after three years in orbit and began a new phase (drifting orbit in July 2016. The objective of this paper is to highlight some of the most remarkable achievements of the SARAL/AltiKa mission in terms of scientific applications. Compared to the standard Ku-band altimetry measurements, the Ka-band provides substantial improvements in terms of spatial resolution and data accuracy. We show here that this leads to remarkable advances in terms of observation of the mesoscale and coastal ocean, waves, river water levels, ice sheets, icebergs, fine scale bathymetry features as well as for the many related applications.

  19. A light-scattering study of the nonlinear dynamics of electrorheological fluids in oscillatory shear

    International Nuclear Information System (INIS)

    Martin, J.E.; Odinek, J.

    1995-01-01

    We report a real time, two-dimensional light-scattering study of the nonlinear dynamics of field-induced structures in an electrorheological (ER) fluid subjected to oscillatory shear. We have developed a simple kinetic chain model of the observed dynamics by considering the response of a fragmenting/aggregating particle chain to the prevailing hydrodynamic and electrostatic forces. This theory of the dynamics is then used to describe the nonlinear rheology of ER fluids, and it is concluded that light scattering allows one to indirectly probe the stress in an ER fluid. copyright 1995 Society of Rheology

  20. Oscillatory behaviour of isomers of hydroxybenzoic acid with and without catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Masood A.; Rastogi, R.P.; Peerzada, G.M. [University of Kashmir, Srinagar (India). Dept. of Chemistry]. E-mail: nath_masood@yahoo.co.in

    2009-07-01

    The present work establishes and compares the oscillatory behaviour of mono-, di- and trihydroxybenzoic acids as organic substrates in acidic bromate (1.0 mol L{sup -1} H{sub 2}SO{sub 4}) without catalyst and in the presence of Mn{sup 2+} ion as the main catalyst. The oscillations are also affected by other catalyst such as Fe{sup 2+} ion. Further, the oscillations start diminishing in mixed catalyst systems. The experimental parameters were obtained potentiometrically and the results have been interpreted on the basis of FKN mechanism. (author)

  1. Oscillatory Stability and Eigenvalue Sensitivity Analysis of A DFIG Wind Turbine System

    DEFF Research Database (Denmark)

    Yang, Lihui; Xu, Zhao; Østergaard, Jacob

    2011-01-01

    This paper focuses on modeling and oscillatory stability analysis of a wind turbine with doubly fed induction generator (DFIG). A detailed mathematical model of DFIG wind turbine with vector-control loops is developed, based on which the loci of the system Jacobian's eigenvalues have been analyzed......, showing that, without appropriate controller tuning a Hopf bifurcation can occur in such a system due to various factors, such as wind speed. Subsequently, eigenvalue sensitivity with respect to machine and control parameters is performed to assess their impacts on system stability. Moreover, the Hopf...

  2. Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis

    Science.gov (United States)

    Ryashko, Lev

    2018-03-01

    A phenomenon of the noise-induced oscillatory multistability in glycolysis is studied. As a basic deterministic skeleton, we consider the two-dimensional Higgins model. The noise-induced generation of mixed-mode stochastic oscillations is studied in various parametric zones. Probabilistic mechanisms of the stochastic excitability of equilibria and noise-induced splitting of randomly forced cycles are analysed by the stochastic sensitivity function technique. A parametric zone of supersensitive Canard-type cycles is localized and studied in detail. It is shown that the generation of mixed-mode stochastic oscillations is accompanied by the noise-induced transitions from order to chaos.

  3. Incremental Adaptive Fuzzy Control for Sensorless Stroke Control of A Halbach-type Linear Oscillatory Motor

    Science.gov (United States)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.

  4. Oscillatory Behavior of Critical Amplitudes of the Gaussian Model on a Hierarchical Structure

    OpenAIRE

    Knezevic, Milan; Knezevic, Dragica

    1999-01-01

    We studied oscillatory behavior of critical amplitudes for the Gaussian model on a hierarchical structure presented by a modified Sierpinski gasket lattice. This model is known to display non-standard critical behavior on the lattice under study. The leading singular behavior of the correlation length $\\xi$ near the critical coupling $K=K_c$ is modulated by a function which is periodic in $\\ln|\\ln(K_c-K)|$. We have also shown that the common finite-size scaling hypothesis, according to which ...

  5. Dopaminergic modulation of the spectral characteristics in the rat brain oscillatory activity

    International Nuclear Information System (INIS)

    Valencia, Miguel; López-Azcárate, Jon; Nicolás, María Jesús; Alegre, Manuel; Artieda, Julio

    2012-01-01

    Highlights: ► The oscillatory activity recorded at different locations of the rat brain present a power law characteristic (PLC). ► Dopaminergic drugs are able to modify the power law spectral characteristic of the oscillatory activity. ► Drugs with opposite effects over the dopaminergic system (agonists/antagonists), induce opposite changes in the PLC. ► There is a fulcrum point for the modulation of the PLC around 20 Hz. ► The brain operates in a state of self-organized criticality (SOC) sensitive to dopaminergic modulation. - Abstract: Oscillatory activity can be widely recorded in the brain. It has been demonstrated to play an important role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of a variety of diseases. In frequency domain, neurophysiological recordings show a power spectrum (PSD) following a log (PSD) ∝ log (f) −β , that reveals an intrinsic feature of many complex systems in nature: the presence of a scale-free dynamics characterized by a power-law component (PLC). Here we analyzed the influence of dopaminergic drugs over the PLC of the oscillatory activity recorded from different locations of the rat brain. Dopamine (DA) is a neurotransmitter that is required for a number of physiological functions like normal feeding, locomotion, posturing, grooming and reaction time. Alterations in the dopaminergic system cause vast effects in the dynamics of the brain activity, that may be crucial in the pathophysiology of neurological (like Parkinson’s disease) or psychiatric (like schizophrenia) diseases. Our results show that drugs with opposite effects over the dopaminergic system, induce opposite changes in the characteristics of the PLC: DA agonists/antagonists cause the PLC to swing around a fulcrum point in the range of 20 Hz. Changes in the harmonic component of the spectrum were also detected. However, differences between recordings are better explained by the modulation of the PLC

  6. DEVELOPMENT AND RESEARCH OF ULTRASONIC OSCILLATORY SYSTEM FOR HARDENING OF SPRING PLATE BILLETS

    Directory of Open Access Journals (Sweden)

    V. A. Tomilo

    2015-01-01

    Full Text Available Various schemes of ultrasonic oscillatory system are developed: with a «force nonsensitive» support, with a «force sensitive» support, with the deforming steel balls in bulk. Results of the ultrasonic treatment showed that hardening of a surface of the samples took place when the vibration amplitude of a radiator exceeds a certain level. The level of hardening increases with increase in amplitude of fluctuations of a radiator. Higher level of hardening is registered when the surface is treated by steel balls.

  7. Numerical investigation of oscillatory thermocapillary flows under zero gravity in a circular liquid film with concave free surfaces

    Science.gov (United States)

    Yamamoto, T.; Takagi, Y.; Okano, Y.; Dost, S.

    2016-03-01

    NASA astronaut Pettit has conducted thermocapillary flow experiments in water films suspended in a solid ring onboard the International Space Station (ISS) in 2003 and 2011. In one of these experiments, an oscillatory thermocapillary flow was observed. The developed flow broke its symmetry along the centerline of the film. To the best of our knowledge, there are no studies on such oscillatory thermocapillary flows in thin films, and the flow-mechanism giving rise to such oscillatory flows is also not well understood. In order to shed light on the subject, we have carried out a numerical simulation study. The simulation results have shown that the water film geometry (film surface shape; being concave) is an important parameter and give rise to three oscillatory flow structures in the film, namely, a hydrothermal wave developing near the heated section, a symmetric oscillatory flow due to temperature variations, and a symmetry breaking flow due to the hydrodynamic instability along the free boundary layer (mixing layer) and the development of the hydrothermal waves. Simulation results show that the symmetry-breaking phenomenon observed in the thin film experiment on the ISS can be explained by the hydrodynamic instability and the development of hydrothermal waves.

  8. Theoretical analysis of oscillatory terms in lattice heat-current time correlation functions and their contributions to thermal conductivity

    Science.gov (United States)

    Pereverzev, Andrey; Sewell, Tommy

    2018-03-01

    Lattice heat-current time correlation functions for insulators and semiconductors obtained using molecular dynamics (MD) simulations exhibit features of both pure exponential decay and oscillatory-exponential decay. For some materials the oscillatory terms contribute significantly to the lattice heat conductivity calculated from the correlation functions. However, the origin of the oscillatory terms is not well understood, and their contribution to the heat conductivity is accounted for by fitting them to empirical functions. Here, a translationally invariant expression for the heat current in terms of creation and annihilation operators is derived. By using this full phonon-picture definition of the heat current and applying the relaxation-time approximation we explain, at least in part, the origin of the oscillatory terms in the lattice heat-current correlation function. We discuss the relationship between the crystal Hamiltonian and the magnitude of the oscillatory terms. A solvable one-dimensional model is used to illustrate the potential importance of terms that are omitted in the commonly used phonon-picture expression for the heat current. While the derivations are fully quantum mechanical, classical-limit expressions are provided that enable direct contact with classical quantities obtainable from MD.

  9. Transient reduction of tinnitus intensity is marked by concomitant reductions of delta band power

    Directory of Open Access Journals (Sweden)

    Weisz Nathan

    2008-01-01

    Full Text Available Abstract Background Tinnitus is an auditory phantom phenomenon characterized by the sensation of sounds without objectively identifiable sound sources. To date, its causes are not well understood. Previous research found altered patterns of spontaneous brain activity in chronic tinnitus sufferers compared to healthy controls, yet it is unknown whether these abnormal oscillatory patterns are causally related to the tinnitus sensation. Partial support for this notion comes from a neurofeedback approach developed by our group, in which significant reductions in tinnitus loudness could be achieved in patients who successfully normalized their patterns of spontaneous brain activity. The current work attempts to complement these studies by scrutinizing how modulations of tinnitus intensity alter ongoing oscillatory activity. Results In the present study the relation between tinnitus sensation and spontaneous brain activity was investigated using residual inhibition (RI to reduce tinnitus intensity and source-space projected magnetencephalographic (MEG data to index brain activity. RI is the sustained reduction (criteria: 50% for at least 30 s in tinnitus loudness after cessation of a tonal tinnitus masker. A pilot study (n = 38 identified 10 patients who showed RI. A significant reduction of power in the delta (1.3–4.0 Hz frequency band was observed in temporal regions during RI (p ≤ 0.001. Conclusion The current results suggest that changes of tinnitus intensity induced by RI are mediated by alterations in the pathological patterns of spontaneous brain activity, specifically a reduction of delta activity. Delta activity is a characteristic oscillatory activity generated by deafferented/deprived neuronal networks. This implies that RI effects might reflect the transient reestablishment of balance between excitatory and inhibitory neuronal assemblies, via reafferentation, that have been perturbed (in most tinnitus individuals by hearing damage. As

  10. Frequency domain beamforming of magnetoencephalographic beta band activity in epilepsy patients with focal cortical dysplasia.

    Science.gov (United States)

    Heers, Marcel; Hirschmann, Jan; Jacobs, Julia; Dümpelmann, Matthias; Butz, Markus; von Lehe, Marec; Elger, Christian E; Schnitzler, Alfons; Wellmer, Jörg

    2014-09-01

    Spike-based magnetoencephalography (MEG) source localization is an established method in the presurgical evaluation of epilepsy patients. Focal cortical dysplasias (FCDs) are associated with focal epileptic discharges of variable morphologies in the beta frequency band in addition to single epileptic spikes. Therefore, we investigated the potential diagnostic value of MEG-based localization of spike-independent beta band (12-30Hz) activity generated by epileptogenic lesions. Five patients with FCD IIB underwent MEG. In one patient, invasive EEG (iEEG) was recorded simultaneously with MEG. In two patients, iEEG succeeded MEG, and two patients had MEG only. MEG and iEEG were evaluated for epileptic spikes. Two minutes of iEEG data and MEG epochs with no spikes as well as MEG epochs with epileptic spikes were analyzed in the frequency domain. MEG oscillatory beta band activity was localized using Dynamic Imaging of Coherent Sources. Intralesional beta band activity was coherent between simultaneous MEG and iEEG recordings. Continuous 14Hz beta band power correlated with the rate of interictal epileptic discharges detected in iEEG. In cases where visual MEG evaluation revealed epileptic spikes, the sources of beta band activity localized within <2cm of the epileptogenic lesion as shown on magnetic resonance imaging. This result held even when visually marked epileptic spikes were deselected. When epileptic spikes were detectable in iEEG but not MEG, MEG beta band activity source localization failed. Source localization of beta band activity has the potential to contribute to the identification of epileptic foci in addition to source localization of visually marked epileptic spikes. Thus, this technique may assist in the localization of epileptic foci in patients with suspected FCD. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Relativistic frequency upshift to the extreme ultraviolet regime using self-induced oscillatory flying mirrors

    Science.gov (United States)

    Kim, I Jong; Pae, Ki Hong; Kim, Chul Min; Kim, Hyung Taek; Yun, Hyeok; Yun, Sang Jae; Sung, Jae Hee; Lee, Seong Ku; Yoon, Jin Woo; Yu, Tae Jun; Jeong, Tae Moon; Nam, Chang Hee; Lee, Jongmin

    2012-01-01

    Coherent short-wavelength radiation from laser–plasma interactions is of increasing interest in disciplines including ultrafast biomolecular imaging and attosecond physics. Using solid targets instead of atomic gases could enable the generation of coherent extreme ultraviolet radiation with higher energy and more energetic photons. Here we present the generation of extreme ultraviolet radiation through coherent high-harmonic generation from self-induced oscillatory flying mirrors—a new-generation mechanism established in a long underdense plasma on a solid target. Using a 30-fs, 100-TW Ti:sapphire laser, we obtain wavelengths as short as 4.9 nm for an optimized level of amplified spontaneous emission. Particle-in-cell simulations show that oscillatory flying electron nanosheets form in a long underdense plasma, and suggest that the high-harmonic generation is caused by reflection of the laser pulse from electron nanosheets. We expect this extreme ultraviolet radiation to be valuable in realizing a compact X-ray instrument for research in biomolecular imaging and attosecond physics. PMID:23187631

  12. EEG Mu (µ) rhythm spectra and oscillatory activity differentiate stuttering from non-stuttering adults.

    Science.gov (United States)

    Saltuklaroglu, Tim; Harkrider, Ashley W; Thornton, David; Jenson, David; Kittilstved, Tiffani

    2017-06-01

    Stuttering is linked to sensorimotor deficits related to internal modeling mechanisms. This study compared spectral power and oscillatory activity of EEG mu (μ) rhythms between persons who stutter (PWS) and controls in listening and auditory discrimination tasks. EEG data were analyzed from passive listening in noise and accurate (same/different) discrimination of tones or syllables in quiet and noisy backgrounds. Independent component analysis identified left and/or right μ rhythms with characteristic alpha (α) and beta (β) peaks localized to premotor/motor regions in 23 of 27 people who stutter (PWS) and 24 of 27 controls. PWS produced μ spectra with reduced β amplitudes across conditions, suggesting reduced forward modeling capacity. Group time-frequency differences were associated with noisy conditions only. PWS showed increased μ-β desynchronization when listening to noise and early in discrimination events, suggesting evidence of heightened motor activity that might be related to forward modeling deficits. PWS also showed reduced μ-α synchronization in discrimination conditions, indicating reduced sensory gating. Together these findings indicate spectral and oscillatory analyses of μ rhythms are sensitive to stuttering. More specifically, they can reveal stuttering-related sensorimotor processing differences in listening and auditory discrimination that also may be influenced by basal ganglia deficits. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effect of oscillatory flow on the performance of a novel cross-flow affinity membrane device.

    Science.gov (United States)

    Najarian, S; Bellhouse, B J

    1997-01-01

    This paper presents the results of an investigation into the effect of oscillatory flow in a membrane-based affinity contactor. This device was designed to accommodate a tubular affinity membrane, and the flow direction of working fluid was tangential to the surface of the membrane. Cibacron Blue F3G-A was utilized as the capturing ligand and bovine serum albumin as the target molecule. The dye molecules were immobilized covalently via spacer molecules (polyethylenimine) onto the pores of a microfiltration membrane with a pore size rating of 0.45 micron. Bovine serum albumin was pumped through the annular space between the concentric screw-threaded insert and the tubular membrane in oscillatory flow with a mean flow component. The effects of pulsation frequency and stroke length were investigated. It was found that, as a result of the pulsatile flow, the protein recovery was increased by a factor of 2. To make the interpretation of the results easier, various dimensionless groups were defined specifically for this system and the experimental data were reported in terms of these groups.

  14. From small molecules to polymeric catalysts in the oscillatory carbonylation reaction: multiple effects of adding HI.

    Science.gov (United States)

    Isakova, Anna; Murdoch, Billy J; Novakovic, Katarina

    2018-04-04

    The oscillatory palladium-catalysed carbonylation reaction opens new horizons for applications in smart materials due to the versatility of its conditions and substrates, as well as the adjustability of amplitude and period of pH oscillations. A variety of viable substrates have been demonstrated, including polymeric alkyne-terminated substrates. However, so far, there have not been any reports of polymer-based palladium catalysts in oscillatory mode. In this paper, we demonstrate pH oscillations in various systems, using commercially available palladium acetate, a triphenylphosphine palladium acetate complex and a polymer-bound palladium catalyst. While palladium acetate was able to generate oscillations under the conditions already established in our previous research on PdI2-catalysed oscillators, the other two catalysts needed the addition of HI to induce oscillations. HI forced an initial pH drop, bringing pH into the range where oscillations generally occur. Addition of HI had a significant effect on all catalysts, modifying the amplitude and period of oscillations, oscillation mode, as well as starting material conversion and product distribution.

  15. [Significance of local synchronization and oscillatory processes of thalamic neurons in goal-directed human behavior].

    Science.gov (United States)

    Sedov, A S; Medvednik, R S; Raeva, S N

    2014-01-01

    The time-frequency characteristics and interneuron interaction in the cell ensembles of non-specific (CM-Pf) and motor (Voi) thalamus were analyzed. Neuronal activity was registered by microelectrode technique during 18 stereotactic neurosurgery operations in spasmodic torticollis patients. The presentation of functionally significant verbal stimuli was accompanied by the emergence of short-term (0.5-1.5 s) local synchronization and stabilization of the oscillatory (3-6 Hz) activity in nearby neurons of nonspecific (CM-Pf) thalamus. These focuses of synchronized oscillatory neuronal activity were correlated with the moment of the greatest concentration of selective attention. Similar phenomenon of short-term synchronization was observed in the motor (Voi) and nonspecific (CM-Pf) thalamus of the human brain during the voluntary movements. Synchronization of neuronal activity occurred at the height of the motor act implementation, correlating with the maximum muscle tension, as well as in aftereffect of the voluntary movement. Overall, the findings suggest an important role of the local oscillations (3-6 Hz) and synchronization ofthalamic neurons in the mechanisms of relevant information transmission during goal-directed human behavior.

  16. The application of large amplitude oscillatory stress in a study of fully formed fibrin clots

    Science.gov (United States)

    Lamer, T. F.; Thomas, B. R.; Curtis, D. J.; Badiei, N.; Williams, P. R.; Hawkins, K.

    2017-12-01

    The suitability of controlled stress large amplitude oscillatory shear (LAOStress) for the characterisation of the nonlinear viscoelastic properties of fully formed fibrin clots is investigated. Capturing the rich nonlinear viscoelastic behaviour of the fibrin network is important for understanding the structural behaviour of clots formed in blood vessels which are exposed to a wide range of shear stresses. We report, for the first time, that artefacts due to ringing exist in both the sample stress and strain waveforms of a LAOStress measurement which will lead to errors in the calculation of nonlinear viscoelastic properties. The process of smoothing the waveforms eliminates these artefacts whilst retaining essential rheological information. Furthermore, we demonstrate the potential of LAOStress for characterising the nonlinear viscoelastic properties of fibrin clots in response to incremental increases of applied stress up to the point of fracture. Alternating LAOStress and small amplitude oscillatory shear measurements provide detailed information of reversible and irreversible structural changes of the fibrin clot as a consequence of elevated levels of stress. We relate these findings to previous studies involving large scale deformations of fibrin clots. The LAOStress technique may provide useful information to help understand why some blood clots formed in vessels are stable (such as in deep vein thrombosis) and others break off (leading to a life threatening pulmonary embolism).

  17. Self-Sustained Oscillatory Sliding Movement of Doublet Microtubules and Flagellar Bend Formation.

    Directory of Open Access Journals (Sweden)

    Sumio Ishijima

    Full Text Available It is well established that the basis for flagellar and ciliary movements is ATP-dependent sliding between adjacent doublet microtubules. However, the mechanism for converting microtubule sliding into flagellar and ciliary movements has long remained unresolved. The author has developed new sperm models that use bull spermatozoa divested of their plasma membrane and midpiece mitochondrial sheath by Triton X-100 and dithiothreitol. These models enable the observation of both the oscillatory sliding movement of activated doublet microtubules and flagellar bend formation in the presence of ATP. A long fiber of doublet microtubules extruded by synchronous sliding of the sperm flagella and a short fiber of doublet microtubules extruded by metachronal sliding exhibited spontaneous oscillatory movements and constructed a one beat cycle of flagellar bending by alternately actuating. The small sliding displacement generated by metachronal sliding formed helical bends, whereas the large displacement by synchronous sliding formed planar bends. Therefore, the resultant waveform is a half-funnel shape, which is similar to ciliary movements.

  18. Understanding the Geometry of Connected Fracture Flow with Multiperiod Oscillatory Hydraulic Tests.

    Science.gov (United States)

    Sayler, Claire; Cardiff, Michael; Fort, Michael D

    2018-03-01

    An understanding of the spatial and hydraulic properties of fast preferential flow pathways in the subsurface is necessary in applications ranging from contaminant fate and transport modeling to design of energy extraction systems. One method for the characterization of fracture properties over interwellbore scales is Multiperiod Oscillatory Hydraulic (MOH) testing, in which the aquifer response to oscillatory pressure stimulations is observed. MOH tests were conducted on isolated intervals of wells in siliciclastic and carbonate aquifers in southern Wisconsin. The goal was to characterize the spatial properties of discrete fractures over interwellbore scales. MOH tests were conducted on two discrete fractured intervals intersecting two boreholes at one field site, and a nest of three piezometers at another field site. Fracture diffusivity estimates were obtained using analytical solutions that relate diffusivity to observed phase lag and amplitude decay. In addition, MOH tests were used to investigate the spatial extent of flow using different conceptual models of fracture geometry. Results indicated that fracture geometry at both field sites can be approximated by permeable two-dimensional fracture planes, oriented near-horizontally at one site, and near-vertically at the other. The technique used on MOH field data to characterize fracture geometry shows promise in revealing fracture network characteristics important to groundwater flow and transport. © 2017, National Ground Water Association.

  19. PRELIMINARY DESIGN OF OSCILLATORY FLOW BIODIESEL REACTOR FOR CONTINUOUS BIODIESEL PRODUCTION FROM JATROPHA TRIGLYCERIDES

    Directory of Open Access Journals (Sweden)

    AZHARI T. I. MOHD. GHAZI

    2008-08-01

    Full Text Available The concept of a continuous process in producing biodiesel from jatropha oil by using an Oscillatory Flow Biodiesel Reactor (OFBR is discussed in this paper. It has been recognized that the batch stirred reactor is a primary mode used in the synthesis of biodiesel. However, pulsatile flow has been extensively researcehed and the fundamental principles have been successfully developed upon which its hydrodynamics are based. Oscillatory flow biodiesel reactor offers precise control of mixing by means of the baffle geometry and pulsation which facilitates to continuous operation, giving plug flow residence time distribution with high turbulence and enhanced mass and heat transfer. In conjunction with the concept of reactor design, parameters such as reactor dimensions, the hydrodynamic studies and physical properties of reactants must be considered prior to the design work initiated recently. The OFBR reactor design involves the use of simulation software, ASPEN PLUS and the reactor design fundamentals. Following this, the design parameters shall be applied in fabricating the OFBR for laboratory scale biodiesel production.

  20. A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes

    Science.gov (United States)

    Zhu, Jun; Qiu, Jianxian

    2017-11-01

    In this paper a third order finite volume weighted essentially non-oscillatory scheme is designed for solving hyperbolic conservation laws on tetrahedral meshes. Comparing with other finite volume WENO schemes designed on tetrahedral meshes, the crucial advantages of such new WENO scheme are its simplicity and compactness with the application of only six unequal size spatial stencils for reconstructing unequal degree polynomials in the WENO type spatial procedures, and easy choice of the positive linear weights without considering the topology of the meshes. The original innovation of such scheme is to use a quadratic polynomial defined on a big central spatial stencil for obtaining third order numerical approximation at any points inside the target tetrahedral cell in smooth region and switch to at least one of five linear polynomials defined on small biased/central spatial stencils for sustaining sharp shock transitions and keeping essentially non-oscillatory property simultaneously. By performing such new procedures in spatial reconstructions and adopting a third order TVD Runge-Kutta time discretization method for solving the ordinary differential equation (ODE), the new scheme's memory occupancy is decreased and the computing efficiency is increased. So it is suitable for large scale engineering requirements on tetrahedral meshes. Some numerical results are provided to illustrate the good performance of such scheme.

  1. Sedimentation of an elliptical particle in periodic oscillatory pressure driven flow

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wenjun; Deng, Jianqiang; Cao, Zheng; Mei, Mei, E-mail: dengjq@mail.xjtu.edu.cn [Department of Process Equipment and Control Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 710049, Xi’an (China)

    2015-12-15

    The sedimentation of a heavy elliptical particle in a two-dimensional channel filled with Newtonian fluid under oscillatory pressure driven flow has been numerically investigated by using the finite element arbitrary Lagrangian–Eulerian method. The effects of particle Reynolds number, initial position, blockage ratio, as well as oscillation frequency and amplitude on the flow patterns during sedimentation have been studied. The results show that there exists an equilibrium position for high frequency flow, and the position of the heavier particle is closer to the centerline. As rotation contributes to non-uniform pressure on particle surface, the further initial position and lower amplitude lead to the larger scale zigzag migration; however, the maximum lateral displacements of these low frequency zigzag motions are nearly the same due to the consistent lubrication limit. Moreover, our simulation results indicate that there are five distinct modes of settling in oscillatory flow: horizontal with offset, oscillating, tumbling throughout channel, tumbling at one side and the special ‘resonance’ phenomenon. The ‘resonance’ induced by the wall is shown to have a close association with the harmonious change of drag and lift on particle surface, and be sensitive to the oscillation in the wake and the periodic discharge of vorticity from behind the body. (paper)

  2. Verification of an interaction model of an ultrasonic oscillatory system with periodontal tissues

    Directory of Open Access Journals (Sweden)

    V. A. Karpuhin

    2014-01-01

    Full Text Available Verification of an interaction model of an ultrasonic oscillatory system with biological tissues which was developed in COMSOL Multiphysics was carried out. It was shown that calculation results in COMSOL Multiphysics obtained using the “Finer” grid (the ratio of the grid step to a minimum transversal section area of the model ≤ 0.3 mm-1 best of all qualitatively and quantitatively corresponded to practical results. The average relative error of the obtained results in comparison with the experimental ones did not exceed 4.0%. Influence of geometrical parameters (thickness of load on electrical admittance of the ultrasonic oscillatory system interacting with biological tissues was investigated. It was shown that increase in thickness of load within the range from 0 to 95 mm led to decrease in calculated values of natural resonance frequency of longitudinal fluctuations and electrical admittance from 26,58 to 26,35 kHz and from 0,86 to 0,44 mS.

  3. Dopamine Induces Oscillatory Activities in Human Midbrain Neurons with Parkin Mutations.

    Science.gov (United States)

    Zhong, Ping; Hu, Zhixing; Jiang, Houbo; Yan, Zhen; Feng, Jian

    2017-05-02

    Locomotor symptoms in Parkinson's disease (PD) are accompanied by widespread oscillatory neuronal activities in basal ganglia. Here, we show that activation of dopamine D1-class receptors elicits a large rhythmic bursting of spontaneous excitatory postsynaptic currents (sEPSCs) in midbrain neurons differentiated from induced pluripotent stem cells (iPSCs) of PD patients with parkin mutations, but not normal subjects. Overexpression of wild-type parkin, but not its PD-causing mutant, abolishes the oscillatory activities in patient neurons. Dopamine induces a delayed enhancement in the amplitude of spontaneous, but not miniature, EPSCs, thus increasing quantal content. The results suggest that presynaptic regulation of glutamatergic transmission by dopamine D1-class receptors is significantly potentiated by parkin mutations. The aberrant dopaminergic regulation of presynaptic glutamatergic transmission in patient-specific iPSC-derived midbrain neurons provides a mechanistic clue to PD pathophysiology, and it demonstrates the usefulness of this model system in understanding how mutations of parkin cause movement symptoms in Parkinson's disease. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability

    Directory of Open Access Journals (Sweden)

    Kuznetsov Andrey

    2011-01-01

    Full Text Available Abstract The aim of this article is to propose a novel type of a nanofluid that contains both nanoparticles and motile (oxytactic microorganisms. The benefits of adding motile microorganisms to the suspension include enhanced mass transfer, microscale mixing, and anticipated improved stability of the nanofluid. In order to understand the behavior of such a suspension at the fundamental level, this article investigates its stability when it occupies a shallow horizontal layer. The oscillatory mode of nanofluid bioconvection may be induced by the interaction of three competing agencies: oxytactic microorganisms, heating or cooling from the bottom, and top or bottom-heavy nanoparticle distribution. The model includes equations expressing conservation of total mass, momentum, thermal energy, nanoparticles, microorganisms, and oxygen. Physical mechanisms responsible for the slip velocity between the nanoparticles and the base fluid, such as Brownian motion and thermophoresis, are accounted for in the model. An approximate analytical solution of the eigenvalue problem is obtained using the Galerkin method. The obtained solution provides important physical insights into the behavior of this system; it also explains when the oscillatory mode of instability is possible in such system.

  5. Padé approximant for normal stress differences in large-amplitude oscillatory shear flow

    Science.gov (United States)

    Poungthong, P.; Saengow, C.; Giacomin, A. J.; Kolitawong, C.; Merger, D.; Wilhelm, M.

    2018-04-01

    Analytical solutions for the normal stress differences in large-amplitude oscillatory shear flow (LAOS), for continuum or molecular models, normally take the inexact form of the first few terms of a series expansion in the shear rate amplitude. Here, we improve the accuracy of these truncated expansions by replacing them with rational functions called Padé approximants. The recent advent of exact solutions in LAOS presents an opportunity to identify accurate and useful Padé approximants. For this identification, we replace the truncated expansion for the corotational Jeffreys fluid with its Padé approximants for the normal stress differences. We uncover the most accurate and useful approximant, the [3,4] approximant, and then test its accuracy against the exact solution [C. Saengow and A. J. Giacomin, "Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow," Phys. Fluids 29, 121601 (2017)]. We use Ewoldt grids to show the stunning accuracy of our [3,4] approximant in LAOS. We quantify this accuracy with an objective function and then map it onto the Pipkin space. Our two applications illustrate how to use our new approximant reliably. For this, we use the Spriggs relations to generalize our best approximant to multimode, and then, we compare with measurements on molten high-density polyethylene and on dissolved polyisobutylene in isobutylene oligomer.

  6. Oscillatory flow at the end of parallel-plate stacks: phenomenological and similarity analysis

    International Nuclear Information System (INIS)

    Mao Xiaoan; Jaworski, Artur J

    2010-01-01

    This paper addresses the physics of the oscillatory flow in the vicinity of a series of parallel plates forming geometrically identical channels. This type of flow is particularly relevant to thermoacoustic engines and refrigerators, where a reciprocating flow is responsible for the desirable energy transfer, but it is also of interest to general fluid mechanics of oscillatory flows past bluff bodies. In this paper, the physics of an acoustically induced flow past a series of plates in an isothermal condition is studied in detail using the data provided by PIV imaging. Particular attention is given to the analysis of the wake flow during the ejection part of the flow cycle, where either closed recirculating vortices or alternating vortex shedding can be observed. This is followed by a similarity analysis of the governing Navier-Stokes equations in order to derive the similarity criteria governing the wake flow behaviour. To this end, similarity numbers including two types of Reynolds number, the Keulegan-Carpenter number and a non-dimensional stack configuration parameter, d/h, are considered and their influence on the phenomena are discussed.

  7. Effects of Synaptic Plasticity on Phase and Period Locking in a Network of Two Oscillatory Neurons

    Science.gov (United States)

    2014-01-01

    We study the effects of synaptic plasticity on the determination of firing period and relative phases in a network of two oscillatory neurons coupled with reciprocal inhibition. We combine the phase response curves of the neurons with the short-term synaptic plasticity properties of the synapses to define Poincaré maps for the activity of an oscillatory network. Fixed points of these maps correspond to the phase-locked modes of the network. These maps allow us to analyze the dependence of the resulting network activity on the properties of network components. Using a combination of analysis and simulations, we show how various parameters of the model affect the existence and stability of phase-locked solutions. We find conditions on the synaptic plasticity profiles and the phase response curves of the neurons for the network to be able to maintain a constant firing period, while varying the phase of locking between the neurons or vice versa. A generalization to cobwebbing for two-dimensional maps is also discussed. PMID:24791223

  8. Phase-locked signals elucidate circuit architecture of an oscillatory pathway.

    Directory of Open Access Journals (Sweden)

    Andreja Jovic

    2010-12-01

    Full Text Available This paper introduces the concept of phase-locking analysis of oscillatory cellular signaling systems to elucidate biochemical circuit architecture. Phase-locking is a physical phenomenon that refers to a response mode in which system output is synchronized to a periodic stimulus; in some instances, the number of responses can be fewer than the number of inputs, indicative of skipped beats. While the observation of phase-locking alone is largely independent of detailed mechanism, we find that the properties of phase-locking are useful for discriminating circuit architectures because they reflect not only the activation but also the recovery characteristics of biochemical circuits. Here, this principle is demonstrated for analysis of a G-protein coupled receptor system, the M3 muscarinic receptor-calcium signaling pathway, using microfluidic-mediated periodic chemical stimulation of the M3 receptor with carbachol and real-time imaging of resulting calcium transients. Using this approach we uncovered the potential importance of basal IP3 production, a finding that has important implications on calcium response fidelity to periodic stimulation. Based upon our analysis, we also negated the notion that the Gq-PLC interaction is switch-like, which has a strong influence upon how extracellular signals are filtered and interpreted downstream. Phase-locking analysis is a new and useful tool for model revision and mechanism elucidation; the method complements conventional genetic and chemical tools for analysis of cellular signaling circuitry and should be broadly applicable to other oscillatory pathways.

  9. Measuring alterations in oscillatory brain networks in schizophrenia with resting-state MEG: State-of-the-art and methodological challenges.

    Science.gov (United States)

    Alamian, Golnoush; Hincapié, Ana-Sofía; Pascarella, Annalisa; Thiery, Thomas; Combrisson, Etienne; Saive, Anne-Lise; Martel, Véronique; Althukov, Dmitrii; Haesebaert, Frédéric; Jerbi, Karim

    2017-09-01

    Neuroimaging studies provide evidence of disturbed resting-state brain networks in Schizophrenia (SZ). However, untangling the neuronal mechanisms that subserve these baseline alterations requires measurement of their electrophysiological underpinnings. This systematic review specifically investigates the contributions of resting-state Magnetoencephalography (MEG) in elucidating abnormal neural organization in SZ patients. A systematic literature review of resting-state MEG studies in SZ was conducted. This literature is discussed in relation to findings from resting-state fMRI and EEG, as well as to task-based MEG research in SZ population. Importantly, methodological limitations are considered and recommendations to overcome current limitations are proposed. Resting-state MEG literature in SZ points towards altered local and long-range oscillatory network dynamics in various frequency bands. Critical methodological challenges with respect to experiment design, and data collection and analysis need to be taken into consideration. Spontaneous MEG data show that local and global neural organization is altered in SZ patients. MEG is a highly promising tool to fill in knowledge gaps about the neurophysiology of SZ. However, to reach its fullest potential, basic methodological challenges need to be overcome. MEG-based resting-state power and connectivity findings could be great assets to clinical and translational research in psychiatry, and SZ in particular. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  10. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Directory of Open Access Journals (Sweden)

    Jeong-Man Kim

    2017-05-01

    Full Text Available This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE systems. In order to implement the design of linear oscillatory generator (LOG for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design pa