WorldWideScience

Sample records for fine synaptic layers

  1. Hardwiring of fine synaptic layers in the zebrafish visual pathway

    Directory of Open Access Journals (Sweden)

    Taylor Michael R

    2008-12-01

    Full Text Available Abstract Background Neuronal connections are often arranged in layers, which are divided into sublaminae harboring synapses with similar response properties. It is still debated how fine-grained synaptic layering is established during development. Here we investigated two stratified areas of the zebrafish visual pathway, the inner plexiform layer (IPL of the retina and the neuropil of the optic tectum, and determined if activity is required for their organization. Results The IPL of 5-day-old zebrafish larvae is composed of at least nine sublaminae, comprising the connections between different types of amacrine, bipolar, and ganglion cells (ACs, BCs, GCs. These sublaminae were distinguished by their expression of cell type-specific transgenic fluorescent reporters and immunohistochemical markers, including protein kinase Cβ (PKC, parvalbumin (Parv, zrf3, and choline acetyltransferase (ChAT. In the tectum, four retinal input layers abut a laminated array of neurites of tectal cells, which differentially express PKC and Parv. We investigated whether these patterns were affected by experimental disruptions of retinal activity in developing fish. Neither elimination of light inputs by dark rearing, nor a D, L-amino-phosphono-butyrate-induced reduction in the retinal response to light onset (but not offset altered IPL or tectal lamination. Moreover, thorough elimination of chemical synaptic transmission with Botulinum toxin B left laminar synaptic arrays intact. Conclusion Our results call into question a role for activity-dependent mechanisms – instructive light signals, balanced on and off BC activity, Hebbian plasticity, or a permissive role for synaptic transmission – in the synaptic stratification we examined. We propose that genetically encoded cues are sufficient to target groups of neurites to synaptic layers in this vertebrate visual system.

  2. Mechanisms of input and output synaptic specificity: finding partners, building synapses, and fine-tuning communication.

    Science.gov (United States)

    Rawson, Randi L; Martin, E Anne; Williams, Megan E

    2017-08-01

    For most neurons to function properly, they need to develop synaptic specificity. This requires finding specific partner neurons, building the correct types of synapses, and fine-tuning these synapses in response to neural activity. Synaptic specificity is common at both a neuron's input and output synapses, whereby unique synapses are built depending on the partnering neuron. Neuroscientists have long appreciated the remarkable specificity of neural circuits but identifying molecular mechanisms mediating synaptic specificity has only recently accelerated. Here, we focus on recent progress in understanding input and output synaptic specificity in the mammalian brain. We review newly identified circuit examples for both and the latest research identifying molecular mediators including Kirrel3, FGFs, and DGLα. Lastly, we expect the pace of research on input and output specificity to continue to accelerate with the advent of new technologies in genomics, microscopy, and proteomics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Analysis of Thomsen parameters for finely layered VTI media

    International Nuclear Information System (INIS)

    Berryman, J.G.; Berge, P.A.

    1997-01-01

    The range of Thomsen's anisotropy parameters ε and δ for vertical transversely isotropic (VTI) media when the anisotropy is due to fine layering of isotropic elas-tic materials is considered. We show that ε lies in the range -3/8 ≤ ε ≤ 1/2 v p 2 > p-2 >-1 for finely layered media having constant density; smaller positive and all negative values of ε occur for media with large fluctuations in the Lamacute e parameter λ We show that sign(δ) = sign ( p -2 > - s -2 > s 2 /v p 2 >) for constant density media, so δ can be either positive or negative. Among all theoretically possible random media, posi-tive and negative δ are equally likely in finely layered media limited to two types of constituent layers. Lay-ered media having large fluctuations in Lamacute e λ are the ones most likely to have positive δ. Since Gassmann's results for fluid-saturated porous media show that the effects of fluids influence only the λ Lamacute e constant, not the shear modulus μ, these results suggest that positive δ occurring together with positive but small ε may be indicative of changing fluid content in layered earth

  4. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system.

    Science.gov (United States)

    Kulkarni, Abhishek; Ertekin, Deniz; Lee, Chi-Hon; Hummel, Thomas

    2016-03-17

    The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.

  5. Synaptic and Cellular Organization of Layer 1 of the Developing Rat Somatosensory Cortex

    Directory of Open Access Journals (Sweden)

    Shruti eMuralidhar

    2014-01-01

    Full Text Available We have performed a systematic and quantitative study of the neuronal and synaptic organisation of neocortical layer 1 in the somatosensory cortex in juvenile rats (P13 – P16 using multi-neuron patch-clamp and 3D morphology reconstructions. We used both subjective expert based and objective classification to establish distinct morphological groups. According to expert based subjective classification, the neurons were classified into six morphological types: (1 the dense axon neurogliaform cell (NGC-DA and (2 a sparse axon neurogliaform cell (NGC-SA, (3 the horizontal axon cell (HAC and (4 those with descending axonal colaterals (DAC, (5 the large axon cell (LAC and (6 the small axon cell (SAC. We also used objective supervised and unsupervised analyses that confirmed 4 out of the 6 expert proposed groups, namely, DAC, HAC, LAC and a combined NGC. The cells were also classified into 5 electrophysiological types based on the Petilla convention; classical non-adapting (cNAC, burst non-adapting (bNAC, classical adapting (cAC, classical stuttering (cSTUT and classical irregular spiking (cIR. The most common electrophysiological type was the cNAC type (40% and the most commonly encountered morpho-electrical type of neuron was the NGC-DA - cNAC. Layer 1 cells are connected by GABAergic inhibitory synaptic connections with a 7.9% connection probability, as well gap junctions with 5.2% connection probability. Most synaptic connections were mediated by both GABAA and GABAB receptors (62.6%, as observed from the response characteristics to single pulse and train stimulations. A smaller fraction of synaptic connections were mediated exclusively by GABAA (15.4% or GABAB (21.8% receptors. Based on the morphological reconstructions, we found multi-synapse connections with an average of 9 putative synapses per connection. These putative touches were widely distributed with 39% on somata and 61% on dendrites.

  6. Replacement of asymmetric synaptic profiles in the molecular layer of dentate gyrus following cycloheximide in the pilocarpine model in rats.

    Directory of Open Access Journals (Sweden)

    Simone eBittencourt

    2015-11-01

    Full Text Available Mossy fiber sprouting is among the best-studied forms of post-lesional synaptic plasticity and is regarded by many as contributory to seizures in both humans and animal models of epilepsy. It is not known whether mossy fiber sprouting increases the number of synapses in the molecular layer or merely replaces lost contacts. Using the pilocarpine model of status epilepticus to induce mossy fiber sprouting, and cycloheximide to block this sprouting, we evaluated at the ultrastructural level the number and type of asymmetric synaptic contacts in the molecular layer of the dentate gyrus. As expected, whereas pilocarpine-treated rats had dense silver grain deposits in the inner molecular layer (reflecting mossy fiber sprouting, pilocarpine+cycloheximide-treated animals did not differ from controls. Both groups of treated rats (Pilo group and CHX+Pilo group had reduced density of asymmetric synaptic profiles (putative excitatory synaptic contacts, which was greater for cycloheximide-treated animals. For both treated groups the loss of excitatory synaptic contacts was even greater in the outer molecular layer than in the best studied inner molecular layer (in which mossy fiber sprouting occurs. These results indicate that mossy fiber sprouting tends to replace lost synaptic contacts rather than increase the absolute number of contacts. We speculate that the overall result is more consistent with restored rather than with increased excitability.

  7. Short-Term Synaptic Plasticity Regulation in Solution-Gated Indium-Gallium-Zinc-Oxide Electric-Double-Layer Transistors.

    Science.gov (United States)

    Wan, Chang Jin; Liu, Yang Hui; Zhu, Li Qiang; Feng, Ping; Shi, Yi; Wan, Qing

    2016-04-20

    In the biological nervous system, synaptic plasticity regulation is based on the modulation of ionic fluxes, and such regulation was regarded as the fundamental mechanism underlying memory and learning. Inspired by such biological strategies, indium-gallium-zinc-oxide (IGZO) electric-double-layer (EDL) transistors gated by aqueous solutions were proposed for synaptic behavior emulations. Short-term synaptic plasticity, such as paired-pulse facilitation, high-pass filtering, and orientation tuning, was experimentally emulated in these EDL transistors. Most importantly, we found that such short-term synaptic plasticity can be effectively regulated by alcohol (ethyl alcohol) and salt (potassium chloride) additives. Our results suggest that solution gated oxide-based EDL transistors could act as the platforms for short-term synaptic plasticity emulation.

  8. Fine structure of long-term changes in the cochlear nucleus after acoustic overstimulation: chronic degeneration and new growth of synaptic endings.

    Science.gov (United States)

    Kim, J J; Gross, J; Potashner, S J; Morest, D K

    2004-09-15

    The companion study showed that acoustic overstimulation of adult chinchillas, with a noise level sufficient to damage the cochlea, led to cytological changes and degeneration of synaptic endings in the cochlear nucleus within 1-16 weeks. In the present study, the same stimulus was used to study the long-term effects on the fine structure of synaptic endings in the cochlear nucleus. For periods of 6 and 8 months after a single exposure to a damaging noise level, there ensued a chronic, continuing process of neurodegeneration involving excitatory and inhibitory synaptic endings. Electron microscopic observations demonstrated freshly occurring degeneration even as late as 8 months. Degeneration was widespread in the neuropil and included the synapses on the globular bushy cell, which forms part of the main ascending auditory pathway. Neurodegeneration was accompanied by newly formed synaptic endings, which repopulated some of the sites vacated previously by axosomatic endings on globular bushy cells. Many of these synaptic endings must arise from central interneurons. The findings suggest that overstimulation can induce a self-sustaining condition of progressive neurodegeneration accompanied by a new growth of synaptic endings. Noise-induced hearing loss thus may progress as a neurodegenerative disease with the capacity for synaptic reorganization within the cochlear nucleus.

  9. Bio-mimicked atomic-layer-deposited iron oxide-based memristor with synaptic potentiation and depression functions

    Science.gov (United States)

    Wan, Xiang; Gao, Fei; Lian, Xiaojuan; Ji, Xincun; Hu, Ertao; He, Lin; Tong, Yi; Guo, Yufeng

    2018-06-01

    In this study, an iron oxide (FeO x )-based memristor was investigated for the realization of artificial synapses. An FeO x resistive switching layer was prepared by self-limiting atomic layer deposition (ALD). The movement of oxygen vacancies enabled the device to have history-dependent synaptic functions, which was further demonstrated by device modeling and simulation. Analog synaptic potentiation/depression in conductance was emulated by applying consecutive voltage pulses in the simulation. Our results suggest that the ALD FeO x -based memristor can be used as the basic building block for neural networks, neuromorphic systems, and brain-inspired computers.

  10. Migration of cesium-137 through sandy soil layer effect of fine silt on migration

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Wadachi, Yoshiki

    1983-01-01

    The migration of 137 Cs through sandy soil layer was studied with consideration of the migration of fine silt by column method. It was found that a portion of fine silt migrated through the soil layer accompanying with 137 Cs. The mathematical migration model of 137 Cs involved the migration of fine silt through such soil layer was presented. This model gave a good accordance between calculated concentration distribution curve in sandy soil layer and effluent curve and observed those. So, this model seems to be advanced one for evaluating migration of 137 Cs in sandy soil layer with silt. (author)

  11. Synaptic Impairment in Layer 1 of the Prefrontal Cortex Induced by Repeated Stress During Adolescence is Reversed in Adulthood

    Science.gov (United States)

    Negrón-Oyarzo, Ignacio; Dagnino-Subiabre, Alexies; Muñoz Carvajal, Pablo

    2015-01-01

    Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC) slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory post-synaptic potential (fEPSP) in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD). Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period. PMID:26617490

  12. Pulsed EM Field Response of a Thin, High-Contrast, Finely Layered Structure With Dielectric and Conductive Properties

    NARCIS (Netherlands)

    De Hoop, A.T.; Jiang, L.

    2009-01-01

    The response of a thin, high-contrast, finely layered structure with dielectric and conductive properties to an incident, pulsed, electromagnetic field is investigated theoretically. The fine layering causes the standard spatial discretization techniques to solve Maxwell's equations numerically to

  13. Synaptic impairment in layer 1 of the prefrontal cortex induced by repeated stress during adolescence is reversed in adulthood

    Directory of Open Access Journals (Sweden)

    Ignacio eNegron-Oyarzo

    2015-11-01

    Full Text Available Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC. There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory postsynaptic potential (fEPSP in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in AMPA/kainate receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD. Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period.

  14. Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors.

    Science.gov (United States)

    Wu, Guodong; Feng, Ping; Wan, Xiang; Zhu, Liqiang; Shi, Yi; Wan, Qing

    2016-03-24

    Recent progress in using biomaterials to fabricate functional electronics has got growing attention for the new generation of environmentally friendly and biocompatible electronic devices. As a kind of biological material with rich source, proteins are essential natural component of all organisms. At the same time, artificial synaptic devices are of great significance for neuromorphic systems because they can emulate the signal process and memory behaviors of biological synapses. In this report, natural chicken albumen with high proton conductivity was used as the coupling electrolyte film for organic/inorganic hybrid synaptic devices fabrication. Some important synaptic functions including paired-pulse facilitation, dynamic filtering, short-term to long-term memory transition and spatial summation and shunting inhibition were successfully mimicked. Our results are very interesting for biological friendly artificial neuron networks and neuromorphic systems.

  15. Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors

    Science.gov (United States)

    Wu, Guodong; Feng, Ping; Wan, Xiang; Zhu, Liqiang; Shi, Yi; Wan, Qing

    2016-03-01

    Recent progress in using biomaterials to fabricate functional electronics has got growing attention for the new generation of environmentally friendly and biocompatible electronic devices. As a kind of biological material with rich source, proteins are essential natural component of all organisms. At the same time, artificial synaptic devices are of great significance for neuromorphic systems because they can emulate the signal process and memory behaviors of biological synapses. In this report, natural chicken albumen with high proton conductivity was used as the coupling electrolyte film for organic/inorganic hybrid synaptic devices fabrication. Some important synaptic functions including paired-pulse facilitation, dynamic filtering, short-term to long-term memory transition and spatial summation and shunting inhibition were successfully mimicked. Our results are very interesting for biological friendly artificial neuron networks and neuromorphic systems.

  16. Fine structure and synaptic organization of the mesencephalic trigeminal nucleus of the cat: a quantitative electron microscopic study.

    Science.gov (United States)

    Lazarov, N

    1996-01-01

    The ultrastructure and synaptic organization of the mesencephalic trigeminal nucleus (MTN) were studied in adult cats by transmission electron microscopy and more precisely quantified with an automated image analysis system. Two subpopulations of MTN neurons were identified within the nucleus: large spherical or ovoid (pseudo)unipolar cells amounted to about 60% of the total population that resemble typical primary sensory neurons and small multipolar neurons (estimated 40%), some of which are possibly interneurons. By electron microscopy, most neurons in the MTN proved to have a rich cytoplasm in the perikaryon with abundant rough endoplasmic reticulum, a large number of free ribosomes and polysomes, also well-developed Golgi complex, and numerous mitochondria and neurofilaments indicating a high rate of protein synthesis and axonal transport in these cells. Three types of synaptic contacts were observed in the MTN: axodendritic, axosomatic and axospinic of both symmetric and asymmetric morphology. Most of them (almost 90%) were axodendritic and axodendritic spine. Approximately 70% of axon terminals contained small round vesicles (S-type boutons) whereas the other 30% belonged to the P-type boutons filled with a pleomorphic vesicle population. Axosomatic synapses were comparatively rare accounting for 10% of the total. About two-third of them were of S-type and almost 25% of the remaining third were F-type in which flat synaptic vesicles could be seen, and less than 10% were P- and G-types with granular vesicles.

  17. Fluid Effects on Shear Waves in Finely Layered Porous Media

    International Nuclear Information System (INIS)

    Berryman, J G

    2004-01-01

    Although there are five effective shear moduli for any layered VTI medium, one and only one effective shear modulus for the layered system contains all the dependence of pore fluids on the elastic or poroelastic constants that can be observed in vertically polarized shear waves. Pore fluids can increase the magnitude the shear energy stored by this modulus by a term that ranges from the smallest to the largest shear moduli of the VTI system. But, since there are five shear moduli in play, the increase in shear energy overall is reduced by a factor of about 5 in general. We can therefore give definite bounds on the maximum increase of shear modulus, being about 20% of the permitted range, when gas is fully replaced by liquid. An attendant increase of density (depending on porosity and fluid density) by approximately 5 to 10% partially offsets the effect of this shear modulus increase. Thus, an increase of shear wave speed on the order of 5 to 10% is shown to be possible when circumstances are favorable - i.e., when the shear modulus fluctuations are large (resulting in strong anisotropy), and the medium behaves in an undrained fashion due to fluid trapping. At frequencies higher than seismic (such as sonic and ultrasonic waves for well-logging or laboratory experiments), short response times also produce the requisite undrained behavior and, therefore, fluids also affect shear waves at high frequencies by increasing rigidity

  18. Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors

    OpenAIRE

    Wu, Guodong; Feng, Ping; Wan, Xiang; Zhu, Liqiang; Shi, Yi; Wan, Qing

    2016-01-01

    Recent progress in using biomaterials to fabricate functional electronics has got growing attention for the new generation of environmentally friendly and biocompatible electronic devices. As a kind of biological material with rich source, proteins are essential natural component of all organisms. At the same time, artificial synaptic devices are of great significance for neuromorphic systems because they can emulate the signal process and memory behaviors of biological synapses. In this repo...

  19. An effective anisotropic poroelastic model for elastic wave propagation in finely layered media

    NARCIS (Netherlands)

    Kudarova, A.; van Dalen, K.N.; Drijkoningen, G.G.

    2016-01-01

    Mesoscopic-scale heterogeneities in porous media cause attenuation and dispersion at seismic frequencies. Effective models are often used to account for this. We have developed a new effective poroelastic model for finely layered media, and we evaluated its impact focusing on the angledependent

  20. Activation of the CREB/c-Fos Pathway during Long-Term Synaptic Plasticity in the Cerebellum Granular Layer

    Directory of Open Access Journals (Sweden)

    Daniela Gandolfi

    2017-06-01

    Full Text Available The induction of long-term potentiation and depression (LTP and LTD is thought to trigger gene expression and protein synthesis, leading to consolidation of synaptic and neuronal changes. However, while LTP and LTD have been proposed to play important roles for sensori-motor learning in the cerebellum granular layer, their association with these mechanisms remained unclear. Here, we have investigated phosphorylation of the cAMP-responsive element binding protein (CREB and activation of the immediate early gene c-Fos pathway following the induction of synaptic plasticity by theta-burst stimulation (TBS in acute cerebellar slices. LTP and LTD were localized using voltage-sensitive dye imaging (VSDi. At two time points following TBS (15 min and 120 min, corresponding to the early and late phases of plasticity, slices were fixed and processed to evaluate CREB phosphorylation (P-CREB and c-FOS protein levels, as well as Creb and c-Fos mRNA expression. High levels of P-CREB and Creb/c-Fos were detected before those of c-FOS, as expected if CREB phosphorylation triggered gene expression followed by protein synthesis. No differences between control slices and slices stimulated with TBS were observed in the presence of an N-methyl-D-aspartate receptor (NMDAR antagonist. Interestingly, activation of the CREB/c-Fos system showed a relevant degree of colocalization with long-term synaptic plasticity. These results show that NMDAR-dependent plasticity at the cerebellum input stage bears about transcriptional and post-transcriptional processes potentially contributing to cerebellar learning and memory consolidation.

  1. Induced migration of fines during waterflooding in communicating layer-cake reservoirs

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2011-01-01

    to more crossflow between layers and lowers the water sweep efficiency. However, this ratio facilitates the fluid diversion caused by the fines migration, leading to a more efficient enhanced oil recovery. The positive contribution from the mobility ratio to the increased oil recovery due to fines...... give rise to reduction of the permeability in water swept zones, which subsequently leads to the diversion of water flow from the initially more permeable layers to the less permeable ones. As a result, the displacement is more even, the water cut at the producer is decreased, and the oil recovery...... is increased. On the other hand, more energy for the pressure drop is required to maintain a constant flow rate. These effects are studied within a new upscaling model developed previously (Zhang et al., 2011). In a communicating layer cake reservoir, higher end-point mobility ratio (water to oil) leads...

  2. Coherent fine scale eddies in turbulence transition of spatially-developing mixing layer

    International Nuclear Information System (INIS)

    Wang, Y.; Tanahashi, M.; Miyauchi, T.

    2007-01-01

    To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar-turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Re ω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (u k ), and decreases to 1.2u k , which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and α:β:γ = -5:1:4 in the transition process. In addition to Kelvin-Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow

  3. Emission characteristics of dispenser cathodes with a fine-grained tungsten top layer

    Science.gov (United States)

    Kimura, S.; Higuchi, T.; Ouchi, Y.; Uda, E.; Nakamura, O.; Sudo, T.; Koyama, K.

    1997-02-01

    In order to improve the emission stability of the Ir-coated dispenser cathode under ion bombardment, a fine-grained tungsten top layer was applied on the substrate porous tungsten plug before Ir coating. The emission characteristics were studied after being assembled in a CRT gun. Cathode current was measured under pulse operation in a range of 0.1-9% duty. Remarkable anti-ion bombardment characteristics were observed over the range of 1-6% duty. The improved cathode showed 1.5 times higher emission current than that of a conventional Ir-coated dispenser cathode at 4% duty. AES analysis showed that the recovering rates of surface Ba and O atoms after ion bombardment were 2.5 times higher. From these results it is confirmed that the Ir coated cathode with a fine-grained tungsten top layer is provided with a good tolerance against the ion bombardment.

  4. Motor Training Promotes Both Synaptic and Intrinsic Plasticity of Layer II/III Pyramidal Neurons in the Primary Motor Cortex.

    Science.gov (United States)

    Kida, Hiroyuki; Tsuda, Yasumasa; Ito, Nana; Yamamoto, Yui; Owada, Yuji; Kamiya, Yoshinori; Mitsushima, Dai

    2016-08-01

    Motor skill training induces structural plasticity at dendritic spines in the primary motor cortex (M1). To further analyze both synaptic and intrinsic plasticity in the layer II/III area of M1, we subjected rats to a rotor rod test and then prepared acute brain slices. Motor skill consistently improved within 2 days of training. Voltage clamp analysis showed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate (AMPA/NMDA) ratios and miniature EPSC amplitudes in 1-day trained rats compared with untrained rats, suggesting increased postsynaptic AMPA receptors in the early phase of motor learning. Compared with untrained controls, 2-days trained rats showed significantly higher miniature EPSC amplitude and frequency. Paired-pulse analysis further demonstrated lower rates in 2-days trained rats, suggesting increased presynaptic glutamate release during the late phase of learning. One-day trained rats showed decreased miniature IPSC frequency and increased paired-pulse analysis of evoked IPSC, suggesting a transient decrease in presynaptic γ-aminobutyric acid (GABA) release. Moreover, current clamp analysis revealed lower resting membrane potential, higher spike threshold, and deeper afterhyperpolarization in 1-day trained rats-while 2-days trained rats showed higher membrane potential, suggesting dynamic changes in intrinsic properties. Our present results indicate dynamic changes in glutamatergic, GABAergic, and intrinsic plasticity in M1 layer II/III neurons after the motor training. © The Author 2016. Published by Oxford University Press.

  5. Synaptic Conductance Estimates of the Connection Between Local Inhibitor Interneurons and Pyramidal Neurons in Layer 2/3 of a Cortical Column

    Science.gov (United States)

    Hoffmann, Jochen H.O.; Meyer, H. S.; Schmitt, Arno C.; Straehle, Jakob; Weitbrecht, Trinh; Sakmann, Bert; Helmstaedter, Moritz

    2015-01-01

    Stimulation of a principal whisker yields sparse action potential (AP) spiking in layer 2/3 (L2/3) pyramidal neurons in a cortical column of rat barrel cortex. The low AP rates in pyramidal neurons could be explained by activation of interneurons in L2/3 providing inhibition onto L2/3 pyramidal neurons. L2/3 interneurons classified as local inhibitors based on their axonal projection in the same column were reported to receive strong excitatory input from spiny neurons in L4, which are also the main source of the excitatory input to L2/3 pyramidal neurons. Here, we investigated the remaining synaptic connection in this intracolumnar microcircuit. We found strong and reliable inhibitory synaptic transmission between intracolumnar L2/3 local-inhibitor-to-L2/3 pyramidal neuron pairs [inhibitory postsynaptic potential (IPSP) amplitude −0.88 ± 0.67 mV]. On average, 6.2 ± 2 synaptic contacts were made by L2/3 local inhibitors onto L2/3 pyramidal neurons at 107 ± 64 µm path distance from the pyramidal neuron soma, thus overlapping with the distribution of synaptic contacts from L4 spiny neurons onto L2/3 pyramidal neurons (67 ± 34 µm). Finally, using compartmental simulations, we determined the synaptic conductance per synaptic contact to be 0.77 ± 0.4 nS. We conclude that the synaptic circuit from L4 to L2/3 can provide efficient shunting inhibition that is temporally and spatially aligned with the excitatory input from L4 to L2/3. PMID:25761638

  6. Development of inhibitory synaptic inputs on layer 2/3 pyramidal neurons in the rat medial prefrontal cortex

    KAUST Repository

    Virtanen, Mari A.; Lacoh, Claudia Marvine; Fiumelli, Hubert; Kosel, Markus; Tyagarajan, Shiva; de Roo, Mathias; Vutskits, Laszlo

    2018-01-01

    Inhibitory control of pyramidal neurons plays a major role in governing the excitability in the brain. While spatial mapping of inhibitory inputs onto pyramidal neurons would provide important structural data on neuronal signaling, studying their distribution at the single cell level is difficult due to the lack of easily identifiable anatomical proxies. Here, we describe an approach where in utero electroporation of a plasmid encoding for fluorescently tagged gephyrin into the precursors of pyramidal cells along with ionotophoretic injection of Lucifer Yellow can reliably and specifically detect GABAergic synapses on the dendritic arbour of single pyramidal neurons. Using this technique and focusing on the basal dendritic arbour of layer 2/3 pyramidal cells of the medial prefrontal cortex, we demonstrate an intense development of GABAergic inputs onto these cells between postnatal days 10 and 20. While the spatial distribution of gephyrin clusters was not affected by the distance from the cell body at postnatal day 10, we found that distal dendritic segments appeared to have a higher gephyrin density at later developmental stages. We also show a transient increase around postnatal day 20 in the percentage of spines that are carrying a gephyrin cluster, indicative of innervation by a GABAergic terminal. Since the precise spatial arrangement of synaptic inputs is an important determinant of neuronal responses, we believe that the method described in this work may allow a better understanding of how inhibition settles together with excitation, and serve as basics for further modelling studies focusing on the geometry of dendritic inhibition during development.

  7. Development of inhibitory synaptic inputs on layer 2/3 pyramidal neurons in the rat medial prefrontal cortex

    KAUST Repository

    Virtanen, Mari A.

    2018-01-10

    Inhibitory control of pyramidal neurons plays a major role in governing the excitability in the brain. While spatial mapping of inhibitory inputs onto pyramidal neurons would provide important structural data on neuronal signaling, studying their distribution at the single cell level is difficult due to the lack of easily identifiable anatomical proxies. Here, we describe an approach where in utero electroporation of a plasmid encoding for fluorescently tagged gephyrin into the precursors of pyramidal cells along with ionotophoretic injection of Lucifer Yellow can reliably and specifically detect GABAergic synapses on the dendritic arbour of single pyramidal neurons. Using this technique and focusing on the basal dendritic arbour of layer 2/3 pyramidal cells of the medial prefrontal cortex, we demonstrate an intense development of GABAergic inputs onto these cells between postnatal days 10 and 20. While the spatial distribution of gephyrin clusters was not affected by the distance from the cell body at postnatal day 10, we found that distal dendritic segments appeared to have a higher gephyrin density at later developmental stages. We also show a transient increase around postnatal day 20 in the percentage of spines that are carrying a gephyrin cluster, indicative of innervation by a GABAergic terminal. Since the precise spatial arrangement of synaptic inputs is an important determinant of neuronal responses, we believe that the method described in this work may allow a better understanding of how inhibition settles together with excitation, and serve as basics for further modelling studies focusing on the geometry of dendritic inhibition during development.

  8. Background synaptic activity in rat entorhinal cortex shows a progressively greater dominance of inhibition over excitation from deep to superficial layers.

    Directory of Open Access Journals (Sweden)

    Stuart David Greenhill

    Full Text Available The entorhinal cortex (EC controls hippocampal input and output, playing major roles in memory and spatial navigation. Different layers of the EC subserve different functions and a number of studies have compared properties of neurones across layers. We have studied synaptic inhibition and excitation in EC neurones, and we have previously compared spontaneous synaptic release of glutamate and GABA using patch clamp recordings of synaptic currents in principal neurones of layers II (L2 and V (L5. Here, we add comparative studies in layer III (L3. Such studies essentially look at neuronal activity from a presynaptic viewpoint. To correlate this with the postsynaptic consequences of spontaneous transmitter release, we have determined global postsynaptic conductances mediated by the two transmitters, using a method to estimate conductances from membrane potential fluctuations. We have previously presented some of this data for L3 and now extend to L2 and L5. Inhibition dominates excitation in all layers but the ratio follows a clear rank order (highest to lowest of L2>L3>L5. The variance of the background conductances was markedly higher for excitation and inhibition in L2 compared to L3 or L5. We also show that induction of synchronized network epileptiform activity by blockade of GABA inhibition reveals a relative reluctance of L2 to participate in such activity. This was associated with maintenance of a dominant background inhibition in L2, whereas in L3 and L5 the absolute level of inhibition fell below that of excitation, coincident with the appearance of synchronized discharges. Further experiments identified potential roles for competition for bicuculline by ambient GABA at the GABAA receptor, and strychnine-sensitive glycine receptors in residual inhibition in L2. We discuss our results in terms of control of excitability in neuronal subpopulations of EC neurones and what these may suggest for their functional roles.

  9. Angle-resolved photoemission extended fine structure: Multiple layers of emitters and multiple initial states

    International Nuclear Information System (INIS)

    Huff, W.R.A.; Kellar, S.A.; Moler, E.J.; California Univ., Berkeley, CA; Chen, Y.; Wu, H.; Shirley, D.A.; Hussain, Z.

    1995-01-01

    Recently, angle-resolved photoemission extended fine structure (ARPEFS) has been applied to experimental systems involving multiple layers of emitters and non-s core-level photoemission in an effort to broaden the utility of the technique. Most of the previous systems have been comprised of atomic or molecular overlayers adsorbed onto a single-crystal, metal surface and the photoemission data were taken from an s atomic core-level in the overlayer. For such a system, the acquired ARPEFS data is dominated by the p o final state wave backscattering from the substrate atoms and is well understood. In this study, we investigate ARPEFS as a surface-region structure determination technique when applied to experimental systems comprised of multiple layers of photoemitters and arbitrary initial state core-level photoemission. Understanding the data acquired from multiple layers of photoemitters is useful for studying multilayer interfaces, ''buried'' surfaces, and clean crystals in ultra- high vacuum. The ability to apply ARPEFS to arbitrary initial state core-level photoemission obviously opens up many systems to analysis. Efforts have been ongoing to understand such data in depth. We present clean Cu(111) 3s, 3p, and 3d core-level, normal photoemission data taken on a high resolution soft x-ray beamline 9.3.2 at the Advanced Light Source in Berkeley, California and clean Ni(111) 3p normal photoemission data taken at the National Synchrotron Light Source in Upton, New York, USA

  10. The fine structure of human germ layers in vivo: clues to the early differentiation of embryonic stem cells in vitro.

    Science.gov (United States)

    Sathananthan, Henry; Selvaraj, Kamala; Clark, Joan

    2011-08-01

    The fine structure of the three germ layers in human ectopic embryos (stage 7) have been documented by digital light and electron microscopy. The formation of ectoderm, endoderm and mesoderm and notochordal cells, and also the extraembryonic membranes, amnion and yolk sac, are imaged. The germ layers give rise to all the cells and tissues of the human body. Possible clues to the early differentiation of embryonic stem cells (ESC) in vitro were obtained, since these events are more or less mimicked in cultures of ESC derived from the inner cell mass of human blastocysts. The findings are discussed with reference to previous studies on the fine structure of ESC using the same technique. Copyright © 2011. Published by Elsevier Ltd.

  11. A numerical investigation of fine sediment resuspension in the wave boundary layer - effect of hindered settling and bedforms

    Science.gov (United States)

    Hsu, T. J.; Cheng, Z.; Yu, X.

    2016-02-01

    The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to the continental margin. Hence, studying the fine sediment resuspension in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycle. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with the sediment availability. As the sediment availability and hence the sediment-induced stable stratification increase, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to the floc dynamics and hindered settling. This study further investigate the effect of hindered settling. Particularly, for flocs with lower gelling concentrations, the hindered settling effect can play a key role in sustaining large amount of suspended sediment load and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A condition for the occurrence of gelling ignition is proposed for a range of wave intensities as a function of sediment/floc properties and erodibility parameters. These aforementioned studies are limited to fine sediment transport over a flat bed. However, recent field and laboratory observation show that a small amount of sand fraction can lead to the formation of small bedforms, which can armor the bed while in the meantime enhance near bed turbulence. Preliminary investigation on the effect of bedforms on the resulting transport modes will also be presented.

  12. Cross-Layer Framework for Fine-Grained Channel Access in Next Generation High-Density WiFi Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAO Haitao; ZHANG Shaojie; Emiliano Garcia-Palacios

    2016-01-01

    Densely deployed WiFi networks will play a crucial role in providing the capacity for next generation mobile internet.However,due to increasing interference,overlapped channels in WiFi networks and throughput efficiency degradation,densely deployed WiFi networks is not a guarantee to obtain higher throughput.An emergent challenge is how to efficiently utilize scarce spectrum resources,by matching physical layer resources to traffic demand.In this aspect,access control allocation strategies play a pivotal role but remain too coarse-grained.As a solution,this research proposes a flexible framework for fine-grained channel width adaptation and multi-channel access in WiFi networks.This approach,named SFCA (Subcarrier Fine-grained Channel Access),adopts DOFDM (Discontinuous Orthogonal Frequency Division Multiplexing) at the PHY layer.It allocates the frequency resource with a subcarrier granularity,which facilitates the channel width adaptation for multi-channel access and thus brings more flexibility and higher frequency efficiency.The MAC layer uses a frequencytime domain backoff scheme,which combines the popular time-domain BEB scheme with a frequency-domain backoff to decrease access collision,resulting in higher access probability for the contending nodes.SFCA is compared with FICA (an established access scheme) showing significant outperformance.Finally we present results for next generation 802.11 ac WiFi networks.

  13. Mathematical model of consolidation of fine concrete mixtures with different mobility, casted by vacuumizing and axial pressing in layers

    Directory of Open Access Journals (Sweden)

    Dedeneva Elena

    2017-01-01

    Full Text Available A mathematical model allowing establishing regularities in the consolidation processes of fine-grained concrete mixtures with different mobility and compaction methods has been worked out. This study is based on two-phase systems and nonlinear character of their consolidation. It resolves the question of the choice of vacuumizing optimal parameters and axial pressing in layers for molding of thin-walled products such as concrete roof tiles and concrete pipe products. Finally, we can get products without heat treatment by the materials and energy-saving technologies.

  14. Ultra-fine structural characterization and bioactivity evaluation of TiO2 nanotube layers.

    Science.gov (United States)

    Jang, JaeMyung; Kwon, TaeYub; Kim, KyoHan

    2008-10-01

    For an application as biomedical materials of high performance with a good biocompatibility, the TiO2 nanotube-type oxide film on Ti substrate has been fabricated by electrochemical method, and the effects of surface characteristics of TiO2 naotube layer have been investigated. The surface morphology of TiO2 nanotube layer depends on factors such as anodizing time, current density, and electrolyte temperature. Moreover, the cell and pore size gradually were increased with the passage of anodizing time. X-ray diffraction (XRD) results indicated that the TiO2 nanotube layer formed in acidic electrolytes was mainly composed of anatase structure containing rutile. From the analysis of chemical states of TiO2 nanotube layer using X-ray photoelectron spectroscopy (XPS), Ti2p, P2p and O1s were observed in the nanotubes layer, which were penetrated from the electrolyte into the oxide layer during anodic process. The incorporated phosphate species were found mostly in the forms of HPO4-, PO4-, and PO3-. From the result of biological evaluation in simulated body fluid (SBF) the TiO2 nanotube layer was effective for bioactive property.

  15. Modification of a hydrophobic layer by a point mutation in syntaxin 1A regulates the rate of synaptic vesicle fusion.

    Directory of Open Access Journals (Sweden)

    Robert D Lagow

    2007-04-01

    Full Text Available Both constitutive secretion and Ca(2+-regulated exocytosis require the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE complexes. At present, little is known about how the SNARE complexes mediating these two distinct pathways differ in structure. Using the Drosophila neuromuscular synapse as a model, we show that a mutation modifying a hydrophobic layer in syntaxin 1A regulates the rate of vesicle fusion. Syntaxin 1A molecules share a highly conserved threonine in the C-terminal +7 layer near the transmembrane domain. Mutation of this threonine to isoleucine results in a structural change that more closely resembles those found in syntaxins ascribed to the constitutive secretory pathway. Flies carrying the I254 mutant protein have increased levels of SNARE complexes and dramatically enhanced rate of both constitutive and evoked vesicle fusion. In contrast, overexpression of the T254 wild-type protein in neurons reduces vesicle fusion only in the I254 mutant background. These results are consistent with molecular dynamics simulations of the SNARE core complex, suggesting that T254 serves as an internal brake to dampen SNARE zippering and impede vesicle fusion, whereas I254 favors fusion by enhancing intermolecular interaction within the SNARE core complex.

  16. Intraspecific differences in lipid content of calanoid copepods across fine-scale depth ranges within the photic layer.

    Directory of Open Access Journals (Sweden)

    Margarita Zarubin

    Full Text Available Copepods are among the most abundant and diverse groups of mesozooplankton in the world's oceans. Each species has a certain depth range within which different individuals (of the same life stage and sex are found. Lipids are accumulated in many calanoid copepods for energy storage and reproduction. Lipid content in some species increases with depth, however studies so far focused mostly on temperate and high-latitude seasonal vertically migrating copepods and compared lipid contents among individuals either from coarse layers or between diapausing, deep-dwelling copepods and individuals found in the photic, near-surface layer. Here we examined whether lipid contents of individual calanoid copepods of the same species, life stage/sex differ between finer depth layers within the upper water column of subtropical and Arctic seas. A total of 6 calanoid species were collected from samples taken at precise depths within the photic layer in both cold eutrophic and warm oligotrophic environments using SCUBA diving, MOCNESS and Multinet. Measurements of lipid content were obtained from digitized photographs of the collected individuals. The results revealed significant differences in lipid content across depth differences as small as 12-15 meters for Mecynocera clausi C5 and Ctenocalanus vanus C5 (Red Sea, Clausocalanus furcatus males and two clausocalanid C5s (Mediterranean Sea, and Calanus glacialis C5 (Arctic. We suggest two possible explanations for the differences in lipid content with depth on such a fine scale: predator avoidance and buoyancy.

  17. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  18. Characterization of neuronal intrinsic properties and synaptic transmission in layer I of anterior cingulate cortex from adult mice

    Directory of Open Access Journals (Sweden)

    Li Xiang-Yao

    2012-07-01

    Full Text Available Abstract The neurons in neocortex layer I (LI provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC, a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors, and inhibitory inputs (which were mediated by GABAA receptors. Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice.

  19. EDITORIAL: Synaptic electronics Synaptic electronics

    Science.gov (United States)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  20. CVD synthesis of carbon nanotubes using a finely dispersed cobalt catalyst and their use in double layer electrochemical capacitors

    International Nuclear Information System (INIS)

    Chatterjee, A.K.; Sharon, Maheshwar; Banerjee, Rangan; Neumann-Spallart, Michael

    2003-01-01

    Carbon nanotubes (CNT) were obtained by chemical vapour deposition (CVD), decomposing turpentine oil over finely dispersed Co metal as a catalyst at 675 deg. C. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images reveal that the nanotubes are densely packed and of 10-50 nm in diameter. The XRD pattern of purified CNT shows that they are graphitic in nature. Resistivity measurements of these CNT indicate that they are highly conducting. Hall measurements of CNT reveal that electrons are the majority carriers with a carrier concentration of 1.35x10 20 cm -3 . Cyclic voltammetry (CV) and constant current charging/discharging was used to characterise the behaviour of electrochemical double layer capacitors of purified CNT with H 2 SO 4 . For CNT/2 M H 2 SO 4 /CNT, a capacitance of 12 F g -1 (based on the weight of the active material) was obtained

  1. Activation of Al–Cu–Fe quasicrystalline surface: fabrication of a fine nanocomposite layer with high catalytic performance

    Directory of Open Access Journals (Sweden)

    Satoshi Kameoka

    2014-01-01

    Full Text Available A fine layered nanocomposite with a total thickness of about 200 nm was formed on the surface of an Al63Cu25Fe12 quasicrystal (QC. The nanocomposite was found to exhibit high catalytic performance for steam reforming of methanol. The nanocomposite was formed by a self-assembly process, by leaching the Al–Cu–Fe QC using a 5 wt% Na2CO3 aqueous solution followed by calcination in air at 873 K. The quasiperiodic nature of the QC played an important role in the formation of such a structure. Its high catalytic activity originated from the presence of highly dispersed copper and iron species, which also suppressed the sintering of nanoparticles.

  2. The coincident activation of lemniscal and paralemniscal inputs can drive synaptic plasticity in layer 2/3 pyramidal neurons of the mouse somatosensory cortex in vivo

    Directory of Open Access Journals (Sweden)

    Vassilis Kehayas

    2014-03-01

    Full Text Available Structural plasticity in the somatosensory cortex is maintained throughout life. In adult animals structural changes occur at the level of dendritic spines and axonal boutons in response to alterations in sensory experience. The causal relationship between synaptic activity and structural changes, however, is not clear. Hebbian-plasticity models predict that synapses will be stabilized at the nodes of neuronal networks that display high levels of coincident activity. Here, we aim at studying the effects of a targeted increase in coincident activity between segregated inputs on pyramidal cell synapses of the mouse somatosensory barrel cortex in vivo. Supragranular layers of the barrel cortex receive anatomically distinct inputs from two thalamic pathways: the ‘lemniscal’ pathway that originates in the ventral posteromedial (VPM nucleus and projects in a whisker-specific fashion to the barrel columns, and the ‘paralemniscal’ pathway that originates in the posteromedial (POm nucleus and projects to the cortex in a non-specific manner. Previous work from our lab shows that rhythmic (8Hz whisker stimulation-evoked LTP (RWS-LTP in layer (L 2/3 pyramidal cells relies on the combined activity of lemniscal and paralemniscal pathways. Here, we targeted ChR2 expression to POm neurons using AAV-mediated gene transfer in order to optically control the activity of those inputs. As a first step, we show that photostimulation of the POm nucleus induces NMDA-dependent, sub-threshold responses in L2/3 pyramidal cells similar to those that are required for the induction of RWS-LTP. In addition, simultaneous photostimulation of POm neurons together with whisker stimulation at low frequencies (1Hz can also elicit LTP, suggesting that coincident lemniscal and paralemniscal input can drive LTP induction. Next, we combined the ChR2-tdTomato expression in POm neurons with sparse AAV-mediated eGFP expression in L2/3 pyramidal cells in order to study the effects

  3. Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains and microbial community succession analysis

    Science.gov (United States)

    Hao, Xiao-dong; Liang, Yi-li; Yin, Hua-qun; Liu, Hong-wei; Zeng, Wei-min; Liu, Xue-duan

    2017-04-01

    Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains was carried out by mixed cultures on a small scale over a period of 210 d. Lump ores as a framework were loaded at the bottom of the ore heap. The overall copper leaching rates of tailings and lump ores were 57.10wt% and 65.52wt%, respectively. The dynamic shifts of microbial community structures about attached microorganisms were determined using the Illumina MiSeq sequencing platform based on 16S rRNA amplification strategy. The results indicated that chemolithotrophic genera Acidithiobacillus and Leptospirillum were always detected and dominated the microbial community in the initial and middle stages of the heap bioleaching process; both genera might be responsible for improving the copper extraction. However, Thermogymnomonas and Ferroplasma increased gradually in the final stage. Moreover, the effects of various physicochemical parameters and microbial community shifts on the leaching efficiency were further investigated and these associations provided some important clues for facilitating the effective application of bioleaching.

  4. Automatic recognition of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNNs.

    Science.gov (United States)

    Han, Guanghui; Liu, Xiabi; Zheng, Guangyuan; Wang, Murong; Huang, Shan

    2018-06-06

    Ground-glass opacity (GGO) is a common CT imaging sign on high-resolution CT, which means the lesion is more likely to be malignant compared to common solid lung nodules. The automatic recognition of GGO CT imaging signs is of great importance for early diagnosis and possible cure of lung cancers. The present GGO recognition methods employ traditional low-level features and system performance improves slowly. Considering the high-performance of CNN model in computer vision field, we proposed an automatic recognition method of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNN models in this paper. Our hybrid resampling is performed on multi-views and multi-receptive fields, which reduces the risk of missing small or large GGOs by adopting representative sampling panels and processing GGOs with multiple scales simultaneously. The layer-wise fine-tuning strategy has the ability to obtain the optimal fine-tuning model. Multi-CNN models fusion strategy obtains better performance than any single trained model. We evaluated our method on the GGO nodule samples in publicly available LIDC-IDRI dataset of chest CT scans. The experimental results show that our method yields excellent results with 96.64% sensitivity, 71.43% specificity, and 0.83 F1 score. Our method is a promising approach to apply deep learning method to computer-aided analysis of specific CT imaging signs with insufficient labeled images. Graphical abstract We proposed an automatic recognition method of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNN models in this paper. Our hybrid resampling reduces the risk of missing small or large GGOs by adopting representative sampling panels and processing GGOs with multiple scales simultaneously. The layer-wise fine-tuning strategy has ability to obtain the optimal fine-tuning model. Our method is a promising approach to apply deep learning method to computer-aided analysis

  5. Application of "The Water Layer Model" to self-compacting mortar with different size distributions of fine aggregate

    NARCIS (Netherlands)

    Midorikawa, T.; Pelova, G.I.; Walraven, J.C.

    2009-01-01

    Self-Compacting Concrete is a relatively new type of concrete. Up to now only a few models have been developed to explain its physical behaviour, like the Water Layer Model and the Excess Paste Model. In this paper, the difference between the Water Layer Model and the Excess Paste Model is

  6. Reprint of: A numerical investigation of fine sediment resuspension in the wave boundary layer-Uncertainties in particle inertia and hindered settling

    Science.gov (United States)

    Cheng, Zhen; Yu, Xiao; Hsu, Tian-Jian; Balachandar, S.

    2016-05-01

    The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to continental margins. Hence, studying fine sediment resuspensions in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycles. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with sediment availabilities. As the sediment availability and hence the sediment-induced stable stratification increases, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to hindered settling and particle inertia effects. Present numerical simulations including the particle inertia suggest that for a typical wave condition in continental shelves, the effect of particle inertia is negligible. Through additional numerical experiments, we also confirm that the particle inertia tends (up to the Stokes number St = 0.2) to attenuate flow turbulence. On the other hand, for flocs with lower gelling concentrations, the hindered settling can play a key role in sustaining a large amount of suspended sediments and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A sufficient condition for the occurrence of gelling ignition is hypothesized for a range of wave intensities as a function of sediment/floc properties and erodibility parameters.

  7. Multiscale modeling and nested simulations of three-dimensional ionospheric plasmas: Rayleigh–Taylor turbulence and nonequilibrium layer dynamics at fine scales

    International Nuclear Information System (INIS)

    Mahalov, Alex

    2014-01-01

    Multiscale modeling and high resolution three-dimensional simulations of nonequilibrium ionospheric dynamics are major frontiers in the field of space sciences. The latest developments in fast computational algorithms and novel numerical methods have advanced reliable forecasting of ionospheric environments at fine scales. These new capabilities include improved physics-based predictive modeling, nesting and implicit relaxation techniques that are designed to integrate models of disparate scales. A range of scales, from mesoscale to ionospheric microscale, are included in a 3D modeling framework. Analyses and simulations of primary and secondary Rayleigh–Taylor instabilities in the equatorial spread F (ESF), the response of the plasma density to the neutral turbulent dynamics, and wave breaking in the lower region of the ionosphere and nonequilibrium layer dynamics at fine scales are presented for coupled systems (ions, electrons and neutral winds), thus enabling studies of mesoscale/microscale dynamics for a range of altitudes that encompass the ionospheric E and F layers. We examine the organizing mixing patterns for plasma flows, which occur due to polarized gravity wave excitations in the neutral field, using Lagrangian coherent structures (LCS). LCS objectively depict the flow topology and the extracted scintillation-producing irregularities that indicate a generation of ionospheric density gradients, due to the accumulation of plasma. The scintillation effects in propagation, through strongly inhomogeneous ionospheric media, are induced by trapping electromagnetic (EM) waves in parabolic cavities, which are created by the refractive index gradients along the propagation paths. (paper)

  8. Aircraft measurements to characterize polluted winter boundary layers: Overview of twin otter flights during the Utah Winter Fine Particulate Matter Study

    Science.gov (United States)

    Brown, S. S.; Baasandorj, M.; Franchin, A.; Middlebrook, A. M.; Goldberger, L.; Thornton, J. A.; Dube, W. P.; McDuffie, E. E.; Womack, C.; Fibiger, D. L.; Moravek, A.; Clark, J. C.; Murphy, J. G.; Mitchell, R.

    2017-12-01

    Winter air pollution is a significant public health concern. In many regions of the U.S., Europe and Asia, wintertime particulate matter concentrations exceed national and / or international air quality standards. Winter air pollution also represents a scientific challenge because these events occur during stagnation events in shallow, vertically stratified boundary layers whose composition is difficult to probe from surface level measurements. Chemical processes responsible for the conversion of primary emissions to secondary pollutants such as ammonium nitrate aerosol vary with height above ground level. Sources of oxidants are poorly understood and may result from both local chemical production and mixing between shallow inversion layers and background air. During the Utah Winter Fine Particulate Study (UWFPS) in January - February 2017, the NOAA twin otter executed 23 research flights with a payload designed to characterize the formation of ammonium nitrate aerosol in three mountain valleys of northern Utah (Salt Lake, Cache, and Utah). These valleys are subject to periodic episodes of winter aerosol pollution well in excess of U.S. national ambient air quality standards. This presentation will describe the measurement strategy of the twin otter flights to address the specific features of aerosol pollution within winter boundary layer of this region. This strategy is relevant to understanding the broader issue of winter air pollution in other regions and potentially to the design of future studies. The presentation will summarize findings from UWFPS related to boundary layer structure, emissions and chemical processes responsible for ammonium nitrate aerosol in this region.

  9. Deep Learning and Developmental Learning: Emergence of Fine-to-Coarse Conceptual Categories at Layers of Deep Belief Network.

    Science.gov (United States)

    Sadeghi, Zahra

    2016-09-01

    In this paper, I investigate conceptual categories derived from developmental processing in a deep neural network. The similarity matrices of deep representation at each layer of neural network are computed and compared with their raw representation. While the clusters generated by raw representation stand at the basic level of abstraction, conceptual categories obtained from deep representation shows a bottom-up transition procedure. Results demonstrate a developmental course of learning from specific to general level of abstraction through learned layers of representations in a deep belief network. © The Author(s) 2016.

  10. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  11. Banach Synaptic Algebras

    Science.gov (United States)

    Foulis, David J.; Pulmannov, Sylvia

    2018-04-01

    Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.

  12. Ultra-fine structures of Pd-Ag-HAp nanoparticle deposition on protruded TiO2 barrier layer for dental implant

    Science.gov (United States)

    Jang, Jae-Myung; Kim, Seung-Dai; Park, Tae-Eon; Choe, Han-Cheol

    2018-02-01

    The biocompatibility structure of an implant surface is of great importance to the formation of new bone tissue around the dental implant and also has a significant chemical reaction in the osseointegration process. Thus, ultra-fine Pd-Ag-HAp nanoparticles have been electrodeposited on protruded TiO2 barrier layer in mixed electrolyte solutions. Unusual protrusions patterns, which are assigned to Pd-Ag-HAp nanoparticles, can be clearly differentiated from a TiO2 nanotube oxide layer formed by an anodizing process. In the chemical bonding state, the surface characteristics of Pd/Ag/HAp compounds have been investigated by FE-SEM, EDS mapping analysis, and XPS analysis. The mapping dots of the elements including Ti, Ca, Pd, Ag, and P showed a homogeneous distribution throughout the entire surface when deposited onto the protruded TiO2 barrier layer. The XPS spectra of Ti-2p, O-1S, Pd-3d, and Ag-3d have been investigated, with the major XPS peak indicating Pd-3d. The Ag-3d level was clearly observed with further scanning of the Ca-2p region. Based on the results of the chemical states, the structural properties of the protrusion patterns were also examined after being deposited onto the barrier oxide film, resulting in the representative protrusion patterns being mainly composed of Pd-Ag-HAp compounds. The results of the soaking evaluation showed that the protrusion patterns and the protruded TiO2 barrier layer were all effective in regards to biocompatibility.

  13. Resistive switching and synaptic properties of fully atomic layer deposition grown TiN/HfO{sub 2}/TiN devices

    Energy Technology Data Exchange (ETDEWEB)

    Matveyev, Yu.; Zenkevich, A. [Moscow Institute of Physics and Technology, 141700 Moscow Region (Russian Federation); NRNU “Moscow Engineering Physics Institute”, 115409 Moscow (Russian Federation); Egorov, K.; Markeev, A. [Moscow Institute of Physics and Technology, 141700 Moscow Region (Russian Federation)

    2015-01-28

    Recently proposed novel neural network hardware designs imply the use of memristors as electronic synapses in 3D cross-bar architecture. Atomic layer deposition (ALD) is the most feasible technique to fabricate such arrays. In this work, we present the results of the detailed investigation of the gradual resistive switching (memristive) effect in nanometer thick fully ALD grown TiN/HfO{sub 2}/TiN stacks. The modelling of the I-V curves confirms interface limited trap-assisted-tunneling mechanism along the oxygen vacancies in HfO{sub 2} in all conduction states. The resistivity of the stack is found to critically depend upon the distance from the interface to the first trap in HfO{sub 2}. The memristive properties of ALD grown TiN/HfO{sub 2}/TiN devices are correlated with the demonstrated neuromorphic functionalities, such as long-term potentiation/depression and spike-timing dependent plasticity, thus indicating their potential as electronic synapses in neuromorphic hardware.

  14. Pore radius fine tuning of a silica matrix (MCM-41) based on the synthesis of alumina nanolayers with different thicknesses by atomic layer deposition

    International Nuclear Information System (INIS)

    Zemtsova, Elena G.; Arbenin, Andrei Yu.; Plotnikov, Alexander F.; Smirnov, Vladimir M.

    2015-01-01

    The authors investigated a new approach to modify the surface of the mesoporous silica matrix MCM-41. This approach is based on manipulating the chemical composition of the porous surface layer and also on fine tuning the pore radius by applying the atomic layer deposition (ALD) technique. The synthesis of alumina nanolayers was performed on the planar and the porous matrix (MCM-41) by the ALD technique using aluminum tri-sec-butoxide and water as precursors. The authors show that one cycle on silicon, using aluminum tri-sec-butoxide and water as precursors, results in a 1–1.2 Å increase in alumina nanolayer thickness. This is comparable to the increase in thickness per cycle for other precursors such as trimethylaluminum and aluminum chloride. The authors show that the synthesis of an Al 2 O 3 nanolayer on the pore surface of the mesoporous silica matrix MCM-41 by the ALD technique results in a regular change in the porous structure of the samples. The specific porosity (ml/g) of the MCM-41 was 0.95 and that of MCM-41 after 5 ALD cycles was 0.39. The pore diameter (nm) of MCM-41 was 3.3 and that of MCM-41 after 5 ALD cycles was 2.3

  15. Calculating the azimuth of mountain waves, using the effect of tilted fine-scale stable layers on VHF radar echoes

    Directory of Open Access Journals (Sweden)

    R. M. Worthington

    1999-02-01

    Full Text Available A simple method is described, based on standard VHF wind-profiler data, where imbalances of echo power between four off-vertical radar beams, caused by mountain waves, can be used to calculate the orientation of the wave pattern. It is shown that the mountain wave azimuth (direction of the horizontal component of the wavevector, is given by the vector [ W (PE - P W ,W (PN - P S ]; PN, PS, PE, PW are radar echo powers, measured in dB, in beams pointed away from vertical by the same angle towards north, south, east and west respectively, and W is the vertical wind velocity. The method is applied to Aberystwyth MST radar data, and the calculated wave vector usually, but not always, points into the low-level wind direction. The mean vertical wind at Aberystwyth, which may also be affected by tilted aspect-sensitive layers, is investigated briefly using the entire radar output 1990-1997. The mean vertical-wind profile is inconsistent with existing theories, but a new mountain-wave interpretation is proposed.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides; instruments and techniques.

  16. Maatregelen ter vermindering van fijnstofemissie uit de pluimveehouderij : verkenning effecten alternatieve lichtschema's op fijnstofemissie bij leghennen = Measures to reduce fine dust from poultry houses : investigation of the effects of light regimes on fine dust in layer houses

    NARCIS (Netherlands)

    Emous, van R.A.; Ogink, N.

    2010-01-01

    Light intensity has a large effect on the activity of laying hens. A lower intensity gives less activity and thus less emission of fine dust. The effect on the welfare of hens is difficult to estimate.

  17. Capability for Fine Tuning of the Refractive Index Sensing Properties of Long-Period Gratings by Atomic Layer Deposited Al2O3 Overlays

    Directory of Open Access Journals (Sweden)

    Mateusz Śmietana

    2013-11-01

    Full Text Available This work presents an application of thin aluminum oxide (Al2O3 films obtained using atomic layer deposition (ALD for fine tuning the spectral response and refractive-index (RI sensitivity of long-period gratings (LPGs induced in optical fibers. The technique allows for an efficient and well controlled deposition at monolayer level (resolution ~ 0.12 nm of excellent quality nano-films as required for optical sensors. The effect of Al2O3 deposition on the spectral properties of the LPGs is demonstrated experimentally and numerically. We correlated both the increase in Al2O3 thickness and changes in optical properties of the film with the shift of the LPG resonance wavelength and proved that similar films are deposited on fibers and oxidized silicon reference samples in the same process run. Since the thin overlay effectively changes the distribution of the cladding modes and thus also tunes the device’s RI sensitivity, the tuning can be simply realized by varying number of cycles, which is proportional to thickness of the high-refractive-index (n > 1.6 in infrared spectral range Al2O3 film. The advantage of this approach is the precision in determining the film properties resulting in RI sensitivity of the LPGs. To the best of our knowledge, this is the first time that an ultra-precise method for overlay deposition has been applied on LPGs for RI tuning purposes and the results have been compared with numerical simulations based on LP mode approximation.

  18. MAGUKs: multifaceted synaptic organizers.

    Science.gov (United States)

    Won, Sehoon; Levy, Jon M; Nicoll, Roger A; Roche, Katherine W

    2017-04-01

    The PSD-95 family of proteins, known as MAGUKs, have long been recognized to be central building blocks of the PSD. They are categorized as scaffolding proteins, which link surface-expressed receptors to the intracellular signaling molecules. Although the four members of the PSD-95 family (PSD-95, PSD-93, SAP102, and SAP97) have many shared roles in regulating synaptic function, recent studies have begun to delineate specific binding partners and roles in plasticity. In the current review, we will highlight the conserved and unique roles of these proteins. Published by Elsevier Ltd.

  19. Synaptic electronics: materials, devices and applications.

    Science.gov (United States)

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  20. Synaptic electronics: materials, devices and applications

    International Nuclear Information System (INIS)

    Kuzum, Duygu; Yu, Shimeng; Philip Wong, H-S

    2013-01-01

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented. (topical review)

  1. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc.

    Science.gov (United States)

    Anderson, Charles T; Radford, Robert J; Zastrow, Melissa L; Zhang, Daniel Y; Apfel, Ulf-Peter; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-05-19

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling.

  2. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc

    Science.gov (United States)

    Anderson, Charles T.; Radford, Robert J.; Zastrow, Melissa L.; Zhang, Daniel Y.; Apfel, Ulf-Peter; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling. PMID:25947151

  3. Synaptic membrane rafts: traffic lights for local neurotrophin signaling?

    Science.gov (United States)

    Zonta, Barbara; Minichiello, Liliana

    2013-10-18

    Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signaling, plasticity, and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signaling. The tyrosine kinase neurotrophin receptors (Trk) and the low-affinity p75 neurotrophin receptor (p75(NTR)) are enriched in neuronal lipid rafts together with the intermediates of downstream signaling pathways, suggesting a possible role of rafts in neurotrophin signaling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.

  4. Synaptic membrane rafts: traffic lights for local neurotrophin signalling?

    Directory of Open Access Journals (Sweden)

    Barbara eZonta

    2013-10-01

    Full Text Available Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signalling, plasticity and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signalling. The tyrosine kinase neurotrophin receptors (Trk and the low-affinity p75 neurotrophin receptor (p75NTR are enriched in neuronal lipid rafts together with the intermediates of downstream signalling pathways, suggesting a possible role of rafts in neurotrophin signalling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.

  5. SYNAPTIC DEPRESSION IN DEEP NEURAL NETWORKS FOR SPEECH PROCESSING.

    Science.gov (United States)

    Zhang, Wenhao; Li, Hanyu; Yang, Minda; Mesgarani, Nima

    2016-03-01

    A characteristic property of biological neurons is their ability to dynamically change the synaptic efficacy in response to variable input conditions. This mechanism, known as synaptic depression, significantly contributes to the formation of normalized representation of speech features. Synaptic depression also contributes to the robust performance of biological systems. In this paper, we describe how synaptic depression can be modeled and incorporated into deep neural network architectures to improve their generalization ability. We observed that when synaptic depression is added to the hidden layers of a neural network, it reduces the effect of changing background activity in the node activations. In addition, we show that when synaptic depression is included in a deep neural network trained for phoneme classification, the performance of the network improves under noisy conditions not included in the training phase. Our results suggest that more complete neuron models may further reduce the gap between the biological performance and artificial computing, resulting in networks that better generalize to novel signal conditions.

  6. Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.

    Science.gov (United States)

    Michaelis, Mary L; Jiang, Lei; Michaelis, Elias K

    2017-01-01

    Isolation of synaptic nerve terminals or synaptosomes provides an opportunity to study the process of neurotransmission at many levels and with a variety of approaches. For example, structural features of the synaptic terminals and the organelles within them, such as synaptic vesicles and mitochondria, have been elucidated with electron microscopy. The postsynaptic membranes are joined to the presynaptic "active zone" of transmitter release through cell adhesion molecules and remain attached throughout the isolation of synaptosomes. These "post synaptic densities" or "PSDs" contain the receptors for the transmitters released from the nerve terminals and can easily be seen with electron microscopy. Biochemical and cell biological studies with synaptosomes have revealed which proteins and lipids are most actively involved in synaptic release of neurotransmitters. The functional properties of the nerve terminals, such as responses to depolarization and the uptake or release of signaling molecules, have also been characterized through the use of fluorescent dyes, tagged transmitters, and transporter substrates. In addition, isolated synaptosomes can serve as the starting material for the isolation of relatively pure synaptic plasma membranes (SPMs) that are devoid of organelles from the internal environment of the nerve terminal, such as mitochondria and synaptic vesicles. The isolated SPMs can reseal and form vesicular structures in which transport of ions such as sodium and calcium, as well as solutes such as neurotransmitters can be studied. The PSDs also remain associated with the presynaptic membranes during isolation of SPM fractions, making it possible to isolate the synaptic junctional complexes (SJCs) devoid of the rest of the plasma membranes of the nerve terminals and postsynaptic membrane components. Isolated SJCs can be used to identify the proteins that constitute this highly specialized region of neurons. In this chapter, we describe the steps involved

  7. Secreted factors as synaptic organizers.

    Science.gov (United States)

    Johnson-Venkatesh, Erin M; Umemori, Hisashi

    2010-07-01

    A critical step in synaptic development is the differentiation of presynaptic and postsynaptic compartments. This complex process is regulated by a variety of secreted factors that serve as synaptic organizers. Specifically, fibroblast growth factors, Wnts, neurotrophic factors and various other intercellular signaling molecules are proposed to regulate presynaptic and/or postsynaptic differentiation. Many of these factors appear to function at both the neuromuscular junction and in the central nervous system, although the specific function of the molecules differs between the two. Here we review secreted molecules that organize the synaptic compartments and discuss how these molecules shape synaptic development, focusing on mammalian in vivo systems. Their critical role in shaping a functional neural circuit is underscored by their possible link to a wide range of neurological and psychiatric disorders both in animal models and by mutations identified in human patients. © The Authors (2010). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  8. Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Chang Jin; Wan, Qing, E-mail: wanqing@nju.edu.cn, E-mail: yshi@nju.edu.cn [School of Electronic Science & Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhu, Li Qiang [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wan, Xiang; Shi, Yi, E-mail: wanqing@nju.edu.cn, E-mail: yshi@nju.edu.cn [School of Electronic Science & Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-01-25

    The idea of building a brain-inspired cognitive system has been around for several decades. Recently, electric-double-layer transistors gated by ion conducting electrolytes were reported as the promising candidates for synaptic electronics and neuromorphic system. In this letter, indium-zinc-oxide transistors gated by proton conducting methylcellulose electrolyte films were experimentally demonstrated with synaptic plasticity including paired-pulse facilitation and spatiotemporal-correlated dynamic logic. More importantly, a model based on proton-related electric-double-layer modulation and stretched-exponential decay function was proposed, and the theoretical results are in good agreement with the experimentally measured synaptic behaviors.

  9. Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films

    International Nuclear Information System (INIS)

    Wan, Chang Jin; Wan, Qing; Zhu, Li Qiang; Wan, Xiang; Shi, Yi

    2016-01-01

    The idea of building a brain-inspired cognitive system has been around for several decades. Recently, electric-double-layer transistors gated by ion conducting electrolytes were reported as the promising candidates for synaptic electronics and neuromorphic system. In this letter, indium-zinc-oxide transistors gated by proton conducting methylcellulose electrolyte films were experimentally demonstrated with synaptic plasticity including paired-pulse facilitation and spatiotemporal-correlated dynamic logic. More importantly, a model based on proton-related electric-double-layer modulation and stretched-exponential decay function was proposed, and the theoretical results are in good agreement with the experimentally measured synaptic behaviors

  10. Anne Fine

    Directory of Open Access Journals (Sweden)

    Philip Gaydon

    2015-04-01

    Full Text Available An interview with Anne Fine with an introduction and aside on the role of children’s literature in our lives and development, and our adult perceptions of the suitability of childhood reading material. Since graduating from Warwick in 1968 with a BA in Politics and History, Anne Fine has written over fifty books for children and eight for adults, won the Carnegie Medal twice (for Goggle-Eyes in 1989 and Flour Babies in 1992, been a highly commended runner-up three times (for Bill’s New Frock in 1989, The Tulip Touch in 1996, and Up on Cloud Nine in 2002, been shortlisted for the Hans Christian Andersen Award (the highest recognition available to a writer or illustrator of children’s books, 1998, undertaken the positon of Children’s Laureate (2001-2003, and been awarded an OBE for her services to literature (2003. Warwick presented Fine with an Honorary Doctorate in 2005. Philip Gaydon’s interview with Anne Fine was recorded as part of the ‘Voices of the University’ oral history project, co-ordinated by Warwick’s Institute of Advanced Study.

  11. Synaptic consolidation across multiple timescales

    Directory of Open Access Journals (Sweden)

    Lorric Ziegler

    2014-03-01

    Full Text Available The brain is bombarded with a continuous stream of sensory events, but retains only a small subset in memory. The selectivity of memory formation prevents our memory from being overloaded with irrelevant items that would rapidly bring the brain to its storage limit; moreover, selectivity also prevents overwriting previously formed memories with new ones. Memory formation in the hippocampus, as well as in other brain regions, is thought to be linked to changes in the synaptic connections between neurons. In this view, sensory events imprint traces at the level of synapses that reflect potential memory items. The question of memory selectivity can therefore be reformulated as follows: what are the reasons and conditions that some synaptic traces fade away whereas others are consolidated and persist? Experimentally, changes in synaptic strength induced by 'Hebbian' protocols fade away over a few hours (early long-term potentiation or e-LTP, unless these changes are consolidated. The experiments and conceptual theory of synaptic tagging and capture (STC provide a mechanistic explanation for the processes involved in consolidation. This theory suggests that the initial trace of synaptic plasticity sets a tag at the synapse, which then serves as a marker for potential consolidation of the changes in synaptic efficacy. The actual consolidation processes, transforming e-LTP into late LTP (l-LTP, require the capture of plasticity-related proteins (PRP. We translate the above conceptual model into a compact computational model that accounts for a wealth of in vitro data including experiments on cross-tagging, tag-resetting and depotentiation. A central ingredient is that synaptic traces are described with several variables that evolve on different time scales. Consolidation requires the transmission of information from a 'fast' synaptic trace to a 'slow' one through a 'write' process, including the formation of tags and the production of PRP for the

  12. Integrated neuron circuit for implementing neuromorphic system with synaptic device

    Science.gov (United States)

    Lee, Jeong-Jun; Park, Jungjin; Kwon, Min-Woo; Hwang, Sungmin; Kim, Hyungjin; Park, Byung-Gook

    2018-02-01

    In this paper, we propose and fabricate Integrate & Fire neuron circuit for implementing neuromorphic system. Overall operation of the circuit is verified by measuring discrete devices and the output characteristics of the circuit. Since the neuron circuit shows asymmetric output characteristic that can drive synaptic device with Spike-Timing-Dependent-Plasticity (STDP) characteristic, the autonomous weight update process is also verified by connecting the synaptic device and the neuron circuit. The timing difference of the pre-neuron and the post-neuron induce autonomous weight change of the synaptic device. Unlike 2-terminal devices, which is frequently used to implement neuromorphic system, proposed scheme of the system enables autonomous weight update and simple configuration by using 4-terminal synapse device and appropriate neuron circuit. Weight update process in the multi-layer neuron-synapse connection ensures implementation of the hardware-based artificial intelligence, based on Spiking-Neural- Network (SNN).

  13. Spiking Neural Networks with Unsupervised Learning Based on STDP Using Resistive Synaptic Devices and Analog CMOS Neuron Circuit.

    Science.gov (United States)

    Kwon, Min-Woo; Baek, Myung-Hyun; Hwang, Sungmin; Kim, Sungjun; Park, Byung-Gook

    2018-09-01

    We designed the CMOS analog integrate and fire (I&F) neuron circuit can drive resistive synaptic device. The neuron circuit consists of a current mirror for spatial integration, a capacitor for temporal integration, asymmetric negative and positive pulse generation part, a refractory part, and finally a back-propagation pulse generation part for learning of the synaptic devices. The resistive synaptic devices were fabricated using HfOx switching layer by atomic layer deposition (ALD). The resistive synaptic device had gradual set and reset characteristics and the conductance was adjusted by spike-timing-dependent-plasticity (STDP) learning rule. We carried out circuit simulation of synaptic device and CMOS neuron circuit. And we have developed an unsupervised spiking neural networks (SNNs) for 5 × 5 pattern recognition and classification using the neuron circuit and synaptic devices. The hardware-based SNNs can autonomously and efficiently control the weight updates of the synapses between neurons, without the aid of software calculations.

  14. Asymmetric Temporal Integration of Layer 4 and Layer 2/3 Inputs in Visual Cortex

    OpenAIRE

    Hang, Giao B.; Dan, Yang

    2010-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices...

  15. Synaptic Effects of Electric Fields

    Science.gov (United States)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  16. Infrared and Raman studies of the dead grain-boundary layers in SrTiO.sub.3./sub. fine-grain ceramics

    Czech Academy of Sciences Publication Activity Database

    Petzelt, Jan; Ostapchuk, Tetyana; Gregora, Ivan; Kužel, Petr; Liu, J.; Shen, Z.

    2007-01-01

    Roč. 19, - (2007), s. 1-16 ISSN 0953-8984 R&D Projects: GA ČR GA202/04/0993; GA ČR GP202/06/P219; GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : infrared reflectivity * Raman scattering * SrTiO 3 nanoceramics * dead layers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.886, year: 2007

  17. Random synaptic feedback weights support error backpropagation for deep learning

    Science.gov (United States)

    Lillicrap, Timothy P.; Cownden, Daniel; Tweed, Douglas B.; Akerman, Colin J.

    2016-01-01

    The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning. PMID:27824044

  18. Mechanisms of Synaptic Alterations in a Neuroinflammation Model of Autism

    Science.gov (United States)

    2015-10-01

    inhibitory presynaptic input in the cortex of MIA offspring To determine if the altered number, shape and dynamic proper- ties of spines are...affects synaptic function in the cortex . We performed whole-cell voltage -clamp recordings from layer 2 pyramidal neurons in the somatosensory cortex ...highly dynamic struc- tures with new spines forming and others disappearing on a time scale of minutes (Dailey and Smith, 1996; Dunaevsky et al., 1999

  19. Fine chemistry

    International Nuclear Information System (INIS)

    Laszlo, P.

    1988-01-01

    The 1988 progress report of the Fine Chemistry laboratory (Polytechnic School, France) is presented. The research programs are centered on the renewal of the organic chemistry most important reactions and on the invention of new, highly efficient and highly selective reactions, by applying low cost reagents and solvents. An important research domain concerns the study and fabrication of new catalysts. They are obtained by means of the reactive sputtering of the metals and metal oxydes thin films. The Monte Carlo simulations of the long-range electrostatic interaction in a clay and the obtention of acrylamides from anhydrous or acrylic ester are summarized. Moreover, the results obtained in the field of catalysis are also given. The published papers and the congress communications are included [fr

  20. Fine structure of synapses on dendritic spines

    Directory of Open Access Journals (Sweden)

    Michael eFrotscher

    2014-09-01

    Full Text Available Camillo Golgi’s Reazione Nera led to the discovery of dendritic spines, small appendages originating from dendritic shafts. With the advent of electron microscopy (EM they were identified as sites of synaptic contact. Later it was found that changes in synaptic strength were associated with changes in the shape of dendritic spines. While live-cell imaging was advantageous in monitoring the time course of such changes in spine structure, EM is still the best method for the simultaneous visualization of all cellular components, including actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise localization of molecules in relation to synaptic structures. Previous EM studies of spines and synapses were performed in tissue subjected to aldehyde fixation and dehydration in ethanol, which is associated with protein denaturation and tissue shrinkage. It has remained an issue to what extent fine structural details are preserved when subjecting the tissue to these procedures. In the present review, we report recent studies on the fine structure of spines and synapses using high-pressure freezing (HPF, which avoids protein denaturation by aldehydes and results in an excellent preservation of ultrastructural detail. In these studies, HPF was used to monitor subtle fine-structural changes in spine shape associated with chemically induced long-term potentiation (cLTP at identified hippocampal mossy fiber synapses. Changes in spine shape result from reorganization of the actin cytoskeleton. We report that cLTP was associated with decreased immunogold labeling for phosphorylated cofilin (p-cofilin, an actin-depolymerizing protein. Phosphorylation of cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton. Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying the changes in spine shape associated with cLTP. The findings reviewed here establish HPF as

  1. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnO_x–Al_2O_3 thin film structure

    International Nuclear Information System (INIS)

    Li, H. K.; Chen, T. P.; Liu, P.; Zhang, Q.; Hu, S. G.; Liu, Y.; Lee, P. S.

    2016-01-01

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)–aluminum oxide (Al_2O_3) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al_2O_3 interface and/or in the Al_2O_3 layer.

  2. Fine-Scale Layering of Mars Polar Deposits and Signatures of Ice Content in Nonpolar Material From Multiband SHARAD Data Processing

    Science.gov (United States)

    Campbell, Bruce A.; Morgan, Gareth A.

    2018-02-01

    The variation of Shallow Radar (SHARAD) echo strength with frequency reveals material dielectric losses and polar layer properties. Loss tangents for Elysium and Amazonis Planitiae deposits are consistent with volcanic flows and sediments, while the Medusae Fossae Formation, lineated valley fill, and lobate debris aprons have low losses consistent with a major component of water ice. Mantling materials in Arcadia and Utopia Planitiae have higher losses, suggesting they are not dominated by ice over large fractions of their thickness. In Gemina Lingula, there are frequent deviations from a simple dependence of loss on depth. Within reflector packets, the brightest reflectors are often different among the frequency subbands, and there are cases of reflectors that occur in only the high- or low-frequency echoes. Many polar radar reflections must arise from multiple thin interfaces, or single deposits of appropriate thickness, that display resonant scattering behaviors. Reflector properties may be linked to climate-controlled polar dust deposition.

  3. Polymer-electrolyte-gated nanowire synaptic transistors for neuromorphic applications

    Science.gov (United States)

    Zou, Can; Sun, Jia; Gou, Guangyang; Kong, Ling-An; Qian, Chuan; Dai, Guozhang; Yang, Junliang; Guo, Guang-hua

    2017-09-01

    Polymer-electrolytes are formed by dissolving a salt in polymer instead of water, the conducting mechanism involves the segmental motion-assisted diffusion of ion in the polymer matrix. Here, we report on the fabrication of tin oxide (SnO2) nanowire synaptic transistors using polymer-electrolyte gating. A thin layer of poly(ethylene oxide) and lithium perchlorate (PEO/LiClO4) was deposited on top of the devices, which was used to boost device performances. A voltage spike applied on the in-plane gate attracts ions toward the polymer-electrolyte/SnO2 nanowire interface and the ions are gradually returned after the pulse is removed, which can induce a dynamic excitatory postsynaptic current in the nanowire channel. The SnO2 synaptic transistors exhibit the behavior of short-term plasticity like the paired-pulse facilitation and self-adaptation, which is related to the electric double-effect regulation. In addition, the synaptic logic functions and the logical function transformation are also discussed. Such single SnO2 nanowire-based synaptic transistors are of great importance for future neuromorphic devices.

  4. Long-Term Synaptic Plasticity Emulated in Modified Graphene Oxide Electrolyte Gated IZO-Based Thin-Film Transistors.

    Science.gov (United States)

    Yang, Yi; Wen, Juan; Guo, Liqiang; Wan, Xiang; Du, Peifu; Feng, Ping; Shi, Yi; Wan, Qing

    2016-11-09

    Emulating neural behaviors at the synaptic level is of great significance for building neuromorphic computational systems and realizing artificial intelligence. Here, oxide-based electric double-layer (EDL) thin-film transistors were fabricated using 3-triethoxysilylpropylamine modified graphene oxide (KH550-GO) electrolyte as the gate dielectrics. Resulting from the EDL effect and electrochemical doping between mobile protons and the indium-zinc-oxide channel layer, long-term synaptic plasticity was emulated in our devices. Synaptic functions including long-term memory, synaptic temporal integration, and dynamic filters were successfully reproduced. In particular, spike rate-dependent plasticity (SRDP), one of the basic learning rules of long-term plasticity in the neural network where the synaptic weight changes according to the rate of presynaptic spikes, was emulated in our devices. Our results may facilitate the development of neuromorphic computational systems.

  5. Synaptic control of motoneuronal excitability

    DEFF Research Database (Denmark)

    Rekling, J C; Funk, G D; Bayliss, D A

    2000-01-01

    important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization......, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions...... and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward...

  6. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity

    KAUST Repository

    Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea

    2017-01-01

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  7. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity

    KAUST Repository

    Orlando, Marta

    2017-10-17

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  8. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity.

    Science.gov (United States)

    Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea

    2017-10-23

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABA A Receptors (GABA A Rs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABA A R clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABA A R clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  9. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain

    Directory of Open Access Journals (Sweden)

    Christian Bonansco

    2016-01-01

    Full Text Available Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks.

  10. Synaptic vesicle distribution by conveyor belt.

    Science.gov (United States)

    Moughamian, Armen J; Holzbaur, Erika L F

    2012-03-02

    The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Spontaneous Vesicle Recycling in the Synaptic Bouton

    Directory of Open Access Journals (Sweden)

    Sven eTruckenbrodt

    2014-12-01

    Full Text Available The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.

  12. Active hippocampal networks undergo spontaneous synaptic modification.

    Directory of Open Access Journals (Sweden)

    Masako Tsukamoto-Yasui

    Full Text Available The brain is self-writable; as the brain voluntarily adapts itself to a changing environment, the neural circuitry rearranges its functional connectivity by referring to its own activity. How the internal activity modifies synaptic weights is largely unknown, however. Here we report that spontaneous activity causes complex reorganization of synaptic connectivity without any external (or artificial stimuli. Under physiologically relevant ionic conditions, CA3 pyramidal cells in hippocampal slices displayed spontaneous spikes with bistable slow oscillations of membrane potential, alternating between the so-called UP and DOWN states. The generation of slow oscillations did not require fast synaptic transmission, but their patterns were coordinated by local circuit activity. In the course of generating spontaneous activity, individual neurons acquired bidirectional long-lasting synaptic modification. The spontaneous synaptic plasticity depended on a rise in intracellular calcium concentrations of postsynaptic cells, but not on NMDA receptor activity. The direction and amount of the plasticity varied depending on slow oscillation patterns and synapse locations, and thus, they were diverse in a network. Once this global synaptic refinement occurred, the same neurons now displayed different patterns of spontaneous activity, which in turn exhibited different levels of synaptic plasticity. Thus, active networks continuously update their internal states through ongoing synaptic plasticity. With computational simulations, we suggest that with this slow oscillation-induced plasticity, a recurrent network converges on a more specific state, compared to that with spike timing-dependent plasticity alone.

  13. Synaptic plasticity in drug reward circuitry.

    Science.gov (United States)

    Winder, Danny G; Egli, Regula E; Schramm, Nicole L; Matthews, Robert T

    2002-11-01

    Drug addiction is a major public health issue worldwide. The persistence of drug craving coupled with the known recruitment of learning and memory centers in the brain has led investigators to hypothesize that the alterations in glutamatergic synaptic efficacy brought on by synaptic plasticity may play key roles in the addiction process. Here we review the present literature, examining the properties of synaptic plasticity within drug reward circuitry, and the effects that drugs of abuse have on these forms of plasticity. Interestingly, multiple forms of synaptic plasticity can be induced at glutamatergic synapses within the dorsal striatum, its ventral extension the nucleus accumbens, and the ventral tegmental area, and at least some of these forms of plasticity are regulated by behaviorally meaningful administration of cocaine and/or amphetamine. Thus, the present data suggest that regulation of synaptic plasticity in reward circuits is a tractable candidate mechanism underlying aspects of addiction.

  14. Neuromodulation, development and synaptic plasticity.

    Science.gov (United States)

    Foehring, R C; Lorenzon, N M

    1999-03-01

    We discuss parallels in the mechanisms underlying use-dependent synaptic plasticity during development and long-term potentiation (LTP) and long-term depression (LTD) in neocortical synapses. Neuromodulators, such as norepinephrine, serotonin, and acetylcholine have also been implicated in regulating both developmental plasticity and LTP/LTD. There are many potential levels of interaction between neuromodulators and plasticity. Ion channels are substrates for modulation in many cell types. We discuss examples of modulation of voltage-gated Ca2+ channels and Ca(2+)-dependent K+ channels and the consequences for neocortical pyramidal cell firing behaviour. At the time when developmental plasticity is most evident in rat cortex, the substrate for modulation is changing as the densities and relative proportions of various ion channels types are altered during ontogeny. We discuss examples of changes in K+ and Ca2+ channels and the consequence for modulation of neuronal activity.

  15. Synaptic transmission modulates while non-synaptic processes govern the transition from pre-ictal to seizure activity in vitro

    OpenAIRE

    Jefferys, John; Fox, John; Jiruska, Premysl; Kronberg, Greg; Miranda, Dolores; Ruiz-Nuño, Ana; Bikson, Marom

    2018-01-01

    It is well established that non-synaptic mechanisms can generate electrographic seizures after blockade of synaptic function. We investigated the interaction of intact synaptic activity with non-synaptic mechanisms in the isolated CA1 region of rat hippocampal slices using the 'elevated-K+' model of epilepsy. Elevated K+ ictal bursts share waveform features with other models of electrographic seizures, including non-synaptic models where chemical synaptic transmission is suppressed, such as t...

  16. Molecular mechanisms of synaptic remodeling in alcoholism.

    Science.gov (United States)

    Kyzar, Evan J; Pandey, Subhash C

    2015-08-05

    Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism. Published by Elsevier Ireland Ltd.

  17. Lateral regulation of synaptic transmission by astrocytes.

    Science.gov (United States)

    Covelo, A; Araque, A

    2016-05-26

    Fifteen years ago the concept of the "tripartite synapse" was proposed to conceptualize the functional view that astrocytes are integral elements of synapses. The signaling exchange between astrocytes and neurons within the tripartite synapse results in the synaptic regulation of synaptic transmission and plasticity through an autocrine form of communication. However, recent evidence indicates that the astrocyte synaptic regulation is not restricted to the active tripartite synapse but can be manifested through astrocyte signaling at synapses relatively distant from active synapses, a process termed lateral astrocyte synaptic regulation. This phenomenon resembles the classical heterosynaptic modulation but is mechanistically different because it involves astrocytes and its properties critically depend on the morphological and functional features of astrocytes. Therefore, the functional concept of the tripartite synapse as a fundamental unit must be expanded to include the interaction between tripartite synapses. Through lateral synaptic regulation, astrocytes serve as an active processing bridge for synaptic interaction and crosstalk between synapses with no direct neuronal connectivity, supporting the idea that neural network function results from the coordinated activity of astrocytes and neurons. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Presynaptic inhibition of GABAergic synaptic transmission by adenosine in mouse hypothalamic hypocretin neurons.

    Science.gov (United States)

    Xia, J X; Xiong, J X; Wang, H K; Duan, S M; Ye, J N; Hu, Z A

    2012-01-10

    Hypocretin neurons in the lateral hypothalamus, a new wakefulness-promoting center, have been recently regarded as an important target involved in endogenous adenosine-regulating sleep homeostasis. The GABAergic synaptic transmissions are the main inhibitory afferents to hypocretin neurons, which play an important role in the regulation of excitability of these neurons. The inhibitory effect of adenosine, a homeostatic sleep-promoting factor, on the excitatory glutamatergic synaptic transmissions in hypocretin neurons has been well documented, whether adenosine also modulates these inhibitory GABAergic synaptic transmissions in these neurons has not been investigated. In this study, the effect of adenosine on inhibitory postsynaptic currents (IPSCs) in hypocretin neurons was examined by using perforated patch-clamp recordings in the acute hypothalamic slices. The findings demonstrated that adenosine suppressed the amplitude of evoked IPSCs in a dose-dependent manner, which was completely abolished by 8-cyclopentyltheophylline (CPT), a selective antagonist of adenosine A1 receptor but not adenosine A2 receptor antagonist 3,7-dimethyl-1-(2-propynyl) xanthine. A presynaptic origin was suggested as following: adenosine increased paired-pulse ratio as well as reduced GABAergic miniature IPSC frequency without affecting the miniature IPSC amplitude. Further findings demonstrated that when the frequency of electrical stimulation was raised to 10 Hz, but not 1 Hz, a time-dependent depression of evoked IPSC amplitude was detected in hypocretin neurons, which could be partially blocked by CPT. However, under a higher frequency at 100 Hz stimulation, CPT had no action on the depressed GABAergic synaptic transmission induced by such tetanic stimulation in these hypocretin neurons. These results suggest that endogenous adenosine generated under certain stronger activities of synaptic transmissions exerts an inhibitory effect on GABAergic synaptic transmission in hypocretin

  19. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex.

    Science.gov (United States)

    Wang, Fei; Zhu, Jun; Zhu, Hong; Zhang, Qi; Lin, Zhanmin; Hu, Hailan

    2011-11-04

    Dominance hierarchy has a profound impact on animals' survival, health, and reproductive success, but its neural circuit mechanism is virtually unknown. We found that dominance ranking in mice is transitive, relatively stable, and highly correlates among multiple behavior measures. Recording from layer V pyramidal neurons of the medial prefrontal cortex (mPFC) showed higher strength of excitatory synaptic inputs in mice with higher ranking, as compared with their subordinate cage mates. Furthermore, molecular manipulations that resulted in an increase and decrease in the synaptic efficacy in dorsal mPFC neurons caused an upward and downward movement in the social rank, respectively. These results provide direct evidence for mPFC's involvement in social hierarchy and suggest that social rank is plastic and can be tuned by altering synaptic strength in mPFC pyramidal cells.

  20. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnO{sub x}–Al{sub 2}O{sub 3} thin film structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. K.; Chen, T. P., E-mail: echentp@ntu.edu.sg; Liu, P.; Zhang, Q. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, S. G. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Liu, Y. [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Lee, P. S. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-06-28

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)–aluminum oxide (Al{sub 2}O{sub 3}) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al{sub 2}O{sub 3} interface and/or in the Al{sub 2}O{sub 3} layer.

  1. Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study

    Directory of Open Access Journals (Sweden)

    Jesus A Garrido

    2013-05-01

    Full Text Available The way long-term synaptic plasticity regulates neuronal spike patterns is not completely understood. This issue is especially relevant for the cerebellum, which is endowed with several forms of long-term synaptic plasticity and has been predicted to operate as a timing and a learning machine. Here we have used a computational model to simulate the impact of multiple distributed synaptic weights in the cerebellar granular layer network. In response to mossy fiber bursts, synaptic weights at multiple connections played a crucial role to regulate spike number and positioning in granule cells. The weight at mossy fiber to granule cell synapses regulated the delay of the first spike and the weight at mossy fiber and parallel fiber to Golgi cell synapses regulated the duration of the time-window during which the first-spike could be emitted. Moreover, the weights of synapses controlling Golgi cell activation regulated the intensity of granule cell inhibition and therefore the number of spikes that could be emitted. First spike timing was regulated with millisecond precision and the number of spikes ranged from 0 to 3. Interestingly, different combinations of synaptic weights optimized either first-spike timing precision or spike number, efficiently controlling transmission and filtering properties. These results predict that distributed synaptic plasticity regulates the emission of quasi-digital spike patterns on the millisecond time scale and allows the cerebellar granular layer to flexibly control burst transmission along the mossy fiber pathway.

  2. BACE1 Is Necessary for Experience-Dependent Homeostatic Synaptic Plasticity in Visual Cortex

    Directory of Open Access Journals (Sweden)

    Emily Petrus

    2014-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of age-related dementia, which is thought to result from overproduction and/or reduced clearance of amyloid-beta (Aβ peptides. Studies over the past few decades suggest that Aβ is produced in an activity-dependent manner and has physiological relevance to normal brain functions. Similarly, physiological functions for β- and γ-secretases, the two key enzymes that produce Aβ by sequentially processing the amyloid precursor protein (APP, have been discovered over recent years. In particular, activity-dependent production of Aβ has been suggested to play a role in homeostatic regulation of excitatory synaptic function. There is accumulating evidence that activity-dependent immediate early gene Arc is an activity “sensor,” which acts upstream of Aβ production and triggers AMPA receptor endocytosis to homeostatically downregulate the strength of excitatory synaptic transmission. We previously reported that Arc is critical for sensory experience-dependent homeostatic reduction of excitatory synaptic transmission in the superficial layers of visual cortex. Here we demonstrate that mice lacking the major neuronal β-secretase, BACE1, exhibit a similar phenotype: stronger basal excitatory synaptic transmission and failure to adapt to changes in visual experience. Our results indicate that BACE1 plays an essential role in sensory experience-dependent homeostatic synaptic plasticity in the neocortex.

  3. Dendritic calcium channels and their activation by synaptic signals in auditory coincidence detector neurons.

    Science.gov (United States)

    Blackmer, Trillium; Kuo, Sidney P; Bender, Kevin J; Apostolides, Pierre F; Trussell, Laurence O

    2009-08-01

    The avian nucleus laminaris (NL) encodes the azimuthal location of low-frequency sound sources by detecting the coincidence of binaural signals. Accurate coincidence detection requires precise developmental regulation of the lengths of the fine, bitufted dendrites that characterize neurons in NL. Such regulation has been suggested to be driven by local, synaptically mediated, dendritic signals such as Ca(2+). We examined Ca(2+) signaling through patch clamp and ion imaging experiments in slices containing nucleus laminaris from embryonic chicks. Voltage-clamp recordings of neurons located in the NL showed the presence of large Ca(2+) currents of two types, a low voltage-activated, fast inactivating Ni(2+) sensitive channel resembling mammalian T-type channels, and a high voltage-activated, slowly inactivating Cd(2+) sensitive channel. Two-photon Ca(2+) imaging showed that both channel types were concentrated on dendrites, even at their distal tips. Single action potentials triggered synaptically or by somatic current injection immediately elevated Ca(2+) throughout the entire cell. Ca(2+) signals triggered by subthreshold synaptic activity were highly localized. Thus when electrical activity is suprathreshold, Ca(2+) channels ensure that Ca(2+) rises in all dendrites, even those that are synaptically inactive.

  4. Diacylglycerol kinases in the coordination of synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Dongwon Lee

    2016-08-01

    Full Text Available Synaptic plasticity is activity-dependent modification of the efficacy of synaptic transmission. Although detailed mechanisms underlying synaptic plasticity are diverse and vary at different types of synapses, diacylglycerol (DAG-associated signaling has been considered as an important regulator of many forms of synaptic plasticity, including long-term potentiation (LTP and long-term depression (LTD. Recent evidence indicate that DAG kinases (DGKs, which phosphorylate DAG to phosphatidic acid to terminate DAG signaling, are important regulators of LTP and LTD, as supported by the results from mice lacking specific DGK isoforms. This review will summarize these studies and discuss how specific DGK isoforms distinctly regulate different forms of synaptic plasticity at pre- and postsynaptic sites. In addition, we propose a general role of DGKs as coordinators of synaptic plasticity that make local synaptic environments more permissive for synaptic plasticity by regulating DAG concentration and interacting with other synaptic proteins.

  5. Metabolic Turnover of Synaptic Proteins: Kinetics, Interdependencies and Implications for Synaptic Maintenance

    Science.gov (United States)

    Cohen, Laurie D.; Zuchman, Rina; Sorokina, Oksana; Müller, Anke; Dieterich, Daniela C.; Armstrong, J. Douglas; Ziv, Tamar; Ziv, Noam E.

    2013-01-01

    Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non–Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2–5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load

  6. Overexpression of guanylate cyclase activating protein 2 in rod photoreceptors in vivo leads to morphological changes at the synaptic ribbon.

    Directory of Open Access Journals (Sweden)

    Natalia López-del Hoyo

    Full Text Available Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout and gain-of-function (transgenic overexpression mouse models of GCAP2. Rod synaptic ribbons in GCAPs-/- mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs-/- background (GCAP2 expression in the absence of endogenous GCAP1 had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of

  7. Synaptic Correlates of Working Memory Capacity.

    Science.gov (United States)

    Mi, Yuanyuan; Katkov, Mikhail; Tsodyks, Misha

    2017-01-18

    Psychological studies indicate that human ability to keep information in readily accessible working memory is limited to four items for most people. This extremely low capacity severely limits execution of many cognitive tasks, but its neuronal underpinnings remain unclear. Here we show that in the framework of synaptic theory of working memory, capacity can be analytically estimated to scale with characteristic time of short-term synaptic depression relative to synaptic current time constant. The number of items in working memory can be regulated by external excitation, enabling the system to be tuned to the desired load and to clear the working memory of currently held items to make room for new ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Corticohippocampal Circuit, Synaptic Plasticity, and Memory

    Science.gov (United States)

    Basu, Jayeeta; Siegelbaum, Steven A.

    2015-01-01

    Synaptic plasticity serves as a cellular substrate for information storage in the central nervous system. The entorhinal cortex (EC) and hippocampus are interconnected brain areas supporting basic cognitive functions important for the formation and retrieval of declarative memories. Here, we discuss how information flow in the EC–hippocampal loop is organized through circuit design. We highlight recently identified corticohippocampal and intrahippocampal connections and how these long-range and local microcircuits contribute to learning. This review also describes various forms of activity-dependent mechanisms that change the strength of corticohippocampal synaptic transmission. A key point to emerge from these studies is that patterned activity and interaction of coincident inputs gives rise to associational plasticity and long-term regulation of information flow. Finally, we offer insights about how learning-related synaptic plasticity within the corticohippocampal circuit during sensory experiences may enable adaptive behaviors for encoding spatial, episodic, social, and contextual memories. PMID:26525152

  9. Electric Dipole Theory of Chemical Synaptic Transmission

    Science.gov (United States)

    Wei, Ling Y.

    1968-01-01

    In this paper we propose that chemicals such as acetylcholine are electric dipoles which when oriented and arranged in a large array could produce an electric field strong enough to drive positive ions over the junction barrier of the post-synaptic membrane and thus initiate excitation or produce depolarization. This theory is able to explain a great number of facts such as cleft size, synaptic delay, nonregeneration, subthreshold integration, facilitation with repetition, and the calcium and magnesium effects. It also shows why and how acetylcholine could act as excitatory or inhibitory transmitters under different circumstances. Our conclusion is that the nature of synaptic transmission is essentially electrical, be it mediated by electrical or chemical transmitters. PMID:4296121

  10. Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission

    Science.gov (United States)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-01

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  11. Astroglial metabolic networks sustain hippocampal synaptic transmission.

    Science.gov (United States)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-05

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  12. Synaptic Vesicle Endocytosis in Different Model Systems

    Directory of Open Access Journals (Sweden)

    Quan Gan

    2018-06-01

    Full Text Available Neurotransmission in complex animals depends on a choir of functionally distinct synapses releasing neurotransmitters in a highly coordinated manner. During synaptic signaling, vesicles fuse with the plasma membrane to release their contents. The rate of vesicle fusion is high and can exceed the rate at which synaptic vesicles can be re-supplied by distant sources. Thus, local compensatory endocytosis is needed to replenish the synaptic vesicle pools. Over the last four decades, various experimental methods and model systems have been used to study the cellular and molecular mechanisms underlying synaptic vesicle cycle. Clathrin-mediated endocytosis is thought to be the predominant mechanism for synaptic vesicle recycling. However, recent studies suggest significant contribution from other modes of endocytosis, including fast compensatory endocytosis, activity-dependent bulk endocytosis, ultrafast endocytosis, as well as kiss-and-run. Currently, it is not clear whether a universal model of vesicle recycling exist for all types of synapses. It is possible that each synapse type employs a particular mode of endocytosis. Alternatively, multiple modes of endocytosis operate at the same synapse, and the synapse toggles between different modes depending on its activity level. Here we compile review and research articles based on well-characterized model systems: frog neuromuscular junctions, C. elegans neuromuscular junctions, Drosophila neuromuscular junctions, lamprey reticulospinal giant axons, goldfish retinal ribbon synapses, the calyx of Held, and rodent hippocampal synapses. We will compare these systems in terms of their known modes and kinetics of synaptic vesicle endocytosis, as well as the underlying molecular machineries. We will also provide the future development of this field.

  13. The Fine Structure Constant

    Indian Academy of Sciences (India)

    IAS Admin

    The article discusses the importance of the fine structure constant in quantum mechanics, along with the brief history of how it emerged. Al- though Sommerfelds idea of elliptical orbits has been replaced by wave mechanics, the fine struc- ture constant he introduced has remained as an important parameter in the field of ...

  14. Flexible Proton-Gated Oxide Synaptic Transistors on Si Membrane.

    Science.gov (United States)

    Zhu, Li Qiang; Wan, Chang Jin; Gao, Ping Qi; Liu, Yang Hui; Xiao, Hui; Ye, Ji Chun; Wan, Qing

    2016-08-24

    Ion-conducting materials have received considerable attention for their applications in fuel cells, electrochemical devices, and sensors. Here, flexible indium zinc oxide (InZnO) synaptic transistors with multiple presynaptic inputs gated by proton-conducting phosphorosilicate glass-based electrolyte films are fabricated on ultrathin Si membranes. Transient characteristics of the proton gated InZnO synaptic transistors are investigated, indicating stable proton-gating behaviors. Short-term synaptic plasticities are mimicked on the proposed proton-gated synaptic transistors. Furthermore, synaptic integration regulations are mimicked on the proposed synaptic transistor networks. Spiking logic modulations are realized based on the transition between superlinear and sublinear synaptic integration. The multigates coupled flexible proton-gated oxide synaptic transistors may be interesting for neuroinspired platforms with sophisticated spatiotemporal information processing.

  15. Multistate Resistive Switching Memory for Synaptic Memory Applications

    KAUST Repository

    Hota, Mrinal Kanti

    2016-07-12

    Reproducible low bias bipolar resistive switching memory in HfZnOx based memristors is reported. The modification of the concentration of oxygen vacancies in the ternary oxide film, which is facilitated by adding ZnO into HfO2, results in improved memory operation by the ternary oxide compared to the single binary oxides. A controlled multistate memory operation is achieved by controlling current compliance and RESET stop voltages. A high DC cyclic stability up to 400 cycles in the multistate memory performance is observed. Conventional synaptic operation in terms of potentiation, depression plasticity, and Ebbinghaus forgetting process are also studied. The memory mechanism is shown to originate from the migration of the oxygen vacancies and modulation of the interfacial layers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  16. Shrinkage and swelling properties of flocculated mature fine tailings

    NARCIS (Netherlands)

    Yao, Y.; Van Tol, A.F.; Van Paassen, L.A.; Vardon, P.J.

    2014-01-01

    In the atmospheric fines drying technique, mature fine tailings (MFT) are treated with polymers and deposited in thin layers on a sloped surface for sub-aerial drying. During the whole drying period, the tailings deposits can experience rewetting during periods of rainy weather or as result of the

  17. Synaptic ribbon. Conveyor belt or safety belt?

    Science.gov (United States)

    Parsons, T D; Sterling, P

    2003-02-06

    The synaptic ribbon in neurons that release transmitter via graded potentials has been considered as a conveyor belt that actively moves vesicles toward their release sites. But evidence has accumulated to the contrary, and it now seems plausible that the ribbon serves instead as a safety belt to tether vesicles stably in mutual contact and thus facilitate multivesicular release by compound exocytosis.

  18. P2X Receptors and Synaptic Plasticity

    Czech Academy of Sciences Publication Activity Database

    Pankratov, Y.; Lalo, U.; Krishtal, A.; Verkhratsky, Alexei

    2009-01-01

    Roč. 158, č. 1 (2009), s. 137-148 ISSN 0306-4522 Institutional research plan: CEZ:AV0Z50390512 Keywords : ATP * P2X receptors * synaptic plasticity Subject RIV: FH - Neurology Impact factor: 3.292, year: 2009

  19. Synaptic plasticity and the warburg effect

    KAUST Repository

    Magistretti, Pierre J.

    2014-01-01

    Functional brain imaging studies show that in certain brain regions glucose utilization exceeds oxygen consumption, indicating the predominance of aerobic glycolysis. In this issue, Goyal et al. (2014) report that this metabolic profile is associated with an enrichment in the expression of genes involved in synaptic plasticity and remodeling processes. © 2014 Elsevier Inc.

  20. Neuronal cytoskeleton in synaptic plasticity and regeneration.

    Science.gov (United States)

    Gordon-Weeks, Phillip R; Fournier, Alyson E

    2014-04-01

    During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo-dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre- and post-synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system. © 2013 International Society for Neurochemistry.

  1. Synaptic remodeling, synaptic growth and the storage of long-term memory in Aplysia.

    Science.gov (United States)

    Bailey, Craig H; Kandel, Eric R

    2008-01-01

    Synaptic remodeling and synaptic growth accompany various forms of long-term memory. Storage of the long-term memory for sensitization of the gill-withdrawal reflex in Aplysia has been extensively studied in this respect and is associated with the growth of new synapses by the sensory neurons onto their postsynaptic target neurons. Recent time-lapse imaging studies of living sensory-to-motor neuron synapses in culture have monitored both functional and structural changes simultaneously so as to follow remodeling and growth at the same specific synaptic connections continuously over time and to examine the functional contribution of these learning-related structural changes to the different time-dependent phases of memory storage. Insights provided by these studies suggest the synaptic differentiation and growth induced by learning in the mature nervous system are highly dynamic and often rapid processes that can recruit both molecules and mechanisms used for de novo synapse formation during development.

  2. Synaptic Plasticity, Dementia and Alzheimer Disease.

    Science.gov (United States)

    Skaper, Stephen D; Facci, Laura; Zusso, Morena; Giusti, Pietro

    2017-01-01

    Neuroplasticity is not only shaped by learning and memory but is also a mediator of responses to neuron attrition and injury (compensatory plasticity). As an ongoing process it reacts to neuronal cell activity and injury, death, and genesis, which encompasses the modulation of structural and functional processes of axons, dendrites, and synapses. The range of structural elements that comprise plasticity includes long-term potentiation (a cellular correlate of learning and memory), synaptic efficacy and remodelling, synaptogenesis, axonal sprouting and dendritic remodelling, and neurogenesis and recruitment. Degenerative diseases of the human brain continue to pose one of biomedicine's most intractable problems. Research on human neurodegeneration is now moving from descriptive to mechanistic analyses. At the same time, it is increasing apparently that morphological lesions traditionally used by neuropathologists to confirm post-mortem clinical diagnosis might furnish us with an experimentally tractable handle to understand causative pathways. Consider the aging-dependent neurodegenerative disorder Alzheimer's disease (AD) which is characterised at the neuropathological level by deposits of insoluble amyloid β-peptide (Aβ) in extracellular plaques and aggregated tau protein, which is found largely in the intracellular neurofibrillary tangles. We now appreciate that mild cognitive impairment in early AD may be due to synaptic dysfunction caused by accumulation of non-fibrillar, oligomeric Aβ, occurring well in advance of evident widespread synaptic loss and neurodegeneration. Soluble Aβ oligomers can adversely affect synaptic structure and plasticity at extremely low concentrations, although the molecular substrates by which synaptic memory mechanisms are disrupted remain to be fully elucidated. The dendritic spine constitutes a primary locus of excitatory synaptic transmission in the mammalian central nervous system. These structures protruding from dendritic

  3. Low-voltage protonic/electronic hybrid indium zinc oxide synaptic transistors on paper substrates

    International Nuclear Information System (INIS)

    Wu, Guodong; Wan, Changjin; Wan, Qing; Zhou, Jumei; Zhu, Liqiang

    2014-01-01

    Low-voltage (1.5 V) indium zinc oxide (IZO)-based electric-double-layer (EDL) thin-film transistors (TFTs) gated by nanogranular proton conducting SiO 2 electrolyte films are fabricated on paper substrates. Both enhancement-mode and depletion-mode operation are obtained by tuning the thickness of the IZO channel layer. Furthermore, such flexible IZO protonic/electronic hybrid EDL TFTs can be used as artificial synapses, and synaptic stimulation response and short-term synaptic plasticity function are demonstrated. The protonic/electronic hybrid EDL TFTs on paper substrates proposed here are promising for low-power flexible paper electronics, artificial synapses and bioelectronics. (paper)

  4. Fine Arts Database (FAD)

    Data.gov (United States)

    General Services Administration — The Fine Arts Database records information on federally owned art in the control of the GSA; this includes the location, current condition and information on artists.

  5. Fine motor control

    Science.gov (United States)

    ... gross (large, general) motor control. An example of gross motor control is waving an arm in greeting. Problems ... out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To ...

  6. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Sabloff, J.A.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  7. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  8. Radioactivity in fine papers

    International Nuclear Information System (INIS)

    Taylor, H.W.; Singh, B.

    1993-01-01

    The radioactivity of fine papers has been studied through γ-ray spectroscopy with an intrinsic Ge detector. Samples of paper from European and North American sources were found to contain very different amounts of 226 Ra and 232 Th. The processes which introduce radionuclides into paper are discussed. The radioactivity from fine papers makes only a small contribution to an individual's annual radiation dose; nevertheless it is easily detectable and perhaps, avoidable. (Author)

  9. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...... dispersion equation in modeling the transport and the deposition of reservoir fines. It successfully predicts the unsymmetrical concentration profiles and the hyperexponential deposition in experiments....

  10. Cocaine Promotes Coincidence Detection and Lowers Induction Threshold during Hebbian Associative Synaptic Potentiation in Prefrontal Cortex.

    Science.gov (United States)

    Ruan, Hongyu; Yao, Wei-Dong

    2017-01-25

    Addictive drugs usurp neural plasticity mechanisms that normally serve reward-related learning and memory, primarily by evoking changes in glutamatergic synaptic strength in the mesocorticolimbic dopamine circuitry. Here, we show that repeated cocaine exposure in vivo does not alter synaptic strength in the mouse prefrontal cortex during an early period of withdrawal, but instead modifies a Hebbian quantitative synaptic learning rule by broadening the temporal window and lowers the induction threshold for spike-timing-dependent LTP (t-LTP). After repeated, but not single, daily cocaine injections, t-LTP in layer V pyramidal neurons is induced at +30 ms, a normally ineffective timing interval for t-LTP induction in saline-exposed mice. This cocaine-induced, extended-timing t-LTP lasts for ∼1 week after terminating cocaine and is accompanied by an increased susceptibility to potentiation by fewer pre-post spike pairs, indicating a reduced t-LTP induction threshold. Basal synaptic strength and the maximal attainable t-LTP magnitude remain unchanged after cocaine exposure. We further show that the cocaine facilitation of t-LTP induction is caused by sensitized D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons, which then pathologically recruits voltage-gated l-type Ca 2+ channels that synergize with GluN2A-containing NMDA receptors to drive t-LTP at extended timing. Our results illustrate a mechanism by which cocaine, acting on a key neuromodulation pathway, modifies the coincidence detection window during Hebbian plasticity to facilitate associative synaptic potentiation in prefrontal excitatory circuits. By modifying rules that govern activity-dependent synaptic plasticity, addictive drugs can derail the experience-driven neural circuit remodeling process important for executive control of reward and addiction. It is believed that addictive drugs often render an addict's brain reward system hypersensitive, leaving the individual more susceptible to

  11. Spike timing-dependent plasticity as the origin of the formation of clustered synaptic efficacy engrams

    Directory of Open Access Journals (Sweden)

    Nicolangelo L Iannella

    2010-07-01

    Full Text Available Synapse location, dendritic active properties and synaptic plasticity are all known to play some role in shaping the different input streams impinging onto a neuron. It remains unclear however, how the magnitude and spatial distribution of synaptic efficacies emerge from this interplay. Here, we investigate this interplay using a biophysically detailed neuron model of a reconstructed layer 2/3 pyramidal cell and spike timing-dependent plasticity (STDP. Specifically, we focus on the issue of how the efficacy of synapses contributed by different input streams are spatially represented in dendrites after STDP learning. We construct a simple feed forward network where a detailed model neuron receives synaptic inputs independently from multiple yet equally sized groups of afferent fibres with correlated activity, mimicking the spike activity from different neuronal populations encoding, for example, different sensory modalities. Interestingly, ensuing STDP learning, we observe that for all afferent groups, STDP leads to synaptic efficacies arranged into spatially segregated clusters effectively partitioning the dendritic tree. These segregated clusters possess a characteristic global organisation in space, where they form a tessellation in which each group dominates mutually exclusive regions of the dendrite.Put simply, the dendritic imprint from different input streams left after STDP learning effectively forms what we term a dendritic efficacy mosaic. Furthermore, we show how variations of the inputs and STDP rule affect such an organization. Our model suggests that STDP may be an important mechanism for creating a clustered plasticity engram, which shapes how different input streams are spatially represented in dendrite.

  12. TrkB and PKMζ regulate synaptic localization of PSD-95 in developing cortex

    Science.gov (United States)

    Yoshii, Akira; Murata, Yasunobu; Kim, Jihye; Zhang, Chao; Shokat, Kevan M.; Constantine-Paton, Martha

    2011-01-01

    Post-synaptic density 95 (PSD-95), the major scaffold at excitatory synapses, is critical for synapse maturation and learning. In rodents, eye opening, the onset of pattern vision, triggers a rapid movement of PSD-95 from visual neuron somata to synapses. We previously showed that the PI3 kinase-Akt pathway downstream of BDNF/TrkB signaling stimulates synaptic delivery of PSD-95 via vesicular transport. However, vesicular transport requires PSD-95 palmitoylation to attach it to a lipid membrane. Also PSD-95 insertion at synapses is known to require this lipid modification. Here, we show that BDNF/TrkB signaling is also necessary for PSD-95 palmitoylation and its transport to synapses in mouse visual cortical layer 2/3 neurons. However, palmitoylation of PSD-95 requires the activation of another pathway downstream of BDNF/TrkB, namely signaling through PLCγ and the brain-specific PKC variant PKMζ. We find that PKMζ selectively regulates phosphorylation of the palmitoylation enzyme ZDHHC8. Inhibition of PKMζ results in a reduction of synaptic PSD-95 accumulation in vivo, which can be rescued by over-expression ZDHHC8. Therefore, TrkB and PKMζ, two critical regulators of synaptic plasticity, facilitate PSD-95 targeting to synapses. These results also indicate that palmitoylation can be regulated by a trophic factor. Our findings have implications for neurodevelopmental disorders as well as ageing brains. PMID:21849550

  13. Synaptic reorganization of inhibitory hilar interneuron circuitry after traumatic brain injury in mice

    Science.gov (United States)

    Hunt, Robert F.; Scheff, Stephen W.; Smith, Bret N.

    2011-01-01

    Functional plasticity of synaptic networks in the dentate gyrus has been implicated in the development of posttraumatic epilepsy and in cognitive dysfunction after traumatic brain injury, but little is known about potentially pathogenic changes in inhibitory circuits. We examined synaptic inhibition of dentate granule cells and excitability of surviving GABAergic hilar interneurons 8–13 weeks after cortical contusion brain injury in transgenic mice that express enhanced green fluorescent protein in a subpopulation of inhibitory neurons. Whole-cell voltage-clamp recordings in granule cells revealed a reduction in spontaneous and miniature IPSC frequency after head injury; no concurrent change in paired-pulse ratio was found in granule cells after paired electrical stimulation of the hilus. Despite reduced inhibitory input to granule cells, action potential and EPSC frequencies were increased in hilar GABA neurons from slices ipsilateral to the injury, versus those from control or contralateral slices. Further, increased excitatory synaptic activity was detected in hilar GABA neurons ipsilateral to the injury after glutamate photostimulation of either the granule cell or CA3 pyramidal cell layers. Together, these findings suggest that excitatory drive to surviving hilar GABA neurons is enhanced by convergent input from both pyramidal and granule cells, but synaptic inhibition of granule cells is not fully restored after injury. This rewiring of circuitry regulating hilar inhibitory neurons may reflect an important compensatory mechanism, but it may also contribute to network destabilization by increasing the relative impact of surviving individual interneurons in controlling granule cell excitability in the posttraumatic dentate gyrus. PMID:21543618

  14. Localization of Presynaptic Plasticity Mechanisms Enables Functional Independence of Synaptic and Ectopic Transmission in the Cerebellum

    Directory of Open Access Journals (Sweden)

    Katharine L. Dobson

    2015-01-01

    Full Text Available In the cerebellar molecular layer parallel fibre terminals release glutamate from both the active zone and from extrasynaptic “ectopic” sites. Ectopic release mediates transmission to the Bergmann glia that ensheathe the synapse, activating Ca2+-permeable AMPA receptors and glutamate transporters. Parallel fibre terminals exhibit several forms of presynaptic plasticity, including cAMP-dependent long-term potentiation and endocannabinoid-dependent long-term depression, but it is not known whether these presynaptic forms of long-term plasticity also influence ectopic transmission to Bergmann glia. Stimulation of parallel fibre inputs at 16 Hz evoked LTP of synaptic transmission, but LTD of ectopic transmission. Pharmacological activation of adenylyl cyclase by forskolin caused LTP at Purkinje neurons, but only transient potentiation at Bergmann glia, reinforcing the concept that ectopic sites lack the capacity to express sustained cAMP-dependent potentiation. Activation of mGluR1 caused depression of synaptic transmission via retrograde endocannabinoid signalling but had no significant effect at ectopic sites. In contrast, activation of NMDA receptors suppressed both synaptic and ectopic transmission. The results suggest that the signalling mechanisms for presynaptic LTP and retrograde depression by endocannabinoids are restricted to the active zone at parallel fibre synapses, allowing independent modulation of synaptic transmission to Purkinje neurons and ectopic transmission to Bergmann glia.

  15. Familiarity Detection is an Intrinsic Property of Cortical Microcircuits with Bidirectional Synaptic Plasticity.

    Science.gov (United States)

    Zhang, Xiaoyu; Ju, Han; Penney, Trevor B; VanDongen, Antonius M J

    2017-01-01

    Humans instantly recognize a previously seen face as "familiar." To deepen our understanding of familiarity-novelty detection, we simulated biologically plausible neural network models of generic cortical microcircuits consisting of spiking neurons with random recurrent synaptic connections. NMDA receptor (NMDAR)-dependent synaptic plasticity was implemented to allow for unsupervised learning and bidirectional modifications. Network spiking activity evoked by sensory inputs consisting of face images altered synaptic efficacy, which resulted in the network responding more strongly to a previously seen face than a novel face. Network size determined how many faces could be accurately recognized as familiar. When the simulated model became sufficiently complex in structure, multiple familiarity traces could be retained in the same network by forming partially-overlapping subnetworks that differ slightly from each other, thereby resulting in a high storage capacity. Fisher's discriminant analysis was applied to identify critical neurons whose spiking activity predicted familiar input patterns. Intriguingly, as sensory exposure was prolonged, the selected critical neurons tended to appear at deeper layers of the network model, suggesting recruitment of additional circuits in the network for incremental information storage. We conclude that generic cortical microcircuits with bidirectional synaptic plasticity have an intrinsic ability to detect familiar inputs. This ability does not require a specialized wiring diagram or supervision and can therefore be expected to emerge naturally in developing cortical circuits.

  16. Bacterial cytolysin during meningitis disrupts the regulation of glutamate in the brain, leading to synaptic damage.

    Directory of Open Access Journals (Sweden)

    Carolin Wippel

    Full Text Available Streptococcus pneumoniae (pneumococcal meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage.

  17. Systematic study on dynamic atomic layer epitaxy of InN on/in +c-GaN matrix and fabrication of fine-structure InN/GaN quantum wells: Role of high growth temperature

    Science.gov (United States)

    Yoshikawa, Akihiko; Kusakabe, Kazuhide; Hashimoto, Naoki; Hwang, Eun-Sook; Imai, Daichi; Itoi, Takaomi

    2016-12-01

    The growth kinetics and properties of nominally 1-ML (monolayer)-thick InN wells on/in +c-GaN matrix fabricated using dynamic atomic layer epitaxy (D-ALEp) by plasma-assisted molecular beam epitaxy were systematically studied, with particular attention given to the effects of growth temperature. Attention was also given to how and where the ˜1-ML-thick InN layers were frozen or embedded on/in the +c-GaN matrix. The D-ALEp of InN on GaN was a two-stage process; in the 1st stage, an "In+N" bilayer/monolayer was formed on the GaN surface, while in the 2nd, this was capped by a GaN barrier layer. Each process was monitored in-situ using spectroscopic ellipsometry. The target growth temperature was above 620 °C and much higher than the upper critical epitaxy temperature of InN (˜500 °C). The "In+N" bilayer/monolayer tended to be an incommensurate phase, and the growth of InN layers was possible only when they were capped with a GaN layer. The InN layers could be coherently inserted into the GaN matrix under self-organizing and self-limiting epitaxy modes. The growth temperature was the most dominant growth parameter on both the growth process and the structure of the InN layers. Reflecting the inherent growth behavior of D-ALEp grown InN on/in +c-GaN at high growth temperature, the embedded InN layers in the GaN matrix were basically not full-ML in coverage, and the thickness of sheet-island-like InN layers was essentially either 1-ML or 2-ML. It was found that these InN layers tended to be frozen at the step edges on the GaN and around screw-type threading dislocations. The InN wells formed type-I band line-up heterostructures with GaN barriers, with exciton localization energies of about 300 and 500 meV at 15 K for the 1-ML and 2-ML InN wells, respectively.

  18. Influence of Synaptic Depression on Memory Storage Capacity

    Science.gov (United States)

    Otsubo, Yosuke; Nagata, Kenji; Oizumi, Masafumi; Okada, Masato

    2011-08-01

    Synaptic efficacy between neurons is known to change within a short time scale dynamically. Neurophysiological experiments show that high-frequency presynaptic inputs decrease synaptic efficacy between neurons. This phenomenon is called synaptic depression, a short term synaptic plasticity. Many researchers have investigated how the synaptic depression affects the memory storage capacity. However, the noise has not been taken into consideration in their analysis. By introducing ``temperature'', which controls the level of the noise, into an update rule of neurons, we investigate the effects of synaptic depression on the memory storage capacity in the presence of the noise. We analytically compute the storage capacity by using a statistical mechanics technique called Self Consistent Signal to Noise Analysis (SCSNA). We find that the synaptic depression decreases the storage capacity in the case of finite temperature in contrast to the case of the low temperature limit, where the storage capacity does not change.

  19. Ultrafast Synaptic Events in a Chalcogenide Memristor

    Science.gov (United States)

    Li, Yi; Zhong, Yingpeng; Xu, Lei; Zhang, Jinjian; Xu, Xiaohua; Sun, Huajun; Miao, Xiangshui

    2013-04-01

    Compact and power-efficient plastic electronic synapses are of fundamental importance to overcoming the bottlenecks of developing a neuromorphic chip. Memristor is a strong contender among the various electronic synapses in existence today. However, the speeds of synaptic events are relatively slow in most attempts at emulating synapses due to the material-related mechanism. Here we revealed the intrinsic memristance of stoichiometric crystalline Ge2Sb2Te5 that originates from the charge trapping and releasing by the defects. The device resistance states, representing synaptic weights, were precisely modulated by 30 ns potentiating/depressing electrical pulses. We demonstrated four spike-timing-dependent plasticity (STDP) forms by applying programmed pre- and postsynaptic spiking pulse pairs in different time windows ranging from 50 ms down to 500 ns, the latter of which is 105 times faster than the speed of STDP in human brain. This study provides new opportunities for building ultrafast neuromorphic computing systems and surpassing Von Neumann architecture.

  20. Synaptic theory of Replicator-like melioration

    Directory of Open Access Journals (Sweden)

    Yonatan Loewenstein

    2010-06-01

    Full Text Available According to the theory of Melioration, organisms in repeated choice settings shift their choice preference in favor of the alternative that provides the highest return. The goal of this paper is to explain how this learning behavior can emerge from microscopic changes in the efficacies of synapses, in the context of two-alternative repeated-choice experiment. I consider a large family of synaptic plasticity rules in which changes in synaptic efficacies are driven by the covariance between reward and neural activity. I construct a general framework that predicts the learning dynamics of any decision-making neural network that implements this synaptic plasticity rule and show that melioration naturally emerges in such networks. Moreover, the resultant learning dynamics follows the Replicator equation which is commonly used to phenomenologically describe changes in behavior in operant conditioning experiments. Several examples demonstrate how the learning rate of the network is affected by its properties and by the specifics of the plasticity rule. These results help bridge the gap between cellular physiology and learning behavior.

  1. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby (Texas-MED)

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  2. Characterization and extraction of the synaptic apposition surface for synaptic geometry analysis

    Science.gov (United States)

    Morales, Juan; Rodríguez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Angel

    2013-01-01

    Geometrical features of chemical synapses are relevant to their function. Two critical components of the synaptic junction are the active zone (AZ) and the postsynaptic density (PSD), as they are related to the probability of synaptic release and the number of postsynaptic receptors, respectively. Morphological studies of these structures are greatly facilitated by the use of recent electron microscopy techniques, such as combined focused ion beam milling and scanning electron microscopy (FIB/SEM), and software tools that permit reconstruction of large numbers of synapses in three dimensions. Since the AZ and the PSD are in close apposition and have a similar surface area, they can be represented by a single surface—the synaptic apposition surface (SAS). We have developed an efficient computational technique to automatically extract this surface from synaptic junctions that have previously been three-dimensionally reconstructed from actual tissue samples imaged by automated FIB/SEM. Given its relationship with the release probability and the number of postsynaptic receptors, the surface area of the SAS is a functionally relevant measure of the size of a synapse that can complement other geometrical features like the volume of the reconstructed synaptic junction, the equivalent ellipsoid size and the Feret's diameter. PMID:23847474

  3. Fine root production at drained peatland sites

    Energy Technology Data Exchange (ETDEWEB)

    Finer, L [Finnish Forest Research Inst. (Finland). Joensuu Research Station; Laine, J [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1997-12-31

    The preliminary results of the Finnish project `Carbon balance of peatlands and climate change` show that fine roots play an important role in carbon cycling on peat soils. After drainage the roots of mire species are gradually replaced by the roots of trees and other forest species. Pine fine root biomass reaches a maximum level by the time of crown closure, some 20 years after drainage on pine mire. The aim of this study is to compare the results of the sequential coring method and the ingrowth bag method used for estimating fine root production on three drained peatland sites of different fertility. The results are preliminary and continuation to the work done in the study Pine root production on drained peatlands, which is part of the Finnish project `Carbon cycling on peatlands and climate change`. In this study the fine root biomass was greater on the poor site than on the rich sites. Pine fine root production increased with the decrease in fertility. Root turnover and the production of field layer species were greater on the rich sites than on the poor site. The results suggested that the in growth bag method measured more root activity than the magnitude of production. More than two growing seasons would have been needed to balance the root dynamics in the in growth bags with the surrounding soil. That time would probably have been longer on the poor site than on the rich ones and longer for pine and field layer consisting of dwarf shrubs than for field layer consisting of sedge like species and birch. (11 refs.)

  4. Fine root production at drained peatland sites

    Energy Technology Data Exchange (ETDEWEB)

    Finer, L. [Finnish Forest Research Inst. (Finland). Joensuu Research Station; Laine, J. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The preliminary results of the Finnish project `Carbon balance of peatlands and climate change` show that fine roots play an important role in carbon cycling on peat soils. After drainage the roots of mire species are gradually replaced by the roots of trees and other forest species. Pine fine root biomass reaches a maximum level by the time of crown closure, some 20 years after drainage on pine mire. The aim of this study is to compare the results of the sequential coring method and the ingrowth bag method used for estimating fine root production on three drained peatland sites of different fertility. The results are preliminary and continuation to the work done in the study Pine root production on drained peatlands, which is part of the Finnish project `Carbon cycling on peatlands and climate change`. In this study the fine root biomass was greater on the poor site than on the rich sites. Pine fine root production increased with the decrease in fertility. Root turnover and the production of field layer species were greater on the rich sites than on the poor site. The results suggested that the in growth bag method measured more root activity than the magnitude of production. More than two growing seasons would have been needed to balance the root dynamics in the in growth bags with the surrounding soil. That time would probably have been longer on the poor site than on the rich ones and longer for pine and field layer consisting of dwarf shrubs than for field layer consisting of sedge like species and birch. (11 refs.)

  5. DNA AND THE FINE STRUCTURE OF SYNAPTIC CHROMOSOMES IN THE DOMESTIC ROOSTER (GALLUS DOMESTICUS)

    Science.gov (United States)

    Coleman, James R.; Moses, Montrose J.

    1964-01-01

    The indium trichloride method of Watson and Aldridge (38) for staining nucleic acids for electron microscopy was employed to study the relationship of DNA to the structure of the synaptinemal complex in meiotic prophase chromosomes of the domestic rooster. The selectivity of the method was demonstrated in untreated and DNase-digested testis material by comparing the distribution of indium staining in the electron microscope to Feulgen staining and ultraviolet absorption in thicker sections seen with the light microscope. Following staining by indium, DNA was found mainly in the microfibril component of the synaptinemal complex. When DNA was known to have been removed from aldehyde-fixed material by digestion with DNase, indium stainability was also lost. However, staining of the digested material with non-selective heavy metal techniques demonstrated the presence of material other than DNA in the microfibrils and showed that little alteration in appearance of the chromosome resulted from DNA removal. The two dense lateral axial elements of the synaptinemal complex, but not the central one to any extent, also contained DNA, together with non-DNA material. PMID:14228519

  6. Climbing fiber-Purkinje cell synaptic pathology in tremor and cerebellar degenerative diseases

    Science.gov (United States)

    Lin, Chi-Ying; Wang, Jie; Sims, Peter A.; Pan, Ming-Kai; Liou, Jyun-you; Lee, Danielle; Tate, William J.; Kelly, Geoffrey C.; Louis, Elan D.; Faust, Phyllis L.

    2017-01-01

    Changes in climbing fiber-Purkinje cell (CF-PC) synaptic connections have been found in the essential tremor (ET) cerebellum, and these changes are correlated with tremor severity. Whether these postmortem changes are specific to ET remains to be investigated. We assessed CF-PC synaptic pathology in the postmortem cerebellum across a range of degenerative movement disorders [10 Parkinson’s disease (PD) cases, 10 multiple system atrophy (MSA) cases, 10 spinocerebellar ataxia type 1 (SCA1) cases, and 20 ET cases] and 25 controls. We observed differences in terms of CF pathological features across these disorders. Specifically, PD cases and ET cases both had more CFs extending into the parallel fiber (PF) territory, but ET cases had more complex branching and increased length of CFs in the PF territory along with decreased CF synaptic density compared to PD cases. MSA cases and SCA1 cases had the most severely reduced CF synaptic density and a marked paucity of CFs extending into the PF territory. Furthermore, CFs in a subset of MSA cases formed collateral branches parallel to the PC layer, a feature not seen in other diagnostic groups. Using unsupervised cluster analysis, the cases and controls could all be categorized into four clusters based on the CF pathology and features of PC pathology, including counts of PCs and their axonal torpedoes. ET cases and PD cases co-segregated into two clusters, whereas SCA1 cases and MSA cases formed another cluster, separate from the control cluster. Interestingly, the presence of resting tremor seemed to be the clinical feature that separated the cases into the two ET-PD clusters. In conclusion, our study demonstrates that these degenerative movement disorders seem to differ with respect to the pattern of CF synaptic pathology they exhibit. It remains to be determined how these differences contribute to the clinical presentations of these diseases. PMID:27704282

  7. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium–gallium–zinc oxide gate stack

    Science.gov (United States)

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-01

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium–gallium–zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>104). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  8. Synaptic behaviors of thin-film transistor with a Pt/HfO x /n-type indium-gallium-zinc oxide gate stack.

    Science.gov (United States)

    Yang, Paul; Park, Daehoon; Beom, Keonwon; Kim, Hyung Jun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-07-20

    We report a variety of synaptic behaviors in a thin-film transistor (TFT) with a metal-oxide-semiconductor gate stack that has a Pt/HfO x /n-type indium-gallium-zinc oxide (n-IGZO) structure. The three-terminal synaptic TFT exhibits a tunable synaptic weight with a drain current modulation upon repeated application of gate and drain voltages. The synaptic weight modulation is analog, voltage-polarity dependent reversible, and strong with a dynamic range of multiple orders of magnitude (>10 4 ). This modulation process emulates biological synaptic potentiation, depression, excitatory-postsynaptic current, paired-pulse facilitation, and short-term to long-term memory transition behaviors as a result of repeated pulsing with respect to the pulse amplitude, width, repetition number, and the interval between pulses. These synaptic behaviors are interpreted based on the changes in the capacitance of the Pt/HfO x /n-IGZO gate stack, the channel mobility, and the threshold voltage that result from the redistribution of oxygen ions by the applied gate voltage. These results demonstrate the potential of this structure for three-terminal synaptic transistor using the gate stack composed of the HfO x gate insulator and the IGZO channel layer.

  9. Compensating Level-Dependent Frequency Representation in Auditory Cortex by Synaptic Integration of Corticocortical Input.

    Directory of Open Access Journals (Sweden)

    Max F K Happel

    Full Text Available Robust perception of auditory objects over a large range of sound intensities is a fundamental feature of the auditory system. However, firing characteristics of single neurons across the entire auditory system, like the frequency tuning, can change significantly with stimulus intensity. Physiological correlates of level-constancy of auditory representations hence should be manifested on the level of larger neuronal assemblies or population patterns. In this study we have investigated how information of frequency and sound level is integrated on the circuit-level in the primary auditory cortex (AI of the Mongolian gerbil. We used a combination of pharmacological silencing of corticocortically relayed activity and laminar current source density (CSD analysis. Our data demonstrate that with increasing stimulus intensities progressively lower frequencies lead to the maximal impulse response within cortical input layers at a given cortical site inherited from thalamocortical synaptic inputs. We further identified a temporally precise intercolumnar synaptic convergence of early thalamocortical and horizontal corticocortical inputs. Later tone-evoked activity in upper layers showed a preservation of broad tonotopic tuning across sound levels without shifts towards lower frequencies. Synaptic integration within corticocortical circuits may hence contribute to a level-robust representation of auditory information on a neuronal population level in the auditory cortex.

  10. Lack of paternal care affects synaptic development in the anterior cingulate cortex.

    Science.gov (United States)

    Ovtscharoff, Wladimir; Helmeke, Carina; Braun, Katharina

    2006-10-20

    Exposure to enriched or impoverished environmental conditions, experience and learning are factors which influence brain development, and it has been shown that neonatal emotional experience significantly interferes with the synaptic development of higher associative forebrain areas. Here, we analyzed the impact of paternal care, i.e. the father's emotional contribution towards his offspring, on the synaptic development of the anterior cingulate cortex. Our light and electron microscopic comparison of biparentally raised control animals and animals which were raised in single-mother families revealed no significant differences in spine densities on the apical dendrites of layer II/III pyramidal neurons and of asymmetric and symmetric spine synapses. However, significantly reduced densities (-33%) of symmetric shaft synapses were found in layer II of the fatherless animals compared to controls. This finding indicates an imbalance between excitatory and inhibitory synapses in the anterior cingulate cortex of father-deprived animals. Our results query the general assumption that a father has less impact on the synaptic maturation of his offspring's brain than the mother.

  11. Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters.

    Science.gov (United States)

    Harsing, Laszlo G; Matyus, Peter

    2013-04-01

    Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic

  12. A fine art

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, G.; Raaff, T. [Andritz AG (Austria)

    2006-07-15

    The paper describes a new dewatering system for coal fines which challenges established processes by using screenbowl centrifuge and hyperbaric filter combinations. Company acquisitions over the past three to four years enabled Andritz AG to develop a new system combining two technologies. The article describes the benefits of the combination process and explains the basic operation of these machines. 4 figs.

  13. Fine 5 lavastab Venemaal

    Index Scriptorium Estoniae

    2013-01-01

    Tantsuteatru Fine 5 koreograafid Tiina Ollesk ja Rene Nõmmik toovad Jekaterinburgis välja lavastuse "... and Red", esitajaks Venemaa nimekas nüüdistantsutrupp Provintsialnõje Tantsõ. Lavastuses kõlab Taavo Remmeli kontrabassiimprovisatsioon "12.12.2006"

  14. Imeilus Fine 5

    Index Scriptorium Estoniae

    2017-01-01

    Vaba Lava teatrikeskuse laval esineb Fine 5 oma lavastusega "Imeilus". Tiina Ollesk ja Renee Nõmmik, tantsulavastuse autorid on koreograafid, õppejõud, lavastajad ja kogemustega tantsijad. 29. jaanuaril korraldavad Tiina Ollesk ja Renee Nõmmik Tallinna Ülikoolis kaasaegse liikumismõtlemise töötoa, mis on pühendatud lavastusele "Imeilus"

  15. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation

    Directory of Open Access Journals (Sweden)

    Sara Calafate

    2015-05-01

    Full Text Available Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer’s disease (AD. Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology.

  16. Attractor neural networks with resource-efficient synaptic connectivity

    Science.gov (United States)

    Pehlevan, Cengiz; Sengupta, Anirvan

    Memories are thought to be stored in the attractor states of recurrent neural networks. Here we explore how resource constraints interplay with memory storage function to shape synaptic connectivity of attractor networks. We propose that given a set of memories, in the form of population activity patterns, the neural circuit choses a synaptic connectivity configuration that minimizes a resource usage cost. We argue that the total synaptic weight (l1-norm) in the network measures the resource cost because synaptic weight is correlated with synaptic volume, which is a limited resource, and is proportional to neurotransmitter release and post-synaptic current, both of which cost energy. Using numerical simulations and replica theory, we characterize optimal connectivity profiles in resource-efficient attractor networks. Our theory explains several experimental observations on cortical connectivity profiles, 1) connectivity is sparse, because synapses are costly, 2) bidirectional connections are overrepresented and 3) are stronger, because attractor states need strong recurrence.

  17. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    OpenAIRE

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2010-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic ...

  18. Synaptic Remodeling in the Dentate Gyrus, CA3, CA1, Subiculum, and Entorhinal Cortex of Mice: Effects of Deprived Rearing and Voluntary Running

    Directory of Open Access Journals (Sweden)

    Andrea T. U. Schaefers

    2010-01-01

    Full Text Available Hippocampal cell proliferation is strongly increased and synaptic turnover decreased after rearing under social and physical deprivation in gerbils (Meriones unguiculatus. We examined if a similar epigenetic effect of rearing environment on adult neuroplastic responses can be found in mice (Mus musculus. We examined synaptic turnover rates in the dentate gyrus, CA3, CA1, subiculum, and entorhinal cortex. No direct effects of deprived rearing on rates of synaptic turnover were found in any of the studied regions. However, adult wheel running had the effect of leveling layer-specific differences in synaptic remodeling in the dentate gyrus, CA3, and CA1, but not in the entorhinal cortex and subiculum of animals of both rearing treatments. Epigenetic effects during juvenile development affected adult neural plasticity in mice, but seemed to be less pronounced than in gerbils.

  19. Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Michael Doron

    2017-11-01

    Full Text Available The NMDA spike is a long-lasting nonlinear phenomenon initiated locally in the dendritic branches of a variety of cortical neurons. It plays a key role in synaptic plasticity and in single-neuron computations. Combining dynamic system theory and computational approaches, we now explore how the timing of synaptic inhibition affects the NMDA spike and its associated membrane current. When impinging on its early phase, individual inhibitory synapses strongly, but transiently, dampen the NMDA spike; later inhibition prematurely terminates it. A single inhibitory synapse reduces the NMDA-mediated Ca2+ current, a key player in plasticity, by up to 45%. NMDA spikes in distal dendritic branches/spines are longer-lasting and more resilient to inhibition, enhancing synaptic plasticity at these branches. We conclude that NMDA spikes are highly sensitive to dendritic inhibition; sparse weak inhibition can finely tune synaptic plasticity both locally at the dendritic branch level and globally at the level of the neuron’s output.

  20. Statistical mechanics of attractor neural network models with synaptic depression

    International Nuclear Information System (INIS)

    Igarashi, Yasuhiko; Oizumi, Masafumi; Otsubo, Yosuke; Nagata, Kenji; Okada, Masato

    2009-01-01

    Synaptic depression is known to control gain for presynaptic inputs. Since cortical neurons receive thousands of presynaptic inputs, and their outputs are fed into thousands of other neurons, the synaptic depression should influence macroscopic properties of neural networks. We employ simple neural network models to explore the macroscopic effects of synaptic depression. Systems with the synaptic depression cannot be analyzed due to asymmetry of connections with the conventional equilibrium statistical-mechanical approach. Thus, we first propose a microscopic dynamical mean field theory. Next, we derive macroscopic steady state equations and discuss the stabilities of steady states for various types of neural network models.

  1. Experimental Implementation of a Biometric Laser Synaptic Sensor

    Directory of Open Access Journals (Sweden)

    Alexander N. Pisarchik

    2013-12-01

    Full Text Available We fabricate a biometric laser fiber synaptic sensor to transmit information from one neuron cell to the other by an optical way. The optical synapse is constructed on the base of an erbium-doped fiber laser, whose pumped diode current is driven by a pre-synaptic FitzHugh–Nagumo electronic neuron, and the laser output controls a post-synaptic FitzHugh–Nagumo electronic neuron. The implemented laser synapse displays very rich dynamics, including fixed points, periodic orbits with different frequency-locking ratios and chaos. These regimes can be beneficial for efficient biorobotics, where behavioral flexibility subserved by synaptic connectivity is a challenge.

  2. A pivotal role of GSK-3 in synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Clarrisa A Bradley

    2012-02-01

    Full Text Available Glycogen synthase kinase-3 (GSK-3 has many cellular functions. Recent evidence suggests that it plays a key role in certain types of synaptic plasticity, in particular a form of long-term depression (LTD that is induced by the synaptic activation of N-methyl-D-aspartate (NMDA receptors. In the present article we summarise what is currently known concerning the roles of GSK-3 in synaptic plasticity at both glutamatergic and GABAergic synapses. We summarise its role in cognition and speculate on how alterations in the synaptic functioning of GSK-3 may be a major factor in certain neurodegenerative disorders.

  3. proBDNF Negatively Regulates Neuronal Remodeling, Synaptic Transmission, and Synaptic Plasticity in Hippocampus

    Directory of Open Access Journals (Sweden)

    Jianmin Yang

    2014-05-01

    Full Text Available Experience-dependent plasticity shapes postnatal development of neural circuits, but the mechanisms that refine dendritic arbors, remodel spines, and impair synaptic activity are poorly understood. Mature brain-derived neurotrophic factor (BDNF modulates neuronal morphology and synaptic plasticity, including long-term potentiation (LTP via TrkB activation. BDNF is initially translated as proBDNF, which binds p75NTR. In vitro, recombinant proBDNF modulates neuronal structure and alters hippocampal long-term plasticity, but the actions of endogenously expressed proBDNF are unclear. Therefore, we generated a cleavage-resistant probdnf knockin mouse. Our results demonstrate that proBDNF negatively regulates hippocampal dendritic complexity and spine density through p75NTR. Hippocampal slices from probdnf mice exhibit depressed synaptic transmission, impaired LTP, and enhanced long-term depression (LTD in area CA1. These results suggest that proBDNF acts in vivo as a biologically active factor that regulates hippocampal structure, synaptic transmission, and plasticity, effects that are distinct from those of mature BDNF.

  4. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.

    Science.gov (United States)

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns-both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity.

  5. Fine-tuning and the stability of recurrent neural networks.

    Directory of Open Access Journals (Sweden)

    David MacNeil

    Full Text Available A central criticism of standard theoretical approaches to constructing stable, recurrent model networks is that the synaptic connection weights need to be finely-tuned. This criticism is severe because proposed rules for learning these weights have been shown to have various limitations to their biological plausibility. Hence it is unlikely that such rules are used to continuously fine-tune the network in vivo. We describe a learning rule that is able to tune synaptic weights in a biologically plausible manner. We demonstrate and test this rule in the context of the oculomotor integrator, showing that only known neural signals are needed to tune the weights. We demonstrate that the rule appropriately accounts for a wide variety of experimental results, and is robust under several kinds of perturbation. Furthermore, we show that the rule is able to achieve stability as good as or better than that provided by the linearly optimal weights often used in recurrent models of the integrator. Finally, we discuss how this rule can be generalized to tune a wide variety of recurrent attractor networks, such as those found in head direction and path integration systems, suggesting that it may be used to tune a wide variety of stable neural systems.

  6. Fine Channel Networks

    Science.gov (United States)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  7. The role of layer-induced anisotropy in seismic exploration

    NARCIS (Netherlands)

    Hake, J.H.

    1993-01-01

    In this thesis we focus on anisotropy caused by fine layering. We analyse the conditions that must be satisfied so that fine layering is equivalent to anisotropy. In the long-wavelength (or quasi-static) approximation an interval of thickness H, consisting of a sequence of layers, is effectively

  8. The role of layer-induced anisotropy in seismic exploration

    NARCIS (Netherlands)

    Hake, J.H.

    1992-01-01

    184In this thesis we focus on anisotropy caused by fine layering. We analyse the conditions that must be satisfied so that fine layering is equivalent to anisotropy. In the long-wavelength (or quasi-static) approximation an interval of thickness H, consisting of a sequence of layers, is

  9. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  10. A presynaptic role for PKA in synaptic tagging and memory.

    Science.gov (United States)

    Park, Alan Jung; Havekes, Robbert; Choi, Jennifer Hk; Luczak, Vince; Nie, Ting; Huang, Ted; Abel, Ted

    2014-10-01

    Protein kinase A (PKA) and other signaling molecules are spatially restricted within neurons by A-kinase anchoring proteins (AKAPs). Although studies on compartmentalized PKA signaling have focused on postsynaptic mechanisms, presynaptically anchored PKA may contribute to synaptic plasticity and memory because PKA also regulates presynaptic transmitter release. Here, we examine this issue using genetic and pharmacological application of Ht31, a PKA anchoring disrupting peptide. At the hippocampal Schaffer collateral CA3-CA1 synapse, Ht31 treatment elicits a rapid decay of synaptic responses to repetitive stimuli, indicating a fast depletion of the readily releasable pool of synaptic vesicles. The interaction between PKA and proteins involved in producing this pool of synaptic vesicles is supported by biochemical assays showing that synaptic vesicle protein 2 (SV2), Rim1, and SNAP25 are components of a complex that interacts with cAMP. Moreover, acute treatment with Ht31 reduces the levels of SV2. Finally, experiments with transgenic mouse lines, which express Ht31 in excitatory neurons at the Schaffer collateral CA3-CA1 synapse, highlight a requirement for presynaptically anchored PKA in pathway-specific synaptic tagging and long-term contextual fear memory. These results suggest that a presynaptically compartmentalized PKA is critical for synaptic plasticity and memory by regulating the readily releasable pool of synaptic vesicles. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction

    Directory of Open Access Journals (Sweden)

    Aile evan Huijstee

    2015-01-01

    Full Text Available Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behaviour, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA. This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc and the prefrontal cortex (PFC, with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioural symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodelling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction.

  12. Phosphodiesterase Inhibition to Target the Synaptic Dysfunction in Alzheimer's Disease

    Science.gov (United States)

    Bales, Kelly R.; Plath, Niels; Svenstrup, Niels; Menniti, Frank S.

    Alzheimer's Disease (AD) is a disease of synaptic dysfunction that ultimately proceeds to neuronal death. There is a wealth of evidence that indicates the final common mediator of this neurotoxic process is the formation and actions on synaptotoxic b-amyloid (Aβ). The premise in this review is that synaptic dysfunction may also be an initiating factor in for AD and promote synaptotoxic Aβ formation. This latter hypothesis is consistent with the fact that the most common risk factors for AD, apolipoprotein E (ApoE) allele status, age, education, and fitness, encompass suboptimal synaptic function. Thus, the synaptic dysfunction in AD may be both cause and effect, and remediating synaptic dysfunction in AD may have acute effects on the symptoms present at the initiation of therapy and also slow disease progression. The cyclic nucleotide (cAMP and cGMP) signaling systems are intimately involved in the regulation of synaptic homeostasis. The phosphodiesterases (PDEs) are a superfamily of enzymes that critically regulate spatial and temporal aspects of cyclic nucleotide signaling through metabolic inactivation of cAMP and cGMP. Thus, targeting the PDEs to promote improved synaptic function, or 'synaptic resilience', may be an effective and facile approach to new symptomatic and disease modifying therapies for AD. There continues to be a significant drug discovery effort aimed at discovering PDE inhibitors to treat a variety of neuropsychiatric disorders. Here we review the current status of those efforts as they relate to potential new therapies for AD.

  13. Synaptogenic proteins and synaptic organizers: "many hands make light work".

    Science.gov (United States)

    Brose, Nils

    2009-03-12

    Synaptogenesis is thought to be mediated by cell adhesion proteins, which induce the initial contact between an axon and its target cell and subsequently recruit and organize the presynaptic and postsynaptic protein machinery required for synaptic transmission. A new study by Linhoff and colleagues in this issue of Neuron identifies adhesion proteins of the LRRTM family as novel synaptic organizers.

  14. Synaptic Tagging, Evaluation of Memories, and the Distal Reward Problem

    Science.gov (United States)

    Papper, Marc; Kempter, Richard; Leibold, Christian

    2011-01-01

    Long-term synaptic plasticity exhibits distinct phases. The synaptic tagging hypothesis suggests an early phase in which synapses are prepared, or "tagged," for protein capture, and a late phase in which those proteins are integrated into the synapses to achieve memory consolidation. The synapse specificity of the tags is consistent with…

  15. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction

    Science.gov (United States)

    van Huijstee, Aile N.; Mansvelder, Huibert D.

    2015-01-01

    Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine (DA) system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behavior, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA). This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc) and the prefrontal cortex (PFC), with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioral symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodeling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction. PMID:25653591

  16. Modulation of synaptic plasticity by stress hormone associates with plastic alteration of synaptic NMDA receptor in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Yiu Chung Tse

    Full Text Available Stress exerts a profound impact on learning and memory, in part, through the actions of adrenal corticosterone (CORT on synaptic plasticity, a cellular model of learning and memory. Increasing findings suggest that CORT exerts its impact on synaptic plasticity by altering the functional properties of glutamate receptors, which include changes in the motility and function of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of glutamate receptor (AMPAR that are responsible for the expression of synaptic plasticity. Here we provide evidence that CORT could also regulate synaptic plasticity by modulating the function of synaptic N-methyl-D-aspartate receptors (NMDARs, which mediate the induction of synaptic plasticity. We found that stress level CORT applied to adult rat hippocampal slices potentiated evoked NMDAR-mediated synaptic responses within 30 min. Surprisingly, following this fast-onset change, we observed a slow-onset (>1 hour after termination of CORT exposure increase in synaptic expression of GluN2A-containing NMDARs. To investigate the consequences of the distinct fast- and slow-onset modulation of NMDARs for synaptic plasticity, we examined the formation of long-term potentiation (LTP and long-term depression (LTD within relevant time windows. Paralleling the increased NMDAR function, both LTP and LTD were facilitated during CORT treatment. However, 1-2 hours after CORT treatment when synaptic expression of GluN2A-containing NMDARs is increased, bidirectional plasticity was no longer facilitated. Our findings reveal the remarkable plasticity of NMDARs in the adult hippocampus in response to CORT. CORT-mediated slow-onset increase in GluN2A in hippocampal synapses could be a homeostatic mechanism to normalize synaptic plasticity following fast-onset stress-induced facilitation.

  17. MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity

    International Nuclear Information System (INIS)

    Zhu Guoqi; Chen Ying; Huang Yuying; Li Qinglin; Behnisch, Thomas

    2011-01-01

    Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only at the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: → I.p. MPTP-injection mediates death of dopaminergic neurons. → I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. → I.p. MPTP-injection does not alter basal synaptic transmission. → Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. → Attenuation of NMDA-receptors mediated

  18. Nicotinic mechanisms influencing synaptic plasticity in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    Andon Nicholas PLACZEK; Tao A ZHANG; John Anthony DANI

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed throughout the hippocampus, and nicotinic signaling plays an important role in neuronal function. In the context of learning and memory related behaviors associated with hippocampal function, a potentially significant feature of nAChR activity is the impact it has on synaptic plasticity. Synaptic plasticity in hippocampal neurons has long been considered a contributing cellular mechanism of learning and memory. These same kinds of cellular mechanisms are a factor in the development of nicotine addiction. Nicotinic signaling has been demonstrated by in vitro studies to affect synaptic plasticity in hippocampal neurons via multiple steps, and the signaling has also been shown to evoke synaptic plasticity in vivo. This review focuses on the nAChRs subtypes that contribute to hippocampal synaptic plasticity at the cellular and circuit level. It also considers nicotinic influences over long-term changes in the hippocampus that may contribute to addiction.

  19. Synaptic transmission block by presynaptic injection of oligomeric amyloid beta

    Science.gov (United States)

    Moreno, Herman; Yu, Eunah; Pigino, Gustavo; Hernandez, Alejandro I.; Kim, Natalia; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2009-01-01

    Early Alzheimer's disease (AD) pathophysiology is characterized by synaptic changes induced by degradation products of amyloid precursor protein (APP). The exact mechanisms of such modulation are unknown. Here, we report that nanomolar concentrations of intraaxonal oligomeric (o)Aβ42, but not oAβ40 or extracellular oAβ42, acutely inhibited synaptic transmission at the squid giant synapse. Further characterization of this phenotype demonstrated that presynaptic calcium currents were unaffected. However, electron microscopy experiments revealed diminished docked synaptic vesicles in oAβ42-microinjected terminals, without affecting clathrin-coated vesicles. The molecular events of this modulation involved casein kinase 2 and the synaptic vesicle rapid endocytosis pathway. These findings open the possibility of a new therapeutic target aimed at ameliorating synaptic dysfunction in AD. PMID:19304802

  20. [Involvement of aquaporin-4 in synaptic plasticity, learning and memory].

    Science.gov (United States)

    Wu, Xin; Gao, Jian-Feng

    2017-06-25

    Aquaporin-4 (AQP-4) is the predominant water channel in the central nervous system (CNS) and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. However, the role of AQP-4 in regulating synaptic plasticity, learning and memory, cognitive function is only beginning to be investigated. It is well known that synaptic plasticity is the prime candidate for mediating of learning and memory. Long term potentiation (LTP) and long term depression (LTD) are two forms of synaptic plasticity, and they share some but not all the properties and mechanisms. Hippocampus is a part of limbic system that is particularly important in regulation of learning and memory. This article is to review some research progresses of the function of AQP-4 in synaptic plasticity, learning and memory, and propose the possible role of AQP-4 as a new target in the treatment of cognitive dysfunction.

  1. Stochastic lattice model of synaptic membrane protein domains.

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  2. Alteration of synaptic connectivity of oligodendrocyte precursor cells following demyelination

    Science.gov (United States)

    Sahel, Aurélia; Ortiz, Fernando C.; Kerninon, Christophe; Maldonado, Paloma P.; Angulo, María Cecilia; Nait-Oumesmar, Brahim

    2015-01-01

    Oligodendrocyte precursor cells (OPCs) are a major source of remyelinating oligodendrocytes in demyelinating diseases such as Multiple Sclerosis (MS). While OPCs are innervated by unmyelinated axons in the normal brain, the fate of such synaptic contacts after demyelination is still unclear. By combining electrophysiology and immunostainings in different transgenic mice expressing fluorescent reporters, we studied the synaptic innervation of OPCs in the model of lysolecithin (LPC)-induced demyelination of corpus callosum. Synaptic innervation of reactivated OPCs in the lesion was revealed by the presence of AMPA receptor-mediated synaptic currents, VGluT1+ axon-OPC contacts in 3D confocal reconstructions and synaptic junctions observed by electron microscopy. Moreover, 3D confocal reconstructions of VGluT1 and NG2 immunolabeling showed the existence of glutamatergic axon-OPC contacts in post-mortem MS lesions. Interestingly, patch-clamp recordings in LPC-induced lesions demonstrated a drastic decrease in spontaneous synaptic activity of OPCs early after demyelination that was not caused by an impaired conduction of compound action potentials. A reduction in synaptic connectivity was confirmed by the lack of VGluT1+ axon-OPC contacts in virtually all rapidly proliferating OPCs stained with EdU (50-ethynyl-20-deoxyuridine). At the end of the massive proliferation phase in lesions, the proportion of innervated OPCs rapidly recovers, although the frequency of spontaneous synaptic currents did not reach control levels. In conclusion, our results demonstrate that newly-generated OPCs do not receive synaptic inputs during their active proliferation after demyelination, but gain synapses during the remyelination process. Hence, glutamatergic synaptic inputs may contribute to inhibit OPC proliferation and might have a physiopathological relevance in demyelinating disorders. PMID:25852473

  3. Fine target of deuterium

    International Nuclear Information System (INIS)

    Diaz Diaz, J.; Granados Gonzalez, C. E.; Gutierrez Bernal, R.

    1959-01-01

    A fine target of deuterium on a tantalum plate by the absorption method is obtained. In order to obtain the de gasification temperature an induction generator of high frequency is used and the deuterium pass is regulated by means of a palladium valve. Two vacuum measures are available, one to measure the high vacuum in the de gasification process of the tantalum plate and the other, for low vacuum, to measure the deuterium inlet in the installation and the deuterium pressure change in the installation after the absorption in the tantalum plate. A target of 48 μ gr/cm 2 thick is obtained. (Author) 1 refs

  4. Leucine-rich repeat-containing synaptic adhesion molecules as organizers of synaptic specificity and diversity.

    Science.gov (United States)

    Schroeder, Anna; de Wit, Joris

    2018-04-09

    The brain harbors billions of neurons that form distinct neural circuits with exquisite specificity. Specific patterns of connectivity between distinct neuronal cell types permit the transfer and computation of information. The molecular correlates that give rise to synaptic specificity are incompletely understood. Recent studies indicate that cell-surface molecules are important determinants of cell type identity and suggest that these are essential players in the specification of synaptic connectivity. Leucine-rich repeat (LRR)-containing adhesion molecules in particular have emerged as key organizers of excitatory and inhibitory synapses. Here, we discuss emerging evidence that LRR proteins regulate the assembly of specific connectivity patterns across neural circuits, and contribute to the diverse structural and functional properties of synapses, two key features that are critical for the proper formation and function of neural circuits.

  5. Synaptic protein changes after a chronic period of sensorimotor perturbation in adult rats: a potential role of phosphorylation/O-GlcNAcylation interplay.

    Science.gov (United States)

    Fourneau, Julie; Canu, Marie-Hélène; Cieniewski-Bernard, Caroline; Bastide, Bruno; Dupont, Erwan

    2018-05-28

    In human, a chronic sensorimotor perturbation (SMP) through prolonged body immobilization alters motor task performance through a combination of peripheral and central factors. Studies performed on a rat model of SMP have shown biomolecular changes and a reorganization of sensorimotor cortex through events such as morphological modifications of dendritic spines (number, length, functionality). However, underlying mechanisms are still unclear. It is well known that phosphorylation regulates a wide field of synaptic activity leading to neuroplasticity. Another post-translational modification that interplays with phosphorylation is O-GlcNAcylation. This atypical glycosylation, reversible and dynamic, is involved in essential cellular and physiological processes such as synaptic activity, neuronal morphogenesis, learning and memory. We examined potential roles of phosphorylation/O-GlcNAcylation interplay in synaptic plasticity within rat sensorimotor cortex after a SMP period. For this purpose, sensorimotor cortex synaptosomes were separated by sucrose gradient, in order to isolate a subcellular compartment enriched in proteins involved in synaptic functions. A period of SMP induced plastic changes at the pre- and postsynaptic levels, characterized by a reduction of phosphorylation (synapsin1, AMPAR GluA2) and expression (synaptophysin, PSD-95, AMPAR GluA2) of synaptic proteins, as well as a decrease in MAPK/ERK42 activation. Expression levels of OGT/OGA enzymes was unchanged but we observed a specific reduction of synapsin1 O-GlcNAcylation in sensorimotor cortex synaptosomes. The synergistic regulation of synapsin1 phosphorylation/O-GlcNAcylation could affect presynaptic neurotransmitter release. Associated with other pre- and postsynaptic changes, synaptic efficacy could be impaired in somatosensory cortex of SMP rat. Thus, synapsin1 O-GlcNAcylation/phosphorylation interplay also appears to be involved in this synaptic plasticity by finely regulating neural activity

  6. Ankyrins: Roles in synaptic biology and pathology.

    Science.gov (United States)

    Smith, Katharine R; Penzes, Peter

    2018-05-03

    Ankyrins are broadly expressed adaptors that organize diverse membrane proteins into specialized domains and link them to the sub-membranous cytoskeleton. In neurons, ankyrins are known to have essential roles in organizing the axon initial segment and nodes of Ranvier. However, recent studies have revealed novel functions for ankyrins at synapses, where they organize and stabilize neurotransmitter receptors, modulate dendritic spine morphology and control adhesion to the presynaptic site. Ankyrin genes have also been highly associated with a range of neurodevelopmental and psychiatric diseases, including bipolar disorder, schizophrenia and autism, which all demonstrate overlap in their genetics, mechanisms and phenotypes. This review discusses the novel synaptic functions of ankyrin proteins in neurons, and places these exciting findings in the context of ANK genes as key neuropsychiatric disorder risk-factors. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Alzheimer's disease: synaptic dysfunction and Abeta

    LENUS (Irish Health Repository)

    Shankar, Ganesh M

    2009-11-23

    Abstract Synapse loss is an early and invariant feature of Alzheimer\\'s disease (AD) and there is a strong correlation between the extent of synapse loss and the severity of dementia. Accordingly, it has been proposed that synapse loss underlies the memory impairment evident in the early phase of AD and that since plasticity is important for neuronal viability, persistent disruption of plasticity may account for the frank cell loss typical of later phases of the disease. Extensive multi-disciplinary research has implicated the amyloid β-protein (Aβ) in the aetiology of AD and here we review the evidence that non-fibrillar soluble forms of Aβ are mediators of synaptic compromise. We also discuss the possible mechanisms of Aβ synaptotoxicity and potential targets for therapeutic intervention.

  8. Optogenetic acidification of synaptic vesicles and lysosomes.

    Science.gov (United States)

    Rost, Benjamin R; Schneider, Franziska; Grauel, M Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian

    2015-12-01

    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes.

  9. Stereotyped Synaptic Connectivity Is Restored during Circuit Repair in the Adult Mammalian Retina.

    Science.gov (United States)

    Beier, Corinne; Palanker, Daniel; Sher, Alexander

    2018-06-04

    Proper function of the central nervous system (CNS) depends on the specificity of synaptic connections between cells of various types. Cellular and molecular mechanisms responsible for the establishment and refinement of these connections during development are the subject of an active area of research [1-6]. However, it is unknown if the adult mammalian CNS can form new type-selective synapses following neural injury or disease. Here, we assess whether selective synaptic connections can be reestablished after circuit disruption in the adult mammalian retina. The stereotyped circuitry at the first synapse in the retina, as well as the relatively short distances new neurites must travel compared to other areas of the CNS, make the retina well suited to probing for synaptic specificity during circuit reassembly. Selective connections between short-wavelength sensitive cone photoreceptors (S-cones) and S-cone bipolar cells provides the foundation of the primordial blue-yellow vision, common to all mammals [7-18]. We take advantage of the ground squirrel retina, which has a one-to-one S-cone-to-S-cone-bipolar-cell connection, to test if this connectivity can be reestablished following local photoreceptor loss [8, 19]. We find that after in vivo selective photoreceptor ablation, deafferented S-cone bipolar cells expand their dendritic trees. The new dendrites randomly explore the proper synaptic layer, bypass medium-wavelength sensitive cone photoreceptors (M-cones), and selectively synapse with S-cones. However, non-connected dendrites are not pruned back to resemble unperturbed S-cone bipolar cells. We show, for the first time, that circuit repair in the adult mammalian retina can recreate stereotypic selective wiring. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Role for astroglial α1-adrenoreceptors in gliotransmission and control of synaptic plasticity in the neocortex

    Directory of Open Access Journals (Sweden)

    Yuriy ePankratov

    2015-06-01

    Full Text Available Communication between neuronal and glial cells is thought to be very important for many brain functions. Acting via release of gliotransmitters, astrocytes can modulate synaptic strength. The mechanisms underlying gliotransmission remain uncertain with exocytosis being the most intriguing and debated pathway.We demonstrate that astroglial α1-adrenoreceptors are very sensitive to noradrenaline and make a significant contribution to intracellular Ca2+-signalling in layer 2/3 neocortical astrocytes. We also show that astroglial α1-adrenoreceptors are prone to desensitization upon prolonged exposure to noradrenaline.We show that within neocortical slices, α-1adrenoreceptors can activate vesicular release of ATP and D-serine from cortical astrocytes which initiate a burst of ATP receptor-mediated currents in adjacent pyramidal neurons. These purinergic currents can be inhibited by intracellular perfusion of astrocytes with Tetanus Toxin light chain, verifying their origin via astroglial exocytosis.We show that α1 adrenoreceptor-activated release of gliotransmitters is important for the induction of synaptic plasticity in the neocortex:long-term potentiation (LTP of neocortical excitatory synaptic potentials can be abolished by the selective α1-adrenoreceptor antagonist terazosin. We show that weak sub-threshold theta-burst stimulation can induce LTP when astrocytes are additionally activated by 1 μM noradrenaline. This facilitation is dependent on the activation of neuronal ATP receptors and is abolished in neocortical slices from dn-SNARE mice which have impaired glial exocytosis. Importantly, facilitation of LTP by noradrenaline can be significantly reduced by perfusion of individual astrocytes with Tetanus Toxin. Our results strongly support the physiological importance of astroglial adrenergic signalling and exocytosis of gliotransmitters for modulation of synaptic transmission and plasticity .

  11. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders.

    Science.gov (United States)

    Sala, Carlo; Vicidomini, Cinzia; Bigi, Ilaria; Mossa, Adele; Verpelli, Chiara

    2015-12-01

    Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia. Thus, the term 'Shankopathies' identifies a number of neuronal diseases caused by alteration of Shank protein expression leading to abnormal synaptic development. With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations and also patients affected by other neurodevelopmental and neuropsychiatric disorders. Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia (SCZ). With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations. © 2015 International Society for Neurochemistry.

  12. NGST fine guidance sensor

    Science.gov (United States)

    Rowlands, Neil; Hutchings, John; Murowinski, Richard G.; Alexander, Russ

    2003-03-01

    Instrumentation for the Next Generation Space Telescope (NGST) is currently in the Phase A definition stage. We have developed a concept for the NGST Fine Guidance Sensor or FGS. The FGS is a detector array based imager which resides in the NGST focal plane. We report here on tradeoff studies aimed at defining an overall configuration of the FGS which will meet the performance and interface requirements. A key performance requirement is a noise equivalent angle of 3 milli-arcseconds to be achieved with 95% probability for any pointing of the observatory in the celestial sphere. A key interface requirement is compatibility with the architecture of the Integrated Science Instrument Module (ISIM). The concept developed consists of two independent and redundant FGS modules, each with a 4' x 2' field of view covered by two 2048 x 2048 infrared detector arrays, providing 60 milli-arcsecond sampling. Performance modeling supporting the choice of this architecture and the trade space considered is presented. Each module has a set of readout electronics which perform star detection, pixel-by-pixel correction, and in fine guiding mode, centroid calculation. These readout electronics communicate with the ISIM Command &Data Handling Units where the FGS control software is based. Rationale for this choice of architecture is also presented.

  13. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    Science.gov (United States)

    Meredith, Rhiannon M.; van Ooyen, Arjen

    2012-01-01

    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  14. Synapse geometry and receptor dynamics modulate synaptic strength.

    Directory of Open Access Journals (Sweden)

    Dominik Freche

    Full Text Available Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity.

  15. Sahara Coal: the fine art of collecting fines for profit

    Energy Technology Data Exchange (ETDEWEB)

    Schreckengost, D.; Arnold, D.

    1984-09-01

    A considerable increase in the volume of fines in rom coal caused Sahara Coal in Illinois to redesign the fine coal system in their Harrisburg preparation plant. Details of the new design, and particularly the fine refuse system which dewaters and dries 28 mesh x O clean coal, are given. Results have exceeded expectations in reducing product losses, operating costs and slurry pond cleaning costs.

  16. Adenosine A2A Receptors Control Glutamatergic Synaptic Plasticity in Fast Spiking Interneurons of the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Amber Kerkhofs

    2018-03-01

    Full Text Available Adenosine A2A receptors (A2AR are activated upon increased synaptic activity to assist in the implementation of long-term plastic changes at synapses. While it is reported that A2AR are involved in the control of prefrontal cortex (PFC-dependent behavior such as working memory, reversal learning and effort-based decision making, it is not known whether A2AR control glutamatergic synapse plasticity within the medial PFC (mPFC. To elucidate that, we tested whether A2AR blockade affects long-term plasticity (LTP of excitatory post-synaptic potentials in pyramidal neurons and fast spiking (FS interneurons in layer 5 of the mPFC and of population spikes. Our results show that A2AR are enriched at mPFC synapses, where their blockade reversed the direction of plasticity at excitatory synapses onto layer 5 FS interneurons from LTP to long-term depression, while their blockade had no effect on the induction of LTP at excitatory synapses onto layer 5 pyramidal neurons. At the network level, extracellularly induced LTP of population spikes was reduced by A2AR blockade. The interneuron-specificity of A2AR in controlling glutamatergic synapse LTP may ensure that during periods of high synaptic activity, a proper excitation/inhibition balance is maintained within the mPFC.

  17. A Voltage Mode Memristor Bridge Synaptic Circuit with Memristor Emulators

    Directory of Open Access Journals (Sweden)

    Leon Chua

    2012-03-01

    Full Text Available A memristor bridge neural circuit which is able to perform signed synaptic weighting was proposed in our previous study, where the synaptic operation was verified via software simulation of the mathematical model of the HP memristor. This study is an extension of the previous work advancing toward the circuit implementation where the architecture of the memristor bridge synapse is built with memristor emulator circuits. In addition, a simple neural network which performs both synaptic weighting and summation is built by combining memristor emulators-based synapses and differential amplifier circuits. The feasibility of the memristor bridge neural circuit is verified via SPICE simulations.

  18. Radiology and fine art.

    Science.gov (United States)

    Marinković, Slobodan; Stošić-Opinćal, Tatjana; Tomić, Oliver

    2012-07-01

    The radiologic aesthetics of some body parts and internal organs have inspired certain artists to create specific works of art. Our aim was to describe the link between radiology and fine art. We explored 13,625 artworks in the literature produced by 2049 artists and found several thousand photographs in an online image search. The examination revealed 271 radiologic artworks (1.99%) created by 59 artists (2.88%) who mainly applied radiography, sonography, CT, and MRI. Some authors produced radiologic artistic photographs, and others used radiologic images to create artful compositions, specific sculptures, or digital works. Many radiologic artworks have symbolic, metaphoric, or conceptual connotations. Radiology is clearly becoming an original and important field of modern art.

  19. Synaptic Plasticity in Cardiac Innervation and Its Potential Role in Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Jesse L. Ashton

    2018-03-01

    Full Text Available Synaptic plasticity is defined as the ability of synapses to change their strength of transmission. Plasticity of synaptic connections in the brain is a major focus of neuroscience research, as it is the primary mechanism underpinning learning and memory. Beyond the brain however, plasticity in peripheral neurons is less well understood, particularly in the neurons innervating the heart. The atria receive rich innervation from the autonomic branch of the peripheral nervous system. Sympathetic neurons are clustered in stellate and cervical ganglia alongside the spinal cord and extend fibers to the heart directly innervating the myocardium. These neurons are major drivers of hyperactive sympathetic activity observed in heart disease, ventricular arrhythmias, and sudden cardiac death. Both pre- and postsynaptic changes have been observed to occur at synapses formed by sympathetic ganglion neurons, suggesting that plasticity at sympathetic neuro-cardiac synapses is a major contributor to arrhythmias. Less is known about the plasticity in parasympathetic neurons located in clusters on the heart surface. These neuronal clusters, termed ganglionated plexi, or “little brains,” can independently modulate neural control of the heart and stimulation that enhances their excitability can induce arrhythmia such as atrial fibrillation. The ability of these neurons to alter parasympathetic activity suggests that plasticity may indeed occur at the synapses formed on and by ganglionated plexi neurons. Such changes may not only fine-tune autonomic innervation of the heart, but could also be a source of maladaptive plasticity during atrial fibrillation.

  20. All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI.

    Science.gov (United States)

    Zolnik, Timothy A; Sha, Fern; Johenning, Friedrich W; Schreiter, Eric R; Looger, Loren L; Larkum, Matthew E; Sachdev, Robert N S

    2017-03-01

    The genetically encoded fluorescent calcium integrator calcium-modulated photoactivatable ratiobetric integrator (CaMPARI) reports calcium influx induced by synaptic and neural activity. Its fluorescence is converted from green to red in the presence of violet light and calcium. The rate of conversion - the sensitivity to activity - is tunable and depends on the intensity of violet light. Synaptic activity and action potentials can independently initiate significant CaMPARI conversion. The level of conversion by subthreshold synaptic inputs is correlated to the strength of input, enabling optical readout of relative synaptic strength. When combined with optogenetic activation of defined presynaptic neurons, CaMPARI provides an all-optical method to map synaptic connectivity. The calcium-modulated photoactivatable ratiometric integrator (CaMPARI) is a genetically encoded calcium integrator that facilitates the study of neural circuits by permanently marking cells active during user-specified temporal windows. Permanent marking enables measurement of signals from large swathes of tissue and easy correlation of activity with other structural or functional labels. One potential application of CaMPARI is labelling neurons postsynaptic to specific populations targeted for optogenetic stimulation, giving rise to all-optical functional connectivity mapping. Here, we characterized the response of CaMPARI to several common types of neuronal calcium signals in mouse acute cortical brain slices. Our experiments show that CaMPARI is effectively converted by both action potentials and subthreshold synaptic inputs, and that conversion level is correlated to synaptic strength. Importantly, we found that conversion rate can be tuned: it is linearly related to light intensity. At low photoconversion light levels CaMPARI offers a wide dynamic range due to slower conversion rate; at high light levels conversion is more rapid and more sensitive to activity. Finally, we employed Ca

  1. Neutralization of Nogo-A Enhances Synaptic Plasticity in the Rodent Motor Cortex and Improves Motor Learning in Vivo

    Science.gov (United States)

    Weinmann, Oliver; Kellner, Yves; Yu, Xinzhu; Vicente, Raul; Gullo, Miriam; Kasper, Hansjörg; Lussi, Karin; Ristic, Zorica; Luft, Andreas R.; Rioult-Pedotti, Mengia; Zuo, Yi; Zagrebelsky, Marta; Schwab, Martin E.

    2014-01-01

    The membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex. Nogo-A and its receptor NgR1 are present at cortical synapses. Acute treatment of slices with function-blocking antibodies (Abs) against Nogo-A or against NgR1 increased long-term potentiation (LTP) induced by stimulation of layer 2/3 horizontal fibers. Furthermore, anti-Nogo-A Ab treatment increased LTP saturation levels, whereas long-term depression remained unchanged, thus leading to an enlarged synaptic modification range. In vivo, intrathecal application of Nogo-A-blocking Abs resulted in a higher dendritic spine density at cortical pyramidal neurons due to an increase in spine formation as revealed by in vivo two-photon microscopy. To investigate whether these changes in synaptic plasticity correlate with motor learning, we trained rats to learn a skilled forelimb-reaching task while receiving anti-Nogo-A Abs. Learning of this cortically controlled precision movement was improved upon anti-Nogo-A Ab treatment. Our results identify Nogo-A as an influential molecular modulator of synaptic plasticity and as a regulator for learning of skilled movements in the motor cortex. PMID:24966370

  2. Postnatal Ablation of Synaptic Retinoic Acid Signaling Impairs Cortical Information Processing and Sensory Discrimination in Mice.

    Science.gov (United States)

    Park, Esther; Tjia, Michelle; Zuo, Yi; Chen, Lu

    2018-06-06

    Retinoic acid (RA) and its receptors (RARs) are well established essential transcriptional regulators during embryonic development. Recent findings in cultured neurons identified an independent and critical post-transcriptional role of RA and RARα in the homeostatic regulation of excitatory and inhibitory synaptic transmission in mature neurons. However, the functional relevance of synaptic RA signaling in vivo has not been established. Here, using somatosensory cortex as a model system and the RARα conditional knock-out mouse as a tool, we applied multiple genetic manipulations to delete RARα postnatally in specific populations of cortical neurons, and asked whether synaptic RA signaling observed in cultured neurons is involved in cortical information processing in vivo Indeed, conditional ablation of RARα in mice via a CaMKIIα-Cre or a layer 5-Cre driver line or via somatosensory cortex-specific viral expression of Cre-recombinase impaired whisker-dependent texture discrimination, suggesting a critical requirement of RARα expression in L5 pyramidal neurons of somatosensory cortex for normal tactile sensory processing. Transcranial two-photon imaging revealed a significant increase in dendritic spine elimination on apical dendrites of somatosensory cortical layer 5 pyramidal neurons in these mice. Interestingly, the enhancement of spine elimination is whisker experience-dependent as whisker trimming rescued the spine elimination phenotype. Additionally, experiencing an enriched environment improved texture discrimination in RARα-deficient mice and reduced excessive spine pruning. Thus, RA signaling is essential for normal experience-dependent cortical circuit remodeling and sensory processing. SIGNIFICANCE STATEMENT The importance of synaptic RA signaling has been demonstrated in in vitro studies. However, whether RA signaling mediated by RARα contributes to neural circuit functions in vivo remains largely unknown. In this study, using a RARα conditional

  3. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    Directory of Open Access Journals (Sweden)

    Joshua G.A Pinto

    2015-02-01

    Full Text Available Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin and found that synaptic development in human primary visual cortex continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the 4 proteins and include a stage during early development (<1 year when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the first year or two of life. A multidimensional analysis (principle component analysis showed that most of the variance was captured by the sum of the 4 synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic.

  4. A presynaptic role for PKA in synaptic tagging and memory

    NARCIS (Netherlands)

    Park, Alan Jung; Havekes, Robbert; Choi, Jennifer H K; Luczak, Vincent; Nie, Ting; Huang, Ted; Abel, Ted

    2014-01-01

    Protein kinase A (PKA) and other signaling molecules are spatially restricted within neurons by A-kinase anchoring proteins (AKAPs). Although studies on compartmentalized PKA signaling have focused on postsynaptic mechanisms, presynaptically anchored PKA may contribute to synaptic plasticity and

  5. Memristor-based neural networks: Synaptic versus neuronal stochasticity

    KAUST Repository

    Naous, Rawan; Alshedivat, Maruan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled N.

    2016-01-01

    In neuromorphic circuits, stochasticity in the cortex can be mapped into the synaptic or neuronal components. The hardware emulation of these stochastic neural networks are currently being extensively studied using resistive memories or memristors

  6. Neuro-inspired computing using resistive synaptic devices

    CERN Document Server

    2017-01-01

    This book summarizes the recent breakthroughs in hardware implementation of neuro-inspired computing using resistive synaptic devices. The authors describe how two-terminal solid-state resistive memories can emulate synaptic weights in a neural network. Readers will benefit from state-of-the-art summaries of resistive synaptic devices, from the individual cell characteristics to the large-scale array integration. This book also discusses peripheral neuron circuits design challenges and design strategies. Finally, the authors describe the impact of device non-ideal properties (e.g. noise, variation, yield) and their impact on the learning performance at the system-level, using a device-algorithm co-design methodology. • Provides single-source reference to recent breakthroughs in resistive synaptic devices, not only at individual cell-level, but also at integrated array-level; • Includes detailed discussion of the peripheral circuits and array architecture design of the neuro-crossbar system; • Focuses on...

  7. Learning and Memory, Part II: Molecular Mechanisms of Synaptic Plasticity

    Science.gov (United States)

    Lombroso, Paul; Ogren, Marilee

    2009-01-01

    The molecular events that are responsible for strengthening synaptic connections and how these are linked to memory and learning are discussed. The laboratory preparations that allow the investigation of these events are also described.

  8. Multistate Resistive Switching Memory for Synaptic Memory Applications

    KAUST Repository

    Hota, Mrinal Kanti; Hedhili, Mohamed N.; Wehbe, Nimer; McLachlan, Martyn A.; Alshareef, Husam N.

    2016-01-01

    memory performance is observed. Conventional synaptic operation in terms of potentiation, depression plasticity, and Ebbinghaus forgetting process are also studied. The memory mechanism is shown to originate from the migration of the oxygen vacancies

  9. Binocular Rivalry in a Competitive Neural Network with Synaptic Depression

    KAUST Repository

    Kilpatrick, Zachary P.; Bressloff, Paul C.

    2010-01-01

    We study binocular rivalry in a competitive neural network with synaptic depression. In particular, we consider two coupled hypercolums within primary visual cortex (V1), representing orientation selective cells responding to either left or right

  10. Synaptic Control of Secretory Trafficking in Dendrites

    Directory of Open Access Journals (Sweden)

    Cyril Hanus

    2014-06-01

    Full Text Available Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK. Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.

  11. Design principles of electrical synaptic plasticity.

    Science.gov (United States)

    O'Brien, John

    2017-09-08

    Essentially all animals with nervous systems utilize electrical synapses as a core element of communication. Electrical synapses, formed by gap junctions between neurons, provide rapid, bidirectional communication that accomplishes tasks distinct from and complementary to chemical synapses. These include coordination of neuron activity, suppression of voltage noise, establishment of electrical pathways that define circuits, and modulation of high order network behavior. In keeping with the omnipresent demand to alter neural network function in order to respond to environmental cues and perform tasks, electrical synapses exhibit extensive plasticity. In some networks, this plasticity can have dramatic effects that completely remodel circuits or remove the influence of certain cell types from networks. Electrical synaptic plasticity occurs on three distinct time scales, ranging from milliseconds to days, with different mechanisms accounting for each. This essay highlights principles that dictate the properties of electrical coupling within networks and the plasticity of the electrical synapses, drawing examples extensively from retinal networks. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  12. Epigenetic Basis of Neuronal and Synaptic Plasticity.

    Science.gov (United States)

    Karpova, Nina N; Sales, Amanda J; Joca, Samia R

    2017-01-01

    Neuronal network and plasticity change as a function of experience. Altered neural connectivity leads to distinct transcriptional programs of neuronal plasticity-related genes. The environmental challenges throughout life may promote long-lasting reprogramming of gene expression and the development of brain disorders. The modifications in neuronal epigenome mediate gene-environmental interactions and are required for activity-dependent regulation of neuronal differentiation, maturation and plasticity. Here, we highlight the latest advances in understanding the role of the main players of epigenetic machinery (DNA methylation and demethylation, histone modifications, chromatin-remodeling enzymes, transposons, and non-coding RNAs) in activity-dependent and long- term neural and synaptic plasticity. The review focuses on both the transcriptional and post-transcriptional regulation of gene expression levels, including the processes of promoter activation, alternative splicing, regulation of stability of gene transcripts by natural antisense RNAs, and alternative polyadenylation. Further, we discuss the epigenetic aspects of impaired neuronal plasticity and the pathogenesis of neurodevelopmental (Rett syndrome, Fragile X Syndrome, genomic imprinting disorders, schizophrenia, and others), stressrelated (mood disorders) and neurodegenerative Alzheimer's, Parkinson's and Huntington's disorders. The review also highlights the pharmacological compounds that modulate epigenetic programming of gene expression, the potential treatment strategies of discussed brain disorders, and the questions that should be addressed during the development of effective and safe approaches for the treatment of brain disorders.

  13. Cholesterol asymmetry in synaptic plasma membranes.

    Science.gov (United States)

    Wood, W Gibson; Igbavboa, Urule; Müller, Walter E; Eckert, Gunter P

    2011-03-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  14. Reduced Synaptic Vesicle Recycling during Hypoxia in Cultured Cortical Neurons

    OpenAIRE

    Fedorovich, Sergei; Hofmeijer, Jeannette; van Putten, Michel Johannes Antonius Maria; le Feber, Jakob

    2017-01-01

    Improvement of neuronal recovery in the ischemic penumbra, an area around the core of a brain infarct with some remaining perfusion, has a large potential for the development of therapy against acute ischemic stroke. However, mechanisms that lead to either recovery or secondary damage in the penumbra largely remain unclear. Recent studies in cultured networks of cortical neurons showed that failure of synaptic transmission (referred to as synaptic failure) is a critical factor in the penumbra...

  15. Common mechanisms of synaptic plasticity in vertebrates and invertebrates

    Science.gov (United States)

    Glanzman, David L.

    2016-01-01

    Until recently, the literature on learning-related synaptic plasticity in invertebrates has been dominated by models assuming plasticity is mediated by presynaptic changes, whereas the vertebrate literature has been dominated by models assuming it is mediated by postsynaptic changes. Here I will argue that this situation does not reflect a biological reality and that, in fact, invertebrate and vertebrate nervous systems share a common set of mechanisms of synaptic plasticity. PMID:20152143

  16. Modulatory Effect of Aerobic Physical Activity on Synaptic Ultrastructure in the Old Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Patrizia Fattoretti

    2018-05-01

    Full Text Available Aerobic physical exercise (APE leads to improved brain functions. To better understand the beneficial effect of APE on the aging brain, a morphometric study was carried out of changes in hippocampal synapses of old (>27 months Balb/c mice undergoing treadmill training (OTT for 4 weeks in comparison with old sedentary (OS, middle-aged sedentary (MAS and middle-aged treadmill training (MATT mice. The inner molecular layer of the hippocampal dentate gyrus (IMLDG and the molecular stratum of Ammon’s horn1 neurons (SMCA1 were investigated. The number of synapses per cubic micron of tissue (numeric density, Nv, overall synaptic area per cubic micron of tissue (surface density, Sv, average area of synaptic contact zones (S, and frequency (% of perforated synapses (PS were measured in electron micrographs of ethanol-phosphotungstic acid (E-PTA stained tissue. Data were analyzed with analysis of variance (ANOVA. In IMLDG, an effect of age was found for Nv and Sv, but not S and %PS. Similar results were found for exercise and the interaction of age and exercise. In post hoc analysis Nv was higher (60.6% to 75.1%; p < 0.001 in MATT vs. MAS, OS and OTT. Sv was higher (32.3% to 54.6%; p < 0.001 in MATT vs. MAS, OS and OTT. In SMCA1, age affected Nv, Sv and %PS, but not S. The effect of exercise was significant for Sv only. The interaction of age and exercise was significant for Nv, Sv and %PS. In post hoc analysis Nv was lower in OS vs. MAS, MATT and OTT (−26.1% to −32.1%; p < 0.038. MAS and OTT were similar. Sv was lower in OS vs. MAS, MATT and OTT (−23.4 to −30.3%, p < 0.004. MAS and OTT were similar. PS frequency was higher in OS vs. MAS, MATT and OTT (48.3% to +96.6%, p < 0.023. APE positively modulated synaptic structural dynamics in the aging hippocampus, possibly in a region-specific way. The APE-associated reduction in PS frequency in SMCA1 of old mice suggests that an increasing complement of PS is a compensatory phenomenon to maintain

  17. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation.

    Science.gov (United States)

    Calafate, Sara; Buist, Arjan; Miskiewicz, Katarzyna; Vijayan, Vinoy; Daneels, Guy; de Strooper, Bart; de Wit, Joris; Verstreken, Patrik; Moechars, Diederik

    2015-05-26

    Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer's disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. BDNF-induced local protein synthesis and synaptic plasticity.

    Science.gov (United States)

    Leal, Graciano; Comprido, Diogo; Duarte, Carlos B

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is an important regulator of synaptic transmission and long-term potentiation (LTP) in the hippocampus and in other brain regions, playing a role in the formation of certain forms of memory. The effects of BDNF in LTP are mediated by TrkB (tropomyosin-related kinase B) receptors, which are known to be coupled to the activation of the Ras/ERK, phosphatidylinositol 3-kinase/Akt and phospholipase C-γ (PLC-γ) pathways. The role of BDNF in LTP is best studied in the hippocampus, where the neurotrophin acts at pre- and post-synaptic levels. Recent studies have shown that BDNF regulates the transport of mRNAs along dendrites and their translation at the synapse, by modulating the initiation and elongation phases of protein synthesis, and by acting on specific miRNAs. Furthermore, the effect of BDNF on transcription regulation may further contribute to long-term changes in the synaptic proteome. In this review we discuss the recent progress in understanding the mechanisms contributing to the short- and long-term regulation of the synaptic proteome by BDNF, and the role in synaptic plasticity, which is likely to influence learning and memory formation. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Self-organised criticality via retro-synaptic signals

    Science.gov (United States)

    Hernandez-Urbina, Victor; Herrmann, J. Michael

    2016-12-01

    The brain is a complex system par excellence. In the last decade the observation of neuronal avalanches in neocortical circuits suggested the presence of self-organised criticality in brain networks. The occurrence of this type of dynamics implies several benefits to neural computation. However, the mechanisms that give rise to critical behaviour in these systems, and how they interact with other neuronal processes such as synaptic plasticity are not fully understood. In this paper, we present a long-term plasticity rule based on retro-synaptic signals that allows the system to reach a critical state in which clusters of activity are distributed as a power-law, among other observables. Our synaptic plasticity rule coexists with other synaptic mechanisms such as spike-timing-dependent plasticity, which implies that the resulting synaptic modulation captures not only the temporal correlations between spiking times of pre- and post-synaptic units, which has been suggested as requirement for learning and memory in neural systems, but also drives the system to a state of optimal neural information processing.

  20. Process of briquetting fine shale

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, J

    1943-05-05

    A process is described for the preparation of briquetts of fine bituminous shale, so-called Mansfield copper shale, without addition of binding material, characterized in that the fine shale is warmed to about 100/sup 0/C and concurrently briquetted in a high-pressure rolling press or piece press under a pressure of 300 to 800 kg/cm/sup 2/.

  1. Chemical composition of Martian fines

    Science.gov (United States)

    Clark, B. C.; Baird, A. K.; Weldon, R. J.; Tsusaki, D. M.; Schnabel, L.; Candelaria, M. P.

    1982-01-01

    Of the 21 samples acquired for the Viking X-ray fluorescence spectrometer, 17 were analyzed to high precision. Compared to typical terrestrial continental soils and lunar mare fines, the Martian fines are lower in Al, higher in Fe, and much higher in S and Cl concentrations. Protected fines at the two lander sites are almost indistinguishable, but concentration of the element S is somewhat higher at Utopia. Duricrust fragments, successfully acquired only at the Chryse site, invariably contained about 50% higher S than fines. No elements correlate positively with S, except Cl and possibly Mg. A sympathetic variation is found among the triad Si, Al, Ca; positive correlation occurs between Ti and Fe. Sample variabilities are as great within a few meters as between lander locations (4500 km apart), implying the existence of a universal Martian regolith component of constant average composition. The nature of the source materials for the regolith fines must be mafic to ultramafic.

  2. Synaptic dimorphism in Onychophoran cephalic ganglia

    Directory of Open Access Journals (Sweden)

    Z Peña-Contreras

    2007-03-01

    Full Text Available The taxonomic location of the Onychophora has been controversial because of their phenotypic and genotypic characteristics, related to both annelids and arthropods. We analyzed the ultrastructure of the neurons and their synapses in the cephalic ganglion of a poorly known invertebrate, the velvet worm Peripatus sedgwicki, from the mountainous region of El Valle, Mérida, Venezuela. Cephalic ganglia were dissected, fixed and processed for transmission electron microscopy. The animal has a high degree of neurobiological development, as evidenced by the presence of asymmetric (excitatory and symmetric (inhibitory synapses, as well as the existence of glial cell processes in a wide neuropile zone. The postsynaptic terminals were seen to contain subsynaptic cisterns formed by membranes of smooth endoplasmic reticulum beneath the postsynaptic density, whereas the presynaptic terminal showed numerous electron transparent synaptic vesicles. From the neurophylogenetic perspectives, the ultrastructural characteristics of the central nervous tissue of the Onychophora show important evolutionary acquirements, such as the presence of both excitatory and inhibitory synapses, indicating functional synaptic transmission, and the appearance of mature glial cells. Rev. Biol . Trop. 55 (1: 261-267. Epub 2007 March. 31.Estudiamos la ultraestructura de las neuronas y sus sinapsis del ganglio cefálico de un invertebrado poco conocido del phylum Onychophora: Peripatus sedgwicki de los Andes Venezolanos, utilizando para ello la microscopía electrónica de transmisión. La localización taxonómica de los onicóforos ha sido controversial debido a sus características fenotípicas y genotípicas que los relacionan tanto con los anélidos como con los artrópodos. Para este trabajo se estudió el ganglio cefálico de P. sedgwicki de la zona montañosa de El Valle, Mérida, Venezuela. El ganglio cefálico se localiza en la región anterior del animal y fue diseccionado

  3. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    Science.gov (United States)

    Pinto, Joshua G. A.; Jones, David G.; Williams, C. Kate; Murphy, Kathryn M.

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic. PMID:25729353

  4. Identification of synaptic targets of Drosophila pumilio.

    Directory of Open Access Journals (Sweden)

    Gengxin Chen

    2008-02-01

    Full Text Available Drosophila Pumilio (Pum protein is a translational regulator involved in embryonic patterning and germline development. Recent findings demonstrate that Pum also plays an important role in the nervous system, both at the neuromuscular junction (NMJ and in long-term memory formation. In neurons, Pum appears to play a role in homeostatic control of excitability via down regulation of para, a voltage gated sodium channel, and may more generally modulate local protein synthesis in neurons via translational repression of eIF-4E. Aside from these, the biologically relevant targets of Pum in the nervous system remain largely unknown. We hypothesized that Pum might play a role in regulating the local translation underlying synapse-specific modifications during memory formation. To identify relevant translational targets, we used an informatics approach to predict Pum targets among mRNAs whose products have synaptic localization. We then used both in vitro binding and two in vivo assays to functionally confirm the fidelity of this informatics screening method. We find that Pum strongly and specifically binds to RNA sequences in the 3'UTR of four of the predicted target genes, demonstrating the validity of our method. We then demonstrate that one of these predicted target sequences, in the 3'UTR of discs large (dlg1, the Drosophila PSD95 ortholog, can functionally substitute for a canonical NRE (Nanos response element in vivo in a heterologous functional assay. Finally, we show that the endogenous dlg1 mRNA can be regulated by Pumilio in a neuronal context, the adult mushroom bodies (MB, which is an anatomical site of memory storage.

  5. Mechanism for propagation of rate signals through a 10-layer feedforward neuronal network

    International Nuclear Information System (INIS)

    Jie, Li; Wan-Qing, Yu; Ding, Xu; Feng, Liu; Wei, Wang

    2009-01-01

    Using numerical simulations, we explore the mechanism for propagation of rate signals through a 10-layer feedforward network composed of Hodgkin–Huxley (HH) neurons with sparse connectivity. When white noise is afferent to the input layer, neuronal firing becomes progressively more synchronous in successive layers and synchrony is well developed in deeper layers owing to the feedforward connections between neighboring layers. The synchrony ensures the successful propagation of rate signals through the network when the synaptic conductance is weak. As the synaptic time constant τ syn varies, coherence resonance is observed in the network activity due to the intrinsic property of HH neurons. This makes the output firing rate single-peaked as a function of τ syn , suggesting that the signal propagation can be modulated by the synaptic time constant. These results are consistent with experimental results and advance our understanding of how information is processed in feedforward networks. (cross-disciplinary physics and related areas of science and technology)

  6. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.

    Science.gov (United States)

    Hang, Giao B; Dan, Yang

    2011-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.

  7. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans.

    Science.gov (United States)

    Jindahra, Panitha; Petrie, Aviva; Plant, Gordon T

    2012-02-01

    Following damage to the human post-geniculate visual pathway retrograde trans-synaptic degeneration of the optic nerve fibres occurs. It has been known for some time from investigations carried out in primates that a decline in the number of retinal ganglion cells follows occipital lobectomy. However, this is not detectable in all species studied and whether this occurs in humans was controversial until recent studies that have shown that following lesions of the occipital lobe, the retinal nerve fibre layer thickness measured by optical coherence tomography is reduced and corresponding shrinkage of the optic tract can be demonstrated by magnetic resonance imaging. The time course of the degeneration in humans is, however, unknown. In the present study, we have used optical coherence tomography to demonstrate for the first time progressive thinning of the retinal nerve fibre layer following occipital lobe/optic radiation damage due to stroke. First, in a group of 38 patients the measurement was taken on a single occasion at a known time interval since the stroke, ranging from 6 days to 67 years. Here, a negative straight line relationship (linear regression r = 0.54, P < 0.001) was found between nerve fibre layer thickness and elapsed time since injury in log years, giving a rate of decline of 9.08 µm per log year after adjusting for age. This indicates a decelerating rate of loss that differs from the rate of decline found with chronological age in this same group, which shows a steady rate of thinning by 0.4 µm per year (P = 0.006) after adjusting for duration of the disease. In a second study serial measurements were taken following the acute event in a group of seven patients with homonymous hemianopia; here a negative straight line relationship was found between time and nerve fibre layer thickness in micrometres over a period of data collection beginning at a mean of 36.9 days post-stroke (range 5-112) and ending at a mean of 426.6 days post

  8. Synaptic vesicle dynamic changes in a model of fragile X.

    Science.gov (United States)

    Broek, Jantine A C; Lin, Zhanmin; de Gruiter, H Martijn; van 't Spijker, Heleen; Haasdijk, Elize D; Cox, David; Ozcan, Sureyya; van Cappellen, Gert W A; Houtsmuller, Adriaan B; Willemsen, Rob; de Zeeuw, Chris I; Bahn, Sabine

    2016-01-01

    Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated. Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MS(E)) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy. Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission. Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS.

  9. Limited distal organelles and synaptic function in extensive monoaminergic innervation.

    Science.gov (United States)

    Tao, Juan; Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S

    2017-08-01

    Organelles such as neuropeptide-containing dense-core vesicles (DCVs) and mitochondria travel down axons to supply synaptic boutons. DCV distribution among en passant boutons in small axonal arbors is mediated by circulation with bidirectional capture. However, it is not known how organelles are distributed in extensive arbors associated with mammalian dopamine neuron vulnerability, and with volume transmission and neuromodulation by monoamines and neuropeptides. Therefore, we studied presynaptic organelle distribution in Drosophila octopamine neurons that innervate ∼20 muscles with ∼1500 boutons. Unlike in smaller arbors, distal boutons in these arbors contain fewer DCVs and mitochondria, although active zones are present. Absence of vesicle circulation is evident by proximal nascent DCV delivery, limited impact of retrograde transport and older distal DCVs. Traffic studies show that DCV axonal transport and synaptic capture are not scaled for extensive innervation, thus limiting distal delivery. Activity-induced synaptic endocytosis and synaptic neuropeptide release are also reduced distally. We propose that limits in organelle transport and synaptic capture compromise distal synapse maintenance and function in extensive axonal arbors, thereby affecting development, plasticity and vulnerability to neurodegenerative disease. © 2017. Published by The Company of Biologists Ltd.

  10. Synaptic contacts impaired by styrene-7,8-oxide toxicity

    International Nuclear Information System (INIS)

    Corsi, P.; D'Aprile, A.; Nico, B.; Costa, G.L.; Assennato, G.

    2007-01-01

    Styrene-7,8-oxide (SO), a chemical compound widely used in industrial applications, is a potential hazard for humans, particularly in occupational settings. Neurobehavioral changes are consistently observed in occupationally exposed individuals and alterations of neurotransmitters associated with neuronal loss have been reported in animal models. Although the toxic effects of styrene have been extensively documented, the molecular mechanisms responsible for SO-induced neurotoxicity are still unclear. A possible dopamine-mediated effect of styrene neurotoxicity has been previously demonstrated, since styrene oxide alters dopamine neurotransmission in the brain. Thus, the present study hypothesizes that styrene neurotoxicity may involve synaptic contacts. Primary striatal neurons were exposed to styrene oxide at different concentrations (0.1-1 mM) for different time periods (8, 16, and 24 h) to evaluate the dose able to induce synaptic impairments. The expression of proteins crucial for synaptic transmission such as Synapsin, Synaptophysin, and RAC-1 were considered. The levels of Synaptophysin and RAC-1 decreased in a dose-dependent manner. Accordingly, morphological alterations, observed at the ultrastructural level, primarily involved the pre-synaptic compartment. In SO-exposed cultures, the biochemical cascade of caspases was activated affecting the cytoskeleton components as their target. Thus the impairments in synaptic contacts observed in SO-exposed cultures might reflect a primarily morphological alteration of neuronal cytoskeleton. In addition, our data support the hypothesis developed by previous authors of reactive oxygen species (ROS) initiating events of SO cytotoxicity

  11. Readily releasable pool of synaptic vesicles measured at single synaptic contacts.

    Science.gov (United States)

    Trigo, Federico F; Sakaba, Takeshi; Ogden, David; Marty, Alain

    2012-10-30

    To distinguish between different models of vesicular release in brain synapses, it is necessary to know the number of vesicles of transmitter that can be released immediately at individual synapses by a high-calcium stimulus, the readily releasable pool (RRP). We used direct stimulation by calcium uncaging at identified, single-site inhibitory synapses to investigate the statistics of vesicular release and the size of the RRP. Vesicular release, detected as quantal responses in the postsynaptic neuron, showed an unexpected stochastic variation in the number of quanta from stimulus to stimulus at high intracellular calcium, with a mean of 1.9 per stimulus and a maximum of three or four. The results provide direct measurement of the RRP at single synaptic sites. They are consistent with models in which release proceeds from a small number of vesicle docking sites with an average occupancy around 0.7.

  12. Nitramine Drying & Fine Grinding Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nitramine Drying and Fine Grinding Facility provides TACOM-ARDEC with a state-of-the-art facility capable of drying and grinding high explosives (e.g., RDX and...

  13. Fine 5 kolib Kumu lavale

    Index Scriptorium Estoniae

    2006-01-01

    Kumu kunstimuuseumi auditooriumis toimub 21. veebruaril Fine 5 kaasaegse tantsu etendus "Panus". Esinevad Tiina Ollesk, Irina Pähn, žonglöör Dimitri Kruus, disainer Rain Saukas ja muusik Mattias Siitan

  14. Finely divided, irradiated tetrafluorethylene polymers

    International Nuclear Information System (INIS)

    Brown, M.T.; Rodway, W.G.

    1977-01-01

    Dry non-sticky fine lubricant powders are made by γ-irradiation of unsintered coagulated dispersion grade tetrafluoroethylene polymers. These powders may also be dispersed in an organic medium for lubricating purposes

  15. Synaptic proteins and receptors defects in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Jianling eChen

    2014-09-01

    Full Text Available Recent studies have found that hundreds of genetic variants, including common and rare variants, rare and de novo mutations, and common polymorphisms have contributed to the occurrence of autism spectrum disorders (ASDs. The mutations in a number of genes such as neurexin, neuroligin, postsynaptic density protein 95 (PSD-95, SH3 and multiple ankyrin repeat domains 3 (SHANK3, synapsin, gephyrin, cadherin (CDH and protocadherin (PCDH, thousand-and-one-amino acid 2 kinase (TAOK2, and contactin (CNTN, have been shown to play important roles in the development and function of synapses. In addition, synaptic receptors, such as gamma-aminobutyric acid (GABA receptors and glutamate receptors, have also been associated with ASDs. This review will primarily focus on the defects of synaptic proteins and receptors associated with ASDs and their roles in the pathogenesis of ASDs via synaptic pathways.

  16. Interregional synaptic maps among engram cells underlie memory formation.

    Science.gov (United States)

    Choi, Jun-Hyeok; Sim, Su-Eon; Kim, Ji-Il; Choi, Dong Il; Oh, Jihae; Ye, Sanghyun; Lee, Jaehyun; Kim, TaeHyun; Ko, Hyoung-Gon; Lim, Chae-Seok; Kaang, Bong-Kiun

    2018-04-27

    Memory resides in engram cells distributed across the brain. However, the site-specific substrate within these engram cells remains theoretical, even though it is generally accepted that synaptic plasticity encodes memories. We developed the dual-eGRASP (green fluorescent protein reconstitution across synaptic partners) technique to examine synapses between engram cells to identify the specific neuronal site for memory storage. We found an increased number and size of spines on CA1 engram cells receiving input from CA3 engram cells. In contextual fear conditioning, this enhanced connectivity between engram cells encoded memory strength. CA3 engram to CA1 engram projections strongly occluded long-term potentiation. These results indicate that enhanced structural and functional connectivity between engram cells across two directly connected brain regions forms the synaptic correlate for memory formation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. PRRT2: from Paroxysmal Disorders to Regulation of Synaptic Function.

    Science.gov (United States)

    Valtorta, Flavia; Benfenati, Fabio; Zara, Federico; Meldolesi, Jacopo

    2016-10-01

    In the past few years, proline-rich transmembrane protein (PRRT)2 has been identified as the causative gene for several paroxysmal neurological disorders. Recently, an important role of PRRT2 in synapse development and function has emerged. Knock down of the protein strongly impairs the formation of synaptic contacts and neurotransmitter release. At the nerve terminal, PRRT2 endows synaptic vesicle exocytosis with Ca 2+ sensitivity by interacting with proteins of the fusion complex and with the Ca 2+ sensors synaptotagmins (Syts). In the postsynaptic compartment, PRRT2 interacts with glutamate receptors. The study of PRRT2 and of its mutations may help in refining our knowledge of the process of synaptic transmission and elucidating the pathogenetic mechanisms leading to derangement of network function in paroxysmal disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Synaptic clustering within dendrites: an emerging theory of memory formation

    Science.gov (United States)

    Kastellakis, George; Cai, Denise J.; Mednick, Sara C.; Silva, Alcino J.; Poirazi, Panayiota

    2015-01-01

    It is generally accepted that complex memories are stored in distributed representations throughout the brain, however the mechanisms underlying these representations are not understood. Here, we review recent findings regarding the subcellular mechanisms implicated in memory formation, which provide evidence for a dendrite-centered theory of memory. Plasticity-related phenomena which affect synaptic properties, such as synaptic tagging and capture, synaptic clustering, branch strength potentiation and spinogenesis provide the foundation for a model of memory storage that relies heavily on processes operating at the dendrite level. The emerging picture suggests that clusters of functionally related synapses may serve as key computational and memory storage units in the brain. We discuss both experimental evidence and theoretical models that support this hypothesis and explore its advantages for neuronal function. PMID:25576663

  19. High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus.

    Science.gov (United States)

    Baude, A; Nusser, Z; Molnár, E; McIlhinney, R A; Somogyi, P

    1995-12-01

    particles for the GluRA, GluRB/C and GluRD subunits were present at type 1 synaptic membrane specializations on dendritic spines of pyramidal cells throughout all layers of the CA1 and CA3 areas. The most densely labelled synapses tended to be on the largest spines and many smaller spines remained unlabelled. Immunoparticle density at type 1 synapses on dendritic shafts of some non-principal cells was consistently higher than at labelled synapses of dendritic spines of pyramidal cells. Synapses established between dendritic spines and mossy fibre terminals, were immunoreactive for all studied subunits in stratum lucidum of the CA3 area. The postembedding immunogold method revealed that the AMPA type receptors are concentrated within the main body of the anatomically defined type 1 (asymmetrical) synaptic junction. Often only a part of the membrane specialization showed clustered immunoparticles. There was a sharp decrease in immunoreactive receptor density at the edge of the synaptic specialization. Immunolabelling was consistently demonstrated at extrasynaptic sites on dendrites, dendritic spines and somata. The results demonstrate that the GluRA, B/C and D subunits of the AMPA type glutamate receptor are present in many of the glutamatergic synapses formed by the entorhinal, CA3 pyramidal and mossy fibre terminals. Some interneurons have a higher density of AMPA type receptors in their asymmetrical afferent synapses than pyramidal cells. This may contribute to a lower activation threshold of interneurons as compared to principal cells by the same afferents in the hippocampal formation.

  20. Synaptic input correlations leading to membrane potential decorrelation of spontaneous activity in cortex.

    Science.gov (United States)

    Graupner, Michael; Reyes, Alex D

    2013-09-18

    Correlations in the spiking activity of neurons have been found in many regions of the cortex under multiple experimental conditions and are postulated to have important consequences for neural population coding. While there is a large body of extracellular data reporting correlations of various strengths, the subthreshold events underlying the origin and magnitude of signal-independent correlations (called noise or spike count correlations) are unknown. Here we investigate, using intracellular recordings, how synaptic input correlations from shared presynaptic neurons translate into membrane potential and spike-output correlations. Using a pharmacologically activated thalamocortical slice preparation, we perform simultaneous recordings from pairs of layer IV neurons in the auditory cortex of mice and measure synaptic potentials/currents, membrane potentials, and spiking outputs. We calculate cross-correlations between excitatory and inhibitory inputs to investigate correlations emerging from the network. We furthermore evaluate membrane potential correlations near resting potential to study how excitation and inhibition combine and affect spike-output correlations. We demonstrate directly that excitation is correlated with inhibition thereby partially canceling each other and resulting in weak membrane potential and spiking correlations between neurons. Our data suggest that cortical networks are set up to partially cancel correlations emerging from the connections between neurons. This active decorrelation is achieved because excitation and inhibition closely track each other. Our results suggest that the numerous shared presynaptic inputs do not automatically lead to increased spiking correlations.

  1. Effect of co-transporter blockers on non-synaptic epileptiform activity—computational simulation

    Science.gov (United States)

    Rodrigues Lopes, Mariana; Canton Santos, Luiz Eduardo; Márcio Rodrigues, Antônio; Antônio Duarte, Mario; Catelli Infantosi, Antonio Fernando; Alexandre Scorza, Fulvio; Arida, Ricardo Mario; Madureira, Ana Paula; Amaral da Silveira, Gilcélio; dos Santos, Ivans Carlos; Abrão Cavalheiro, Esper; Guimarães de Almeida, Antônio-Carlos

    2013-10-01

    The important role of cation-chloride co-transporters in epilepsy is being supported by an increasing number of investigations. However, enormous complexity is involved since the action of these co-transporters has effects on the ionic homeostasis influencing directly the neuronal excitability and the tissue propensity to sustain seizure. To unravel the complex mechanisms involving the co-transporters action during seizure, this paper shows simulations of non-synaptic epileptiform activity and the effect of the blockage of the two different types of cation-chloride co-transporters present in the brain: Na, K and 2Cl co-transporter (NKCC) and K and Cl co-transporter (KCC). The simulations were performed with an electrochemical model representing the non-synaptic structure of the granule cell layer of the dentate gyrus (DG) of the rat hippocampus. The simulations suggest: (i) the potassium clearance is based on the systemic interplay between the Na/K pump and the NKCC co-transporters; (ii) the simultaneous blockage of the NKCC of the neurons and KCC of glial cells acts efficiently suppressing the epileptiform activities; and (iii) the simulations show that depending on the combined blockage of the co-transporters, the epileptiform activities may be suppressed or enhanced.

  2. Defective glycinergic synaptic transmission in zebrafish motility mutants

    Directory of Open Access Journals (Sweden)

    Hiromi Hirata

    2010-01-01

    Full Text Available Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs.

  3. Precise synaptic efficacy alignment suggests potentiation dominated learning

    Directory of Open Access Journals (Sweden)

    Christoph eHartmann

    2016-01-01

    Full Text Available Recent evidence suggests that parallel synapses from the same axonal branch onto the same dendritic branch have almost identical strength. It has been proposed that this alignment is only possible through learning rules that integrate activity over long time spans. However, learning mechanisms such as spike-timing-dependent plasticity (STDP are commonly assumed to be temporally local. Here, we propose that the combination of temporally local STDP and a multiplicative synaptic normalization mechanism is sufficient to explain the alignment of parallel synapses.To address this issue, we introduce three increasingly complex models: First, we model the idealized interaction of STDP and synaptic normalization in a single neuron as a simple stochastic process and derive analytically that the alignment effect can be described by a so-called Kesten process. From this we can derive that synaptic efficacy alignment requires potentiation-dominated learning regimes. We verify these conditions in a single-neuron model with independent spiking activities but more realistic synapses. As expected, we only observe synaptic efficacy alignment for long-term potentiation-biased STDP. Finally, we explore how well the findings transfer to recurrent neural networks where the learning mechanisms interact with the correlated activity of the network. We find that due to the self-reinforcing correlations in recurrent circuits under STDP, alignment occurs for both long-term potentiation- and depression-biased STDP, because the learning will be potentiation dominated in both cases due to the potentiating events induced by correlated activity. This is in line with recent results demonstrating a dominance of potentiation over depression during waking and normalization during sleep. This leads us to predict that individual spine pairs will be more similar in the morning than they are after sleep depriviation.In conclusion, we show that synaptic normalization in conjunction with

  4. Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity.

    Directory of Open Access Journals (Sweden)

    Sadra Sadeh

    2015-06-01

    Full Text Available In rodent visual cortex, synaptic connections between orientation-selective neurons are unspecific at the time of eye opening, and become to some degree functionally specific only later during development. An explanation for this two-stage process was proposed in terms of Hebbian plasticity based on visual experience that would eventually enhance connections between neurons with similar response features. For this to work, however, two conditions must be satisfied: First, orientation selective neuronal responses must exist before specific recurrent synaptic connections can be established. Second, Hebbian learning must be compatible with the recurrent network dynamics contributing to orientation selectivity, and the resulting specific connectivity must remain stable for unspecific background activity. Previous studies have mainly focused on very simple models, where the receptive fields of neurons were essentially determined by feedforward mechanisms, and where the recurrent network was small, lacking the complex recurrent dynamics of large-scale networks of excitatory and inhibitory neurons. Here we studied the emergence of functionally specific connectivity in large-scale recurrent networks with synaptic plasticity. Our results show that balanced random networks, which already exhibit highly selective responses at eye opening, can develop feature-specific connectivity if appropriate rules of synaptic plasticity are invoked within and between excitatory and inhibitory populations. If these conditions are met, the initial orientation selectivity guides the process of Hebbian learning and, as a result, functionally specific and a surplus of bidirectional connections emerge. Our results thus demonstrate the cooperation of synaptic plasticity and recurrent dynamics in large-scale functional networks with realistic receptive fields, highlight the role of inhibition as a critical element in this process, and paves the road for further computational

  5. Depression as a Glial-Based Synaptic Dysfunction

    Directory of Open Access Journals (Sweden)

    Daniel eRial

    2016-01-01

    Full Text Available Recent studies combining pharmacological, behavioral, electrophysiological and molecular approaches indicate that depression results from maladaptive neuroplastic processing occurring in defined frontolimbic circuits responsible for emotional processing such as the prefrontal cortex, hippocampus, amygdala and ventral striatum. However, the exact mechanisms controlling synaptic plasticity that are disrupted to trigger depressive conditions have not been elucidated. Since glial cells (astrocytes and microglia tightly and dynamically interact with synapses, engaging a bi-directional communication critical for the processing of synaptic information, we now revisit the role of glial cells in the etiology of depression focusing on a dysfunction of the ‘quad-partite’ synapse. This interest is supported by the observations that depressive-like conditions are associated with a decreased density and hypofunction of astrocytes and with an increase microglia ‘activation’ in frontolimbic regions, which is expected to contribute for the synaptic dysfunction present in depression. Furthermore, the traditional culprits of depression (glucocorticoids, biogenic amines, BDNF affect glia functioning, whereas antidepressant treatments (SSRIs, electroshock, deep brain stimulation recover glia functioning. In this context of a quad-partite synapse, systems modulating glia-synapse bidirectional communication - such as the purinergic neuromodulation system operated by ATP and adenosine - emerge as promising candidates to re-normalize synaptic function by combining direct synaptic effects with an ability to also control astrocyte and microglia function. This proposed triple action of purines to control aberrant synaptic function illustrates the rationale to consider the interference with glia dysfunction as a mechanism of action driving the design of future pharmacological tools to manage depression.

  6. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    Science.gov (United States)

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2009-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch-once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch-once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs. PMID:20161699

  7. Synaptic model for spontaneous activity in developing networks

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Rinzel, J.

    2005-01-01

    Spontaneous rhythmic activity occurs in many developing neural networks. The activity in these hyperexcitable networks is comprised of recurring "episodes" consisting of "cycles" of high activity that alternate with "silent phases" with little or no activity. We introduce a new model of synaptic...... dynamics that takes into account that only a fraction of the vesicles stored in a synaptic terminal is readily available for release. We show that our model can reproduce spontaneous rhythmic activity with the same general features as observed in experiments, including a positive correlation between...

  8. Synaptic excitation in spinal motoneurons alternates with synaptic inhibition and is balanced by outward rectification during rhythmic motor network activity

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Hounsgaard, Jorn

    2017-01-01

    channels. Intrinsic outward rectification facilitates spiking by focusing synaptic depolarization near threshold for action potentials. By direct recording of synaptic currents, we also show that motoneurons are activated by out-of-phase peaks in excitation and inhibition during network activity, whereas......Regular firing in spinal motoneurons of red-eared turtles (Trachemys scripta elegans, either sex) evoked by steady depolarization at rest is replaced by irregular firing during functional network activity. The transition caused by increased input conductance and synaptic fluctuations in membrane...... potential was suggested to originate from intense concurrent inhibition and excitation. We show that the conductance increase in motoneurons during functional network activity is mainly caused by intrinsic outward rectification near threshold for action potentials by activation of voltage and Ca2+ gated K...

  9. Hydrogen Reduction of Hematite Ore Fines to Magnetite Ore Fines at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Wenguang Du

    2017-01-01

    Full Text Available Surplus coke oven gases (COGs and low grade hematite ores are abundant in Shanxi, China. Our group proposes a new process that could simultaneously enrich CH4 from COG and produce separated magnetite from low grade hematite. In this work, low-temperature hydrogen reduction of hematite ore fines was performed in a fixed-bed reactor with a stirring apparatus, and a laboratory Davis magnetic tube was used for the magnetic separation of the resulting magnetite ore fines. The properties of the raw hematite ore, reduced products, and magnetic concentrate were analyzed and characterized by a chemical analysis method, X-ray diffraction, optical microscopy, and scanning electron microscopy. The experimental results indicated that, at temperatures lower than 400°C, the rate of reduction of the hematite ore fines was controlled by the interfacial reaction on the core surface. However, at temperatures higher than 450°C, the reaction was controlled by product layer diffusion. With increasing reduction temperature, the average utilization of hydrogen initially increased and tended to a constant value thereafter. The conversion of Fe2O3 in the hematite ore played an important role in the total iron recovery and grade of the concentrate. The grade of the concentrate decreased, whereas the total iron recovery increased with the increasing Fe2O3 conversion.

  10. Angle-resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs

  11. Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    Directory of Open Access Journals (Sweden)

    Zedong eBi

    2016-02-01

    Full Text Available In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis. Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e. synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons. Neurons (including the post-synaptic neuron in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1 synchronous firing and burstiness tend to increase DiffV, (2 heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3 heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our

  12. Fast voltage-sensitive dye imaging of excitatory and inhibitory synaptic transmission in the rat granular retrosplenial cortex.

    Science.gov (United States)

    Nixima, Ken'ichi; Okanoya, Kazuo; Ichinohe, Noritaka; Kurotani, Tohru

    2017-09-01

    Rodent granular retrosplenial cortex (GRS) has dense connections between the anterior thalamic nuclei (ATN) and hippocampal formation. GRS superficial pyramidal neurons exhibit distinctive late spiking (LS) firing property and form patchy clusters with prominent apical dendritic bundles. The aim of this study was to investigate spatiotemporal dynamics of signal transduction in the GRS induced by ATN afferent stimulation by using fast voltage-sensitive dye imaging in rat brain slices. In coronal slices, layer 1a stimulation, which presumably activated thalamic fibers, evoked propagation of excitatory synaptic signals from layers 2-4 to layers 5-6 in a direction perpendicular to the layer axis, followed by transverse signal propagation within each layer. In the presence of ionotropic glutamate receptor antagonists, inhibitory responses were observed in superficial layers, induced by direct activation of inhibitory interneurons in layer 1. In horizontal slices, excitatory signals in deep layers propagated transversely mainly from posterior to anterior via superficial layers. Cortical inhibitory responses upon layer 1a stimulation in horizontal slices were weaker than those in the coronal slices. Observed differences between coronal and horizontal planes suggest anisotropy of the intracortical circuitry. In conclusion, ATN inputs are processed differently in coronal and horizontal planes of the GRS and then conveyed to other cortical areas. In both planes, GRS superficial layers play an important role in signal propagation, which suggests that superficial neuronal cascade is crucial in the integration of multiple information sources. NEW & NOTEWORTHY Superficial neurons in the rat granular retrosplenial cortex (GRS) show distinctive late-spiking (LS) firing property. However, little is known about spatiotemporal dynamics of signal transduction in the GRS. We demonstrated LS neuron network relaying thalamic inputs to deep layers and anisotropic distribution of

  13. Beyond Fine Tuning: Adding capacity to leverage few labels

    Energy Technology Data Exchange (ETDEWEB)

    Hodas, Nathan O.; Shaffer, Kyle J.; Yankov, Artem; Corley, Courtney D.; Anderson, Aryk L.

    2017-12-09

    In this paper we present a technique to train neural network models on small amounts of data. Current methods for training neural networks on small amounts of rich data typically rely on strategies such as fine-tuning a pre-trained neural networks or the use of domain-specific hand-engineered features. Here we take the approach of treating network layers, or entire networks, as modules and combine pre-trained modules with untrained modules, to learn the shift in distributions between data sets. The central impact of using a modular approach comes from adding new representations to a network, as opposed to replacing representations via fine-tuning. Using this technique, we are able surpass results using standard fine-tuning transfer learning approaches, and we are also able to significantly increase performance over such approaches when using smaller amounts of data.

  14. Natural melanin composites by layer-by-layer assembly

    Science.gov (United States)

    Eom, Taesik; Shim, Bong Sub

    2015-04-01

    Melanin is an electrically conductive and biocompatible material, because their conjugated backbone structures provide conducting pathways from human skin, eyes, brain, and beyond. So there is a potential of using as materials for the neural interfaces and the implantable devices. Extracted from Sepia officinalis ink, our natural melanin was uniformly dispersed in mostly polar solvents such as water and alcohols. Then, the dispersed melanin was further fabricated to nano-thin layered composites by the layer-by-layer (LBL) assembly technique. Combined with polyvinyl alcohol (PVA), the melanin nanoparticles behave as an LBL counterpart to from finely tuned nanostructured films. The LBL process can adjust the smart performances of the composites by varying the layering conditions and sandwich thickness. We further demonstrated the melanin loading degree of stacked layers, combination nanostructures, electrical properties, and biocompatibility of the resulting composites by UV-vis spectrophotometer, scanning electron microscope (SEM), multimeter, and in-vitro cell test of PC12, respectively.

  15. Cell-specific gain modulation by synaptically released zinc in cortical circuits of audition.

    Science.gov (United States)

    Anderson, Charles T; Kumar, Manoj; Xiong, Shanshan; Tzounopoulos, Thanos

    2017-09-09

    In many excitatory synapses, mobile zinc is found within glutamatergic vesicles and is coreleased with glutamate. Ex vivo studies established that synaptically released (synaptic) zinc inhibits excitatory neurotransmission at lower frequencies of synaptic activity but enhances steady state synaptic responses during higher frequencies of activity. However, it remains unknown how synaptic zinc affects neuronal processing in vivo. Here, we imaged the sound-evoked neuronal activity of the primary auditory cortex in awake mice. We discovered that synaptic zinc enhanced the gain of sound-evoked responses in CaMKII-expressing principal neurons, but it reduced the gain of parvalbumin- and somatostatin-expressing interneurons. This modulation was sound intensity-dependent and, in part, NMDA receptor-independent. By establishing a previously unknown link between synaptic zinc and gain control of auditory cortical processing, our findings advance understanding about cortical synaptic mechanisms and create a new framework for approaching and interpreting the role of the auditory cortex in sound processing.

  16. Age- and Sex-Dependent Impact of Repeated Social Stress on Intrinsic and Synaptic Excitability of the Rat Prefrontal Cortex.

    Science.gov (United States)

    Urban, Kimberly R; Valentino, Rita J

    2017-01-01

    Stress is implicated in psychiatric illnesses that are characterized by impairments in cognitive functions that are mediated by the medial prefrontal cortex (mPFC). Because sex and age determine stress vulnerability, the effects of repeated social stress occurring during early adolescence, mid-adolescence, or adulthood on the cellular properties of male and female rat mPFC Layer V neurons in vitro were examined. Repeated resident-intruder stress produced age- and sex-specific effects on mPFC intrinsic and synaptic excitability. Mid-adolescents were particularly vulnerable to effects on intrinsic excitability. The maximum number of action potentials (APs) evoked by increasing current intensity was robustly decreased in stressed male and female mid-adolescent rats compared with age-matched controls. These effects were associated with stress-induced changes in AP half-width, amplitude, threshold, and input resistance. Social stress at all ages generally decreased synaptic excitability by decreasing the amplitude of spontaneous excitatory postsynaptic potentials. The results suggest that whereas social stress throughout life can diminish the influence of afferents driving the mPFC, social stress during mid-adolescence additionally affects intrinsic characteristics of mPFC neurons that determine excitability. The depressant effects of social stress on intrinsic and synaptic mPFC neurons may underlie its ability to affect executive functions and emotional responses, particularly during adolescence. © The Author 2016. Published by Oxford University Press.

  17. Compliance-Free, Digital SET and Analog RESET Synaptic Characteristics of Sub-Tantalum Oxide Based Neuromorphic Device.

    Science.gov (United States)

    Abbas, Yawar; Jeon, Yu-Rim; Sokolov, Andrey Sergeevich; Kim, Sohyeon; Ku, Boncheol; Choi, Changhwan

    2018-01-19

    A two terminal semiconducting device like a memristor is indispensable to emulate the function of synapse in the working memory. The analog switching characteristics of memristor play a vital role in the emulation of biological synapses. The application of consecutive voltage sweeps or pulses (action potentials) changes the conductivity of the memristor which is considered as the fundamental cause of the synaptic plasticity. In this study, a neuromorphic device using an in-situ growth of sub-tantalum oxide switching layer is fabricated, which exhibits the digital SET and analog RESET switching with an electroforming process without any compliance current (compliance free). The process of electroforming and SET is observed at the positive sweeps of +2.4 V and +0.86 V, respectively, while multilevel RESET is observed with the consecutive negative sweeps in the range of 0 V to -1.2 V. The movement of oxygen vacancies and gradual change in the anatomy of the filament is attributed to digital SET and analog RESET switching characteristics. For the Ti/Ta 2 O 3-x /Pt neuromorphic device, the Ti top and Pt bottom electrodes are considered as counterparts of the pre-synaptic input terminal and a post-synaptic output terminal, respectively.

  18. Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts.

    Science.gov (United States)

    Shi, Mingjian; Majumdar, Devi; Gao, Yandong; Brewer, Bryson M; Goodwin, Cody R; McLean, John A; Li, Deyu; Webb, Donna J

    2013-08-07

    Two novel microfluidic cell culture schemes, a vertically-layered set-up and a four chamber set-up, were developed for co-culturing central nervous system (CNS) neurons and glia. The cell chambers in these devices were separated by pressure-enabled valve barriers, which permitted us to control communication between the two cell types. The unique design of these devices facilitated the co-culture of glia with neurons in close proximity (∼50-100 μm), differential transfection of neuronal populations, and dynamic visualization of neuronal interactions, such as the development of synapses. With these co-culture devices, initial synaptic contact between neurons transfected with different fluorescent markers, such as green fluorescent protein (GFP) and mCherry-synaptophysin, was imaged using high-resolution fluorescence microscopy. The presence of glial cells had a profound influence on synapses by increasing the number and stability of synaptic contacts. Interestingly, as determined by liquid chromatography-ion mobility-mass spectrometry, neuron-glia co-cultures produced elevated levels of soluble factors compared to that secreted by individual neuron or glia cultures, suggesting a potential mechanism by which neuron-glia interactions could modulate synaptic function. Collectively, these results show that communication between neurons and glia is critical for the formation and stability of synapses and point to the importance of developing neuron-glia co-culture systems such as the microfluidic platforms described in this study.

  19. A Ca2+-based computational model for NDMA receptor-dependent synaptic plasticity at individual post-synaptic spines in the hippocampus

    Directory of Open Access Journals (Sweden)

    Owen Rackham

    2010-07-01

    Full Text Available Associative synaptic plasticity is synapse specific and requires coincident activity in presynaptic and postsynaptic neurons to activate NMDA receptors (NMDARs. The resultant Ca2+ influx is the critical trigger for the induction of synaptic plasticity. Given its centrality for the induction of synaptic plasticity, a model for NMDAR activation incorporating the timing of presynaptic glutamate release and postsynaptic depolarization by back-propagating action potentials could potentially predict the pre- and post-synaptic spike patterns required to induce synaptic plasticity. We have developed such a model by incorporating currently available data on the timecourse and amplitude of the postsynaptic membrane potential within individual spines. We couple this with data on the kinetics of synaptic NMDARs and then use the model to predict the continuous spine [Ca2+] in response to regular or irregular pre- and post-synaptic spike patterns. We then incorporate experimental data from synaptic plasticity induction protocols by regular activity patterns to couple the predicted local peak [Ca2+] to changes in synaptic strength. We find that our model accurately describes [Ca2+] in dendritic spines resulting from NMDAR activation during presynaptic and postsynaptic activity when compared to previous experimental observations. The model also replicates the experimentally determined plasticity outcome of regular and irregular spike patterns when applied to a single synapse. This model could therefore be used to predict the induction of synaptic plasticity under a variety of experimental conditions and spike patterns.

  20. Visual recognition memory, manifested as long-term habituation, requires synaptic plasticity in V1.

    Science.gov (United States)

    Cooke, Sam F; Komorowski, Robert W; Kaplan, Eitan S; Gavornik, Jeffrey P; Bear, Mark F

    2015-02-01

    Familiarity with stimuli that bring neither reward nor punishment, manifested through behavioral habituation, enables organisms to detect novelty and devote cognition to important elements of the environment. Here we describe in mice a form of long-term behavioral habituation to visual grating stimuli that is selective for stimulus orientation. Orientation-selective habituation (OSH) can be observed both in exploratory behavior in an open arena and in a stereotyped motor response to visual stimuli in head-restrained mice. We found that the latter behavioral response, termed a 'vidget', requires V1. Parallel electrophysiological recordings in V1 revealed that plasticity, in the form of stimulus-selective response potentiation (SRP), occurred in layer 4 of V1 as OSH developed. Local manipulations of V1 that prevented and reversed electrophysiological modifications likewise prevented and reversed memory demonstrated behaviorally. These findings suggest that a form of long-term visual recognition memory is stored via synaptic plasticity in primary sensory cortex.

  1. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress

    Science.gov (United States)

    Grønli, Janne; Soulé, Jonathan; Bramham, Clive R.

    2014-01-01

    Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function. PMID:24478645

  2. The Predominance of Electric Transport in Synaptic Transmission

    OpenAIRE

    Hamid Reza Noori

    2008-01-01

    The quantitative description of the motion of neurotransmitters in the synaptic cleft appears to be one of the most difficult problems in the modeling of synapses. Here we show in contradiction to the common view, that this process is merely governed by electric transport than diffusion forces.

  3. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  4. Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Robert Nisticò

    Full Text Available Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS and its mouse model, experimental autoimmune encephalomyelitis (EAE. In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP induction was favored over long-term depression (LTD in EAE, as shown by a significant rightward shift in the frequency-synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS.

  5. Estrogen's Place in the Family of Synaptic Modulators.

    Science.gov (United States)

    Kramár, Enikö A; Chen, Lulu Y; Rex, Christopher S; Gall, Christine M; Lynch, Gary

    2009-01-01

    Estrogen, in addition to its genomic effects, triggers rapid synaptic changes in hippocampus and cortex. Here we summarize evidence that the acute actions of the steroid arise from actin signaling cascades centrally involved in long-term potentiation (LTP). A 10-min infusion of E2 reversibly increased fast EPSPs and promoted theta burst-induced LTP within adult hippocampal slices. The latter effect reflected a lowered threshold and an elevated ceiling for the potentiation effect. E2's actions on transmission and plasticity were completely blocked by latrunculin, a toxin that prevents actin polymerization. E2 also caused a reversible increase in spine concentrations of filamentous (F-) actin and markedly enhanced polymerization caused by theta burst stimulation (TBS). Estrogen activated the small GTPase RhoA, but not the related GTPase Rac, and phosphorylated (inactivated) synaptic cofilin, an actin severing protein targeted by RhoA. An inhibitor of RhoA kinase (ROCK) thoroughly suppressed the synaptic effects of E2. Collectively, these results indicate that E2 engages a RhoA >ROCK> cofilin> actin pathway also used by brain-derived neurotrophic factor and adenosine, and therefore belongs to a family of 'synaptic modulators' that regulate plasticity. Finally, we describe evidence that the acute signaling cascade is critical to the depression of LTP produced by ovariectomy.

  6. Inflammation Subverts Hippocampal Synaptic Plasticity in Experimental Multiple Sclerosis

    Science.gov (United States)

    Mandolesi, Georgia; Piccinin, Sonia; Berretta, Nicola; Pignatelli, Marco; Feligioni, Marco; Musella, Alessandra; Gentile, Antonietta; Mori, Francesco; Bernardi, Giorgio; Nicoletti, Ferdinando; Mercuri, Nicola B.; Centonze, Diego

    2013-01-01

    Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP) induction was favored over long-term depression (LTD) in EAE, as shown by a significant rightward shift in the frequency–synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β) perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS. PMID:23355887

  7. High bandwidth synaptic communication and frequency tracking in human neocortex

    NARCIS (Netherlands)

    Testa-Silva, Guilherme; Verhoog, Matthijs B; Linaro, Daniele; de Kock, Christiaan P J; Baayen, Johannes C; Meredith, Rhiannon M; De Zeeuw, Chris I; Giugliano, Michele; Mansvelder, Huibert D

    2014-01-01

    Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from

  8. High bandwidth synaptic communication and frequency tracking in human neocortex.

    NARCIS (Netherlands)

    Testa-Silva, G.; Verhoog, M.B.; Linaro, D.; de Kock, C.P.J.; Baayen, J.C.; Meredith, R.M.; Zeeuw, C.I.; Giugliano, M.; Mansvelder, H.D.

    2014-01-01

    Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from

  9. High Bandwidth Synaptic Communication and Frequency Tracking in Human Neocortex

    NARCIS (Netherlands)

    G. Testa-Silva (Guilherme); M.B. Verhoog (Matthijs); D. Linaro (Daniele); C.P.J. de Kock (Christiaan); J.C. Baayen; R.M. Meredith (Rhiannon); C.I. de Zeeuw (Chris); M. Giugliano (Michele); H.D. Mansvelder (Huibert)

    2014-01-01

    textabstractNeuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we

  10. Intense synaptic activity enhances temporal resolution in spinal motoneurons.

    Directory of Open Access Journals (Sweden)

    Rune W Berg

    Full Text Available In neurons, spike timing is determined by integration of synaptic potentials in delicate concert with intrinsic properties. Although the integration time is functionally crucial, it remains elusive during network activity. While mechanisms of rapid processing are well documented in sensory systems, agility in motor systems has received little attention. Here we analyze how intense synaptic activity affects integration time in spinal motoneurons during functional motor activity and report a 10-fold decrease. As a result, action potentials can only be predicted from the membrane potential within 10 ms of their occurrence and detected for less than 10 ms after their occurrence. Being shorter than the average inter-spike interval, the AHP has little effect on integration time and spike timing, which instead is entirely determined by fluctuations in membrane potential caused by the barrage of inhibitory and excitatory synaptic activity. By shortening the effective integration time, this intense synaptic input may serve to facilitate the generation of rapid changes in movements.

  11. Control of synaptic plasticity in deep cortical networks

    NARCIS (Netherlands)

    Roelfsema, Pieter R.; Holtmaat, Anthony

    2018-01-01

    Humans and many other animals have an enormous capacity to learn about sensory stimuli and to master new skills. However, many of the mechanisms that enable us to learn remain to be understood. One of the greatest challenges of systems neuroscience is to explain how synaptic connections change to

  12. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction.

    NARCIS (Netherlands)

    van Huijstee, A.N.; Mansvelder, H.D.

    2015-01-01

    Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine (DA) system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review

  13. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

    Science.gov (United States)

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033

  14. Inhibitory Synaptic Plasticity - Spike timing dependence and putative network function.

    Directory of Open Access Journals (Sweden)

    Tim P Vogels

    2013-07-01

    Full Text Available While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical □ndings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.

  15. Irregular persistent activity induced by synaptic excitatory feedback

    Directory of Open Access Journals (Sweden)

    Francesca Barbieri

    2007-11-01

    Full Text Available Neurophysiological experiments on monkeys have reported highly irregular persistent activity during the performance of an oculomotor delayed-response task. These experiments show that during the delay period the coefficient of variation (CV of interspike intervals (ISI of prefrontal neurons is above 1, on average, and larger than during the fixation period. In the present paper, we show that this feature can be reproduced in a network in which persistent activity is induced by excitatory feedback, provided that (i the post-spike reset is close enough to threshold , (ii synaptic efficacies are a non-linear function of the pre-synaptic firing rate. Non-linearity between presynaptic rate and effective synaptic strength is implemented by a standard short-term depression mechanism (STD. First, we consider the simplest possible network with excitatory feedback: a fully connected homogeneous network of excitatory leaky integrate-and-fire neurons, using both numerical simulations and analytical techniques. The results are then confirmed in a network with selective excitatory neurons and inhibition. In both the cases there is a large range of values of the synaptic efficacies for which the statistics of firing of single cells is similar to experimental data.

  16. Synaptic Circuit Organization of Motor Corticothalamic Neurons

    Science.gov (United States)

    Yamawaki, Naoki

    2015-01-01

    Corticothalamic (CT) neurons in layer 6 constitute a large but enigmatic class of cortical projection neurons. How they are integrated into intracortical and thalamo-cortico-thalamic circuits is incompletely understood, especially outside of sensory cortex. Here, we investigated CT circuits in mouse forelimb motor cortex (M1) using multiple circuit-analysis methods. Stimulating and recording from CT, intratelencephalic (IT), and pyramidal tract (PT) projection neurons, we found strong CT↔ CT and CT↔ IT connections; however, CT→IT connections were limited to IT neurons in layer 6, not 5B. There was strikingly little CT↔ PT excitatory connectivity. Disynaptic inhibition systematically accompanied excitation in these pathways, scaling with the amplitude of excitation according to both presynaptic (class-specific) and postsynaptic (cell-by-cell) factors. In particular, CT neurons evoked proportionally more inhibition relative to excitation (I/E ratio) than IT neurons. Furthermore, the amplitude of inhibition was tuned to match the amount of excitation at the level of individual neurons; in the extreme, neurons receiving no excitation received no inhibition either. Extending these studies to dissect the connectivity between cortex and thalamus, we found that M1-CT neurons and thalamocortical neurons in the ventrolateral (VL) nucleus were remarkably unconnected in either direction. Instead, VL axons in the cortex excited both IT and PT neurons, and CT axons in the thalamus excited other thalamic neurons, including those in the posterior nucleus, which additionally received PT excitation. These findings, which contrast in several ways with previous observations in sensory areas, illuminate the basic circuit organization of CT neurons within M1 and between M1 and thalamus. PMID:25653383

  17. Sahara Coal: the fine art of collecting fines for profit

    Energy Technology Data Exchange (ETDEWEB)

    Schreckengost, D.; Arnold, D.

    1984-09-01

    Because of a change in underground mining methods that caused a considerable increase in the amount of fine sizes in the raw coal, Sahara Coal Co. designed and constructed a unique and simple fine coal system at their Harrisburg, IL prep plant. Before the new system was built, the overload of the fine coal circuit created a cost crunch due to loss of salable coal to slurry ponds, slurry pond cleaning costs, and operating and maintenance costs--each and every one excessive. Motivated by these problems, Sahara designed a prototype system to dewater the minus 28 mesh refuse. The success of the idea permitted fine refuse to be loaded onto the coarse refuse belt. Sahara also realized a large reduction in pond cleaning costs. After a period of testing, an expanded version of the refuse system was installed to dewater and dry the 28 mesh X 0 clean coal. Clean coal output increased about 30 tph. Cost savings justified the expenditures for the refuse and clean coal systems. These benefits, combined with increased coal sales revenue, paid back the project costs in less than a year.

  18. Optogenetic Examination of Prefrontal-Amygdala Synaptic Development.

    Science.gov (United States)

    Arruda-Carvalho, Maithe; Wu, Wan-Chen; Cummings, Kirstie A; Clem, Roger L

    2017-03-15

    A brain network comprising the medial prefrontal cortex (mPFC) and amygdala plays important roles in developmentally regulated cognitive and emotional processes. However, very little is known about the maturation of mPFC-amygdala circuitry. We conducted anatomical tracing of mPFC projections and optogenetic interrogation of their synaptic connections with neurons in the basolateral amygdala (BLA) at neonatal to adult developmental stages in mice. Results indicate that mPFC-BLA projections exhibit delayed emergence relative to other mPFC pathways and establish synaptic transmission with BLA excitatory and inhibitory neurons in late infancy, events that coincide with a massive increase in overall synaptic drive. During subsequent adolescence, mPFC-BLA circuits are further modified by excitatory synaptic strengthening as well as a transient surge in feedforward inhibition. The latter was correlated with increased spontaneous inhibitory currents in excitatory neurons, suggesting that mPFC-BLA circuit maturation culminates in a period of exuberant GABAergic transmission. These findings establish a time course for the onset and refinement of mPFC-BLA transmission and point to potential sensitive periods in the development of this critical network. SIGNIFICANCE STATEMENT Human mPFC-amygdala functional connectivity is developmentally regulated and figures prominently in numerous psychiatric disorders with a high incidence of adolescent onset. However, it remains unclear when synaptic connections between these structures emerge or how their properties change with age. Our work establishes developmental windows and cellular substrates for synapse maturation in this pathway involving both excitatory and inhibitory circuits. The engagement of these substrates by early life experience may support the ontogeny of fundamental behaviors but could also lead to inappropriate circuit refinement and psychopathology in adverse situations. Copyright © 2017 the authors 0270-6474/17/372976-10$15.00/0.

  19. Synaptic dysfunction in amygdala in intellectual disorder models.

    Science.gov (United States)

    Aincy, Marianne; Meziane, Hamid; Herault, Yann; Humeau, Yann

    2018-06-08

    The amygdala is a part of the limbic circuit that has been extensively studied in terms of synaptic connectivity, plasticity and cellular organization since decades (Ehrlich et al., 2009; Ledoux, 2000; Maren, 2001). Amygdala sub-nuclei, including lateral, basolateral and central amygdala appear now as "hubs" providing in parallel and in series neuronal processing enabling the animal to elicit freezing or escaping behavior in response to external threats. In rodents, these behaviors are easily observed and quantified following associative fear conditioning. Thus, studies on amygdala circuit in association with threat/fear behavior became very popular in laboratories and are often used among other behavioral tests to evaluate learning abilities of mouse models for various neuropsychiatric conditions including genetically encoded intellectual disabilities (ID). Yet, more than 100 human X-linked genes - and several hundreds of autosomal genes - have been associated with ID in humans. These mutations introduced in mice can generate social deficits, anxiety dysregulations and fear learning impairments (McNaughton et al., 2008; Houbaert et al., 2013; Jayachandran et al., 2014; Zhang et al., 2015). Noteworthy, a significant proportion of the coded ID gene products are synaptic proteins. It is postulated that the loss of function of these proteins could destabilize neuronal circuits by global changes of the balance between inhibitory and excitatory drives onto neurons. However, whereas amygdala related behavioral deficits are commonly observed in ID models, the role of most of these ID-genes in synaptic function and plasticity in the amygdala are only sparsely studied. We will here discuss some of the concepts that emerged from amygdala-targeted studies examining the role of syndromic and non-syndromic ID genes in fear-related behaviors and/or synaptic function. Along describing these cases, we will discuss how synaptic deficits observed in amygdala circuits could impact

  20. Soft sensor for real-time cement fineness estimation.

    Science.gov (United States)

    Stanišić, Darko; Jorgovanović, Nikola; Popov, Nikola; Čongradac, Velimir

    2015-03-01

    This paper describes the design and implementation of soft sensors to estimate cement fineness. Soft sensors are mathematical models that use available data to provide real-time information on process variables when the information, for whatever reason, is not available by direct measurement. In this application, soft sensors are used to provide information on process variable normally provided by off-line laboratory tests performed at large time intervals. Cement fineness is one of the crucial parameters that define the quality of produced cement. Providing real-time information on cement fineness using soft sensors can overcome limitations and problems that originate from a lack of information between two laboratory tests. The model inputs were selected from candidate process variables using an information theoretic approach. Models based on multi-layer perceptrons were developed, and their ability to estimate cement fineness of laboratory samples was analyzed. Models that had the best performance, and capacity to adopt changes in the cement grinding circuit were selected to implement soft sensors. Soft sensors were tested using data from a continuous cement production to demonstrate their use in real-time fineness estimation. Their performance was highly satisfactory, and the sensors proved to be capable of providing valuable information on cement grinding circuit performance. After successful off-line tests, soft sensors were implemented and installed in the control room of a cement factory. Results on the site confirm results obtained by tests conducted during soft sensor development. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Odor-Specific Habituation Arises from Interaction of Afferent Synaptic Adaptation and Intrinsic Synaptic Potentiation in Olfactory Cortex

    Science.gov (United States)

    Linster, Christiane; Menon, Alka V.; Singh, Christopher Y.; Wilson, Donald A.

    2009-01-01

    Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system and is thought to be behaviorally mediated by olfactory habituation memory. Data from our laboratory have shown that odor-specific adaptation in piriform neurons, mediated at least partially by synaptic adaptation between…

  2. Probing fine magnetic particles with neutron scattering

    International Nuclear Information System (INIS)

    Pynn, R.

    1991-01-01

    Because thermal neutrons are scattered both by nuclei and by unpaired electrons, they provide an ideal probe for studying the atomic and magnetic structures of fine-grained magnetic materials, including nanocrystalline solids, thin epitaxial layers, and colloidal suspensions of magnetic particles, known as ferrofluids. Diffraction, surface reflection, and small angle neutron scattering (SANS) are the techniques used. With the exception of surface reflection, these methods are described in this article. The combination of SANS with refractive-index matching and neutron polarisation analysis is particularly powerful because it allows the magnetic and atomic structures to be determined independently. This technique has been used to study both dilute and concentrated ferrofluid suspensions of relatively monodisperse cobalt particles, subjected to a series of applied magnetic fields. The size of the cobalt particle core and the surrounding surfactant layer were determined. The measured interparticle structure factor agrees well with a recent theory that allows correlations in binary mixtures of magnetic particles to be calculated in the case of complete magnetic alignment. When one of the species in such a binary mixture is a nonmagnetic, cyclindrical macromolecule, application of a magnetic field leads to some degree of alignment of the nonmagnetic species. This result has been demonstrated with tobacco mosaic virus suspended in a water-based ferrofluid

  3. Boosting water oxidation layer-by-layer.

    Science.gov (United States)

    Hidalgo-Acosta, Jonnathan C; Scanlon, Micheál D; Méndez, Manuel A; Amstutz, Véronique; Vrubel, Heron; Opallo, Marcin; Girault, Hubert H

    2016-04-07

    Electrocatalysis of water oxidation was achieved using fluorinated tin oxide (FTO) electrodes modified with layer-by-layer deposited films consisting of bilayers of negatively charged citrate-stabilized IrO2 NPs and positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer. The IrO2 NP surface coverage can be fine-tuned by controlling the number of bilayers. The IrO2 NP films were amorphous, with the NPs therein being well-dispersed and retaining their as-synthesized shape and sizes. UV/vis spectroscopic and spectro-electrochemical studies confirmed that the total surface coverage and electrochemically addressable surface coverage of IrO2 NPs increased linearly with the number of bilayers up to 10 bilayers. The voltammetry of the modified electrode was that of hydrous iridium oxide films (HIROFs) with an observed super-Nernstian pH response of the Ir(III)/Ir(IV) and Ir(IV)-Ir(IV)/Ir(IV)-Ir(V) redox transitions and Nernstian shift of the oxygen evolution onset potential. The overpotential of the oxygen evolution reaction (OER) was essentially pH independent, varying only from 0.22 V to 0.28 V (at a current density of 0.1 mA cm(-2)), moving from acidic to alkaline conditions. Bulk electrolysis experiments revealed that the IrO2/PDDA films were stable and adherent under acidic and neutral conditions but degraded in alkaline solutions. Oxygen was evolved with Faradaic efficiencies approaching 100% under acidic (pH 1) and neutral (pH 7) conditions, and 88% in alkaline solutions (pH 13). This layer-by-layer approach forms the basis of future large-scale OER electrode development using ink-jet printing technology.

  4. Statistical theory of synaptic connectivity in the neocortex

    Science.gov (United States)

    Escobar, Gina

    Learning and long-term memory rely on plasticity of neural circuits. In adult cerebral cortex plasticity can be mediated by modulation of existing synapses and structural reorganization of circuits through growth and retraction of dendritic spines. In the first part of this thesis, we describe a theoretical framework for the analysis of spine remodeling plasticity. New synaptic contacts appear in the neuropil where gaps between axonal and dendritic branches can be bridged by dendritic spines. Such sites are termed potential synapses. We derive expressions for the densities of potential synapses in the neuropil. We calculate the ratio of actual to potential synapses, called the connectivity fraction, and use it to find the number of structurally different circuits attainable with spine remodeling. These parameters are calculated in four systems: mouse occipital cortex, rat hippocampal area CA1, monkey primary visual (V1), and human temporal cortex. The neurogeometric results indicate that a dendritic spine can choose among an average of 4-7 potential targets in rodents, while in primates it can choose from 10-20 potential targets. The potential of the neuropil to undergo circuit remodeling is found to be highest in rat CA1 (4.9-6.0 nats/mum 3) and lowest in monkey V1 (0.9-1.0 nats/mum3). We evaluate the lower bound of neuron selectivity in the choice of synaptic partners and find that post-synaptic excitatory neurons in rodents make synaptic contacts with more than 21-30% of pre-synaptic axons encountered with new spine growth. Primate neurons appear to be more selective, making synaptic connections with more than 7-15% of encountered axons. Another plasticity mechanism is included in the second part of this work: long-term potentiation and depression of excitatory synaptic connections. Because synaptic strength is correlated with the size of the synapse, the former can be inferred from the distribution of spine head volumes. To this end we analyze and compare 166

  5. Agrin and synaptic laminin are required to maintain adult neuromuscular junctions.

    Directory of Open Access Journals (Sweden)

    Melanie A Samuel

    Full Text Available As synapses form and mature the synaptic partners produce organizing molecules that regulate each other's differentiation and ensure precise apposition of pre- and post-synaptic specializations. At the skeletal neuromuscular junction (NMJ, these molecules include agrin, a nerve-derived organizer of postsynaptic differentiation, and synaptic laminins, muscle-derived organizers of presynaptic differentiation. Both become concentrated in the synaptic cleft as the NMJ develops and are retained in adulthood. Here, we used mutant mice to ask whether these organizers are also required for synaptic maintenance. Deletion of agrin from a subset of adult motor neurons resulted in the loss of acetylcholine receptors and other components of the postsynaptic apparatus and synaptic cleft. Nerve terminals also atrophied and eventually withdrew from muscle fibers. On the other hand, mice lacking the presynaptic organizer laminin-α4 retained most of the synaptic cleft components but exhibited synaptic alterations reminiscent of those observed in aged animals. Although we detected no marked decrease in laminin or agrin levels at aged NMJs, we observed alterations in the distribution and organization of these synaptic cleft components suggesting that such changes could contribute to age-related synaptic disassembly. Together, these results demonstrate that pre- and post-synaptic organizers actively function to maintain the structure and function of adult NMJs.

  6. Preparation of synaptic plasma membrane and postsynaptic density proteins using a discontinuous sucrose gradient.

    Science.gov (United States)

    Bermejo, Marie Kristel; Milenkovic, Marija; Salahpour, Ali; Ramsey, Amy J

    2014-09-03

    Neuronal subcellular fractionation techniques allow the quantification of proteins that are trafficked to and from the synapse. As originally described in the late 1960's, proteins associated with the synaptic plasma membrane can be isolated by ultracentrifugation on a sucrose density gradient. Once synaptic membranes are isolated, the macromolecular complex known as the post-synaptic density can be subsequently isolated due to its detergent insolubility. The techniques used to isolate synaptic plasma membranes and post-synaptic density proteins remain essentially the same after 40 years, and are widely used in current neuroscience research. This article details the fractionation of proteins associated with the synaptic plasma membrane and post-synaptic density using a discontinuous sucrose gradient. Resulting protein preparations are suitable for western blotting or 2D DIGE analysis.

  7. Two Classes of Secreted Synaptic Organizers in the Central Nervous System.

    Science.gov (United States)

    Yuzaki, Michisuke

    2018-02-10

    Research in the last two decades has identified many synaptic organizers in the central nervous system that directly regulate the assembly of pre- and/or postsynaptic molecules, such as synaptic vesicles, active zone proteins, and neurotransmitter receptors. They are classified into secreted factors and cell adhesion molecules, such as neurexins and neuroligins. Certain secreted factors are termed extracellular scaffolding proteins (ESPs) because they are components of the synaptic extracellular matrix and serve as a scaffold at the synaptic cleft. These include Lgi1, Cbln1, neuronal pentraxins, Hevin, thrombospondins, and glypicans. Diffusible secreted factors, such as Wnts, fibroblast growth factors, and semaphorins, tend to act from a distance. In contrast, ESPs remain at the synaptic cleft and often help synaptic adhesion and/or accumulation of postsynaptic receptors. Many fundamental questions remain about when, how, and why various synaptic organizers establish and modify the vast numbers of connections during development and throughout life.

  8. Effects of decreased inhibition on synaptic plasticity and dendritic morphology in the juvenile prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Xanthippi Konstantoudaki

    2014-03-01

    Full Text Available Excitation-inhibition balance is critical for maintaining proper functioning of the cerebral cortex, as evident from electrophysiological and modeling studies, and it is also important for animal behavior (Yizhar et al., 2011. In the cerebral cortex, excitation is provided by glutamate release from pyramidal neurons, while inhibition is provided by GABA release from several types of interneurons. Many neuropsychiatric disorders, such as epilepsy, anxiety, schizophrenia and autism exhibit an imbalance between the excitatory and inhibitory mechanisms of cortical circuits within key brain regions as prefrontal cortex or hippocampus, primarily through dysfunctions in the inhibitory system (Lewis, Volk, & Hashimoto, 2003; Marín, 2012 Given the significant role of GABAergic inhibition in shaping proper function of the cerebral cortex, we used a mouse model of developmentally decreased GABAergic inhibition in order to examine its effects in network properties, namely basal synaptic transmission, synaptic plasticity and dendritic morphology of pyramidal neurons. For our study, we used mice (postnatal day 20-30 in which the Rac1 protein was deleted from Nkx2.1-expressing neurons (Vidaki et al., 2012, (Rac1fl/flNkx2.1 +/cre referred as Rac1 KO mice, and heterozygous (Rac1+/flNkx2.1 +/cre or control (Rac1+/flNkx2.1 +/+ mice. The specific ablation of Rac1 protein from NKx2.1-expressing MGE-derived progenitors leads to a perturbation of their cell cycle exit resulting in decreased number of interneurons in the cortex(Vidaki et al, 2012. We prepared brain slices from the prefrontal cortex and recorded field excitatory postsynaptic potentials (fEPSPs from layer II neurons while stimulating axons in layer II. We find that the evoked fEPSPs are decreased in Rac1 KO mice compared to Rac1 heterozygous or control mice. This could suggest that the decreased GABAergic inhibition causes network alterations that result in reduced glutamatergic function. Furthermore

  9. [Fine root dynamics and its relationship with soil fertility in tropical rainforests of Chocó].

    Science.gov (United States)

    Quinto, Harley; Caicedo, Haylin; Thelis Perez, May; Moreno, Flavio

    2016-12-01

    The fine roots play an important role in the acquisition of water and minerals from the soil, the global carbon balance and mitigation of climate change. The dynamics (productivity and turnover) of fine roots is essential for nutrient cycling and carbon balance of forest ecosystems. The availability of soil water and nutrients has significantly determined the productivity and turnover of fine roots. It has been hypothesized that fine roots dynamics increases with the availability of soil resources in tropical forest ecosystems. To test this hypothesis in tropical rainforests of Chocó (ecosystems with the highest rainfall in the world), five one-ha permanent plots were established in the localities of Opogodó and Pacurita, where the productivity and turnover of fine roots were measured at 0-10 cm and 10-20 cm depth. The measurement of the fine root production was realized by the Ingrowth core method. The fine root turnover was measured like fine roots production divided mean annual biomass. In addition, soil fertility parameters (pH, nutrients, and texture) were measured and their association with productivity and turnover of fine roots was evaluated. It was found that the sites had nutrient-poor soils. The localities also differ in soil; Opogodó has sandy soils and flat topography, and Pacurita has clay soils, rich in aluminum and mountainous topography. In Opogodó fine root production was 6.50 ± 2.62 t/ha.yr (mean ± SD). In Pacurita, fine root production was 3.61 ± 0.88 t/ha.yr. Also in Opogodó, the fine root turnover was higher than in Pacurita (1.17 /y and 0.62 /y, respectively). Fine root turnover and production in the upper soil layers (10 cm upper soil) was considerably higher. Productivity and turnover of fine roots showed positive correlation with pH and contents of organic matter, total N, K, Mg, and sand; whereas correlations were negative with ECEC and contents of Al, silt, and clay. The percentage of sand was the parameter that best explained

  10. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers.

    Science.gov (United States)

    Lanjakornsiripan, Darin; Pior, Baek-Jun; Kawaguchi, Daichi; Furutachi, Shohei; Tahara, Tomoaki; Katsuyama, Yu; Suzuki, Yutaka; Fukazawa, Yugo; Gotoh, Yukiko

    2018-04-24

    Non-pial neocortical astrocytes have historically been thought to comprise largely a nondiverse population of protoplasmic astrocytes. Here we show that astrocytes of the mouse somatosensory cortex manifest layer-specific morphological and molecular differences. Two- and three-dimensional observations revealed that astrocytes in the different layers possess distinct morphologies as reflected by differences in cell orientation, territorial volume, and arborization. The extent of ensheathment of synaptic clefts by astrocytes in layer II/III was greater than that by those in layer VI. Moreover, differences in gene expression were observed between upper-layer and deep-layer astrocytes. Importantly, layer-specific differences in astrocyte properties were abrogated in reeler and Dab1 conditional knockout mice, in which neuronal layers are disturbed, suggesting that neuronal layers are a prerequisite for the observed morphological and molecular differences of neocortical astrocytes. This study thus demonstrates the existence of layer-specific interactions between neurons and astrocytes, which may underlie their layer-specific functions.

  11. Does autophagy work in synaptic plasticity and memory?

    Science.gov (United States)

    Shehata, Mohammad; Inokuchi, Kaoru

    2014-01-01

    Many studies have reported the roles played by regulated proteolysis in neural plasticity and memory. Within this context, most of the research focused on the ubiquitin-proteasome system and the endosome-lysosome system while giving lesser consideration to another major protein degradation system, namely, autophagy. Although autophagy intersects with many of the pathways known to underlie synaptic plasticity and memory, only few reports related autophagy to synaptic remodeling. These pathways include PI3K-mTOR pathway and endosome-dependent proteolysis. In this review, we will discuss several lines of evidence supporting a physiological role of autophagy in memory processes, and the possible mechanistic scenarios for how autophagy could fulfill this function.

  12. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    KAUST Repository

    Burlakov, V. M.

    2012-01-10

    We introduce a bistability mechanism for long-term synaptic plasticity based on switching between two metastable states that contain significantly different numbers of synaptic receptors. One state is characterized by a two-dimensional gas of mobile interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out of the synapse. Transitions between the two states can be initiated by either an increase (potentiation) or a decrease (depotentiation) of the net receptor flux into the synapse. This changes the saturation level of the receptor gas and triggers nucleation or evaporation of receptor clusters. © 2012 American Physical Society.

  13. Synaptic communication between neurons and NG2+ cells.

    Science.gov (United States)

    Paukert, Martin; Bergles, Dwight E

    2006-10-01

    Chemical synaptic transmission provides the basis for much of the rapid signaling that occurs within neuronal networks. However, recent studies have provided compelling evidence that synapses are not used exclusively for communication between neurons. Physiological and anatomical studies indicate that a distinct class of glia known as NG2(+) cells also forms direct synaptic junctions with both glutamatergic and GABAergic neurons. Glutamatergic signaling can influence intracellular Ca(2+) levels in NG2(+) cells by activating Ca(2+) permeable AMPA receptors, and these inputs can be potentiated through high frequency stimulation. Although the significance of this highly differentiated form of communication remains to be established, these neuro-glia synapses might enable neurons to influence rapidly the behavior of this ubiquitous class of glial progenitors.

  14. Emulating short-term synaptic dynamics with memristive devices

    Science.gov (United States)

    Berdan, Radu; Vasilaki, Eleni; Khiat, Ali; Indiveri, Giacomo; Serb, Alexandru; Prodromakis, Themistoklis

    2016-01-01

    Neuromorphic architectures offer great promise for achieving computation capacities beyond conventional Von Neumann machines. The essential elements for achieving this vision are highly scalable synaptic mimics that do not undermine biological fidelity. Here we demonstrate that single solid-state TiO2 memristors can exhibit non-associative plasticity phenomena observed in biological synapses, supported by their metastable memory state transition properties. We show that, contrary to conventional uses of solid-state memory, the existence of rate-limiting volatility is a key feature for capturing short-term synaptic dynamics. We also show how the temporal dynamics of our prototypes can be exploited to implement spatio-temporal computation, demonstrating the memristors full potential for building biophysically realistic neural processing systems.

  15. Short-term synaptic plasticity and heterogeneity in neural systems

    Science.gov (United States)

    Mejias, J. F.; Kappen, H. J.; Longtin, A.; Torres, J. J.

    2013-01-01

    We review some recent results on neural dynamics and information processing which arise when considering several biophysical factors of interest, in particular, short-term synaptic plasticity and neural heterogeneity. The inclusion of short-term synaptic plasticity leads to enhanced long-term memory capacities, a higher robustness of memory to noise, and irregularity in the duration of the so-called up cortical states. On the other hand, considering some level of neural heterogeneity in neuron models allows neural systems to optimize information transmission in rate coding and temporal coding, two strategies commonly used by neurons to codify information in many brain areas. In all these studies, analytical approximations can be made to explain the underlying dynamics of these neural systems.

  16. Irregular activity arises as a natural consequence of synaptic inhibition

    International Nuclear Information System (INIS)

    Terman, D.; Rubin, J. E.; Diekman, C. O.

    2013-01-01

    Irregular neuronal activity is observed in a variety of brain regions and states. This work illustrates a novel mechanism by which irregular activity naturally emerges in two-cell neuronal networks featuring coupling by synaptic inhibition. We introduce a one-dimensional map that captures the irregular activity occurring in our simulations of conductance-based differential equations and mathematically analyze the instability of fixed points corresponding to synchronous and antiphase spiking for this map. We find that the irregular solutions that arise exhibit expansion, contraction, and folding in phase space, as expected in chaotic dynamics. Our analysis shows that these features are produced from the interplay of synaptic inhibition with sodium, potassium, and leak currents in a conductance-based framework and provides precise conditions on parameters that ensure that irregular activity will occur. In particular, the temporal details of spiking dynamics must be present for a model to exhibit this irregularity mechanism and must be considered analytically to capture these effects

  17. Irregular activity arises as a natural consequence of synaptic inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Terman, D., E-mail: terman@math.ohio-state.edu [Department of Mathematics, The Ohio State University, Columbus, Ohio 43210 (United States); Rubin, J. E., E-mail: jonrubin@pitt.edu [Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Diekman, C. O., E-mail: diekman@njit.edu [Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States)

    2013-12-15

    Irregular neuronal activity is observed in a variety of brain regions and states. This work illustrates a novel mechanism by which irregular activity naturally emerges in two-cell neuronal networks featuring coupling by synaptic inhibition. We introduce a one-dimensional map that captures the irregular activity occurring in our simulations of conductance-based differential equations and mathematically analyze the instability of fixed points corresponding to synchronous and antiphase spiking for this map. We find that the irregular solutions that arise exhibit expansion, contraction, and folding in phase space, as expected in chaotic dynamics. Our analysis shows that these features are produced from the interplay of synaptic inhibition with sodium, potassium, and leak currents in a conductance-based framework and provides precise conditions on parameters that ensure that irregular activity will occur. In particular, the temporal details of spiking dynamics must be present for a model to exhibit this irregularity mechanism and must be considered analytically to capture these effects.

  18. Inhibition of hippocampal synaptic transmission by impairment of Ral function

    DEFF Research Database (Denmark)

    Owe-Larsson, Björn; Chaves-Olarte, Esteban; Chauhan, Ashok

    2005-01-01

    Large clostridial cytotoxins and protein overexpression were used to probe for involvement of Ras-related GTPases (guanosine triphosphate) in synaptic transmission in cultured rat hippocampal neurons. The toxins TcdA-10463 (inactivates Rho, Rac, Cdc42, Rap) and TcsL-1522 (inactivates Ral, Rac, Ras......, R-Ras, Rap) both inhibited autaptic responses. In a proportion of the neurons (25%, TcdA-10463; 54%, TcsL-1522), the inhibition was associated with a shift from activity-dependent depression to facilitation, indicating that the synaptic release probability was reduced. Overexpression of a dominant...... negative Ral mutant, Ral A28N, caused a strong inhibition of autaptic responses, which was associated with a shift to facilitation in a majority (80%) of the neurons. These results indicate that Ral, along with at least one other non-Rab GTPase, participates in presynaptic regulation in hippocampal neurons....

  19. Stochastic learning in oxide binary synaptic device for neuromorphic computing.

    Science.gov (United States)

    Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H-S Philip

    2013-01-01

    Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design.

  20. Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and Trans-Synaptic Signaling Mediating Synaptic Remodeling

    Science.gov (United States)

    Sears, James C.; Broadie, Kendal

    2018-01-01

    Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. The disease arises through loss of fragile X mental retardation protein (FMRP), which normally exhibits peak expression levels in early-use critical periods, and is required for activity-dependent synaptic remodeling during this transient developmental window. FMRP canonically binds mRNA to repress protein translation, with targets that regulate cytoskeleton dynamics, membrane trafficking, and trans-synaptic signaling. We focus here on recent advances emerging in these three areas from the Drosophila disease model. In the well-characterized central brain mushroom body (MB) olfactory learning/memory circuit, FMRP is required for activity-dependent synaptic remodeling of projection neurons innervating the MB calyx, with function tightly restricted to an early-use critical period. FMRP loss is phenocopied by conditional removal of FMRP only during this critical period, and rescued by FMRP conditional expression only during this critical period. Consistent with FXS hyperexcitation, FMRP loss defects are phenocopied by heightened sensory experience and targeted optogenetic hyperexcitation during this critical period. FMRP binds mRNA encoding Drosophila ESCRTIII core component Shrub (human CHMP4 homolog) to restrict Shrub translation in an activity-dependent mechanism only during this same critical period. Shrub mediates endosomal membrane trafficking, and perturbing Shrub expression is known to interfere with neuronal process pruning. Consistently, FMRP loss and Shrub overexpression targeted to projection neurons similarly causes endosomal membrane trafficking defects within synaptic boutons, and genetic reduction of Shrub strikingly rescues Drosophila FXS model defects. In parallel work on the well-characterized giant fiber (GF) circuit, FMRP limits iontophoretic dye loading into central interneurons, demonstrating an FMRP role controlling core neuronal properties through the

  1. Berry's Phase and Fine Structure

    CERN Document Server

    Binder, B

    2002-01-01

    Irrational numbers can be assigned to physical entities based on iterative processes of geometric objects. It is likely that iterative round trips of vector signals include a geometric phase component. If so, this component will couple back to the round trip frequency or path length generating an non-linear feedback loop (i.e. induced by precession). In this paper such a quantum feedback mechanism is defined including generalized fine structure constants in accordance with the fundamental gravitomagnetic relation of spin-orbit coupling. Supported by measurements, the general relativistic and topological background allows to propose, that the deviation of the fine structure constant from 1/137 could be assigned to Berry's phase. The interpretation is straightforward: spacetime curvature effects can be greatly amplified by non-linear phase-locked feedback-loops adjusted to single-valued phase relationships in the quantum regime.

  2. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  3. Activity-dependent modulation of neural circuit synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  4. Convergent synaptic and circuit substrates underlying autism genetic risks.

    Science.gov (United States)

    McGee, Aaron; Li, Guohui; Lu, Zhongming; Qiu, Shenfeng

    2014-02-01

    There has been a surge of diagnosis of autism spectrum disorders (ASD) over the past decade. While large, high powered genome screening studies of children with ASD have identified numerous genetic risk factors, research efforts to understanding how each of these risk factors contributes to the development autism has met with limited success. Revealing the mechanisms by which these genetic risk factors affect brain development and predispose a child to autism requires mechanistic understanding of the neurobiological changes underlying this devastating group of developmental disorders at multifaceted molecular, cellular and system levels. It has been increasingly clear that the normal trajectory of neurodevelopment is compromised in autism, in multiple domains as much as aberrant neuronal production, growth, functional maturation, patterned connectivity, and balanced excitation and inhibition of brain networks. Many autism risk factors identified in humans have been now reconstituted in experimental mouse models to allow mechanistic interrogation of the biological role of the risk gene. Studies utilizing these mouse models have revealed that underlying the enormous heterogeneity of perturbed cellular events, mechanisms directing synaptic and circuit assembly may provide a unifying explanation for the pathophysiological changes and behavioral endophenotypes seen in autism, although synaptic perturbations are far from being the only alterations relevant for ASD. In this review, we discuss synaptic and circuit abnormalities obtained from several prevalent mouse models, particularly those reflecting syndromic forms of ASD that are caused by single gene perturbations. These compiled results reveal that ASD risk genes contribute to proper signaling of the developing gene networks that maintain synaptic and circuit homeostasis, which is fundamental to normal brain development.

  5. Quercetin targets cysteine string protein (CSPalpha and impairs synaptic transmission.

    Directory of Open Access Journals (Sweden)

    Fenglian Xu

    2010-06-01

    Full Text Available Cysteine string protein (CSPalpha is a synaptic vesicle protein that displays unique anti-neurodegenerative properties. CSPalpha is a member of the conserved J protein family, also called the Hsp40 (heat shock protein of 40 kDa protein family, whose importance in protein folding has been recognized for many years. Deletion of the CSPalpha in mice results in knockout mice that are normal for the first 2-3 weeks of life followed by an unexplained presynaptic neurodegeneration and premature death. How CSPalpha prevents neurodegeneration is currently not known. As a neuroprotective synaptic vesicle protein, CSPalpha represents a promising therapeutic target for the prevention of neurodegenerative disorders.Here, we demonstrate that the flavonoid quercetin promotes formation of stable CSPalpha-CSPalpha dimers and that quercetin-induced dimerization is dependent on the unique cysteine string region. Furthermore, in primary cultures of Lymnaea neurons, quercetin induction of CSPalpha dimers correlates with an inhibition of synapse formation and synaptic transmission suggesting that quercetin interfers with CSPalpha function. Quercetin's action on CSPalpha is concentration dependent and does not promote dimerization of other synaptic proteins or other J protein family members and reduces the assembly of CSPalpha:Hsc70 units (70kDa heat shock cognate protein.Quercetin is a plant derived flavonoid and popular nutritional supplement proposed to prevent memory loss and altitude sickness among other ailments, although its precise mechanism(s of action has been unclear. In view of the therapeutic promise of upregulation of CSPalpha and the undesired consequences of CSPalpha dysfunction, our data establish an essential proof of principle that pharmaceutical agents can selectively target the neuroprotective J protein CSPalpha.

  6. Presynaptic Active Zone Density during Development and Synaptic Plasticity.

    Science.gov (United States)

    Clarke, Gwenaëlle L; Chen, Jie; Nishimune, Hiroshi

    2012-01-01

    Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated.

  7. Dynamic learning and memory, synaptic plasticity and neurogenesis: an update

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Aleš

    2014-01-01

    Roč. 8, APR 1 (2014), s. 106 ISSN 1662-5153 R&D Projects: GA ČR(CZ) GA14-03627S Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200111204 Institutional support: RVO:67985823 Keywords : learning * memory * synaptic plasticity * neurogenesis Subject RIV: FH - Neurology Impact factor: 3.270, year: 2014

  8. Robust Short-Term Memory without Synaptic Learning

    OpenAIRE

    Johnson, Samuel; Marro, J.; Torres, Joaquin J.

    2013-01-01

    Short-term memory in the brain cannot in general be explained the way long-term memory can ??? as a gradual modification of synaptic weights ??? since it takes place too quickly. Theories based on some form of cellular bistability, however, do not seem able to account for the fact that noisy neurons can collectively store information in a robust manner. We show how a sufficiently clustered network of simple model neurons can be instantly induced into metastable states capable of retaining inf...

  9. Synaptic metaplasticity underlies tetanic potentiation in Lymnaea: a novel paradigm.

    Directory of Open Access Journals (Sweden)

    Anita Mehta

    Full Text Available We present a mathematical model that explains and interprets a novel form of short-term potentiation, which was found to be use-, but not time-dependent, in experiments done on Lymnaea neurons. The high degree of potentiation is explained using a model of synaptic metaplasticity, while the use-dependence (which is critically reliant on the presence of kinase in the experiment is explained using a model of a stochastic and bistable biological switch.

  10. Two Aspects of ASIC Function: Synaptic Plasticity and Neuronal Injury.

    Science.gov (United States)

    Huang, Yan; Jiang, Nan; Li, Jun; Ji, Yong-Hua; Xiong, Zhi-Gang; Zha, Xiang-ming

    2015-01-01

    Extracellular brain pH fluctuates in both physiological and disease conditions. The main postsynaptic proton receptor is the acid-sensing ion channels (ASICs). During the past decade, much progress has been made on protons, ASICs, and neurological disease. This review summarizes the recent progress on synaptic role of protons and our current understanding of how ASICs contribute to various types of neuronal injury in the brain. PMID:25582290

  11. Application of tumbling melt granulation (TMG) method to prepare controlled-release fine granules.

    Science.gov (United States)

    Maejima, T; Kubo, M; Osawa, T; Nakajima, K; Kobayashi, M

    1998-03-01

    The tumbling melt granulation (TMG) method was applied to prepare controlled-release fine granules of diltiazem hydrochloride (DH). The entire process, from the preparation of the cores by the adherence of DH to the sucrose crystal to the subsequent coating of the controlled-release layer, was performed without using any solvent. A mixture of meltable material, talc, and ethylcellulose was used for the controlled-release layer and controlled-release fine granules approximately 400 microns in diameter were obtained with excellent producibility. The dissolution rate of DH from these fine granules was similar to that of a once-a-day dosage form obtained in the market; further, the dependency of the dissolution profile on pH of the media was less. Thus, it was concluded that this TMG method was very useful for preparing not only controlled-release beads of granule size (usually 500 to 1400 microns) but also fine granules.

  12. Synaptic Plasticity and Excitation-Inhibition Balance in the Dentate Gyrus: Insights from In Vivo Recordings in Neuroligin-1, Neuroligin-2, and Collybistin Knockouts.

    Science.gov (United States)

    Jedlicka, Peter; Muellerleile, Julia; Schwarzacher, Stephan W

    2018-01-01

    The hippocampal dentate gyrus plays a role in spatial learning and memory and is thought to encode differences between similar environments. The integrity of excitatory and inhibitory transmission and a fine balance between them is essential for efficient processing of information. Therefore, identification and functional characterization of crucial molecular players at excitatory and inhibitory inputs is critical for understanding the dentate gyrus function. In this minireview, we discuss recent studies unraveling molecular mechanisms of excitatory/inhibitory synaptic transmission, long-term synaptic plasticity, and dentate granule cell excitability in the hippocampus of live animals. We focus on the role of three major postsynaptic proteins localized at excitatory (neuroligin-1) and inhibitory synapses (neuroligin-2 and collybistin). In vivo recordings of field potentials have the advantage of characterizing the effects of the loss of these proteins on the input-output function of granule cells embedded in a network with intact connectivity. The lack of neuroligin-1 leads to deficient synaptic plasticity and reduced excitation but normal granule cell output, suggesting unaltered excitation-inhibition ratio. In contrast, the lack of neuroligin-2 and collybistin reduces inhibition resulting in a shift towards excitation of the dentate circuitry.

  13. Synaptic Plasticity and Excitation-Inhibition Balance in the Dentate Gyrus: Insights from In Vivo Recordings in Neuroligin-1, Neuroligin-2, and Collybistin Knockouts

    Directory of Open Access Journals (Sweden)

    Peter Jedlicka

    2018-01-01

    Full Text Available The hippocampal dentate gyrus plays a role in spatial learning and memory and is thought to encode differences between similar environments. The integrity of excitatory and inhibitory transmission and a fine balance between them is essential for efficient processing of information. Therefore, identification and functional characterization of crucial molecular players at excitatory and inhibitory inputs is critical for understanding the dentate gyrus function. In this minireview, we discuss recent studies unraveling molecular mechanisms of excitatory/inhibitory synaptic transmission, long-term synaptic plasticity, and dentate granule cell excitability in the hippocampus of live animals. We focus on the role of three major postsynaptic proteins localized at excitatory (neuroligin-1 and inhibitory synapses (neuroligin-2 and collybistin. In vivo recordings of field potentials have the advantage of characterizing the effects of the loss of these proteins on the input-output function of granule cells embedded in a network with intact connectivity. The lack of neuroligin-1 leads to deficient synaptic plasticity and reduced excitation but normal granule cell output, suggesting unaltered excitation-inhibition ratio. In contrast, the lack of neuroligin-2 and collybistin reduces inhibition resulting in a shift towards excitation of the dentate circuitry.

  14. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.

    Directory of Open Access Journals (Sweden)

    Bardia F Behabadi

    Full Text Available Neocortical pyramidal neurons (PNs receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

  15. Robust Short-Term Memory without Synaptic Learning

    Science.gov (United States)

    Johnson, Samuel; Marro, J.; Torres, Joaquín J.

    2013-01-01

    Short-term memory in the brain cannot in general be explained the way long-term memory can – as a gradual modification of synaptic weights – since it takes place too quickly. Theories based on some form of cellular bistability, however, do not seem able to account for the fact that noisy neurons can collectively store information in a robust manner. We show how a sufficiently clustered network of simple model neurons can be instantly induced into metastable states capable of retaining information for a short time (a few seconds). The mechanism is robust to different network topologies and kinds of neural model. This could constitute a viable means available to the brain for sensory and/or short-term memory with no need of synaptic learning. Relevant phenomena described by neurobiology and psychology, such as local synchronization of synaptic inputs and power-law statistics of forgetting avalanches, emerge naturally from this mechanism, and we suggest possible experiments to test its viability in more biological settings. PMID:23349664

  16. Robust short-term memory without synaptic learning.

    Directory of Open Access Journals (Sweden)

    Samuel Johnson

    Full Text Available Short-term memory in the brain cannot in general be explained the way long-term memory can--as a gradual modification of synaptic weights--since it takes place too quickly. Theories based on some form of cellular bistability, however, do not seem able to account for the fact that noisy neurons can collectively store information in a robust manner. We show how a sufficiently clustered network of simple model neurons can be instantly induced into metastable states capable of retaining information for a short time (a few seconds. The mechanism is robust to different network topologies and kinds of neural model. This could constitute a viable means available to the brain for sensory and/or short-term memory with no need of synaptic learning. Relevant phenomena described by neurobiology and psychology, such as local synchronization of synaptic inputs and power-law statistics of forgetting avalanches, emerge naturally from this mechanism, and we suggest possible experiments to test its viability in more biological settings.

  17. Robust short-term memory without synaptic learning.

    Science.gov (United States)

    Johnson, Samuel; Marro, J; Torres, Joaquín J

    2013-01-01

    Short-term memory in the brain cannot in general be explained the way long-term memory can--as a gradual modification of synaptic weights--since it takes place too quickly. Theories based on some form of cellular bistability, however, do not seem able to account for the fact that noisy neurons can collectively store information in a robust manner. We show how a sufficiently clustered network of simple model neurons can be instantly induced into metastable states capable of retaining information for a short time (a few seconds). The mechanism is robust to different network topologies and kinds of neural model. This could constitute a viable means available to the brain for sensory and/or short-term memory with no need of synaptic learning. Relevant phenomena described by neurobiology and psychology, such as local synchronization of synaptic inputs and power-law statistics of forgetting avalanches, emerge naturally from this mechanism, and we suggest possible experiments to test its viability in more biological settings.

  18. The computational power of astrocyte mediated synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Rogier eMin

    2012-11-01

    Full Text Available Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte-mediated signaling processes described in the literature today, the current challenge is to identify which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.

  19. A versatile optical tool for studying synaptic GABAA receptor trafficking.

    Science.gov (United States)

    Lorenz-Guertin, Joshua M; Wilcox, Madeleine R; Zhang, Ming; Larsen, Mads B; Pilli, Jyotsna; Schmidt, Brigitte F; Bruchez, Marcel P; Johnson, Jon W; Waggoner, Alan S; Watkins, Simon C; Jacob, Tija C

    2017-11-15

    Live-cell imaging methods can provide critical real-time receptor trafficking measurements. Here, we describe an optical tool to study synaptic γ-aminobutyric acid (GABA) type A receptor (GABA A R) dynamics through adaptable fluorescent-tracking capabilities. A fluorogen-activating peptide (FAP) was genetically inserted into a GABA A R γ2 subunit tagged with pH-sensitive green fluorescent protein (γ2 pH FAP). The FAP selectively binds and activates Malachite Green (MG) dyes that are otherwise non-fluorescent in solution. γ2 pH FAP GABA A Rs are expressed at the cell surface in transfected cortical neurons, form synaptic clusters and do not perturb neuronal development. Electrophysiological studies show γ2 pH FAP GABA A Rs respond to GABA and exhibit positive modulation upon stimulation with the benzodiazepine diazepam. Imaging studies using γ2 pH FAP-transfected neurons and MG dyes show time-dependent receptor accumulation into intracellular vesicles, revealing constitutive endosomal and lysosomal trafficking. Simultaneous analysis of synaptic, surface and lysosomal receptors using the γ2 pH FAP-MG dye approach reveals enhanced GABA A R turnover following a bicucculine-induced seizure paradigm, a finding not detected by standard surface receptor measurements. To our knowledge, this is the first application of the FAP-MG dye system in neurons, demonstrating the versatility to study nearly all phases of GABA A R trafficking. © 2017. Published by The Company of Biologists Ltd.

  20. Evolution of the aging brain transcriptome and synaptic regulation.

    Directory of Open Access Journals (Sweden)

    Patrick M Loerch

    Full Text Available Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4. However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes.

  1. Binocular Rivalry in a Competitive Neural Network with Synaptic Depression

    KAUST Repository

    Kilpatrick, Zachary P.

    2010-01-01

    We study binocular rivalry in a competitive neural network with synaptic depression. In particular, we consider two coupled hypercolums within primary visual cortex (V1), representing orientation selective cells responding to either left or right eye inputs. Coupling between hypercolumns is dominated by inhibition, especially for neurons with dissimilar orientation preferences. Within hypercolumns, recurrent connectivity is excitatory for similar orientations and inhibitory for different orientations. All synaptic connections are modifiable by local synaptic depression. When the hypercolumns are driven by orthogonal oriented stimuli, it is possible to induce oscillations that are representative of binocular rivalry. We first analyze the occurrence of oscillations in a space-clamped version of the model using a fast-slow analys is, taking advantage of the fact that depression evolves much slower than population activity. We th en analyze the onset of oscillations in the full spatially extended system by carrying out a piecewise smooth stability analysis of single (winner-take-all) and double (fusion) bumps within the network. Although our stability analysis takes into account only instabilities associated with real eigenvalues, it identifies points of instability that are consistent with what is found numerically. In particular, we show that, in regions of parameter space where double bumps are unstable and no single bumps exist, binocular rivalry can arise as a slow alternation between either population supporting a bump. © 2010 Society for Industrial and Applied Mathematics.

  2. Structural Components of Synaptic Plasticity and Memory Consolidation

    Science.gov (United States)

    Bailey, Craig H.; Kandel, Eric R.; Harris, Kristen M.

    2015-01-01

    Consolidation of implicit memory in the invertebrate Aplysia and explicit memory in the mammalian hippocampus are associated with remodeling and growth of preexisting synapses and the formation of new synapses. Here, we compare and contrast structural components of the synaptic plasticity that underlies these two distinct forms of memory. In both cases, the structural changes involve time-dependent processes. Thus, some modifications are transient and may contribute to early formative stages of long-term memory, whereas others are more stable, longer lasting, and likely to confer persistence to memory storage. In addition, we explore the possibility that trans-synaptic signaling mechanisms governing de novo synapse formation during development can be reused in the adult for the purposes of structural synaptic plasticity and memory storage. Finally, we discuss how these mechanisms set in motion structural rearrangements that prepare a synapse to strengthen the same memory and, perhaps, to allow it to take part in other memories as a basis for understanding how their anatomical representation results in the enhanced expression and storage of memories in the brain. PMID:26134321

  3. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  4. The Transient Intermediate Plexiform Layer, a Plexiform Layer-like Structure Temporarily Existing in the Inner Nuclear Layer in Developing Rat Retina.

    Science.gov (United States)

    Park, Hyung Wook; Kim, Hong-Lim; Park, Yong Soo; Kim, In-Beom

    2018-02-01

    The retina is a highly specialised part of the brain responsible for visual processing. It is well-laminated; three layers containing five different types of neurons are compartmentalised by two synaptic layers. Among the retinal layers, the inner nuclear layer (INL) is composed of horizontal, bipolar, and amacrine cell types. Bipolar cells form one sublayer in the distal half of the IPL, while amacrine cells form another sublayer in the proximal half, without any border-like structure. Here, we report that a plexiform layer-like structure exists temporarily in the border between the bipolar and amacrine sublayers in the INL in the rat retina during retinal development. This transient intermediate plexiform layer (TIPL) appeared at postnatal day (PD) 7 and then disappeared around PD 12. Most apoptotic cells in the INL were found near the TIPL. These results suggest that the TIPL may contribute to the formation of sublayers and the cell number limit in the INL.

  5. Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI. Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI.

  6. Ensemble stacking mitigates biases in inference of synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Brendan Chambers

    2018-03-01

    Full Text Available A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches. Mapping the routing of spikes through local circuitry is crucial for understanding neocortical computation. Under appropriate experimental conditions, these maps can be used to infer likely patterns of synaptic recruitment, linking activity to underlying anatomical connections. Such inferences help to reveal the synaptic implementation of population dynamics and computation. We compare a number of standard functional measures to infer underlying connectivity. We find that regularization impacts measures

  7. Synaptic Correlates of Low-Level Perception in V1.

    Science.gov (United States)

    Gerard-Mercier, Florian; Carelli, Pedro V; Pananceau, Marc; Troncoso, Xoana G; Frégnac, Yves

    2016-04-06

    The computational role of primary visual cortex (V1) in low-level perception remains largely debated. A dominant view assumes the prevalence of higher cortical areas and top-down processes in binding information across the visual field. Here, we investigated the role of long-distance intracortical connections in form and motion processing by measuring, with intracellular recordings, their synaptic impact on neurons in area 17 (V1) of the anesthetized cat. By systematically mapping synaptic responses to stimuli presented in the nonspiking surround of V1 receptive fields, we provide the first quantitative characterization of the lateral functional connectivity kernel of V1 neurons. Our results revealed at the population level two structural-functional biases in the synaptic integration and dynamic association properties of V1 neurons. First, subthreshold responses to oriented stimuli flashed in isolation in the nonspiking surround exhibited a geometric organization around the preferred orientation axis mirroring the psychophysical "association field" for collinear contour perception. Second, apparent motion stimuli, for which horizontal and feedforward synaptic inputs summed in-phase, evoked dominantly facilitatory nonlinear interactions, specifically during centripetal collinear activation along the preferred orientation axis, at saccadic-like speeds. This spatiotemporal integration property, which could constitute the neural correlate of a human perceptual bias in speed detection, suggests that local (orientation) and global (motion) information is already linked within V1. We propose the existence of a "dynamic association field" in V1 neurons, whose spatial extent and anisotropy are transiently updated and reshaped as a function of changes in the retinal flow statistics imposed during natural oculomotor exploration. The computational role of primary visual cortex in low-level perception remains debated. The expression of this "pop-out" perception is often assumed

  8. Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. II: Spike Shuffling Methods on LIF Networks

    Directory of Open Access Journals (Sweden)

    Zedong Bi

    2016-08-01

    Full Text Available Synapses may undergo variable changes during plasticity because of the variability of spike patterns such as temporal stochasticity and spatial randomness. Here, we call the variability of synaptic weight changes during plasticity to be efficacy variability. In this paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations influence the efficacy variability under pair-wise additive spike-timing dependent plasticity (STDP and synaptic homeostasis (the mean strength of plastic synapses into a neuron is bounded, by implementing spike shuffling methods onto spike patterns self-organized by a network of excitatory and inhibitory leaky integrate-and-fire (LIF neurons. With the increase of the decay time scale of the inhibitory synaptic currents, the LIF network undergoes a transition from asynchronous state to weak synchronous state and then to synchronous bursting state. We first shuffle these spike patterns using a variety of methods, each designed to evidently change a specific pattern statistics; and then investigate the change of efficacy variability of the synapses under STDP and synaptic homeostasis, when the neurons in the network fire according to the spike patterns before and after being treated by a shuffling method. In this way, we can understand how the change of pattern statistics may cause the change of efficacy variability. Our results are consistent with those of our previous study which implements spike-generating models on converging motifs. We also find that burstiness/regularity is important to determine the efficacy variability under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause efficacy variability when the network moves into synchronous bursting states (the states observed in epilepsy.

  9. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    OpenAIRE

    Pinto, Joshua G. A.; Jones, David G.; Williams, C. Kate; Murphy, Kathryn M.

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and abo...

  10. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    OpenAIRE

    Joshua G.A Pinto; David G Jones; Kate eWilliams; Kathryn M Murphy; Kathryn M Murphy

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and a...

  11. Considering Fine Art and Picture Books

    Science.gov (United States)

    Serafini, Frank

    2015-01-01

    There has been a close association between picturebook illustrations and works of fine art since the picturebook was first conceived, and many ways these associations among works of fine art and picturebook illustrations and design play out. To make sense of all the various ways picturebook illustrations are associated with works of fine art,…

  12. 36 CFR 910.35 - Fine arts.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Fine arts. 910.35 Section 910... DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.35 Fine arts. Fine arts... of art which are appropriate for the development. For information and guidance, a reasonable...

  13. Fine and coarse components in surface sediments from Bikini Lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Noshkin, V. E., LLNL

    1997-01-01

    In 1979, 21 years after the moratorium on nuclear testing in the Marshall Islands, surface sediment samples (to depths of 2 and 4 cm) were collected from 87 locations in the lagoon of Bikini Atoll, one of the two sites in the Marshall Islands used by the United States to test nuclear devices from 1946 through 1958. The main purpose for the collections was to map the distribution of long-lived man-made radionuclides associated with the bottom material. In addition the samples were processed to estimate the fraction of fine and coarse components to show, by comparison, what modifications occurred in the composition since the sediments were first described in samples collected before testing in 1946. Nuclear testing produced more finely divided material that is now found in the surface sediment layer over large areas of the lagoon and especially in regions of the lagoon and reef adjacent to test sites. The 5 cratering events alone at Bikini Atoll redistributed sufficient material to account for the higher inventory of fine material found over the surface 4 cm of the sediment of the lagoon. Although the fraction of fine material in the bottom sediments was altered by the nuclear events, the combined processes of formation, transport and deposition were not sufficiently dynamic to greatly change the general geographical features of the major sedimentary components over most of the lagoon floor.

  14. A realistic neural mass model of the cortex with laminar-specific connections and synaptic plasticity - evaluation with auditory habituation.

    Directory of Open Access Journals (Sweden)

    Peng Wang

    Full Text Available In this work we propose a biologically realistic local cortical circuit model (LCCM, based on neural masses, that incorporates important aspects of the functional organization of the brain that have not been covered by previous models: (1 activity dependent plasticity of excitatory synaptic couplings via depleting and recycling of neurotransmitters and (2 realistic inter-laminar dynamics via laminar-specific distribution of and connections between neural populations. The potential of the LCCM was demonstrated by accounting for the process of auditory habituation. The model parameters were specified using Bayesian inference. It was found that: (1 besides the major serial excitatory information pathway (layer 4 to layer 2/3 to layer 5/6, there exists a parallel "short-cut" pathway (layer 4 to layer 5/6, (2 the excitatory signal flow from the pyramidal cells to the inhibitory interneurons seems to be more intra-laminar while, in contrast, the inhibitory signal flow from inhibitory interneurons to the pyramidal cells seems to be both intra- and inter-laminar, and (3 the habituation rates of the connections are unsymmetrical: forward connections (from layer 4 to layer 2/3 are more strongly habituated than backward connections (from Layer 5/6 to layer 4. Our evaluation demonstrates that the novel features of the LCCM are of crucial importance for mechanistic explanations of brain function. The incorporation of these features into a mass model makes them applicable to modeling based on macroscopic data (like EEG or MEG, which are usually available in human experiments. Our LCCM is therefore a valuable building block for future realistic models of human cognitive function.

  15. Calcium/Calmodulin-dependent Protein Kinase II is a Ubiquitous Molecule in Human Long-term Memory Synaptic Plasticity: A Systematic Review

    Science.gov (United States)

    Ataei, Negar; Sabzghabaee, Ali Mohammad; Movahedian, Ahmad

    2015-01-01

    Background: Long-term memory is based on synaptic plasticity, a series of biochemical mechanisms include changes in structure and proteins of brain's neurons. In this article, we systematically reviewed the studies that indicate calcium/calmodulin kinase II (CaMKII) is a ubiquitous molecule among different enzymes involved in human long-term memory and the main downstream signaling pathway of long-term memory. Methods: All of the observational, case–control and review studies were considered and evaluated by the search engines PubMed, Cochrane Central Register of Controlled Trials and ScienceDirect Scopus between 1990 and February 2015. We did not carry out meta-analysis. Results: At the first search, it was fined 1015 articles which included “synaptic plasticity” OR “neuronal plasticity” OR “synaptic density” AND memory AND “molecular mechanism” AND “calcium/calmodulin-dependent protein kinase II” OR CaMKII as the keywords. A total of 335 articles were duplicates in the databases and eliminated. A total of 680 title articles were evaluated. Finally, 40 articles were selected as reference. Conclusions: The studies have shown the most important intracellular signal of long-term memory is calcium-dependent signals. Calcium linked calmodulin can activate CaMKII. After receiving information for learning and memory, CaMKII is activated by Glutamate, the most important neurotransmitter for memory-related plasticity. Glutamate activates CaMKII and it plays some important roles in synaptic plasticity modification and long-term memory. PMID:26445635

  16. Stress-altered synaptic plasticity and DAMP signaling in the hippocampus-PFC axis; elucidating the significance of IGF-1/IGF-1R/CaMKIIα expression in neural changes associated with a prolonged exposure therapy.

    Science.gov (United States)

    Ogundele, Olalekan M; Ebenezer, Philip J; Lee, Charles C; Francis, Joseph

    2017-06-14

    Traumatic stress patients showed significant improvement in behavior after a prolonged exposure to an unrelated stimulus. This treatment method attempts to promote extinction of the fear memory associated with the initial traumatic experience. However, the subsequent prolonged exposure to such stimulus creates an additional layer of neural stress. Although the mechanism remains unclear, prolonged exposure therapy (PET) likely involves changes in synaptic plasticity, neurotransmitter function and inflammation; especially in parts of the brain concerned with the formation and retrieval of fear memory (Hippocampus and Prefrontal Cortex: PFC). Since certain synaptic proteins are also involved in danger-associated molecular pattern signaling (DAMP), we identified the significance of IGF-1/IGF-1R/CaMKIIα expression as a potential link between the concurrent progression of synaptic and inflammatory changes in stress. Thus, a comparison between IGF-1/IGF-1R/CaMKIIα, synaptic and DAMP proteins in stress and PET may highlight the significance of PET on synaptic morphology and neuronal inflammatory response. In behaviorally characterized Sprague-Dawley rats, there was a significant decline in neural IGF-1 (pIGF-1R expression. These animals showed a significant loss of presynaptic markers (synaptophysin; pIGF-1 (pIGF-1R was recorded in the Stress-PET group (pIGF-1/IGF-1R, an increase in activated hippocampal and cortical microglia was seen in stress (pIGF1/IGF-1R/CaMKIIα. Firstly, we showed a direct relationship between IGF-1/IGF-1R expression, presynaptic function (synaptophysin) and neurotransmitter activity in stress and PET. Secondly, we identified the possible role of CaMKIIα in post-synaptic function and regulation of small ion conductance channels. Lastly, we highlighted some of the possible links between IGF1/IGF-1R/CaMKIIα, the expression of DAMP proteins, Microglia activation, and its implication on synaptic plasticity during stress and PET. Copyright © 2017

  17. Picobubble enhanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Y.J.; Liu, J.T.; Yu, S.; Tao, D. [University of Kentucky, Lexington, KY (United States). Dept. of Mining Engineering

    2006-07-01

    Froth flotation is widely used in the coal industry to clean -28 mesh fine coal. A successful recovery of particles by flotation depends on efficient particle-bubble collision and attachment with minimal subsequent particle detachment from bubble. Flotation is effective in a narrow size range beyond which the flotation efficiency drops drastically. It is now known that the low flotation recovery of particles in the finest size fractions is mainly due to a low probability of bubble-particle collision while the main reason for poor coarse particle flotation recovery is the high probability of detachment. A fundamental analysis has shown that use of picobubbles can significantly improve the flotation recovery of particles in a wide range of size by increasing the probability of collision and attachment and reducing the probability of detachment. A specially designed column with a picobubble generator has been developed for enhanced recovery of fine coal particles. Picobubbles were produced based on the hydrodynamic cavitation principle. They are characterized by a size distribution that is mostly below 1 {mu}m and adhere preferentially to the hydrophobic surfaces. The presence of picobubbles increases the probability of collision and attachment and decreases the probability of detachment, thus enhancing flotation recovery. Experimental results with the Coalberg seam coal in West Virginia, U.S.A. have shown that the use of picobubbles in a 2 in. column flotation increased fine coal recovery by 10-30%, depending on the feed rate, collector dosage, and other flotation conditions. Picobubbles also acted as a secondary collector and reduced the collector dosage by one third to one half.

  18. PET measures of pre- and post-synaptic cardiac beta adrenergic function

    Energy Technology Data Exchange (ETDEWEB)

    Link, Jeanne M.; Stratton, John R.; Levy, Wayne; Poole, Jeanne E.; Shoner, Steven C.; Stuetzle, Werner; Caldwell, James H. E-mail: jcald@u.washington.edu

    2003-11-01

    Positron Emission Tomography was used to measure global and regional cardiac {beta}-adrenergic function in 19 normal subjects and 9 congestive heart failure patients. [{sup 11}C]-meta-hydroxyephedrine was used to image norepinephrine transporter function as an indicator of pre-synaptic function and [{sup 11}C]-CGP12177 was used to measure cell surface {beta}-receptor density as an indicator of post-synaptic function. Pre-synaptic, but not post-synaptic, function was significantly different between normals and CHF patients. Pre-synaptic function was well matched to post-synaptic function in the normal hearts but significantly different and poorly matched in the CHF patients studied. This imaging technique can help us understand regional sympathetic function in cardiac disease.

  19. Synaptic vesicle exocytosis in hippocampal synaptosomes correlates directly with total mitochondrial volume

    Science.gov (United States)

    Ivannikov, Maxim V.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2012-01-01

    Synaptic plasticity in many regions of the central nervous system leads to the continuous adjustment of synaptic strength, which is essential for learning and memory. In this study, we show by visualizing synaptic vesicle release in mouse hippocampal synaptosomes that presynaptic mitochondria and specifically, their capacities for ATP production are essential determinants of synaptic vesicle exocytosis and its magnitude. Total internal reflection microscopy of FM1-43 loaded hippocampal synaptosomes showed that inhibition of mitochondrial oxidative phosphorylation reduces evoked synaptic release. This reduction was accompanied by a substantial drop in synaptosomal ATP levels. However, cytosolic calcium influx was not affected. Structural characterization of stimulated hippocampal synaptosomes revealed that higher total presynaptic mitochondrial volumes were consistently associated with higher levels of exocytosis. Thus, synaptic vesicle release is linked to the presynaptic ability to regenerate ATP, which itself is a utility of mitochondrial density and activity. PMID:22772899

  20. Distinct Subunit Domains Govern Synaptic Stability and Specificity of the Kainate Receptor

    Directory of Open Access Journals (Sweden)

    Christoph Straub

    2016-07-01

    Full Text Available Synaptic communication between neurons requires the precise localization of neurotransmitter receptors to the correct synapse type. Kainate-type glutamate receptors restrict synaptic localization that is determined by the afferent presynaptic connection. The mechanisms that govern this input-specific synaptic localization remain unclear. Here, we examine how subunit composition and specific subunit domains contribute to synaptic localization of kainate receptors. The cytoplasmic domain of the GluK2 low-affinity subunit stabilizes kainate receptors at synapses. In contrast, the extracellular domain of the GluK4/5 high-affinity subunit synergistically controls the synaptic specificity of kainate receptors through interaction with C1q-like proteins. Thus, the input-specific synaptic localization of the native kainate receptor complex involves two mechanisms that underlie specificity and stabilization of the receptor at synapses.

  1. Ultrastructure and synaptic organization of the spinal accessory nucleus of the rat.

    Science.gov (United States)

    Hayakawa, Tetsu; Takanaga, Akinori; Tanaka, Koichi; Maeda, Seishi; Seki, Makoto

    2002-06-01

    The accessory nucleus is composed of neurons in the medial column that innervate the sternocleidomastoid muscle, and neurons in the lateral column that innervate the trapezius muscle. We retrogradely labeled these neurons by injection of cholera toxin conjugated horseradish peroxidase into the sternomastoid (SM) or the clavotrapezius (CT) muscles, and investigated fine structure and synaptology of these neurons. Almost all SM and CT motoneurons had the appearance of alpha-motoneurons, i.e., large, oval or polygonal cells containing well-developed organelles, Nissl bodies, and a prominent spherical nucleus. More than 60% of the somatic membrane was covered with terminals. The SM motoneurons (34.4 x 52.2 microm, 1,363.1 microm(2) in a section) were slightly larger than the CT motoneurons (32.8 x 54.2 microm, 1,180.8 microm(2)). The average number of axosomatic terminals in a section was 52.2 for the SM, and 54.2 for the CT motoneurons. More than half of them (58.0%) contained pleomorphic vesicles and made symmetric synaptic contacts (Gray's type II) with the SM motoneurons, while 57.9% of them contained round vesicles and made asymmetric synaptic contacts (Gray's type I) with the CT motoneurons. A few C-terminals were present on the SM (3.5) and the CT (3.7) motoneurons. About 60% of the axodendritic terminals were Gray's type I in both the SM and the CT motoneurons. A few labeled small motoneurons were also found among the SM and the CT motoneurons. They were small (19.2 x 26.2 microm, 367.0 microm(2)), round cells containing poorly developed organelles with a few axosomatic terminals (9.3). Only 20% of the somatic membrane was covered with the terminals. Thus, these neurons were presumed to be gamma-motoneurons. These results indicate that the motoneurons in the medial and the lateral column of the accessory nucleus have different ultrastructural characteristics.

  2. Fine-grained hodoscopes based on scintillating optical fibers

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Strand, R.C.

    1981-01-01

    In order to exploit the high event rates at ISABELLE, it will be necessary to have fast detection with fine spatial resolution. The authors are currently constructing a prototype fine-grained hodoscope, the elements of which are scintillating optical fibers. The fibers have been drawn from commercially available plastic scintillator which has been clad with a thin layer of silicone. So far it has been demonstrated with one mm diameter fibers, that with a photodetector at each end, the fibers are more than 99% efficient for lengths of about 60 cm. The readout will be accomplished either with small diameter photomultiplier tubes or avalanche photodiodes used either in the linear or Geiger mode. The program of fiber development and evaluation is described. The status of the APD as a readout element is discussed, and an optical encoding readout scheme is described for events of low multiplicity

  3. A Case Study of I’ll Be Fine

    Directory of Open Access Journals (Sweden)

    Angela Ferraiolo

    2017-04-01

    Full Text Available This case study of I’ll Be Fine describes my creation of a passively interactive, “playable” movie for networked screens, and outlines reasons why this story is an instance of a new genre of storytelling that might be called “playable narrative”. Although the piece is interactive, and while it seems to satisfy certain features of the activity of play, I’ll Be Fine does not offer opportunities for strategy, competition, or closure, and does not proceed towards goals or outcomes, but seeks to construct meaning cinematically, proceeding sequentially across planes or layers, and using a spatial design much like the cinematic compositional scheme of background, middle ground, and foreground. While a general model for the spatial construction of playable movies is outside the scope of this writing, the following description of my design concepts are meant to delineate certain aspects of working with spatiality and playability while constructing an interactive story.

  4. Compensating for Thalamocortical Synaptic Loss in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Kamal eAbuhassan

    2014-06-01

    Full Text Available The study presents a thalamocortical network model which oscillates within the alpha frequency band (8-13 Hz as recorded in the wakeful relaxed state with closed eyes to study the neural causes of abnormal oscillatory activity in Alzheimer’s disease (AD. Incorporated within the model are various types of cortical excitatory and inhibitory neurons, recurrently connected to thalamic and reticular thalamic regions with the ratios and distances derived from the mammalian thalamocortical system. The model is utilized to study the impacts of four types of connectivity loss on the model’s spectral dynamics. The study focuses on investigating degeneration of corticocortical, thalamocortical, corticothalamic and corticoreticular couplings, with an emphasis on the influence of each modelled case on the spectral output of the model. Synaptic compensation has been included in each model to examine the interplay between synaptic deletion and compensation mechanisms, and the oscillatory activity of the network. The results of power spectra and event related desynchronisation/synchronisation (ERD/S analyses show that the dynamics of the thalamic and cortical oscillations are significantly influenced by corticocortical synaptic loss. Interestingly, the patterns of changes in thalamic spectral activity are correlated with those in the cortical model. Similarly, the thalamic oscillatory activity is diminished after partial corticothalamic denervation. The results suggest that thalamic atrophy is a secondary pathology to cortical shrinkage in Alzheimer’s disease. In addition, this study finds that the inhibition from neurons in the thalamic reticular nucleus (RTN to thalamic relay (TCR neurons plays a key role in regulating thalamic oscillations; disinhibition disrupts thalamic oscillatory activity even though TCR neurons are more depolarized after being released from RTN inhibition. This study provides information that can be explored experimentally to

  5. Frequency dependent changes in NMDAR-dependent synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Arvind eKumar

    2011-09-01

    Full Text Available The NMDAR-dependent synaptic plasticity is thought to mediate several forms of learning, and can be induced by spike trains containing a small number of spikes occurring with varying rates and timing, as well as with oscillations. We computed the influence of these variables on the plasticity induced at a single NMDAR containing synapse using a reduced model that was analytically tractable, and these findings were confirmed using detailed, multi-compartment model. In addition to explaining diverse experimental results about the rate and timing dependence of synaptic plasticity, the model made several novel and testable predictions. We found that there was a preferred frequency for inducing long-term potentiation (LTP such that higher frequency stimuli induced lesser LTP, decreasing as 1/f when the number of spikes in the stimulus was kept fixed. Among other things, the preferred frequency for inducing LTP varied as a function of the distance of the synapse from the soma. In fact, same stimulation frequencies could induce LTP or LTD depending on the dendritic location of the synapse. Next, we found that rhythmic stimuli induced greater plasticity then irregular stimuli. Furthermore, brief bursts of spikes significantly expanded the timing dependence of plasticity. Finally, we found that in the ~5-15Hz frequency range both rate- and timing-dependent plasticity mechanisms work synergistically to render the synaptic plasticity most sensitive to spike-timing. These findings provide computational evidence that oscillations can have a profound influence on the plasticity of an NMDAR-dependent synapse, and show a novel role for the dendritic morphology in this process.

  6. Addiction-like Synaptic Impairments in Diet-Induced Obesity.

    Science.gov (United States)

    Brown, Robyn Mary; Kupchik, Yonatan Michael; Spencer, Sade; Garcia-Keller, Constanza; Spanswick, David C; Lawrence, Andrew John; Simonds, Stephanie Elise; Schwartz, Danielle Joy; Jordan, Kelsey Ann; Jhou, Thomas Clayton; Kalivas, Peter William

    2017-05-01

    There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core considered hallmarks of addiction. Sprague Dawley rats were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO-prone and DIO-resistant subgroups. Access to palatable food was then restricted to daily operant self-administration sessions using fixed ratio 1, 3, and 5 and progressive ratio schedules. Subsequently, nucleus accumbens brain slices were prepared, and we tested for changes in the ratio between α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate currents and the ability to exhibit long-term depression. We found that propensity to develop DIO is linked to deficits in the ability to induce long-term depression in the nucleus accumbens, as well as increased potentiation at these synapses as measured by AMPA/N-methyl-D-aspartate currents. Consistent with these impairments, we observed addictive-like behavior in DIO-prone rats, including 1) heightened motivation for palatable food; 2) excessive intake; and 3) increased food seeking when food was unavailable. Our results show overlap between the propensity for DIO and the synaptic changes associated with facets of addictive behavior, supporting partial coincident neurological underpinnings for compulsive overeating and drug addiction. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  7. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  8. Addiction-like synaptic impairments in diet-induced obesity

    Science.gov (United States)

    Spencer, Sade; Garcia-Keller, Constanza; Spanswick, David C; Lawrence, Andrew John; Simonds, Stephanie Elise; Schwartz, Danielle Joy; Jordan, Kelsey Ann; Jhou, Thomas Clayton; Kalivas, Peter William

    2016-01-01

    Background There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature, and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core (NAcore) considered hallmarks of addiction. Methods Sprague-Dawley rats were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO prone (OP) and resistant (OR) subgroups. Access to palatable food was then restricted to daily operant self-administration sessions using fixed (FR1, 3 and 5) and progressive ratio (PR) schedules. Subsequently, NAcore brain slices were prepared and we tested for changes in the ratio between AMPA and NMDA currents (AMPA/NMDA) and the ability to exhibit long-term depression (LTD). Results We found that propensity to develop DIO is linked to deficits in the ability to induce LTD in the NAcore, as well as increased potentiation at these synapses as measured by AMPA/NMDA currents. Consistent with these impairments, we observed addictive-like behavior in OP rats, including i) heightened motivation for palatable food (ii) excessive intake and (iii) increased food-seeking when food was unavailable. Conclusions Our results show overlap between the propensity for DIO and the synaptic changes associated with facets of addictive behavior, supporting partial coincident neurological underpinnings for compulsive overeating and drug addiction. PMID:26826876

  9. Methamphetamine reduces LTP and increases baseline synaptic transmission in the CA1 region of mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Jarod Swant

    2010-06-01

    Full Text Available Methamphetamine (METH is an addictive psychostimulant whose societal impact is on the rise. Emerging evidence suggests that psychostimulants alter synaptic plasticity in the brain--which may partly account for their adverse effects. While it is known that METH increases the extracellular concentration of monoamines dopamine, serotonin, and norepinephrine, it is not clear how METH alters glutamatergic transmission. Within this context, the aim of the present study was to investigate the effects of acute and systemic METH on basal synaptic transmission and long-term potentiation (LTP; an activity-induced increase in synaptic efficacy in CA1 sub-field in the hippocampus. Both the acute ex vivo application of METH to hippocampal slices and systemic administration of METH decreased LTP. Interestingly, the acute ex vivo application of METH at a concentration of 30 or 60 microM increased baseline synaptic transmission as well as decreased LTP. Pretreatment with eticlopride (D2-like receptor antagonist did not alter the effects of METH on synaptic transmission or LTP. In contrast, pretreatment with D1/D5 dopamine receptor antagonist SCH23390 or 5-HT1A receptor antagonist NAN-190 abrogated the effect of METH on synaptic transmission. Furthermore, METH did not increase baseline synaptic transmission in D1 dopamine receptor haploinsufficient mice. Our findings suggest that METH affects excitatory synaptic transmission via activation of dopamine and serotonin receptor systems in the hippocampus. This modulation may contribute to synaptic maladaption induced by METH addiction and/or METH-mediated cognitive dysfunction.

  10. Chronic stress enhances synaptic plasticity due to disinhibition in the anterior cingulate cortex and induces hyper-locomotion in mice.

    Science.gov (United States)

    Ito, Hiroshi; Nagano, Masatoshi; Suzuki, Hidenori; Murakoshi, Takayuki

    2010-01-01

    The anterior cingulate cortex (ACC) is involved in the pathophysiology of a variety of mental disorders, many of which are exacerbated by stress. There are few studies, however, of stress-induced modification of synaptic function in the ACC that is relevant to emotional behavior. We investigated the effects of chronic restraint stress (CRS) on behavior and synaptic function in layers II/III of the ACC in mice. The duration of field excitatory postsynaptic potentials (fEPSPs) was longer in CRS mice than in control mice. The frequency of miniature inhibitory postsynaptic currents (mIPSCs) recorded by whole-cell patch-clamping was reduced in CRS mice, while miniature excitatory postsynaptic currents (mEPSCs) remained unchanged. Paired-pulse ratios (PPRs) of the fEPSP and evoked EPSC were larger in CRS. There was no difference in NMDA component of evoked EPSCs between the groups. Both long-term potentiation (LTP) and long-term depression of fEPSP were larger in CRS mice than in control mice. The differences between the groups in fEPSP duration, PPRs and LTP level were not observed when the GABA(A) receptor was blocked by bicuculline. Compared to control mice, CRS mice exhibited hyper-locomotive activity in an open field test, while no difference was observed between the groups in anxiety-like behavior in a light/dark choice test. CRS mice displayed decreased freezing behavior in fear conditioning tests compared to control mice. These findings suggest that CRS facilitates synaptic plasticity in the ACC via increased excitability due to disinhibition of GABA(A) receptor signalling, which may underlie induction of behavioral hyper-locomotive activity after CRS. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Two aspects of ASIC function: Synaptic plasticity and neuronal injury.

    Science.gov (United States)

    Huang, Yan; Jiang, Nan; Li, Jun; Ji, Yong-Hua; Xiong, Zhi-Gang; Zha, Xiang-ming

    2015-07-01

    Extracellular brain pH fluctuates in both physiological and disease conditions. The main postsynaptic proton receptor is the acid-sensing ion channels (ASICs). During the past decade, much progress has been made on protons, ASICs, and neurological disease. This review summarizes the recent progress on synaptic role of protons and our current understanding of how ASICs contribute to various types of neuronal injury in the brain. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Synaptic E-I Balance Underlies Efficient Neural Coding.

    Science.gov (United States)

    Zhou, Shanglin; Yu, Yuguo

    2018-01-01

    Both theoretical and experimental evidence indicate that synaptic excitation and inhibition in the cerebral cortex are well-balanced during the resting state and sensory processing. Here, we briefly summarize the evidence for how neural circuits are adjusted to achieve this balance. Then, we discuss how such excitatory and inhibitory balance shapes stimulus representation and information propagation, two basic functions of neural coding. We also point out the benefit of adopting such a balance during neural coding. We conclude that excitatory and inhibitory balance may be a fundamental mechanism underlying efficient coding.

  13. Hydrodynamic flow in a synaptic cleft during exocytosis.

    Science.gov (United States)

    Shneider, M N; Gimatdinov, R S; Skorinkin, A I; Kovyazina, I V; Nikolsky, E E

    2012-01-01

    It is shown that exocytosis in a chemical synapse may be accompanied by "microjet" formation due to the overpressure that exists in the vesicles. This mechanism may take place either at complete fusion of a vesicle with the presynaptic membrane or in the so-called kiss-and-run mode of neurotransmitter release. A simple hydrodynamic model of the viscous incompressible flow arising in the synaptic cleft is suggested. The occurrence of hydrodynamic flow (microjet) leads to more efficient transport of neurotransmitter than in the case of classical diffusive transport.

  14. Intense synaptic activity enhances temporal resolution in spinal motoneurons

    DEFF Research Database (Denmark)

    Berg, Rune W; Ditlevsen, Susanne; Hounsgaard, Jørn Dybkjær

    2008-01-01

    In neurons, spike timing is determined by integration of synaptic potentials in delicate concert with intrinsic properties. Although the integration time is functionally crucial, it remains elusive during network activity. While mechanisms of rapid processing are well documented in sensory systems...... of their occurrence and detected for less than 10 ms after their occurrence. Being shorter than the average inter-spike interval, the AHP has little effect on integration time and spike timing, which instead is entirely determined by fluctuations in membrane potential caused by the barrage of inhibitory...

  15. Mammalian Vestibular Macular Synaptic Plasticity: Results from SLS-2 Spaceflight

    Science.gov (United States)

    Ross, Muriel D.D.

    1994-01-01

    The effects of exposure to microgravity were studied in rat utricular maculas collected inflight (IF, day 13), post-flight on day of orbiter landing (day 14, R+O) and after 14 days (R+ML). Controls were collected at corresponding times. The objectives were 1) to learn whether hair cell ribbon synapses counts would be higher in tissues collected in space than in tissues collected postflight during or after readaptation to Earth's gravity; and 2) to compare results with those of SLS-1. Maculas were fixed by immersion, micro-dissected, dehydrated and prepared for ultrastructural study by usual methods. Synapses were counted in 100 serial sections 150 nm thick and were located to specific hair cells in montages of every 7th section. Counts were analyzed for statistical significance using analysis of variance. Results in maculas of IF dissected rats, one 13 day control (IFC), and one R + 0 rat have been analyzed. Study of an R+ML macula is nearly completed. For type I cells, IF mean is 2.3 +/-1.6; IFC mean is 1.6 +/-1.0; R+O mean is 2.3 +/- 1.6. For type II cells, IF mean is 11.4 +/- 17.1; IFC mean is 5.5 +/-3.5; R+O mean is 10.1 +/- 7.4. The difference between IF and IFC means for type I cells is statistically significant (p less than 0.0464). For type It cells, IF compared to IFC means, p less than 0.0003; and for IFC to R+O means, p less than 0.0139. Shifts toward spheres (p less than 0.0001) and pairs (p less than 0.0139) were significant in type II cells of IF rats. The results are largely replicating findings from SLS-1 and indicate that spaceflight affects synaptic number, form and distribution, particularly in type II hair cells. The increases in synaptic number and in sphere-like ribbons are interpreted to improve synaptic efficacy, to help return afferent discharges to a more normal state. Findings indicate that a great capacity for synaptic plasticity exists in mammalian gravity sensors, and that this plasticity is more dominant in the local circuitry. The

  16. Prediction of unsaturated flow and water backfill during infiltration in layered soils

    Science.gov (United States)

    Cui, Guotao; Zhu, Jianting

    2018-02-01

    We develop a new analytical infiltration model to determine water flow dynamics around layer interfaces during infiltration process in layered soils. The model mainly involves the analytical solutions to quadratic equations to determine the flux rates around the interfaces. Active water content profile behind the wetting front is developed based on the solution of steady state flow to dynamically update active parameters in sharp wetting front infiltration equations and to predict unsaturated flow in coarse layers before the front reaches an impeding fine layer. The effect of water backfill to saturate the coarse layers after the wetting front encounters the impeding fine layer is analytically expressed based on the active water content profiles. Comparison to the numerical solutions of the Richards equation shows that the new model can well capture water dynamics in relation to the arrangement of soil layers. The steady state active water content profile can be used to predict the saturation state of all layers when the wetting front first passes through these layers during the unsteady infiltration process. Water backfill effect may occur when the unsaturated wetting front encounters a fine layer underlying a coarse layer. Sensitivity analysis shows that saturated hydraulic conductivity is the parameter dictating the occurrence of unsaturated flow and water backfill and can be used to represent the coarseness of soil layers. Water backfill effect occurs in coarse layers between upper and lower fine layers when the lower layer is not significantly coarser than the upper layer.

  17. STS-39 Earth observation of Earth's limb at sunset shows atmospheric layers

    Science.gov (United States)

    1991-01-01

    STS-39 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, shows the Earth's limb at sunset with numerous atmospheric scattering layers highlighted. The layers consist of fine particles suspended in very stable layers of the atmosphere. The layers act as a prism for the sunlight.

  18. 'Blueberry' Layers Indicate Watery Origins

    Science.gov (United States)

    2004-01-01

    This microscopic image, taken at the outcrop region dubbed 'El Capitan' near the Mars Exploration Rover Opportunity's landing site, reveals millimeter-scale (.04 inch-scale) layers in the lower portion. This same layering is hinted at by the fine notches that run horizontally across the sphere-like grain or 'blueberry' in the center left. The thin layers do not appear to deform around the blueberry, indicating that these geologic features are concretions and not impact spherules or ejected volcanic material called lapilli. Concretions are balls of minerals that form in pre-existing wet sediments. This image was taken by the rover's microscopic imager on the 29th martian day, or sol, of its mission. The observed area is about 3 centimeters (1.2 inches) across.

  19. Growth dynamics of fine roots in a coniferous fern forest site close to Forsmark in the central part of Sweden

    International Nuclear Information System (INIS)

    Persson, Hans; Stadenberg, Ingela

    2007-12-01

    The seasonal growth dynamics of live and dead roots for trees and the field layer species (g/m 2 , varying diameter fractions) and live/dead ratios were analysed at a fresh/moist coniferous fern forest site close to the nuclear power plant at Forsmark in the central eastern parts of Sweden. The changes in depth distribution of fine roots were observed at depth intervals of the top humus horizon down to 40 cm in the mineral soil profile. The bulk of living fine roots of trees ( 2 . The total quantity of fine roots (live + dead) amounted to 543, 434, 314 and 546 g/m 2 . Considerable quantities of fine roots (< 1 mm in diameter) were attributed to field-layer species (about 18% of the total biomass during the whole period of investigation). The turnover rate (the rate of construction of new roots) for tree fine roots < 1 mm in diameter amounted to at least the size of the average fine-root biomass. Our methods of estimating fine-root production and mortality, involved periodic measurements of live and dead dry weight of the fine roots from sequential core samples of the forest soil. The collected data give a proper and instant measure of the spatial and temporal distribution of fine roots in the undisturbed soil-profile. Data from other fine-root investigations suggest turnover rates in agreement with our present findings. Differences between root growth and turnover should be expected between trees of different age, tree species and different forest sites, but also between different years. Substantial variations in fine-root biomass, necromass and live/dead ratios are found in different forest sites. Correct methods for estimating the amount of live and dead fine-roots in the soil at regular time intervals are essential for any calculation of fine-root turnover. Definition of root vitality differs in literature, making it difficult to compare results from different root investigators. Our investigation clarifies the importance of using distinct morphological criteria

  20. Cleaning and dewatering fine coal

    Science.gov (United States)

    Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad

    2017-10-17

    Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also be used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.

  1. F42. CHONDROTIN-6 SULFATE CLUSTERS: ASSOCIATION OF SYNAPTIC DOMAINS AND REGULATION OF SYNAPTIC PLASTICITY DURING FEAR LEARNING

    Science.gov (United States)

    Chelini, Gabriele; Berciu, Cristina; Pilobello, Kanoelani; Peter, Durning; Rachel, Jenkins; Kahn, Moazzzam; Ramikie, Teniel; Subramanian, Siva; Ressler, Kerry; Pantazopoulos, Charalampos; Berretta, Sabina

    2018-01-01

    Abstract Background Emerging evidence from our group and others has brought the brain extracellular matrix (ECM) to the forefront of investigations on brain disorders. Our group has shown that organized perisynaptic ECM aggregates, i.e. perineuronal nets (PNNs) are decreased in several brain regions in people with schizophrenia (SZ) and bipolar disorder (BD). PNNs were detected by their expression of specific chondroitin sulfate proteoglycans (CSPGs), main components of the ECM, thought to play a key role in synaptic regulation during development and adulthood. Our studies have also shown that glial cells expressing CSPGs are altered in these disorders, suggesting a link between glial cell and PNN abnormalities. Finally, we have recently shown that novel CSPG structures, bearing a distinct CS-6 sulfation pattern and named CS-6 glial clusters, are decreased in the amygdala of people with SZ and BD. The morphology and function of CS-6 glial clusters is not currently known, but evidence from rodents and on the role of CSPGs in regulating synaptic functions strongly suggest that they may affect synaptic plasticity. We tested this hypothesis using a combination of human postmortem and rodent brain studies. Methods High Resolution electron microscopy was used to investigate the ultrastructural organization of CS-6 glia clusters. A transgenic mouse model expressing green fluorescent protein in a subset of excitatory pyramidal neurons was used to investigate dendritic spines association with CS-6 glia clusters. Mice were exposed to a single session of auditory fear conditioning for a total of 15 minutes. Animals were euthanized 4 hours after behavioral test. Multiplex immunocytochemistry was used to visualize CS-6 clusters. Results In human tissue, we show that CS-6 glia clusters are widespread in several brain regions, including the amygdala, entorhinal cortex, thalamus and hippocampus. Ultrastructural results show that CS-6 glia clusters are formed by CS-6 accumulations

  2. Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.

    Directory of Open Access Journals (Sweden)

    Brendan Chambers

    2016-08-01

    Full Text Available Linking synaptic connectivity to dynamics is key to understanding information processing in neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons, necessitating that links between connectivity and dynamics be evaluated at the network level. Here we map propagating activity in large neuronal ensembles from mouse neocortex and compare it to a recurrent network model, where connectivity can be precisely measured and manipulated. We find that a dynamical feature dominates statistical descriptions of propagating activity for both neocortex and the model: convergent clusters comprised of fan-in triangle motifs, where two input neurons are themselves connected. Fan-in triangles coordinate the timing of presynaptic inputs during ongoing activity to effectively generate postsynaptic spiking. As a result, paradoxically, fan-in triangles dominate the statistics of spike propagation even in randomly connected recurrent networks. Interplay between higher-order synaptic connectivity and the integrative properties of neurons constrains the structure of network dynamics and shapes the routing of information in neocortex.

  3. Ensemble stacking mitigates biases in inference of synaptic connectivity.

    Science.gov (United States)

    Chambers, Brendan; Levy, Maayan; Dechery, Joseph B; MacLean, Jason N

    2018-01-01

    A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches.

  4. Synaptic Wnt/GSK3β Signaling Hub in Autism

    Science.gov (United States)

    Caracci, Mario O.; Ávila, Miguel E.; De Ferrari, Giancarlo V.

    2016-01-01

    Hundreds of genes have been associated with autism spectrum disorders (ASDs) and the interaction of weak and de novo variants derive from distinct autistic phenotypes thus making up the “spectrum.” The convergence of these variants in networks of genes associated with synaptic function warrants the study of cell signaling pathways involved in the regulation of the synapse. The Wnt/β-catenin signaling pathway plays a central role in the development and regulation of the central nervous system and several genes belonging to the cascade have been genetically associated with ASDs. In the present paper, we review basic information regarding the role of Wnt/β-catenin signaling in excitatory/inhibitory balance (E/I balance) through the regulation of pre- and postsynaptic compartments. Furthermore, we integrate information supporting the role of the glycogen synthase kinase 3β (GSK3β) in the onset/development of ASDs through direct modulation of Wnt/β-catenin signaling. Finally, given GSK3β activity as key modulator of synaptic plasticity, we explore the potential of this kinase as a therapeutic target for ASD. PMID:26881141

  5. Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease.

    Science.gov (United States)

    Tönnies, Eric; Trushina, Eugenia

    2017-01-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disorder without a cure. Most AD cases are sporadic where age represents the greatest risk factor. Lack of understanding of the disease mechanism hinders the development of efficacious therapeutic approaches. The loss of synapses in the affected brain regions correlates best with cognitive impairment in AD patients and has been considered as the early mechanism that precedes neuronal loss. Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurodegenerative diseases including AD. Increased production of reactive oxygen species (ROS) associated with age- and disease-dependent loss of mitochondrial function, altered metal homeostasis, and reduced antioxidant defense directly affect synaptic activity and neurotransmission in neurons leading to cognitive dysfunction. In addition, molecular targets affected by ROS include nuclear and mitochondrial DNA, lipids, proteins, calcium homeostasis, mitochondrial dynamics and function, cellular architecture, receptor trafficking and endocytosis, and energy homeostasis. Abnormal cellular metabolism in turn could affect the production and accumulation of amyloid-β (Aβ) and hyperphosphorylated Tau protein, which independently could exacerbate mitochondrial dysfunction and ROS production, thereby contributing to a vicious cycle. While mounting evidence implicates ROS in the AD etiology, clinical trials with antioxidant therapies have not produced consistent results. In this review, we will discuss the role of oxidative stress in synaptic dysfunction in AD, innovative therapeutic strategies evolved based on a better understanding of the complexity of molecular mechanisms of AD, and the dual role ROS play in health and disease.

  6. Emerging Links between Homeostatic Synaptic Plasticity and Neurological Disease

    Directory of Open Access Journals (Sweden)

    Dion eDickman

    2013-11-01

    Full Text Available Homeostatic signaling systems are ubiquitous forms of biological regulation, having been studied for hundreds of years in the context of diverse physiological processes including body temperature and osmotic balance. However, only recently has this concept been brought to the study of excitatory and inhibitory electrical activity that the nervous system uses to establish and maintain stable communication. Synapses are a primary target of neuronal regulation with a variety of studies over the past 15 years demonstrating that these cellular junctions are under bidirectional homeostatic control. Recent work from an array of diverse systems and approaches has revealed exciting new links between homeostatic synaptic plasticity and a variety of seemingly disparate neurological and psychiatric diseases. These include autism spectrum disorders, intellectual disabilities, schizophrenia, and Fragile X Syndrome. Although the molecular mechanisms through which defective homeostatic signaling may lead to disease pathogenesis remain unclear, rapid progress is likely to be made in the coming years using a powerful combination of genetic, imaging, electrophysiological, and next generation sequencing approaches. Importantly, understanding homeostatic synaptic plasticity at a cellular and molecular level may lead to developments in new therapeutic innovations to treat these diseases. In this review we will examine recent studies that demonstrate homeostatic control of postsynaptic protein translation, retrograde signaling, and presynaptic function that may contribute to the etiology of complex neurological and psychiatric diseases.

  7. Finite post synaptic potentials cause a fast neuronal response

    Directory of Open Access Journals (Sweden)

    Moritz eHelias

    2011-02-01

    Full Text Available A generic property of the communication between neurons is the exchange of pulsesat discrete time points, the action potentials. However, the prevalenttheory of spiking neuronal networks of integrate-and-fire model neuronsrelies on two assumptions: the superposition of many afferent synapticimpulses is approximated by Gaussian white noise, equivalent to avanishing magnitude of the synaptic impulses, and the transfer oftime varying signals by neurons is assessable by linearization. Goingbeyond both approximations, we find that in the presence of synapticimpulses the response to transient inputs differs qualitatively fromprevious predictions. It is instantaneous rather than exhibiting low-passcharacteristics, depends non-linearly on the amplitude of the impulse,is asymmetric for excitation and inhibition and is promoted by a characteristiclevel of synaptic background noise. These findings resolve contradictionsbetween the earlier theory and experimental observations. Here wereview the recent theoretical progress that enabled these insights.We explain why the membrane potential near threshold is sensitiveto properties of the afferent noise and show how this shapes the neuralresponse. A further extension of the theory to time evolution in discretesteps quantifies simulation artifacts and yields improved methodsto cross check results.

  8. Identification of a mouse synaptic glycoprotein gene in cultured neurons.

    Science.gov (United States)

    Yu, Albert Cheung-Hoi; Sun, Chun Xiao; Li, Qiang; Liu, Hua Dong; Wang, Chen Ran; Zhao, Guo Ping; Jin, Meilei; Lau, Lok Ting; Fung, Yin-Wan Wendy; Liu, Shuang

    2005-10-01

    Neuronal differentiation and aging are known to involve many genes, which may also be differentially expressed during these developmental processes. From primary cultured cerebral cortical neurons, we have previously identified various differentially expressed gene transcripts from cultured cortical neurons using the technique of arbitrarily primed PCR (RAP-PCR). Among these transcripts, clone 0-2 was found to have high homology to rat and human synaptic glycoprotein. By in silico analysis using an EST database and the FACTURA software, the full-length sequence of 0-2 was assembled and the clone was named as mouse synaptic glycoprotein homolog 2 (mSC2). DNA sequencing revealed transcript size of mSC2 being smaller than the human and rat homologs. RT-PCR indicated that mSC2 was expressed differentially at various culture days. The mSC2 gene was located in various tissues with higher expression in brain, lung, and liver. Functions of mSC2 in neurons and other tissues remain elusive and will require more investigation.

  9. Spectrotemporal dynamics of auditory cortical synaptic receptive field plasticity.

    Science.gov (United States)

    Froemke, Robert C; Martins, Ana Raquel O

    2011-09-01

    The nervous system must dynamically represent sensory information in order for animals to perceive and operate within a complex, changing environment. Receptive field plasticity in the auditory cortex allows cortical networks to organize around salient features of the sensory environment during postnatal development, and then subsequently refine these representations depending on behavioral context later in life. Here we review the major features of auditory cortical receptive field plasticity in young and adult animals, focusing on modifications to frequency tuning of synaptic inputs. Alteration in the patterns of acoustic input, including sensory deprivation and tonal exposure, leads to rapid adjustments of excitatory and inhibitory strengths that collectively determine the suprathreshold tuning curves of cortical neurons. Long-term cortical plasticity also requires co-activation of subcortical neuromodulatory control nuclei such as the cholinergic nucleus basalis, particularly in adults. Regardless of developmental stage, regulation of inhibition seems to be a general mechanism by which changes in sensory experience and neuromodulatory state can remodel cortical receptive fields. We discuss recent findings suggesting that the microdynamics of synaptic receptive field plasticity unfold as a multi-phase set of distinct phenomena, initiated by disrupting the balance between excitation and inhibition, and eventually leading to wide-scale changes to many synapses throughout the cortex. These changes are coordinated to enhance the representations of newly-significant stimuli, possibly for improved signal processing and language learning in humans. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Absence of synaptic regulation by phosducin in retinal slices.

    Directory of Open Access Journals (Sweden)

    James H Long

    Full Text Available Phosducin is an abundant photoreceptor protein that binds G-protein βγ subunits and plays a role in modulating synaptic transmission at photoreceptor synapses under both dark-adapted and light-adapted conditions in vivo. To examine the role of phosducin at the rod-to-rod bipolar cell (RBC synapse, we used whole-cell voltage clamp recordings to measure the light-evoked currents from both wild-type (WT and phosducin knockout (Pd(-/- RBCs, in dark- and light-adapted retinal slices. Pd(-/- RBCs showed smaller dim flash responses and steeper intensity-response relationships than WT RBCs, consistent with the smaller rod responses being selectively filtered out by the non-linear threshold at the rod-to-rod bipolar synapse. In addition, Pd(-/- RBCs showed a marked delay in the onset of the light-evoked currents, similar to that of a WT response to an effectively dimmer flash. Comparison of the changes in flash sensitivity in the presence of steady adapting light revealed that Pd(-/- RBCs desensitized less than WT RBCs to the same intensity. These results are quantitatively consistent with the smaller single photon responses of Pd(-/- rods, owing to the known reduction in rod G-protein expression levels in this line. The absence of an additional synaptic phenotype in these experiments suggests that the function of phosducin at the photoreceptor synapse is abolished by the conditions of retinal slice recordings.

  11. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome.

    Science.gov (United States)

    Sidhu, Vishaldeep K; Huang, Bill X; Desai, Abhishek; Kevala, Karl; Kim, Hee-Yong

    2016-05-01

    Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function. Published by Elsevier Inc.

  12. Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition.

    Science.gov (United States)

    Yuan, Mei; Meyer, Thomas; Benkowitz, Christoph; Savanthrapadian, Shakuntala; Ansel-Bollepalli, Laura; Foggetti, Angelica; Wulff, Peer; Alcami, Pepe; Elgueta, Claudio; Bartos, Marlene

    2017-04-03

    Somatostatin-expressing-interneurons (SOMIs) in the dentate gyrus (DG) control formation of granule cell (GC) assemblies during memory acquisition. Hilar-perforant-path-associated interneurons (HIPP cells) have been considered to be synonymous for DG-SOMIs. Deviating from this assumption, we show two functionally contrasting DG-SOMI-types. The classical feedback-inhibitory HIPPs distribute axon fibers in the molecular layer. They are engaged by converging GC-inputs and provide dendritic inhibition to the DG circuitry. In contrast, SOMIs with axon in the hilus, termed hilar interneurons (HILs), provide perisomatic inhibition onto GABAergic cells in the DG and project to the medial septum. Repetitive activation of glutamatergic inputs onto HIPP cells induces long-lasting-depression (LTD) of synaptic transmission but long-term-potentiation (LTP) of synaptic signals in HIL cells. Thus, LTD in HIPPs may assist flow of spatial information from the entorhinal cortex to the DG, whereas LTP in HILs may facilitate the temporal coordination of GCs with activity patterns governed by the medial septum.

  13. Remelting of metallurgical fines using thermal plasma

    International Nuclear Information System (INIS)

    Vicente, L.C.; Neto F, J.B.F.; Bender, O.W.; Collares, M.P.

    1992-01-01

    A plasma furnace was developed for remelting of ferro alloys and silicon fines. The furnace capacity was about 4 Kg of silicon and power about 50 kW. The fine (20 to 100 mesh) was fed into the furnace directly at the high temperature zone. This system was tested for remelting silicon fines and the results in the recovery of silicon was about 95% and it took place a refine of aluminium and calcium. (author)

  14. A study of human DPOAE fine structure

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    height and ripple prevalence. Temporary changes of the DPOAE fine structure are analyzed by measuring DPOAE both before and after exposing some of the subjects to an intense sound. The characteristic patterns of fine structure can be found in the DPOAE of all subjects, though they are individual and vary...... fine structures are obtained from 74 normalhearing humans using primary levels of L1/L2=65/45 dB. The subjects belong to groups with different age and exposure history. A classification algorithm is developed, which quantifies the fine structure by the parameters ripple place, ripple width, ripple...

  15. On Basu's proposal: Fines affect bribes

    OpenAIRE

    Popov, Sergey V.

    2017-01-01

    I model the connection between the equilibrium bribe amount and the fines imposed on both bribe-taker and bribe-payer. I show that Basu's (2011) proposal to lower the fines imposed on bribe-payers in order to induce more whistleblowing and increase the probability of penalizing corrupt government officials might instead increase bribe amounts. Higher expected fines on bribe-takers will make them charge larger bribes; at the same time, lowering fines for bribe-paying might increase bribe-payer...

  16. Layered materials

    Science.gov (United States)

    Johnson, David; Clarke, Simon; Wiley, John; Koumoto, Kunihito

    2014-06-01

    Layered compounds, materials with a large anisotropy to their bonding, electrical and/or magnetic properties, have been important in the development of solid state chemistry, physics and engineering applications. Layered materials were the initial test bed where chemists developed intercalation chemistry that evolved into the field of topochemical reactions where researchers are able to perform sequential steps to arrive at kinetically stable products that cannot be directly prepared by other approaches. Physicists have used layered compounds to discover and understand novel phenomena made more apparent through reduced dimensionality. The discovery of charge and spin density waves and more recently the remarkable discovery in condensed matter physics of the two-dimensional topological insulating state were discovered in two-dimensional materials. The understanding developed in two-dimensional materials enabled subsequent extension of these and other phenomena into three-dimensional materials. Layered compounds have also been used in many technologies as engineers and scientists used their unique properties to solve challenging technical problems (low temperature ion conduction for batteries, easy shear planes for lubrication in vacuum, edge decorated catalyst sites for catalytic removal of sulfur from oil, etc). The articles that are published in this issue provide an excellent overview of the spectrum of activities that are being pursued, as well as an introduction to some of the most established achievements in the field. Clusters of papers discussing thermoelectric properties, electronic structure and transport properties, growth of single two-dimensional layers, intercalation and more extensive topochemical reactions and the interleaving of two structures to form new materials highlight the breadth of current research in this area. These papers will hopefully serve as a useful guideline for the interested reader to different important aspects in this field and

  17. Soluble ectodomain of neuroligin 1 decreases synaptic activity by activating metabotropic glutamate receptor 2

    DEFF Research Database (Denmark)

    Gjørlund, Michelle D.; Carlsen, Eva Maria Meier; Kønig, Andreas Bay

    2017-01-01

    Synaptic cell adhesion molecules represent important targets for neuronal activity-dependent proteolysis. Postsynaptic neuroligins (NLs) form trans-synaptic complexes with presynaptic neurexins (NXs). Both NXs and NLs are cleaved from the cell surface by metalloproteases in an activity-dependent ...

  18. Use-Dependent Inhibition of Synaptic Transmission by the Secretion of Intravesicularly Accumulated Antipsychotic Drugs

    DEFF Research Database (Denmark)

    Tischbirek, Carsten H.; Wenzel, Eva M.; Zheng, Fang

    2012-01-01

    Tischbirek et al. find that weak-base antipsychotic drugs are accumulated in synaptic vesicles and are secreted upon exocytosis, leading to increased extracellular drug concentrations following neuronal activity. The secretion of the drugs in turn inhibits synaptic transmission in a use-dependent...

  19. Automatic morphometry of synaptic boutons of cultured cells using granulometric analysis of digital images

    NARCIS (Netherlands)

    Prodanov, D.P.; Heeroma, Joost; Marani, Enrico

    2006-01-01

    Numbers, linear density, and surface area of synaptic boutons can be important parameters in studies on synaptic plasticity in cultured neurons. We present a method for automatic identification and morphometry of boutons based on filtering of digital images using granulometric analysis. Cultures of

  20. Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity

    Science.gov (United States)

    Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon

    2011-01-01

    Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800

  1. Histone Deacetylase Inhibition Facilitates Massed Pattern-Induced Synaptic Plasticity and Memory

    Science.gov (United States)

    Pandey, Kiran; Sharma, Kaushik P.; Sharma, Shiv K.

    2015-01-01

    Massed training is less effective for long-term memory formation than the spaced training. The role of acetylation in synaptic plasticity and memory is now well established. However, the role of this important protein modification in synaptic plasticity induced by massed pattern of stimulation or memory induced by massed training is not well…

  2. Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton

    DEFF Research Database (Denmark)

    Shupliakov, Oleg; Bloom, Ona; Gustafsson, Jenny S

    2002-01-01

    Actin is an abundant component of nerve terminals that has been implicated at multiple steps of the synaptic vesicle cycle, including reversible anchoring, exocytosis, and recycling of synaptic vesicles. In the present study we used the lamprey reticulospinal synapse to examine the role of actin ...

  3. Impact of morphometry, myelinization and synaptic current strength on spike conduction in human and cat spiral ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Frank Rattay

    Full Text Available Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction.Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA synaptic stimuli.Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat cochlea.

  4. Impact of Morphometry, Myelinization and Synaptic Current Strength on Spike Conduction in Human and Cat Spiral Ganglion Neurons

    Science.gov (United States)

    Rattay, Frank; Potrusil, Thomas; Wenger, Cornelia; Wise, Andrew K.; Glueckert, Rudolf; Schrott-Fischer, Anneliese

    2013-01-01

    Background Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction. Methodology/Principal Findings Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs) along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA) synaptic stimuli. Conclusions/Significance Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat

  5. Forebrain deletion of αGDI in adult mice worsens the pre-synaptic deficit at cortico-lateral amygdala synaptic connections.

    Directory of Open Access Journals (Sweden)

    Veronica Bianchi

    Full Text Available The GDI1 gene encodes αGDI, which retrieves inactive GDP-bound RAB from membranes to form a cytosolic pool awaiting vesicular release. Mutations in GDI1 are responsible for X-linked Intellectual Disability. Characterization of the Gdi1-null mice has revealed alterations in the total number and distribution of hippocampal and cortical synaptic vesicles, hippocampal short-term synaptic plasticity and specific short-term memory deficits in adult mice, which are possibly caused by alterations of different synaptic vesicle recycling pathways controlled by several RAB GTPases. However, interpretation of these studies is complicated by the complete ablation of Gdi1 in all cells in the brain throughout development. In this study, we generated conditionally gene-targeted mice in which the knockout of Gdi1 is restricted to the forebrain, hippocampus, cortex and amygdala and occurs only during postnatal development. Adult mutant mice reproduce the short-term memory deficit previously reported in Gdi1-null mice. Surprisingly, the delayed ablation of Gdi1 worsens the pre-synaptic phenotype at cortico-amygdala synaptic connections compared to Gdi1-null mice. These results suggest a pivotal role of αGDI via specific RAB GTPases acting specifically in forebrain regions at the pre-synaptic sites involved in memory formation.

  6. Role of the origin of glutamatergic synaptic inputs in controlling synaptic plasticity and its modulation by alcohol in mice nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Gilles Erwann Martin

    2015-07-01

    Full Text Available It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens, a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the nucleus accumbens receives glutamatergic inputs from distinct brain regions (e.g. the prefrontal cortex, the amygdala and the hippocampus, each region providing different information (e.g. spatial, emotional and cognitive. Combining whole-cell patch-clamp recordings and the optogenetic technique, we examined synaptic plasticity, and its regulation by alcohol, at cortical, hippocampal and amygdala inputs in fresh slices of mouse tissue. We showed that the origin of synaptic inputs determines the basic properties of glutamatergic synaptic transmission, the expression of spike-timing dependent long-term depression (tLTD and long-term potentiation (tLTP and their regulation by alcohol. While we observed both tLTP and tLTD at amygadala and hippocampal synapses, we showed that cortical inputs only undergo tLTD. Functionally, we provide evidence that acute EtOH has little effects on higher order information coming from the prefrontal cortex (PFCx, while severely impacting the ability of emotional and contextual information to induce long-lasting changes of synaptic strength.

  7. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits.

    Science.gov (United States)

    Tang, Guomei; Gudsnuk, Kathryn; Kuo, Sheng-Han; Cotrina, Marisa L; Rosoklija, Gorazd; Sosunov, Alexander; Sonders, Mark S; Kanter, Ellen; Castagna, Candace; Yamamoto, Ai; Yue, Zhenyu; Arancio, Ottavio; Peterson, Bradley S; Champagne, Frances; Dwork, Andrew J; Goldman, James; Sulzer, David

    2014-09-03

    Developmental alterations of excitatory synapses are implicated in autism spectrum disorders (ASDs). Here, we report increased dendritic spine density with reduced developmental spine pruning in layer V pyramidal neurons in postmortem ASD temporal lobe. These spine deficits correlate with hyperactivated mTOR and impaired autophagy. In Tsc2 ± ASD mice where mTOR is constitutively overactive, we observed postnatal spine pruning defects, blockade of autophagy, and ASD-like social behaviors. The mTOR inhibitor rapamycin corrected ASD-like behaviors and spine pruning defects in Tsc2 ± mice, but not in Atg7(CKO) neuronal autophagy-deficient mice or Tsc2 ± :Atg7(CKO) double mutants. Neuronal autophagy furthermore enabled spine elimination with no effects on spine formation. Our findings suggest that mTOR-regulated autophagy is required for developmental spine pruning, and activation of neuronal autophagy corrects synaptic pathology and social behavior deficits in ASD models with hyperactivated mTOR. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Encoding neural and synaptic functionalities in electron spin: A pathway to efficient neuromorphic computing

    Science.gov (United States)

    Sengupta, Abhronil; Roy, Kaushik

    2017-12-01

    Present day computers expend orders of magnitude more computational resources to perform various cognitive and perception related tasks that humans routinely perform every day. This has recently resulted in a seismic shift in the field of computation where research efforts are being directed to develop a neurocomputer that attempts to mimic the human brain by nanoelectronic components and thereby harness its efficiency in recognition problems. Bridging the gap between neuroscience and nanoelectronics, this paper attempts to provide a review of the recent developments in the field of spintronic device based neuromorphic computing. Description of various spin-transfer torque mechanisms that can be potentially utilized for realizing device structures mimicking neural and synaptic functionalities is provided. A cross-layer perspective extending from the device to the circuit and system level is presented to envision the design of an All-Spin neuromorphic processor enabled with on-chip learning functionalities. Device-circuit-algorithm co-simulation framework calibrated to experimental results suggest that such All-Spin neuromorphic systems can potentially achieve almost two orders of magnitude energy improvement in comparison to state-of-the-art CMOS implementations.

  9. Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis.

    Science.gov (United States)

    Ma, Lu; Rebane, Aleksander A; Yang, Guangcan; Xi, Zhiqun; Kang, Yuhao; Gao, Ying; Zhang, Yongli

    2015-12-23

    Synaptic-soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins couple their stage-wise folding/assembly to rapid exocytosis of neurotransmitters in a Munc18-1-dependent manner. The functions of the different assembly stages in exocytosis and the role of Munc18-1 in SNARE assembly are not well understood. Using optical tweezers, we observed four distinct stages of assembly in SNARE N-terminal, middle, C-terminal, and linker domains (or NTD, MD, CTD, and LD, respectively). We found that SNARE layer mutations differentially affect SNARE assembly. Comparison of their effects on SNARE assembly and on exocytosis reveals that NTD and CTD are responsible for vesicle docking and fusion, respectively, whereas MD regulates SNARE assembly and fusion. Munc18-1 initiates SNARE assembly and structures t-SNARE C-terminus independent of syntaxin N-terminal regulatory domain (NRD) and stabilizes the half-zippered SNARE complex dependent upon the NRD. Our observations demonstrate distinct functions of SNARE domains whose assembly is intimately chaperoned by Munc18-1.

  10. Research progress on the roles of microRNAs in governing synaptic plasticity, learning and memory.

    Science.gov (United States)

    Wei, Chang-Wei; Luo, Ting; Zou, Shan-Shan; Wu, An-Shi

    2017-11-01

    The importance of non-coding RNA involved in biological processes has become apparent in recent years and the mechanism of transcriptional regulation has also been identified. MicroRNAs (miRNAs) represent a class of small regulatory non-coding RNAs of 22bp in length that mediate gene silencing by identifying specific sequences in the target messenger RNAs (mRNAs). Many miRNAs are highly expressed in the central nervous system in a spatially and temporally controlled manner in normal physiology, as well as in certain pathological conditions. There is growing evidence that a considerable number of specific miRNAs play important roles in synaptic plasticity, learning and memory function. In addition, the dysfunction of these molecules may also contribute to the etiology of several neurodegenerative diseases. Here we provide an overview of the current literatures, which support non-coding RNA-mediated gene function regulation represents an important but underappreciated, layer of epigenetic control that facilitates learning and memory functions. Copyright © 2017. Published by Elsevier Inc.

  11. TRANSGENIC STRATEGY FOR IDENTIFYING SYNAPTIC CONNECTIONS IN MICE BY FLUORESCENCE COMPLEMENTATION (GRASP

    Directory of Open Access Journals (Sweden)

    Masahito eYamagata

    2012-02-01

    Full Text Available In the "GFP reconstitution across synaptic partners" (GRASP method, non-fluorescent fragments of GFP are expressed in two different neurons; the fragments self-assemble at synapses between the two to form a fluorophore. GRASP has proven useful for light microscopic identification of synapses in two invertebrate species, Caenorhabditis elegans and Drosophila melanogaster, but has not yet been applied to vertebrates. Here, we describe GRASP constructs that function in mammalian cells and implement a transgenic strategy in which a Cre-dependent gene switch leads to expression of the two fragments in mutually exclusive neuronal subsets in mice. Using a transgenic line that expresses Cre selectively in rod photoreceptors, we demonstrate labeling of synapses in the outer plexiform layer of the retina. Labeling is specific, in that synapses made by rods remain labeled for at least 6 months whereas nearby synapses made by intercalated cone photoreceptors on many of the same interneurons remain unlabeled. We also generated antisera that label reconstituted GFP but neither fragment in order to amplify the GRASP signal and thereby increase the sensitivity of the method.

  12. Orofacial Neuropathic Pain Leads to a Hyporesponsive Barrel Cortex with Enhanced Structural Synaptic Plasticity.

    Science.gov (United States)

    Thibault, Karine; Rivière, Sébastien; Lenkei, Zsolt; Férézou, Isabelle; Pezet, Sophie

    2016-01-01

    Chronic pain is a long-lasting debilitating condition that is particularly difficult to treat due to the lack of identified underlying mechanisms. Although several key contributing processes have been described at the level of the spinal cord, very few studies have investigated the supraspinal mechanisms underlying chronic pain. Using a combination of approaches (cortical intrinsic imaging, immunohistochemical and behavioural analysis), our study aimed to decipher the nature of functional and structural changes in a mouse model of orofacial neuropathic pain, focusing on cortical areas involved in various pain components. Our results show that chronic neuropathic orofacial pain is associated with decreased haemodynamic responsiveness to whisker stimulation in the barrel field cortex. This reduced functional activation is likely due to the increased basal neuronal activity (measured indirectly using cFos and phospho-ERK immunoreactivity) observed in several cortical areas, including the contralateral barrel field, motor and cingulate cortices. In the same animals, immunohistochemical analysis of markers for active pre- or postsynaptic elements (Piccolo and phospho-Cofilin, respectively) revealed an increased immunofluorescence in deep cortical layers of the contralateral barrel field, motor and cingulate cortices. These results suggest that long-lasting orofacial neuropathic pain is associated with exacerbated neuronal activity and synaptic plasticity at the cortical level.

  13. Visual recognition memory, manifest as long-term habituation, requires synaptic plasticity in V1

    Science.gov (United States)

    Cooke, Sam F.; Komorowski, Robert W.; Kaplan, Eitan S.; Gavornik, Jeffrey P.; Bear, Mark F.

    2015-01-01

    Familiarity with stimuli that bring neither reward nor punishment, manifested through behavioural habituation, enables organisms to detect novelty and devote cognition to important elements of the environment. Here we describe in mice a form of long-term behavioural habituation to visual grating stimuli that is selective for stimulus orientation. Orientation-selective habituation (OSH) can be observed both in exploratory behaviour in an open arena, and in a stereotyped motor response to visual stimuli in head-restrained mice. We show that the latter behavioural response, termed a vidget, requires V1. Parallel electrophysiological recordings in V1 reveal that plasticity, in the form of stimulus-selective response potentiation (SRP), occurs in layer 4 of V1 as OSH develops. Local manipulations of V1 that prevent and reverse electrophysiological modifications likewise prevent and reverse memory demonstrated behaviourally. These findings suggest that a form of long-term visual recognition memory is stored via synaptic plasticity in primary sensory cortex. PMID:25599221

  14. Cellular and synaptic localization of EAAT2a in human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Marcello eMelone

    2011-01-01

    Full Text Available We used light and electron microscopic immunocytochemical techniques to analyze the distribution, cellular and synaptic localization of EAAT2, the main glutamate transporter, in normal human neocortex. EAAT2a immunoreactivity was in all layers and consisted of small neuropilar puncta and rare cells. In white matter EAAT2a+ cells were numerous. Electron microscopic studies showed that in gray matter ∼77% of immunoreactive elements were astrocytic processes, ∼14% axon terminals, ∼2.8% dendrites, whereas ∼5% were unidentifiable. In white matter, ∼81% were astrocytic processes, ∼17% were myelinated axons and ∼2.0% were unidentified. EAAT2a immunoreactivity was never in microglial cells and oligodendrocytes. Pre-embedding electron microscopy showed that ∼67% of EAAT2a expressed at (or in the vicinity of asymmetric synapses was in astrocytes, ∼17% in axon terminals, while ∼13% was both in astrocytes and in axons. Post-embeddeding electron microscopy studies showed that in astrocytic processes contacting asymmetric synapses and in axon terminals, gold particle density was ∼25.1 and ∼2.8 particles/µm2, respectively, and was concentrated in a membrane region extending for ∼300 nm from the active zone edge. Besides representing the first detailed description of EAAT2a in human cerebral cortex, these findings may contribute to understanding its role in the pathophysiology of neuropsychiatric diseases.

  15. Advanced Fine Particulate Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  16. Fine structure of the exciton electroabsorption in semiconductor superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Monozon, B.S., E-mail: borismonozon@mail.ru [Physics Department, Marine Technical University, 3 Lotsmanskaya Str., 190008 St.Petersburg (Russian Federation); Schmelcher, P. [Zentrum für Optische Quantentechnologien, The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2017-02-15

    Wannier-Mott excitons in a semiconductor layered superlattice (SL) are investigated analytically for the case that the period of the superlattice is much smaller than the 2D exciton Bohr radius. Additionally we assume the presence of a longitudinal external static electric field directed parallel to the SL axis. The exciton states and the optical absorption coefficient are derived in the tight-binding and adiabatic approximations. Strong and weak electric fields providing spatially localized and extended electron and hole states, respectively, are studied. The dependencies of the exciton states and the exciton absorption spectrum on the SL parameters and the electric field strength are presented in an explicit form. We focus on the fine structure of the ground quasi-2D exciton level formed by the series of closely spaced energy levels adjacent from the high frequencies. These levels are related to the adiabatically slow relative exciton longitudinal motion governed by the potential formed by the in-plane exciton state. It is shown that the external electric fields compress the fine structure energy levels, decrease the intensities of the corresponding optical peaks and increase the exciton binding energy. A possible experimental study of the fine structure of the exciton electroabsorption is discussed.

  17. Plated copper front side metallization on printed seed-layers for silicon solar cells

    OpenAIRE

    Kraft, Achim

    2015-01-01

    A novel copper front side metallization architecture for silicon solar cells based on a fine printed silver seed-layer, plated with nickel, copper and silver, is investigated. The work focuses on the printing of fine seed-layers with low silver consumption, the corrosion of the printed seed-layers by the interaction with electrolyte solutions and the encapsulation material on module level and on the long term stability of the cells due to copper migration. The investigation of the correlation...

  18. Two-Dimensional Bumps in Piecewise Smooth Neural Fields with Synaptic Depression

    KAUST Repository

    Bressloff, Paul C.

    2011-01-01

    We analyze radially symmetric bumps in a two-dimensional piecewise-smooth neural field model with synaptic depression. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Synaptic depression dynamically reduces the strength of synaptic weights in response to increases in activity. We show that in the case of a Mexican hat weight distribution, sufficiently strong synaptic depression can destabilize a stationary bump solution that would be stable in the absence of depression. Numerically it is found that the resulting instability leads to the formation of a traveling spot. The local stability of a bump is determined by solutions to a system of pseudolinear equations that take into account the sign of perturbations around the circular bump boundary. © 2011 Society for Industrial and Applied Mathematics.

  19. The effect of flocculant on the geotechnical properties of mature fine tailings : An experimental study

    NARCIS (Netherlands)

    Yao, Y.; Van Tol, A.F.; Van Paassen, L.A.

    2012-01-01

    When oil sands tailings are deposited in a tailing pond, they settle and segregate to create a layer of stagnant water on top that is reused in oil extraction and a dense mixture of clay, silt and water on the bottom which is referred to as mature fine tailings (MFT). Dewatering of MFT is a problem

  20. LTD windows of the STDP learning rule and synaptic connections having a large transmission delay enable robust sequence learning amid background noise.

    Science.gov (United States)

    Hayashi, Hatsuo; Igarashi, Jun

    2009-06-01

    Spike-timing-dependent synaptic plasticity (STDP) is a simple and effective learning rule for sequence learning. However, synapses being subject to STDP rules are readily influenced in noisy circumstances because synaptic conductances are modified by pre- and postsynaptic spikes elicited within a few tens of milliseconds, regardless of whether those spikes convey information or not. Noisy firing existing everywhere in the brain may induce irrelevant enhancement of synaptic connections through STDP rules and would result in uncertain memory encoding and obscure memory patterns. We will here show that the LTD windows of the STDP rules enable robust sequence learning amid background noise in cooperation with a large signal transmission delay between neurons and a theta rhythm, using a network model of the entorhinal cortex layer II with entorhinal-hippocampal loop connections. The important element of the present model for robust sequence learning amid background noise is the symmetric STDP rule having LTD windows on both sides of the LTP window, in addition to the loop connections having a large signal transmission delay and the theta rhythm pacing activities of stellate cells. Above all, the LTD window in the range of positive spike-timing is important to prevent influences of noise with the progress of sequence learning.

  1. The relative contribution of near-bed vs. intragravel horizontal transport to fine sediment accumulation processes in river gravel beds

    Science.gov (United States)

    Casas-Mulet, Roser; Lakhanpal, Garima; Stewardson, Michael J.

    2018-02-01

    Understanding flow-sediment interactions is important for comprehending river functioning. Fine sediment accumulation processes, in particular, have key implications for ecosystem health. However, the amount of fines generated by intragravel flows and later accumulated in gravel streambeds may have been underestimated, as the hydraulic-related driving transport mechanisms in play are not clearly identified. Specifically, the relative contribution of fines from upper vs. lower sediment layers in gravel beds is not well understood. By recreating flooded and dewatered conditions in an experimental flume filled with natural sediment, we estimated such contributions by observing and collecting intragravel transported fines that were later accumulated into a void in the middle of the sediment matrix. Near-bed transport in the upper sediment layers (named Brinkman load) during flooded conditions accounted for most (90%) of the accumulated fines. Intragravel transport in the lower sediment layers (named Interstitial load) was the sole source of transport and accumulation during dewatered conditions with steeper hydraulic gradients. Interstitial load accounted for 10% of the total transport during flooded conditions. Although small, such estimations demonstrate that hydraulic-gradient transport in the lower sediment layers occurs in spite of the contradicting analytical assessments. We provide a case study to challenge the traditional approaches of assessing intragravel transport, and a useful framework to understand the origin and relative contribution of fine sediment accumulation in gravel beds. Such knowledge will be highly useful for the design of monitoring programs aiding river management, particularly in regulated rivers.

  2. Fine Structure of Plasmaspheric Hiss

    Science.gov (United States)

    Summers, D.; Omura, Y.; Nakamura, S.; Kletzing, C.

    2014-12-01

    Plasmaspheric hiss plays a key role in controlling the structure and dynamics of Earth's radiation belts.The quiet time slot region between the inner and outer belts can be explained as a steady-state balance between earthward radial diffusion and pitch-angle scattering loss of energetic electrons to the atmosphere induced by plasmaspheric hiss. Plasmaspheric hiss can also induce gradual precipitation loss of MeV electrons from the outer radiation belt. Plasmaspheric hiss has been widely regarded as a broadband,structureless,incoherent emission. Here, by examining burst-mode vector waveform data from the EMFISIS instrument on the Van Allen Probes mission,we show that plasmaspheric hiss is a coherent emission with complex fine structure. Specifically, plasmaspheric hiss appears as discrete rising tone and falling tone elements. By means of waveform analysis we identify typical amplitudes,phase profiles,and sweep rates of the rising and falling tone elements. The new observations reported here can be expected to fuel a re-examination of the properties of plasmaspheric hiss, including a further re-analysis of the generation mechanism for hiss.

  3. Fine structure of cluster decays

    International Nuclear Information System (INIS)

    Dumitrescu, O.

    1993-07-01

    Within the one level R-matrix approach the hindrance factors of the radioactive decays in which are emitted α and 14 C - nuclei are calculated. The generalization to radioactive decays in which are emitted heavier clusters such as e.g. 20 O, 24 Ne, 25 Ne, 28 Mg. 30 Mg, 32 Si and 34 Si is straightforward. The interior wave functions are supposed to be given by the shell model with effective residual interactions (e.g. the large scale shell model code-OXBASH - in the Michigan State University version for nearly spherical nuclei or by the enlarged superfluid model - ESM - recently proposed for deformed nuclei). The exterior wave functions are calculated from a cluster - nucleus double - folding model potential obtained with the M3Y interaction. As examples of the cluster decay fine structure we analyzed the particular cases of α - decay of 241 Am and 14 C -decay of 233 Ra. Good agreement with the experimental data is obtained. (author). 78 refs, 2 figs, 6 tabs

  4. Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1.

    Science.gov (United States)

    Rodrigues, Elizabeth M; Scudder, Samantha L; Goo, Marisa S; Patrick, Gentry N

    2016-02-03

    Alzheimer's disease (AD) is a neurodegenerative disease in which patients experience progressive cognitive decline. A wealth of evidence suggests that this cognitive impairment results from synaptic dysfunction in affected brain regions caused by cleavage of amyloid precursor protein into the pathogenic peptide amyloid-β (Aβ). Specifically, it has been shown that Aβ decreases surface AMPARs, dendritic spine density, and synaptic strength, and also alters synaptic plasticity. The precise molecular mechanisms by which this occurs remain unclear. Here we demonstrate a role for ubiquitination in Aβ-induced synaptic dysfunction in cultured rat neurons. We find that Aβ promotes the ubiquitination of AMPARs, as well as the redistribution and recruitment of Nedd4-1, a HECT E3 ubiquitin ligase we previously demonstrated to target AMPARs for ubiquitination and degradation. Strikingly, we show that Nedd4-1 is required for Aβ-induced reductions in surface AMPARs, synaptic strength, and dendritic spine density. Our findings, therefore, indicate an important role for Nedd4-1 and ubiquitin in the synaptic alterations induced by Aβ. Synaptic changes in Alzheimer's disease (AD) include surface AMPAR loss, which can weaken synapses. In a cell culture model of AD, we found that AMPAR loss correlates with increased AMPAR ubiquitination. In addition, the ubiquitin ligase Nedd4-1, known to ubiquitinate AMPARs, is recruited to synapses in response to Aβ. Strikingly, reducing Nedd4-1 levels in this model prevented surface AMPAR loss and synaptic weakening. These findings suggest that, in AD, Nedd4-1 may ubiquitinate AMPARs to promote their internalization and weaken synaptic strength, similar to what occurs in Nedd4-1's established role in homeostatic synaptic scaling. This is the first demonstration of Aβ-mediated control of a ubiquitin ligase to regulate surface AMPAR expression. Copyright © 2016 the authors 0270-6474/16/361590-06$15.00/0.

  5. Get out of Fines Free: Recruiting Student Usability Testers via Fine Waivers

    Science.gov (United States)

    Hockenberry, Benjamin; Blackburn, Kourtney

    2016-01-01

    St. John Fisher College's Lavery Library's Access Services and Systems departments began a pilot project in which students with overdue fines tested usability of library Web sites in exchange for fine waivers. Circulation staff promoted the program and redeemed fine waiver vouchers at the Checkout Desk, while Systems staff administered testing and…

  6. 47 CFR 76.943 - Fines.

    Science.gov (United States)

    2010-10-01

    ... TELEVISION SERVICE Cable Rate Regulation § 76.943 Fines. (a) A franchising authority may impose fines or... specifically at the cable operator, provided the franchising authority has such power under state or local laws. (b) If a cable operator willfully fails to comply with the terms of any franchising authority's order...

  7. Accumulation and circulation of gaseous radon between lunar fines

    International Nuclear Information System (INIS)

    Lambert, G.; Bristeau, P.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette; Le Roulley, J.C.

    1975-01-01

    During the lunar night, the temperature of the regolith upper layer is lower than the radon freezing point. Thus radon atoms coming from the interior can be trapped at the surface of the cold lunar fines. The 222 Rn daughter products, 210 Pb and 210 Po, are embedded in a very thin layer at the surface of the grains. It is therefore possible, by spectrometry, to distinguish between the continuum due to uranium, thorium (and decay products) homogeneously distributed and the narrow peak at 5.3MeV, due to an excess of 210 Pb. The mean day-and-night concentration was about 3.5x10 3 atoms of intergranular 222 Rn per g of superficial fines, corresponding to a continuous flow of 3 atoms per minute and per cm 2 of soil. To account for such a flow of radon atoms moving in a random walk from a 6 meter source depth, the pore size of the regolith should be 60μ. On the other hand, the involved changes in the isotopic composition of the radiogenic lead remain less than 1% [fr

  8. Disruption of an Evolutionarily Novel Synaptic Expression Pattern in Autism

    Science.gov (United States)

    Jiang, Xi; Hu, Haiyang; Guijarro, Patricia; Mitchell, Amanda; Ely, John J.; Sherwood, Chet C.; Hof, Patrick R.; Qiu, Zilong; Pääbo, Svante; Akbarian, Schahram; Khaitovich, Philipp

    2016-01-01

    Cognitive defects in autism spectrum disorder (ASD) include socialization and communication: key behavioral capacities that separate humans from other species. Here, we analyze gene expression in the prefrontal cortex of 63 autism patients and control individuals, as well as 62 chimpanzees and macaques, from natal to adult age. We show that among all aberrant expression changes seen in ASD brains, a single aberrant expression pattern overrepresented in genes involved synaptic-related pathways is enriched in nucleotide variants linked to autism. Furthermore, only this pattern contains an excess of developmental expression features unique to humans, thus resulting in the disruption of human-specific developmental programs in autism. Several members of the early growth response (EGR) transcription factor family can be implicated in regulation of this aberrant developmental change. Our study draws a connection between the genetic risk architecture of autism and molecular features of cortical development unique to humans. PMID:27685936

  9. Disruption of an Evolutionarily Novel Synaptic Expression Pattern in Autism.

    Directory of Open Access Journals (Sweden)

    Xiling Liu

    2016-09-01

    Full Text Available Cognitive defects in autism spectrum disorder (ASD include socialization and communication: key behavioral capacities that separate humans from other species. Here, we analyze gene expression in the prefrontal cortex of 63 autism patients and control individuals, as well as 62 chimpanzees and macaques, from natal to adult age. We show that among all aberrant expression changes seen in ASD brains, a single aberrant expression pattern overrepresented in genes involved synaptic-related pathways is enriched in nucleotide variants linked to autism. Furthermore, only this pattern contains an excess of developmental expression features unique to humans, thus resulting in the disruption of human-specific developmental programs in autism. Several members of the early growth response (EGR transcription factor family can be implicated in regulation of this aberrant developmental change. Our study draws a connection between the genetic risk architecture of autism and molecular features of cortical development unique to humans.

  10. Selective effect of cell membrane on synaptic neurotransmission

    DEFF Research Database (Denmark)

    Postila, Pekka A.; Vattulainen, Ilpo; Róg, Tomasz

    2016-01-01

    Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic membr...... the importance of cell membrane and specific lipids for neurotransmission, should to be of interest to neuroscientists, drug industry and the general public alike.......Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic...... membrane surface whenever the ligand-binding sites of their synaptic receptors are buried in the lipid bilayer. In contrast, NTs that have extracellular ligand-binding sites do not have a similar tendency to adhere to the membrane surface. This finding is a seemingly simple yet important addition...

  11. Binding Sites for Amyloid-β Oligomers and Synaptic Toxicity

    Science.gov (United States)

    Smith, Levi M.; Strittmatter, Stephen M.

    2017-01-01

    In Alzheimer’s disease (AD), insoluble and fibrillary amyloid-β (Aβ) peptide accumulates in plaques. However, soluble Aβ oligomers are most potent in creating synaptic dysfunction and loss. Therefore, receptors for Aβ oligomers are hypothesized to be the first step in a neuronal cascade leading to dementia. A number of cell-surface proteins have been described as Aβ binding proteins, and one or more are likely to mediate Aβ oligomer toxicity in AD. Cellular prion protein (PrPC) is a high-affinity Aβ oligomer binding site, and a range of data delineates a signaling pathway leading from Aβ complexation with PrPC to neuronal impairment. Further study of Aβ binding proteins will define the molecular basis of this crucial step in AD pathogenesis. PMID:27940601

  12. Myostatin-like proteins regulate synaptic function and neuronal morphology.

    Science.gov (United States)

    Augustin, Hrvoje; McGourty, Kieran; Steinert, Joern R; Cochemé, Helena M; Adcott, Jennifer; Cabecinha, Melissa; Vincent, Alec; Halff, Els F; Kittler, Josef T; Boucrot, Emmanuel; Partridge, Linda

    2017-07-01

    Growth factors of the TGFβ superfamily play key roles in regulating neuronal and muscle function. Myostatin (or GDF8) and GDF11 are potent negative regulators of skeletal muscle mass. However, expression of myostatin and its cognate receptors in other tissues, including brain and peripheral nerves, suggests a potential wider biological role. Here, we show that Myoglianin (MYO), the Drosophila homolog of myostatin and GDF11, regulates not only body weight and muscle size, but also inhibits neuromuscular synapse strength and composition in a Smad2-dependent manner. Both myostatin and GDF11 affected synapse formation in isolated rat cortical neuron cultures, suggesting an effect on synaptogenesis beyond neuromuscular junctions. We also show that MYO acts in vivo to inhibit synaptic transmission between neurons in the escape response neural circuit of adult flies. Thus, these anti-myogenic proteins act as important inhibitors of synapse function and neuronal growth. © 2017. Published by The Company of Biologists Ltd.

  13. GABA Metabolism and Transport: Effects on Synaptic Efficacy

    Directory of Open Access Journals (Sweden)

    Fabian C. Roth

    2012-01-01

    Full Text Available GABAergic inhibition is an important regulator of excitability in neuronal networks. In addition, inhibitory synaptic signals contribute crucially to the organization of spatiotemporal patterns of network activity, especially during coherent oscillations. In order to maintain stable network states, the release of GABA by interneurons must be plastic in timing and amount. This homeostatic regulation is achieved by several pre- and postsynaptic mechanisms and is triggered by various activity-dependent local signals such as excitatory input or ambient levels of neurotransmitters. Here, we review findings on the availability of GABA for release at presynaptic terminals of interneurons. Presynaptic GABA content seems to be an important determinant of inhibitory efficacy and can be differentially regulated by changing synthesis, transport, and degradation of GABA or related molecules. We will discuss the functional impact of such regulations on neuronal network patterns and, finally, point towards pharmacological approaches targeting these processes.

  14. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Memristor-based neural networks: Synaptic versus neuronal stochasticity

    KAUST Repository

    Naous, Rawan

    2016-11-02

    In neuromorphic circuits, stochasticity in the cortex can be mapped into the synaptic or neuronal components. The hardware emulation of these stochastic neural networks are currently being extensively studied using resistive memories or memristors. The ionic process involved in the underlying switching behavior of the memristive elements is considered as the main source of stochasticity of its operation. Building on its inherent variability, the memristor is incorporated into abstract models of stochastic neurons and synapses. Two approaches of stochastic neural networks are investigated. Aside from the size and area perspective, the impact on the system performance, in terms of accuracy, recognition rates, and learning, among these two approaches and where the memristor would fall into place are the main comparison points to be considered.

  16. Adiponectin modulates synaptic plasticity in hippocampal dentate gyrus.

    Science.gov (United States)

    Pousti, Farideh; Ahmadi, Ramesh; Mirahmadi, Fatemeh; Hosseinmardi, Narges; Rohampour, Kambiz

    2018-01-01

    Recent studies have suggested the involvement of some metabolic hormones in memory formation and synaptic plasticity. Insulin dysfunction is known as an essential process in the pathogenesis of sporadic Alzheimer's disease (AD). In this study we examined whether adiponectin (ADN), as an insulin-sensitizing adipokine, could affect hippocampal synaptic plasticity. Field potential recordings were performed on intracerebroventricular (icv) cannulated urethane anesthetized rats. After baseline recording from dentate gyrus (DG) and 10min prior to high/low frequency stimulation (HFS/LFS), 10μl icv ADN (600nm) were injected. The slope of field excitatory postsynaptic potentials (fEPSP) and the amplitude of population spikes (PS) were recorded in response to perforanth path (PP) stimulation. Paired pulse stimuli and ADN injection without any stimulation protocols were also evaluated. Application of ADN before HFS increased PS amplitude recorded in DG significantly (P≤0.05) in comparison to HFS only group. ADN suppressed the potency of LFS to induce long-term depression (LTD), causing a significant difference between fEPSP slope (P≤0.05) and PS amplitude (P≤0.01) between ADN+LFS and ADN group. Paired pulse stimuli applied at 20ms intervals showed more paired pulse facilitation (PPF), when applied after ADN (P≤0.05). ADN induced a chemical long-term potentiation (LTP) in which fEPSP slope and PS amplitude increased significantly (P≤0.01 and P≤0.05, respectively). It is concluded that ADN is able to potentiate the HFS-induced LTP and suppress LFS-induced LTD. ADN caused a chemical LTP, when applied without any tetanic protocol. ADN may enhance the presynaptic release probability. Copyright © 2017. Published by Elsevier B.V.

  17. Pannexin1 stabilizes synaptic plasticity and is needed for learning.

    Directory of Open Access Journals (Sweden)

    Nora Prochnow

    Full Text Available Pannexin 1 (Panx1 represents a class of vertebrate membrane channels, bearing significant sequence homology with the invertebrate gap junction proteins, the innexins and more distant similarities in the membrane topologies and pharmacological sensitivities with gap junction proteins of the connexin family. In the nervous system, cooperation among pannexin channels, adenosine receptors, and K(ATP channels modulating neuronal excitability via ATP and adenosine has been recognized, but little is known about the significance in vivo. However, the localization of Panx1 at postsynaptic sites in hippocampal neurons and astrocytes in close proximity together with the fundamental role of ATP and adenosine for CNS metabolism and cell signaling underscore the potential relevance of this channel to synaptic plasticity and higher brain functions. Here, we report increased excitability and potently enhanced early and persistent LTP responses in the CA1 region of acute slice preparations from adult Panx1(-/- mice. Adenosine application and N-methyl-D-aspartate receptor (NMDAR-blocking normalized this phenotype, suggesting that absence of Panx1 causes chronic extracellular ATP/adenosine depletion, thus facilitating postsynaptic NMDAR activation. Compensatory transcriptional up-regulation of metabotropic glutamate receptor 4 (grm4 accompanies these adaptive changes. The physiological modification, promoted by loss of Panx1, led to distinct behavioral alterations, enhancing anxiety and impairing object recognition and spatial learning in Panx1(-/- mice. We conclude that ATP release through Panx1 channels plays a critical role in maintaining synaptic strength and plasticity in CA1 neurons of the adult hippocampus. This result provides the rationale for in-depth analysis of Panx1 function and adenosine based therapies in CNS disorders.

  18. Charge neutrality of fine particle (dusty) plasmas and fine particle cloud under gravity

    Energy Technology Data Exchange (ETDEWEB)

    Totsuji, Hiroo, E-mail: totsuji-09@t.okadai.jp

    2017-03-11

    The enhancement of the charge neutrality due to the existence of fine particles is shown to occur generally under microgravity and in one-dimensional structures under gravity. As an application of the latter, the size and position of fine particle clouds relative to surrounding plasmas are determined under gravity. - Highlights: • In fine particle (dusty) plasmas, the charge neutrality is much enhanced by the existence of fine particles. • The enhancement of charge neutrality generally occurs under microgravity and gravity. • Structure of fine particle clouds under gravity is determined by applying the enhanced charge neutrality.

  19. Reversed synaptic effects of hypocretin and NPY mediated by excitatory GABA-dependent synaptic activity in developing MCH neurons.

    Science.gov (United States)

    Li, Ying; Xu, Youfen; van den Pol, Anthony N

    2013-03-01

    In mature neurons, GABA is the primary inhibitory neurotransmitter. In contrast, in developing neurons, GABA exerts excitatory actions, and in some neurons GABA-mediated excitatory synaptic activity is more prevalent than glutamate-mediated excitation. Hypothalamic neuropeptides that modulate cognitive arousal and energy homeostasis, hypocretin/orexin and neuropeptide Y (NPY), evoked reversed effects on synaptic actions that were dependent on presynaptic GABA release onto melanin-concentrating hormone (MCH) neurons. MCH neurons were identified by selective green fluorescent protein (GFP) expression in transgenic mice. In adults, hypocretin increased GABA release leading to reduced excitation. In contrast, in the developing brain as studied here with analysis of miniature excitatory postsynaptic currents, paired-pulse ratios, and evoked potentials, hypocretin acted presynaptically to enhance the excitatory actions of GABA. The ability of hypocretin to enhance GABA release increases inhibition in adult neurons but paradoxically enhances excitation in developing MCH neurons. In contrast, NPY attenuation of GABA release reduced inhibition in mature neurons but enhanced inhibition during development by attenuating GABA excitation. Both hypocretin and NPY also evoked direct actions on developing MCH neurons. Hypocretin excited MCH cells by activating a sodium-calcium exchanger and by reducing potassium currents; NPY reduced activity by increasing an inwardly rectifying potassium current. These data for the first time show that both hypocretin and NPY receptors are functional presynaptically during early postnatal hypothalamic development and that both neuropeptides modulate GABA actions during development with a valence of enhanced excitation or inhibition opposite to that of the adult state, potentially allowing neuropeptide modulation of use-dependent synapse stabilization.

  20. Different synaptic stimulation patterns influence the local androgenic and estrogenic neurosteroid availability triggering hippocampal synaptic plasticity in the male rat.

    Science.gov (United States)

    Di Mauro, Michela; Tozzi, Alessandro; Calabresi, Paolo; Pettorossi, Vito Enrico; Grassi, Silvarosa

    2017-02-01

    Electrophysiological recordings were used to investigate the role of the local synthesis of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) on synaptic long-term effects induced in the hippocampal CA1 region of male rat slices. Long-term depression (LTD) and long-term potentiation (LTP), induced by different stimulation patterns, were examined under the block of the DHT synthesis by finasteride (FIN), and the E2 synthesis by letrozole (LET). We used low frequency stimulation (LFS) for LTD, high frequency stimulation (HFS) for LTP, and intermediate patterns differing in duration or frequency. We found that FIN reverted the LFS-LTD into LTP and enhanced LTP induced by intermediate and HFSs. These effects were abolished by exogenous DHT at concentration higher than the basal one, suggesting a stimulus dependent increase in DHT availability. No effect on the synaptic responses was observed giving DHT alone. Moreover, we found that the inhibition of E2 synthesis influenced the HFS-LTP by reducing its amplitude, and the exogenous E2 either enhanced HFS-LTP or reverted the LFS-LTD into LTP. The equivalence of the E2 concentration for rescuing the full HFS-LTP under LET and reverting the LFS-LTD into LTP suggests an enhancement of the endogenous E2 availability that is specifically driven by the HFS. No effect of FIN or LET was observed on the responses to stimuli that did not induce either LTD or LTP. This study provides evidence that the E2 and DHT availability combined with specific stimulation patterns is determinant for the sign and amplitude of the long-term effects. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Reduced synaptic vesicle protein degradation at lysosomes curbs TBC1D24/sky-induced neurodegeneration.

    Science.gov (United States)

    Fernandes, Ana Clara; Uytterhoeven, Valerie; Kuenen, Sabine; Wang, Yu-Chun; Slabbaert, Jan R; Swerts, Jef; Kasprowicz, Jaroslaw; Aerts, Stein; Verstreken, Patrik

    2014-11-24

    Synaptic demise and accumulation of dysfunctional proteins are thought of as common features in neurodegeneration. However, the mechanisms by which synaptic proteins turn over remain elusive. In this paper, we study Drosophila melanogaster lacking active TBC1D24/Skywalker (Sky), a protein that in humans causes severe neurodegeneration, epilepsy, and DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome, and identify endosome-to-lysosome trafficking as a mechanism for degradation of synaptic vesicle-associated proteins. In fly sky mutants, synaptic vesicles traveled excessively to endosomes. Using chimeric fluorescent timers, we show that synaptic vesicle-associated proteins were younger on average, suggesting that older proteins are more efficiently degraded. Using a genetic screen, we find that reducing endosomal-to-lysosomal trafficking, controlled by the homotypic fusion and vacuole protein sorting (HOPS) complex, rescued the neurotransmission and neurodegeneration defects in sky mutants. Consistently, synaptic vesicle proteins were older in HOPS complex mutants, and these mutants also showed reduced neurotransmission. Our findings define a mechanism in which synaptic transmission is facilitated by efficient protein turnover at lysosomes and identify a potential strategy to suppress defects arising from TBC1D24 mutations in humans. © 2014 Fernandes et al.

  2. Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation.

    Science.gov (United States)

    Nie, Jingjing; Yang, Xiaosu

    2017-01-01

    In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.

  3. Synchronization of map-based neurons with memory and synaptic delay

    Energy Technology Data Exchange (ETDEWEB)

    Sausedo-Solorio, J.M. [Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42074 Pachuca, Hidalgo (Mexico); Pisarchik, A.N., E-mail: apisarch@cio.mx [Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Centre for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcon, Madrid (Spain)

    2014-06-13

    Synchronization of two synaptically coupled neurons with memory and synaptic delay is studied using the Rulkov map, one of the simplest neuron models which displays specific features inherent to bursting dynamics. We demonstrate a transition from lag to anticipated synchronization as the relationship between the memory duration and the synaptic delay time changes. The neuron maps synchronize either with anticipation, if the memory is longer than the synaptic delay time, or with lag otherwise. The mean anticipation time is equal to the difference between the memory and synaptic delay independently of the coupling strength. Frequency entrainment and phase-locking phenomena as well as a transition from regular spikes to chaos are demonstrated with respect to the coupling strength. - Highlights: • We study synchronization of neurons with memory and synaptic delay in the map model. • Neurons synchronize either with anticipation or with lag depending on delay time. • Mean anticipation time is equal to the difference between memory and synaptic delay. • Frequency entrainment and phase locking are studied with respect to the coupling.

  4. Glial processes at the Drosophila larval neuromuscular junction match synaptic growth.

    Directory of Open Access Journals (Sweden)

    Deidre L Brink

    Full Text Available Glia are integral participants in synaptic physiology, remodeling and maturation from blowflies to humans, yet how glial structure is coordinated with synaptic growth is unknown. To investigate the dynamics of glial development at the Drosophila larval neuromuscular junction (NMJ, we developed a live imaging system to establish the relationship between glia, neuronal boutons, and the muscle subsynaptic reticulum. Using this system we observed processes from two classes of peripheral glia present at the NMJ. Processes from the subperineurial glia formed a blood-nerve barrier around the axon proximal to the first bouton. Processes from the perineurial glial extended beyond the end of the blood-nerve barrier into the NMJ where they contacted synapses and extended across non-synaptic muscle. Growth of the glial processes was coordinated with NMJ growth and synaptic activity. Increasing synaptic size through elevated temperature or the highwire mutation increased the extent of glial processes at the NMJ and conversely blocking synaptic activity and size decreased the presence and size of glial processes. We found that elevated temperature was required during embryogenesis in order to increase glial expansion at the nmj. Therefore, in our live imaging system, glial processes at the NMJ are likely indirectly regulated by synaptic changes to ensure the coordinated growth of all components of the tripartite larval NMJ.

  5. Myopic (HD-PTP, PTPN23) selectively regulates synaptic neuropeptide release.

    Science.gov (United States)

    Bulgari, Dinara; Jha, Anupma; Deitcher, David L; Levitan, Edwin S

    2018-02-13

    Neurotransmission is mediated by synaptic exocytosis of neuropeptide-containing dense-core vesicles (DCVs) and small-molecule transmitter-containing small synaptic vesicles (SSVs). Exocytosis of both vesicle types depends on Ca 2+ and shared secretory proteins. Here, we show that increasing or decreasing expression of Myopic (mop, HD-PTP, PTPN23), a Bro1 domain-containing pseudophosphatase implicated in neuronal development and neuropeptide gene expression, increases synaptic neuropeptide stores at the Drosophila neuromuscular junction (NMJ). This occurs without altering DCV content or transport, but synaptic DCV number and age are increased. The effect on synaptic neuropeptide stores is accounted for by inhibition of activity-induced Ca 2+ -dependent neuropeptide release. cAMP-evoked Ca 2+ -independent synaptic neuropeptide release also requires optimal Myopic expression, showing that Myopic affects the DCV secretory machinery shared by cAMP and Ca 2+ pathways. Presynaptic Myopic is abundant at early endosomes, but interaction with the endosomal sorting complex required for transport III (ESCRT III) protein (CHMP4/Shrub) that mediates Myopic's effect on neuron pruning is not required for control of neuropeptide release. Remarkably, in contrast to the effect on DCVs, Myopic does not affect release from SSVs. Therefore, Myopic selectively regulates synaptic DCV exocytosis that mediates peptidergic transmission at the NMJ.

  6. Synaptic heterogeneity and stimulus-induced modulation of depression in central synapses.

    Science.gov (United States)

    Hunter, J D; Milton, J G

    2001-08-01

    Short-term plasticity is a pervasive feature of synapses. Synapses exhibit many forms of plasticity operating over a range of time scales. We develop an optimization method that allows rapid characterization of synapses with multiple time scales of facilitation and depression. Investigation of paired neurons that are postsynaptic to the same identified interneuron in the buccal ganglion of Aplysia reveals that the responses of the two neurons differ in the magnitude of synaptic depression. Also, for single neurons, prolonged stimulation of the presynaptic neuron causes stimulus-induced increases in the early phase of synaptic depression. These observations can be described by a model that incorporates two availability factors, e.g., depletable vesicle pools or desensitizing receptor populations, with different time courses of recovery, and a single facilitation component. This model accurately predicts the responses to novel stimuli. The source of synaptic heterogeneity is identified with variations in the relative sizes of the two availability factors, and the stimulus-induced decrement in the early synaptic response is explained by a slowing of the recovery rate of one of the availability factors. The synaptic heterogeneity and stimulus-induced modifications in synaptic depression observed here emphasize that synaptic efficacy depends on both the individual properties of synapses and their past history.

  7. Vesicular GABA Uptake Can Be Rate Limiting for Recovery of IPSCs from Synaptic Depression

    Directory of Open Access Journals (Sweden)

    Manami Yamashita

    2018-03-01

    Full Text Available Summary: Synaptic efficacy plays crucial roles in neuronal circuit operation and synaptic plasticity. Presynaptic determinants of synaptic efficacy are neurotransmitter content in synaptic vesicles and the number of vesicles undergoing exocytosis at a time. Bursts of presynaptic firings depress synaptic efficacy, mainly due to depletion of releasable vesicles, whereas recovery from strong depression is initiated by endocytic vesicle retrieval followed by refilling of vesicles with neurotransmitter. We washed out presynaptic cytosolic GABA to induce a rundown of IPSCs at cerebellar inhibitory cell pairs in slices from rats and then allowed fast recovery by elevating GABA concentration using photo-uncaging. The time course of this recovery coincided with that of IPSCs from activity-dependent depression induced by a train of high-frequency stimulation. We conclude that vesicular GABA uptake can be a limiting step for the recovery of inhibitory neurotransmission from synaptic depression. : Recovery of inhibitory synaptic transmission from activity-dependent depression requires refilling of vesicles with GABA. Yamashita et al. find that vesicular uptake rate of GABA is a slow process, limiting the recovery rate of IPSCs from depression.

  8. Experience-Dependent Equilibration of AMPAR-Mediated Synaptic Transmission during the Critical Period

    Directory of Open Access Journals (Sweden)

    Kyung-Seok Han

    2017-01-01

    Full Text Available Experience-dependent synapse refinement is essential for functional optimization of neural circuits. However, how sensory experience sculpts excitatory synaptic transmission is poorly understood. Here, we show that despite substantial remodeling of synaptic connectivity, AMPAR-mediated synaptic transmission remains at equilibrium during the critical period in the mouse primary visual cortex. The maintenance of this equilibrium requires neurogranin (Ng, a postsynaptic calmodulin-binding protein important for synaptic plasticity. With normal visual experience, loss of Ng decreased AMPAR-positive synapse numbers, prevented AMPAR-silent synapse maturation, and increased spine elimination. Importantly, visual deprivation halted synapse loss caused by loss of Ng, revealing that Ng coordinates experience-dependent AMPAR-silent synapse conversion to AMPAR-active synapses and synapse elimination. Loss of Ng also led to sensitized long-term synaptic depression (LTD and impaired visually guided behavior. Our synaptic interrogation reveals that experience-dependent coordination of AMPAR-silent synapse conversion and synapse elimination hinges upon Ng-dependent mechanisms for constructive synaptic refinement during the critical period.

  9. Factors Influencing Short-term Synaptic Plasticity in the Avian Cochlear Nucleus Magnocellularis

    Directory of Open Access Journals (Sweden)

    Jason Tait Sanchez Quinones

    2015-01-01

    Full Text Available Defined as reduced neural responses during high rates of activity, synaptic depression is a form of short-term plasticity important for the temporal filtering of sound. In the avian cochlear nucleus magnocellularis (NM, an auditory brainstem structure, mechanisms regulating short-term synaptic depression include pre-, post-, and extrasynaptic factors. Using varied paired-pulse stimulus intervals, we found that the time course of synaptic depression lasts up to four seconds at late-developing NM synapses. Synaptic depression was largely reliant on exogenous Ca 2+ -dependent probability of presynaptic neurotransmitter release, and to a lesser extent, on the desensitization of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPA-R. Interestingly, although extrasynaptic glutamate clearance did not play a significant role in regulating synaptic depression, blocking glutamate clearance at early-developing synapses altered synaptic dynamics, changing responses from depression to facilitation. These results suggest a developmental shift in the relative reliance on pre-, post-, and extrasynaptic factors in regulating short-term synaptic plasticity in NM.

  10. Fine Guidance Sensing for Coronagraphic Observatories

    Science.gov (United States)

    Brugarolas, Paul; Alexander, James W.; Trauger, John T.; Moody, Dwight C.

    2011-01-01

    Three options have been developed for Fine Guidance Sensing (FGS) for coronagraphic observatories using a Fine Guidance Camera within a coronagraphic instrument. Coronagraphic observatories require very fine precision pointing in order to image faint objects at very small distances from a target star. The Fine Guidance Camera measures the direction to the target star. The first option, referred to as Spot, was to collect all of the light reflected from a coronagraph occulter onto a focal plane, producing an Airy-type point spread function (PSF). This would allow almost all of the starlight from the central star to be used for centroiding. The second approach, referred to as Punctured Disk, collects the light that bypasses a central obscuration, producing a PSF with a punctured central disk. The final approach, referred to as Lyot, collects light after passing through the occulter at the Lyot stop. The study includes generation of representative images for each option by the science team, followed by an engineering evaluation of a centroiding or a photometric algorithm for each option. After the alignment of the coronagraph to the fine guidance system, a "nulling" point on the FGS focal point is determined by calibration. This alignment is implemented by a fine alignment mechanism that is part of the fine guidance camera selection mirror. If the star images meet the modeling assumptions, and the star "centroid" can be driven to that nulling point, the contrast for the coronagraph will be maximized.

  11. Fine structure studies of terbium atoms

    International Nuclear Information System (INIS)

    Abhay Kumar; Bandyopadhyay, Krishnanath; Niraj Kumar

    2012-01-01

    Terbium (Z = 65) is a typical rare-earth element. Fine structure of spectural lines of terbium (Tb) are presented using the laser optogalvanic spectroscopic technique. Altogether eighty transitions in the 5686-6367 A range have been observed in the fine structure spectrum of 159 Tb. Wavelengths of all the observed transitions have been determined. Out of 80 transitions of Tb, a total of 59 transitions are being reported for the first time. Classifications of 39 new transitions have been provided using the known energy levels, Doppler-limited optogalvanic spectroscopic technique is employed to study the fine structure (fs) 159 Tb. (author)

  12. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Li Qiang, E-mail: guoliqiang@ujs.edu.cn; Ding, Jian Ning; Huang, Yu Kai [Micro/Nano Science & Technology Center, Jiangsu University, Zhenjiang, 212013 (China); Zhu, Li Qiang, E-mail: lqzhu@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-08-15

    Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO{sub 2} electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO) synaptic transistor. In such synaptic transistors, protons within the SiO{sub 2} electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF) behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  13. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    Directory of Open Access Journals (Sweden)

    Li Qiang Guo

    2015-08-01

    Full Text Available Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO2 electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO synaptic transistor. In such synaptic transistors, protons within the SiO2 electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  14. The temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing

    Directory of Open Access Journals (Sweden)

    Ayla eAksoy Aksel

    2013-08-01

    Full Text Available In terms of its sub-regional differentiation, the hippocampal CA1 region receives cortical information directly via the perforant (temporoammonic path (pp-CA1 synapse and indirectly via the tri-synaptic pathway where the last relay station is the Schaffer collateral-CA1 synapse (Sc-CA1 synapse. Research to date on pp-CA1 synapses has been conducted predominantly in vitro and never in awake animals, but these studies hint that information processing at this synapse might be distinct to processing at the Sc-CA1 synapse. Here, we characterized synaptic properties and synaptic plasticity at the pp-CA1 synapse of freely behaving adult rats. We established that field excitatory postsynaptic potentials at the pp-CA1 have longer onset latencies and a shorter time-to-peak compared to the Sc-CA1 synapse. LTP (> 24h was successfully evoked by tetanic afferent stimulation of pp-CA1 synapses. Low frequency stimulation evoked synaptic depression at Sc-CA1 synapses, but did not elicit LTD at pp-CA1 synapses unless the Schaffer collateral afferents to the CA1 region had been severed. Paired-pulse responses also showed significant differences. Our data suggest that synaptic plasticity at the pp-CA1 synapse is distinct from the Sc-CA1 synapse and that this may reflect its specific role in hippocampal information processing.

  15. Critical Role of Endoplasmic Reticulum Stress in Chronic Intermittent Hypoxia-Induced Deficits in Synaptic Plasticity and Long-Term Memory.

    Science.gov (United States)

    Xu, Lin-Hao; Xie, Hui; Shi, Zhi-Hui; Du, Li-Da; Wing, Yun-Kwok; Li, Albert M; Ke, Ya; Yung, Wing-Ho

    2015-09-20

    This study examined the role of endoplasmic reticulum (ER) stress in mediating chronic intermittent hypoxia (IH)-induced neurocognitive deficits. We designed experiments to demonstrate that ER stress is initiated in the hippocampus under chronic IH and determined its role in apoptotic cell death, impaired synaptic structure and plasticity, and memory deficits. Two weeks of IH disrupted ER fine structure and upregulated ER stress markers, glucose-regulated protein 78, caspase-12, and C/EBP homologous protein, in the hippocampus, which could be suppressed by ER stress inhibitors, tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid. Meanwhile, ER stress induced apoptosis via decreased Bcl-2, promoted reactive oxygen species production, and increased malondialdehyde formation and protein carbonyl, as well as suppressed mitochondrial function. These effects were largely prevented by ER stress inhibitors. On the other hand, suppression of oxidative stress could reduce ER stress. In addition, the length of the synaptic active zone and number of mature spines were reduced by IH. Long-term recognition memory and spatial memory were also impaired, which was accompanied by reduced long-term potentiation in the Schaffer collateral pathway. These effects were prevented by coadministration of the TUDCA. These results show that ER stress plays a critical role in underlying memory deficits in obstructive sleep apnea (OSA)-associated IH. Attenuators of ER stress may serve as novel adjunct therapeutic agents for ameliorating OSA-induced neurocognitive impairment.

  16. Growth dynamics of fine roots in a coniferous fern forest site close to Forsmark in the central part of Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Hans; Stadenberg, Ingela (SLU, Dept. of Ecology and Environmental Research, Uppsala (Sweden))

    2007-12-15

    The seasonal growth dynamics of live and dead roots for trees and the field layer species (g/m2, varying diameter fractions) and live/dead ratios were analysed at a fresh/moist coniferous fern forest site close to the nuclear power plant at Forsmark in the central eastern parts of Sweden. The changes in depth distribution of fine roots were observed at depth intervals of the top humus horizon down to 40 cm in the mineral soil profile. The bulk of living fine roots of trees (< 1 mm in diameter) were found in the mineral soil horizon the total profile down to 40 cm of the mineral soil, where 89, 82, 83 and 89% of the total amount in the whole profile were found. The upper 2.5 cm part of the humus layer contained 83, 81, 100 and 100% of all roots of the humus layer on the four different sampling occasions. High amounts of living fine roots were found in the upper 10 cm of the mineral soil horizon viz. 84, 76, 91 and 69% of the total mineral soil layer. Consequently, both the top soil horizons of the humus and the mineral soil layers were heavily penetrated by living fine roots. The highest proportion of living fine roots was found in the top 2.5 cm of the humus layer. Accordingly, the live/dead ratio of fine roots (< 1 mm in diameter) decreased from the top of the humus layer to the lower part of mineral soil horizon from 8.0-0.3, 0.8-0.2, 4.4-0.4 and 3.3-0.7 (g g-1) for the four sampling occasions, respectively. We concluded that the decrease in the live/ dead ratio was related to decreased vitality with depth of the fine roots in the soil profile. The highest live/dead ratio was found in the upper 2.5 cm of the humus layer for both the tree and field-layer species. This distribution pattern was most evident for tree fine roots < 1 mm in diameter. The mean fine-root biomass (live tissue < 1 mm in diameter) of tree species for the total profile varied on the four sampling occasions between 317, 113, 139 and 248 g m-2. The related fine root necromass (dead tissue

  17. Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex.

    Directory of Open Access Journals (Sweden)

    Iulia Glovaci

    Full Text Available The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3 receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36 completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is

  18. Ultrasound guided percutaneous fine needle aspiration biopsy ...

    African Journals Online (AJOL)

    )-guided percutaneous fine needle aspiration biopsy (PFNAB)/US-guided percutaneous needle core biopsy (PNCB) of abdominal lesions is efficacious in diagnosis, is helpful in treatment choice, to evaluate whether various other investigations ...

  19. Immobilization of Rocky Flats Graphite Fines Residue

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1999-01-01

    The development of the immobilization process for graphite fines has proceeded through a series of experimental programs. The experimental procedures and results from each series of experiments are discussed in this report

  20. Fine needle aspiration cytology of cervicofacial actinomycosis

    Directory of Open Access Journals (Sweden)

    Venkatesh Kusuma

    2008-01-01

    Full Text Available Actinomycosis is a chronic infection caused by Actinomyces israelii, usually seen in immunocompromised patients or in the background of tissue injury. Cervicofacial actinomycosis presenting as a fixed jaw swelling in an elderly individual can mimic malignancy and pose a diagnostic dilemma. We report here a case of cervicofacial actinomycosis diagnosed by fine needle aspiration, along with a review of the relevant literature. A 60 year-old man presented with a gradually increasing 6 x 5 cm swelling in the left side of his jaw. The swelling was fixed, without any apparent sinus or abscess. Fine needle aspiration was diagnostic as it revealed colonies of actinomyces surrounded by polymorphs and chronic inflammatory cells. The histopathological study of the excised specimen confirmed the cytological findings. Fine needle aspiration is an effective tool in the diagnosis of actinomycosis although its documentation is rare. Difficulties in the management can be avoided by early diagnosis using the fine needle aspiration technique.

  1. The Execution of Criminal Fine Penalty

    Directory of Open Access Journals (Sweden)

    Cosmin Peneoașu

    2014-05-01

    Full Text Available This paper aims at dissecting the criminal provisions on criminal enforcement of fines in current Romanian criminal law with the goal of highlighting the new penal policy stated in the larger field of criminal penalties. In the new Criminal Code the fine penalty experience a new regulation, but also a wider scope compared to the Criminal Code from 1968, with an exponential growth of the number of offenses or variations of them, for which a fine may be imposed as a unique punishment, but, especially, as an alternative punishment to imprisonment. Consequently, to ensure the efficiency of this punishment, the effective enforcement manner of the fine takes a new dimension. The study aims both students and academics or practitioners in the making. Furthermore, throughout the approach of this scientific research, new matters that new criminal legislation brings, are emphasized regarding this institution, both in a positive, and especially under a critical manner.

  2. Fine 5 Eesti tantsuväljal / Iiris Viirpalu

    Index Scriptorium Estoniae

    Viirpalu, Iiris, 1992-

    2017-01-01

    Nüüdistantsuteatril Fine 5 täitub tänavu 25. tegutsemisaasta. Fine 5 käekirjast. Vestlusest Fine 5 tantsuteatri ja -kooli kauaaegsete kunstiliste juhtide Renee Nõmmiku ja Tiina Olleskiga Eesti tantsukunstist

  3. Fine topology and locally Minkowskian manifolds

    Science.gov (United States)

    Agrawal, Gunjan; Sinha, Soami Pyari

    2018-05-01

    Fine topology is one of the several well-known topologies of physical and mathematical relevance. In the present paper, it is obtained that the nonempty open sets of different dimensional Minkowski spaces with the fine topology are not homeomorphic. This leads to the introduction of a new class of manifolds. It turns out that the technique developed here is also applicable to some other topologies, namely, the s-topology, space topology, f-topology, and A-topology.

  4. Fine sediment erodibility in Lake Okeechobee, Florida

    OpenAIRE

    Mehta, Ashish J.; Hwang, Kyu-Nam

    1989-01-01

    The critical need to predict the turbidity in water due to fine-grained sediment suspension under wave action over mud deposits for sedimentation and erosion studies, as well as sorbed contaminant transport, is well known. Since fall velocities of fine sediment particles are very small, they can be easily transported by hydrodynamic flows such as waves and currents. The presence of these particles in the water column affects accoustic transmission, heat absorption and depth of ...

  5. Revisiting fine-tuning in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Graham G. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Schmidt-Hoberg, Kai [DESY, Notkestraße 85, D-22607 Hamburg (Germany); Staub, Florian [Institute for Theoretical Physics (ITP), Karlsruhe Institute of Technology, Engesserstraße 7, D-76128 Karlsruhe (Germany); Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2017-03-06

    We evaluate the amount of fine-tuning in constrained versions of the minimal supersymmetric standard model (MSSM), with different boundary conditions at the GUT scale. Specifically we study the fully constrained version as well as the cases of non-universal Higgs and gaugino masses. We allow for the presence of additional non-holomorphic soft-terms which we show further relax the fine-tuning. Of particular importance is the possibility of a Higgsino mass term and we discuss possible origins for such a term in UV complete models. We point out that loop corrections typically lead to a reduction in the fine-tuning by a factor of about two compared to the estimate at tree-level, which has been overlooked in many recent works. Taking these loop corrections into account, we discuss the impact of current limits from SUSY searches and dark matter on the fine-tuning. Contrary to common lore, we find that the MSSM fine-tuning can be as small as 10 while remaining consistent with all experimental constraints. If, in addition, the dark matter abundance is fully explained by the neutralino LSP, the fine-tuning can still be as low as ∼20 in the presence of additional non-holomorphic soft-terms. We also discuss future prospects of these models and find that the MSSM will remain natural even in the case of a non-discovery in the foreseeable future.

  6. Revisiting fine-tuning in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Graham G. [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Staub, Florian [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Physik; Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Experimentelle Kernphysik

    2017-03-15

    We evaluate the amount of fine-tuning in constrained versions of the minimal supersymmetric standard model (MSSM), with different boundary conditions at the GUT scale. Specifically we study the fully constrained version as well as the cases of non-universal Higgs and gaugino masses. We allow for the presence of additional non-holomorphic soft-terms which we show further relax the fine-tuning. Of particular importance is the possibility of a Higgsino mass term and we discuss possible origins for such a term in UV complete models. We point out that loop corrections typically lead to a reduction in the fine-tuning by a factor of about two compared to the estimate at tree-level, which has been overlooked in many recent works. Taking these loop corrections into account, we discuss the impact of current limits from SUSY searches and dark matter on the fine-tuning. Contrary to common lore, we find that the MSSM fine-tuning can be as small as 10 while remaining consistent with all experimental constraints. If, in addition, the dark matter abundance is fully explained by the neutralino LSP, the fine-tuning can still be as low as ∝20 in the presence of additional non-holomorphic soft-terms. We also discuss future prospects of these models and find that the MSSM will remain natural even in the case of a non-discovery in the foreseeable future.

  7. Pelletization of fine coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  8. Synaptic inputs compete during rapid formation of the calyx of Held: a new model system for neural development.

    Science.gov (United States)

    Holcomb, Paul S; Hoffpauir, Brian K; Hoyson, Mitchell C; Jackson, Dakota R; Deerinck, Thomas J; Marrs, Glenn S; Dehoff, Marlin; Wu, Jonathan; Ellisman, Mark H; Spirou, George A

    2013-08-07

    Hallmark features of neural circuit development include early exuberant innervation followed by competition and pruning to mature innervation topography. Several neural systems, including the neuromuscular junction and climbing fiber innervation of Purkinje cells, are models to study neural development in part because they establish a recognizable endpoint of monoinnervation of their targets and because the presynaptic terminals are large and easily monitored. We demonstrate here that calyx of Held (CH) innervation of its target, which forms a key element of auditory brainstem binaural circuitry, exhibits all of these characteristics. To investigate CH development, we made the first application of serial block-face scanning electron microscopy to neural development with fine temporal resolution and thereby accomplished the first time series for 3D ultrastructural analysis of neural circuit formation. This approach revealed a growth spurt of added apposed surface area (ASA)>200 μm2/d centered on a single age at postnatal day 3 in mice and an initial rapid phase of growth and competition that resolved to monoinnervation in two-thirds of cells within 3 d. This rapid growth occurred in parallel with an increase in action potential threshold, which may mediate selection of the strongest input as the winning competitor. ASAs of competing inputs were segregated on the cell body surface. These data suggest mechanisms to select "winning" inputs by regional reinforcement of postsynaptic membrane to mediate size and strength of competing synaptic inputs.

  9. Distinct roles of the cortical layers of area V1 in figure-ground segregation.

    Science.gov (United States)

    Self, Matthew W; van Kerkoerle, Timo; Supèr, Hans; Roelfsema, Pieter R

    2013-11-04

    What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage feedforward, horizontal, and feedback processes at different time points. These different connection types have different patterns of laminar terminations in V1 and can therefore be distinguished with laminar recordings. We found that the visual response started 40 ms after stimulus presentation in layers 4 and 6, which are targets of feedforward connections from the lateral geniculate nucleus and distribute activity to the other layers. Boundary detection started shortly after the visual response. In this phase, boundaries of the figure induced synaptic currents and stronger neuronal responses in upper layer 4 and the superficial layers ~70 ms after stimulus onset, consistent with the hypothesis that they are detected by horizontal connections. In the next phase, ~30 ms later, synaptic inputs arrived in layers 1, 2, and 5 that receive feedback from higher visual areas, which caused the filling in of the representation of the entire figure with enhanced neuronal activity. The present results reveal unique contributions of the different cortical layers to the formation of a visual percept. This new blueprint of laminar processing may generalize to other tasks and to other areas of the cerebral cortex, where the layers are likely to have roles similar to those in area V1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity

    KAUST Repository

    Lemtiri-Chlieh, Fouad; Zhao, Liangfang; Kiraly, Drew D; Eipper, Betty A; Mains, Richard E; Levine, Eric S

    2011-01-01

    to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP), widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine

  11. Identification of dorsal root synaptic terminals on monkey ventral horn cells by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Ralston, H.J.; Ralston, D.D.

    1979-01-01

    The projection of dorsal root fibres to the motor nucleus of the macaque monkey spinal cord has been examined utilizing light and electron microscopic autoradiography. Light microscopy demonstrates a very sparse labelling of primary afferent fibres in the ventral horn. Silver grains overlying radioactive sources are frequently clustered into small groups, often adjacent to dendritic profiles. Under the electron microscope, myelinated axons and a few large synaptic profiles containing rounded synaptic vesicles were overlain by numerous silver grains. These labelled profiles made synaptic contact with dendrites 1 - 3 micrometers in diameter. The labelled profiles did not contact cell bodies or large proximal dendrites of ventral horn neutrons. Frequently, small synaptic profiles containing flattened vesicles were presynaptic to the large labelled terminals and it is suggested that these axoaxonal synapses may mediate presynaptic inhibition of the primary afferent fibres. The relationship of the present findings to previously published physiological and anatomical studies is discussed. (author)

  12. The C1q complement family of synaptic organizers: not just complementary.

    Science.gov (United States)

    Yuzaki, Michisuke

    2017-08-01

    Molecules that regulate formation, differentiation, and maintenance of synapses are called synaptic organizers. Recently, various 'C1q family' proteins have been shown to be released from neurons, and serve as a new class of synaptic organizers. Cbln1 and C1ql1 proteins regulate the formation and maintenance of parallel fiber-Purkinje cell and climbing fiber-Purkinje cell synapses, respectively, in the cerebellum. Cbln1 also modulates the function of postsynaptic delta2 glutamate receptors to regulate synaptic plasticity. C1ql2 and C1ql3, released from mossy fibers, determine the synaptic localization of postsynaptic kainate receptors in the hippocampus. C1ql3 also regulates the formation of synapses between the basolateral amygdala and the prefrontal cortex. These findings indicate the diverse functions of C1q family proteins in various brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Synaptic scaling enables dynamically distinct short- and long-term memory formation.

    Directory of Open Access Journals (Sweden)

    Christian Tetzlaff

    2013-10-01

    Full Text Available Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling - a slow process usually associated with the maintenance of activity homeostasis - combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.

  14. Synaptic scaling enables dynamically distinct short- and long-term memory formation.

    Science.gov (United States)

    Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Tsodyks, Misha; Wörgötter, Florentin

    2013-10-01

    Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling - a slow process usually associated with the maintenance of activity homeostasis - combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.

  15. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality.

    Science.gov (United States)

    Neves, Guilherme; Cooke, Sam F; Bliss, Tim V P

    2008-01-01

    Two facts about the hippocampus have been common currency among neuroscientists for several decades. First, lesions of the hippocampus in humans prevent the acquisition of new episodic memories; second, activity-dependent synaptic plasticity is a prominent feature of hippocampal synapses. Given this background, the hypothesis that hippocampus-dependent memory is mediated, at least in part, by hippocampal synaptic plasticity has seemed as cogent in theory as it has been difficult to prove in practice. Here we argue that the recent development of transgenic molecular devices will encourage a shift from mechanistic investigations of synaptic plasticity in single neurons towards an analysis of how networks of neurons encode and represent memory, and we suggest ways in which this might be achieved. In the process, the hypothesis that synaptic plasticity is necessary and sufficient for information storage in the brain may finally be validated.

  16. Statistical Modelling of Synaptic Vesicles Distribution and Analysing their Physical Characteristics

    DEFF Research Database (Denmark)

    Khanmohammadi, Mahdieh

    transmission electron microscopy is used to acquire images from two experimental groups of rats: 1) rats subjected to a behavioral model of stress and 2) rats subjected to sham stress as the control group. The synaptic vesicle distribution and interactions are modeled by employing a point process approach......This Ph.D. thesis deals with mathematical and statistical modeling of synaptic vesicle distribution, shape, orientation and interactions. The first major part of this thesis treats the problem of determining the effect of stress on synaptic vesicle distribution and interactions. Serial section...... on differences of statistical measures in section and the same measures in between sections. Three-dimensional (3D) datasets are reconstructed by using image registration techniques and estimated thicknesses. We distinguish the effect of stress by estimating the synaptic vesicle densities and modeling...

  17. Ghrelin stimulates synaptic formation in cultured cortical networks in a dose-dependent manner

    NARCIS (Netherlands)

    Herzig, K.H.; Stoyanova, Irina; le Feber, Jakob; Rutten, Wim

    2013-01-01

    Ghrelin was initially related to appetite stimulation and growth hormone secretion. These findings suggest that ghrelin may provide a novel therapeutic strategy for the treatment of disorders related to synaptic impairment.

  18. Opposing Effects of Intrinsic Conductance and Correlated Synaptic Input on V-Fluctuations during Network Activity

    DEFF Research Database (Denmark)

    Kolind, Jens; Hounsgaard, Jørn Dybkjær; Berg, Rune W

    2012-01-01

    Neurons often receive massive concurrent bombardment of synaptic inhibition and excitation during functional network activity. This increases membrane conductance and causes fluctuations in membrane potential (V(m)) and spike timing. The conductance increase is commonly attributed to synaptic....... If the spikes arrive at random times the changes in synaptic conductance are therefore stochastic and rapid during intense network activity. In comparison, sub-threshold intrinsic conductances vary smoothly in time. In the present study this discrepancy is investigated using two conductance-based models: a (1...... conductance, but also includes the intrinsic conductances recruited during network activity. These two sources of conductance have contrasting dynamic properties at sub-threshold membrane potentials. Synaptic transmitter gated conductance changes abruptly and briefly with each presynaptic action potential...

  19. Interplay of multiple synaptic plasticity features in filamentary memristive devices for neuromorphic computing

    Science.gov (United States)

    La Barbera, Selina; Vincent, Adrien F.; Vuillaume, Dominique; Querlioz, Damien; Alibart, Fabien

    2016-12-01

    Bio-inspired computing represents today a major challenge at different levels ranging from material science for the design of innovative devices and circuits to computer science for the understanding of the key features required for processing of natural data. In this paper, we propose a detail analysis of resistive switching dynamics in electrochemical metallization cells for synaptic plasticity implementation. We show how filament stability associated to joule effect during switching can be used to emulate key synaptic features such as short term to long term plasticity transition and spike timing dependent plasticity. Furthermore, an interplay between these different synaptic features is demonstrated for object motion detection in a spike-based neuromorphic circuit. System level simulation presents robust learning and promising synaptic operation paving the way to complex bio-inspired computing systems composed of innovative memory devices.

  20. Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes

    Science.gov (United States)

    2012-01-01

    Action potentials at the neurons and graded signals at the synapses are primary codes in the brain. In terms of their functional interaction, the studies were focused on the influence of presynaptic spike patterns on synaptic activities. How the synapse dynamics quantitatively regulates the encoding of postsynaptic digital spikes remains unclear. We investigated this question at unitary glutamatergic synapses on cortical GABAergic neurons, especially the quantitative influences of release probability on synapse dynamics and neuronal encoding. Glutamate release probability and synaptic strength are proportionally upregulated by presynaptic sequential spikes. The upregulation of release probability and the efficiency of probability-driven synaptic facilitation are strengthened by elevating presynaptic spike frequency and Ca2+. The upregulation of release probability improves spike capacity and timing precision at postsynaptic neuron. These results suggest that the upregulation of presynaptic glutamate release facilitates a conversion of synaptic analogue signals into digital spikes in postsynaptic neurons, i.e., a functional compatibility between presynaptic and postsynaptic partners. PMID:22852823

  1. Synaptic Loss and the Pathophysiology of PTSD: Implications for Ketamine as a Prototype Novel Therapeutic

    Science.gov (United States)

    Krystal, John H.; Abdallah, Chadi G.; Averill, Lynette A.; Kelmendi, Benjamin; Harpaz-Rotem, Ilan; Sanacora, Gerard; Southwick, Steven M.; Duman, Ronald S.

    2018-01-01

    Purpose of Review Studies of the neurobiology and treatment of PTSD have highlighted many aspects of the pathophysiology of this disorder that might be relevant to treatment. The purpose of this review is to highlight the potential clinical importance of an often-neglected consequence of stress models in animals that may be relevant to PTSD: the stress-related loss of synaptic connectivity. Recent Findings Here, we will briefly review evidence that PTSD might be a “synaptic disconnection syndrome” and highlight the importance of this perspective for the emerging therapeutic application of ketamine as a potential rapid-acting treatment for this disorder that may work, in part, by restoring synaptic connectivity. Summary Synaptic disconnection may contribute to the profile of PTSD symptoms that may be targeted by novel pharmacotherapeutics. PMID:28844076

  2. Immunogold localization of serotonin within synaptic terminals in the rat mesencephalic trigeminal nucleus

    NARCIS (Netherlands)

    Liem, RSB; Copray, JCVM

    1996-01-01

    With the use of postembedding electron-microscopic immunogold cytochemistry, the vesicular distribution of serotonin within serotonergic synaptic terminals in the mesencephalic trigeminal nucleus was determined in order to obtain further insight into the mechanisms and function, significance of

  3. Raindrops of synaptic noise on dual excitability landscape: an approach to astrocyte network modelling

    Science.gov (United States)

    Verisokin, Andrey Yu.; Postnov, Dmitry E.; Verveyko, Darya V.; Brazhe, Alexey R.

    2018-04-01

    The most abundant non-neuronal cells in the brain, astrocytes, populate all parts of the central nervous system (CNS). Astrocytic calcium activity ranging from subcellular sparkles to intercellular waves is believed to be the key to a plethora of regulatory pathways in the central nervous system from synaptic plasticity to blood flow regulation. Modeling of the calcium wave initiation and transmission and their spatiotemporal dynamics is therefore an important step stone in understanding the crucial cogs of cognition. Astrocytes are active sensors of ongoing neuronal and synaptic activity, and neurotransmitters diffusing from the synaptic cleft make a strong impact on the astrocytic activity. Here we propose a model describing the patterns of calcium wave formation at a single cell level and discuss the interplay between astrocyte shape the calcium waves dynamics driven by local stochastic surges of glutamate simulating synaptic activity.

  4. Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Natasha eKhatri

    2013-12-01

    Full Text Available Powered by glucose metabolism, the brain is the most energy-demanding organ in our body, accounting for a quarter of total oxygen consumption. Adequate ATP production and regulation of the metabolic processes are essential for the maintenance of synaptic transmission and neuronal function. Glutamatergic synaptic activity utilizes the largest portion of bioenergy for synaptic events including neurotransmitter synthesis, vesicle recycling, and most importantly the postsynaptic activities leading to channel activation and rebalancing of ionic gradients. Bioenergy homeostasis is coupled with synaptic function via activities of the sodium pumps, glutamate transporters, glucose transport and mitochondria translocation. Energy insufficiency will be sensed by the AMP-activated dependent protein kinase (AMPK, a master metabolic regulator that stimulates the catalytic process to enhance energy production. A decline in energy supply and a disruption in bioenergy homeostasis play a critical role in multiple neuropathological conditions including ischemia, stroke and neurodegenerative diseases including Alzheimer’s disease and traumatic brain injuries.

  5. The synaptic pharmacology underlying sensory processing in the superior colliculus.

    Science.gov (United States)

    Binns, K E

    1999-10-01

    The superior colliculus (SC) is one of the most ancient regions of the vertebrate central sensory system. In this hub afferents from several sensory pathways converge, and an extensive range of neural circuits enable primary sensory processing, multi-sensory integration and the generation of motor commands for orientation behaviours. The SC has a laminar structure and is usually considered in two parts; the superficial visual layers and the deep multi-modal/motor layers. Neurones in the superficial layers integrate visual information from the retina, cortex and other sources, while the deep layers draw together data from many cortical and sub-cortical sensory areas, including the superficial layers, to generate motor commands. Functional studies in anaesthetized subjects and in slice preparations have used pharmacological tools to probe some of the SC's interacting circuits. The studies reviewed here reveal important roles for ionotropic glutamate receptors in the mediation of sensory inputs to the SC and in transmission between the superficial and deep layers. N-methyl-D-aspartate receptors appear to have special responsibility for the temporal matching of retinal and cortical activity in the superficial layers and for the integration of multiple sensory data-streams in the deep layers. Sensory responses are shaped by intrinsic inhibitory mechanisms mediated by GABA(A) and GABA(B) receptors and influenced by nicotinic acetylcholine receptors. These sensory and motor-command activities of SC neurones are modulated by levels of arousal through extrinsic connections containing GABA, serotonin and other transmitters. It is possible to naturally stimulate many of the SC's sensory and non-sensory inputs either independently or simultaneously and this brain area is an ideal location in which to study: (a) interactions between inputs from the same sensory system; (b) the integration of inputs from several sensory systems; and (c) the influence of non-sensory systems on

  6. Synaptic Plasticity and Spike Synchronisation in Neuronal Networks

    Science.gov (United States)

    Borges, Rafael R.; Borges, Fernando S.; Lameu, Ewandson L.; Protachevicz, Paulo R.; Iarosz, Kelly C.; Caldas, Iberê L.; Viana, Ricardo L.; Macau, Elbert E. N.; Baptista, Murilo S.; Grebogi, Celso; Batista, Antonio M.

    2017-12-01

    Brain plasticity, also known as neuroplasticity, is a fundamental mechanism of neuronal adaptation in response to changes in the environment or due to brain injury. In this review, we show our results about the effects of synaptic plasticity on neuronal networks composed by Hodgkin-Huxley neurons. We show that the final topology of the evolved network depends crucially on the ratio between the strengths of the inhibitory and excitatory synapses. Excitation of the same order of inhibition revels an evolved network that presents the rich-club phenomenon, well known to exist in the brain. For initial networks with considerably larger inhibitory strengths, we observe the emergence of a complex evolved topology, where neurons sparsely connected to other neurons, also a typical topology of the brain. The presence of noise enhances the strength of both types of synapses, but if the initial network has synapses of both natures with similar strengths. Finally, we show how the synchronous behaviour of the evolved network will reflect its evolved topology.

  7. Neurons with two sites of synaptic integration learn invariant representations.

    Science.gov (United States)

    Körding, K P; König, P

    2001-12-01

    Neurons in mammalian cerebral cortex combine specific responses with respect to some stimulus features with invariant responses to other stimulus features. For example, in primary visual cortex, complex cells code for orientation of a contour but ignore its position to a certain degree. In higher areas, such as the inferotemporal cortex, translation-invariant, rotation-invariant, and even view point-invariant responses can be observed. Such properties are of obvious interest to artificial systems performing tasks like pattern recognition. It remains to be resolved how such response properties develop in biological systems. Here we present an unsupervised learning rule that addresses this problem. It is based on a neuron model with two sites of synaptic integration, allowing qualitatively different effects of input to basal and apical dendritic trees, respectively. Without supervision, the system learns to extract invariance properties using temporal or spatial continuity of stimuli. Furthermore, top-down information can be smoothly integrated in the same framework. Thus, this model lends a physiological implementation to approaches of unsupervised learning of invariant-response properties.

  8. Acid-sensing ion channels: trafficking and synaptic function

    Directory of Open Access Journals (Sweden)

    Zha Xiang-ming

    2013-01-01

    Full Text Available Abstract Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs, to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels.

  9. Acid-sensing ion channels: trafficking and synaptic function.

    Science.gov (United States)

    Zha, Xiang-ming

    2013-01-02

    Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs), to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels.

  10. Synaptic, transcriptional and chromatin genes disrupted in autism.

    Science.gov (United States)

    De Rubeis, Silvia; He, Xin; Goldberg, Arthur P; Poultney, Christopher S; Samocha, Kaitlin; Cicek, A Erucment; Kou, Yan; Liu, Li; Fromer, Menachem; Walker, Susan; Singh, Tarinder; Klei, Lambertus; Kosmicki, Jack; Shih-Chen, Fu; Aleksic, Branko; Biscaldi, Monica; Bolton, Patrick F; Brownfeld, Jessica M; Cai, Jinlu; Campbell, Nicholas G; Carracedo, Angel; Chahrour, Maria H; Chiocchetti, Andreas G; Coon, Hilary; Crawford, Emily L; Curran, Sarah R; Dawson, Geraldine; Duketis, Eftichia; Fernandez, Bridget A; Gallagher, Louise; Geller, Evan; Guter, Stephen J; Hill, R Sean; Ionita-Laza, Juliana; Jimenz Gonzalez, Patricia; Kilpinen, Helena; Klauck, Sabine M; Kolevzon, Alexander; Lee, Irene; Lei, Irene; Lei, Jing; Lehtimäki, Terho; Lin, Chiao-Feng; Ma'ayan, Avi; Marshall, Christian R; McInnes, Alison L; Neale, Benjamin; Owen, Michael J; Ozaki, Noriio; Parellada, Mara; Parr, Jeremy R; Purcell, Shaun; Puura, Kaija; Rajagopalan, Deepthi; Rehnström, Karola; Reichenberg, Abraham; Sabo, Aniko; Sachse, Michael; Sanders, Stephan J; Schafer, Chad; Schulte-Rüther, Martin; Skuse, David; Stevens, Christine; Szatmari, Peter; Tammimies, Kristiina; Valladares, Otto; Voran, Annette; Li-San, Wang; Weiss, Lauren A; Willsey, A Jeremy; Yu, Timothy W; Yuen, Ryan K C; Cook, Edwin H; Freitag, Christine M; Gill, Michael; Hultman, Christina M; Lehner, Thomas; Palotie, Aaarno; Schellenberg, Gerard D; Sklar, Pamela; State, Matthew W; Sutcliffe, James S; Walsh, Christiopher A; Scherer, Stephen W; Zwick, Michael E; Barett, Jeffrey C; Cutler, David J; Roeder, Kathryn; Devlin, Bernie; Daly, Mark J; Buxbaum, Joseph D

    2014-11-13

    The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.

  11. Endocannabinoid System and Synaptic Plasticity: Implications for Emotional Responses

    Directory of Open Access Journals (Sweden)

    María-Paz Viveros

    2007-01-01

    Full Text Available The endocannabinoid system has been involved in the regulation of anxiety, and proposed as an inhibitory modulator of neuronal, behavioral and adrenocortical responses to stressful stimuli. Brain regions such as the amygdala, hippocampus and cortex, which are directly involved in the regulation of emotional behavior, contain high densities of cannabinoid CB1 receptors. Mutant mice lacking CB1 receptors show anxiogenic and depressive-like behaviors as well as an altered hypothalamus pituitary adrenal axis activity, whereas enhancement of endocannabinoid signaling produces anxiolytic and antidepressant-like effects. Genetic and pharmacological approaches also support an involvement of endocannabinoids in extinction of aversive memories. Thus, the endocannabinoid system appears to play a pivotal role in the regulation of emotional states. Endocannabinoids have emerged as mediators of short- and long- term synaptic plasticity in diverse brain structures. Despite the fact that most of the studies on this field have been performed using in vitro models, endocannabinoid-mediated plasticity might be considered as a plausible candidate underlying some of the diverse physiological functions of the endogenous cannabinoid system, including developmental, affective and cognitive processes. In this paper, we will focus on the functional relevance of endocannabinoid-mediated plasticity within the framework of emotional responses. Alterations of the endocannabinoid system may constitute an important factor in the aetiology of certain neuropsychiatric disorders, and, in turn, enhancers of endocannabinoid signaling could represent a potential therapeutical tool in the treatment of both anxiety and depressive symptoms.

  12. Spike timing analysis in neural networks with unsupervised synaptic plasticity

    Science.gov (United States)

    Mizusaki, B. E. P.; Agnes, E. J.; Brunnet, L. G.; Erichsen, R., Jr.

    2013-01-01

    The synaptic plasticity rules that sculpt a neural network architecture are key elements to understand cortical processing, as they may explain the emergence of stable, functional activity, while avoiding runaway excitation. For an associative memory framework, they should be built in a way as to enable the network to reproduce a robust spatio-temporal trajectory in response to an external stimulus. Still, how these rules may be implemented in recurrent networks and the way they relate to their capacity of pattern recognition remains unclear. We studied the effects of three phenomenological unsupervised rules in sparsely connected recurrent networks for associative memory: spike-timing-dependent-plasticity, short-term-plasticity and an homeostatic scaling. The system stability is monitored during the learning process of the network, as the mean firing rate converges to a value determined by the homeostatic scaling. Afterwards, it is possible to measure the recovery efficiency of the activity following each initial stimulus. This is evaluated by a measure of the correlation between spike fire timings, and we analysed the full memory separation capacity and limitations of this system.

  13. Synaptic connectivity and spatial memory: a topological approach

    Science.gov (United States)

    Milton, Russell; Babichev, Andrey; Dabaghian, Yuri

    2015-03-01

    In the hippocampus, a network of place cells generates a cognitive map of space, in which each cell is responsive to a particular area of the environment - its place field. The peak response of each cell and the size of each place field have considerable variability. Experimental evidence suggests that place cells encode a topological map of space that serves as a basis of spatial memory and spatial awareness. Using a computational model based on Persistent Homology Theory we demonstrate that if the parameters of the place cells spiking activity fall inside of the physiological range, the network correctly encodes the topological features of the environment. We next introduce parameters of synaptic connectivity into the model and demonstrate that failures in synapses that detect coincident neuronal activity lead to spatial learning deficiencies similar to the ones that are observed in rodent models of neurodegenerative diseases. Moreover, we show that these learning deficiencies may be mitigated by increasing the number of active cells and/or by increasing their firing rate, suggesting the existence of a compensatory mechanism inherent to the cognitive map.

  14. Distinct Functions of Endophilin Isoforms in Synaptic Vesicle Endocytosis

    Directory of Open Access Journals (Sweden)

    Jifeng Zhang

    2015-01-01

    Full Text Available Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca2+ channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons.

  15. Axonal accumulation of synaptic markers in APP transgenic Drosophila depends on the NPTY motif and is paralleled by defects in synaptic plasticity

    DEFF Research Database (Denmark)

    Rusu, Patricia; Jansen, Anna; Soba, Peter

    2007-01-01

    . Specifically, axonal transport defects have been reported in AD animal models, including mice and flies that overexpress APP and tau. Here we demonstrate that the APP-induced traffic jam of vesicles in peripheral nerves of Drosophila melanogaster larvae depends on the four residues NPTY motif in the APP...... neurotransmission at the neuromuscular junction in transgenic larvae that express human APP. Consistent with the observation that these larvae do not show any obvious movement deficits, we found no changes in basal synaptic transmission. However, short-term synaptic plasticity was affected by overexpression of APP...

  16. Synaptic Plasticity and Learning Behaviors Mimicked in Single Inorganic Synapses of Pt/HfOx/ZnOx/TiN Memristive System

    Science.gov (United States)

    Wang, Lai-Guo; Zhang, Wei; Chen, Yan; Cao, Yan-Qiang; Li, Ai-Dong; Wu, Di

    2017-01-01

    In this work, a kind of new memristor with the simple structure of Pt/HfOx/ZnOx/TiN was fabricated completely via combination of thermal-atomic layer deposition (TALD) and plasma-enhanced ALD (PEALD). The synaptic plasticity and learning behaviors of Pt/HfOx/ZnOx/TiN memristive system have been investigated deeply. Multilevel resistance states are obtained by varying the programming voltage amplitudes during the pulse cycling. The device conductance can be continuously increased or decreased from cycle to cycle with better endurance characteristics up to about 3 × 103 cycles. Several essential synaptic functions are simultaneously achieved in such a single double-layer of HfOx/ZnOx device, including nonlinear transmission properties, such as long-term plasticity (LTP), short-term plasticity (STP), and spike-timing-dependent plasticity. The transformation from STP to LTP induced by repetitive pulse stimulation is confirmed in Pt/HfOx/ZnOx/TiN memristive device. Above all, simple structure of Pt/HfOx/ZnOx/TiN by ALD technique is a kind of promising memristor device for applications in artificial neural network.

  17. Synaptic Plasticity in Cardiac Innervation and Its Potential Role in Atrial Fibrillation

    OpenAIRE

    Jesse L. Ashton; Rebecca A. B. Burton; Gil Bub; Bruce H. Smaill; Bruce H. Smaill; Johanna M. Montgomery

    2018-01-01

    Synaptic plasticity is defined as the ability of synapses to change their strength of transmission. Plasticity of synaptic connections in the brain is a major focus of neuroscience research, as it is the primary mechanism underpinning learning and memory. Beyond the brain however, plasticity in peripheral neurons is less well understood, particularly in the neurons innervating the heart. The atria receive rich innervation from the autonomic branch of the peripheral nervous system. Sympathetic...

  18. Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling.

    Directory of Open Access Journals (Sweden)

    Maya Kaufman

    Full Text Available Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity, followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited.

  19. Simulation of synaptic coupling of neuron-like generators via a memristive device

    Science.gov (United States)

    Gerasimova, S. A.; Mikhaylov, A. N.; Belov, A. I.; Korolev, D. S.; Gorshkov, O. N.; Kazantsev, V. B.

    2017-08-01

    A physical model of synaptically coupled neuron-like generators interacting via a memristive device has been presented. The model simulates the synaptic transmission of pulsed signals between brain neurons. The action on the receiving generator has been performed via a memristive device that demonstrates adaptive behavior. It has been established that the proposed coupling channel provides the forced synchronization with the parameters depending on the memristive device sensitivity. Synchronization modes 1: 1 and 2: 1 have been experimentally observed.

  20. Long-term Relationships between Cholinergic Tone, Synchronous Bursting and Synaptic Remodeling

    Science.gov (United States)

    Kaufman, Maya; Corner, Michael A.; Ziv, Noam E.

    2012-01-01

    Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity), followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited. PMID:22911726

  1. Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling.

    Science.gov (United States)

    Kaufman, Maya; Corner, Michael A; Ziv, Noam E

    2012-01-01

    Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity), followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited.

  2. Pinpointing Synaptic Loss Caused by Alzheimer?s Disease with fMRI

    OpenAIRE

    Brickman, Adam M.; Small, Scott A.; Fleisher, Adam

    2009-01-01

    During its earliest stage, before cell loss and independent of amyloid plaques and neurofibrillary tangles, Alzheimer's disease (AD) causes synaptic loss affecting the basal functional properties of neurons. In principle, synaptic loss can be detected by measuring AD-induced changes in basal function, or by measuring stimulus-evoked responses on top of basal changes. Functional magnetic resonance imaging (fMRI) is sensitive to both basal changes and evoked-responses, and there are therefore t...

  3. Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement

    DEFF Research Database (Denmark)

    Knafo, Shira; Venero, César; Sánchez-Puelles, Cristina

    2012-01-01

    ) that enhances spatial learning and memory in rats. We have now investigated the cellular and molecular basis of this cognitive enhancement, using biochemical, morphological, electrophysiological, and behavioral analyses. We have found that FGL triggers a long-lasting enhancement of synaptic transmission......MKII activation. These results provide a mechanistic link between facilitation of AMPA receptor synaptic delivery and improved hippocampal-dependent learning, induced by a pharmacological cognitive enhancer....

  4. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory

    Science.gov (United States)

    Hagena, Hardy; Hansen, Niels; Manahan-Vaughan, Denise

    2016-01-01

    Noradrenaline (NA) is a key neuromodulator for the regulation of behavioral state and cognition. It supports learning by increasing arousal and vigilance, whereby new experiences are “earmarked” for encoding. Within the hippocampus, experience-dependent information storage occurs by means of synaptic plasticity. Furthermore, novel spatial, contextual, or associative learning drives changes in synaptic strength, reflected by the strengthening of long-term potentiation (LTP) or long-term depression (LTD). NA acting on β-adrenergic receptors (β-AR) is a key determinant as to whether new experiences result in persistent hippocampal synaptic plasticity. This can even dictate the direction of change of synaptic strength. The different hippocampal subfields play different roles in encoding components of a spatial representation through LTP and LTD. Strikingly, the sensitivity of synaptic plasticity in these subfields to β-adrenergic control is very distinct (dentate gyrus > CA3 > CA1). Moreover, NA released from the locus coeruleus that acts on β-AR leads to hippocampal LTD and an enhancement of LTD-related memory processing. We propose that NA acting on hippocampal β-AR, that is graded according to the novelty or saliency of the experience, determines the content and persistency of synaptic information storage in the hippocampal subfields and therefore of spatial memories. PMID:26804338

  5. Characterization of beta-adrenergic receptors in synaptic membranes from rat cerebral cortex and cerebellum

    International Nuclear Information System (INIS)

    Lautens, L.

    1986-01-01

    Beta-adrenergic receptor ligand binding sites have been characterized in synaptic membranes from rat cerebral cortex and cerebellum using radioligand binding techniques. The equilibrium and kinetic properties of binding were assessed. The binding sites were non-interacting and exhibited two states of agonist binding which were sensitive to guanyl nucleotide. Synaptic membranes from cerebral cortex contained an equal number of beta 1 - and beta 2 -receptors; membranes from cerebellum possessed more beta 2 -than beta 1 -receptors. Photoaffinity labeling experiments revealed two different beta-adrenergic receptor polypeptides, R 1 and R 2 (and possibly a third, R 3 ) in synaptic membranes. The ratios of incorporation of photoaffinity label into R 1 : 2 were approximately 1:1 (cerebral cortex) and 5:1 (cerebellum). Photoaffinity labeling of R 1 and R 2 was inhibited equally well by both agonist and antagonist in synaptic membranes from cerebellum; whereas agonist was a less potent inhibitor in membranes from cerebral cortex. Both subtypes of beta-adrenergic receptors exhibited the same apparent molecular weight in synaptic membranes from cerebral cortex. The beta-adrenergic receptors in synaptic membranes from cerebral cortex and cerebellum were glycoproteins which exhibited the same apparent molecular weight after exposure to endoglycosidase F. The partial proteolytic digest maps of photoaffinity labeled beta-adrenergic receptors from rat cerebral cortex, cerebellum, lung and heart were compared

  6. Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals.

    Science.gov (United States)

    Fassio, Anna; Fadda, Manuela; Benfenati, Fabio

    2016-01-01

    The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions. The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin (CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission.

  7. MOLECULAR MACHINES DETERMINING THE FATE OF ENDOCYTOSED SYNAPTIC VESICLES IN NERVE TERMINALS

    Directory of Open Access Journals (Sweden)

    Anna eFassio

    2016-05-01

    Full Text Available The cycle of a synaptic vesicle (SV within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions.The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on (i the cyclin-dependent kinase-5 and calcineurin control of the recycling pool of SVs; (ii the role of small GTPases of the Rab and ADP-ribosylation factor (Arf families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission.

  8. Presynaptic protein synthesis required for NT-3-induced long-term synaptic modulation

    Directory of Open Access Journals (Sweden)

    Je H

    2011-01-01

    Full Text Available Abstract Background Neurotrophins elicit both acute and long-term modulation of synaptic transmission and plasticity. Previously, we demonstrated that the long-term synaptic modulation requires the endocytosis of neurotrophin-receptor complex, the activation of PI3K and Akt, and mTOR mediated protein synthesis. However, it is unclear whether the long-term synaptic modulation by neurotrophins depends on protein synthesis in pre- or post-synaptic cells. Results Here we have developed an inducible protein translation blocker, in which the kinase domain of protein kinase R (PKR is fused with bacterial gyrase B domain (GyrB-PKR, which could be dimerized upon treatment with a cell permeable drug, coumermycin. By genetically targeting GyrB-PKR to specific cell types, we show that NT-3 induced long-term synaptic modulation requires presynaptic, but not postsynaptic protein synthesis. Conclusions Our results provide mechanistic insights into the cell-specific requirement for protein synthesis in the long-term synaptic modulation by neurotrophins. The GyrB-PKR system may be useful tool to study protein synthesis in a cell-specific manner.

  9. Loss of Huntingtin stimulates capture of retrograde dense-core vesicles to increase synaptic neuropeptide stores.

    Science.gov (United States)

    Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S

    2017-08-01

    The Huntington's disease protein Huntingtin (Htt) regulates axonal transport of dense-core vesicles (DCVs) containing neurotrophins and neuropeptides. DCVs travel down axons to reach nerve terminals where they are either captured in synaptic boutons to support later release or reverse direction to reenter the axon as part of vesicle circulation. Currently, the impact of Htt on DCV dynamics in the terminal is unknown. Here we report that knockout of Drosophila Htt selectively reduces retrograde DCV flux at proximal boutons of motoneuron terminals. However, initiation of retrograde transport at the most distal bouton and transport velocity are unaffected suggesting that synaptic capture rate of these retrograde DCVs could be altered. In fact, tracking DCVs shows that retrograde synaptic capture efficiency is significantly elevated by Htt knockout or knockdown. Furthermore, synaptic boutons contain more neuropeptide in Htt knockout larvae even though bouton size, single DCV fluorescence intensity, neuropeptide release in response to electrical stimulation and subsequent activity-dependent capture are unaffected. Thus, loss of Htt increases synaptic capture as DCVs travel by retrograde transport through boutons resulting in reduced transport toward the axon and increased neuropeptide in the terminal. These results therefore identify native Htt as a regulator of synaptic capture and neuropeptide storage. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Synaptic pathology in the cerebellar dentate nucleus in chronic multiple sclerosis.

    Science.gov (United States)

    Albert, Monika; Barrantes-Freer, Alonso; Lohrberg, Melanie; Antel, Jack P; Prineas, John W; Palkovits, Miklós; Wolff, Joachim R; Brück, Wolfgang; Stadelmann, Christine

    2017-11-01

    In multiple sclerosis, cerebellar symptoms are associated with clinical impairment and an increased likelihood of progressive course. Cortical atrophy and synaptic dysfunction play a prominent role in cerebellar pathology and although the dentate nucleus is a predilection site for lesion development, structural synaptic changes in this region remain largely unexplored. Moreover, the mechanisms leading to synaptic dysfunction have not yet been investigated at an ultrastructural level in multiple sclerosis. Here, we report on synaptic changes of dentate nuclei in post-mortem cerebella of 16 multiple sclerosis patients and eight controls at the histological level as well as an electron microscopy evaluation of afferent synapses of the cerebellar dentate and pontine nuclei of one multiple sclerosis patient and one control. We found a significant reduction of afferent dentate synapses in multiple sclerosis, irrespective of the presence of demyelination, and a close relationship between glial processes and dentate synapses. Ultrastructurally, we show autophagosomes containing degradation products of synaptic vesicles within dendrites, residual bodies within intact-appearing axons and free postsynaptic densities opposed to astrocytic appendages. Our study demonstrates loss of dentate afferent synapses and provides, for the first time, ultrastructural evidence pointing towards neuron-autonomous and neuroglia-mediated mechanisms of synaptic degradation in chronic multiple sclerosis. © 2016 International Society of Neuropathology.

  11. Thalamic synaptic transmission of sensory information modulated by synergistic interaction of adenosine and serotonin.

    Science.gov (United States)

    Yang, Ya-Chin; Hu, Chun-Chang; Huang, Chen-Syuan; Chou, Pei-Yu

    2014-03-01

    The thalamic synapses relay peripheral sensory information to the cortex, and constitute an important part of the thalamocortical network that generates oscillatory activities responsible for different vigilance (sleep and wakefulness) states. However, the modulation of thalamic synaptic transmission by potential sleep regulators, especially by combination of regulators in physiological scenarios, is not fully characterized. We found that somnogen adenosine itself acts similar to wake-promoting serotonin, both decreasing synaptic strength as well as short-term depression, at the retinothalamic synapse. We then combined the two modulators considering the coexistence of them in the hypnagogic (sleep-onset) state. Adenosine plus serotonin results in robust synergistic inhibition of synaptic strength and dramatic transformation of short-term synaptic depression to facilitation. These synaptic effects are not achievable with a single modulator, and are consistent with a high signal-to-noise ratio but a low level of signal transmission through the thalamus appropriate for slow-wave sleep. This study for the first time demonstrates that the sleep-regulatory modulators may work differently when present in combination than present singly in terms of shaping information flow in the thalamocortical network. The major synaptic characters such as the strength and short-term plasticity can be profoundly altered by combination of modulators based on physiological considerations. © 2013 International Society for Neurochemistry.

  12. Synaptic vesicle proteins under conditions of rest and activation: analysis by 2-D difference gel electrophoresis.

    Science.gov (United States)

    Burré, Jacqueline; Beckhaus, Tobias; Corvey, Carsten; Karas, Michael; Zimmermann, Herbert; Volknandt, Walter

    2006-09-01

    Synaptic vesicles are organelles of the nerve terminal that secrete neurotransmitters by fusion with the presynaptic plasma membrane. Vesicle fusion is tightly controlled by depolarization of the plasma membrane and a set of proteins that may undergo post-translational modifications such as phosphorylation. In order to identify proteins that undergo modifications as a result of synaptic activation, we induced massive exocytosis and analysed the synaptic vesicle compartment by benzyldimethyl-n-hexadecylammonium chloride (BAC)/SDS-PAGE and difference gel electrophoresis (DIGE) followed by MALDI-TOF-MS. We identified eight proteins that revealed significant changes in abundance following nerve terminal depolarization. Of these, six were increased and two were decreased in abundance. Three of these proteins were phosphorylated as detected by Western blot analysis. In addition, we identified an unknown synaptic vesicle protein whose abundance increased on synaptic activation. Our results demonstrate that depolarization of the presynaptic compartment induces changes in the abundance of synaptic vesicle proteins and post-translational protein modification.

  13. Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus.

    Science.gov (United States)

    Besser, Limor; Chorin, Ehud; Sekler, Israel; Silverman, William F; Atkin, Stan; Russell, James T; Hershfinkel, Michal

    2009-03-04

    Zn(2+) is coreleased with glutamate from mossy fiber terminals and can influence synaptic function. Here, we demonstrate that synaptically released Zn(2+) activates a selective postsynaptic Zn(2+)-sensing receptor (ZnR) in the CA3 region of the hippocampus. ZnR activation induced intracellular release of Ca(2+), as well as phosphorylation of extracellular-regulated kinase and Ca(2+)/calmodulin kinase II. Blockade of synaptic transmission by tetrodotoxin or CdCl inhibited the ZnR-mediated Ca(2+) rises. The responses mediated by ZnR were largely attenuated by the extracellular Zn(2+) chelator, CaEDTA, and in slices from mice lacking vesicular Zn(2+), suggesting that synaptically released Zn(2+) triggers the metabotropic activity. Knockdown of the expression of the orphan G-protein-coupled receptor 39 (GPR39) attenuated ZnR activity in a neuronal cell line. Importantly, we observed widespread GPR39 labeling in CA3 neurons, suggesting a role for this receptor in mediating ZnR signaling in the hippocampus. Our results describe a unique role for synaptic Zn(2+) acting as the physiological ligand of a metabotropic receptor and provide a novel pathway by which synaptic Zn(2+) can regulate neuronal function.

  14. The role of additive neurogenesis and synaptic plasticity in a hippocampal memory model with grid-cell like input.

    Directory of Open Access Journals (Sweden)

    Peter A Appleby

    Full Text Available Recently, we presented a study of adult neurogenesis in a simplified hippocampal memory model. The network was required to encode and decode memory patterns despite changing input statistics. We showed that additive neurogenesis was a more effective adaptation strategy compared to neuronal turnover and conventional synaptic plasticity as it allowed the network to respond to changes in the input statistics while preserving representations of earlier environments. Here we extend our model to include realistic, spatially driven input firing patterns in the form of grid cells in the entorhinal cortex. We compare network performance across a sequence of spatial environments using three distinct adaptation strategies: conventional synaptic plasticity, where the network is of fixed size but the connectivity is plastic; neuronal turnover, where the network is of fixed size but units in the network may die and be replaced; and additive neurogenesis, where the network starts out with fewer initial units but grows over time. We confirm that additive neurogenesis is a superior adaptation strategy when using realistic, spatially structured input patterns. We then show that a more biologically plausible neurogenesis rule that incorporates cell death and enhanced plasticity of new granule cells has an overall performance significantly better than any one of the three individual strategies operating alone. This adaptation rule can be tailored to maximise performance of the network when operating as either a short- or long-term memory store. We also examine the time course of adult neurogenesis over the lifetime of an animal raised under different hypothetical rearing conditions. These growth profiles have several distinct features that form a theoretical prediction that could be tested experimentally. Finally, we show that place cells can emerge and refine in a realistic manner in our model as a direct result of the sparsification performed by the dentate gyrus

  15. Chloroquine causes similar electroretinogram modifications, neuronal phospholipidosis and marked impairment of synaptic vesicle transport in Albino and Pigmented Rats

    International Nuclear Information System (INIS)

    Lezmi, Stéphane; Rokh, Najla; Saint-Macary, Gérard; Pino, Michael; Sallez, Valérie; Thevenard, Françoise; Roome, Nigel; Rosolen, Serge

    2013-01-01

    Retinal toxicity of chloroquine has been known for several years, but the mechanism(s) of toxicity remain controversial; some author support the idea that the binding of chloroquine to melanin pigments in the retinal pigmented epithelium (RPE) play a major toxic role by concentrating the drug in the eye. In our study, 12 albinos Sprague-Dawley (SD) and 12 pigmented Brown Norway (BN) rats were treated orally for 3 months with chloroquine to compare functional and pathological findings. On Flash electroretinograms (ERG) performed in scotopic conditions, similar and progressive (time-dependent) delayed onset and decreased amplitudes of oscillatory potentials (from Day 71) and b-waves (on Day 92) were identified in both BN and SD rats. In both strains, identical morphological changes consisted of neuronal phospholipidosis associated with UV auto-fluorescence without evidence of retinal degeneration and gliosis; the RPE did not show any morphological lesions or autofluorescence. IHC analyses demonstrated a decrease in GABA expression in the inner nuclear layer. In addition, a marked accumulation of synaptic vesicles coupled with a marked disruption of neurofilaments in the optic nerve fibers was identified. In conclusion, ERG observations were very similar to those described in humans. Comparable ERG modifications, histopathology and immunohistochemistry findings were observed in the retina of both rat strains suggesting that melanin pigment is unlikely involved. chloroquine-induced impairment of synaptic vesicle transport, likely related to disruption of neurofilaments was identified and non-previously reported. This new mechanism of toxicity may also be responsible for the burry vision described in humans chronically treated with chloroquine

  16. Neuronal Kmt2a/Mll1 histone methyltransferase is essential for prefrontal synaptic plasticity and working memory.

    Science.gov (United States)

    Jakovcevski, Mira; Ruan, Hongyu; Shen, Erica Y; Dincer, Aslihan; Javidfar, Behnam; Ma, Qi; Peter, Cyril J; Cheung, Iris; Mitchell, Amanda C; Jiang, Yan; Lin, Cong L; Pothula, Venu; Stewart, A Francis; Ernst, Patricia; Yao, Wei-Dong; Akbarian, Schahram

    2015-04-01

    Neuronal histone H3-lysine 4 methylation landscapes are defined by sharp peaks at gene promoters and other cis-regulatory sequences, but molecular and cellular phenotypes after neuron-specific deletion of H3K4 methyl-regulators remain largely unexplored. We report that neuronal ablation of the H3K4-specific methyltransferase, Kmt2a/Mixed-lineage leukemia 1 (Mll1), in mouse postnatal forebrain and adult prefrontal cortex (PFC) is associated with increased anxiety and robust cognitive deficits without locomotor dysfunction. In contrast, only mild behavioral phenotypes were observed after ablation of the Mll1 ortholog Kmt2b/Mll2 in PFC. Impaired working memory after Kmt2a/Mll1 ablation in PFC neurons was associated with loss of training-induced transient waves of Arc immediate early gene expression critical for synaptic plasticity. Medial prefrontal layer V pyramidal neurons, a major output relay of the cortex, demonstrated severely impaired synaptic facilitation and temporal summation, two forms of short-term plasticity essential for working memory. Chromatin immunoprecipitation followed by deep sequencing in Mll1-deficient cortical neurons revealed downregulated expression and loss of the transcriptional mark, trimethyl-H3K4, at <50 loci, including the homeodomain transcription factor Meis2. Small RNA-mediated Meis2 knockdown in PFC was associated with working memory defects similar to those elicited by Mll1 deletion. Therefore, mature prefrontal neurons critically depend on maintenance of Mll1-regulated H3K4 methylation at a subset of genes with an essential role in cognition and emotion. Copyright © 2015 the authors 0270-6474/15/355097-12$15.00/0.

  17. Chloroquine causes similar electroretinogram modifications, neuronal phospholipidosis and marked impairment of synaptic vesicle transport in albino and pigmented rats.

    Science.gov (United States)

    Lezmi, Stéphane; Rokh, Najla; Saint-Macary, Gérard; Pino, Michael; Sallez, Valérie; Thevenard, Françoise; Roome, Nigel; Rosolen, Serge

    2013-06-07

    Retinal toxicity of chloroquine has been known for several years, but the mechanism(s) of toxicity remain controversial; some author support the idea that the binding of chloroquine to melanin pigments in the retinal pigmented epithelium (RPE) play a major toxic role by concentrating the drug in the eye. In our study, 12 albinos Sprague-Dawley (SD) and 12 pigmented Brown Norway (BN) rats were treated orally for 3 months with chloroquine to compare functional and pathological findings. On Flash electroretinograms (ERG) performed in scotopic conditions, similar and progressive (time-dependent) delayed onset and decreased amplitudes of oscillatory potentials (from Day 71) and b-waves (on Day 92) were identified in both BN and SD rats. In both strains, identical morphological changes consisted of neuronal phospholipidosis associated with UV auto-fluorescence without evidence of retinal degeneration and gliosis; the RPE did not show any morphological lesions or autofluorescence. IHC analyses demonstrated a decrease in GABA expression in the inner nuclear layer. In addition, a marked accumulation of synaptic vesicles coupled with a marked disruption of neurofilaments in the optic nerve fibers was identified. In conclusion, ERG observations were very similar to those described in humans. Comparable ERG modifications, histopathology and immunohistochemistry findings were observed in the retina of both rat strains suggesting that melanin pigment is unlikely involved. chloroquine-induced impairment of synaptic vesicle transport, likely related to disruption of neurofilaments was identified and non-previously reported. This new mechanism of toxicity may also be responsible for the burry vision described in humans chronically treated with chloroquine. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Fine particles flotation of the Moatize coal/Mozambique

    Science.gov (United States)

    Castro, Amilton; de Brum, Irineu A. S.

    2017-11-01

    This study was done from a sample of coal mined at the Vale-Mozambique mine, located in Moatize district, Tete Province. The aim of this work is to analyze the reagent system in the flotation of coal fines belonging to the UCB layer. Among coal processing methods, flotation stands out as one of the most important for the concentration of this material, in particular in the treatment of fine particles. The total feed of the Vale-Mozambique processing plant is 8000 tph of coal, where 10% of this feed corresponds to the fine fraction that feeds the flotation circuit. The material used in this study had a particle size of 96% smaller than 0.25 mm. The reagents used in the flotation tests were Betacol and diesel oil as hydrophobizing agents and MIBC as frother. The range of Betacol concentrations in the first test phase was 200 g / t at 500 g / t, and in the second phase 200 g / t at 500 g / t of diesel oil and MIBC were kept constant at 300 g / t. The immediate analysis followed the Brazilian standards: NBR 8289, NBR 8293, NBR 8290, NBR 8299. The results showed that it is possible, from a feed with the ash content around 22.84%, to obtain products with levels below of 10% ash, with a mass recovery around 50%. The recovery of carbonaceous matter was also evaluated and presented positive results. Complementing this study, the effect of H2O recovery was evaluated and it was observed that for the concentrations of Betacol the recoveries ranged from 6 to 9%, and for diesel oil plus MIBC were 4 to 7%.

  19. Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman–Watts neuronal networks

    International Nuclear Information System (INIS)

    Wang, Baoying; Gong, Yubing; Xie, Huijuan; Wang, Qi

    2016-01-01

    Highlights: • Optimal autaptic delay enhanced synchronization transitions induced by synaptic delay in neuronal networks. • Optimal synaptic delay enhanced synchronization transitions induced by autaptic delay. • Optimal coupling strength enhanced synchronization transitions induced by autaptic or synaptic delay. - Abstract: In this paper, we numerically study the effect of electrical autaptic and synaptic delays on synchronization transitions induced by each other in Newman–Watts Hodgkin–Huxley neuronal networks. It is found that the synchronization transitions induced by synaptic delay vary with varying autaptic delay and become strongest when autaptic delay is optimal. Similarly, the synchronization transitions induced by autaptic delay vary with varying synaptic delay and become strongest at optimal synaptic delay. Also, there is optimal coupling strength by which the synchronization transitions induced by either synaptic or autaptic delay become strongest. These results show that electrical autaptic and synaptic delays can enhance synchronization transitions induced by each other in the neuronal networks. This implies that electrical autaptic and synaptic delays can cooperate with each other and more efficiently regulate the synchrony state of the neuronal networks. These findings could find potential implications for the information transmission in neural systems.

  20. [Effects of tree species diversity on fine-root biomass and morphological characteristics in subtropical Castanopsis carlesii forests].

    Science.gov (United States)

    Wang, Wei-Wei; Huang, Jin-Xue; Chen, Feng; Xiong, De-Cheng; Lu, Zheng-Li; Huang, Chao-Chao; Yang, Zhi-Jie; Chen, Guang-Shui

    2014-02-01

    Fine roots in the Castanopsis carlesii plantation forest (MZ), the secondary forest of C. carlesii through natural regeneration with anthropogenic promotion (AR), and the secondary forest of C. carlesii through natural regeneration (NR) in Sanming City, Fujian Province, were estimated by soil core method to determine the influence of tree species diversity on biomass, vertical distribution and morphological characteristics of fine roots. The results showed that fine root biomass for the 0-80 cm soil layer in the MZ, AR and NR were (182.46 +/- 10.81), (242.73 +/- 17.85) and (353.11 +/- 16.46) g x m(-2), respectively, showing an increased tendency with increasing tree species diversity. In the three forests, fine root biomass was significantly influenced by soil depth, and fine roots at the 0-10 cm soil layer accounted for more than 35% of the total fine root biomass. However, the interaction of stand type and soil depth on fine-root distribution was not significant, indicating no influence of tree species diversity on spatial niche segregation in fine roots. Root surface area density and root length density were the highest in NR and lowest in the MZ. Specific root length was in the order of AR > MZ > NR, while specific root surface area was in the order of NR > MZ > AR. There was no significant interaction of stand type and soil depth on specific root length and specific root surface area. Fine root morphological plasticity at the stand level had no significant response to tree species diversity.