WorldWideScience

Sample records for fine structure spectroscopies

  1. Imaging spectroscopy of solar radio burst fine structures.

    Science.gov (United States)

    Kontar, E P; Yu, S; Kuznetsov, A A; Emslie, A G; Alcock, B; Jeffrey, N L S; Melnik, V N; Bian, N H; Subramanian, P

    2017-11-15

    Solar radio observations provide a unique diagnostic of the outer solar atmosphere. However, the inhomogeneous turbulent corona strongly affects the propagation of the emitted radio waves, so decoupling the intrinsic properties of the emitting source from the effects of radio wave propagation has long been a major challenge in solar physics. Here we report quantitative spatial and frequency characterization of solar radio burst fine structures observed with the Low Frequency Array, an instrument with high-time resolution that also permits imaging at scales much shorter than those corresponding to radio wave propagation in the corona. The observations demonstrate that radio wave propagation effects, and not the properties of the intrinsic emission source, dominate the observed spatial characteristics of radio burst images. These results permit more accurate estimates of source brightness temperatures, and open opportunities for quantitative study of the mechanisms that create the turbulent coronal medium through which the emitted radiation propagates.

  2. Doppler-free spectroscopy of the atomic rubidium fine structure using ultrafast spatial coherent control method

    Science.gov (United States)

    Kim, Minhyuk; Kim, Kyungtae; Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2017-04-01

    Spectral programming solutions for the ultrafast spatial coherent control (USCC) method to resolve the fine-structure energy levels of atomic rubidium are reported. In USCC, a pair of counter-propagating ultrashort laser pulses are programmed to make a two-photon excitation pattern specific to particular transition pathways and atom species, thus allowing the involved transitions resolvable in space simultaneously. With a proper spectral phase and amplitude modulation, USCC has been also demonstrated for the systems with many intermediate energy levels. Pushing the limit of system complexity even further, we show here an experimental demonstration of the rubidium fine-structure excitation pattern resolvable by USCC. The spectral programming solution for the given USCC is achieved by combining a double-V-shape spectral phase function and a set of phase steps, where the former distinguishes the fine structure and the latter prevents resonant transitions. The experimental results will be presented along with its application in conjunction with the Doppler-free frequency-comb spectroscopy for rubidium hyperfine structure measurements. Samsung Science and Technology Foundation [SSTFBA1301-12].

  3. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  4. Time-resolved pump-probe X-ray absorption fine structure spectroscopy of Gaq3

    International Nuclear Information System (INIS)

    Dicke, Benjamin

    2013-01-01

    Gallium(tris-8-hydroxyquinoline) (Gaq 3 ) belongs to a class of metal organic compounds, used as electron transport layer and emissive layer in organic light emitting diodes. Many research activities have concentrated on the optical and electronic properties, especially of the homologue molecule aluminum(tris-8-hydroxyquinoline) (Alq 3 ). Knowledge of the first excited state S 1 structure of these molecules could provide deeper insight into the processes involved into the operation of electronic devices, such as OLEDs and, hence, it could further improve their efficiency and optical properties. Until now the excited state structure could not be determined experimentally. Most of the information about this structure mainly arises from theoretical calculations. X-ray absorption fine structure (XAFS) spectroscopy is a well developed technique to determine both, the electronic and the geometric properties of a sample. The connection of ultrashort pulsed X-ray sources with a pulsed laser system offers the possibility to use XAFS as a tool for studying the transient changes of a sample induced by a laser pulse. In the framework of this thesis a new setup for time-resolved pump-probe X-ray absorption spectroscopy at PETRA III beamline P11 was developed for measuring samples in liquid form. In this setup the sample is pumped into its photo-excited state by a femtosecond laser pump pulse with 343 nm wavelength and after a certain time delay probed by an X-ray probe pulse. In this way the first excited singlet state S 1 of Gaq 3 dissolved in benzyl alcohol was analyzed. A structural model for the excited state structure of the Gaq 3 molecule based on the several times reproduced results of the XAFS experiments is proposed. According to this model it was found that the Ga-N A bond length is elongated, while the Ga-O A bond length is shortened upon photoexcitation. The dynamics of the structural changes were not the focus of this thesis. Nevertheless the excited state lifetime

  5. Determining Orientational Structure of Diamondoid Thiols Attached to Silver Using Near Edge X-ray Absorption Fine Structure Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Lee, J I; Fabbri, J D; Wang, D; Nielsen, M; Randel, J C; Schreiner, P R; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J P; Carlson, R K; Terminello, L J; Melosh, N A; van Buuren, T

    2008-10-07

    Near-edge x-ray absorption fine structure spectroscopy (NEXAFS) is a powerful tool for determination of molecular orientation in self-assembled monolayers and other surface-attached molecules. A general framework for using NEXAFS to simultaneously determine molecular tilt and twist of rigid molecules attached to surfaces is presented. This framework is applied to self-assembled monolayers of higher diamondoid, hydrocarbon molecules with cubic-diamond-cage structures. Diamondoid monolayers chemisorbed on metal substrates are known to exhibit interesting electronic and surface properties. This work compares molecular orientation in monolayers prepared on silver substrates using two different thiol positional isomers of [121]tetramantane, and thiols derived from two different pentamantane structural isomers, [1212]pentamantane and [1(2,3)4]pentamantane. The observed differences in monolayer structure demonstrate the utility and limitations of NEXAFS spectroscopy and the framework. The results also demonstrate the ability to control diamondoid assembly, in particular the molecular orientational structure, providing a flexible platform for the modification of surface properties with this exciting new class of nanodiamond materials.

  6. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    Science.gov (United States)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  7. Microwave spectroscopy of the 1 s n p P3J fine structure of high Rydberg states in 4He

    Science.gov (United States)

    Deller, A.; Hogan, S. D.

    2018-01-01

    The 1 s n p P3J fine structure of high Rydberg states in helium has been measured by microwave spectroscopy of single-photon transitions from 1 s n s S31 levels in pulsed supersonic beams. For states with principal quantum numbers in the range from n =34 to 36, the J =0 →2 and J =1 →2 fine structure intervals were both observed. For values of n between 45 and 51 only the larger J =0 →2 interval was resolved. The experimental results are in good agreement with theoretical predictions. Detailed characterization of residual uncanceled electric and magnetic fields in the experimental apparatus and calculations of the Stark and Zeeman structures of the Rydberg states in weak fields were used to quantify systematic contributions to the uncertainties in the measurements.

  8. Size-selective extended X-ray absorption fine structure spectroscopy of free selenium clusters

    International Nuclear Information System (INIS)

    Nagaya, K.; Yao, M.; Hayakawa, T.; Ohmasa, Y.; Kajihara, Y.; Ishii, M.; Katayama, Y.

    2002-01-01

    In a recent paper [M. Yao et al., J. Synchrotron Radiat. 8, 542 (2001)], we proposed a new method for the size-selective EXAFS (extended x-ray absorption fine structure) of neutral-free clusters, in which not only the x-ray absorption process but also the deexcitation processes are utilized as the structural information. In order to verify this method experimentally, we have developed the synchronous measurements of EXAFS and photoelectron photoion coincidence and carried them out for a Se cluster beam by utilizing the third-generation intense x-ray source. The EXAFS spectra for Se small clusters have been obtained and compared critically with theoretical predictions

  9. Quantitative depth profiling of photoacid generators in photoresist materials by near-edge X-ray absorption fine structure spectroscopy

    International Nuclear Information System (INIS)

    Prabhu, Vivek M.; Sambasivan, Sharadha; Fischer, Daniel; Sundberg, Linda K.; Allen, Robert D.

    2006-01-01

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to quantify the surface composition and depth profiling of photoacid generators in thin film photoresist materials by varying the entrance-grid bias of a partial electron yield detector. By considering model compositional profiles, NEXAFS distinguishes the surface molar excess within the top 6 nm from the bulk. A surface enriched system, triphenylsulfonium perfluorooctanesulfonate, is contrasted with a perfluorobutanesulfonate photoacid generator, which displays an appreciable surface profile within a 6 nm segregation length scale. These results, while applied to 193-nm photoresist materials, highlight a general approach to quantify NEXAFS partial electron yield data

  10. Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mantouvalou, I., E-mail: ioanna.mantouvalou@tu-berlin.de; Witte, K.; Martyanov, W.; Jonas, A.; Grötzsch, D.; Kanngießer, B. [Institute for Optics and Atomic Physics, Technical University of Berlin, D-10623 Berlin (Germany); Streeck, C. [Physikalisch-Technische Bundesanstalt (PTB), D-10587 Berlin (Germany); Löchel, H.; Rudolph, I.; Erko, A. [Helmholtz-Zentrum Berlin, D-14109 Berlin (Germany); Stiel, H. [Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, D-12489 Berlin (Germany)

    2016-05-16

    With the help of adapted off-axis reflection zone plates, near edge X-ray absorption fine structure spectra at the C and N K-absorption edge have been recorded using a single 1.2 ns long soft X-ray pulse. The transmission experiments were performed with a laser-produced plasma source in the laboratory rendering time resolved measurements feasible independent on large scale facilities. A resolving power of E/ΔE ∼ 950 at the respective edges could be demonstrated. A comparison of single shot spectra with those collected with longer measuring time proves that all features of the used reference samples (silicon nitrate and polyimide) can be resolved in 1.2 ns. Hence, investigations of radiation sensitive biological specimen become possible due to the high efficiency of the optical elements enabling low dose experiments.

  11. Sample-angle feedback for diffraction anomalous fine-structure spectroscopy

    International Nuclear Information System (INIS)

    Cross, J.O.; Elam, W.T.; Harris, V.G.; Kirkland, J.P.; Bouldin, C.E.; Sorensen, L.B.

    1998-01-01

    Diffraction anomalous fine-structure (DAFS) experiments measure Bragg peak intensities as continuous functions of photon energy near a core-level excitation. Measuring the integrated intensity at each energy makes the experiments prohibitively slow; however, in many cases DAFS can be collected quickly by measuring only the peak intensity at the center of the rocking curve. A piezoelectric-actuator-driven stage has been designed and tested as part of a sample-angle feedback circuit for locking onto the maximum of the rocking curve while the energy is scanned. Although software peak-tracking requires only a simple calculation of diffractometer angles, it is found that the additional hardware feedback dramatically improves the reproducibility of the data

  12. Time-resolved pump and probe x-ray absorption fine structure spectroscopy at beamline P11 at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Göries, D., E-mail: dennis.goeries@desy.de; Roedig, P.; Stübe, N.; Meyer, J.; Warmer, M.; Weckert, E.; Meents, A., E-mail: alke.meents@desy.de [DESY Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg (Germany); Dicke, B.; Naumova, M.; Rübhausen, M. [Center for Free-Electron Laser Science (CFEL), Luruper Chaussee 149, 22761 Hamburg (Germany); Galler, A.; Gawelda, W.; Geßler, P.; Sotoudi Namin, H.; Beckmann, A. [European XFEL, Albert-Einstein Ring 19, 22761 Hamburg (Germany); Britz, A.; Bressler, C. [European XFEL, Albert-Einstein Ring 19, 22761 Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg (Germany); Schlie, M. [Institut für Experimentalphysik, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2016-05-15

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy){sub 3}. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our results further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM).

  13. X-ray photoemission spectroscopy (XPS) and extended x-ray absorption fine structure (EXAFS) studies of silicate based glasses

    International Nuclear Information System (INIS)

    Karim, D.; Lam, D.J.

    1979-01-01

    The application of the x-ray photoemission spectroscopy (XPS) technique to study the electronic structure and bonding of heavy metal oxides in alkali- and alkali-earth-silicate glasses had been demonstrated. The bonding characteristics of the iron oxide and uranium oxide in sodium silicate glasses were deduced from the changes in the oxygen 1s levels and the heavy metal core levels. It is reasonable to expect that the effect of leaching on the heavy metal ions can be monitored using the appropriate core levels of these ions. To study the effect of leaching on the glass forming network, the valence band structure of the bridging and nonbridging oxygens in sodium silicate glasses were investigated. The measurement of extended x-ray absorption fine-structure (EXAFS) is a relatively new analytical technique for obtaining short range (<5 A) structural information around atoms of a selected species in both solid and fluid systems. Experiments have recently begun to establish the feasibility of using EXAFS to study the bonding of actinides in silicate glasses. Because of the ability of EXAFS to yield specific structural data even in complex multicomponent systems, it could prove to be an invaluable tool in understanding glass structure

  14. The Fine Structure Constant

    Indian Academy of Sciences (India)

    IAS Admin

    The article discusses the importance of the fine structure constant in quantum mechanics, along with the brief history of how it emerged. Al- though Sommerfelds idea of elliptical orbits has been replaced by wave mechanics, the fine struc- ture constant he introduced has remained as an important parameter in the field of ...

  15. Neutral and Charged Exciton Fine Structure in Single Lead Halide Perovskite Nanocrystals Revealed by Magneto-optical Spectroscopy.

    Science.gov (United States)

    Fu, Ming; Tamarat, Philippe; Huang, He; Even, Jacky; Rogach, Andrey L; Lounis, Brahim

    2017-05-10

    Revealing the crystal structure of lead halide perovskite nanocrystals is essential for the optimization of stability of these emerging materials in applications such as solar cells, photodetectors, and light-emitting devices. We use magneto-photoluminescence spectroscopy of individual perovskite CsPbBr 3 nanocrystals as a unique tool to determine their crystal structure, which imprints distinct signatures in the excitonic sublevels of charge complexes at low temperatures. At zero magnetic field, the identification of two classes of photoluminescence spectra, displaying either two or three sublevels in their exciton fine structure, shows evidence for the existence of two crystalline structures, namely tetragonal D 4h and orthorhombic D 2h phases. Magnetic field shifts, splitting, and coupling of the sublevels provide a determination of the diamagnetic coefficient and valuable information on the exciton g-factor and its anisotropic character. Moreover, this spectroscopic study reveals the optical properties of charged excitons and allows the extraction of the electron and hole g-factors for perovskite systems.

  16. X-ray absorption spectroscopy: EXAFS [Extended X-ray Absorption Fine Structure] and XANES [X-ray Absorption Near Edge Structure

    International Nuclear Information System (INIS)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-ray Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations

  17. Annealing induced atomic rearrangements on (Ga,In) (N,As) probed by hard X-ray photoelectron spectroscopy and X-ray absorption fine structure.

    Science.gov (United States)

    Ishikawa, Fumitaro; Higashi, Kotaro; Fuyuno, Satoshi; Morifuji, Masato; Kondow, Masahiko; Trampert, Achim

    2018-04-13

    We study the effects of annealing on (Ga 0.64 ,In 0.36 ) (N 0.045 ,As 0.955 ) using hard X-ray photoelectron spectroscopy and X-ray absorption fine structure measurements. We observed surface oxidation and termination of the N-As bond defects caused by the annealing process. Specifically, we observed a characteristic chemical shift towards lower binding energies in the photoelectron spectra related to In. This phenomenon appears to be caused by the atomic arrangement, which produces increased In-N bond configurations within the matrix, as indicated by the X-ray absorption fine structure measurements. The reduction in the binding energies of group-III In, which occurs concomitantly with the atomic rearrangements of the matrix, causes the differences in the electronic properties of the system before and after annealing.

  18. Probing the KII 3p54p fine structure by photoelectron spectroscopy of laser-excited potassium

    International Nuclear Information System (INIS)

    Meyer, M; Cubaynes, D; Wuilleumier, F J; Heinecke, E; Richter, T; Zimmermann, P; Strakhova, S I; Grum-Grzhimailo, A N

    2006-01-01

    Photoelectron spectra of atomic potassium excited by laser optical pumping into the 3p 6 4p 2 P 1/2 and 2 P 3/2 states are measured with high-energy resolution. The relative intensities of the 3p 5 4p fine-structure lines depend strongly on the initial excitation to one of the 4p spin-orbit components. Similar to the case of sodium, dynamically and quasiforbidden transitions are observed in the photoelectron spectra of potassium. The theoretical predictions of the generalized geometrical model are in excellent agreement with the experimental data. (letter to the editor)

  19. Portable ultrahigh-vacuum sample storage system for polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Nishimura, Yusaku F.; Suzuki, Ryo; Beniya, Atsushi; Isomura, Noritake [Toyota Central R& D Labs., Inc., Yokomichi 41-1, Nagakute, Aichi 480-1192 (Japan); Uehara, Hiromitsu; Asakura, Kiyotaka; Takakusagi, Satoru [Catalysis Research Center, Hokkaido University, Kita 21-10, Sapporo, Hokkaido 001-0021 (Japan); Nimura, Tomoyuki [AVC Co., Ltd., Inada 1450-6, Hitachinaka, Ibaraki 312-0061 (Japan)

    2016-03-15

    A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstrated by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.

  20. Near-edge x-ray absorption fine structure spectroscopy at atmospheric pressure with a table-top laser-induced soft x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Kühl, Frank-Christian, E-mail: Frank-christian.kuehl@mail.de; Müller, Matthias, E-mail: matthias.mueller@llg-ev.de; Schellhorn, Meike; Mann, Klaus [Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, D-37077 Göttingen (Germany); Wieneke, Stefan [Hochschule für angewandte Wissenschaft und Kunst, Von-Ossietzky-Str 99, D-37085 Göttingen (Germany); Eusterhues, Karin [Friedrich-Schiller-Universität Jena, Fürstengraben 1, D-07743 Jena (Germany)

    2016-07-15

    The authors present a table-top soft x-ray absorption spectrometer, accomplishing investigations of the near-edge x-ray absorption fine structure (NEXAFS) in a laboratory environment. The system is based on a low debris plasma ignited by a picosecond laser in a pulsed krypton gas jet, emitting soft x-ray radiation in the range from 1 to 5 nm. For absorption spectroscopy in and around the “water window” (2.3–4.4 nm), a compact helium purged sample compartment for experiments at atmospheric pressure has been constructed and tested. NEXAFS measurements on CaCl{sub 2} and KMnO{sub 4} samples were conducted at the calcium and manganese L-edges, as well as at the oxygen K-edge in air, atmospheric helium, and under vacuum, respectively. The results indicate the importance of atmospheric conditions for an investigation of sample hydration processes.

  1. Origin of the magnetic transition at 100 K in ε-Fe2O3 nanoparticles studied by X-ray absorption fine structure spectroscopy.

    Science.gov (United States)

    Sanchez, Jesus Lopez; Muñoz-Noval, Alvaro; Castellano, Carlo; Serrano, Aida; Del Campo, Adolfo; Cabero, Mariona; Varela, Maria; Abuín, Manuel; de la Figuera, Juan; Marco, José F; Castro, German R; Rodriguez de la Fuente, Oscar; Carmona, Noemi

    2017-10-02

    We present a study of the correlation between the magnetic phase transition and the structural distortion observed at 100 K in ε-Fe2O3. For this purpose, we have designed a novel one-pot sol-gel method assisted by glycerol, which reproducibly provides samples with a nominal 100% concentration of ε-Fe2O3 nanoparticles embedded in a SiO2 matrix. The high crystallinity of the samples and the absence of other iron oxide polymorphs has allowed us to perform, for the first time, temperature-dependent X-ray absorption fine structure spectroscopy experiments, with the aim of investigating the origin of the magnetic quenching anomaly observed at 100 K. The deformation of the structure at a local scale, where the tetrahedral and octahedral Fe sites undergo distortions of different intensities, has been simulated to fulfill the long-range order. Our results point to a local structure distortion accompanied by the magnetism quenching through a magneto-elastic coupling. © 2017 IOP Publishing Ltd.

  2. Investigation of carbon-coated silicon oxide phase changes during charge/discharge by oxygen and lithium K-Edge X-ray absorption fine structure spectroscopy

    Science.gov (United States)

    Hirose, Takakazu; Morishita, Masanori; Yoshitake, Hideya; Sakai, Tetsuo

    2018-01-01

    To understand the phase changes associated with the charge/discharge mechanism during cycling, we evaluated the electronic states of oxygen and lithium atoms in the high-capacity anode material SiO-C using O and Li K-edge X-ray absorption fine structure (XAFS) spectroscopy. Multiple peaks observed in the O K-edge spectrum in the 532-548 eV range were likely related to Osbnd Si bonds. During the initial charge, when SiO-C occludes Li, a new peak related to Lisbnd O bonds appeared at 534 eV. During the initial discharge, this peak was maintained at potentials below 0.7 V vs. Li/Li+, but decreased at higher potentials, suggesting the presence of a phase change point near 0.7 V vs. Li/Li+. This change was also supported by the Li K-edge spectrum. An examination of the phase change after charge/discharge cycling at negative electrode termination potentials of 0.66 and 1.1 V vs. Li/Li+ confirmed that the phase structure was stable when cycling at potentials below the phase change point, but unstable at higher potentials. Thus, stable charge/discharge cycling can be achieved by designing batteries with negative electrode termination potentials that are lower than the potential at which the phase change occurs.

  3. Characterization of Functionalized Self-Assembled Monolayers and Surface-Attached Interlocking Molecules Using Near-Edge X-ray Absorption Fine Structure Spectroscopy

    International Nuclear Information System (INIS)

    Willey, T; Willey, T

    2004-01-01

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a ''molecular riveting'' step to hold the mechanically attached

  4. Observations of substorm fine structure

    Directory of Open Access Journals (Sweden)

    L. L. Lazutin

    1998-07-01

    Full Text Available Particle and magnetic field measurements on the CRRES satellite were used, together with geosynchronous satellites and ground-based observations, to investigate the fine structure of a magnetospheric substorm on February 9, 1991. Using the variations in the electron fluxes, the substorm activity was divided into several intensifications lasting about 3–15 minutes each. The two main features of the data were: (1 the intensifications showed internal fine structure in the time scale of about 2 minutes or less. We call these shorter periods activations. Energetic electrons and protons at the closest geosynchronous spacecraft (1990 095 were found to have comparable activation structure. (2 The energetic (>69 keV proton injections were delayed with respect to electron injections, and actually coincided in time with the end of the intensifications and partial returns to locally more stretched field line configuration. We propose that the energetic protons could be able to control the dynamics of the system locally be quenching the ongoing intensification and possibly preparing the final large-scale poleward movement of the activity. It was also shown that these protons originated from the same intensification as the preceeding electrons. Therefore, the substorm instability responsible for the intensifications could introduce a negative feedback loop into the system, creating the observed fine structure with the intensification time scales.Key words. Magnetospheric Physics (Storms and substorms.

  5. Incomplete transformations of Pb to pyromorphite by phosphate-induced immobilization investigated by X-ray absorption fine structure (XAFS) spectroscopy.

    Science.gov (United States)

    Hashimoto, Yohey; Takaoka, Masaki; Oshita, Kazuyuki; Tanida, Hajime

    2009-07-01

    For an accurate assessment of immobilization technologies, it is necessary to illustrate the transformation of target metal species into their final products. The present study employed extended X-ray absorption fine structure (EXAFS) spectroscopy combined with linear combination fitting (LCF) to determine Pb species and their proportions in contaminated soils treated with phosphate amendments. Lead contaminated soils collected from a shooting range were separately treated with calcium phosphate (CP), hydroxyapatite synthesized from ceramic waste (CHA), and incinerated poultry litter (PW). Soils were incubated at 32% water content for 7 and 380 d. The EXAFS-LCF analysis illustrated that Pb speciation in the control soil included organically-complexed phases (Pb(org), 32%), PbO (22%), PbCO(3) (28%), and Pb(3)(CO(3))(2)(OH)(2) (8%). As the incubation period increased, the proportion of chloropyromorphite [Pb(5)(PO(4))(3)Cl] increased from 20% to 27% in CHA and from 19% to 31% in CP soils. The spectra of PW-amended soils were reproduced adequately with a combination of Pb(org), PbO, and chloropyromorphite in the proportion of about 20%, 45%, and 23%, respectively. The effectiveness of amendments on Pb immobilization as indicated by the chloropyromorphite proportion was in the order of CP (31%)>CHA (27%)>PW (23%) after 380 d of incubation. Our study indicates that about 70% of Pb species was not immobilized as a form of chloropyromorphite, and the additional supply of phosphate amendment scarcely promoted chloropyromorphite formation. The EXAFS-LCF approach illustrated that organically-complexed Pb was persistent in all amended soils, suggesting that an enriched soil organic carbon may be an inhibitory factor for pyromorphite transformations.

  6. Stabilization of high-temperature antimony oxide with molybdenum incorporation. Structure of Mo-doped Sb2O4 by powder neutron diffraction and extended X-ray absorption fine structure spectroscopy

    International Nuclear Information System (INIS)

    Teller, R.G.; Antonio, M.R.; Brazdil, J.F.; Mehicic, M.; Grasselli, R.K.

    1985-01-01

    It has been discovered that the presence of MoO 3 lowers the α-β transition in Sb 2 O 4 from 935 to 850 0 C with concurrent dissolution of Mo in the high-temperature (β) form. The structure of Mo-doped β-Sb 2 O 4 has been investigated by powder neutron diffraction, extended X-ray absorption fine structure (EXAFS) and Raman spectroscopies, and scanning-electron microscopy (SEM). Cell parameters: a = 12.0571 (12) A, b = 4.8335 (1) A, c = 5.3838 (6) A, β = 105.579 (5) 0 , monoclinic, space group C2/c, Z = 4. Combining the results of these techniques leads to the hypothesis that Mo is located interstitially within channels of electron density in the Sb 2 O 4 structure with concurrent vacancy of two Sb/sup III/ atoms. There is no apparent oxygen deficiency in the resulting structure. 25 references, 6 figures, 3 tables

  7. Identification of isomers in the gas phase and as adsorbates by near-edge X-ray absorption fine structure spectroscopy: Cis- and trans-stilbene

    International Nuclear Information System (INIS)

    Püttner, Ralph; Schmidt-Weber, Philipp; Kampen, Thorsten; Kolczewski, Christine; Hermann, Klaus; Horn, Karsten

    2017-01-01

    Highlights: • NEXAFS spectra of the cis- and trans-isomer of stilbene reveal distinct differences by which the isomers can be distinguished. • DFT calculations using the transition potential approach assign specific transitions that are different in the two isomers. • On Si(100), these differences in NEXAFS are also observed, suggesting that their conformations survive in the bonding situation. • NEXAFS is thus shown to be a sensitive tool to distinguish isomers in adsorbed species. - Abstract: Near-edge x-ray absorption fine structure spectra of the cis- and trans-isomers of stilbene in the gas phase reveal clear differences, which are analyzed by results from density-functional theory calculations using the transition potential approach. The differences between the two species also occur in stilbene adsorbed on Si(100), opening the way towards studying structural changes in molecules in different surface environments, and configurational switching in organic molecules on surfaces in particular.

  8. Structural Analysis of the Mn(IV)/Fe(III) Cofactor of Chlamydia Trachomatis Ribonucleotide Reductase By Extended X-Ray Absorption Fine Structure Spectroscopy And Density Functional Theory Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Younker, J.M.; Krest, C.M.; Jiang, W.; Krebs, C.; Bollinger, J.M.Jr.; Green, M.T.

    2009-05-28

    The class Ic ribonucleotide reductase from Chlamydia trachomatis (C{bar A}) uses a stable Mn(lV)/ Fe(lll) cofactor to initiate nucleotide reduction by a free-radical mechanism. Extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are used to postulate a structure for this cofactor. Fe and Mn K-edge EXAFS data yield an intermetallic distance of -2.92 {angstrom}. The Mn data also suggest the presence of a short 1.74 {angstrom} Mn-O bond. These metrics are compared to the results of DFT calculations on 12 cofactor models derived from the crystal structure of the inactive Fe2(lll/ III) form of the protein. Models are differentiated by the protonation states of their bridging and terminal OH{sub x} ligands as well as the location of the Mn(lV) ion (site 1 or 2). The models that agree best with experimental observation feature a{mu}-1, 3-carboxylate bridge (E120), terminal solvent (H{sub 2}O/OH) to site 1, one {mu}-O bridge, and one {mu}-OH bridge. The site-placement of the metal ions cannot be discerned from the available data.

  9. The Core/Shell Structure of CdSe/ZnS Quantum Dots Characterized by X-Ray Absorption Fine Spectroscopy

    Directory of Open Access Journals (Sweden)

    Huijing Wei

    2015-01-01

    Full Text Available Understanding the chemical and physical properties of core/shell nanocrystal quantum dots (QDs is key for their use in light-emission applications. In this paper, a single-step injection-free scalable synthetic method is applied to prepare high-quality core/shell QDs with emission wavelengths of 544 nm, 601 nm, and 634 nm. X-ray absorption fine structure spectra are used to determine the core/shell structure of CdSe/ZnS quantum dots. Moreover, theoretical XANES spectra calculated by FEFF.8.20 are used to determine the structure of Se and S compounds. The QD samples displayed nearly spherical shapes with diameters of approximately 3.4 ± 0.5 nm (634 nm, 4.5 ± 0.4 nm (601 nm, and 5.5 ± 0.5 nm (544 nm. With XANES results and MS calculations, it is indicated that sphalerite ZnS capped with organic sulfur ligands should be the shell structure. Wurtzite CdSe is the main core structure with a Cd-Se bond length of 2.3 Å without phase shift. This means that different emission wavelengths are only due to the crystal size with single-step injection-free synthesis. Therefore, single-step injection-free synthesis could generate a nearly ideal core/shell structure of CdSe/ZnS QDs capped with an organic sulfur ligand.

  10. Photoinduced charge transfer in a transition metal complex investigated by time-resolved X-ray absorption fine structure spectroscopy. Setup and experiment

    International Nuclear Information System (INIS)

    Goeries, Dennis

    2015-02-01

    In the framework of this thesis the development of a time-resolved X-ray absorption spectroscopy experiment and its application to fac-Ir(ppy) 3 is described. Such experiments require a very stable setup in terms of spatial and temporal accuracy. Therefore, the stability properties of the present installation were investigated in detail and continuously improved, in particular the synchronization of the ultrashort pulse laser system to the storage ring as well as the spatial stability of both X-ray and laser beam. Experiments utilizing the laser pump and X-ray probe configuration were applied on the green phosphorescence emitter complex fac-Ir(ppy) 3 dissolved in dimethyl sulfoxide. Structural and electronic changes were triggered by photoexcitation of the metal-to-ligand charge transfer band with ultrashort laser pulses at a wavelength of 343 nm. The excited triplet state spectrum was extracted from the measured pump-probe X-ray absorption spectrum using an ionic approximation. The results con rm the anticipated metal-to-ligand charge transfer as shown by an ionization potential shift of the iridium atom. The symmetry of the complex was found to be pseudo-octahedral. This allowed the first experimental determination of the bond length of fac-Ir(ppy) 3 in an octahedral approximation and revealed a decrease of bond length of the first coordination shell in the triplet state. The first and second-order decay kinetics of the triplet state were investigated in a combination of X-ray and laser based experiments and revealed self-quenching as well as triplet-triplet annihilation rate constants.

  11. Characterization of the Cu(Π) and Zn(Π) binding to the Amyloid-β short peptides by both the Extended X-ray Absorption Fine Structure and the Synchrotron Radiation Circular Dichroism spectroscopy

    Science.gov (United States)

    Zhang, Zhiyin; Sun, Shuaishuai; Xu, Jianhua; Zhang, Jing; Huang, Yan; Zhang, Bingbing; Tao, Ye

    2013-04-01

    Alzheimer's disease (AD) is a progressive and devastating neurodegenerative pathology, clinically characterized by dementia, cognitive impairment, personality disorders and memory loss. It is generally accepted that, misfolding of Aβ peptides is the key element in pathogenesis and the secondary structure of Aβ can be changed to major β-strand with reasons unknown yet. Many studies have shown that the misfolding may be linked with some biometals, mainly copper and zinc ions. To characterize interactions of Aβ and metal ions, we utilized both the extended X-ray fine structure spectroscopy (EXAFS) and the synchrotron radiation circular dichroism spectroscopy (SRCD). Aβ (13-22), Aβ (13-21), Aβ (E22G) and Aβ(HH-AA) were selected to study the mechanism of copper and zinc binding to Aβ. We found that Cu interaction with H13 and H14 residues led to the disappearance of the PPΠ, while the Cu binding E22 residue caused a remarkable conformation change to β-sheet enrichment. The Zn ion, in contrast, made little effect on the conformation and it coordinated to only one histidine (H residue) or not.

  12. Edge separation using diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Ravel, B.; Bouldin, C.E.; Renevier, H.; Hodeau, J.L.; Berar, J.F.

    1999-01-01

    We exploit the crystallographic sensitivity of the Diffraction Anomalous Fine-Structure (DAFS) measurement to separate the fine structure contributions of different atomic species with closely spaced resonant energies. In BaTiO 3 the Ti K edge and Ba Lm edges are separated by 281 eV, or about 8.2 Angstrom -1 ), thus severely limiting the information content of the Ti K edge signal. Using the site selectivity of DAFS we can separate the two fine structure spectra using an iterative Kramers-Kronig method, thus extending the range of the Ti K edge spectrum. This technique has application to many rare earth/transition metal compounds, including many magnetic materials of technological significance for which K and L edges overlap in energy. (au)

  13. Near- and Extended-Edge X-Ray-Absorption Fine-Structure Spectroscopy Using Ultrafast Coherent High-Order Harmonic Supercontinua

    Science.gov (United States)

    Popmintchev, Dimitar; Galloway, Benjamin R.; Chen, Ming-Chang; Dollar, Franklin; Mancuso, Christopher A.; Hankla, Amelia; Miaja-Avila, Luis; O'Neil, Galen; Shaw, Justin M.; Fan, Guangyu; Ališauskas, Skirmantas; Andriukaitis, Giedrius; Balčiunas, Tadas; Mücke, Oliver D.; Pugzlys, Audrius; Baltuška, Andrius; Kapteyn, Henry C.; Popmintchev, Tenio; Murnane, Margaret M.

    2018-03-01

    Recent advances in high-order harmonic generation have made it possible to use a tabletop-scale setup to produce spatially and temporally coherent beams of light with bandwidth spanning 12 octaves, from the ultraviolet up to x-ray photon energies >1.6 keV . Here we demonstrate the use of this light for x-ray-absorption spectroscopy at the K - and L -absorption edges of solids at photon energies near 1 keV. We also report x-ray-absorption spectroscopy in the water window spectral region (284-543 eV) using a high flux high-order harmonic generation x-ray supercontinuum with 109 photons/s in 1% bandwidth, 3 orders of magnitude larger than has previously been possible using tabletop sources. Since this x-ray radiation emerges as a single attosecond-to-femtosecond pulse with peak brightness exceeding 1026 photons/s /mrad2/mm2/1 % bandwidth, these novel coherent x-ray sources are ideal for probing the fastest molecular and materials processes on femtosecond-to-attosecond time scales and picometer length scales.

  14. Fine structure of oceanic natural radioactivity field

    International Nuclear Information System (INIS)

    Il'ichev, V.I.; Kobylyanskij, V.V.; Myagkikh, A.I.; Ol'shanskij, Yu.I.; Kharlamov, Yu.M.

    1989-01-01

    The precise measurement of the intensity of the natural ocean gamma-radiation in terms of fine thermochaline structure of water masses is carried out by the series of slow vertical probings using a high-sensitivity gamma-spectrometer with the synchronous measurement of hydrological characteristics (temperature, salinity, pressure). The existence of nonhomogeneity in the distribution of natural radioactivity in depth not accompanied by analogous changes in the salinity is shown. It is assumed that the main role in this case is played by the binary diffusion

  15. Molecular Eigensolution Symmetry Analysis and Fine Structure

    Directory of Open Access Journals (Sweden)

    William G. Harter

    2013-01-01

    Full Text Available Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES. Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES used in Born-Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v, then applied to families of Oh clusters in SF6 spectra and to extreme clusters.

  16. Revisit to diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Kawaguchi, T.; Fukuda, K.; Tokuda, K.; Shimada, K.; Ichitsubo, T.; Oishi, M.; Mizuki, J.; Matsubara, E.

    2014-01-01

    The diffraction anomalous fine structure method has been revisited by applying this measurement technique to polycrystalline samples and using an analytical method with the logarithmic dispersion relation. The diffraction anomalous fine structure (DAFS) method that is a spectroscopic analysis combined with resonant X-ray diffraction enables the determination of the valence state and local structure of a selected element at a specific crystalline site and/or phase. This method has been improved by using a polycrystalline sample, channel-cut monochromator optics with an undulator synchrotron radiation source, an area detector and direct determination of resonant terms with a logarithmic dispersion relation. This study makes the DAFS method more convenient and saves a large amount of measurement time in comparison with the conventional DAFS method with a single crystal. The improved DAFS method has been applied to some model samples, Ni foil and Fe 3 O 4 powder, to demonstrate the validity of the measurement and the analysis of the present DAFS method

  17. Angle-resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs

  18. Simultaneous Speciation, Structure, and Equilibrium Constant Determination in the Ni2+-EDTA-CN- Ternary System via High-Resolution Laboratory X-ray Absorption Fine Structure Spectroscopy and Theoretical Calculations.

    Science.gov (United States)

    Bajnóczi, Éva G; Németh, Zoltán; Vankó, György

    2017-11-20

    Even quite simple chemical systems can involve many components and chemical states, and sometimes it can be very difficult to differentiate them by their hardly separable physical-chemical properties. The Ni II -EDTA-CN - (EDTA = ethylenediaminetetraacetic acid) ternary system is a good example for this problem where, in spite of its fairly simple components and numerous investigations, several molecular combinations can exist, all of them not having been identified unambiguously yet. In order to achieve a detailed understanding of the reaction steps and chemical equilibria, methods are required in which the structural transitions in the different reaction steps can be followed via element-selective complex spectral feature sets. With the help of our recently developed von Hámos type high-resolution laboratory X-ray absorption spectrometer, both the structural variations and stability constants of the forming complexes were determined from the same measurement series, proving that X-ray absorption spectroscopy can be considered as a multifaced, table-top tool in coordination chemistry. Furthermore, with the help of theoretical calculations, independent structural evidence was also given for the formation of the [NiEDTA(CN)] 3- mixed complex.

  19. Fine-Scale Genetic Structure in Finland

    Directory of Open Access Journals (Sweden)

    Sini Kerminen

    2017-10-01

    Full Text Available Coupling dense genotype data with new computational methods offers unprecedented opportunities for individual-level ancestry estimation once geographically precisely defined reference data sets become available. We study such a reference data set for Finland containing 2376 such individuals from the FINRISK Study survey of 1997 both of whose parents were born close to each other. This sampling strategy focuses on the population structure present in Finland before the 1950s. By using the recent haplotype-based methods ChromoPainter (CP and FineSTRUCTURE (FS we reveal a highly geographically clustered genetic structure in Finland and report its connections to the settlement history as well as to the current dialectal regions of the Finnish language. The main genetic division within Finland shows striking concordance with the 1323 borderline of the treaty of Nöteborg. In general, we detect genetic substructure throughout the country, which reflects stronger regional genetic differences in Finland compared to, for example, the UK, which in a similar analysis was dominated by a single unstructured population. We expect that similar population genetic reference data sets will become available for many more populations in the near future with important applications, for example, in forensic genetics and in genetic association studies. With this in mind, we report those extensions of the CP + FS approach that we found most useful in our analyses of the Finnish data.

  20. Measurement of the fine structure in 33P helium

    International Nuclear Information System (INIS)

    Yang, D.

    1985-01-01

    The author measured two positions of the Zeeman level crossing between the (J,M) = (2,2) and (0,0) and between the (J,M) = (1,1) and (0,0) sublevels of the 3 3 P state in helium. The zero field fine structure splittings were calculated from these two measured values. These splittings are of interest for a precision test of quantum electrodynamics and giving an independent contribution to fine structure constant determination. This experiment uses time resolved level crossing spectroscopy. A pulsed beam of helium 2 3 S metastables is excited by a pulse of 388.9 nm dye laser light to the 3 3 P state in a dc magnetic field interaction region. After a certain delay time, a 532 nm laser pulse ionizes the atoms from the 3 3 P state. The photoelectrons are detected by a microchannel plate. The magnetic field is in the z direction, while the atomic beam and the two laser beams are in the xy plane. These two laser beams couterpropagate at a 45 0 angle for the atomic beam for convenience. The photoionization signal is recorded as a function of magnetic field near each of the two crossing positions. Results for these two crossing positions are in agreement with, but more precise than, the previously reported results

  1. An Einstein-Cartan Fine Structure Constant Definition

    Directory of Open Access Journals (Sweden)

    Stone R. A. Jr.

    2010-01-01

    Full Text Available The fine structure constant definition given in Stone R.A. Jr. Progress in Physics, 2010, v.1, 11-13 is compared to an Einstein-Cartan fine structure constant definition. It is shown that the Einstein-Cartan definition produces the correct pure theory value, just not the measure value. To produce the measured value, the pure theory Einstein-Cartan fine structure constant requires only the new variables and spin coupling of the fine structure constant definition in [1].

  2. The electronic fine structure of 4-nitrophenyl functionalized single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Chakraborty, Amit K; Coleman, Karl S; Dhanak, Vinod R

    2009-01-01

    Controlling the electronic structure of carbon nanotubes (CNTs) is of great importance to various CNT based applications. Herein the electronic fine structure of single-walled carbon nanotube films modified with 4-nitrophenyl groups, produced following reaction with 4-nitrobenzenediazonium tetrafluoroborate, was investigated for the first time. Various techniques such as x-ray and ultra-violet photoelectron spectroscopy, and near edge x-ray absorption fine structure studies were used to explore the electronic structure, and the results were compared with the measured electrical resistances. A reduction in number of the π electronic states in the valence band consistent with the increased resistance of the functionalized nanotube films was observed.

  3. Cation distribution in NiZn-ferrite films via extended x-ray absorption fine structure

    Science.gov (United States)

    Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.; Kirkland, J. P.

    1996-04-01

    We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films. A least-squares fitting of experimental EXAFS data with theoretical, multiple-scattering, EXAFS data allowed the quantitative determination of site distributions for all transition metal cations.

  4. X-ray absorption near-edge structure (XANES) spectroscopy

    NARCIS (Netherlands)

    Henderson, Grant S.; De Groot, Frank M F|info:eu-repo/dai/nl/08747610X; Moulton, Benjamin J A

    2014-01-01

    The previous Reviews in Mineralogy volume on spectroscopic methods (Vol. 18 Spectroscopic Methods in Mineralogy and Geology, Frank C. Hawthorne, ed. 1988), contained a single chapter on X-ray absorption spectroscopy which reviewed aspects of both EXAFS (Extended X-ray Absorption Fine Structure) and

  5. Theoretical approaches to clustering and fine structure in heaviest elements

    International Nuclear Information System (INIS)

    Silisteanu, I.; Sandru, A.; Silisteanu, A. O.; Popovici, B.; Neacsu, A.

    2007-01-01

    Alpha clustering and fine structure provide unique information on the nuclear scale structure of the heaviest elements. Recent developments in superheavy element research allow us to formulate a quantitative theory of radioactive decay, within multichannel resonance scattering approach, which is described in this work. The work emphasizes the theory extended to more complex nuclear structure at the limits of stability and treats the emission rates near the resonance threshold. The material covered includes formal considerations of the decay problem, derived from a microscopic formulation, as well as practical computational methods, based on self consistent models for nuclear structure and low-energy reaction dynamics. The reliability of the results is demonstrated by a comparison between the decay data with relevant theories and with other approaches. Particular emphasis is given to the resonance spectroscopy with position-sensitive charge particle detectors since high precision calculation of partial widths of narrow resonances have become available and these resonances can be observed in experiments. A primary goal of this work is to study the α-decay properties of new superheavy nuclides with Z 106-118, under current experimental research.(authors)

  6. Distortion product otoacoustic emission fine structure of symphony orchestra musicians

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    2006-01-01

    losses than puretone audiometry. The distortion product otoacoustic emission (DPOAE) fine structure is obtained when the ear is stimulated by dual tone stimuli using a high frequency resolution. It is characterized by quasi-periodic variations across frequency, as it can be observed in the hearing...... threshold microstructure also. In this study DPOAE fine structures and hearing thresholds are obtained for symphony orchestra musicians both for left and right ears and before and after the orchestra rehearsal. DPOAE fine structures are analyzed with an automatic classification algorithm, which describes...... the ripple pattern by parameters. A difference between left and right ears could be detected for the DPOAE level but not for the fine structure parameters. No difference between the measures taken before and after exposure could be observed....

  7. FINE THERMOHALINE STRUCTURE OF THE COLOMBIAN PACIFIC OCEAN

    Directory of Open Access Journals (Sweden)

    Villegas Nancy

    2004-06-01

    Full Text Available The present document shows strata classification of the Colombian Pacific Ocean - COLUMBIAN PACIFIC OCEAN, done by first time according its fine thermohaline structure, based on temperature and salinity fields analysis. Layers, where different mechanisms of fine structure predominate, were determined and everywhere in the area a stable stratification was observed, although conditions for not stability as a result of the double diffusion were present.

  8. The fine-structure constant before quantum mechanics

    CERN Document Server

    Kragh, H

    2003-01-01

    This paper focuses on the early history of the fine-structure constant, largely the period until 1925. Contrary to what is generally assumed, speculations concerning the interdependence of the elementary electric charge and Planck's constant predated Arnold Sommerfeld's 1916 discussion of the dimensionless constant. This paper pays particular attention to a little known work from 1914 in which G N Lewis and E Q Adams derived what is effectively a numerical expression for the fine-structure constant.

  9. Electronic fine structure and recombination dynamics in single InAs quantum dots

    International Nuclear Information System (INIS)

    Seguin, R.

    2008-01-01

    In the work at hand single InAs/GaAs quantum dots (QDs) are examined via cathodoluminescence spectroscopy. A thorough analysis of the spectra leads to an unambiguous assignment of the lines to the decay of specific excitonic complexes. A special aspect of the Coulomb interaction, the exchange interaction, gives rise to a fine structure in the initial and final states of an excitonic decay. This leads to a fine structure in the emission spectra that again is unique for every excitonic complex. The exchange interaction is discussed in great detail in this work.QDs of different sizes are investigated and the influence on the electronic properties is monitored. Additionally, the structure is modified ex situ by a thermal annealing process. The changes of the spectra under different annealing temperatures are traced. Finally, recombination dynamics of different excitonic complexes are examined by performing time-resolved cathodoluminescence spectroscopy. (orig.)

  10. Electronic fine structure and recombination dynamics in single InAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, R.

    2008-01-28

    In the work at hand single InAs/GaAs quantum dots (QDs) are examined via cathodoluminescence spectroscopy. A thorough analysis of the spectra leads to an unambiguous assignment of the lines to the decay of specific excitonic complexes. A special aspect of the Coulomb interaction, the exchange interaction, gives rise to a fine structure in the initial and final states of an excitonic decay. This leads to a fine structure in the emission spectra that again is unique for every excitonic complex. The exchange interaction is discussed in great detail in this work.QDs of different sizes are investigated and the influence on the electronic properties is monitored. Additionally, the structure is modified ex situ by a thermal annealing process. The changes of the spectra under different annealing temperatures are traced. Finally, recombination dynamics of different excitonic complexes are examined by performing time-resolved cathodoluminescence spectroscopy. (orig.)

  11. [Identification of fine wool and cashmere by using Vis/NIR spectroscopy technology].

    Science.gov (United States)

    Wu, Gui-fang; Zhu, Deng-sheng; He, Yong

    2008-06-01

    As a rapid and non-destructive methodology, near infrared spectroscopy technique has been attracting much attention recently. The present study applied Vis/NIR spectra to the identification of cashmere and fine wool fiber. Cashmere and fine wool are resemble in superficies, but they differs in diameter, height, thickness, angle of inclination, and marginal morphology of surface scale. Although researchers both at home and abroad did a lot researches and experiments to distinguish fine wool from cashmere, the resolution of cashmere and fine wool is still not satisfactory, and it is always a challenging task to differentiate and recognize fine wool and cashmere. This paper presents an automatic recognition scheme for the fine wool fiber and cashmere fiber by Vis/NIR spectroscopy technique, aiming at the characteristics of Vis/NIR spectra of cashmere and fine wool. One mixed algorithm was presented to discriminate cashmere and fine wool with principal component analysis (PCA) and artificial neural network (ANN). Preliminary qualitative analysis model has been built: Vis/NIRS spectroscopy diffuse techniques were used to collect the spectral data of cashmere and fine wool, and two kinds of data pretreatment methods were applied: the standard normal variate (SNV) was used for scatter correction. Savitzky-Golay with the segment size 3 was used as the smoothing way to decrease the noise processed. Following the pretreatment, spectral data were processed using principal component analysis, 6 principal components (PCs) were selected based on the reliabilities of PCs of 99.8%, and the scores of these 6 PCs would be taken as the input of the three-layer back-propagation (BP) artificial neural network (BP-ANN). The BP-ANN was trained with samples in calibration collection and predicted the samples in prediction collection were predicted. Experiments demonstrate that the system works quickly and effectively, and has remarkable advantages in comparison with the previous systems

  12. Identification of fine wool and cashmere by Vis/NIR spectroscopy technology

    Science.gov (United States)

    Wu, Guifang; He, Yong

    2008-03-01

    As a rapid and non-destructive methodology, near infrared spectroscopy technique has been paid much attention recently. This paper presents an automatic recognition scheme for the fine wool fiber and cashmere fiber by Vis/NIR spectroscopy technique, aim at the characteristics of Vis/NIR spectra on cashmere and fine wool. One mixed algorithm was presented to discriminate cashmere and fine wool with principal component analysis (PCA) and Artificial Neural Network (ANN). Preliminary qualitative analysis model has been built: We adopt Vis/NIRS spectroscopy diffuse techniques to collect the spectral data of cashmere and fine wool, two kinds of data pretreatment methods were applied: the standard normal variate (SNV) was used as scatter correction. Savitzky-Golay with the segment size 3 was used as the smoothing way to decrease the noise processed. Followed the pretreatment, spectral data were processed using principal component analysis, 6 principal components (PCs) were selected based on the reliabilities of PCs of 99.8%, the scores of these 6 PCs would be taken as the input of the three-layer back-propagation (BP) artificial neural network (BP-ANN). Trained the BP-ANN with samples in calibration collection and predicted the samples in prediction collection. Experiments demonstrate that the system works quickly and effectively, and has remarkable advantages in comparison with the previous systems, The result indicted a model had been built to discriminate cashmere from fine wool using Vis/NIR spectra method combined with PCA-BP technology. The model works well, which indicates that this kind of approach is effective and promising, can raise resolution of cashmere and fine wool.

  13. Structural transition of force chains observed by mechanical spectroscopy

    OpenAIRE

    Wang, Wan-Jing; Yang, Kai-Wei; Wu, Xue-Bang; Wang, Yu-Bing; Zhu, Zhen-Gang

    2008-01-01

    The dissipation properties of a fine sand system are investigated by a low-frequency mechanical spectroscopy. The experiments show many interesting profiles of the relative energy dissipation, which imply that some structural transition of force chains in dense granular media has occurred. The following data and discussion indicate that the transition of force chains will lead to the small deformation of arrangement in the granular system, which is responsible for the historical effects. We h...

  14. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films

    International Nuclear Information System (INIS)

    Naftel, S.J.; Coulthard, I.; Hu, Y.; Sham, T.K.; Zinke-Allmang, M.

    1998-01-01

    Cobalt silicide thin films, prepared on Si(100) wafers, have been studied by X-ray absorption near edge structures (XANES) at the Si K-, L 2,3 - and Co K-edges utilizing both total electron (TEY) and fluorescence yield (FLY) detection as well as extended X-ray absorption fine structure (EXAFS) at the Co K-edge. Samples made using DC sputter deposition on clean Si surfaces and MBE were studied along with a bulk CoSi 2 sample. XANES and EXAFS provide information about the electronic structure and morphology of the films. It was found that the films studied have essentially the same structure as bulk CoSi 2 . Both the spectroscopy and materials characterization aspects of XAFS (X-ray absorption fine structures) are discussed

  15. Dynamics of fine structure in the solar chromosphere

    NARCIS (Netherlands)

    Wijn, A.G. de

    2006-01-01

    This thesis is concerned with the dynamics of fine structure of the solar chromosphere and transition region, in both quiet sun and active regions. It contains six chapters of observational studies. It presents a study on the spatial structure and temporal dynamics of reversed granulation; a study

  16. The Fine Structure of Herman Rings

    DEFF Research Database (Denmark)

    Fagella, Nuria; Henriksen, Christian

    2017-01-01

    We study the geometric structure of the boundary of Herman rings in a model family of Blaschke products of degree 3 (up to quasiconformal deformation). Shishikura’s quasiconformal surgery relates the Herman ring to the Siegel disk of a quadratic polynomial. By studying the regularity properties...

  17. Is IRAS cirrus cloud emission largely fine-structure radiation

    International Nuclear Information System (INIS)

    Harwit, M.; Houck, J.R.; Stacey, G.J.

    1986-01-01

    One of the more interesting observations made by the infrared astronomical satellite (IRAS) mission is the discovery of a diffuse 'cirrus' component seen at 60 and 100μm. It straddles the galactic plane and extends, in patches, to latitudes of +-80 0 . Comparison of the observed brightness from these clouds with [0 I] 63-μm and [O III] 88-μm fine-structure line emission, calculated on the basis of observed [C II] emission from the galactic plane, shows the flux levels observed by IRAS to be of the same order as the expected fine-structure line emission. The authors propose that fine-structure line emission, from neutral gas at 63 μm and from diffuse ionized clouds at 88μm, is a significant component and some clouds perhaps the prime source of the cirrus radiation. (author)

  18. Spectral fine structure effects on material and doppler reactivity worth

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1975-01-01

    New formulations concerning the fine structure effects on the reactivity worth of resonances are developed and conclusions are derived following the extension to more general types of perturbations which include: the removal of resonance material at finite temperatures and the temperature variation of part of the resonance material. It is concluded that the flux method can overpredict the reactivity worth of resonance materials more than anticipated. Calculations on the Doppler worth were carried out; the results can be useful for asessing the contribution of the fine structure effects to the large discrepancy that exists between the calculated and measured small sample Doppler worths. (B.G.)

  19. Fine structure of fields in 2D photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.

    2006-01-01

    We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis.......We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....

  20. Fine population structure analysis method for genomes of many.

    Science.gov (United States)

    Pan, Xuedong; Wang, Yi; Wong, Emily H M; Telenti, Amalio; Venter, J Craig; Jin, Li

    2017-10-03

    Fine population structure can be examined through the clustering of individuals into subpopulations. The clustering of individuals in large sequence datasets into subpopulations makes the calculation of subpopulation specific allele frequency possible, which may shed light on selection of candidate variants for rare diseases. However, as the magnitude of the data increases, computational burden becomes a challenge in fine population structure analysis. To address this issue, we propose fine population structure analysis (FIPSA), which is an individual-based non-parametric method for dissecting fine population structure. FIPSA maximizes the likelihood ratio of the contingency table of the allele counts multiplied by the group. We demonstrated that its speed and accuracy were superior to existing non-parametric methods when the simulated sample size was up to 5,000 individuals. When applied to real data, the method showed high resolution on the Human Genome Diversity Project (HGDP) East Asian dataset. FIPSA was independently validated on 11,257 human genomes. The group assignment given by FIPSA was 99.1% similar to those assigned based on supervised learning. Thus, FIPSA provides high resolution and is compatible with a real dataset of more than ten thousand individuals.

  1. Fine particle collecting method upon cutting incore structural material

    International Nuclear Information System (INIS)

    Noie, Akihiko; Karasawa, Hidetoshi

    1998-01-01

    Air bubbles generated upon cutting incore structural materials are passed through a lattice-like metal mesh to be divided finely, and then risen in pool water. The air bubbles are risen in a state where fine metal particles are contained in a carrier gas upon conducting a plasma cutting operation. The fine particles in the air bubbles are moved to the surface of the bubbles by the effect of diffusion, inertia and gravitational precipitation, and transferred to water and removed. Since the diameter of the air bubbles is decreased, the time for the transfer of the particles to the surface of the air bubbles can be shortened to increase the amount of particles transferred per time and improve the collecting efficiency. Since fine particles of radioactive metals generated upon cutting can be collected by dividing air bubbles finely, the ventilation system of an operation chamber can be simplified. In addition, cutting operation at a shallow water depth is enabled to thereby increase the degree of freedom for operations. (N.H.)

  2. Structures of Biomolecules by NMR Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    solution makes NMR more suitable for studying the dynamic behavior of macromolecules. The first high resolution protein structure by NMR spectroscopy was carried out in mid-1980s [3]. Before the beginning of this millennium, NMR spectroscopy was limited to solving 3D struc- tures of proteins with molecular masses less ...

  3. Double fine structure in the cluster radioactivity of 252Cf

    International Nuclear Information System (INIS)

    Dumitrescu, O.; Bulboaca, I.; Carstoiu, F.; Sandulescu, A.

    1995-07-01

    Within the one level R - matrix approach the relative intensities in the double fine structure of several radioactive decays of 252 Cf → 146 Ba + 106 Mo fission channel are calculated and compared with the experimental data. The internal wave functions are supposed to be given by the Wigner D -functions. The relative motion wave functions are calculated from a nucleus -nucleus double - folding model potential obtained with the M3Y interaction. (author). 83 refs, 3 figs

  4. The fine structure of the Saturnian ring system

    International Nuclear Information System (INIS)

    Houpis, H.L.F.; Mendis, D.A.

    1983-01-01

    A dust disc within a planetary magnetosphere constitutes a novel type of dust-ring current. Such an azimuthal current carrying dust disc is subject to the dusty plasma analog of the well known finite-resistivity 'tearing' mode instability in regular plasma current sheets, at long wavelengths. It is proposed that the presently observed fine ringlet structure of the Saturnian ring system is a relic of this process operating at cosmogonic times and breaking up the initial proto-ring (which may be regarded as an admixture of fine dust and plasma) into an ensemble of thin ringlets. It is shown that this instability developes at a rate that is many orders of magnitude faster than any other known instability, when the disc thickness reaches a value that is comparable to its present observed value. (Auth.)

  5. Diffraction anomalous fine structure using X-ray anomalous dispersion

    International Nuclear Information System (INIS)

    Soejima, Yuji; Kuwajima, Shuichiro

    1998-01-01

    A use of X-ray anomalous dispersion effects for structure investigation has recently been developed by using synchrotron radiation. One of the interesting method is the observation of anomalous fine structure which arise on diffraction intensity in energy region of incident X-ray at and higher than absorption edge. The phenomenon is so called Diffraction Anomalous Fine Structure (DAFS). DAFS originates in the same physical process an that of EXAFS: namely photoelectric effect at the corresponding atom and the interaction of photoelectron waves between the atom and neighboring atoms. In contrast with EXAFS, the method is available for only the crystalline materials, but shows effective advantages of the structure investigations by a use of diffraction: one is the site selectivity and the other is space selectivity. In the present study, demonstrations of a use of X-ray anomalous dispersion effect for the superstructure determination will be given for the case of PbZrO 3 , then recent trial investigations of DAFS in particular on the superlattice reflections will be introduced. In addition, we discuss about Forbidden Reflection near Edge Diffraction (FRED) which is more recently investigated as a new method of the structure analysis. (author)

  6. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Pentlehner, D.; Slenczka, A.

    2015-01-01

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broad (Δν > 100 cm −1 ) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time

  7. Topological Quantization in Units of the Fine Structure Constant

    Energy Technology Data Exchange (ETDEWEB)

    Maciejko, Joseph; /Stanford U., Phys. Dept. /Stanford U., Materials Sci. Dept. /SLAC; Qi, Xiao-Liang; /Station Q, UCSB /Stanford U., Phys. Dept. /Stanford U., Materials Sci. Dept. /SLAC; Drew, H.Dennis; /Maryland U.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept. /Stanford U., Materials Sci. Dept. /SLAC

    2011-11-11

    Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant {alpha} = e{sup 2}/{h_bar}c. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.

  8. Model for Astrophysical X-Ray Absorption Fine Structure

    International Nuclear Information System (INIS)

    Forrey, R.C.; Woo, J.W.; Cho, K.

    1998-01-01

    We present a theoretical model and database designed to provide analysis of astrophysical X-ray absorption fine structure (XAFS). The model includes spherical wave corrections and multiple-scattering contributions to the modification of the X-ray absorption coefficient. The model and database provide the basis for the astrophysical XAFS analysis (AXA) tool, which may be used to analyze properties of interstellar grains and molecules from high-resolution X-ray spectra expected to be observed by future satellite missions (e.g., the Advanced X-ray Astrophysics Facility). copyright copyright 1998. The American Astronomical Society

  9. Distortion product otoacoustic emission fine structure of symphony orchestra musicians

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    2006-01-01

    Otoacoustic emissions (OAE) are sounds produced by the healthy inner ear. They can be measured as low-level signals in the ear canal and are used to monitor the functioning of outer hair cells. Many studies indicate that OAE might be a more sensitive measure to detect early noise-induced haring...... losses than pure-tone audiometry. The distortion product otoacoustic emission (DPOAE) fine structure is obtained when the ear is stiumulated by dual tone stimuli using a high frequency resolution. It is characterized by quasi-periodic variations across frequency, as it can be observed in the hearing...

  10. Fine structures in hearing thresholds and distortion product otoacoustic emissions

    DEFF Research Database (Denmark)

    Hammershøi, Dorte; Ordoñez, Rodrigo Pizarro; Torrente, Marina

    2010-01-01

    . Distortion product OAEs (DPOAES) are generated in response to a two-tone external stimulus with frequencies f1 and f2. One of the strongest DPOAEs is the component at 2f1-f2. This component is elicited on the basilar membrane in the overlap region of the f1 and f2, close to the f2 place (depending...... of these two components. The result is characterized by a distinct fine structure pattern, and generally doesn't directly reflect the status of the hearing at one point on the basilar membrane. The behavioral threshold, on the other hand, is more directly related to given points along the basilar membrane...

  11. New Tests for Variations of the Fine Structure Constant

    Science.gov (United States)

    Prestage, John D.

    1995-01-01

    We describe a new test for possible variations of the fine structure constant, by comparisons of rates between clocks based on hyperfine transitions in alkali atomos with different atomic number Z. H- maser, Cs and Hg+ clocks have a different dependence on ia relativistic contributions of order (Z. Recent H-maser vs Hg+ clock comparison data improves laboratory limits on a time variation by 100-fold to giveFuture laser cooled clocks (Be+, Rb, Cs, Hg+, etc.), when compared, will yield the most senstive of all tests for.

  12. Fine structure study on low concentration zinc substituted hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Hu, Wei; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2012-01-01

    The fine structure of zinc substituted hydroxyapatite was studied using experimental analysis and first-principles calculations. The synthetic hydroxyapatite nanoparticles containing low Zn concentration show rod-like morphology. The crystallite sizes and unit-cell volumes tended to decrease with the increased Zn concentration according to X-ray diffraction patterns. The Zn K-edge X-ray absorption spectra and fitting results suggest that the hydroxyapatite doped with 0.1 mole% zinc is different in the zinc coordination environments compared with that containing more zinc. The density function theory calculations were performed on zinc substituted hydroxyapatite. Two mechanisms included replacing calcium by zinc and inserting zinc along the hydroxyl column and were investigated, and the related substitution energies were calculated separately. It is found that the substitution energies are negative and lowest for inserting zinc between the two oxygen atoms along the hydroxyl column (c-axis). Combined with the spectral analysis, it is suggested that the inserting mechanism is favored for low concentration zinc substituted hydroxyapatite. Highlights: ► We investigate the fine structure of hydroxyapatite with low content of Zn. ► XANES spectra are similar but a little different at low zinc content. ► Zinc ions influence hydroxyapatite crystal formation and lattice parameters. ► Formation energies are calculated according to plane-wave density function theory. ► Low content of zinc prefers to locate at hydroxyl column in hydroxyapatite lattice.

  13. QED Based Calculation of the Fine Structure Constant

    Energy Technology Data Exchange (ETDEWEB)

    Lestone, John Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-13

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. Here, semi-classical approaches are used to obtain a more intuitive feel for what causes electrostatics, and the anomalous magnetic moment of the electron. These intuitive arguments lead to a possible answer to the question of the nature of charge. Virtual photons, with a reduced wavelength of λ, are assumed to interact with isolated electrons with a cross section of πλ2. This interaction is assumed to generate time-reversed virtual photons that are capable of seeking out and interacting with other electrons. This exchange of virtual photons between particles is assumed to generate and define the strength of electromagnetism. With the inclusion of near-field effects the model presented here gives a fine structure constant of ~1/137 and an anomalous magnetic moment of the electron of ~0.00116. These calculations support the possibility that near-field corrections are the key to understanding the numerical value of the dimensionless fine structure constant.

  14. Black Holes and Quantum Theory: The Fine Structure Constant Connection

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available The new dynamical theory of space is further confirmed by showing that the effective “black hole” masses M BH in 19 spherical star systems, from globular clusters to galaxies, with masses M , satisfy the prediction that M BH = α 2 M , where α is the fine structure constant. As well the necessary and unique generalisations of the Schr ̈ odinger and Dirac equations permit the first derivation of gravity from a deeper theory, showing that gravity is a quantum effect of quantum matter interacting with the dynamical space. As well the necessary generalisation of Maxwell’s equations displays the observed light bending effects. Finally it is shown from the generalised Dirac equation where the spacetime mathematical formalism, and the accompanying geodesic prescription for matter trajectories, comes from. The new theory of space is non-local and we see many parallels between this and quantum theory, in addition to the fine structure constant manifesting in both, so supporting the argument that space is a quantum foam system, as implied by the deeper information-theoretic theory known as Process Physics. The spatial dynamics also provides an explanation for the “dark matter” effect and as well the non-locality of the dynamics provides a mechanism for generating the uniformity of the universe, so explaining the cosmological horizon problem.

  15. Extended x-ray absorption fine structure (EXAFS): a novel probe for local structure of glassy solids

    International Nuclear Information System (INIS)

    Wong, J.

    1979-01-01

    The extended x-ray absorption fine structure (EXAFS) is the oscillation in the absorption coefficient extending a few hundred eVs on the high energy side of an x-ray absorption edge. This mode of spectroscopy has recently been realized to be a powerful tool in probing the local atomic structure of all states of matter, particularly with the advent of intense synchrotron radiation. More importantly is the unique ability of EXAFS to probe the structure and dynamics around individual atomic species in a multi-atomic system. In this paper, the physical processes associated with the EXAFS phenomenon will be discussed. Experimental results obtained at the Stanford Synchrotron Radiation Laboratory on some oxide and metallic glasses will be presented. The local structure in these materials are elucidated using a Fourier transform technique

  16. Synthesis, spectroscopy and supramolecular structures of two ...

    Indian Academy of Sciences (India)

    TECS

    2007-05-16

    May 16, 2007 ... Indian Academy of Sciences. 243. #. Dedicated to Prof. Dr. Werner Weisweiler on the occasion of his 69th birthday. *For correspondence. Synthesis, spectroscopy and supramolecular structures of two magnesium 4-nitrobenzoate complexes. #. BIKSHANDARKOIL R SRINIVASAN,. 1,. * JYOTI V SAWANT,.

  17. Fine structure in the cluster decays of the translead nuclei

    International Nuclear Information System (INIS)

    Dumitrescu, O.; Cioaca, C.

    1994-06-01

    Within the one level R-matrix approach several hindrance factors for the radioactive decays in which are emitted α and other nuclei (such as 14 C and 20 O) are calculated. The interior wave functions are supposed to be given by the shell model with effective residual interactions. The exterior wave functions are calculated from a cluster - nucleus double - folding model potential with the M3Y interaction. As examples of the cluster decay fine structure we analyzed the particular cases of α - decay of 255 Fm, 14 C - decay of 223 Ra and 20 O - decay of 229 Th and 225 Fm. Good agreement with the experimental data is obtained. (author). 38 refs, 6 tabs

  18. Alpha-decay fine structure versus electromagnetic transitions

    International Nuclear Information System (INIS)

    Peltonen, S.

    2003-01-01

    Alpha decay of even-even Rn isotopes is studied microscopically along the lines of Phys. Rev. C 64, 302 (2001). The results are compared against experimental fine-structure hindrance factors (HFs). We consider problems related to reproducing observed HFs with nuclear models, especially in case of the collective 2 + - excitations. We use the QRPA model with isovector SDI interaction in order to systematically evaluate theoretical HFs. Pairing gaps and the experimental energy of the 2 + - state fix all interaction parameters except the ratio between the isovector and isoscalar interaction strengths that is used as an additional free parameter of the model. Correlation between the electromagnetic E2-strength and HFs is observed, depending both on the isotope and the excitation energy. The choice of the single particle basis appears to affect strongly the theoretical HFs. Further and even more systematical studies are required in order explain this behaviour. (author)

  19. Astrophysical extended X-ray absorption fine-structure analysis

    International Nuclear Information System (INIS)

    Woo, J.W.; Forrey, R.C.; Cho, K.; Department of Physics and Division of Applied Sciences, Harvard University)

    1997-01-01

    We present an astrophysical extended X-ray absorption fine-structure (EXAFS) analysis (AEA) tool. The AEA tool is designed to generate a numerical model of the modification to the X-ray absorption coefficient due to the EXAFS phenomenon. We have constructed a complete database (elements up to the atomic number 92) of EXAFS parameters: central atom phase shift (2δ 1 ), backscattering phase shift (φ b ), and backscattering amplitude (F). Using the EXAFS parameter data base, the AEA tool can generate a numerical model of any compound when the atomic numbers of neighboring atoms and their distances to the central X-ray-absorbing atom are given. copyright 1997 The American Astronomical Society

  20. Chromospheric counterparts of solar transition region unresolved fine structure loops

    Science.gov (United States)

    Pereira, Tiago M. D.; Rouppe van der Voort, Luc; Hansteen, Viggo H.; De Pontieu, Bart

    2018-04-01

    Low-lying loops have been discovered at the solar limb in transition region temperatures by the Interface Region Imaging Spectrograph (IRIS). They do not appear to reach coronal temperatures, and it has been suggested that they are the long-predicted unresolved fine structures (UFS). These loops are dynamic and believed to be visible during both heating and cooling phases. Making use of coordinated observations between IRIS and the Swedish 1-m Solar Telescope, we study how these loops impact the solar chromosphere. We show for the first time that there is indeed a chromospheric signal of these loops, seen mostly in the form of strong Doppler shifts and a conspicuous lack of chromospheric heating. In addition, we find that several instances have a inverse Y-shaped jet just above the loop, suggesting that magnetic reconnection is driving these events. Our observations add several puzzling details to the current knowledge of these newly discovered structures; this new information must be considered in theoretical models. Two movies associated to Fig. 1 are available at http://https://www.aanda.org

  1. Polarizability of Kr6+ from high-L Kr5+ fine-structure measurements

    International Nuclear Information System (INIS)

    Lundeen, S. R.; Fehrenbach, C. W.

    2007-01-01

    The transition between n=55 and n=109 Rydberg levels of Kr 5+ has been studied at high resolution using the resonant excitation stark ionization spectroscopy method. Resolved excitation of L=6, 7, 8, and 9 levels in n=55 lead to a determination of the fine-structure energies of these levels. Interpreted with the long-range polarization model, this leads to a measurement of the dipole polarizabilities of Zn-like Kr 6+ , α d =2.69(4)a 0 3 . Obtaining a value of the quadrupole polarizability from the data will require additional theoretical input. Factors contributing to the signal and noise levels in measurements of this type are discussed

  2. Exciton fine structure in CdSe nanoclusters

    International Nuclear Information System (INIS)

    Leung, K.; Pokrant, S.; Whaley, K.B.

    1998-01-01

    The fine structure in the CdSe nanocrystal absorption spectrum is computed by incorporating two-particle electron-hole interactions and spin-orbit coupling into a tight-binding model, with an expansion in electron-hole single-particle states. The exchange interaction and spin-orbit coupling give rise to dark, low-lying states that are predominantly triplet in character, as well as to a manifold of exciton states that are sensitive to the nanocrystal shape. Near the band gap, the exciton degeneracies are in qualitative agreement with the effective mass approximation (EMA). However, instead of the infinite lifetimes for dark states characteristic of the EMA, we obtain finite radiative lifetimes for the dark states. In particular, for the lowest, predominantly triplet, states we obtain radiative lifetimes of microseconds, in qualitative agreement with the experimental measured lifetimes. The resonant Stokes shifts obtained from the splitting between the lowest dark and bright states are also in good agreement with experimental values for larger crystallites. Higher-lying states exhibit significantly more complex behavior than predicted by EMA, due to extensive mixing of electron-hole pair states. copyright 1998 The American Physical Society

  3. Fine structure of seminiferous tubules in antarctic seals.

    Science.gov (United States)

    Sinha, A A; Erickson, A W; Seal, U S

    1977-03-09

    The fine structure of seminiferous tubules from 5 crabeater, 2 leopard and 2 Ross seals showed that during the nonbreeding season the tubules were essentially similar in possessing spermatogenic and Sertoli cells. However, the tubules of leopard and Ross seals had more primary and secondary spermatocytes and spermatids than the crabeater seals. In general, the tubules were devoid of spermatozoa. The spermatids showed stages of maturation such as Golgi phase of acrosome formation, acrosomal cap formation and condensation of nuclei. Some spermatids degenerated in tubules. Both maturing and degenerating spermatids were closely associated with Sertoli cells. Junctional complexes with plaques of filaments were observed between Sertoli cells and the spermatogenic cells. Sertoli cells, irregular and polygonal, contained highly convoluted nuclei, strands of rough endoplasmic reticulum, smooth endoplasmic reticulum, Golgi complexes, small mitochondria, variable amounts of lipid droplets, lysosomes, lipofuscin granules and highly plicated plasma membranes. In brief, the spermatogenic activity had practically ceased in the testes and the animals probably secreted low levels of testosterone during the nonbreeding season.

  4. Coupled channels description of the α-decay fine structure

    Science.gov (United States)

    Delion, D. S.; Ren, Zhongzhou; Dumitrescu, A.; Ni, Dongdong

    2018-05-01

    We review the coupled channels approach of α transitions to excited states. The α-decaying states are identified as narrow outgoing Gamow resonances in an α-daughter potential. The real part of the eigenvalue corresponds to the Q-value, while the imaginary part determines the half of the total α-decay width. We first review the calculations describing transitions to rotational states treated by the rigid rotator model, in even–even, odd-mass and odd–odd nuclei. It is found that the semiclassical method overestimates the branching ratios to excited 4+ for some even–even α-emitters and fails in explaining the unexpected inversion of branching ratios of some odd-mass nuclei, while the coupled-channels results show good agreement with the experimental data. Then, we review the coupled channels method for α-transitions to 2+ vibrational and transitional states. We present the results of the Coherent State Model that describes in a unified way the spectra of vibrational, transitional and rotational nuclei. We evidence general features of the α-decay fine structure, namely the linear dependence between α-intensities and excitation energy, the linear correlation between the strength of the α-core interaction and spectroscopic factor, and the inverse correlation between the nuclear collectivity, given by electromagnetic transitions, and α-clustering.

  5. A New Physical Meaning of Sommerfeld Fine Structure Constant

    Science.gov (United States)

    Sohrab, Siavash

    2015-04-01

    Identifying physical space or Casimir vacuum as a compressible tachyon fluid, Planck compressible ether, leads to stochastic definitions of Planck h = mk c and Boltzmann k = mk c constants, finite photon mass mk = (hk/c3)1/2 , amu = mk c2 = (hkc)1/2 , and modified Avogadro-Loschmidt number No = 1/(hkc)1/2 = 6.03766 x1023 mole-1 . Thus, Lorentz-FitzGerald contractions now result from compressibility of physical space and become causal (Pauli) in accordance with Poincaré-Lorentz dynamic theory of relativity as opposed to Einstein kinematic theory of relativity. At thermodynamic equilibrium he = me ve = hk = mk c = h, Compton wavelength can be expressed as λc = h/me c = (ve /c)h /(me ve) = αλe . Hence, Sommerfeld fine structure constant α is identified as the ratio of electron to photon speeds α = e2/(2ɛo hc) = ve/c = 1/137.036. The mean thermal speed of electron at equilibrium with photon gas is ve = 2.187640x106 m/s and its de Broglie wavelength is λe = 3.3250x10-10 m. Also, electron kinetic energy for oscillations in two directions and or ɛe = hνe = me ve2= kTe results in electron temperature Te = 3.15690x105 K.

  6. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  7. Fine structural properties of natural and synthetic glycogens.

    Science.gov (United States)

    Takata, Hiroki; Kajiura, Hideki; Furuyashiki, Takashi; Kakutani, Ryo; Kuriki, Takashi

    2009-03-31

    Glycogen, highly branched (1-->4)(1-->6)-linked alpha-d-glucan, can be extracted from natural sources such as animal tissues or shellfish (natural source glycogen, NSG). Glycogen can also be synthesized in vitro from glucose-1-phosphate using the cooperative action of alpha-glucan phosphorylase (GP, EC 2.4.1.1) and branching enzyme (BE, EC 2.4.1.18), or from short-chain amylose by the cooperative action of BE and amylomaltase (AM, EC 2.4.1.25). It has been shown that enzymatically synthesized glycogen (ESG) has structural and physicochemical properties similar to those of NSG. In this study, the fine structures of ESG and NSG were analyzed using isoamylase and alpha-amylase. Isoamylase completely hydrolyzed the alpha-1,6 linkages of ESG and NSG. The unit-chain distribution (distribution of degrees of polymerization (DP) of alpha-1,4 linked chains) of ESG was slightly narrower than that of NSG. alpha-Amylase treatment revealed that initial profiles of hydrolyses of ESG and NSG were almost the same: both glycogens were digested slowly, compared with starch. The final products from NSG by alpha-amylase hydrolysis were glucose, maltose, maltotriose, branched oligosaccharides with DP4, and highly branched macrodextrin molecules with molecular weights of up to 10,000. When ESG was digested with excess amounts of alpha-amylase, much larger macrodextrins (molecular weight>10(6)) were detected. In contrast, oligosaccharides with DP 4-7 could not be detected from ESG. These results suggest that the alpha-1,6 linkages in ESG molecules are more regularly distributed than those in NSG molecules.

  8. Distortion product otoacoustic emission fine structure as an early hearing loss predictor

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    2006-01-01

    Otoacoustic emissions (OAEs) are a promising method to monitor early noise-induced hearing losses. When distortion product otoacoustic emissions (DPOAEs) are obtained with a high-frequency resolution, a ripple structure across frequency can be seen, called DPOAE fine structure. In this study DPOAE...... fine structures are obtained from 74 normal-hearing humans using primary levels of L1/L2=65/45 dB. The subjects belong to groups with different ages and exposure histories. A classification algorithm is developed, which quantifies the fine structure by the parameter's ripple place, ripple width, ripple...... height, and ripple prevalence. Temporary changes of the DPOAE fine structure are analyzed by measuring DPOAE both before and after exposing some of the subjects to an intense sound. The characteristic patterns of fine structure can be found in the DPOAE of all subjects, though they are individual...

  9. X-ray Absorption Fine Structure (XAFS) Studies of Oxide Glasses—A 45-Year Overview

    Science.gov (United States)

    Zanotto, Edgar Dutra

    2018-01-01

    X-ray Absorption Fine Structure (XAFS) spectroscopy has been widely used to characterize the short-range order of glassy materials since the theoretical basis was established 45 years ago. Soon after the technique became accessible, mainly due to the existence of Synchrotron laboratories, a wide range of glassy materials was characterized. Silicate glasses have been the most studied because they are easy to prepare, they have commercial value and are similar to natural glasses, but borate, germanate, phosphate, tellurite and other less frequent oxide glasses have also been studied. In this manuscript, we review reported advances in the structural characterization of oxide-based glasses using this technique. A focus is on structural characterization of transition metal ions, especially Ti, Fe, and Ni, and their role in different properties of synthetic oxide-based glasses, as well as their important function in the formation of natural glasses and magmas, and in nucleation and crystallization. We also give some examples of XAFS applications for structural characterization of glasses submitted to high pressure, glasses used to store radioactive waste and medieval glasses. This updated, comprehensive review will likely serve as a useful guide to clarify the details of the short-range structure of oxide glasses. PMID:29382102

  10. X-ray Absorption Fine Structure (XAFS Studies of Oxide Glasses—A 45-Year Overview

    Directory of Open Access Journals (Sweden)

    Valmor Roberto Mastelaro

    2018-01-01

    Full Text Available X-ray Absorption Fine Structure (XAFS spectroscopy has been widely used to characterize the short-range order of glassy materials since the theoretical basis was established 45 years ago. Soon after the technique became accessible, mainly due to the existence of Synchrotron laboratories, a wide range of glassy materials was characterized. Silicate glasses have been the most studied because they are easy to prepare, they have commercial value and are similar to natural glasses, but borate, germanate, phosphate, tellurite and other less frequent oxide glasses have also been studied. In this manuscript, we review reported advances in the structural characterization of oxide-based glasses using this technique. A focus is on structural characterization of transition metal ions, especially Ti, Fe, and Ni, and their role in different properties of synthetic oxide-based glasses, as well as their important function in the formation of natural glasses and magmas, and in nucleation and crystallization. We also give some examples of XAFS applications for structural characterization of glasses submitted to high pressure, glasses used to store radioactive waste and medieval glasses. This updated, comprehensive review will likely serve as a useful guide to clarify the details of the short-range structure of oxide glasses.

  11. [The role of temporal fine structure in tone recognition and music perception].

    Science.gov (United States)

    Zhou, Q; Gu, X; Liu, B

    2017-11-07

    The sound signal can be decomposed into temporal envelope and temporal fine structure information. The temporal envelope information is crucial for speech perception in quiet environment, and the temporal fine structure information plays an important role in speech perception in noise, Mandarin tone recognition and music perception, especially the pitch and melody perception.

  12. A study of the fine structure, enzyme activities and pattern of 14CO2 ...

    African Journals Online (AJOL)

    A detailed study of selected grasses has been made with respect to fine structures characteristics, enzyme activities associated with C-4 and C-3 pathway photosynthesis, and short term carbon dioxide-14 incorporation experiments. A good correlation was obtained between the fine structure, the carbon pathway and the ...

  13. Multiwavelength anomalous diffraction and diffraction anomalous fine structure to study composition and strain of semiconductor nano structures

    International Nuclear Information System (INIS)

    Favre-Nicolin, V.; Proietti, M.G.; Leclere, C.; Renevier, H.; Katcho, N.A.; Richard, M.I.

    2012-01-01

    The aim of this paper is to illustrate the use of Multi-Wavelength Anomalous Diffraction (MAD) and Diffraction Anomalous Fine Structure (DAFS) spectroscopy for the study of structural properties of semiconductor nano-structures. We give a brief introduction on the basic principles of these techniques providing a detailed bibliography. Then we focus on the data reduction and analysis and we give specific examples of their application on three different kinds of semiconductor nano-structures: Ge/Si nano-islands, AlN capped GaN/AlN Quantum Dots and AlGaN/AlN Nano-wires. We show that the combination of MAD and DAFS is a very powerful tool to solve the structural problem of these materials of high technological impact. In particular, the effects of composition and strain on diffraction are disentangled and composition can be determined in a reliable way, even at the interface between nano-structure and substrate. We show the great possibilities of this method and give the reader the basic tools to undertake its use. (authors)

  14. Fine-Scale Structure Design for 3D Printing

    Science.gov (United States)

    Panetta, Francis Julian

    Modern additive fabrication technologies can manufacture shapes whose geometric complexities far exceed what existing computational design tools can analyze or optimize. At the same time, falling costs have placed these fabrication technologies within the average consumer's reach. Especially for inexpert designers, new software tools are needed to take full advantage of 3D printing technology. This thesis develops such tools and demonstrates the exciting possibilities enabled by fine-tuning objects at the small scales achievable by 3D printing. The thesis applies two high-level ideas to invent these tools: two-scale design and worst-case analysis. The two-scale design approach addresses the problem that accurately simulating--let alone optimizing--the full-resolution geometry sent to the printer requires orders of magnitude more computational power than currently available. However, we can decompose the design problem into a small-scale problem (designing tileable structures achieving a particular deformation behavior) and a macro-scale problem (deciding where to place these structures in the larger object). This separation is particularly effective, since structures for every useful behavior can be designed once, stored in a database, then reused for many different macroscale problems. Worst-case analysis refers to determining how likely an object is to fracture by studying the worst possible scenario: the forces most efficiently breaking it. This analysis is needed when the designer has insufficient knowledge or experience to predict what forces an object will undergo, or when the design is intended for use in many different scenarios unknown a priori. The thesis begins by summarizing the physics and mathematics necessary to rigorously approach these design and analysis problems. Specifically, the second chapter introduces linear elasticity and periodic homogenization. The third chapter presents a pipeline to design microstructures achieving a wide range of

  15. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  16. Fine Resolution Termohaline Structure Of The Yuctatan Coastal Sea

    Science.gov (United States)

    Marino-Tapia, I.; Enriquez-Ortiz, C.; Capurro, L.; Euan-Avila, J.

    2007-05-01

    In the Yucatan peninsula there are a variety processes that drastically affect the thermohaline structure of the coastal seas. Some of these include hyperhaline lagoons that export salt to the ocean, upwelling events that propagate to the coast, persistent submarine groundwater discharges, and very high evaporation rates caused by the intense solar radiation. On July 2006 a fine resolution oceanographic campaign was performed on the Yucatan coast to study the detailed structure of thermohaline processes and currents from the shore to the 10 m isobath. A total of sixty nine transects that cover the entire northern stretch of the Yucatan coast were made. The transects extend seven kilometers in the offshore direction and have an alongshore spacing of 5 km. The temperature and salinity characteristics of the water column were monitored with a SEABIRD SBE 19 CTD performing profiles every 500 m along each transect. Ocean currents were measures along the same transect using a 1.5 MHz Acoustic Doppler Profiler (Sontek). The results clearly show the effects of coastal lagoons on the adjoining sea, with net salt export associated with hyperhaline lagoons (e.g. Ria Lagartos) or more estuarine influence of lagoons such as Celestun, where groundwater discharges play the role of rivers on the estuary. An assessment of this influence on the coastal ocean will be presented. It is well known the meteor impact at the end of the Cretacic era at Chicxulub, Yucatan, generated a crater with multiple rings which is evident from horizontal gravity gradients of the Yucatan mainland, and that associated with the outer ring there is a high concentration of cenotes (sinkholes) (Pope et al. 1991; Hildebrand, et al. 1995). It has also been shown that groundwater flows along this cenote ring towards the ocean, and the zones where the ring intersects the coast (Celestun and Dzilam Bravo) have impressive geologic features known as `submarine water springs' where freshwater springs as a fountain

  17. Apparent wavelength shifts of H-like ions caused by the spectral fine structure observed in CHS plasmas

    International Nuclear Information System (INIS)

    Nishimura, Shin; Ida, Katsumi

    1998-01-01

    A new charge exchange spectroscopy (CXS) system viewing the plasma from the upside and the downside simultaneously was installed on the Compact Helical System (CHS) to detect the absolute value of Doppler shift due to poloidal rotation velocity ( i ∼ 100 eV) and in the after-glow recombining phase (T i ∼ 30 eV). The apparent Doppler shift is always red-shift regardless the direction of plasma rotation and is explained as the effect of the spectral fine structure of hydrogen-like ions. (author)

  18. Symposium on atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented. (GHT)

  19. Symposium on atomic spectroscopy

    International Nuclear Information System (INIS)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented

  20. A structural study of ceramic oxides by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Akhtar, M.J.

    1995-01-01

    A detailed structural study of ceramic oxides is presented by employing X-ray Absorption Spectroscopy (XAS). In the present work X-ray Absorption Near Edge Structure (XANES) is used for the investigation of valence state of metal cations; whereas, Extended X-ray Absorption Fine Structure EXAFS) is employed for the determination for bond lengths, coordination numbers and nature of the elements present in the near neighbour shells surrounding the absorbing atom. These results show that local environment of dopant and host cations are different; and this variation in local structure depends on the nature and concentration of the dopant ions. (author)

  1. Complementary information on CdSe/ZnSe quantum dot local structure from extended X-ray absorption fine structure and diffraction anomalous fine structure measurements

    International Nuclear Information System (INIS)

    Piskorska-Hommel, E.; Holý, V.; Caha, O.; Wolska, A.; Gust, A.; Kruse, C.; Kröncke, H.; Falta, J.; Hommel, D.

    2012-01-01

    The extended X-ray absorption fine structure (EXAFS) and diffraction anomalous fine structure (DAFS) have been applied to investigate a local structure for the CdSe/ZnSe quantum dots grown by molecular beam epitaxy (MBE) and migration-enhanced epitaxy (MEE). The aim was to study the intermixing of Cd and Zn atoms, chemical compositions and strain induced by cap-layer. The EXAFS at the Cd K-edge and DAFS at the Se K-edge proved the intermixing of Cd and Zn atoms. The distances Cd–Se (2.61 Å) found from EXAFS and DAFS analysis for h 1 region is closer to that in bulk CdSe (2.62 Å). The DAFS analysis revealed the differences in the local structure in two investigated regions (i.e. different iso-strain volumes) on the quantum dots. It was found that the investigated areas differ in the Cd concentration. To explain the experimental results the theoretical calculation based on a full valence-force field (VFF) model was performed. The theoretical VFF model fully explains the experimental data.

  2. EXAFS (Extended X-Ray Absorption Fine Structure): theory and applications

    International Nuclear Information System (INIS)

    Lagarde, P.; Raoux, D.

    1984-01-01

    EXAFS (Extended X-Ray Absorption Fine Structure) is introduced in a general way and the qualities of such a techique are shown. Some examples of applications of EXAFS in several branches of science are presented. (L.C.) [pt

  3. Impaired perception of temporal fine structure and musical timbre in cochlear implant users.

    Science.gov (United States)

    Heng, Joseph; Cantarero, Gabriela; Elhilali, Mounya; Limb, Charles J

    2011-10-01

    Cochlear implant (CI) users demonstrate severe limitations in perceiving musical timbre, a psychoacoustic feature of sound responsible for 'tone color' and one's ability to identify a musical instrument. The reasons for this limitation remain poorly understood. In this study, we sought to examine the relative contributions of temporal envelope and fine structure for timbre judgments, in light of the fact that speech processing strategies employed by CI systems typically employ envelope extraction algorithms. We synthesized "instrumental chimeras" that systematically combined variable amounts of envelope and fine structure in 25% increments from two different source instruments with either sustained or percussive envelopes. CI users and normal hearing (NH) subjects were presented with 150 chimeras and asked to determine which instrument the chimera more closely resembled in a single-interval two-alternative forced choice task. By combining instruments with similar and dissimilar envelopes, we controlled the valence of envelope for timbre identification and compensated for envelope reconstruction from fine structure information. Our results show that NH subjects utilize envelope and fine structure interchangeably, whereas CI subjects demonstrate overwhelming reliance on temporal envelope. When chimeras were created from dissimilar envelope instrument pairs, NH subjects utilized a combination of envelope (p = 0.008) and fine structure information (p = 0.009) to make timbre judgments. In contrast, CI users utilized envelope information almost exclusively to make timbre judgments (p < 0.001) and ignored fine structure information (p = 0.908). Interestingly, when the value of envelope as a cue was reduced, both NH subjects and CI users utilized fine structure information to make timbre judgments (p < 0.001), although the effect was quite weak in CI users. Our findings confirm that impairments in fine structure processing underlie poor perception of musical timbre in CI

  4. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure.

    Science.gov (United States)

    Johnson, Tiffany A; Baranowski, Lauren G

    2012-01-01

    To determine whether common approaches to setting stimulus parameters influence the depth of fine structure present in the distortion product otoacoustic emission (DPOAE) response. Because the presence of fine structure has been suggested as a possible source of errors, if one of the common parametric approaches results in reduced fine-structure depth, it may be preferred over other approaches. DPOAE responses were recorded in a group of 21 subjects with normal hearing for 1/3-octave intervals surrounding 3 f2s (1, 2, and 4 kHz) at three L2s (30, 45, and 55 dB SPL). For each f2 and L2 combination, L1 and f2/f1 were set according to three commonly used parametric approaches. These included a simple approach, the approach recommended by Kummer et al., and the approach described by Johnson et al. These three approaches primarily differ in the recommended relationship between L1 and L2. For each parametric approach, DPOAE fine structure was evaluated by varying f2 in small steps. Differences in DPOAE level and DPOAE fine-structure depth across f2, L2, and the various stimulus parameters were evaluated using repeated-measures analysis of variance. As expected, significant variations in DPOAE level were observed across the three parametric approaches. For stimulus levels #45 dB SPL, the simple stimuli resulted in lower DPOAE levels than were observed for other approaches. An unexpected finding was that stimulus parameters developed by Johnson et al., which were believed to produce higher DPOAE levels than other approaches, produced the lowest DPOAE levels of the three approaches when f2 = 4 kHz. Significant differences in fine-structure depth were also observed. Greater fine-structure depth was observed with the simple parameters, although this effect was restricted to L2 # 45 dB SPL. When L2 = 55 dB SPL, all three parametric approaches resulted in equivalent fine-structure depth. A significant difference in fine-structure depth across the 3 f2s was also observed. The

  5. Photoionization Modeling of Infrared Fine-Structure Lines in Luminous Galaxies with Central Dust-Bounded Nebulae

    National Research Council Canada - National Science Library

    Fischer, Jacqueline; Allen, Robert; Dudley, C. C; Satyapal, Shobita; Luhman, Michael L; Wolfire, Mark G; Smith, Howard A

    2001-01-01

    Far-infrared spectroscopy of a small sample of IR-bright galaxies taken with the Infrared Space Observatory Long Wavelength Spectrometer has revealed a dramatic progression extending from strong fine...

  6. Cation distribution in NiZn-ferrite films determined using x-ray absorption fine structure

    Science.gov (United States)

    Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.

    1996-04-01

    We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films, Ni0.15ZnyFe2.85-yO4 (y=0.16, 0.23, 0.40, 0.60). The Ni, Zn, and Fe EXAFS were collected from each sample and analyzed to Fourier transforms. Samples of Ni-ferrite, Zn-ferrite, and magnetite were similarly studied as empirical standards. These standards, together with EXAFS data generated from the theoretical EXAFS FEFF codes, allowed the correlation of features in the Fourier transforms with specific lattice sites in the spinel unit cell. We find that the Ni ions reside mostly on the octahedral (B) sites whereas the Zn ions are predominantly on the tetrahedral (A) sites. The Fe ions reside on both A and B sites in a ratio determined by the ratio of Zn/Fe. The addition of Zn displaces a larger fraction of Fe cations onto the B sites serving to increase the net magnetization. The fraction of A site Ni ions is measured to increase peaking at ≊25% for y=0.6. At higher Zn concentrations (y≥0.5) the lattice experiences local distortions around the Zn sites causing a decrease in the superexchange resulting in a decrease in the net magnetization.

  7. The fine structure of electron irradiation induced EL2-like defects in n-GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Tunhuma, S. M.; Auret, F. D.; Legodi, M. J.; Diale, M. [Department of Physics, University of Pretoria, Private Bag X20, Pretoria 0002 (South Africa)

    2016-04-14

    Defects induced by electron irradiation in n-GaAs have been studied using deep level transient spectroscopy (DLTS) and Laplace DLTS (L-DLTS). The E{sub 0.83} (EL2) is the only defect observed prior to irradiation. Ru/n-GaAs Schottky diodes were irradiated with high energy electrons from a Sr-90 radionuclide up to a fluence of 2.45 × 10{sup 13} cm{sup −2}. The prominent electron irradiation induced defects, E{sub 0.04}, E{sub 0.14}, E{sub 0.38}, and E{sub 0.63}, were observed together with the metastable E{sub 0.17}. Using L-DLTS, we observed the fine structure of a broad base EL2-like defect peak. This was found to be made up of the E{sub 0.75}, E{sub 0.83}, and E{sub 0.85} defects. Our study reveals that high energy electron irradiation increases the concentration of the E{sub 0.83} defect and introduces a family of defects with electronic properties similar to those of the EL2.

  8. Ecosystem structure and function in the SPRUCE chambers at fine resolution

    Science.gov (United States)

    Glenn, N. F.; Graham, J.; Spaete, L.; Hanson, P. J.

    2017-12-01

    The Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE; operated by DOE's Oak Ridge National Laboratory) aims to assess biological and ecological responses in a peat bog to a range of increased temperatures and the presence of elevated atmospheric CO2 concentrations. We are using terrestrial laser scanning (TLS) to monitor vegetation productivity and hummock-hollow structure at cm-scale in the SPRUCE plots to complement in-situ measurements of gross and net primary production. The hummock-hollow peatland microtopography is associated with fluctuating water levels and sphagnum mosses, and ultimately controls C and methane cycling. We estimate tree growth by calculating increases in tree height and canopy voxel volume between years with the TLS data. Microtopography is also characterized over time with TLS but by using gridded cells to classify regions into hummocks or hollows. Spectroscopy to quantify water content in the sphagnum is used to further classify these microtopographic regions. As multiple years of data collection occur, we will couple our fine-scale remote sensing measurements with in-situ measurements of CO2 and CH4 flux measures to capture species-specific productivity responses to warming and increased CO2.

  9. InAs Band-Edge Exciton Fine Structure

    Science.gov (United States)

    2015-07-29

    with a 100x near- infrared corrected long working distance objective (Mi- tutoyo, Plan Apo NIR), using a 640 nm pulsed diode laser for excitation...Fernée, M. J.; Louyer, Y.; Tamarat, P.; Lounis, B. Comment on “Spin-Flip Limited Exciton Dephasing in CdSe/ ZnS Colloidal Quantum Dots”. Phys. Rev. Lett... Spectroscopy of single nanocrystals. Chem. Soc. Rev. 2014, 43, 1311–1337. [10] Bruns, O. T.; Bischof, T. S.; Harris, D. K.; Shi, Y.; Riedemann, L.; Reiberger

  10. Directional fine structure in absorption of white x rays: A tomographic interpretation

    International Nuclear Information System (INIS)

    Korecki, P.; Szymonski, M.; Tolkiehn, M.; Novikov, D. V.; Materlik, G.

    2006-01-01

    We discuss directional fine structure in absorption of white x rays for tomographic imaging of crystal structure at the atomic level. The interference between a direct x-ray beam and the secondary waves coherently scattered inside a specimen modifies the total wave field at the position of the absorbing atoms. For a white x-ray beam, the wave field variations cancel out by energy integration for all directions, except for the near forward scattering components, coinciding with the incident beam. Therefore, two-dimensional patterns of the angular-dependent fine structure in absorption of white x rays can be interpreted as real-space projections of atomic structure. In this work, we present a theory describing the directional fine structure in white x-ray absorption and a tomographic approach for crystal structure retrieval developed on its basis. The tomographic algorithm is applied to the experimental x-ray absorption data recorded for GaP crystals

  11. Fine-tuning structural RNA alignments in the twilight zone

    Directory of Open Access Journals (Sweden)

    Schirmer Stefanie

    2010-04-01

    Full Text Available Abstract Background A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Results Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Conclusions Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index.

  12. Magnetic properties of Fe3O4 fine particles: time dependence and Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ismail, A.; Said, M.; Hamam, Y.; Lehlooh, A.; Abu-aljarayesh, I.

    1996-01-01

    Isothermal remanent magnetizations were carried out two samples of Fe 3 O 4 fine particle systems. The measurements were made at temperatures (Τ), 85≤Τ≤290K, and for time(t), 20≤t≤500s. room temperature Moessbauer spectra were collected for the same systems. The distribution of blocking temperature, average anisotropy constants, the coefficient of magnetic viscosity, and the distribution of hyperfine field values were estimated. The results are analyzed and discussed within the context of Nee'I's theory of superparamagnetism. (authors). 14 refs., 10 figs., tab

  13. Observations of the birth and fine structure of sunspot penumbrae

    International Nuclear Information System (INIS)

    Collados, M.; Garcia de la Rosa, J.I.; Moreno-Insertis, F.; Vazquez, M.

    1985-01-01

    High resolution white-light pictures of sunspot penumbrae are presented. These include pictures showing details of their filamentary structure and some instances of birth of a penumbra. The observations are discussed in the framework of current penumbra theories. A series of pictures have been presented, which give additional evidence of the existence of dark penumbral filaments as individual structures. With respect to the birth of the penumbra some new observational aspects can be seen. The existence of the filamentary penumbra even in the first moments, its non uniformity and its short length are the major aspects derived from the pictures

  14. The fine-grained phase-space structure of cold dark matter haloes

    NARCIS (Netherlands)

    Vogelsberger, Mark; White, Simon D. M.; Helmi, Amina; Springel, Volker

    2008-01-01

    We present a new and completely general technique for calculating the fine-grained phase-pace structure of dark matter (DM) throughout the Galactic halo. Our goal is to understand this structure on the scales relevant for direct and indirect detection experiments. Our method is based on evaluating

  15. The Campbell Soil-Water Retention Function: Predictions Using Visible Near-Infrared Spectroscopy or Soil Fines

    DEFF Research Database (Denmark)

    Chrysodonta, Zampela Pittaki; Møldrup, Per; Hermansen, Cecilie

    to assess the soil unsaturated hydraulic conductivity when water retention data are available. However, measuring water retention is time consuming. A method to accurately predict the Campbell relation from either textural parameters such as clay and organic matter (soil fines) or from rapid, visible near......The unsaturated hydraulic conductivity is one of the most uncertain soil properties while, at the same time, it is essential for modelling water and solute movement in the vadose zone. The Campbell soil-water retention function and its b parameter (pore-size distribution index) is a simple method......-infrared spectroscopy (vis-NIR) measurements will be highly useful. To enable this, we suggest to anchor the Campbell retention model not at water saturation but rather with a reference point at the volumetric water content at -1000 cm H2O of soil-water matric potential (pF 3). The soil-water content at the reference...

  16. Fine-structure processing, frequency selectivity and speech perception in hearing-impaired listeners

    DEFF Research Database (Denmark)

    Strelcyk, Olaf; Dau, Torsten

    2008-01-01

    Hearing-impaired people often experience great difficulty with speech communication when background noise is present, even if reduced audibility has been compensated for. Other impairment factors must be involved. In order to minimize confounding effects, the subjects participating in this study...... modulation were obtained. In addition, these binaural and monaural thresholds were measured in a stationary background noise in order to assess the persistence of the fine-structure processing to interfering noise. Apart from elevated speech reception thresholds, the hearing impaired listeners showed poorer...... performance than the normally hearing in terms of frequency selectivity and fine-structure processing, despite normal audiometric thresholds at the test frequencies. However, the binaural fine-structure processing was not found to be particularly vulnerable to interfering noise in these listeners....

  17. Fine structure of sprites and proposed global observations

    DEFF Research Database (Denmark)

    Mende, S.B; Frey, H.U.; Rairden, R.l.

    2002-01-01

    -station triangulation featuring observations from Kitt Peak, Arizona and Socorro, New Mexico, it was possible to make high resolution observations of the sprite structure when the sprite events occurred within the field of view of the narrow field imager. In several cases the lower altitude luminous filamentary...... structures of columniform sprites (C sprites) consisted of slant directed, nearly vertically aligned columns of intense pinpoint like beads. The distance of the sprites from the observer was measured and the altitude and vertical spacing of the beads were estimated. The distribution of beads showed...... that the most frequently observed bead spacing is between 0.6 and I km. The vertical and horizontal size of the bright luminous beads was about 80 m or less. The bead spacing showed a trend to increase with altitude and the e folding distance or attitude "scale-height" of bead spacing was found to be 20...

  18. Fine structure of the ladybird spermatozoa (Insecta, Coleoptera, Coccinellidae).

    Science.gov (United States)

    Dallai, Romano; Lino-Neto, José; Dias, Glenda; Nere, Pedro H A; Mercati, David; Lupetti, Pietro

    2018-04-07

    The sperm structure of several ladybird species belonging to different subfamilies of Coccinellidae was studied. Three main sperm types were clearly recognized, and were characterized by differences in acrosomal length, the presence of a dense coat around the acrosome, the length of the basal body, the amount of the centriole adjunct material, and the diameter of the mitochondrial derivatives. However, the whole group shares a pattern of the posterior sperm region uncommon for insects, in which the axoneme and other flagellar components are running parallel with the nucleus. As a general conclusion, this study has revealed an inconsistency between the sperm structure and the systematics of the group, indicating that the generic concepts within the group do not reflect a natural classification, a statement also shared by molecular studies. Copyright © 2018. Published by Elsevier Ltd.

  19. FINE STRUCTURE AND ORGANELLE ASSOCIATIONS IN BROWN ALGAE

    Science.gov (United States)

    Bouck, G. Benjamin

    1965-01-01

    The structural interrelationships among several membrane systems in the cells of brown algae have been examined by electron microscopy. In the brown algae the chloroplasts are surrounded by two envelopes, the outer of which in some cases is continuous with the nuclear envelope. The pyrenoid, when present, protrudes from the chloroplast, is also surrounded by the two chloroplast envelopes, and, in addition, is capped by a third dilated envelope or "pyrenoid sac." The regular apposition of the membranes around the pyrenoid contrasts with their looser appearance over the remainder of the chloroplast. The Golgi apparatus is closely associated with the nuclear envelope in all brown algae examined, but in the Fucales this association may extend to portions of the cytoplasmic endoplasmic reticulum as well. Evidence is presented for the derivation of vesicles, characteristic of those found in the formative region of the Golgi apparatus, from portions of the underlying nuclear envelope. The possibility that a structural channeling system for carbohydrate reserves and secretory precursors may be present in brown algae is considered. Other features of the brown algal cell, such as crystal-containing bodies, the variety of darkly staining vacuoles, centrioles, and mitochondria, are examined briefly, and compared with similar structures in other plant cells. PMID:5865936

  20. Structural, optical spectroscopy, optical conductivity and dielectric ...

    Indian Academy of Sciences (India)

    Fe and W co-substituted BaTiO3 perovskite ceramics, compositional formula BaTi 0.5 (Fe 0.33 W 0.17 )O 3 , were synthesized by the standard solid-state reaction method and studied by X-ray diffraction, scanning electronmicroscopy and spectroscopy ellipsometry. The prepared sample remains as double phases with the ...

  1. Big bang nucleosynthesis with a varying fine structure constant and nonstandard expansion rate

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Kawasaki, Masahiro

    2004-01-01

    We calculate the primordial abundances of light elements produced during big bang nucleosynthesis when the fine structure constant and/or the cosmic expansion rate take nonstandard values. We compare them with the recent values of observed D, 4 He, and 7 Li abundances, which show a slight inconsistency among themselves in the standard big bang nucleosynthesis scenario. This inconsistency is not solved by considering either a varying fine structure constant or a nonstandard expansion rate separately but solutions are found by their simultaneous existence

  2. Fine structure of the vapor field in evaporating dense sprays

    Science.gov (United States)

    Villermaux, Emmanuel; Moutte, Alexandre; Amielh, Muriel; Meunier, Patrice

    2017-11-01

    Making use of an original technique which permits the simultaneous measurement of both the displacement field of evaporating droplets in a spray, and of their vapor, we investigate the relevance of a scenario introduced earlier to describe the evaporation dynamics of dense sprays. A plume of dense acetone droplets evaporating in air is studied, for which the stirring field is measured by particle image velocimetry of the droplets, and the vapor field is imaged quantitatively by laser-induced fluorescence. We show, thanks to these unique in situ measurements, that the spray boundary with the diluting environment is slaved to the dynamics of its saturating vapor concentration field, whose structure is analyzed for different well defined local flow topologies.

  3. Supercooled interfacial water in fine-grained soils probed by dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    A. Lorek

    2013-12-01

    Full Text Available Water substantially affects nearly all physical, chemical and biological processes on the Earth. Recent Mars observations as well as laboratory investigations suggest that water is a key factor of current physical and chemical processes on the Martian surface, e.g. rheological phenomena. Therefore it is of particular interest to get information about the liquid-like state of water on Martian analogue soils for temperatures below 0 °C. To this end, a parallel plate capacitor has been developed to obtain isothermal dielectric spectra of fine-grained soils in the frequency range from 10 Hz to 1.1 MHz at Martian-like temperatures down to −70 °C. Two Martian analogue soils have been investigated: a Ca-bentonite (specific surface of 237 m2 g−1, up to 9.4% w / w gravimetric water content and JSC Mars 1, a volcanic ash (specific surface of 146 m2 g−1, up to 7.4% w / w. Three soil-specific relaxation processes are observed in the investigated frequency–temperature range: two weak high-frequency processes (bound or hydrated water as well as ice and a strong low-frequency process due to counter-ion relaxation and the Maxwell–Wagner effect. To characterize the dielectric relaxation behaviour, a generalized fractional dielectric relaxation model was applied assuming three active relaxation processes with relaxation time of the ith process modelled with an Eyring equation. The real part of effective complex soil permittivity at 350 kHz was used to determine ice and liquid-like water content by means of the Birchak or CRIM equation. There are evidence that bentonite down to −70 °C has a liquid-like water content of 1.17 monolayers and JSC Mars 1 a liquid-like water content of 1.96 monolayers.

  4. Clonal growth and fine-scale genetic structure in tanoak (Notholithocarpus densiflorus: Fagaceae)

    Science.gov (United States)

    Richard S. Dodd; Wasima Mayer; Alejandro Nettel; Zara. Afzal-Rafii

    2013-01-01

    The combination of sprouting and reproduction by seed can have important consequences on fine-scale spatial distribution of genetic structure (SGS). SGS is an important consideration for species’ restoration because it determines the minimum distance among seed trees to maximize genetic diversity while not prejudicing locally adapted genotypes. Local environmental...

  5. Simulations of fine structures on the zero field steps of Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Scheuermann, M.; Chi, C. C.; Pedersen, Niels Falsig

    1986-01-01

    are generated by the interaction of the bias current with the fluxon at the junction edges. On the first zero field step, the voltages of successive fine structures are given by Vn=[h-bar]/2e(2omegap/n), where n is an even integer. Applied Physics Letters is copyrighted by The American Institute of Physics....

  6. Temperature-dependent fine structure splitting in InGaN quantum dots

    Science.gov (United States)

    Wang, Tong; Puchtler, Tim J.; Zhu, Tongtong; Jarman, John C.; Kocher, Claudius C.; Oliver, Rachel A.; Taylor, Robert A.

    2017-07-01

    We report the experimental observation of temperature-dependent fine structure splitting in semiconductor quantum dots using a non-polar (11-20) a-plane InGaN system, up to the on-chip Peltier cooling threshold of 200 K. At 5 K, a statistical average splitting of 443 ± 132 μeV has been found based on 81 quantum dots. The degree of fine structure splitting stays relatively constant for temperatures less than 100 K and only increases above that temperature. At 200 K, we find that the fine structure splitting ranges between 2 and 12 meV, which is an order of magnitude higher than that at low temperatures. Our investigations also show that phonon interactions at high temperatures might have a correlation with the degree of exchange interactions. The large fine structure splitting at 200 K makes it easier to isolate the individual components of the polarized emission spectrally, increasing the effective degree of polarization for potential on-chip applications of polarized single-photon sources.

  7. Charge exchange and fine structure excitation in O-H+ collisions

    International Nuclear Information System (INIS)

    Chambaud, G.; Levy, B.; Millie, P.; Tran Minh, F.; Launay, J.M.; Roueff, E.

    1980-01-01

    The authors re-examine the charge-transfer reaction between protons and oxygen atoms including the fine-structure excitation process, basing the analysis on a careful description of the different potential curves arising from the O-H + and O + -H systems and on the evaluation of the coupling responsible for the transitions. (Auth.)

  8. The fine structure of the sperm and spermatid differentiation in the ...

    African Journals Online (AJOL)

    The fine structure of the sperm and spermatid differentiation in the brown mussel Perna perna. RIF. Bernard and A.N. Hodgson. Department of Zoology and Entomology, Rhodes University, Grahamstown. The mature sperm of Perna perna is 50-55 Ilm long and comprises three regions: a head, a mid-piece and a tail. The.

  9. Fine structure of the CCl3 UV absorption spectrum and CCl3 kinetics

    DEFF Research Database (Denmark)

    Ellermann, T.

    1992-01-01

    The UV gas-phase spectrum of CCl3 was recorded in the range 220-300 nm using pulse radiolysis of CHCl3/SF6 or CCl4/Ar gas mixtures. The UV spectrum exhibits a pronounced vibrational fine structure which is assigned to transition into the (C2A1'(3s)) Rydberg state. The vibronic progression has...

  10. Collisional excitation of CH2 rotational/fine-structure levels by helium

    Science.gov (United States)

    Dagdigian, P. J.; Lique, F.

    2018-02-01

    Accurate determination of the abundance of CH2 in interstellar media relies on both radiative and collisional rate coefficients. We investigate here the rotational/fine-structure excitation of CH2 induced by collisions with He. We employ a recoupling technique to generate fine-structure-resolved cross-sections and rate coefficients from close coupling spin-free scattering calculations. The calculations are based on a recent, high-accuracy CH2-He potential energy surface computed at the coupled clusters level of theory. The collisional cross-section calculations are performed for all fine-structure transitions among the first 22 and 24 energy levels of ortho- and para-CH2, respectively, and for temperatures up to 300 K. As a first application, we simulate the excitation of CH2 in typical molecular clouds. The excitation temperatures of the CH2 lines are found to be small at typical densities of molecular clouds, showing that the non-local thermodynamic equilibrium approach has to be used to analyse interstellar spectra. We also found that the fine-structure lines connected with the 404 - 313 and 505 - 414 rotational transitions show possible maser emissions so that they can be easily seen in emission. These calculations show that CH2 may have to be detected mainly through absorption spectra.

  11. ESR Fine Structure of Manganese Ions in Zeolite A Detects Strong Variations of the Coordination Environment

    NARCIS (Netherlands)

    Vos, D.E. de; Weckhuysen, B.M.; Bein, T.

    1996-01-01

    The electron spin resonance spectra of Mn 2+ exchanged zeolite A have been investigated as a function of the monovalent co-cation (K + ,Na + ,Li + ,Cs + ,or NH4 + ), Mn 2+ content, recording frequency, and temperature. Three new Mn 2+ species are observed with a well-resolved fine structure; this

  12. The architecture and fine structure of gill filaments in the brown ...

    African Journals Online (AJOL)

    The architecture and fine structure of gill filaments in the brown mussel, Perna perna. MA Gregory' and R.C, George. Electron Microscope Unit' and Department of Zoology, University of Durban-Westville, Private Bag X54001, Durban, 4000,. South Africa. TP. McClurg. CSIR, Division of Water, Environment and Forestry ...

  13. Structures of Biomolecules by NMR Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    GENERAL | ARTICLE integral part of NMR-based structural biology research. A num- ber of computational tools are being developed which utilize such information from BMRB and PDB at various stages of the structure determination process. 2. An Overview of the Structure Determination Process. A flowchart of the different ...

  14. Fine-structure energy levels, oscillator strengths and lifetimes in Cu XVI

    Science.gov (United States)

    Gupta, G. P.; Msezane, A. Z.

    2011-05-01

    We have performed large-scale CIV3 calculations of excitation energies from ground state for 69 fine-structure levels as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the fine-structure levels of the terms belonging to the (1s22s22p6)3s23p2, 3s3p3, 3p4, 3s23p3d, 3s23p4s, 3s23p4p, 3s23p4d, and 3s23p4f configurations of Cu XVI. These states are represented by very extensive configuration-interaction (CI) wave functions obtained with the computer code CIV3 of Hibbert. The important relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian. Small adjustments to the diagonal elements of the Hamiltonian matrices have been made so that the energy splittings are as close as possible to the energy values of those from the National Institute for Standards and Technology. The mixing among several fine-structure levels is found to be very strong. From our radiative decay rates we have also calculated radiative lifetimes of the fine-structure levels. Our calculated lifetime for the high spin level 3s3p3(5S2) is found to be in excellent agreement with the experimental value of Trabert et al (1988 J. Opt. Soc. Am. B 5 2173). In this calculation, we also predict new data for several fine-structure levels where no other theoretical and/or experimental results are available. ).

  15. Fine-structure energy levels, oscillator strengths and lifetimes in Al-like chromium

    Science.gov (United States)

    Gupta, G. P.; Msezane, A. Z.

    2014-01-01

    We have performed large scale calculations of excitation energies from ground state for 97 fine-structure levels as well as of oscillator strengths and radiative rates for all electric-dipole-allowed and intercombination transitions among the fine-structure levels of the terms belonging to the (1 s 22 s 22 p 6)3 s 23 p, 3 s3 p 2, 3 s 23 d, 3 p 3, 3 s3 p3 d, 3 p 23 d, 3 s3 d 2, 3 s 24 s, 3 s 24 p, 3 s 24 d, 3 s 24 f and 3 s3 p4 s configurations of Al-like chromium. These states are represented by very extensive configuration-interaction wave functions obtained with the configuration-interaction version 3 computer code of Hibbert. The important relativistic effects in intermediate coupling are included through the Breit-Pauli approximation. Small adjustments to the diagonal elements of Hamiltonian matrices have been made so that energy splittings are as close as possible to the energy values of the National Institute of Standards and Technology. From the radiative rates, we have also calculated radiative lifetimes of fine-structure levels. Generally, the calculated excitation energies, oscillator strengths and the radiative rates are found to be in good agreement with those obtained from other sophisticated calculations. However, significant differences between present calculated lifetimes and those from the calculation of Fischer and co-workers for a few fine-structure levels are noted and discussed. Also the present calculated lifetime for level 3 s 24 s(2 S 0.5) is found to be in excellent agreement with the experimental value given by Thornbury and co-workers. With this calculation, we also predict new data for several fine-structure levels, where no other theoretical and/or experimental results are available.

  16. Distinct local structure of nanoparticles and nanowires of V2O5 probed by x-ray absorption spectroscopy

    Science.gov (United States)

    Joseph, B.; Iadecola, A.; Maugeri, L.; Bendele, M.; Okubo, M.; Li, H.; Zhou, H.; Mizokawa, T.; Saini, N. L.

    2013-12-01

    We have used V K-edge x-ray absorption spectroscopy to study local structures of bulk, nanoparticles and nanowires of V2O5. The extended x-ray absorption fine structure measurements show different local displacements in the three morphologically different V2O5 samples. It is found that the nanowires have a significantly ordered chain structure in comparison to the V2O5 bulk. In contrast, nanoparticles have larger interlayer disorder. The x-ray absorption near-edge structure spectra show different electronic structure that appears to be related with the local atomic disorder in the three V2O5 samples.

  17. Electronic structure effects in catalysis probed by X-ray and electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Sarp; Friebel, Daniel [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); SIMES, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Ogasawara, Hirohito [SIMES, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Anniyev, Toyli [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); SIMES, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Nilsson, Anders, E-mail: nilsson@slac.stanford.edu [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); SIMES, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2013-10-15

    Highlights: •Strain, ligand and uncoordinated sites allow for fine-tuning the electronic structure of catalyst material. •XES and XAS provide means to project out the electronic structure in an atom specific way. •HERFD XAS allows for detail probing of the electronic structure of platinum catalyst during the oxygen reduction reaction. -- Abstract: Here we review some recent developments in using electron and X-ray spectroscopy measurements to elucidate the chemical bond formation on catalyst surfaces used in chemical energy transformations. The d-band model allows a simple understanding of the bond strength of oxygen atom interacting with transition metals in terms of the energy position of the d-band. It is in particular the population of the antibonding states appearing through the interaction of the d-band with the O 2p orbitals that determines the bond strength. We demonstrate how we can fine tune the d-band position and population of antibonding states for strained Pt films on Cu(1 1 1) and Ag(1 1 1) and ligand affected Pt surfaces due to either Ni, Co or Fe in the subsurface layer. We show the effect of nanostructuring in Pt monolayer model electrocatalysts on a Rh(1 1 1) single-crystal substrate on the adsorption strength of chemisorbed species using In situ high energy resolution fluorescence detection X-ray absorption spectroscopy (HERFD XAS) at the Pt L{sub 3} edge.

  18. Topological map of the Hofstadter butterfly: Fine structure of Chern numbers and Van Hove singularities

    Energy Technology Data Exchange (ETDEWEB)

    Naumis, Gerardo G., E-mail: naumis@fisica.unam.mx [Departamento de Física–Química, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 20-364, 01000 México, Distrito Federal (Mexico); Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Escuela Superior de Física y Matemáticas, ESIA-Zacatenco, Instituto Politécnico Nacional, México D.F. (Mexico)

    2016-04-29

    The Hofstadter butterfly is a quantum fractal with a highly complex nested set of gaps, where each gap represents a quantum Hall state whose quantized conductivity is characterized by topological invariants known as the Chern numbers. Here we obtain simple rules to determine the Chern numbers at all scales in the butterfly fractal and lay out a very detailed topological map of the butterfly by using a method used to describe quasicrystals: the cut and projection method. Our study reveals the existence of a set of critical points that separates orderly patterns of both positive and negative Cherns that appear as a fine structure in the butterfly. This fine structure can be understood as a small tilting of the projection subspace in the cut and projection method and by using a Chern meeting formula. Finally, we prove that the critical points are identified with the Van Hove singularities that exist at every band center in the butterfly landscape. - Highlights: • Use a higher dimensional approach to build a topological map of the Hofstadter butterfly. • There is a fine structure of Chern numbers around each rational flux. • Van Hove singularities are limiting points for topological sequences of the fine flux.

  19. Infrared spectroscopy of different phosphates structures.

    Science.gov (United States)

    Jastrzębski, W; Sitarz, M; Rokita, M; Bułat, K

    2011-08-15

    Infrared (IR) spectroscopic studies of mineral and synthetic phosphates have been presented. The interpretation of the spectra has been preceded by the isolated [PO(4)](3-) tetrahedron spectra analyse. The K(3)PO(4) saturated aqueous solution was measured in the special cell for liquids. The obtained IR results have been compared with the theoretical number of IR-active modes. The number and positions of the bands due to P-O vibrations have been established. The phase composition of the phosphates has been determined using XRD and IR spectroscopy methods. The influence of non-tetrahedral cations on the shape of the spectra and the positions of bands has been analysed and the crystalline field splitting effect has been discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Synchrotron FTIR micro-spectroscopy for structural analysis of Lewy bodies in the brain of Parkinson’s disease patients

    Science.gov (United States)

    Araki, Katsuya; Yagi, Naoto; Ikemoto, Yuka; Yagi, Hisashi; Choong, Chi-Jing; Hayakawa, Hideki; Beck, Goichi; Sumi, Hisae; Fujimura, Harutoshi; Moriwaki, Taro; Nagai, Yoshitaka; Goto, Yuji; Mochizuki, Hideki

    2015-12-01

    Lewy bodies (LBs), which mainly consist of α-synuclein (α-syn), are neuropathological hallmarks of patients with Parkinson’s disease (PD). The fine structure of LBs is unknown, and LBs cannot be made artificially. Nevertheless, many studies have described fibrillisation using recombinant α-syn purified from E. coli. An extremely fundamental problem is whether the structure of LBs is the same as that of recombinant amyloid fibrils. Thus, we used synchrotron Fourier transform infrared micro-spectroscopy (FTIRM) to analyse the fine structure of LBs in the brain of PD patients. Our results showed a shift in the infrared spectrum that indicates abundance of a β-sheet-rich structure in LBs. Also, 2D infrared mapping of LBs revealed that the content of the β-sheet structure is higher in the halo than in the core, and the core contains a large amount of proteins and lipids.

  1. Spectroscopic phonon and extended x-ray absorption fine structure measurements on 3C-SiC/Si (001) epifilms

    Science.gov (United States)

    Talwar, Devki N.; Wan, Linyu; Tin, Chin-Che; Lin, Hao-Hsiung; Feng, Zhe Chuan

    2018-01-01

    Comprehensive experimental and theoretical studies are reported to assess the vibrational and structural properties of 3C-SiC/Si (001) epilayers grown by chemical vapor deposition in a vertical reactor configuration. While the phonon features are evaluated using high resolution infrared reflectance (IRR) and Raman scattering spectroscopy (RSS) - the local inter-atomic structure is appraised by synchrotron radiation extended x-ray absorption fine structure (SR-EXAFS) method. Unlike others, our RSS results in the near backscattering geometry revealed markedly indistinctive longitudinal- and transverse-optical phonons in 3C-SiC epifilms of thickness d < 0.4 μm. The estimated average value of biaxial stress is found to be an order of magnitude smaller while the strains are two-orders of magnitude lower than the lattice misfits between 3C-SiC and Si bulk crystals. Bruggeman's effective medium theory is utilized to explain the observed atypical IRR spectra in 3C-SiC/Si (001) epifilms. High density intrinsic defects present in films and/or epilayer/substrate interface are likely to be responsible for (a) releasing misfit stress/strains, (b) triggering atypical features in IRR spectra, and (c) affecting observed local structural traits in SR-EXAFS.

  2. Linearly Polarized IR Spectroscopy Theory and Applications for Structural Analysis

    CERN Document Server

    Kolev, Tsonko

    2011-01-01

    A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, "Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis" demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscop

  3. Fine structure of α decay to rotational states of heavy nuclei

    Science.gov (United States)

    Wang, Y. Z.; Dong, J. M.; Peng, B. B.; Zhang, H. F.

    2010-06-01

    To gain a better insight into α-decay fine structure, we calculate the relative intensities of α decay to 2+ and 4+ rotational states in the framework of the generalized liquid drop model (GLDM) and improved Royer’s formula. The calculated relative intensities of α decay to 2+ states are in good agreement with the experimental data. For the relative intensities of α decay to 4+ states, a good agreement with experimental data is achieved for Th and U isotopes. The formula we obtain is useful for the analysis of experimental data of α-decay fine structure. In addition, some predicted relative intensities which are still not measured are provided for future experiments.

  4. Fine structure in plasma waves and radiation near the plasma frequency in Earth's foreshock

    Science.gov (United States)

    Cairns, Iver H.

    1994-01-01

    Novel observations are presented of intrunsic fine structure in the frequency spectrum of electomagnetic (EM) radiation and plasma waves near the electron plasma frequency f(sub p) during a period of unusually high interplanetary magnetic field strength. Measured using the wideband receiver on the International Sun-Earth Explorer (ISEE) 1 spacecraft, fine-structured emissions are observed both in the solar wind and the foreshock, The fine structure is shown to correspond to emissions spaced above f(sub p) near half harmonies of the electon cyclotron frequency f(sub ce), i.e., near f(sub p) + nf(sub ce)/2. These appear to be the first space physics observations of emissions spaced by f(sub ce)/2. Indirect but strong arguments are used to discriminate between EM and electrostatic (ES) signals, to identify whether ISEE 1 is in the solar wind or the foreshock, and to determine the relative frequencies of the emissions and the local f(sub p). The data are consistent with generation of the ES and EM emissions in the foreshock, with subsequent propagation of the EM emissions into the solar wind. It remains possible that some emissions currently identified as ES have significant EM character. The ES and EM emisions often merge into one another with minimal changes in frequency, arguing that their source regions and generation mechanisms are related and imposing significant constraints on theories. The f(sub ce)/2 ES and EM fine structures observed may be intrinsic to the emission mechanisms or to superposition of two series of signals with f(sub ce) spacing that differ in starting frequency by f(sub ce)/2. Present theories for nonlinear wave coupling processes, cyclotron maser emission, and other linear instability processes are all unable to explain multiple EM and/or ES components spaced by approximately f(sub ce)/2 above f(sub p) for f(sub p)/f(sub ce) much greater than 1 and typical for shock beams parameters. Suitable avenues for further theoretical research are

  5. Fine structural analysis of the stinger in venom apparatus of the scorpion Euscorpius mingrelicus (Scorpiones: Euscorpiidae

    Directory of Open Access Journals (Sweden)

    N Yigit

    2010-01-01

    Full Text Available In this study, the morphology, histology and fine structure of the stinger, a part of the venom apparatus of Euscorpius mingrelicus (Kessler, 1874 (Scorpiones: Euscorpiidae were studied by light microscopy and transmission electron microscopy (TEM. The stinger, located at the end section of the telson, is sickle-shaped. The venom is ejected through a pair of venom pores on its subterminal portion. Both venom ducts extend along the stinger without contact with each other since they are separated by connective tissue cells. The stinger cuticle is composed of two layers. Additionally, there are many pore canals and some hemolymph vessels in the cuticle. This work constitutes the first histological and fine structure study on Euscorpius mingrelicus stinger.

  6. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    Science.gov (United States)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-01-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.

  7. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius)

    DEFF Research Database (Denmark)

    Milano, I.; Babbucci, M.; Cariani, A.

    2014-01-01

    even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess largeand fine-scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European...... fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (FCT = 0.016) and weak differentiation within basins......, outlier loci revealed a dramatic divergence between Atlantic and Mediterranean populations (FCT range 0.275–0.705) and fine-scale significant population structure. Outlier loci separated North Sea and Northern Portugal populations from all other Atlantic samples and revealed a strong differentiation among...

  8. Evidence from n=2 fine structure transitions for the production of fast excited state positronium

    International Nuclear Information System (INIS)

    Ley, R.; Niebling, K.D.; Schwarz, R.; Werth, G.

    1990-01-01

    Fine structure transitions in the first excited state of positronium (Ps) have been measured using 'Backscatter Ps' production on a Mo surface by observation of a change in the emitted Lyman-α intensity under resonant microwave irradiation. Production, fine structure transitions and Lyman-α decay of the Ps atoms took place inside a waveguide designed to transmit the microwave frequencies of 8.6, 13.0 and 18.5 GHz for the transitions from the 2 3 S 1 state to the 2 3 P J , J=2, 1, 0, states, respectively. In the presence of a magnetic field, all transitions observed show a shift to higher frequencies, compared with earlier calculations and measurements in zero magnetic field. The deviations exceed the expected Zeeman shift significantly but may be explained by assuming a motional Stark effect for Ps with kinetic energies of several eV. (author)

  9. Structural studies of molecular and metallic overlayers using angle- resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Huang, Z.

    1992-10-01

    Angle-resolved photoemission extended fine structure (ARPEFS) was used to study molecular and metallic overlayers on metal surfaces through analysis of p2mg(2x1)CO/Ni(110) and the p(2x2)K/Ni(111) adsorption. For the dense p2mg(2x1)CO/Ni(110) surface layer, photoemission intensities from C 1s level were measured in three directions at photoelectron kinetic energies 60-400 eV. Using multiple-scattering spherical-wave (MSSW) modeling, it was found that CO molecules are adsorbed on short-bridge sites, with adjacent CO along the [110] direction displaced alternatively in opposite directions towards the [001] azimuths to form a zigzag chain geometry. The tilt angle is 16±2 degree from the surface normal for the direction linking the C atom and the center of the Ni bridge. The carbon C-Ni interatomic distance was determined to be 1.94±0.02 Angstrom. The first- to second-layer spacing of Ni is 1.27±0.04 Angstrom, up from 1.10 Angstrom for the clean Ni(110) surface, but close to the 1.25 Angstrom Ni interlayer spacing in the bulk. The C-O bond length and tilt angle were varied within small ranges (1.10--1.20 Angstrom and 15--23 degrees) in our MSSW simulations. Best agreement between experiment and simulations was achieved at 1.16 Angstrom and 19 degrees. This yields an O-O distance of 2.95 Angstrom for the two nearest CO molecules, (van der Waals' radius ∼ 1.5 Angstrom for oxygen). Two different partial-wave phase-shifts were used in MSSW, and structural results from both are in very good agreement. For the p(2x2)K/Ni(111) overlayer, ARPEFS χ(k) curves from K 1s level measured along [111] and [771] at 130K showed that the K atoms are preferentially adsorbed on the atop sites, in agreement with a LEED study of the same system

  10. Preferred Compression Speed for Speech and Music and Its Relationship to Sensitivity to Temporal Fine Structure

    OpenAIRE

    Moore, Brian C. J.; S?k, Aleksander

    2016-01-01

    Multichannel amplitude compression is widely used in hearing aids. The preferred compression speed varies across individuals. Moore (2008) suggested that reduced sensitivity to temporal fine structure (TFS) may be associated with preference for slow compression. This idea was tested using a simulated hearing aid. It was also assessed whether preferences for compression speed depend on the type of stimulus: speech or music. Twenty-two hearing-impaired subjects were tested, and the stimulated h...

  11. Single-particle effects in fine structure of super-asymmetric fission

    International Nuclear Information System (INIS)

    Mirea, M.

    1999-01-01

    Energy spectrum measurements concerning the 14 C decay from 223 Ra revealed a fine structure with an intense branch on the excited state of the daughter 209 Pb. Apart the great number of microscopic--macroscopic attempts of different authors in describing this behavior (compiled recently), this phenomenon was explained quantitatively using the Landau--Zener effect, i.e., the promotion mechanism of a unpaired nucleon between two levels characterised by the same quantum numbers connected to some symmetries of the nuclear system in the region where an avoided level crossing is exhibited. The adiabatic levels during the super-asymmetric fission process were determined with a new version of the two--centre shell model especially constructed for very large mass--asymmetries. The half--lives are obtained in the framework of the Wentzel--Kramers--Brillouin approximation. The amount of the variation of the barrier height in the excited channels was estimated accounting the specialization energy which can be interpreted as the excess of the energy of a nucleon with a given spin over the energy for the same spin nucleon state of lowest energy. It is evidenced that the fine structure of cluster decay is due to two competitive effects: the Landau--Zener effect which enhances the probability to have an excited daughter in the final channel and the specialization energy which increases the potential barrier and therefore leads to a diminution of the penetrability. This formalism was used for predictions of the fine structure in the case of 14 C decay of 225 Ac and to explain the fine structure of alpha decay. (author)

  12. Fine-structure energy levels and radiative rates in Si-like chlorine

    Science.gov (United States)

    Gupta, G. P.; Tayal, Vikas; Msezane, A. Z.

    2012-01-01

    Excitation energies and radiative rates for electric dipole (E1) transitions among the 86 fine-structure levels belonging to the configurations (1 s 22 s 22 p 6)3 s 23 p 2, 3 s3 p 3, 3 s 23 p3 d, 3 p 4, 3 s 23 p4 s, 3 s 23 p4 p, 3 s3 p 2(2 S)4 s, 3 s3 p 2(2 P)4 s, 3 s3 p 2(4 P)4 s, 3 s3 p 2(2 D)4 s, 3 s 23 p4 d and 3 s 23 p4 f of Cl IV are calculated using extensive configuration-interaction (CI) wave functions obtained with the CIV3 computer code of Hibbert. The relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian. In order to keep the calculated energy splittings close to the energy values of the National Institute for Standards and Technology, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. Our calculated energy levels, including their orderings, are in excellent agreement with the available NIST values. The mixing among several fine-structure levels is found to be very strong. From our radiative rates we have also calculated radiative lifetimes of the fine-structure levels. Significant differences between our calculated lifetimes and those from a sophisticated calculation for a few low lying levels are noted and discussed. In this calculation, we also predict new data for several fine-structure levels where no other theoretical and/or experimental results are available.

  13. New Constraints on Spatial Variations of the Fine Structure Constant from Clusters of Galaxies

    Directory of Open Access Journals (Sweden)

    Ivan De Martino

    2016-12-01

    Full Text Available We have constrained the spatial variation of the fine structure constant using multi-frequency measurements of the thermal Sunyaev-Zeldovich effect of 618 X-ray selected clusters. Although our results are not competitive with the ones from quasar absorption lines, we improved by a factor 10 and ∼2.5 previous results from Cosmic Microwave Background power spectrum and from galaxy clusters, respectively.

  14. Astronomical constraints on the cosmic evolution of the fine structure constant and possible quantum dimensions.

    Science.gov (United States)

    Carilli, C L; Menten, K M; Stocke, J T; Perlman, E; Vermeulen, R; Briggs, F; de Bruyn , A G; Conway, J; Moore, C P

    2000-12-25

    We present measurements of absorption by the 21 cm hyperfine transition of neutral hydrogen toward radio sources at substantial look-back times. These data are used in combination with observations of rotational transitions of common interstellar molecules to set limits on the evolution of the fine structure constant: alpha/ alphatheory, the limit on the secular evolution of the scale factor of the compact dimensions, R, is &Rdot/ Rbig bang, of DeltaR /R<10(-5).

  15. Fine-scale population structure and the era of next-generation sequencing

    OpenAIRE

    Henn, Brenna M.; Gravel, Simon; Moreno-Estrada, Andres; Acevedo-Acevedo, Suehelay; Bustamante, Carlos D.

    2010-01-01

    Fine-scale population structure characterizes most continents and is especially pronounced in non-cosmopolitan populations. Roughly half of the world's population remains non-cosmopolitan and even populations within cities often assort along ethnic and linguistic categories. Barriers to random mating can be ecologically extreme, such as the Sahara Desert, or cultural, such as the Indian caste system. In either case, subpopulations accumulate genetic differences if the barrier is maintained ov...

  16. Clonal diversity and fine-scale genetic structure in a high andean treeline population

    Czech Academy of Sciences Publication Activity Database

    Peng, Y.; Macek, P.; Macková, Jana; Romoleroux, K.; Hensen, I.

    2015-01-01

    Roč. 47, č. 1 (2015), s. 59-65 ISSN 0006-3606 Grant - others:GA AV ČR(CZ) IAA601110702; GA MŠk(CZ) LM2010009 Program:IA Institutional support: RVO:60077344 Keywords : AFLP * clonal diversity * clonal propagation * fine-scale genetic structure * Polylepis reticulata * treeline Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.944, year: 2015

  17. Probing molecular adsorbates with core-level spectroscopies: Electronic structure and bonding models

    Science.gov (United States)

    Fohlisch, Alexander

    Resonantly excited X-ray emission spectroscopy has been applied to study the valence electronic structure of molecular adsorbates in an atom specific and orbital symmetry selective manner. In combination with ab initio cluster calculations, electronic structure and bonding models have been derived. Existing models of surface chemical bonding have been reviewed and partially revised. Most notably, the bonding mechanism of carbon monoxide (CO) on transition and noble metals has been revised and is found to be the result of a strong covalent interaction between the CO orbitals and the metal bands within each orbital symmetry. A characteristic allylic configuration is found in the π system and strong polarization within the σ system. The equilibrium properties of adsorbed CO are the direct result of a balance between the repulsive σ-interaction and the attractive π-interaction both in terms of the total energy and the local bond properties. The bonding of ammonia (NH3) on the Cu(110) surface is found to be dominated by a large covalent interaction, which contrasts the previous model of a strong electrostatic interaction. Furthermore, adsorbate-adsorbate interaction leads to a tilted adsorption geometry. Ethylene (C2H4) on Cu(110) is adsorbed in the di-σ configuration, according to the generally accepted Dewar Chatt Duncanson model for hydrocarbon adsorption. The application and interpretation of resonantly excited X-ray emission on these systems also required a thorough discussion of the spectroscopic process. Another topic was the vibrational fine structure in the X-ray photoemission core-level main lines of adsorbed molecules. The observation of the vibrational fine structure in molecular adsorbates is remarkable, as it was previously thought impossible to observe due to solid state broadening contributions. A detailed analysis of the vibrational fine structure and the line profile makes it possible to study the electronic and geometric properties of the core

  18. Bloch oscillations of ultracold atoms and measurement of the fine structure constant; Oscillations de Bloch d'atomes ultrafroids et mesure de la constante de structure fine

    Energy Technology Data Exchange (ETDEWEB)

    Clade, P

    2005-10-15

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10{sup -9}, in conjunction with a careful study of systematic effects (5 10{sup -9}), has led us to a determination of alpha with an uncertainty of 6.7 10{sup -9}: {alpha}{sup -1}(Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  19. Interfacial structure of soft matter probed by SFG spectroscopy.

    Science.gov (United States)

    Ye, Shen; Tong, Yujin; Ge, Aimin; Qiao, Lin; Davies, Paul B

    2014-10-01

    Sum frequency generation (SFG) vibrational spectroscopy, an interface-specific technique in contrast to, for example, attenuated total reflectance spectroscopy, which is only interface sensitive, has been employed to investigate the surface and interface structure of soft matter on a molecular scale. The experimental arrangement required to carry out SFG spectroscopy, with particular reference to soft matter, and the analytical methods developed to interpret the spectra are described. The elucidation of the interfacial structure of soft matter systems is an essential prerequisite in order to understand and eventually control the surface properties of these important functional materials. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quick extended x-ray absorption fine structure instrument with millisecond time scale, optimized for in situ applications

    Science.gov (United States)

    Khalid, S.; Caliebe, W.; Siddons, P.; So, I.; Clay, B.; Lenhard, T.; Hanson, J.; Wang, Q.; Frenkel, A. I.; Marinkovic, N.; Hould, N.; Ginder-Vogel, M.; Landrot, G. L.; Sparks, D. L.; Ganjoo, A.

    2010-01-01

    In order to learn about in situ structural changes in materials at subseconds time scale, we have further refined the techniques of quick extended x-ray absorption fine structure (QEXAFS) and quick x-ray absorption near edge structure (XANES) spectroscopies at beamline X18B at the National Synchrotron Light Source. The channel cut Si (111) monochromator oscillation is driven through a tangential arm at 5 Hz, using a cam, dc motor, pulley, and belt system. The rubber belt between the motor and the cam damps the mechanical noise. EXAFS scan taken in 100 ms is comparable to standard data. The angle and the angular range of the monochromator can be changed to collect a full EXAFS or XANES spectrum in the energy range 4.7-40.0 KeV. The data are recorded in ascending and descending order of energy, on the fly, without any loss of beam time. The QEXAFS mechanical system is outside the vacuum system, and therefore changing the mode of operation from conventional to QEXAFS takes only a few minutes. This instrument allows the acquisition of time resolved data in a variety of systems relevant to electrochemical, photochemical, catalytic, materials, and environmental sciences.

  1. Structural characterization of ammonium uranate by infrared spectroscopy

    International Nuclear Information System (INIS)

    Rodriguez S, A.

    1994-01-01

    Infrared spectroscopy have been used to investigate the chemical composition of some ammonium uranates. In this study, I have attempted to establish the interrelationship between the structure of the products, the character of their infrared spectra and x-ray diffraction data capable of consistent interpretation in terms of defining the compounds. (Author)

  2. Optical spectroscopy by Hantaro Nagaoka Pioneer nuclear structure study

    Science.gov (United States)

    Inamura, Takashi T.

    2000-08-01

    Hantaro Nagaoka is a Japanese physicist who made an experimental pioneer work on optical spectroscopy for nuclear structure studies in 1920s. Today much attention should be paid to this work rather than to his famous atomic model that died away long time ago along with Thomson's model.

  3. Optical spectroscopy by Hantaro Nagaoka - Pioneer nuclear structure study

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Takashi T. [Warsaw University, Heavy Ion Laboratory (Poland)], E-mail: inamura@slcj.uw.edu.pl

    2000-08-15

    Hantaro Nagaoka is a Japanese physicist who made an experimental pioneer work on optical spectroscopy for nuclear structure studies in 1920s. Today much attention should be paid to this work rather than to his famous atomic model that died away long time ago along with Thomson's model.

  4. Infrared spectroscopy of the different types of second order structural ...

    African Journals Online (AJOL)

    Infrared spectroscopy of the different types of second order structural phase transitions in molecular crystals. G Djeteli, K Tepe, K Napo, R Guerin. Abstract. No Abstract. Global Journal of Pure and Applied Sciences Vol. 13 (1) 2007: pp. 119-123. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT ...

  5. Structural identification of gas-phase biomolecules using infrared spectroscopy

    NARCIS (Netherlands)

    Bakker, J.M.

    2004-01-01

    Weak intra- and intermolecular interactions as well as subtle electronic effects can have a large influence on molecular structure. Infrared (IR) spectroscopy can be a useful tool to investigate these effects. In this thesis, the Free-Electron Laser FELIX is used to study several molecular model

  6. Fine structure of excitons and electron-hole exchange energy in polymorphic CsPbBr3 single nanocrystals.

    Science.gov (United States)

    Ramade, Julien; Andriambariarijaona, Léon Marcel; Steinmetz, Violette; Goubet, Nicolas; Legrand, Laurent; Barisien, Thierry; Bernardot, Frédérick; Testelin, Christophe; Lhuillier, Emmanuel; Bramati, Alberto; Chamarro, Maria

    2018-04-05

    All inorganic CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) belong to the novel class of confined metal-halide perovskites which are currently arousing enthusiasm and stimulating huge activity across several fields of optoelectronics due to outstanding properties. A deep knowledge of the band-edge excitonic properties of these materials is thus crucial to further optimize their performances. Here, high-resolution photoluminescence (PL) spectroscopy of single bromide-based NCs reveals the exciton fine structure in the form of sharp peaks that are linearly polarized and grouped in doublets or triplets, which directly mirror the adopted crystalline structure, tetragonal (D4h symmetry) or orthorhombic (D2h symmetry). Intelligible equations are found that show how the fundamental parameters (spin-orbit coupling, ΔSO, crystal field term, T, and electron-hole exchange energy, J) rule the energy spacings in doublets and triplets. From experimental data, fine estimations of each parameter are obtained. The analysis of the absorption spectra of an ensemble of NCs with a "quasi-bulk" behavior leads to ΔSO = 1.20 ± 0.06 eV and T = -0.34 ± 0.05 eV in CsPbBr3. The study of individual luminescence responses of NCs having sizes comparable to the exciton Bohr diameter, 7 nm, allows us to estimate the value of J to be around ≈3 meV in both tetragonal and orthorhombic phases. This value is already enhanced by confinement.

  7. X-ray absorption fine structure spectroscopic determination of plutonium speciation at the Rocky Flats environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Lezama-pacheco, Juan S [Los Alamos National Laboratory; Conradson, Steven D [Los Alamos National Laboratory; Clark, David L [Los Alamos National Laboratory

    2008-01-01

    X-ray Absorption Fine Structure spectroscopy was used to probe the speciation of the ppm level Pu in thirteen soil and concrete samples from the Rocky Flats Environmental Technology Site in support of the site remediation effort that has been successfully completed since these measurements. In addition to X-ray Absorption Near Edge Spectra, two of the samples yielded Extended X-ray Absorption Fine Structure spectra that could be analyzed by curve-fits. Most of these spectra exhibited features consistent with PU(IV), and more specificaJly, PuO{sub 2+x}-type speciation. Two were ambiguous, possibly indicating that Pu that was originally present in a different form was transforming into PuO{sub 2+x}, and one was interpreted as demonstrating the presence of an unusual Pu(VI) compound, consistent with its source being spills from a PUREX purification line onto a concrete floor and the resultant extreme conditions. These experimental results therefore validated models that predicted that insoluble PuO{sub 2+x} would be the most stable form of Pu in equilibrium with air and water even when the source terms were most likely Pu metal with organic compounds or a Pu fire. A corollary of these models' predictions and other in situ observations is therefore that the minimal transport of Pu that occurred on the site was via the resuspension and mobilization of colloidal particles. Under these conditions, the small amounts of diffusely distributed Pu that were left on the site after its remediation pose only a negligible hazard.

  8. Solution spectroelectrochemical cell for in situ X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Antonio, M.R.; Soderholm, L.

    1995-01-01

    A purpose-built spectroelectrochemical cell for in situ fluorescence XAFS (X-ray Absorption Fine Structure) measurements of bulk solution species during constant-potential electrolysis is described. The cell performance was demonstrated by the collection of europium L 3 -edge XANES (X-ray Absorption Near Edge Structure) throughout the course of electrolysis of an aqueous solution of EuCl 3 ·6H 2 O in 1 M H 2 SO 4 . The europium L 3 -edge resonances reported here for the Eu III and Eu II ions demonstrate that their 2p 3/2 → 5d electronic transition probabilities are not the same

  9. X-Ray Absorption Fine Structure Study for Fe60Ni40 Alloy

    International Nuclear Information System (INIS)

    Yang, Dong-Seok; Oh, Kyuseung; Na, Wonkyung; Kim, Nayoung; Yoo, Yong-Goo; Min, Seung-Gi; Yu, Seong-Cho

    2007-01-01

    Fe60Ni40 alloys were fabricated by the mechanical alloying process with process periods of 1, 2, 4, 6, 12 and 24 hours, respectively. The formation of alloy and the structural evolution of the alloy were examined by X-ray diffraction and extended X-ray absorption fine structure methods. With increase of alloying time the BCC phase of iron was changed significantly during the mechanical alloying process. The alloying was activated in about 6 hours and completed in about 24 hours

  10. Combinatorial near-edge x-ray absorption fine structure: Simultaneous determination of molecular orientation and bond concentration on chemically heterogeneous surfaces

    International Nuclear Information System (INIS)

    Genzer, Jan; Fischer, Daniel A.; Efimenko, Kirill

    2003-01-01

    We show that simultaneous molecular orientation and bond chemistry of planar chemically heterogeneous surfaces can be obtained by combining near-edge x-ray absorption fine structure (NEXAFS) spectroscopy and rastering the incident x-ray beam on the specimen. This rastering produces serially two-dimensional NEXAFS images in space and energy, revealing information about the chemistry (including bond concentration) and orientation of the surface-bound molecules with submillimeter planar spatial resolution and submonolayer molecular sensitivity. We illustrate the power of the combinatorial NEXAFS method by simultaneously probing the concentration and molecular orientation of semifluorinated (SF) molecules in double-SF molecular gradients on flat silica substrates

  11. miXAFS: a program for X-ray absorption fine-structure data analysis.

    Science.gov (United States)

    Ikemoto, H

    2018-03-01

    A new program called miXAFS for the analysis of X-ray absorption fine-structure (XAFS) data is presented. miXAFS can analyze the XAFS functions simultaneously for all measured X-ray absorption edges of the constituent elements in a sample under the constraints for the structural parameters over the edges. The program provides a surface plot of the R-factor as a function of two structural parameters, which is useful to validate the optimized structural parameters. The structural parameters can be obtained from the XAFS data in a few steps using the setting file and batch process. The program, which is coded in MATLAB and freely available, runs on Macintosh and Windows operating systems. It has a graphical user interface and loads experimental data and XAFS functions in a variety of ASCII data formats.

  12. A Nonlinear Transmission Line Model of the Cochlea With Temporal Integration Accounts for Duration Effects in Threshold Fine Structure

    DEFF Research Database (Denmark)

    Verhey, Jesko L.; Mauermann, Manfred; Epp, Bastian

    2017-01-01

    than for long signals. The present study demonstrates how this effect can be captured by a nonlinear and active model of the cochlear in combination with a temporal integration stage. Since this cochlear model also accounts for fine structure and connected level dependent effects, it is superior......For normal-hearing listeners, auditory pure-tone thresholds in quiet often show quasi periodic fluctuations when measured with a high frequency resolution, referred to as threshold fine structure. Threshold fine structure is dependent on the stimulus duration, with smaller fluctuations for short...

  13. Depiction of minute structures of the lung parenchyma using new super fine resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Hiroshi; Toshima, Masamichi; Suzuki, Kenji; Katakura, Toshihiko [Fukushima Medical Coll. (Japan). Hospital; Miyashita, Souji [Azabu Hospital, Sapporo (Japan); Okumura, Miwa; Rifu, Toshihiro [Toshiba Corp., Otawara, Tochigi (Japan). Nasu Works

    2003-01-01

    The secondary pulmonary lobule is a structural unit that is composed of pulmonary parenchyma measuring 1 cm or less in size and has been the basis for the morphological evaluation of many pulmonary diseases. However, it is difficult to clearly visualize the structures in the conventional CT scanner. The objective of this study is to depict the pulmonary lobular structures using a new super fine resolution CT with a high contrast resolution of 0.25 mm. In the volunteer study, small pulmonary veins, centrilobular pulmonary arterioles and some bronchioles were depicted. In the fixed lung specimen study, bronchioles were depicted. With regard to bronchi peripheral, a larger number of bronchi could be depicted compared with the non-amended MSCT scanner. These technological advances permit pulmonary diseases to be accurately diagnosed based on the evaluation of the lobular structure. (author)

  14. Confocal imaging reveals three-dimensional fine structure difference between ventral and dorsal nerve roots

    Science.gov (United States)

    Wu, Yuxiang; Sui, Tao; Cao, Xiaojian; Lv, Xiaohua; Zeng, Shaoqun; Sun, Peng

    2011-05-01

    Peripheral nerve injury repair is one of the most challenging problems in neurosurgery, partially due to lack of knowledge of three-dimensional (3-D) fine structure and organization of peripheral nerves. In this paper, we explored the structures of nerve fibers in ventral and dorsal nerves with a laser scanning confocal microscopy. Thick tissue staining results suggested that nerve fibers have a different 3-D structure in ventral and dorsal nerves, and reconstruction from serial sectioning images showed that in ventral nerves the nerve fibers travel in a winding form, while in dorsal nerves, the nerve fibers form in a parallel cable pattern. These structural differences could help surgeons to differentiate ventral and dorsal nerves in peripheral nerve injury repair, and also facilitate scientists to get a deeper understanding about nerve fiber organization.

  15. Distinct roles of a tyrosine-associated hydrogen-bond network in fine-tuning the structure and function of heme proteins: two cases designed for myoglobin.

    Science.gov (United States)

    Liao, Fei; Yuan, Hong; Du, Ke-Jie; You, Yong; Gao, Shu-Qin; Wen, Ge-Bo; Lin, Ying-Wu; Tan, Xiangshi

    2016-10-20

    A hydrogen-bond (H-bond) network, specifically a Tyr-associated H-bond network, plays key roles in regulating the structure and function of proteins, as exemplified by abundant heme proteins in nature. To explore an approach for fine-tuning the structure and function of artificial heme proteins, we herein used myoglobin (Mb) as a model protein and introduced a Tyr residue in the secondary sphere of the heme active site at two different positions (107 and 138). We performed X-ray crystallography, UV-Vis spectroscopy, stopped-flow kinetics, and electron paramagnetic resonance (EPR) studies for the two single mutants, I107Y Mb and F138Y Mb, and compared to that of wild-type Mb under the same conditions. The results showed that both Tyr107 and Tyr138 form a distinct H-bond network involving water molecules and neighboring residues, which fine-tunes ligand binding to the heme iron and enhances the protein stability, respectively. Moreover, the Tyr107-associated H-bond network was shown to fine-tune both H2O2 binding and activation. With two cases demonstrated for Mb, this study suggests that the Tyr-associated H-bond network has distinct roles in regulating the protein structure, properties and functions, depending on its location in the protein scaffold. Therefore, it is possible to design a Tyr-associated H-bond network in general to create other artificial heme proteins with improved properties and functions.

  16. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Science.gov (United States)

    Roffler, Gretchen H.; Talbot, Sandra L.; Luikart, Gordon; Sage, George K.; Pilgrim, Kristy L.; Adams, Layne G.; Schwartz, Michael K.

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.

  17. INFLUENCE OF FINE-DISPERSED BORON CARBIDE ON THE STRUCTURE AND CHARACTERISTICS OF IRON-BORON ALLOY

    Directory of Open Access Journals (Sweden)

    N. F. Nevar

    2010-01-01

    Full Text Available The influence of boron carbide as fine-dispersed material input into the melt on structure morphology, founding, technological and exploitation characterisstics of cast iron-boron material is shown.

  18. Regular variation of the fine structure of statistical distributions as a consequence of cosmophysical agents

    International Nuclear Information System (INIS)

    Shnoll, S E; Zenchenko, T A; Zenchenko, K I; Pozharskii, E V; Kolombet, V A; Konradov, Alexander A

    2000-01-01

    Considered is the statistical ground of the certainty of cosmophysical effects on the fine structure of distributions governing the results of measurements in various physical processes. We show that the previously discussed effects of synchronous variations of histogram shapes in independent processes, and the periodical occurrence of histograms of a particular shape, do not depend on the form of the integral distribution. The adequacy of visual (expert) estimation when comparing the shapes of histograms as an alternative to the standard statistical methods is justified. (letters to the editors)

  19. The fine structure levels for ground states of negative ions of nitrogen and phosphorus

    Directory of Open Access Journals (Sweden)

    Leyla Özdemir

    2013-01-01

    Full Text Available The fine structure levels for negative ions (anions of nitrogen and phosphorus have been investigated using multiconfiguration Hartree-Fock method within the framework of Breit-Pauli Hamiltonian (MCHF+BP. Nitrogen and phosphorus have half-filled outer shell in ground state 1s22s22p3 4S and 1s22s22p33s23p3 4S, respectively. It has been stated in most works that the negative ion of nitrogen is instable whereas the negative ion of phosphorus is stable. The results obtained have been compared with other works.

  20. The fine structure of the sperm of the round goby (Neogobius melanostomus)

    Science.gov (United States)

    Allen, Jeffrey D.; Walker, Glenn K.; Nichols, Susan J.; Sorenson, Dorothy

    2004-01-01

    The fine structural details of the spermatozoon of the round goby are presented for the first time in this study. Scanning and transmission electron microscopic examination of testis reveals an anacrosomal spermatozoon with a slightly elongate head and uniformly compacted chromatin. The midpiece contains a single, spherical mitochondrion. Two perpendicularly oriented centrioles lie in a deep, eccentric nuclear fossa with no regularly observed connection to the nucleus. The flagellum develops bilateral fins soon after emerging from the fossa; each extends approximately 1 A?m from the axoneme and persists nearly the length of the flagellum.

  1. Evolution of the fine-structure constant in runaway dilaton models

    Directory of Open Access Journals (Sweden)

    C.J.A.P. Martins

    2015-04-01

    Full Text Available We study the detailed evolution of the fine-structure constant α in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent α measurements and discuss ways to distinguish it from alternative models for varying α. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical ΛCDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT, together with more sensitive α measurements, will thus dramatically constrain these scenarios.

  2. Evolution of the fine-structure constant in runaway dilaton models

    Energy Technology Data Exchange (ETDEWEB)

    Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Vielzeuf, P.E., E-mail: pvielzeuf@ifae.es [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Martinelli, M., E-mail: martinelli@thphys.uni-heidelberg.de [Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 16, 69120, Heidelberg (Germany); Calabrese, E., E-mail: erminia.calabrese@astro.ox.ac.uk [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Pandolfi, S., E-mail: stefania@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

    2015-04-09

    We study the detailed evolution of the fine-structure constant α in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent α measurements and discuss ways to distinguish it from alternative models for varying α. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical ΛCDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT), together with more sensitive α measurements, will thus dramatically constrain these scenarios.

  3. Fine-structural effects of 1200-R abdominal x irradiation on rat intestinal epithelium

    International Nuclear Information System (INIS)

    Lieb, R.J.; McDonald, T.F.; McKenney, J.R.

    1977-01-01

    Male Charles River CD rats were shielded from the xiphoid process cranially with lead and were exposed to 1200-R abdominal x irradiation. Animals were sacrificed at 1 through 4 days following irradiation and tissues from both ileum and jejunum were prepared for electron microscopic examination. At the fine-structural level early changes were confined to a proliferation and dilation of smooth endoplasmic reticulum and to an increase in the number of lysosomes. At 4 days postirradiation, cells covering the villi were cuboidal rather than columnar and appeared to be immature crypt-type cells. The appearance of these cells was coincident with the onset of diarrhea in these animals

  4. The variation of the fine-structure constant from disformal couplings

    OpenAIRE

    van de Bruck, Carsten; Mifsud, Jurgen; Nunes, Nelson J.

    2015-01-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, alpha. As a result, the theory we consider can explain the non-zero reported variation in the evolution of alpha by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disforma...

  5. EXANA, a program for analysing EXtended energy loss fine structures, EXELFS spectra

    International Nuclear Information System (INIS)

    Tafreshi, M.A.; Bohm, C.; Csillag, S.

    1992-09-01

    This paper is a users guide and reference manual for the EXANA, an IBM or IBM compatible PC-based program used for analysing extended fine structures occurring on the high energy side of the ionisation edges. The RDF (Radial Distance Function) obtained from this analysis contains information about the number, distance, and type of the nearby atoms, as well as the inelastic mean free path and disorder in distances from the centre atom to the atoms in a atomic shell around it. The program can be made available on request. (au)

  6. Relations between frequency selectivity, temporal fine-structure processing, and speech reception in impaired hearing

    DEFF Research Database (Denmark)

    Strelcyk, Olaf; Dau, Torsten

    2009-01-01

    Frequency selectivity, temporal fine-structure (TFS) processing, and speech reception were assessed for six normal-hearing (NH) listeners, ten sensorineurally hearing-impaired (HI) listeners with similar high-frequency losses, and two listeners with an obscure dysfunction (OD). TFS processing...... was investigated at low frequencies in regions of normal hearing, through measurements of binaural masked detection, tone lateralization, and monaural frequency modulation (FM) detection. Lateralization and FM detection thresholds were measured in quiet and in background noise. Speech reception thresholds were...... in a two-talker background and lateralized noise, but not in amplitude-modulated noise. The results provide constraints for future models of impaired auditory signal processing....

  7. The fine structure of muscle attachments in a spider (Latrodectus mactans, Fabr.).

    Science.gov (United States)

    Smith, D S; Järlfors, U; Russell, F E

    1969-01-01

    The fine structure of a spider myo-apodeme junction is described, and discussed in terms of other arthropod muscle attachments. This is contrasted with the situation in the venom gland, equipped with muscle fibers that control expulsion of the secreted material. The latter involves a cell-free collagenous matrix, lying between the muscle cells and the sheath of the gland. As in other arthropods, skeletal fibers are attached to the apodeme cuticle via specialized epidermal cells, containing oriented microtubules. Interdigitations between these cells and muscle, basally, and cuticle, apically, are described. Extracellular tonofibrillae described elsewhere are inconspicuous in the apodeme cuticle.

  8. Extended X-ray absorption fine structure investigation of nitrogen stabilized expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2010-01-01

    As-delivered austenitic stainless steel and nitrogen stabilized expanded austenite, both fully nitrided and denitrided (in H2), were investigated with Cr, Fe and Ni extended X-ray absorption fine structure. The data shows pronounced short-range ordering of Cr and N. For the denitrided specimen...... the N atoms remaining in the solid state after H2-reduction are trapped by Cr atoms. Quantitative interpretation in terms of the local distortions around Cr atoms and their N coordination number reveals that no Cr–N clusters or CrN platelets are present....

  9. Surface extended x-ray absorption fine structure of low-Z absorbates using fluorescence detection

    International Nuclear Information System (INIS)

    Stoehr, J.; Kollin, E.B.; Fischer, D.A.; Hastings, J.B.; Zaera, F.; Sette, F.

    1985-05-01

    Comparison of x-ray fluorescence yield (FY) and electron yield surface extended x-ray absorption fine structure spectra above the S K-edge for c(2 x 2) S on Ni(100) reveals an order of magnitude higher sensitivity of the FY technique. Using FY detection, thiophene (C 4 H 4 S) chemisorption on Ni(100) is studied with S coverages down to 0.08 monolayer. The molecule dissociates at temperatures as low as 100K by interaction with fourfold hollow Ni sites. Blocking of these sites by oxygen leaves the molecule intact

  10. Three-dimensional fine-scale genetic structure of the neotropical epiphytic orchid, Laelia rubescens.

    Science.gov (United States)

    Trapnell, Dorset W; Hamrick, J L; Nason, John D

    2004-05-01

    Epiphytic plants occupy three-dimensional space, which allows more individuals to be closely clustered spatially than is possible for populations occupying two dimensions. The unique characteristics of epiphytes can act in concert to influence the fine-scale genetic structure of their populations which can, in turn, influence mating patterns and other population phenomena. Three large populations of Laelia rubescens (Orchidaceae) in the Costa Rican seasonal dry forest were sampled at two levels of intensity to determine: (i) whether individual clusters contain more than one genotype, and (ii) the spatial distribution and fine-scale genetic structure of genotypes within populations. Samples were assayed for their multilocus allozyme genotypes and spatial autocorrelation analyses were performed. High levels of genetic diversity, high genotypic diversity and low among-population variation were found. In the larger clusters, multiple genets per cluster were common with discrete clusters containing up to nine genotypes. Spatial autocorrelation analyses indicated significant positive genetic structure at distances of

  11. Fine-scale population structure of blue whale wintering aggregations in the Gulf of California.

    Science.gov (United States)

    Costa-Urrutia, Paula; Sanvito, Simona; Victoria-Cota, Nelva; Enríquez-Paredes, Luis; Gendron, Diane

    2013-01-01

    Population differentiation in environments without well-defined geographical barriers represents a challenge for wildlife management. Based on a comprehensive database of individual sighting records (1988-2009) of blue whales from the winter/calving Gulf of California, we assessed the fine-scale genetic and spatial structure of the population using individual-based approaches. Skin samples of 187 individuals were analyzed for nine microsatellite loci. A single population with no divergence among years and months and no isolation by distance (Rxy = 0.1-0.001, p>0.05) were found. We ran two bayesian clustering methods using Structure and Geneland softwares in two different ways: 1) a general analysis including all individuals in which a single cluster was identified with both softwares; 2) a specific analysis of females only in which two main clusters (Loreto Bay and northern areas, and San Jose-La Paz Bay area) were revealed by Geneland program. This study provides information indicating that blue whales wintering in the Gulf of California are part of a single population unit and showed a fine-scale structure among females, possibly associated with their high site fidelity, particularly when attending calves. It is likely that the loss of genetic variation is minimized by male mediated gene flow, which may reduce the genetic drift effect. Opportunities for kin selection may also influence calf survival and, in consequence, have a positive impact on population demography in this small and endangered population.

  12. Hemicellulose fine structure is affected differently during ripening of tomato lines with contrasted texture.

    Science.gov (United States)

    Lahaye, Marc; Quemener, Bernard; Causse, Mathilde; Seymour, Graham B

    2012-11-01

    The impact of genetic and fruit ripening on hemicelluloses fine structure was studied in twelve near isogenic lines of tomato fruits harboring firmness QTL. The sugar composition and the MALDI-TOF MS oligosaccharides profile after glucanase hydrolysis of the cell walls were determined from all green and red fruits pericarp tissue. MS profiles showed two major series of oligomers attributed to xyloglucan (XG) and glucomannan (GM) with minor peaks for xylan and ions attributed to galacto-oligomers. The oligosaccharides MS intensity varied significantly with the fruit genetic and ripening status. Correlations between MS intensity indicated structural regulations of both XG and GM structures with genetics and ripening. These results point to a region on the tomato chromosome 9 controlling cell wall galactose metabolism. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Fine- and hyperfine structure investigations of the even-parity configuration system of the atomic holmium

    Science.gov (United States)

    Stefanska, D.; Ruczkowski, J.; Elantkowska, M.; Furmann, B.

    2018-04-01

    In this work new experimental results concerning the hyperfine structure (hfs) for the even-parity level system of the holmium atom (Ho I) were obtained; additionally, hfs data obtained recently as a by-product in investigations of the odd-parity level system were summarized. In the present work the values of the magnetic dipole and the electric quadrupole hfs constants A and B were determined for 24 even-parity levels, for 14 of them for the first time. On the basis of these results, as well as on available literature data, a parametric study of the fine structure and the hyperfine structure for the even-parity configurations of atomic holmium was performed. A multi-configuration fit of 7 configurations was carried out, taking into account second-order of the perturbation theory. For unknown electronic levels predicted values of the level energies and hfs constants are given, which can facilitate further experimental investigations.

  14. Extended x-ray absorption fine structure: Studies of zinc-neutralized sulfonated polystyrene ionomers

    International Nuclear Information System (INIS)

    Ding, Y.S.; Yarusso, D.J.; Pan, H.K.D.; Cooper, S.L.

    1984-01-01

    Extended x-ray absorption fine structure (EXAFS) measurements were performed on a series of zinc-neutralized sulfonated polystyrene ionomers and the local structure around the zinc atom was determined. An interference effect in the EXAFS signal between sulfur and oxygen atoms was found to be significant in these materials. A model for the local structure in the zinc-neutralized sulfonated polystyrene ionomers is proposed which suggests a highly ordered tetrahedral coordination of oxygen around the zinc atoms at a distance of 1.97 +- 0.02 A. In addition there are four sulfur atoms and four oxygen atoms at a distance of 3.15 +- 0.05 A. No zinc-zinc coordination within 5 A was detected in this study

  15. Modulation spectroscopy characterization of MOCVD semiconductors and semiconductors structures

    Science.gov (United States)

    Pollak, Fred H.; Shen, H.

    1989-11-01

    This paper reviews recent developments in the use of contactless modulation spectroscopy to yield important information about MOCVD growth as well as the properties of MOCVD fabricated semiconductors and semiconductor microstructures. The method of reflectance difference spectroscopy can be used to gain significant insights into chemical and structural parameters during actual growth conditions. The electromodulation technique of photoreflectance (PR) probes the electronic states of the material. It has many applications for in-situ post-growth characterization of crystal quality, very thin Ga 1-xAl xAs/GaAs epitaxial layers, Ga 1-xAl xAs alloy composition, deep trap states, surface electric fields and carrier concentrations, lattice-mismatch strain, etc, as well as the determination of relevant parameters of heterojunction structures. In addition, recent PR experiments at 600°C on GaAs and Ga 0.82Al 0.18As show potential for in-situ monitoring during growth.

  16. Fine structure of Tibetan kefir grains and their yeast distribution, diversity, and shift.

    Directory of Open Access Journals (Sweden)

    Man Lu

    Full Text Available Tibetan kefir grains (TKGs, a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii the diversity of yeasts is relatively low on genus level with three dominant species--Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic

  17. Fine Structure of Tibetan Kefir Grains and Their Yeast Distribution, Diversity, and Shift

    Science.gov (United States)

    Lu, Man; Wang, Xingxing; Sun, Guowei; Qin, Bing; Xiao, Jinzhou; Yan, Shuling; Pan, Yingjie; Wang, Yongjie

    2014-01-01

    Tibetan kefir grains (TKGs), a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i) yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii) the diversity of yeasts is relatively low on genus level with three dominant species – Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii) S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic associations between S

  18. [Structure analysis of disease-related proteins using vibrational spectroscopy].

    Science.gov (United States)

    Hiramatsu, Hirotsugu

    2014-01-01

    Analyses of the structure and properties of identified pathogenic proteins are important for elucidating the molecular basis of diseases and in drug discovery research. Vibrational spectroscopy has advantages over other techniques in terms of sensitivity of detection of structural changes. Spectral analysis, however, is complicated because the spectrum involves a substantial amount of information. This article includes examples of structural analysis of disease-related proteins using vibrational spectroscopy in combination with additional techniques that facilitate data acquisition and analysis. Residue-specific conformation analysis of an amyloid fibril was conducted using IR absorption spectroscopy in combination with (13)C-isotope labeling, linear dichroism measurement, and analysis of amide I band features. We reveal a pH-dependent property of the interacting segment of an amyloidogenic protein, β2-microglobulin, which causes dialysis-related amyloidosis. We also reveal the molecular mechanisms underlying pH-dependent sugar-binding activity of human galectin-1, which is involved in cell adhesion, using spectroscopic techniques including UV resonance Raman spectroscopy. The decreased activity at acidic pH was attributed to a conformational change in the sugar-binding pocket caused by protonation of His52 (pKa 6.3) and the cation-π interaction between Trp68 and the protonated His44 (pKa 5.7). In addition, we show that the peak positions of the Raman bands of the C4=C5 stretching mode at approximately 1600 cm(-1) and the Nπ-C2-Nτ bending mode at approximately 1405 cm(-1) serve as markers of the His side-chain structure. The Raman signal was enhanced 12 fold using a vertical flow apparatus.

  19. Vibrational spectroscopy for structural characterization of bioactive compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, K.S.; Majik, M.S.; Tilvi, S.

    , it is worthy to determine the structure for further understanding the physiochemical properties of the molecule. Several spectroscopic tools were employed for this purpose such as NMR, mass spectrometry and IR spectroscopy. Among these techniques, IR is one... differ not only in the nature of their components but also in the length of the chain and in the amount of chain branching. Several polysaccharides are found in marine organisms mainly in brown algae and sea weeds. They have wide value in medicine, food...

  20. Coupling Fine-Scale Root and Canopy Structure Using Ground-Based Remote Sensing

    Directory of Open Access Journals (Sweden)

    Brady S. Hardiman

    2017-02-01

    Full Text Available Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL and ground penetrating radar (GPR along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation at multiple spatial scales ≤10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.

  1. Near-edge x-ray absorption fine structure measurements using a laboratory-scale XUV source

    Energy Technology Data Exchange (ETDEWEB)

    Peth, Christian; Barkusky, Frank; Mann, Klaus [Laser-Laboratorium Goettingen e.V., Hans-Adolf-Krebs-Weg 1, D-37077 Goettingen (Germany)

    2008-05-21

    We present a compact setup for near-edge x-ray absorption spectroscopy at the carbon K-edge based on a laser-driven plasma source. To generate the required broad-band emission in the spectral range of the 'water window' ({lambda} = 2.2-4.4 nm) a krypton gas puff target was used. The table-top setup consisting basically of the laser-plasma source and a flat-field spectrometer can be used for near-edge x-ray absorption fine structure experiments in transmission as well as reflection under grazing incidence conditions (ReflEXAFS). The latter method offers the advantage that thin film preparation is not necessary and that the surface sensitivity is strongly enhanced. The results obtained for thin polymer films show good agreement with synchrotron data. Furthermore, we use the ReflEXAFS method to investigate changes in the chemical composition of PMMA induced by extreme ultraviolet (EUV) radiation. The spectra indicate a loss of the carbonyl functional group upon irradiation as well as crosslinking effects at high EUV radiation doses.

  2. [Application of UV spectroscopy in structural studies of metal centre of metal-protein].

    Science.gov (United States)

    Liang, H; Zhou, Y; Shen, P

    1997-02-01

    The principle of UV spectroscopy applied in structural studies of metal centre of complexes is introduced in this paper. Several examples prove that such spectroscopy is an effective technical method in structural studies of metal centre of metal-protein.

  3. Fine- and hyperfine structure investigations of even configuration system of atomic terbium

    Science.gov (United States)

    Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.

    2017-03-01

    In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).

  4. Fine-scale population genetic structure in a fission-fusion society.

    Science.gov (United States)

    Archie, Elizabeth A; Maldonado, Jésus E; Hollister-Smith, Julie A; Poole, Joyce H; Moss, Cynthia J; Fleischer, Robert C; Alberts, Susan C

    2008-06-01

    Nonrandom patterns of mating and dispersal create fine-scale genetic structure in natural populations - especially of social mammals - with important evolutionary and conservation genetic consequences. Such structure is well-characterized for typical mammalian societies; that is, societies where social group composition is stable, dispersal is male-biased, and males form permanent breeding associations in just one or a few social groups over the course of their lives. However, genetic structure is not well understood for social mammals that differ from this pattern, including elephants. In elephant societies, social groups fission and fuse, and males never form permanent breeding associations with female groups. Here, we combine 33 years of behavioural observations with genetic information for 545 African elephants (Loxodonta africana), to investigate how mating and dispersal behaviours structure genetic variation between social groups and across age classes. We found that, like most social mammals, female matrilocality in elephants creates co-ancestry within core social groups and significant genetic differentiation between groups (Phi(ST) = 0.058). However, unlike typical social mammals, male elephants do not bias reproduction towards a limited subset of social groups, and instead breed randomly across the population. As a result, reproductively dominant males mediate gene flow between core groups, which creates cohorts of similar-aged paternal relatives across the population. Because poaching tends to eliminate the oldest elephants from populations, illegal hunting and poaching are likely to erode fine-scale genetic structure. We discuss our results and their evolutionary and conservation genetic implications in the context of other social mammals.

  5. Fine structure of uterus and non-functioning paruterine organ in Orthoskrjabinia junlanae (Cestoda, Cyclophyllidea).

    Science.gov (United States)

    Korneva, Janetta V; Kornienko, Svetlana A; Jones, Malcolm K

    2016-06-01

    Some cyclophyllidean cestodes provide protection for their eggs in the external environment by providing them with additional protective layers around the egg membranes. In attempting to examine such adaptations, the microanatomy and fine structure of the uterus of pregravid and gravid proglottids of the cyclophyllidean cestode Orthoskrjabinia junlanae, a parasite of mammals that inhabit a terrestrial but moist environment, were studied. In the initial stages of uterine development, developing embryos locate freely in the lumen of a saccate uterus that later partitions into chambers. Each chamber that forms encloses several embryos. The chambers are surrounded by muscle cells that synthesize extracellular matrix actively. The paruterine organs consist of stacks of flattened long outgrowths of muscular cells, interspersed with small lipid droplets. In the gravid proglottids, the size of paruterine organ increases and consists of flattened basal and small rounded apical parts separated by constrictions. The fine structure of the organ wall remains the same: sparse nuclei and stacks of flattened cytoplasmic outgrowths but internal invaginations or lumen in the paruterine organ are absent. Completely developed eggs remain localized in the uterus. Based on the comparative morpho-functional analysis of uterine and paruterine organs and uterine capsules in cestodes, we conclude that these non-functioning paruterine organ in O. junlanae is an example of an atavism. We postulate that the life cycle of the parasite, which infects mammals living in wet habitats, where threats of desiccation of parasite ova is reduced, has favoured a reversion to a more ancestral form of uterine development.

  6. Relativistic and perturbational calculations of fine structure splittings in F2 and F2

    Science.gov (United States)

    Mark, F.; Marian, C.; Schwarz, W. H. E.

    Dirac-Fock calculations near the SCF limit using the recently developed basis set expansion technique of Mark and Schwarz have been performed on the F2 ground state with particular consideration of the relativistic splitting of the πg and πu orbitals. The magnetic contribution to the Breit interaction has been included by first-order perturbation theory. Fine structure splittings of the ionic states F2+(X 2Πg) and F2+(A 2Πu) have been calculated by first-order perturbation theory within the Breit-Pauli framework at three levels of approximation for the zero-order wavefunction. The results of the Dirac-Breit and the Breit-Pauli approaches are compared with experimental data. The calculated splittings are analysed by partitioning them into physically meaningful contributions. Aided by results of numerical Dirac-Fock calculations on atoms the general conclusion is drawn that ionic reorganization of the wavefunction increases the fine structure splitting at the Breit-Pauli level, whereas it decreases the splitting at the Dirac-Breit level. Using a model of Ishiguro and Kobori the ratios of Πg and Πu spin-orbit splittings of halogen molecular ions X2+ are discussed.

  7. The variation of the fine-structure constant from disformal couplings

    Energy Technology Data Exchange (ETDEWEB)

    De Bruck, Carsten van; Mifsud, Jurgen [Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Nunes, Nelson J., E-mail: c.vandebruck@sheffield.ac.uk, E-mail: jmifsud1@sheffield.ac.uk, E-mail: njnunes@fc.ul.pt [Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, PT1749-016 Lisboa (Portugal)

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.

  8. Fine-grained parallel RNAalifold algorithm for RNA secondary structure prediction on FPGA.

    Science.gov (United States)

    Xia, Fei; Dou, Yong; Zhou, Xingming; Yang, Xuejun; Xu, Jiaqing; Zhang, Yang

    2009-01-30

    In the field of RNA secondary structure prediction, the RNAalifold algorithm is one of the most popular methods using free energy minimization. However, general-purpose computers including parallel computers or multi-core computers exhibit parallel efficiency of no more than 50%. Field Programmable Gate-Array (FPGA) chips provide a new approach to accelerate RNAalifold by exploiting fine-grained custom design. RNAalifold shows complicated data dependences, in which the dependence distance is variable, and the dependence direction is also across two dimensions. We propose a systolic array structure including one master Processing Element (PE) and multiple slave PEs for fine grain hardware implementation on FPGA. We exploit data reuse schemes to reduce the need to load energy matrices from external memory. We also propose several methods to reduce energy table parameter size by 80%. To our knowledge, our implementation with 16 PEs is the only FPGA accelerator implementing the complete RNAalifold algorithm. The experimental results show a factor of 12.2 speedup over the RNAalifold (ViennaPackage - 1.6.5) software for a group of aligned RNA sequences with 2981-residue running on a Personal Computer (PC) platform with Pentium 4 2.6 GHz CPU.

  9. The effect of ultraviolet irradiation on fine structure of chicken thrombocytes

    International Nuclear Information System (INIS)

    Tanyolac, A.; Bolukbasi, F.

    1978-01-01

    In this study, the effect of ultraviolet light on fine structure of thrombocytes in irradiated-chickens (Golden comet) was investigated. Perinuclear space and surface connecting system (scs) were dilated. Mitochondria and ribosomes were slightly increased in number. The agranular endoplasmic reticulum was spread out, forming cisterna in some areas. The well-developed Golgi complex showed enlargements in its all parts. An abundant amount of secundary lysosomes were formed. The vacuoles were also enlarged and increased in number. There seemed various electron-dense granules and lamellar structures in the vacuoles, and different-sized dense bodies in the cytoplasm. The glycogen particles which were normally in small amount, were locally increased in number, with irradiation. All findings were more pronounced after the second irradiation

  10. Fine structure and optical properties of biological polarizers in crustaceans and cephalopods

    Science.gov (United States)

    Chiou, Tsyr-Huei; Caldwell, Roy L.; Hanlon, Roger T.; Cronin, Thomas W.

    2008-04-01

    The lighting of the underwater environment is constantly changing due to attenuation by water, scattering by suspended particles, as well as the refraction and reflection caused by the surface waves. These factors pose a great challenge for marine animals which communicate through visual signals, especially those based on color. To escape this problem, certain cephalopod mollusks and stomatopod crustaceans utilize the polarization properties of light. While the mechanisms behind the polarization vision of these two animal groups are similar, several distinctive types of polarizers (i.e. the structure producing the signal) have been found in these animals. To gain a better knowledge of how these polarizers function, we studied the relationships between fine structures and optical properties of four types of polarizers found in cephalopods and stomatopods. Although all the polarizers share a somewhat similar spectral range, around 450- 550 nm, the reflectance properties of the signals and the mechanisms used to produce them have dramatic differences. In cephalopods, stack-plates polarizers produce the polarization patterns found on the arms and around their eyes. In stomatopods, we have found one type of beam-splitting polarizer based on photonic structures and two absorptive polarizer types based on dichroic molecules. These stomatopod polarizers may be found on various appendages, and on the cuticle covering dorsal or lateral sides of the animal. Since the efficiencies of all these polarizer types are somewhat sensitive to the change of illumination and viewing angle, how these animals compensate with different behaviors or fine structural features of the polarizer also varies.

  11. Fine structure of the mineralized teeth of the chiton Acanthopleura echinata (Mollusca: Polyplacophora).

    Science.gov (United States)

    Wealthall, Rosamund J; Brooker, Lesley R; Macey, David J; Griffin, Brendan J

    2005-08-01

    The major lateral teeth of the chiton Acanthopleura echinata are composite structures composed of three distinct mineral zones: a posterior layer of magnetite; a thin band of lepidocrocite just anterior to this; and apatite throughout the core and anterior regions of the cusp. Biomineralization in these teeth is a matrix-mediated process, in which the minerals are deposited around fibers, with the different biominerals described as occupying architecturally discrete compartments. In this study, a range of scanning electron microscopes was utilized to undertake a detailed in situ investigation of the fine structure of the major lateral teeth. The arrangement of the organic and biomineral components of the tooth is similar throughout the three zones, having no discrete borders between them, and with crystallites of each mineral phase extending into the adjacent mineral zone. Along the posterior surface of the tooth, the organic fibers are arranged in a series of fine parallel lines, but just within the periphery their appearance takes on a "fish scale"-like pattern, reflective of the cross section of a series of units that are overlaid, and offset from each other, in adjacent rows. The units are approximately 2 microm wide and 0.6 microm thick and comprise biomineral plates separated by organic fibers. Two types of subunits make up each "fish scale": one is elongate and curved and forms a trough, in which the other, rod-like unit, is nestled. Adjacent rod and trough units are aligned into large sheets that define the fracture plane of the tooth. The alignment of the plates of rod-trough units is complex and exhibits extreme spatial variation within the tooth cusp. Close to the posterior surface the plates are essentially horizontal and lie in a lateromedial plane, while anteriorly they are almost vertical and lie in the posteroanterior plane. An understanding of the fine structure of the mineralized teeth of chitons, and of the relationship between the organic and

  12. Atlas of fine structures of dynamic spectra of solar type IV-dm and some type II radio bursts

    International Nuclear Information System (INIS)

    Slottje, C.

    1982-01-01

    The author presents an atlas of spectral fine structures of solar radio bursts of types IV and II around 1 m wavelength, as obtained with a multichannel spectrograph at Dwingeloo. The structures form largely a collection of observations of these events during late 1968 through 1974, thus covering almost entirely the declining branch of solar cycle 20. The spectrograph has an extra enhanced contrast output with properties quite different from those of the commonly used swept frequency spectrographs. The corresponding instrumental characteristics and effects are discussed. A classification of fine structures and an analysis of their statistical properties and of those of the pertinent radio events are also given. (Auth.)

  13. Fine structure of the stimulated Raman spectrum in compressed hydrogen. The relaxation-oscillation mode of backscattered Stokes emission

    International Nuclear Information System (INIS)

    Bespalov, V.G.; Efimov, Yu.N.; Staselko, D.I.

    1992-01-01

    This paper studies the emission spectra of backscattered stimulated Raman scattering (SRS) in compressed hydrogen in the relaxation-oscillation mode and the compression SRS mode for the minimum width of the spontaneous scattering spectrum (in the region of the Dicke dip). It is shown that the generation of a train of Stokes-emission subpulses results in the appearance of fine structure in the backscattered SRS spectrum. The influence of the temporal structure of reflected Stokes pulses on this spectrum and on the appearance of fine structure in it is analyzed. The conditions for generating spectrally limited (without phase modulation), extremely coherent Stokes pulses are explained. 18 refs., 3 figs

  14. A new procedure for the quantitative analysis of extended x-ray absorption fine structure data in total reflection geometry.

    Science.gov (United States)

    Benzi, F; Davoli, I; Rovezzi, M; d'Acapito, F

    2008-10-01

    A novel code for the analysis of extended x-ray absorption fine structure (EXAFS) data collected in total reflection mode (reflEXAFS) is presented. The procedure calculates the theoretical fine structure signals appearing in the reflectivity spectrum starting from the ab initio EXAFS calculations. These signals are then used in complex structural refinement (i.e., also including multiple scattering paths) with usual fitting programs of EXAFS data. A test case consisting in the analysis of a gold film collected at different incidence angles is presented in detail.

  15. Visible-near-infrared spectroscopy can predict the clay/organic carbon and mineral fines/organic carbon ratios

    DEFF Research Database (Denmark)

    Hermansen, Cecilie; Knadel, Maria; Møldrup, Per

    2016-01-01

    from seven Danish and one Greenlandic fields, with a large textural range (clay: 0.027–0.355 kg kg−1; OC: 0.011–0.084 kg kg−1; n-ratio: 0.49–16.80; m-ratio: 1.46–32.14), were analyzed for texture and OC and subsequently scanned with a vis-NIR spectrometer from 400 to 2500 nm. The spectral data were...... correlated to reference values of the n-ratio, m-ratio, clay, fine silt, fines, and OC with partial least squares regression. The vis-NIR models were developed on a regional dataset comprising the 480 soil samples divided into calibration and validation subsets. Further, we tested vis-NIR models developed...... on the individual eight fields using full cross-validation. Validation results from the regional models showed high predictive abilities with a root mean square error of prediction (RMSEP) of 0.64 and R2 of 0.97 for the n-ratio and RMSEP = 1.43 and R2 of 0.97 for the m-ratio. The regional clay, fine silt, fines...

  16. Fine reservoir structure modeling based upon 3D visualized stratigraphic correlation between horizontal wells: methodology and its application

    Science.gov (United States)

    Chenghua, Ou; Chaochun, Li; Siyuan, Huang; Sheng, James J.; Yuan, Xu

    2017-12-01

    As the platform-based horizontal well production mode has been widely applied in petroleum industry, building a reliable fine reservoir structure model by using horizontal well stratigraphic correlation has become very important. Horizontal wells usually extend between the upper and bottom boundaries of the target formation, with limited penetration points. Using these limited penetration points to conduct well deviation correction means the formation depth information obtained is not accurate, which makes it hard to build a fine structure model. In order to solve this problem, a method of fine reservoir structure modeling, based on 3D visualized stratigraphic correlation among horizontal wells, is proposed. This method can increase the accuracy when estimating the depth of the penetration points, and can also effectively predict the top and bottom interfaces in the horizontal penetrating section. Moreover, this method will greatly increase not only the number of points of depth data available, but also the accuracy of these data, which achieves the goal of building a reliable fine reservoir structure model by using the stratigraphic correlation among horizontal wells. Using this method, four 3D fine structure layer models have been successfully built of a specimen shale gas field with platform-based horizontal well production mode. The shale gas field is located to the east of Sichuan Basin, China; the successful application of the method has proven its feasibility and reliability.

  17. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul K [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Han, Jiaguang [OSU; Lu, Xinchao [OSU; Zhang, Weili [OSU

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  18. Structure analysis of aromatic medicines containing nitrogen using near-infrared spectroscopy and generalized two-dimensional correlation spectroscopy

    Science.gov (United States)

    Liu, Hao; Gao, Hongbin; Qu, Lingbo; Huang, Yanping; Xiang, Bingren

    2008-12-01

    Four aromatic medicines (acetaminophen; niacinamide; p-aminophenol; nicotinic acid) containing nitrogen were investigated by FT-NIR (Fourier transform near-infrared) spectroscopy and generalized two-dimensional (2D) correlation spectroscopy. The FT-NIR spectra were measured over a temperature range of 30-130 °C. By combining near-infrared spectroscopy, generalized 2D correlation spectroscopy and references, the molecular structures (especially the hydrogen bond related with nitrogen) were analyzed and the NIR band assignments were performed. The results will be helpful to the understanding of aromatic medicines containing nitrogen and the utility of these substances.

  19. The Low Pitch of High-Frequency Complex Tones Relies on Temporal Fine Structure Information

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2010-01-01

    High-frequency complex tones containing only unresolved harmonic components with a frequency spacing Δf usually evoke a low pitch equal to Δf. However, for inharmonic components, the low pitch is often found to deviate slightly from Δf. Whether this pitch shift relies exclusively on temporal fine...... structure (TFS) cues has been a matter of debate. It is also controversial up to which frequency TFS information remains available, and to what extent envelope cues become dominant as frequency increases. Using a pitch-matching paradigm, this study investigated whether the pitch of transposed tones...... with unresolved inharmonic components is determined by (A) the time intervals between the most prominent TFS peaks in their waveform (multimodal distribution of matches around subharmonics of the carrier frequency fc), (B) the timing between peaks in their envelope (unimodal distribution of matches around...

  20. Extended x-ray absorption fine structure of NaBr and Ge at high pressure

    Science.gov (United States)

    Ingalls, R.; Crozier, E. D.; Whitmore, J. E.; Seary, A. J.; Tranquada, J. M.

    1980-06-01

    The x-ray absorption spectra of Ge and of Br in NaBr have been measured to pressures of 52 and 21 kbars, respectively, in a boron carbide and diamond anvil cell in which pressure was measured via the ruby-fluorescence technique. Although Bragg peaks from the diamond anvil reduced the accuracy, atomic spacings in both materials could be determined by extended x-ray absorption fine-structure (EXAFS) analysis. Changes in the nearest-neighbor separations in NaBr, and Ge to at least 40 kbars, agreed with literature values, indicating that the EXAFS phase shifts are quite insensitive to such pressures. In addition the near-edge peak positions in the NaBr spectra appeared to readily shift with pressure, which suggests that NaBr may be quite suitable as a pressure standard in future work of this type.

  1. Fisher matrix forecasts for astrophysical tests of the stability of the fine-structure constant

    Directory of Open Access Journals (Sweden)

    C.S. Alves

    2017-07-01

    Full Text Available We use Fisher Matrix analysis techniques to forecast the cosmological impact of astrophysical tests of the stability of the fine-structure constant to be carried out by the forthcoming ESPRESSO spectrograph at the VLT (due for commissioning in late 2017, as well by the planned high-resolution spectrograph (currently in Phase A for the European Extremely Large Telescope. Assuming a fiducial model without α variations, we show that ESPRESSO can improve current bounds on the Eötvös parameter—which quantifies Weak Equivalence Principle violations—by up to two orders of magnitude, leading to stronger bounds than those expected from the ongoing tests with the MICROSCOPE satellite, while constraints from the E-ELT should be competitive with those of the proposed STEP satellite. Should an α variation be detected, these measurements will further constrain cosmological parameters, being particularly sensitive to the dynamics of dark energy.

  2. Bloch oscillations of ultracold atoms and measurement of the fine structure constant

    International Nuclear Information System (INIS)

    Clade, P.

    2005-10-01

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10 -9 , in conjunction with a careful study of systematic effects (5 10 -9 ), has led us to a determination of alpha with an uncertainty of 6.7 10 -9 : α -1 (Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  3. Constraints on a possible variation of the fine structure constant from galaxy cluster data

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, R.F.L. [Departamento de Física, Universidade Estadual da Paraíba, 58429-500, Campina Grande – PB (Brazil); Landau, S.J.; Sánchez G, I.E. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and IFIBA, CONICET, Ciudad Universitaria – PabI, Buenos Aires 1428 (Argentina); Alcaniz, J.S. [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro – RJ (Brazil); Busti, V.C., E-mail: holanda@uepb.edu.br, E-mail: slandau@df.uba.ar, E-mail: alcaniz@on.br, E-mail: isg.cos@gmail.com, E-mail: vinicius.busti@astro.iag.usp.br [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, 05508-090, São Paulo – SP (Brazil)

    2016-05-01

    We propose a new method to probe a possible time evolution of the fine structure constant α from X-ray and Sunyaev-Zel'dovich measurements of the gas mass fraction ( f {sub gas}) in galaxy clusters. Taking into account a direct relation between variations of α and violations of the distance-duality relation, we discuss constraints on α for a class of dilaton runaway models. Although not yet competitive with bounds from high- z quasar absorption systems, our constraints, considering a sample of 29 measurements of f {sub gas}, in the redshift interval 0.14 < z < 0.89, provide an independent estimate of α variation at low and intermediate redshifts. Furthermore, current and planned surveys will provide a larger amount of data and thus allow to improve the limits on α variation obtained in the present analysis.

  4. Grazing incidence diffraction anomalous fine structure of self-assembled semiconductor nanostructures

    International Nuclear Information System (INIS)

    Grenier, S.; Letoublon, A.; Proietti, M.G.; Renevier, H.; Gonzalez, L.; Garcia, J.M.; Priester, C.; Garcia, J.

    2003-01-01

    We have studied self-organized quantum wires of InAs, grown by molecular beam epitaxy onto a InP(0 0 1) substrate, by means of grazing incidence diffraction anomalous fine structure (DAFS). The equivalent quantum wires thickness is 2.5 monolayers. We measured the (4 4 0) and (4 2 0) GIDAFS spectra, at the As K-edge, keeping the incidence and exit angles close to the InP critical angle. The analysis of both the smooth and oscillatory contributions of the DAFS spectrum, provide valuable information about composition and strain inside the quantum wires and close to the interface. We also show preliminary results on InAs wires encapsulated by a 40 A thick InP capping layer, suggesting the DAFS capability of probing different iso-strain regions of the wires

  5. Fine-structural changes in the midgut of old Drosophila melanogaster

    Science.gov (United States)

    Anton-Erxleben, F.; Miquel, J.; Philpott, D. E.

    1983-01-01

    Senescent fine-structural changes in the midgut of Drosophila melanogaster are investigated. A large number of midgut mitochondria in old flies exhibit nodular cristae and a tubular system located perpendicular to the normal cristae orientation. Anterior intestinal cells show a senescent accumulation of age pigment, either with a surrounding two-unit membrane or without any membrane. The predominant localization of enlarged mitochondria and pigment in the luminal gut region may be related to the polarized metabolism of the intestinal cells. Findings concur with previous observations of dense-body accumulations and support the theory that mitochondria are involved in the aging of fixed post-mitotic cells. Demonstrated by statistical analyses is that mitochondrial size increase is related to mitochondrial variation increase.

  6. Fine-structure energy levels and radiative lifetime in Mo XIV

    International Nuclear Information System (INIS)

    Wang Xiaodong; Pei Dong; Jiang Renbin; Wang Wanjue

    2002-01-01

    Energy levels, radiative lifetime and various transition parameters for allowed transitions among the 1508 fine-structure levels belong to the (1s 2 2s 2 2p 6 3s 2 3p 6 ) 3d 10 4l, 3d 9 4l 2 , 3d 10 5l, 3d 9 4l4m, 3d 10 6l, 3d 10 7l and so on configurations of the Cu-like ions Mo XIV have been calculated by using the expanded fully relativistic GRASP code. The results are compared with those available in the literature, and the accuracy of the present data is assessed. Energy levels are expected to be accurate to within 0.81%. The authors have found some long lifetime levels

  7. Speech and music perception with the new fine structure speech coding strategy: preliminary results.

    Science.gov (United States)

    Arnoldner, Christoph; Riss, Dominik; Brunner, Markus; Durisin, Martin; Baumgartner, Wolf-Dieter; Hamzavi, Jafar-Sasan

    2007-12-01

    Taking into account the excellent results with significant improvements in the speech tests and the very high satisfaction of the patients using the new strategy, this first implementation of a fine structure strategy could offer a new quality of hearing with cochlear implants (CIs). This study consisted of an intra-individual comparison of speech recognition, music perception and patient preference when subjects used two different speech coding strategies with a MedEl Pulsar CI: continuous interleaved sampling (CIS) and the new fine structure processing (FSP) strategy. In contrast to envelope-based strategies, the FSP strategy also delivers subtle pitch and timing differences of sound to the user and is thereby supposed to enhance speech perception in noise and increase the quality of music perception. This was a prospective study assessing performance with two different speech coding strategies. The setting was a CI programme at an academic tertiary referral centre. Fourteen post-lingually deaf patients using a MedEl Pulsar CI with a mean CI experience of 0.98 years were supplied with the new FSP speech coding strategy. Subjects consecutively used the two different speech coding strategies. Speech and music tests were performed with the previously fitted CIS strategy, immediately after fitting with the new FSP strategy and 4, 8 and 12 weeks later. The main outcome measures were individual performance and subjective assessment of two different speech processors. Speech and music test scores improved statistically significantly after conversion from CIS to FSP strategy. Twelve of 14 patients preferred the new FSP speech processing strategy over the CIS strategy.

  8. New algorithm improves fine structure of the barley consensus SNP map

    Directory of Open Access Journals (Sweden)

    Endelman Jeffrey B

    2011-08-01

    Full Text Available Abstract Background The need to integrate information from multiple linkage maps is a long-standing problem in genetics. One way to visualize the complex ordinal relationships is with a directed graph, where each vertex in the graph is a bin of markers. When there are no ordering conflicts between the linkage maps, the result is a directed acyclic graph, or DAG, which can then be linearized to produce a consensus map. Results New algorithms for the simplification and linearization of consensus graphs have been implemented as a package for the R computing environment called DAGGER. The simplified consensus graphs produced by DAGGER exactly capture the ordinal relationships present in a series of linkage maps. Using either linear or quadratic programming, DAGGER generates a consensus map with minimum error relative to the linkage maps while remaining ordinally consistent with them. Both linearization methods produce consensus maps that are compressed relative to the mean of the linkage maps. After rescaling, however, the consensus maps had higher accuracy (and higher marker density than the individual linkage maps in genetic simulations. When applied to four barley linkage maps genotyped at nearly 3000 SNP markers, DAGGER produced a consensus map with improved fine structure compared to the existing barley consensus SNP map. The root-mean-squared error between the linkage maps and the DAGGER map was 0.82 cM per marker interval compared to 2.28 cM for the existing consensus map. Examination of the barley hardness locus at the 5HS telomere, for which there is a physical map, confirmed that the DAGGER output was more accurate for fine structure analysis. Conclusions The R package DAGGER is an effective, freely available resource for integrating the information from a set of consistent linkage maps.

  9. Fine surface structure of unfixed and hydrated macrophages observed by laser-plasma x-ray contact microscopy

    International Nuclear Information System (INIS)

    Yamamoto, Yoshimasa; Friedman, Herman; Yoshimura, Hideyuki; Kinjo, Yasuhito; Shioda, Seiji; Debari, Kazuhiro; Shinohara, Kunio; Rajyaguru, Jayshree; Richardson, Martin

    2000-01-01

    A compact, high-resolution, laser-plasma, x-ray contact microscope using a table-top Nd:glass laser system has been developed and utilized for the analysis of the surface structure of live macrophages. Fine fluffy surface structures of murine peritoneal macrophages, which were live, hydrolyzed and not sliced and stained, were observed by the x-ray microscope followed by analysis using an atomic force microscopy. In order to compare with other techniques, a scanning electron microscopy (SEM) was utilized to observe the surface structure of the macrophages. The SEM offered a fine whole cell image of the same macrophages, which were fixed and dehydrated, but the surfaces were ruffled and different from that of x-ray images. A standard light microscope was also utilized to observe the shape of live whole macrophages. Light microscopy showed some fluffy surface structures of the macrophages, but the resolution was too low to observe the fine structures. Thus, the findings of fine fluffy surface structures of macrophages by x-ray microscopy provide valuable information for studies of phagocytosis, cell spreading and adherence, which are dependent on the surface structure of macrophages. Furthermore, the present study also demonstrates the usefulness of x-ray microscopy for analysis of structures of living cells

  10. Cultural transmission of tool use combined with habitat specializations leads to fine-scale genetic structure in bottlenose dolphins

    NARCIS (Netherlands)

    Kopps, Anna M.; Ackermann, Corinne Y.; Sherwin, William B.; Allen, Simon J.; Bejder, Lars; Kruetzen, Michael

    2014-01-01

    Socially learned behaviours leading to genetic population structure have rarely been described outside humans. Here, we provide evidence of fine-scale genetic structure that has probably arisen based on socially transmitted behaviours in bottlenose dolphins (Tursiops sp.) in western Shark Bay,

  11. Ultrafast time-resolved transient structures of solids and liquids by means of extended X-ray absorption fine structure.

    Science.gov (United States)

    Tomov, Ivan V; Rentzepis, Peter M

    2004-01-23

    Detection of ultrafast transient structures and the evolution of ultrafast structural intermediates during the course of reactions has been a long standing goal of chemists and biologists. This article will be restricted to nanosecond, picosecond and shorter time-resolved extended X-ray absorption fine structure (EXAFS) studies, its aim being to present the progress and problems encounter in measurements and understanding the structure of transients. The recent advances in source technology has stimulated a wide variety of novel experiments using both synchrotrons and smaller laboratory size systems. With more efficient X-ray lenses and detectors many of the previously difficult experiments to perform, because of the exposure time required and weak signals, will now be easily performed. The experimental system for the detection of ultrafast, time-resolved EXAFS spectra of molecules in liquids is described and the method for the analysis of EXAFS spectra to yield transient structures is given. We believe that utilizing our table-top ultrafast X-ray source and the polycapillary optics in conjunction with dispersive spectrometer and charge coupled devices (CCD) we will be able to determine the structure of many reaction intermediates and excited states of chemical and biological molecules in solid and liquid state.

  12. Effect of diurnal photosynthetic activity on the fine structure of amylopectin from normal and waxy barley starch

    DEFF Research Database (Denmark)

    Goldstein, Avi; Annor, George; Blennow, Andreas

    2017-01-01

    The impact of diurnal photosynthetic activity on the fine structure of the amylopectin fraction of starch synthesized by normal barley (NBS) and waxy barley (WBS), the latter completely devoid of amylose biosynthesis, was determined following the cultivation under normal diurnal or constant light...... growing conditions. The amylopectin fine structures were analysed by characterizing its unit chain length profiles after enzymatic debranching as well as its φ,β-limit dextrins and its clusters and building blocks after their partial and complete hydrolysis with α-amylase from Bacillus amyloliquefaciens...... under constant light. Our data demonstrate that the diurnal light regime influences the fine structure of the amylopectin component both in amylose and non-amylose starch granules....

  13. Development of Ultra-Fine-Grained Structure in AISI 321 Austenitic Stainless Steel

    Science.gov (United States)

    Tiamiyu, A. A.; Szpunar, J. A.; Odeshi, A. G.; Oguocha, I.; Eskandari, M.

    2017-12-01

    Ultra-fine-grained (UFG) structure was developed in AISI 321 austenitic stainless steel (ASS) using cryogenic rolling followed by annealing treatments at 923 K, 973 K, 1023 K, and 1073 K (650 °C, 700 °C, 750 °C, and 800 °C) for different lengths of time. The α'-martensite to γ-austenite reversion behavior and the associated texture development were analyzed in the cryo-rolled specimens after annealing. The activation energy, Q, required for the reversion of α'-martensite to γ-austenite in the steel was estimated to be 80 kJ mol-1. TiC precipitates and unreversed triple junction α'-martensite played major roles in the development of UFG structure through the Zener pinning of grain boundaries. The optimum annealing temperature and time for the development of UFG structure in the cryo-rolled AISI 321 steel are (a) 923 K (650 °C) for approximately 28800 seconds and (b) 1023 K (750 °C) for 600 seconds, with average grain sizes of 0.22 and 0.31 µm, respectively. Annealing at 1023 K (750 °C) is considered a better alternative since the volume fraction of precipitated carbides in specimens annealed at 1023 K (750 °C) are less than those annealed at 923 K (650 °C). More so, the energy consumption during prolonged annealing time to achieve an UFG structure at 923 K (650 °C) is higher due to low phase reversion rate. The hardness of the UFG specimens is 195 pct greater than that of the as-received steel. The higher volume fraction of TiC precipitates in the UFG structure may be an additional source of hardening. Micro and macrotexture analysis indicated {110}〈uvw〉 as the major texture component of the austenite grains in the UFG structure. Its intensity is stronger in the specimen annealed at low temperatures.

  14. Fine structure and functional comments of mouthparts in Platypus cylindrus (Col., Curculionidae: Platypodinae).

    Science.gov (United States)

    Belhoucine, Latifa; Bouhraoua, Rachid T; Prats, Eva; Pulade-Villar, Juli

    2013-02-01

    Oak pinhole borer, Platypus cylindrus is seen in recent years as one of the biggest enemies directly involved in the observed decline of cork oak in Mediterranean forests with all the economic implications. As an ambrosia beetle, it has developed its effective drilling mouthpart enough to make tunnels in hardwood of the tree. The fine structural aspects of the mouthpart using the field emission scanning electron microscopy are analyzed about 23 adults collected in galleries of infested cork oak trees (Quercus suber) in a littoral forest of northwest Algeria. These adults are preserved in alcohol 70%, cleaned and coated with gold. The mouthparts of this beetle consist commonly of a labrum, a pair of mandibles, a pair of maxillae and the labium but with adapted structure to excavate galleries in the hardwood. In this role is also involved the first pair of legs. The function that present the different structures related to the construction of the tunnels is discussed. Both of maxillary and labial palpi direct the food to the mouth and hold it while the mandibles chew the food. The distal ends of these palpi are flattened and have shovel-like setae. Females have larger maxillary palpi than males and this is related to the particular biology of each sex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The Campbell Soil-Water Retention Function: Predictions Using Visible Near-Infrared Spectroscopy or Soil Fines

    DEFF Research Database (Denmark)

    Chrysodonta, Zampela Pittaki; Møldrup, Per; Hermansen, Cecilie

    The unsaturated hydraulic conductivity is one of the most uncertain soil properties while, at the same time, it is essential for modelling water and solute movement in the vadose zone. The Campbell soil-water retention function and its b parameter (pore-size distribution index) is a simple method...... to assess the soil unsaturated hydraulic conductivity when water retention data are available. However, measuring water retention is time consuming. A method to accurately predict the Campbell relation from either textural parameters such as clay and organic matter (soil fines) or from rapid, visible near......-point and the Campbell b was predicted using either vis-NIR (with spectral range from 400-2500 nm) or the soil fines content. Water retention, texture, and vis-NIR measurements for more than 200 soils were used for the model development. Vis-NIR measurements were used in order to correlate absorptions in specific...

  16. Large Molecule Structures by Broadband Fourier Transform Molecular Rotational Spectroscopy

    Science.gov (United States)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Fourier transform molecular rotational resonance spectroscopy (FT-MRR) using pulsed jet molecular beam sources is a high-resolution spectroscopy technique that can be used for chiral analysis of molecules with multiple chiral centers. The sensitivity of the molecular rotational spectrum pattern to small changes in the three dimensional structure makes it possible to identify diastereomers without prior chemical separation. For larger molecules, there is the additional challenge that different conformations of each diastereomer may be present and these need to be differentiated from the diastereomers in the spectral analysis. Broadband rotational spectra of several larger molecules have been measured using a chirped-pulse FT-MRR spectrometer. Measurements of nootkatone (C15H22O), cedrol (C15H26O), ambroxide (C16H28O) and sclareolide (C16H26O2) are presented. These spectra are measured with high sensitivity (signal-to-noise ratio near 1,000:1) and permit structure determination of the most populated isomers using isotopic analysis of the 13C and 18O isotopologues in natural abundance. The accuracy of quantum chemistry calculations to identify diastereomers and conformers and to predict the dipole moment properties needed for three wave mixing measurements is examined.

  17. ISINN-2. Neutron spectroscopy, nuclear structure and related topics

    International Nuclear Information System (INIS)

    1994-01-01

    The proceedings contain the materials presented at the Second International Seminar on Neutron-Nucleus Interactions (ISINN-2) dealing with the problems of neutron spectroscopy, nuclear structure and related topics. The Seminar took place in Dubna on April 26-28, 1994. Over 120 scientists from Belgium, Bulgaria, Czech Republic, Germany, Holland, Italy, Japan, Latvia, Mexico, Poland, Slovakia, Slovenia, Ukraine, US and about 10 Russian research institutes took part in the Seminar. The main problems discussed are the following: P-odd and P-even angular correlation and T-reversal invariance in neutron reactions, nuclear structure investigations by neutron capture, the mechanism of neutron reactions, nuclear fission processes, as well as neutron data for nuclear astrophysics

  18. Fine structure of the isoscalar giant quadrupole resonance from high-resolution inelastic proton scattering experiments

    International Nuclear Information System (INIS)

    Shevchenko, A.

    2005-02-01

    In the present work the phenomenon of fine structure in the region of the isoscalar giant quadrupole resonance in a number of heavy and medium-heavy nuclei is systematically investigated for the first time. High energy-resolution inelastic proton scattering experiments were carried out in September-October 2001 and in October 2003 at the iThemba LABS cyclotron facility in South Africa with an incident proton energy of 200 MeV. The obtained data with the energy resolution of triangle E 58 Ni, 89 Y, 90 Zr, 120 Sn, 142 Nd, 166 Er, 208 Pb), thereby establishing the global character of this phenomenon. Fine structure can be described using characteristic energy scales, appearing as a result of the decay of collective modes towards the compound nucleus through a hierarchy of couplings to complex degrees of freedom. For the extraction of the characteristic energy scales from the spectra an entropy index method and a novel technique based on the wavelet analysis are utilized. The global analysis of available data shows the presence of three groups of scales, according to their values. To the first group belong the scales with the values around and below 100 keV, which were detected in all the nuclei studied. The second group contains intermediate scales in the range of 100 keV to 1 MeV. These scales show large variations depending on the nuclear structure of the nucleus. The largest scales above 1 MeV are classified to the third group, describing the global structure of the resonance (the width). The interpretation of the observed scales is realized via the comparison with microscopic model calculations including the coupling of the initial one-particle-one-hole excitations to more complex configurations. A qualitative agreement of the experimentally observed scales with those obtained from the theoretical predictions supports the suggestion of the origin of fine structure from the coupling to the two-particle-two-hole states. However, quantitatively, large deviations are

  19. Regulation of the demographic structure in isomorphic biphasic life cycles at the spatial fine scale.

    Directory of Open Access Journals (Sweden)

    Vasco Manuel Nobre de Carvalho da Silva Vieira

    Full Text Available Isomorphic biphasic algal life cycles often occur in the environment at ploidy abundance ratios (Haploid:Diploid different from 1. Its spatial variability occurs within populations related to intertidal height and hydrodynamic stress, possibly reflecting the niche partitioning driven by their diverging adaptation to the environment argued necessary for their prevalence (evolutionary stability. Demographic models based in matrix algebra were developed to investigate which vital rates may efficiently generate an H:D variability at a fine spatial resolution. It was also taken into account time variation and type of life strategy. Ploidy dissimilarities in fecundity rates set an H:D spatial structure miss-fitting the ploidy fitness ratio. The same happened with ploidy dissimilarities in ramet growth whenever reproductive output dominated the population demography. Only through ploidy dissimilarities in looping rates (stasis, breakage and clonal growth did the life cycle respond to a spatially heterogeneous environment efficiently creating a niche partition. Marginal locations were more sensitive than central locations. Related results have been obtained experimentally and numerically for widely different life cycles from the plant and animal kingdoms. Spore dispersal smoothed the effects of ploidy dissimilarities in fertility and enhanced the effects of ploidy dissimilarities looping rates. Ploidy dissimilarities in spore dispersal could also create the necessary niche partition, both over the space and time dimensions, even in spatial homogeneous environments and without the need for conditional differentiation of the ramets. Fine scale spatial variability may be the key for the prevalence of isomorphic biphasic life cycles, which has been neglected so far.

  20. Fine-scale genetic structure of Triatoma infestans in the Argentine Chaco.

    Science.gov (United States)

    Piccinali, Romina Valeria; Gürtler, Ricardo Esteban

    2015-08-01

    The patterns of genetic structure in natural populations provide essential information for the improvement of pest management strategies including those targeting arthropod vectors of human diseases. We analyzed the patterns of fine-scale genetic structure in Triatoma infestans in a well-defined rural area close to Pampa del Indio, in the Argentine Arid-Humid Chaco transition, where a longitudinal study on house infestation and wing geometric morphometry is being conducted since 2007. A total of 228 insects collected in 16 domestic and peridomestic sites from two rural communities was genotyped for 10 microsatellite loci and analyzed. We did not find departures from Hardy-Weinberg expectations in collection sites, with three exceptions probably due to null alleles and substructuring. Domestic sites were more variable than peridomestic sites suggesting the presence of older bug populations in domestic sites or higher effective population sizes. Significant genetic structure was detected using F-statistics, a discriminant analysis of principal components and Bayesian clustering algorithms in an area of only 6.32 km(2). Microsatellite markers detected population structuring at a finer geographic scale (180-6300 m) than a previous study based on wing geometric morphometry (>4000 m). The spatial distribution of genetic variability was more properly explained by a hierarchical island than by an isolation-by-distance model. This study illustrates that, despite more than a decade without vector control interventions enhancing differentiation, genetic structure can be detected in T. infestans populations, particularly applying spatial information. This supports the potential of genetic studies to provide key information for hypothesis testing of the origins of house reinfestation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. From Protein Structure to Function via Single Crystal Optical Spectroscopy

    Directory of Open Access Journals (Sweden)

    Luca eRonda

    2015-04-01

    Full Text Available The more than 100.000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic artifacts, including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density map, thus limiting the relevance of structure determinations. Moreover, for most of these structures no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in the inference for protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5’-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms.

  2. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  3. New analysis methods for skin fine-structure via optical image and development of 3D skin Cycloscan(™).

    Science.gov (United States)

    Han, J Y; Nam, G W; Lee, H K; Kim, M J; Kim, E J

    2015-11-01

    This study was conducted to develop methods for measuring skin fine-structure via optical image and apparatus for photographing to analyze efficacy of anti-aging. We developed an apparatus named 3D Skin CycloScan(™) to evaluate the efficacy of cosmetics by imagification of skin fine-structure such as wrinkles, pores, and skin texture. The semi-sphere shaped device has 12 different sequential flashing light sources captures optical image simultaneously in one second to exclude the influence of the subject's movement. The normal map that is extracted through shape from shading method is composed of face contour and skin fine-structure parts. When the low-frequency component which is the result of the Gaussian Filter application is eliminated, we can get only skin fine-structure. In this normal map, it is possible to extract two-dimensional vector map called direction map and we can regulate the intensity of the image of wrinkles, pores, and skin texture after filtering the direction map. We performed a clinical study to apply this new apparatus and methods to evaluate an anti-aging efficacy of cosmetics visually and validate with other conventional methods. After using anti-aging cream including 2% adenosine for 8 weeks, the total amount of fine wrinkle around eye area detected via 3D Skin CycloScan(™) was reduced by 12.1%. Also, wrinkles on crow's feet measured by PRIMOS COMPACT(®) (GFMesstechnik GmbH, Germany) reduced 11.7%. According to an aspect of the present study, by changing the direction of the lights toward to subject's skin, we can obtain the information about the fine structures present on the skin such as wrinkles, pores, or skin texture and represent it as an image. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. A comprehensive quality evaluation method by FT-NIR spectroscopy and chemometric: Fine classification and untargeted authentication against multiple frauds for Chinese Ganoderma lucidum

    Science.gov (United States)

    Fu, Haiyan; Yin, Qiaobo; Xu, Lu; Wang, Weizheng; Chen, Feng; Yang, Tianming

    2017-07-01

    The origins and authenticity against frauds are two essential aspects of food quality. In this work, a comprehensive quality evaluation method by FT-NIR spectroscopy and chemometrics were suggested to address the geographical origins and authentication of Chinese Ganoderma lucidum (GL). Classification for 25 groups of GL samples (7 common species from 15 producing areas) was performed using near-infrared spectroscopy and interval-combination One-Versus-One least squares support vector machine (IC-OVO-LS-SVM). Untargeted analysis of 4 adulterants of cheaper mushrooms was performed by one-class partial least squares (OCPLS) modeling for each of the 7 GL species. After outlier diagnosis and comparing the influences of different preprocessing methods and spectral intervals on classification, IC-OVO-LS-SVM with standard normal variate (SNV) spectra obtained a total classification accuracy of 0.9317, an average sensitivity and specificity of 0.9306 and 0.9971, respectively. With SNV or second-order derivative (D2) spectra, OCPLS could detect at least 2% or more doping levels of adulterants for 5 of the 7 GL species and 5% or more doping levels for the other 2 GL species. This study demonstrates the feasibility of using new chemometrics and NIR spectroscopy for fine classification of GL geographical origins and species as well as for untargeted analysis of multiple adulterants.

  5. Extended x-ray absorption fine structure studies of the atomic structure of nanoparticles in different metallic matrices.

    Science.gov (United States)

    Baker, S H; Roy, M; Gurman, S J; Binns, C

    2009-05-06

    It has been appreciated for some time that the novel properties of particles in the size range 1-10 nm are potentially exploitable in a range of applications. In order to ultimately produce commercial devices containing nanosized particles, it is necessary to develop controllable means of incorporating them into macroscopic samples. One way of doing this is to embed the nanoparticles in a matrix of a different material, by co-deposition for example, to form a nanocomposite film. The atomic structure of the embedded particles can be strongly influenced by the matrix. Since some of the key properties of materials, including magnetism, strongly depend on atomic structure, the ability to determine atomic structure in embedded nanoparticles is very important. This review focuses on nanoparticles, in particular magnetic nanoparticles, embedded in different metal matrices. Extended x-ray absorption fine structure (EXAFS) provides an excellent means of probing atomic structure in nanocomposite materials, and an overview of this technique is given. Its application in probing catalytic metal clusters is described briefly, before giving an account of the use of EXAFS in determining atomic structure in magnetic nanocomposite films. In particular, we focus on cluster-assembled films comprised of Fe and Co nanosized particles embedded in various metal matrices, and show how the crystal structure of the particles can be changed by appropriate choice of the matrix material. The work discussed here demonstrates that combining the results of structural and magnetic measurements, as well as theoretical calculations, can play a significant part in tailoring the properties of new magnetic cluster-assembled materials.

  6. Fine structure of striations observed in barium plasma injections in the magnetospheric cleft

    International Nuclear Information System (INIS)

    Simons, D.J.; Eastman, T.E.; Pongratz, M.B.

    1976-01-01

    In January and November of 1975, the Los Alamos Scientific Laboratory sponsored four high altitude shaped charge barium plasma injections in the magnetospheric cleft region. These experiments were TORDO UNO (January 6), TORDO DOS (January 11), PERIQUITO UNO (November 25), and PERIQUITO DOS (November 28). All four injections took place near 500 km altitude, and optical data were taken from two aircraft and a ground station. The TORDO DOS and the PERIQUITO experiments showed rapid formation of striations (within one minute after injection), and fast horizontal spreading in contrast with TORDO UNO. In PERIQUITO DOS, the debris cloud spread magnetically east-west with a small net northerly motion. TORDO UNO shows very rapid poleward motion, and the remaining two events resulted in magnetically east-west horizontal spreading, with no noticeable poleward motion. Striations observed in the PERIQUITO DOS experiment separate in opposite directions with relative velocities of up to 3 km/sec. These field-aligned structures appear to form in sheets of approximately constant magnetic latitude. Significant spatial variations occur on a scale of less than 200 meters. Spatial frequency power spectra across these striations have been determined at various times. Observations of the debris cloud and the fast barium streak show strong field-aligned coherency of striation fine structure, indicating a field line mapping of transverse electric fields and gradients

  7. Limited Dispersal and Significant Fine - Scale Genetic Structure in a Tropical Montane Parrot Species.

    Directory of Open Access Journals (Sweden)

    Nadine Klauke

    Full Text Available Tropical montane ecosystems are biodiversity hotspots harbouring many endemics that are confined to specific habitat types within narrow altitudinal ranges. While deforestation put these ecosystems under threat, we still lack knowledge about how heterogeneous environments like the montane tropics promote population connectivity and persistence. We investigated the fine-scale genetic structure of the two largest subpopulations of the endangered El Oro parakeet (Pyrrhura orcesi endemic to the Ecuadorian Andes. Specifically, we assessed the genetic divergence between three sites separated by small geographic distances but characterized by a heterogeneous habitat structure. Although geographical distances between sites are small (3-17 km, we found genetic differentiation between all sites. Even though dispersal capacity is generally high in parrots, our findings indicate that dispersal is limited even on this small geographic scale. Individual genotype assignment revealed similar genetic divergence across a valley (~ 3 km distance compared to a continuous mountain range (~ 13 km distance. Our findings suggest that geographic barriers promote genetic divergence even on small spatial scales in this endangered endemic species. These results may have important implications for many other threatened and endemic species, particularly given the upslope shift of species predicted from climate change.

  8. The Irish DNA Atlas: Revealing Fine-Scale Population Structure and History within Ireland.

    Science.gov (United States)

    Gilbert, Edmund; O'Reilly, Seamus; Merrigan, Michael; McGettigan, Darren; Molloy, Anne M; Brody, Lawrence C; Bodmer, Walter; Hutnik, Katarzyna; Ennis, Sean; Lawson, Daniel J; Wilson, James F; Cavalleri, Gianpiero L

    2017-12-08

    The extent of population structure within Ireland is largely unknown, as is the impact of historical migrations. Here we illustrate fine-scale genetic structure across Ireland that follows geographic boundaries and present evidence of admixture events into Ireland. Utilising the 'Irish DNA Atlas', a cohort (n = 194) of Irish individuals with four generations of ancestry linked to specific regions in Ireland, in combination with 2,039 individuals from the Peoples of the British Isles dataset, we show that the Irish population can be divided in 10 distinct geographically stratified genetic clusters; seven of 'Gaelic' Irish ancestry, and three of shared Irish-British ancestry. In addition we observe a major genetic barrier to the north of Ireland in Ulster. Using a reference of 6,760 European individuals and two ancient Irish genomes, we demonstrate high levels of North-West French-like and West Norwegian-like ancestry within Ireland. We show that that our 'Gaelic' Irish clusters present homogenous levels of ancient Irish ancestries. We additionally detect admixture events that provide evidence of Norse-Viking gene flow into Ireland, and reflect the Ulster Plantations. Our work informs both on Irish history, as well as the study of Mendelian and complex disease genetics involving populations of Irish ancestry.

  9. Fine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium

    Directory of Open Access Journals (Sweden)

    Antonio Cigliano

    2012-01-01

    Full Text Available Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emerged to create cell repopulated decellularized scaffolds. This study was performed to determine the glycosaminoglycans content, distribution, and disaccharides composition in porcine aortic and pulmonary valves and in pericardium before and after a detergent-based decellularization procedure. The fine structural characteristics of galactosaminoglycans chondroitin sulfate and dermatan sulfate were examined by FACE. Furthermore, the mechanical properties of decellularized pericardium and its propensity to be repopulated by in vitro seeded fibroblasts were investigated. Results show that galactosaminoglycans and hyaluronan are differently distributed between pericardium and valves and within heart valves themselves before and after decellularization. The distribution of glycosaminoglycans is also dependent from the vascular district and topographic localization. The decellularization protocol adopted resulted in a relevant but not selective depletion of galactosaminoglycans. As a whole, data suggest that both decellularized porcine heart valves and bovine pericardium represent promising materials bearing the potential for future development of tissue engineered heart valve scaffolds.

  10. Revealing the fine-scale structure of the North Atlantic ITCZ using ICON and observations

    Science.gov (United States)

    Brueck, Matthias; Klocke, Daniel; Stevens, Bjorn

    2017-04-01

    The long standing question if the ITCZ is one elongated entity or a co-location of individual convective clusters is reviewed by exploring convection permitting simulations for the tropical Atlantic region (9000x3300 km) using the icosahedral non-hydrostatic (ICON) general circulation model with 2.5 km grid spacing. Deactivating the convection parameterization facilitates the explicit evolution of convection across horizontal scales, enabling rich interactions with their environment and neighboring convective cells. The emerging fine scale structure of the ITCZ allows to answer the questions: are precipitation and surface convergence aligned?; does the ITCZ have different characteristics in different regions?; and to what extent is the ITCZ defined by its disturbances? The analysis is supported using a wide range of observations and a segmentation method to identify individual convective objects. The convection permitting simulations offer the potential to make the "un-observable" visible, i.e. the internal structure of deep convective objects is usually hidden by cirrus anvils (looking from top) and by precipitation (looking from ground). Therefore, the question 'how high resolution simulations can bridge different observational perspectives' is explored.

  11. Fine-Scale Human Population Structure in Southern Africa Reflects Ecogeographic Boundaries.

    Science.gov (United States)

    Uren, Caitlin; Kim, Minju; Martin, Alicia R; Bobo, Dean; Gignoux, Christopher R; van Helden, Paul D; Möller, Marlo; Hoal, Eileen G; Henn, Brenna M

    2016-09-01

    Recent genetic studies have established that the KhoeSan populations of southern Africa are distinct from all other African populations and have remained largely isolated during human prehistory until ∼2000 years ago. Dozens of different KhoeSan groups exist, belonging to three different language families, but very little is known about their population history. We examine new genome-wide polymorphism data and whole mitochondrial genomes for >100 South Africans from the ≠Khomani San and Nama populations of the Northern Cape, analyzed in conjunction with 19 additional southern African populations. Our analyses reveal fine-scale population structure in and around the Kalahari Desert. Surprisingly, this structure does not always correspond to linguistic or subsistence categories as previously suggested, but rather reflects the role of geographic barriers and the ecology of the greater Kalahari Basin. Regardless of subsistence strategy, the indigenous Khoe-speaking Nama pastoralists and the N|u-speaking ≠Khomani (formerly hunter-gatherers) share ancestry with other Khoe-speaking forager populations that form a rim around the Kalahari Desert. We reconstruct earlier migration patterns and estimate that the southern Kalahari populations were among the last to experience gene flow from Bantu speakers, ∼14 generations ago. We conclude that local adoption of pastoralism, at least by the Nama, appears to have been primarily a cultural process with limited genetic impact from eastern Africa. Copyright © 2016 by the Genetics Society of America.

  12. Development of powder diffraction anomalous fine structure method and applications to electrode materials for rechargeable batteries

    International Nuclear Information System (INIS)

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Oishi, Masatsugu; Ichitsubo, Tetsu; Matsubara, Eiichiro; Mizuki, Jun'ichiro

    2015-01-01

    A powder diffraction anomalous fine structure (P-DAFS) method is developed both in analytical and experimental techniques and applied to cathode materials for lithium ion batteries. The DAFS method, which is an absorption spectroscopic technique through a scattering measurement, enables us to analyze the chemical states and the local structures of a certain element at different sites, thanks to the nature of x-ray diffraction, where the contributions from each site are different at each diffraction. Electrode materials for rechargeable batteries frequently exhibit the interchange between Li and a transition metal, which is known as the cation mixing phenomena. This cation mixing significantly affects the whole electrode properties; therefore, the site-distinguished understanding of the roles of the transition metal is essential for further material design by controlling and positively utilizing this cation mixing phenomenon. However, the developments of the P-DAFS method are required for the applications to the practical materials such as the electrode materials. In the present study, a direct analysis technique to extract the absorption spectrum from the scattering without using the conventional iterative calculations, fast and accurate measurement techniques of the P-DAFS method, and applications to a typical electrode material of Li 1-x Ni 1+x O 2 , which exhibits the significant cation mixing, are described. (author)

  13. Enhanced reflectance X-ray absorption fine structure sensitivity using a whispering-gallery waveguide

    CERN Document Server

    Chernov, V A; Kovalenko, N V; Zolotarev, K V

    2000-01-01

    A new technique of reflectance X-ray absorption fine structure (REFL-XAFS) utilizing waveguides where X-rays are reflected many times along the waveguide surface is discussed. The multiple total reflection (MTR) phenomenon highly increases X-ray interaction with the waveguide surface and hence offers higher sensitivity compared to conventional (single reflection) REFL-XAFS. On the one hand, this technique is a direct structural method for characterizing waveguides (e.g. capillaries) where the application of other methods is very difficult. On the other hand, the conventional thin wafer can be transformed to a whispering-gallery (WG) waveguide by bending to a curved mirror. Ray tracing calculations demonstrate that the WG waveguide is very suitable for REFL-XAFS measurements. This method was experimentally realized for a cylindrically bent silica wafer with the surface covered with a GeO sub 2 monolayer. The Ge K-edge REFL-XAFS measurements were performed using both MTR and conventional techniques. The MTR tec...

  14. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure

    International Nuclear Information System (INIS)

    Bergeard, N.; Silly, M.G.; Chauvet, C.; Guzzo, M.; Ricaud, J.P.; Izquierdo, M.; Sirotti, F.; Krizmancic, D.; Guzzo, M.; Stebel, L.; Pittana, P.; Sergo, R.; Cautero, G.; Dufour, G.; Rochet, F.

    2011-01-01

    Synchrotron radiation time structure is becoming a common tool for studying dynamic properties of materials. The main limitation is often the wide time domain the user would like to access with pump-probe experiments. In order to perform photoelectron spectroscopy experiments over time scales from milliseconds to picoseconds it is mandatory to measure the time at which each measured photoelectron was created. For this reason the usual CCD camera based two-dimensional detection of electron energy analyzers has been replaced by a new delay-line detector adapted to the time structure of the SOLEIL synchrotron radiation source. The new two-dimensional delay-line detector has a time resolution of 5 ns and was installed on a Scienta SES 2002 electron energy analyzer. The first application has been to characterize the time of flight of the photo emitted electrons as a function of their kinetic energy and the selected pass energy. By repeating the experiment as a function of the available pass energy and of the kinetic energy, a complete characterization of the analyzer behaviour in the time domain has been obtained. Even for kinetic energies as low as 10 eV at 2 eV pass energy, the time spread of the detected electrons is lower than 140 ns. These results and the time structure of the SOLEIL filling modes assure the possibility of performing pump-probe photoelectron spectroscopy experiments with the time resolution given by the SOLEIL pulse width, the best performance of the beamline and of the experimental station. (authors)

  15. Evidence for the distortion product frequency place as a source of distribution product otoacoustic emission (DPOAE) fine structure in humans : I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1

    NARCIS (Netherlands)

    Mauermann, M; Uppenkamp, S; van Hengel, P.W.J.; Kollmeier, B

    1999-01-01

    Critical experiments were performed in order to validate the two-source hypothesis of distortion product otoacoustic emissions (DPOAE) generation. Measurements of the spectral fine structure of DPOAE in response to stimulation with two sinusoids have been:performed with normal-hearing subjects. The

  16. Formation of Fine Structures in Uniform Suspension under Standing Waves Action

    Science.gov (United States)

    Kalinichenko, V. F.; Chashechkin, Yu. D.

    2012-04-01

    Structurization of initially uniform suspension in fields of standing gravity waves was studied in a rectangular tank oscillating in vertical direction. The tank with aspect ratio of 50:4 was placed at shaker table with a low level of horizontal components of acceleration during the motion. Diluted aluminum powder suspension in water filled in tank with was undergone wave action in frequency range corresponding to first and second modes of intrinsic oscillations. For visualizations and tracers velocity measurements a digital high-speed video camera was used. The formation of large and small scale structures in initially uniform suspension was registered. Experiments were performed in tanks with flat smooth and rough bottom as well as with water above stationary ripples and deformable sand riffles. Large and small scales irregularities of initially smooth field of concentration were observed in the whole volume of the fluid. Large voids with shapes reminding the bottom topography features were formed first. Later the fine extended filaments were observed. Their horizontal scales were determined by bed forms extension, and the vertical scale grows in time. Depending on the wave mode the filament structures arose from the bottom or sank from the free surface. The evolution of the structure geometrical parameters were measured both in vertical and horizontal directions. The difference of dynamical behaviour of suspension concentration in vicinity and far from free surface, flat bottom or bed topography was determined and discussed. In theoretical description of the flow compete fundamental set of governing equations. Complete solution of the set contains family of thin singular perturbed components which are characterized by singular perturbed functions. These flow components can accumulate of admixtures and maintain non-uniform pattern of admixture concentration. The presented experiments were performed on set-up USU "HPC IPMec RAS" under support of Ministry of

  17. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  18. UV?Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications

    OpenAIRE

    Antosiewicz, Jan M.; Shugar, David

    2016-01-01

    In Part 2 we discuss application of several different types of UV?Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  19. Seed gene flow and fine-scale structure in a Mediterranean pine ( Pinus pinaster Ait.) using nuclear microsatellite markers.

    Science.gov (United States)

    González-Martínez, C.; Gerber, S.; Cervera, T.; Martínez-Zapater, M.; Gil, L.; Alía, R.

    2002-06-01

    The Mediterranean populations of maritime pine ( Pinus pinaster Ait.) are typically small and have a scattered distribution, being threatened by human activities and forest fires. In the framework of the genetic-resources conservation program of this species, a native multi-age stand located in a Mediterranean area (central Spain) was studied using three highly polymorphic nuclear microsatellites (SSRs). Spatial autocorrelation analysis was conducted using Moran's index in order to detect fine-scale structure in both natural regeneration and mature trees. The spatial pattern of seed flow based on dispersed progeny was studied using a highly reliable subset of parent-offspring matches obtained by means of parentage analysis and simulation-based calculation of statistical confidence. Maritime pine showed a fine-scale structure at the seedling stage. In natural regeneration, the autocorrelograms indicated a patch size of approximately 10 m. The fine-scale structure seems to be produced by a restricted seed gene flow. In fact, there was an excess of parent-offspring matches in a radius of 15 m from the parent trees. Pines with a heavy seed, such as P. pinaster, are expected to have a short dispersal distance, thus producing a fine-scale structure. However, the fine-scale structure did not persist in the mature trees. Within-population genetic structure in Mediterranean pines may be affected by a number of post-dispersal events (e.g. mortality due to the severity of the Mediterranean climate and animal-mediated secondary dispersal during the summer period). Thus, great alteration in the pattern produced by the initial seed rain and differences in genetic structure between tree cohorts are expected.

  20. Changes in the Fine Structure of Stochastic Distributions as a Consequence of Space-Time Fluctuations

    Directory of Open Access Journals (Sweden)

    Shnoll S. E.

    2006-04-01

    Full Text Available This is a survey of the fine structure stochastic distributions in measurements obtained by me over 50 years. It is shown: (1 The forms of the histograms obtained at each geographic point (at each given moment of time are similar with high probability, even if we register phenomena of completely different nature --- from biochemical reactions to the noise in a gravitational antenna, or alpha-decay. (2 The forms of the histograms change with time. The iterations of the same form have the periods of the stellar day (1.436 min, the solar day (1.440 min, the calendar year (365 solar days, and the sidereal year (365 solar days plus 6 hours and 9 min. (3 At the same instants of the local time, at different geographic points, the forms of the histograms are the same, with high probability. (4 The forms of the histograms depend on the locations of the Moon and the Sun with respect to the horizon. (5 All the facts are proof of the dependance of the form of the histograms on the location of the measured objects with respect to stars, the Sun, and the Moon. (6 At the instants of New Moon and the maxima of solar eclipses there are specific forms of the histograms. (7 It is probable that the observed correlations are not connected to flow power changes (the changes of the gravity force --- we did not find the appropriate periods in changes in histogram form. (8 A sharp anisotropy of space was discovered, registered by alpha-decay detectors armed with collimators. Observations at 54 North (the collimator was pointed at the Pole Star showed no day-long periods, as was also the case for observations at 82 North, near the Pole. Histograms obtained by observations with an Easterly-directed collimator were determined every 718 minutes (half stellar day and with observations using a Westerly-directed collimator. (9 Collimators rotating counter-clockwise, in parallel with the celestial equator, gave the probability of changes in histograms as the number of the

  1. Changes in the Fine Structure of Stochastic Distributions as a Consequence of Space-Time Fluctuations

    Directory of Open Access Journals (Sweden)

    Shnoll S. E.

    2006-04-01

    Full Text Available This is a survey of the fine structure stochastic distributions in measurements obtained by me over 50 years. It is shown: (1 The forms of the histograms obtained at each geographic point (at each given moment of time are similar with high probability, even if we register phenomena of completely different nature — from biochemical reactions to the noise in a gravitational antenna, or α-decay. (2 The forms of the histograms change with time. The iterations of the same form have the periods of the stellar day (1.436 min, the solar day (1.440 min, the calendar year (365 solar days, and the sidereal year (365 solar days plus 6 hours and 9 min. (3 At the same instants of the local time, at different geographic points, the forms of the histograms are the same, with high probability. (4 The forms of the histograms depend on the locations of the Moon and the Sun with respect to the horizon. (5 All the facts are proof of the dependance of the form of the histograms on the location of the measured objects with respect to stars, the Sun, and the Moon. (6 At the instants of New Moon and the maxima of solar eclipses there are specific forms of the histograms. (7 It is probable that the observed correlations are not connected to flow power changes (the changes of the gravity force — we did not find the appropriate periods in changes in histogram form. (8 A sharp anisotropy of space was discovered, registered by α-decay detectors armed with collimators. Observations at 54◦ North (the collimator was pointed at the Pole Star showed no day-long periods, as was also the case for observations at 82◦ North, near the Pole. Histograms obtained by observations with an Easterly-directed collimator were determined every 718 minutes (half stellar day and with observations using a Westerly-directed collimator. (9 Collimators rotating counter-clockwise, in parallel with the celestial equator, gave the probability of changes in histograms as the number of the

  2. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Kimberly Sue [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  3. Particle Formation from Pulsed Laser Irradiation of SootAggregates studied with scanning mobility particle sizer, transmissionelectron microscope and near-edge x-ray absorption fine structure.

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, Hope A.; Tivanski, Alexei V.; Gilles, Mary K.; vanPoppel, Laura H.; Dansson, Mark A.; Buseck, Peter R.; Buseck, Peter R.

    2007-02-20

    We investigated the physical and chemical changes induced in soot aggregates exposed to laser radiation using a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope to perform near-edge x-ray absorption fine structure spectroscopy. Laser-induced nanoparticle production was observed at fluences above 0.12 J/cm(2) at 532 nm and 0.22 J/cm(2) at 1064 nm. Our results indicate that new particle formation proceeds via (1) vaporization of small carbon clusters by thermal or photolytic mechanisms, followed by homogeneous nucleation, (2) heterogeneous nucleation of vaporized carbon clusters onto material ablated from primary particles, or (3) both processes.

  4. Environmental effects on fine-scale spatial genetic structure in four Alpine keystone forest tree species.

    Science.gov (United States)

    Mosca, Elena; Di Pierro, Erica A; Budde, Katharina B; Neale, David B; González-Martínez, Santiago C

    2018-02-01

    Genetic responses to environmental changes take place at different spatial scales. While the effect of environment on the distribution of species' genetic diversity at large geographical scales has been the focus of several recent studies, its potential effects on genetic structure at local scales are understudied. Environmental effects on fine-scale spatial genetic structure (FSGS) were investigated in four Alpine conifer species (five to eight populations per species) from the eastern Italian Alps. Significant FSGS was found for 11 of 25 populations. Interestingly, we found no significant differences in FSGS across species but great variation among populations within species, highlighting the importance of local environmental factors. Interannual variability in spring temperature had a small but significant effect on FSGS of Larix decidua, probably related to species-specific life history traits. For Abies alba, Picea abies and Pinus cembra, linear models identified spring precipitation as a potentially relevant climate factor associated with differences in FSGS across populations; however, models had low explanatory power and were strongly influenced by a P. cembra outlier population from a very dry site. Overall, the direction of the identified effects is according to expectations, with drier and more variable environments increasing FSGS. Underlying mechanisms may include climate-related changes in the variance of reproductive success and/or environmental selection of specific families. This study provides new insights on potential changes in local genetic structure of four Alpine conifers in the face of environmental changes, suggesting that new climates, through altering FSGS, may also have relevant impacts on plant microevolution. © 2017 John Wiley & Sons Ltd.

  5. QUDeX-MS: hydrogen/deuterium exchange calculation for mass spectra with resolved isotopic fine structure.

    Science.gov (United States)

    Salisbury, Joseph P; Liu, Qian; Agar, Jeffrey N

    2014-12-11

    Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry permits analysis of structure, dynamics, and molecular interactions of proteins. HDX mass spectrometry is confounded by deuterium exchange-associated peaks overlapping with peaks of heavy, natural abundance isotopes, such as carbon-13. Recent studies demonstrated that high-performance mass spectrometers could resolve isotopic fine structure and eliminate this peak overlap, allowing direct detection and quantification of deuterium incorporation. Here, we present a graphical tool that allows for a rapid and automated estimation of deuterium incorporation from a spectrum with isotopic fine structure. Given a peptide sequence (or elemental formula) and charge state, the mass-to-charge ratios of deuterium-associated peaks of the specified ion is determined. Intensities of peaks in an experimental mass spectrum within bins corresponding to these values are used to determine the distribution of deuterium incorporated. A theoretical spectrum can then be calculated based on the estimated distribution of deuterium exchange to confirm interpretation of the spectrum. Deuterium incorporation can also be detected for ion signals without a priori specification of an elemental formula, permitting detection of exchange in complex samples of unidentified material such as natural organic matter. A tool is also incorporated into QUDeX-MS to help in assigning ion signals from peptides arising from enzymatic digestion of proteins. MATLAB-deployable and standalone versions are available for academic use at qudex-ms.sourceforge.net and agarlabs.com . Isotopic fine structure HDX-MS offers the potential to increase sequence coverage of proteins being analyzed through mass accuracy and deconvolution of overlapping ion signals. As previously demonstrated, however, the data analysis workflow for HDX-MS data with resolved isotopic fine structure is distinct. QUDeX-MS we hope will aid in the adoption of isotopic fine structure HDX

  6. On the effects of the two-body non-fine-structure operators of the Breit-Pauli Hamiltonian

    International Nuclear Information System (INIS)

    Badnell, N.R.

    1997-01-01

    We have incorporated the two-body non-fine-structure operators of the Breit-Pauli Hamiltonian, namely contact spin-spin, two-body Darwin and orbit-orbit, into the program AUTOSTRUCTURE. Illustrative results are presented, including some for reactions involving the process of autoionization. (author)

  7. Polygamy and an absence of fine-scale structure in Dendroctonus ponderosae (Hopk.) (Coleoptera: Curcilionidae) confirmed using molecular markers.

    Science.gov (United States)

    Janes, J K; Roe, A D; Rice, A V; Gorrell, J C; Coltman, D W; Langor, D W; Sperling, F A H

    2016-01-01

    An understanding of mating systems and fine-scale spatial genetic structure is required to effectively manage forest pest species such as Dendroctonus ponderosae (mountain pine beetle). Here we used genome-wide single-nucleotide polymorphisms to assess the fine-scale genetic structure and mating system of D. ponderosae collected from a single stand in Alberta, Canada. Fine-scale spatial genetic structure was absent within the stand and the majority of genetic variation was best explained at the individual level. Relatedness estimates support previous reports of pre-emergence mating. Parentage assignment tests indicate that a polygamous mating system better explains the relationships among individuals within a gallery than the previously reported female monogamous/male polygynous system. Furthermore, there is some evidence to suggest that females may exploit the galleries of other females, at least under epidemic conditions. Our results suggest that current management models are likely to be effective across large geographic areas based on the absence of fine-scale genetic structure.

  8. Stokes shift and fine-structure splitting in CdSe/CdTe invert type-II ...

    Indian Academy of Sciences (India)

    Using the atomistic tight-binding (TB) theory and configuration interaction (CI) description, it is showed that the Stokes shift and fine-structure splitting (FSS) in semiconductor core/shell nanocrystals are predominantly affected by the shell thickness and band profiles. CdSe/CdTe invert type-II and CdTe/CdSe type-II core/shell ...

  9. Structural changes in gluten protein structure after addition of emulsifier. A Raman spectroscopy study

    Science.gov (United States)

    Ferrer, Evelina G.; Gómez, Analía V.; Añón, María C.; Puppo, María C.

    2011-06-01

    Food protein product, gluten protein, was chemically modified by varying levels of sodium stearoyl lactylate (SSL); and the extent of modifications (secondary and tertiary structures) of this protein was analyzed by using Raman spectroscopy. Analysis of the Amide I band showed an increase in its intensity mainly after the addition of the 0.25% of SSL to wheat flour to produced modified gluten protein, pointing the formation of a more ordered structure. Side chain vibrations also confirmed the observed changes.

  10. Structural investigations of LiFePO4 electrodes and in situ studies by Fe X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Deb, Aniruddha; Bergmann, Uwe; Cramer, S.P.; Cairns, Elton J.

    2005-01-01

    Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on electrodes containing LiFePO 4 to determine the local atomic and electronic structure and their stability with electrochemical cycling. A versatile electrochemical in situ cell has been constructed for long-term soft and hard X-ray experiments for the structural investigation on battery electrodes during the lithium-insertion/extraction processes. The device is used here for an X-ray absorption spectroscopic study of lithium insertion/extraction in a LiFePO 4 electrode, where the electrode contained about 7.7 mg of LiFePO 4 on a 20 μm thick Al-foil. Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on this electrode to determine the local atomic and electronic structure and their stability with electrochemical cycling. The initial state (LiFePO 4 ) showed iron to be in the Fe 2+ state corresponding to the initial state (0.0 mAh) of the cell, whereas in the delithiated state (FePO 4 ) iron was found to be in the Fe 3+ state corresponding to the final charged state (3 mAh). XANES region of the XAS spectra revealed a high spin configuration for the two states (Fe (II), d 6 and Fe (III), d 5 ). The results confirm that the olivine structure of the LiFePO 4 and FePO 4 is retained by the electrodes in agreement with the XRD observations reported previously. These results confirm that LiFePO 4 cathode material retains good structural short-range order leading to superior cycling capability

  11. Transitions in Structure in Oil-in-Water Emulsions As Studied by Diffusing Wave Spectroscopy

    NARCIS (Netherlands)

    Ruis, H.G.M.; Gruijthuijsen, van K.; Venema, P.; Linden, van der E.

    2007-01-01

    Transitions in structure of sodium caseinate stabilized emulsions were studied using conventional rheometry as well as diffusing wave spectroscopy (DWS). Structural differences were induced by different amounts of stabilizer, and transitions in structure were induced by acidification. Special

  12. Preferred Compression Speed for Speech and Music and Its Relationship to Sensitivity to Temporal Fine Structure.

    Science.gov (United States)

    Moore, Brian C J; Sęk, Aleksander

    2016-09-07

    Multichannel amplitude compression is widely used in hearing aids. The preferred compression speed varies across individuals. Moore (2008) suggested that reduced sensitivity to temporal fine structure (TFS) may be associated with preference for slow compression. This idea was tested using a simulated hearing aid. It was also assessed whether preferences for compression speed depend on the type of stimulus: speech or music. Twenty-two hearing-impaired subjects were tested, and the stimulated hearing aid was fitted individually using the CAM2A method. On each trial, a given segment of speech or music was presented twice. One segment was processed with fast compression and the other with slow compression, and the order was balanced across trials. The subject indicated which segment was preferred and by how much. On average, slow compression was preferred over fast compression, more so for music, but there were distinct individual differences, which were highly correlated for speech and music. Sensitivity to TFS was assessed using the difference limen for frequency at 2000 Hz and by two measures of sensitivity to interaural phase at low frequencies. The results for the difference limens for frequency, but not the measures of sensitivity to interaural phase, supported the suggestion that preference for compression speed is affected by sensitivity to TFS. © The Author(s) 2016.

  13. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor.

    Science.gov (United States)

    Shang, Jingzhi; Shen, Xiaonan; Cong, Chunxiao; Peimyoo, Namphung; Cao, Bingchen; Eginligil, Mustafa; Yu, Ting

    2015-01-27

    Two-dimensional (2D) semiconductors, such as transition-metal dichalcogenide monolayers (TMD 1Ls), have attracted increasing attention owing to the underlying fundamental physics (e.g., many body effects) and the promising optoelectronic applications such as light-emitting diodes. Though much progress has been made, intrinsic excitonic states of TMD 1Ls are still highly debated in theory, which thirsts for direct experimental determination. Here, we report unconventional emission and excitonic fine structure in 1L WS2 revealed by electrical doping and photoexcitation, which reflects the interplay of exciton, trion, and other excitonic states. Tunable excitonic emission has been realized in a controllable manner via electrical and/or optical injection of charge carriers. Remarkably enough, the superlinear (i.e., quadratic) emission is unambiguously observed which is attributed to biexciton states, indicating the strong Coulomb interactions in such a 2D material. In a nearly neutral 1L WS2, trions and biexcitons possess large binding energies of ∼ 10-15 and 45 meV, respectively. Moreover, our finding of electrically induced robust emission opens up a possibility to boost the luminous efficiency of emerging 1L TMD light emitting diodes.

  14. The Potamophylax nigricornis group (Trichoptera, Limnephilidae: resolution of phylogenetic species by fine structure analysis

    Directory of Open Access Journals (Sweden)

    Oláh, J.

    2013-11-01

    Full Text Available Applying the phylogenetic species concept and the sexual selection theory we have reviewed some natal aspects of incipient species and their accelerated evolution. How can we recognise early stages of divergence? Which selection pressures are at work during speciation? Which pathways accelerate the speed of speciation? Which kinds of trait variabilities makes difficult to find initial split criteria? Elaborating the principles of Fine Structure Analysis (FSA and the morphological Initial Split Criteria (ISP it was discovered that the European spring dwelling caddisfly Potamophylax nigricornis doesn’tbelong to a single species. It represents an entire species group with seventeen peripatric species evolving on the southernperipheries of the distributional area. Four new species subgroups have been erected: Potamophylax nigricornis new species subgroup, P. elegantulus new species subgroup, P. horgos new species subgroup, P. simas new species subgroup. Eleven new species have been described: Potamophylax apados sp. nov., P. fules sp. nov., P. fureses sp. nov., P. hasas sp. novov., P. horgos sp. nov., P. kethas sp. nov., P. lemezes sp. nov., P. peremes sp. nov., P. simas sp. nov., P. tuskes sp. nov., P. ureges sp. nov. One Potamophylax sp. nov. has been differentiated and three new species status have been documented:Potamophylax elegantulus (Klapálek stat. n., P. mista (Navás stat. nov., P. testaceus (Zetterstedt stat. nov.

  15. Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope

    Science.gov (United States)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  16. The running fine structure constant α(E) via the Adler function

    International Nuclear Information System (INIS)

    Jegerlehner, F.

    2008-06-01

    We present an up-to-date analysis for a precise determination of the effective fine structure constant and discuss the prospects for future improvements. We advocate to use a determination monitored by the Adler function which allows us to exploit perturbative QCD in an optimal well controlled way. Together with a long term program of hadronic cross section measurements at energies up to a few GeV, a determination of α(M Z ) at a precision comparable to the one of the Z mass M Z should be feasible. Presently α(E) at E >1 GeV is the least precisely known of the fundamental parameters of the SM. Since, in spite of substantial progress due to new BaBar exclusive data, the region 1.4 to 2.4 GeV remains the most problematic one a major step in the reduction of the uncertainties are expected from VEPP-2000 and from a possible ''high-energy'' option DAFNE-2 at Frascati. The up-to-date evaluation reads Δ (5) had (M 2 Z )=0.027515±0.000149 or α -1 (M 2 Z )=128.957±0.020. (orig.)

  17. Restricted gene flow and fine-scale population structuring in tool using New Caledonian crows

    Science.gov (United States)

    Rutz, C.; Ryder, T. B.; Fleischer, R. C.

    2012-04-01

    New Caledonian crows Corvus moneduloides are the most prolific avian tool users. It has been suggested that some aspects of their complex tool use behaviour are under the influence of cultural processes, involving the social transmission—and perhaps even progressive refinement—of tool designs. Using microsatellite and mt-haplotype profiling of crows from three distinct habitats (dry forest, farmland and beachside habitat), we show that New Caledonian crow populations can exhibit significant fine-scale genetic structuring. Our finding that some sites of cultural isolation of crow groups. Restricted movement of birds between local populations at such small spatial scales, especially across habitat boundaries, illustrates how specific tool designs could be preserved over time, and how tool technologies of different crow groups could diverge due to drift and local selection pressures. Young New Caledonian crows have an unusually long juvenile dependency period, during which they acquire complex tool-related foraging skills. We suggest that the resulting delayed natal dispersal drives population-divergence patterns in this species. Our work provides essential context for future studies that examine the genetic makeup of crow populations across larger geographic areas, including localities with suspected cultural differences in crow tool technologies.

  18. Implication of Spatial and Temporal Variations of the Fine-Structure Constant

    Science.gov (United States)

    Feng, Sze-Shiang; Yan, Mu-Lin

    2016-02-01

    Temporal and spatial variations of fine-structure constant α ≡ e2/hbar c in cosmology have been reported in analysis of combination Keck and VLT data. This paper studies the variations based on consideration of basic spacetime symmetry in physics. Both laboratory α 0 and distant α z are deduced from relativistic spectrum equations of atoms (e.g., hydrogen atom) defined in inertial reference systems. When Einstein's Λ≠0, the metric of local inertial reference systems in SM of cosmology is Beltrami metric instead of Minkowski, and the basic spacetime symmetry has to be de Sitter (dS) group. The corresponding special relativity (SR) is dS-SR. A model based on dS-SR is suggested. Comparing the predictions on α-varying with the data, the parameters are determined. The best-fit dipole mode in α's spatial varying is reproduced by this dS-SR model. α-varyings in whole sky are also studied. The results are generally in agreement with the estimations of observations. The main conclusion is that the phenomenon of α-varying cosmologically with dipole mode dominating is due to the de Sitter (or anti de Sitter) spacetime symmetry with a Minkowski point in an extended special relativity called de Sitter invariant special relativity (dS-SR) developed by Dirac-Inönü-Wigner-Gürsey-Lee-Lu-Zou-Guo.

  19. Dynamic magnetization models for soft ferromagnetic materials with coarse and fine domain structures

    Energy Technology Data Exchange (ETDEWEB)

    Zirka, S.E., E-mail: zirka@email.dp.ua [Department of Physics and Technology, Dnepropetrovsk National University, Gagarin 72, 49050 Dnepropetrovsk (Ukraine); Moroz, Y.I. [Department of Physics and Technology, Dnepropetrovsk National University, Gagarin 72, 49050 Dnepropetrovsk (Ukraine); Steentjes, S.; Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Schinkelstr. 4, 52056 Aachen (Germany); Chwastek, K. [Faculty of Electrical Engineering, Czestochowa University of Technology, al. AK 17, 42-201 Czestochowa (Poland); Zurek, S. [Megger Instruments Ltd., Archcliffe Road, Dover, Kent, CT17 9EN (United Kingdom); Harrison, R.G. [Department of Electronics, Carleton University, Ottawa, Canada K1S 5B6 (Canada)

    2015-11-15

    We consider dynamic models, both numerical and analytical, that reproduce the magnetization field H(B) and the energy loss in ferromagnetic sheet materials with different domain structures. Conventional non-oriented (NO) and grain-oriented (GO) electrical steels are chosen as typical representatives of fine-domain and coarse-domain materials. The commonly-accepted loss separation procedures in these materials are critically analyzed. The use of a well-known simplified (“classical”) expression for the eddy-current loss is identified as the primary source of mistaken evaluations of excess loss in NO steel, in which the loss components can only be evaluated using the Maxwell (penetration) equation. The situation is quite different in GO steel, in which the loss separation is uncertain, but the total dynamic loss is several times higher than that explained by any version (numerical or analytical) of the classical approach. To illustrate the uncertainty of the loss separation in GO steel, we show that the magnetization field, and thus the total loss, in this material can be represented with equal accuracy using either the existing three-component approach or our proposed two-component technique, which makes no distinction between classical eddy-current and excess fields and losses. - Highlights: • Critical analysis of a ferromagnetic-material loss-separation principle. • This is to warn materials-science engineers about the inaccuracies resulting from this principle. • A transient model having a single dynamic component is proposed.

  20. Fine-grained parallelism accelerating for RNA secondary structure prediction with pseudoknots based on FPGA.

    Science.gov (United States)

    Xia, Fei; Jin, Guoqing

    2014-06-01

    PKNOTS is a most famous benchmark program and has been widely used to predict RNA secondary structure including pseudoknots. It adopts the standard four-dimensional (4D) dynamic programming (DP) method and is the basis of many variants and improved algorithms. Unfortunately, the O(N(6)) computing requirements and complicated data dependency greatly limits the usefulness of PKNOTS package with the explosion in gene database size. In this paper, we present a fine-grained parallel PKNOTS package and prototype system for accelerating RNA folding application based on FPGA chip. We adopted a series of storage optimization strategies to resolve the "Memory Wall" problem. We aggressively exploit parallel computing strategies to improve computational efficiency. We also propose several methods that collectively reduce the storage requirements for FPGA on-chip memory. To the best of our knowledge, our design is the first FPGA implementation for accelerating 4D DP problem for RNA folding application including pseudoknots. The experimental results show a factor of more than 50x average speedup over the PKNOTS-1.08 software running on a PC platform with Intel Core2 Q9400 Quad CPU for input RNA sequences. However, the power consumption of our FPGA accelerator is only about 50% of the general-purpose micro-processors.

  1. Fine-structure transitions of interstellar atomic sulfur and silicon induced by collisions with helium.

    Science.gov (United States)

    Lique, F; Kłos, J; Le Picard, S D

    2018-02-21

    Atomic sulfur and silicon are important constituents of the interstellar matter and are both used as tracers of the physical conditions in interstellar shocks and outflows. We present an investigation of the spin-orbit (de-)excitation of S( 3 P) and Si( 3 P) atoms induced by collisions with helium with the aim to improve the determination of atomic sulfur and silicon abundances in the interstellar medium from S and Si emission spectra. Quantum-mechanical calculations have been performed in order to determine rate coefficients for the fine-structure transitions in the 5-1000 K temperature range. The scattering calculations are based on new highly correlated ab initio potentials. The theoretical results show that the (de-)excitation of Si is much faster than that of S. The rate coefficients deduced from this study are in good agreement with previous experimental and theoretical findings despite some deviations at low temperatures. From the computation of critical densities defined as the ratios between Einstein coefficients and the sum of the relevant collisional de-excitation rate coefficients, we show that local thermodynamic equilibrium conditions are not fulfilled for analyzing S and Si emission spectra observed in the interstellar medium. Hence, the present rate coefficients will be extremely useful for the accurate determination of interstellar atomic sulfur and silicon abundances.

  2. Can temporal fine structure represent the fundamental frequency of unresolved harmonics?

    Science.gov (United States)

    Oxenham, Andrew J; Micheyl, Christophe; Keebler, Michael V

    2009-04-01

    At least two modes of pitch perception exist: in one, the fundamental frequency (F0) of harmonic complex tones is estimated using the temporal fine structure (TFS) of individual low-order resolved harmonics; in the other, F0 is derived from the temporal envelope of high-order unresolved harmonics that interact in the auditory periphery. Pitch is typically more accurate in the former than in the latter mode. Another possibility is that pitch can sometimes be coded via the TFS from unresolved harmonics. A recent study supporting this third possibility [Moore et al. (2006a). J. Acoust. Soc. Am. 119, 480-490] based its conclusion on a condition where phase interaction effects (implying unresolved harmonics) accompanied accurate F0 discrimination (implying TFS processing). The present study tests whether these results were influenced by audible distortion products. Experiment 1 replicated the original results, obtained using a low-level background noise. However, experiments 2-4 found no evidence for the use of TFS cues with unresolved harmonics when the background noise level was raised, or the stimulus level was lowered, to render distortion inaudible. Experiment 5 measured the presence and phase dependence of audible distortion products. The results provide no evidence that TFS cues are used to code the F0 of unresolved harmonics.

  3. Preferred Compression Speed for Speech and Music and Its Relationship to Sensitivity to Temporal Fine Structure

    Directory of Open Access Journals (Sweden)

    Brian C. J. Moore

    2016-03-01

    Full Text Available Multichannel amplitude compression is widely used in hearing aids. The preferred compression speed varies across individuals. Moore (2008 suggested that reduced sensitivity to temporal fine structure (TFS may be associated with preference for slow compression. This idea was tested using a simulated hearing aid. It was also assessed whether preferences for compression speed depend on the type of stimulus: speech or music. Twenty-two hearing-impaired subjects were tested, and the stimulated hearing aid was fitted individually using the CAM2A method. On each trial, a given segment of speech or music was presented twice. One segment was processed with fast compression and the other with slow compression, and the order was balanced across trials. The subject indicated which segment was preferred and by how much. On average, slow compression was preferred over fast compression, more so for music, but there were distinct individual differences, which were highly correlated for speech and music. Sensitivity to TFS was assessed using the difference limen for frequency at 2000 Hz and by two measures of sensitivity to interaural phase at low frequencies. The results for the difference limens for frequency, but not the measures of sensitivity to interaural phase, supported the suggestion that preference for compression speed is affected by sensitivity to TFS.

  4. Extended x-ray absorption fine structure investigation of annealed carbon expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas L.; Somers, Marcel A. J.

    2012-01-01

    Carbon expanded austenite synthesized through carburizing of austenitic stainless steel powder at 380°C was annealed at 470°C and investigated with extended X-ray absorption fine structure (EXAFS) and synchrotron powder diffraction (SPD). SPD showed that the samples consisted of carbon expanded...... austenite and Hägg carbide, Ξ-M5C2. EXAFS showed that the Cr atoms were mainly present in environments similar to the carbides Hägg Ξ-M5C2 and M23C6. The environments of the Fe and Ni atoms were concluded to be largely metallic austenite. Light optical micrograph of stainless steel AISI 316 gas......-carburized in a temperature regime around 470°C. The surface zone is converted into carbon expanded austenite; the high interstitial content of carbon dissolved in the surface results in highly favorable materials properties. In the present article the local atomic environment of (annealed) carbon expanded austenite...

  5. All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide

    Directory of Open Access Journals (Sweden)

    D. Simin

    2016-07-01

    Full Text Available We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-^{28}SiC and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3/2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100  nT/sqrt[Hz] within a volume of 3×10^{-7}mm^{3} at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3  mm^{3}, the projection noise limit is below 100  fT/sqrt[Hz].

  6. An X-ray photoelectron spectroscopy study of the products of the interaction of gaseous IrF6 with fine UO2F2

    Directory of Open Access Journals (Sweden)

    Prusakov Vladimir N.

    2007-01-01

    Full Text Available Nuclear fuel reprocessing by fluorination, a dry method of regeneration of spent nuclear fuel, uses UO2F2 for the separation of plutonium from gaseous mixtures. Since plutonium requires special treatment, IrF6 was used as a thermodynamic model of PuF6. The model reaction of the interaction of gaseous IrF6 with fine UO2F2 in the sorption column revealed a change of color of the sorption column contents from pale-yellow to gray and black, indicating the formation of products of such an interaction. The X-ray photoelectron spectroscopy study showed that the interaction of gaseous IrF6 with fine UO2F2 at 125 °C results in the formation of stable iridium compounds where the iridium oxidation state is close to Ir3+. The dependence of the elemental compositions of the layers in the sorption column on the penetration depth of IrF6 was established.

  7. Local structure of LiCoO2 nanoparticles studied by Co K-edge x-ray absorption spectroscopy

    Science.gov (United States)

    Maugeri, L.; Iadecola, A.; Joseph, B.; Simonelli, L.; Olivi, L.; Okubo, M.; Honma, I.; Wadati, H.; Mizokawa, T.; Saini, N. L.

    2012-08-01

    We have studied the local structure of LiCoO2 nanoparticles by Co K-edge x-ray absorption spectroscopy as a function of particle size. Extended x-ray absorption fine structure data reveal substantial changes in the near neighbor distances and the associated mean square relative displacements with decreasing particle size. X-ray absorption near edge structure spectra show clear local geometrical changes with decreasing particle size, similar to those that appear in the charging (delithiation) process. The results suggest that the LiCoO2 nanoparticles are characterized by a large atomic disorder confined to the Co-O octahedra, similar to the distortions generated during the delithiation, and this disorder should be the primary limiting factor for a reversible diffusion of Li ions when nanoparticles of LiCoO2 are used as cathode material in rechargeable Li ion batteries.

  8. Local Structure Determination of Carbon/Nickel Ferrite Composite Nanofibers Probed by X-ray Absorption Spectroscopy.

    Science.gov (United States)

    Nilmoung, Sukunya; Kidkhunthod, Pinit; Maensiri, Santi

    2015-11-01

    Carbon/NiFe2O4 composite nanofibers have been successfully prepared by electrospinning method using a various concentration solution of Ni and Fe nitrates dispersed into polyacrylonitride (PAN) solution in N,N' dimethylformamide. The phase and mophology of PAN/NiFe2O4 composite samples were characterized and investigated by X-ray diffraction and scanning electron microscopy. The magnetic properties of the prepared samples were measured at ambient temperature by a vibrating sample magnetometer. It is found that all composite samples exhibit ferromagnetism. This could be local-structurally explained by the existed oxidation states of Ni2+ and Fe3+ in the samples. Moreover, local environments around Ni and Fe ions could be revealed by X-ray absorption spectroscopy (XAS) measurement including X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS).

  9. A credit card verifier structure using diffraction and spectroscopy concepts

    Science.gov (United States)

    Sumriddetchkajorn, Sarun; Intaravanne, Yuttana

    2008-04-01

    We propose and experimentally demonstrate an angle-multiplexing based optical structure for verifying a credit card. Our key idea comes from the fact that the fine detail of the embossed hologram stamped on the credit card is hard to duplicate and therefore its key color features can be used for distinguishing between the real and counterfeit ones. As the embossed hologram is a diffractive optical element, we choose to shine one at a time a number of broadband lightsources, each at different incident angle, on the embossed hologram of the credit card in such a way that different color spectra per incident angle beam is diffracted and separated in space. In this way, the number of pixels of each color plane is investigated. Then we apply a feed forward back propagation neural network configuration to separate the counterfeit credit card from the real one. Our experimental demonstration using two off-the-shelf broadband white light emitting diodes, one digital camera, a 3-layer neural network, and a notebook computer can identify all 69 counterfeit credit cards from eight real credit cards.

  10. Lunar banding in the scleractinian coral Montastraea faveolata: Fine-scale structure and influence of temperature

    Science.gov (United States)

    Winter, Amos; Sammarco, Paul W.

    2010-10-01

    Lunar cycles play an important role in controlling biological rhythms in many organisms, including hermatypic corals. Coral spawning is correlated with environmental factors, including surface seawater temperature (SST) and lunar phase. Calcium carbonate skeletons of corals possess minute structures that, when viewed via X-radiography, produce high-density (HD) annual banding patterns. Some corals possess dissepiments that serve as the microstructural base for upward corallite growth. Here we report the results of detailed structural analysis of the skeleton of Montastraea faveolata (Scleractinia) (Ellis and Solander, 1786) and quantify the number of dissepiments that occur between HD bands, including interannual and intercorallite variability. Using a 30 year database, spanning from 1961 to 1991, we confirm earlier speculation by several authors that the frequencies of these microbands within a year is tightly linked to the lunar cycle. We also demonstrate that the frequency distribution of the number of these dissepiments per year is skewed to lower numbers. Extensive statistical analyses of long-term daily SST records (University of Puerto Rico, Mayaguez) revealed that precipitation of dissepiments is suppressed in years of cooler-than-average seawater temperature. We propose that dissepiment deposition is driven primarily by lunar cycle and seawater temperature, particularly at lower temperatures, and banding is generally unaffected by normal or high temperatures. These fine-scale banding patterns are also strongly correlated with the number of lunar months between reproductive spawning events in average or warmer-than-average seawater temperature years. This microbanding may represent another proxy for high-resolution estimates of variance in marine palaeo-temperatures, particularly during cooler SST years.

  11. Structure of Rhodium/Titania in the Normal and the SMSI State as Determined by Extended X-ray Absorption Fine Structure and High Resolution Transmission Electron Microscopy

    NARCIS (Netherlands)

    Koningsberger, D.C.; Martens, H.A.; Prins, R.

    1988-01-01

    Extended X-ray absorption fine structure (EXAFS) and high-resolution transmission electron microscopy (HRTEM) have been used to study the structure of a Rh/Ti02 catalyst. After reduction in H, at 473 K (when the catalyst is in the normal state) the metal particles contain on the average five rhodium

  12. COMPASS COmmon Muon and Proton Apparatus for Structure and Spectroscopy

    CERN Multimedia

    Ciliberti, P; Wang, L; Ostrick, M; Platchkov, S; Lichtenstadt, J; Marianski, B M; Vertogradov, L; Yukaev, A; Meshcheriakov, G; Gushterski, R I; Orlov, I; Faessler, M; Doshita, N; Horikawa kondo, K; Menon, G; Ziembicki, M K; Beck, R; Dhara, L; Sarkar, S; Hsieh, C; Windmolders, R; Ramos, S E; Stolarski, M; Gerassimov, S; Kabuss, E; Zhuravlev, N; Malyshev, V; Nagaytsev, A; Zemlyanichkina, E; Paul, S; Grabmueller, S; Steffen, D; Michigami, T; Castelli, G; Matsuda, T; Kurjata, R P; Horikawa, N; Srnka, A; Dasgupta, S; Sawada, T; Barth, J; Denisov, O; Chiosso, M; Gnesi, I; Schiavon, P; Levorato, S; Baum, G; Reicherz, G A; Graf von harrach, D; Kurek, K; Tkachev, L; Ivanshin, I; Lavrentyev, V; Lishin, V; Liska, T; Konorov, I; Friedrich, J M; Austregesilo, A; Iwata, T; Riedl, C K; Tessarotto, F; Sbrizzai, G; Joosten, R; Chang, W; Cotte, D G; Pretz, J J; Klein, F R; Hahne, D; Schmitt, L; Bradamante, F; Marques quintans, C; Franco, C; Burtin, E; Ferrero, A; Kuchinskiy, N; Guskov, A; Rogacheva, N; Konstantinov, V; Mikhaylov, Y; Matsuda, H; Grosse-perdekamp, M; Schmieden, H; Balestra, F; Bertini, R; Parsamyan, B; Bordalo, P; Faria pereira lopes da silva, L M F; Meyer, W P; Fischer, H; Herrmann, F; Buchele, M; Wilfert, M C; D'hose, N; Augustyniak, W J; Alexeev, G; Kiselev, Y; Kouznetsov, O; Samartsev, A; Anfimov, N; Akhunzyanov, R; Khaustov, G; Khokhlov, I; Nikolaenko, V; Slunecka, M; Virius, M; Uhl, S; Peng, J; Da rocha azevedo, C D; Suzuki, H; Sinha, L; Mallot, G; Martin, A; Badelek, B M; Da silva nunes, A S; Nowak, W; Neyret, D; Sandacz, A; Efremov, A; Peshekhonov, D; Pontecorvo, G; Savin, I; Vlasov, N; Ryabchikov, D; Finger, M; Haas, F; Gautheron, F B; Montuenga sfeir, P J; Birsa, R; Dalla torre, S; Crespo, M L; Vauth, A S; Amoroso, A; Tessaro, S; Kotzinian, A; Sirtl, S M; Kunne, F; Bedfer, Y; Seder, E E; Donskov, S; Poliakov, V; Finger, M; Grube, B; Marzec, J; Bisplinghoff, J; Das, S; Piragino, G; Tosello, F; Bressan, A; Makke, N; Ishimoto, S; Menezes pires, C; Pochodzalla, J G; Sznajder, P; Anosov, V; Gavrishchuk, O; Olshevskiy, A; Chirikov-zorin, I; Kravchuk, N; Antonov, A; Samoylenko, V; Kolosov, V; Mann, A B; Huber, S; Cicuttin, A; Zaremba, K; Hinterberger, F; Jahn, R J; Sulc, M; Teng, Y

    2002-01-01

    %NA58 %title\\\\ \\\\COMPASS is a new fixed target experiment at the SPS to study hadron spectroscopy with hadron beams (up to 300~GeV/c) and hadron structure with polarized muon beams (100-200~GeV/c).\\\\ \\\\The main physics objective of the muon beam program is the measurement of $\\Delta$G, the gluon polarization in a longitudinally polarized nucleon. More generally, it is planned to measure the flavour separated spin structure functions of the nucleons in polarized muon - polarized nucleon deep inelastic scattering, both with longitudinal and transverse target polarization modes. For these measurements a new 1.3~m long polarized target and a superconducting solenoid with 200~mrad acceptance will be used.\\\\ \\\\The hadronic program comprises a search for glueballs in the high mass region (above 2~GeV/c$^{2}$) in exclusive diffractive pp scattering, a study of leptonic and semileptonic decays of charmed hadrons with high statistics and precision, and Primakoff scattering with various probes. A detailed investigation ...

  13. Hyperfine Structure Measurements of Antiprotonic $^3$He using Microwave Spectroscopy

    CERN Document Server

    Friedreich, Susanne

    The goal of this project was to measure the hyperfine structure of $\\overline{\\text{p}}^3$He$^+$ using the technique of laser-microwave-laser spectroscopy. Antiprotonic helium ($\\overline{\\text{p}}$He$^+$) is a neutral exotic atom, consisting of a helium nucleus, an electron and an antiproton. The interactions of the angular momenta of its constituents cause a hyperfine splitting ({HFS}) within the energy states of this new atom. The 3\\% of formed antiprotonic helium atoms which remain in a metastable, radiative decay-dominated state have a lifetime of about 1-3~$\\mu$s. This time window is used to do spectroscopic studies. The hyperfine structure of $\\overline{\\text{p}}^4$He$^+$ was already extensively investigated before. From these measurements the spin magnetic moment of the antiproton can be determined. A comparison of the result to the proton magnetic moment provides a test of {CPT} invariance. Due to its higher complexity the new exotic three-body system of $\\overline{\\text{p}}^3$He$^+$ is a cross-check...

  14. Nanoscale Stress Field Evaluation with Shallow Trench Isolation Structure Assessed by Cathodoluminescence Spectroscopy, Raman Spectroscopy, and Finite Element Method Analyses

    Science.gov (United States)

    Kodera, Masako; Iguchi, Tadashi; Tsuchiya, Norihiko; Tamura, Mizuki; Kakinuma, Shigeru; Naka, Nobuyuki; Kashiwagi, Shinsuke

    2008-04-01

    Stress engineering related to the LSI process is required. With shallow trench isolation (STI) structures, a high stress field causes a variation in electrical characteristics. Although stress fields in a Si substrate can be detected by Raman spectroscopy, no effective technique has been reported for the measurement of nanoscale stress fields in a dielectric material used for STI filling. Recently, we have reported that “cathodoluminescence (CL) spectroscopy” enables us to detect nanometer-scale stress fields in LSI structures. In this study, we performed the first estimation of the stress fields with a STI structure by CL and Raman spectroscopy, as well as finite element method (FEM) calculation. We were able to repeatedly acquire clear stress distributions by CL and Raman spectroscopy. Moreover, CL, Raman, and FEM results showed excellent agreement with one another, revealing that a large variation in stresses along the AA/STI boundary was induced by the intrinsic tensile stress of the SiO2 film.

  15. Near edge x-ray spectroscopy theory

    International Nuclear Information System (INIS)

    1994-01-01

    We propose to develop a quantitative theory of x-ray spectroscopies in the near edge region, within about 100 eV of threshold. These spectroscopies include XAFS (X-ray absorption fine structure), photoelectron diffraction (PD), and diffraction anomalous fine structure (DAFS), all of which are important tools for structural studies using synchrotron radiation x-ray sources. Of primary importance in these studies are many-body effects, such as the photoelectron self-energy, and inelastic losses. A better understanding of these quantities is needed to obtain theories without adjustable parameters. We propose both analytical and numerical calculations, the latter based on our x-ray spectroscopy codes FEFF

  16. Are patterns of fine-scale spatial genetic structure consistent between sites within tropical tree species?

    Science.gov (United States)

    Smith, James R; Ghazoul, Jaboury; Burslem, David F R P; Itoh, Akira; Khoo, Eyen; Lee, Soon Leong; Maycock, Colin R; Nanami, Satoshi; Ng, Kevin Kit Siong; Kettle, Chris J

    2018-01-01

    Documenting the scale and intensity of fine-scale spatial genetic structure (FSGS), and the processes that shape it, is relevant to the sustainable management of genetic resources in timber tree species, particularly where logging or fragmentation might disrupt gene flow. In this study we assessed patterns of FSGS in three species of Dipterocarpaceae (Parashorea tomentella, Shorea leprosula and Shorea parvifolia) across four different tropical rain forests in Malaysia using nuclear microsatellite markers. Topographic heterogeneity varied across the sites. We hypothesised that forests with high topographic heterogeneity would display increased FSGS among the adult populations driven by habitat associations. This hypothesis was not supported for S. leprosula and S. parvifolia which displayed little variation in the intensity and scale of FSGS between sites despite substantial variation in topographic heterogeneity. Conversely, the intensity of FSGS for P. tomentella was greater at a more topographically heterogeneous than a homogeneous site, and a significant difference in the overall pattern of FSGS was detected between sites for this species. These results suggest that local patterns of FSGS may in some species be shaped by habitat heterogeneity in addition to limited gene flow by pollen and seed dispersal. Site factors can therefore contribute to the development of FSGS. Confirming consistency in species' FSGS amongst sites is an important step in managing timber tree genetic diversity as it provides confidence that species specific management recommendations based on species reproductive traits can be applied across a species' range. Forest managers should take into account the interaction between reproductive traits and site characteristics, its consequences for maintaining forest genetic resources and how this might influence natural regeneration across species if management is to be sustainable.

  17. The Fine Structure of Some Blood Vessels of the Earthworm, Eisenia foetida

    Science.gov (United States)

    Hama, Kiyoshi

    1960-01-01

    The fine structure of the main dorsal and ventral circulatory trunks and of the subneural vessels and capillaries of the ventral nerve cord of the earthworm, Eisenia foetida, has been studied with the electron microscope. All of these vessels are lined internally by a continuous extracellular basement membrane varying in thickness (0.03 to 1 µ) with the vessel involved. The dorsal, ventral, and subneural vessels display inside this membrane scattered flattened macrophagic or leucocytic cells called amebocytes. These lie against the inner lining of the basement membrane, covering only a small fraction of its surface. They have long, attenuated branching cell processes. All of these vessels are lined with a continuous layer of unfenestrated endothelial cells displaying myofilaments and hence qualifying for the designation of "myoendothelial cells." The degree of muscular specialization varies over a spectrum, however, ranging from a delicate endowment of thin myofilaments in the capillary myoendothelial cells to highly specialized myoendothelial cells in the main pulsating dorsal blood trunk, which serves as the worm's "heart" or propulsive "aorta." The myoendothelial cells most specialized for contraction display well organized sarcoplasmic reticulum and myofibrils with thick and thin myofilaments resembling those of the earthworm body wall musculature. In the ventral circulatory trunk, circular and longitudinal myofilaments are found in each myoendothelial cell. In the dorsal trunk, the lining myoendothelial cells contain longitudinal myofilaments. Outside these cells are circular muscle cells. The lateral parts of the dorsal vessels have an additional outer longitudinal muscle layer. The blood plasma inside all of the vessels shows scattered particles representing the circulating earthworm blood pigment, erythrocruorin. PMID:14399190

  18. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    Science.gov (United States)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  19. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  20. Ultra-Fine Scale Spatially-Integrated Mapping of Habitat and Occupancy Using Structure-From-Motion.

    Directory of Open Access Journals (Sweden)

    Philip McDowall

    Full Text Available Organisms respond to and often simultaneously modify their environment. While these interactions are apparent at the landscape extent, the driving mechanisms often occur at very fine spatial scales. Structure-from-Motion (SfM, a computer vision technique, allows the simultaneous mapping of organisms and fine scale habitat, and will greatly improve our understanding of habitat suitability, ecophysiology, and the bi-directional relationship between geomorphology and habitat use. SfM can be used to create high-resolution (centimeter-scale three-dimensional (3D habitat models at low cost. These models can capture the abiotic conditions formed by terrain and simultaneously record the position of individual organisms within that terrain. While coloniality is common in seabird species, we have a poor understanding of the extent to which dense breeding aggregations are driven by fine-scale active aggregation or limited suitable habitat. We demonstrate the use of SfM for fine-scale habitat suitability by reconstructing the locations of nests in a gentoo penguin colony and fitting models that explicitly account for conspecific attraction. The resulting digital elevation models (DEMs are used as covariates in an inhomogeneous hybrid point process model. We find that gentoo penguin nest site selection is a function of the topography of the landscape, but that nests are far more aggregated than would be expected based on terrain alone, suggesting a strong role of behavioral aggregation in driving coloniality in this species. This integrated mapping of organisms and fine scale habitat will greatly improve our understanding of fine-scale habitat suitability, ecophysiology, and the complex bi-directional relationship between geomorphology and habitat use.

  1. Measurement of the ratio h/m{sub Rb} and determination of the fine structure constant; Mesure du rapport h/m{sub Rb} et determination de la constante de structure fine

    Energy Technology Data Exchange (ETDEWEB)

    Clade, P.; Guellati-Khelifa, S.; Nez, F.; Birabena, F. [Laboratoire Kastler Brossel, Ecole normale superieure, CNRS, Universite P. et M. Curie. Paris 6, case 74, 4 place Jussieu, 75252 Paris cedex 05 (France); Cadoret, M.; Guellati-Khelifa, S. [Conservatoire National des Arts et Metiers, 292 rue Saint Martin, 75141 Paris Cedex 03 (France); De Mirandes, E. [Bureau International des poids et Mesures, Pavillon de Breteuil, 92312 Sevres Cedex (France)

    2011-05-15

    We present a review of the most precise determinations of the fine structure constant {alpha} which are obtained in different domains of physics. We describe the measurement of the ratio h/m{sub Rb} between the Planck constant and the mass of Rubidium atom which leads to a precise value of {alpha} which is very little dependent of the QED. Finally, we present a review of the different determinations of the von Kitzling constant R{sub K}. (authors)

  2. Fine Structure of the Core of the Blazar OJ 287-I

    Science.gov (United States)

    Matveyenko, L. I.; Sivakon', S. S.

    2017-12-01

    The fine structure of the active region, the bulge, of the blazar OJ 287 has been investigated with a resolution of 20 μas (0.1 pc) at a wavelength of 7 mm, the epochs of 2007-2017. The structure and kinematics correspond to a vortex nature. The surrounding matter, the plasma, is transferred to the center along two arms from opposite directions. The emerging excess angular momentum is carried away along the rotation axis by bipolar outflows, rotating coaxial tubes, in a direction X ≈ -120° in the plane of the sky as it is accumulated. The central high-velocity bipolar outflow has a helical shape. The diameters of the low-velocity flows are ø1 ≈ 0.3 and ø2 ≈ 0.65 mas, or 1.4 and 3 pc, respectively. Ring currents whose tangential directions are observed as parallel chains of components are excited in the flow walls. The peak brightness temperature of the nozzle reaches Tb ≈ 1012-1013 K. A "disk" with a diameter ø ≈ 0.5 mas (≈2.2 pc) is observed by the absorption of synchrotron radiation. The disk is inclined to the plane of the sky at an angle of 60° in the jet direction. The fragments are seen from a distance of ˜0.2 mas outside the absorption zone. The jet sizes exceed considerably the counterjet ones. An enhanced supply of plasma from the northern arm gives rise to an independent vortex 0.2 mas away from the central one in the NW direction. As in the first case, the helical central bipolar outflow is surrounded by a low-velocity component ø ≈ 0.28 mas in diameter with built-in ring currents. The jet is ejected in the direction X = -50° in the plane of the sky. The jet orientation changes, X = -130° at a distance of 1 mas. A high activity of the central and two side nozzles spaced 0.22 mas apart in the direction X = -40° is occasionally observed simultaneously. The active region of the blazar is observed through an ionized medium, a screen, whose influence is significant even at a wavelength of 7 mm. The absorption and refraction of the

  3. Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Funda, Shuji; Ohki, Tatsuya; Liu, Qiming; Hossain, Jaker; Ishimaru, Yoshihiro; Ueno, Keiji; Shirai, Hajime [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan)

    2016-07-21

    We investigated the relationship between the fine structure of spin-coated conductive polymer poly(3,4-ethylenedioxythiphene):poly(styrene sulfonate) (PEDOT:PSS) films and the photovoltaic performance of PEDOT:PSS crystalline-Si (PEDOT:PSS/c-Si) heterojunction solar cells. Real-time spectroscopic ellipsometry revealed that there were two different time constants for the formation of the PEDOT:PSS network. Upon removal of the polar solvent, the PEDOT:PSS film became optically anisotropic, indicating a conformational change in the PEDOT and PSS chain. Polarized Fourier transform infrared attenuated total reflection absorption spectroscopy and Raman spectroscopy measurements also indicated that thermal annealing promoted an in-plane π-conjugated C{sub α} = C{sub β} configuration attributed to a thiophene ring in PEDOT and an out-of-plane configuration of -SO{sub 3} groups in the PSS chain with increasing composition ratio of oxidized (benzoid) to neutral (quinoid) PEDOT, I{sub qui}/I{sub ben}. The highest power conversion efficiency for the spin-coated PEDOT:PSS/c-Si heterojunction solar cells was 13.3% for I{sub qui}/I{sub ben} = 9–10 without employing any light harvesting methods.

  4. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhen; Kenney, Janice P.L.; Fein, Jeremy B.; Bunker, Bruce A. (Notre)

    2015-02-09

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has been observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.

  5. A Structure-Based Coarse-Fine Approach for Diversity Tuning in Cellular GAs

    Directory of Open Access Journals (Sweden)

    MORALES-REYES, A.

    2012-08-01

    Full Text Available This article empirically assesses a coarse-fine approach for diversity tuning in cellular Genetic Algorithms (cGAs. The coarse tuning is performed through the constant reconfiguration of the grid while the fine tuning is locally achieved through dynamic anisotropic selection which considers individuals' locations in the local neighborhood. Benchmark problems including continuous, real-world and combinatorial problems are evaluated. The experimental results show an improvement in cGAs performance when compared to having a fixed topology configuration or to independently applying dynamic lattice reconfiguration or dynamic anisotropic.

  6. Diffraction anomalous fine-structure study of strained Ga1-xInxAs on GaAs(001)

    International Nuclear Information System (INIS)

    Woicik, J.C.; Cross, J.O.; Bouldin, C.E.; Ravel, B.; Pellegrino, J.G.; Steiner, B.; Bompadre, S.G.; Sorensen, L.B.; Miyano, K.E.; Kirkland, J.P.

    1998-01-01

    Diffraction anomalous fine-structure measurements performed at both the Ga and As K edges have determined the Ga-As bond length to be 2.442±0.005thinsp Angstrom in a buried, 213-Angstrom-thick Ga 0.785 In 0.215 As layer grown coherently on GaAs(001). This bond length corresponds to a strain-induced contraction of 0.013±0.005thinsp Angstrom relative to the Ga-As bond length in bulk Ga 1-x In x As of the same composition. Together with recent extended x-ray-absorption fine-structure measurements performed at the In K edge [Woicik et al., Phys. Rev. Lett. 79, 5026 (1997)], excellent agreement is found with the uniform bond-length distortion model for strained-layer semiconductors on (001) substrates. copyright 1998 The American Physical Society

  7. R-matrix calculations for electron-impact excitation of C(+), N(2+), and O(3+) including fine structure

    Science.gov (United States)

    Luo, D.; Pradhan, A. K.

    1990-01-01

    The new R-matrix package for comprehensive close-coupling calculations for electron scattering with the first three ions in the boron isoelectronic sequence, the astrophysically significant C(+), N(2+), and O(3+), is presented. The collision strengths are calculated in the LS coupling approximation, as well as in pair-coupling scheme, for the transitions among the fine-structure sublevels. Calculations are carried out at a large number of energies in order to study the detailed effects of autoionizing resonances.

  8. Stokes shift and fine-structure splitting in CdSe / CdTe invert type-II ...

    Indian Academy of Sciences (India)

    Worasak Sukkabot

    2018-01-09

    Jan 9, 2018 ... that the Stokes shift and fine-structure splitting (FSS) in semiconductor core/shell nanocrystals are predominantly affected by the shell thickness and band profiles. CdSe/CdTe invert type-II and CdTe/CdSe type-II core/shell nanocrystals are used as the simulated candidates in order to obtain the different ...

  9. Sensitivity of inferior colliculus neurons to interaural time differences in the envelope versus the fine structure with bilateral cochlear implants.

    Science.gov (United States)

    Smith, Zachary M; Delgutte, Bertrand

    2008-05-01

    Bilateral cochlear implantation seeks to improve hearing by taking advantage of the binaural processing of the central auditory system. Cochlear implants typically encode sound in each spectral channel by amplitude modulating (AM) a fixed-rate pulse train, thus interaural time differences (ITD) are only delivered in the envelope. We investigated the ITD sensitivity of inferior colliculus (IC) neurons with sinusoidally AM pulse trains. ITD was introduced independently to the AM and/or carrier pulses to measure the relative efficacy of envelope and fine structure for delivering ITD information. We found that many IC cells are sensitive to ITD in both the envelope (ITD(env)) and fine structure (ITD(fs)) for appropriate modulation frequencies and carrier rates. ITD(env) sensitivity was generally similar to that seen in normal-hearing animals with AM tones. ITD(env) tuning generally improved with increasing modulation frequency up to the maximum modulation frequency that elicited a sustained response in a neuron (tested pulse/s (pps) carriers and was nonexistent at 5,000 pps. The neurons that were sensitive to ITD(fs) at 1,000 pps were those that showed the best ITD sensitivity to low-rate pulse trains. Overall, the best ITD sensitivity was found for ITD contained in the fine structure of a moderate rate AM pulse train (1,000 pps). These results suggest that the interaural timing of current pulses should be accurately controlled in a bilateral cochlear implant processing strategy that provides salient ITD cues.

  10. A correlational method to concurrently measure envelope and temporal fine structure weights: effects of age, cochlear pathology, and spectral shaping.

    Science.gov (United States)

    Fogerty, Daniel; Humes, Larry E

    2012-09-01

    The speech signal may be divided into spectral frequency-bands, each band containing temporal properties of the envelope and fine structure. This study measured the perceptual weights for the envelope and fine structure in each of three frequency bands for sentence materials in young normal-hearing listeners, older normal-hearing listeners, aided older hearing-impaired listeners, and spectrally matched young normal-hearing listeners. The availability of each acoustic property was independently varied through noisy signal extraction. Thus, the full speech stimulus was presented with noise used to mask six different auditory channels. Perceptual weights were determined by correlating a listener's performance with the signal-to-noise ratio of each acoustic property on a trial-by-trial basis. Results demonstrate that temporal fine structure perceptual weights remain stable across the four listener groups. However, a different weighting typography was observed across the listener groups for envelope cues. Results suggest that spectral shaping used to preserve the audibility of the speech stimulus may alter the allocation of perceptual resources. The relative perceptual weighting of envelope cues may also change with age. Concurrent testing of sentences repeated once on a previous day demonstrated that weighting strategies for all listener groups can change, suggesting an initial stabilization period or susceptibility to auditory training.

  11. Fine structure analysis of biocompatible ceramic materials based hydroxyapatite and metallic biomaterials 316L

    International Nuclear Information System (INIS)

    Anghelina, F.V.; Ungureanu, D.N.; Bratu, V.; Popescu, I.N.; Rusanescu, C.O.

    2013-01-01

    The aim of this paper was to obtain and characterize (surface morphology and fine structure) two types of materials: Ca 10 (PO 4 ) 6 (OH) 2 hydroxyapatite powder (HAp) as biocompatible ceramic materials and AISI 316L austenitic stainless steels as metallic biomaterials, which are the components of the metal–ceramic composites used for medical implants in reconstructive surgery and prosthetic treatment. The HAp was synthesized by coprecipitation method, heat treated at 200 °C, 800 °C and 1200 °C for 4 h, analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The stainless steel 316L type was made by casting, annealing and machined with a low speed (100 mm/s) in order to obtain a smooth surface and after that has been studied from residual stresses point of view in three polishing regimes conditions: at low speed polishing (150 rpm), at high speed polishing (1500 rpm) and high speed-vibration contact polishing (1500 rpm) using wide angle X-ray diffractions (WAXD). The chemical compositions of AISI 316 steel samples were measured using a Foundry Master Spectrometer equipped with CCD detector for spectral lines and the sparking spots of AISI 316L samples were analyzed using SEM. By XRD the phases of HAp powders have been identified and also the degree of crystallinity and average size of crystallites, and with SEM, we studied the morphology of the HAp. It has been found from XRD analysis that we obtained HAp with a high degree of crystallinity at 800 °C and 1200 °C, no presence of impurity and from SEM analysis we noticed the influence of heat treatment on the ceramic particles morphology. From the study of residual stress profiles of 316L samples were observed that it differs substantially for different machining regimes and from the SEM analysis of sparking spots we revealed the rough surfaces of stainless steel rods necessary for a better adhesion of HAp on it.

  12. Fine-scale structure of the mid-mantle characterised by global stacks of PP precursors

    Science.gov (United States)

    Bentham, H. L. M.; Rost, S.; Thorne, M. S.

    2017-08-01

    Subduction zones are likely a major source of compositional heterogeneities in the mantle, which may preserve a record of the subduction history and mantle convection processes. The fine-scale structure associated with mantle heterogeneities can be studied using the scattered seismic wavefield that arrives as coda to or as energy preceding many body wave arrivals. In this study we analyse precursors to PP by creating stacks recorded at globally distributed stations. We create stacks aligned on the PP arrival in 5° distance bins (with range 70-120°) from 600 earthquakes recorded at 193 stations stacking a total of 7320 seismic records. As the energy trailing the direct P arrival, the P coda, interferes with the PP precursors, we suppress the P coda by subtracting a best fitting exponential curve to this energy. The resultant stacks show that PP precursors related to scattering from heterogeneities in the mantle are present for all distances. Lateral variations are explored by producing two regional stacks across the Atlantic and Pacific hemispheres, but we find only negligible differences in the precursory signature between these two regions. The similarity of these two regions suggests that well mixed subducted material can survive at upper and mid-mantle depth. To describe the scattered wavefield in the mantle, we compare the global stacks to synthetic seismograms generated using a Monte Carlo phonon scattering technique. We propose a best-fitting layered heterogeneity model, BRT2017, characterised by a three layer mantle with a background heterogeneity strength (ɛ = 0.8%) and a depth-interval of increased heterogeneity strength (ɛ = 1%) between 1000 km and 1800 km. The scalelength of heterogeneity is found to be 8 km throughout the mantle. Since mantle heterogeneity of 8 km scale may be linked to subducted oceanic crust, the detection of increased heterogeneity at mid-mantle depths could be associated with stalled slabs due to increases in viscosity

  13. FAR-INFRARED FINE-STRUCTURE LINE DIAGNOSTICS OF ULTRALUMINOUS INFRARED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Farrah, D.; Petty, S. M.; Harris, K. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Lebouteiller, V.; Spoon, H. W. W. [Cornell University, CRSR, Space Sciences Building, Ithaca, NY 14853 (United States); Bernard-Salas, J.; Pearson, C. [Department of Physics and Astronomy, The Open University, Milton Keynes MK7 6AA (United Kingdom); Rigopoulou, D. [RAL Space, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX (United Kingdom); Smith, H. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); González-Alfonso, E. [Universidad de Alcalá, Departamento de Física y Matemáticas, Campus Universitario, E-28871 Alcalá de Henares, Madrid (Spain); Clements, D. L. [Physics Department, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Efstathiou, A. [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Cormier, D. [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Afonso, J. [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisbon (Portugal); Hurley, P. [Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Borys, C. [Infrared Processing and Analysis Center, MS220-6, California Institute of Technology, Pasadena, CA 91125 (United States); Verma, A. [Oxford Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Rd, Oxford OX1 3RH (United Kingdom); Cooray, A.; Salvatelli, V. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

    2013-10-10

    We present Herschel observations of 6 fine-structure lines in 25 ultraluminous infrared galaxies at z < 0.27. The lines, [O III]52 μm, [N III]57 μm, [O I]63 μm, [N II]122 μm, [O I]145 μm, and [C II]158 μm, are mostly single Gaussians with widths <600 km s{sup –1} and luminosities of 10{sup 7}-10{sup 9} L{sub ☉}. There are deficits in the [O I]63/L{sub IR}, [N II]/L{sub IR}, [O I]145/L{sub IR}, and [C II]/L{sub IR} ratios compared to lower luminosity systems. The majority of the line deficits are consistent with dustier H II regions, but part of the [C II] deficit may arise from an additional mechanism, plausibly charged dust grains. This is consistent with some of the [C II] originating from photodissociation regions or the interstellar medium (ISM). We derive relations between far-IR line luminosities and both the IR luminosity and star formation rate. We find that [N II] and both [O I] lines are good tracers of the IR luminosity and star formation rate. In contrast, [C II] is a poor tracer of the IR luminosity and star formation rate, and does not improve as a tracer of either quantity if the [C II] deficit is accounted for. The continuum luminosity densities also correlate with the IR luminosity and star formation rate. We derive ranges for the gas density and ultraviolet radiation intensity of 10{sup 1} < n < 10{sup 2.5} and 10{sup 2.2} < G{sub 0} < 10{sup 3.6}, respectively. These ranges depend on optical type, the importance of star formation, and merger stage. We do not find relationships between far-IR line properties and several other parameters: active galactic nucleus (AGN) activity, merger stage, mid-IR excitation, and SMBH mass. We conclude that these far-IR lines arise from gas heated by starlight, and that they are not strongly influenced by AGN activity.

  14. Fine-Pitch CdTe Detector for Hard X-Ray Imaging and Spectroscopy of the Sun with the FOXSI Rocket Experiment

    Science.gov (United States)

    Ishikawa, Shin-nosuke; Katsuragawa, Miho; Watanabe, Shin; Uchida, Yuusuke; Takeda, Shin'lchiro; Takahashi, Tadayuki; Saito, Shinya; Glesener, Lindsay; Bultrago-Casas, Juan Camilo; Krucker, Sam; hide

    2016-01-01

    We have developed a fine-pitch hard X-ray (HXR) detector using a cadmium telluride (CdTe) semiconductor for imaging and spectroscopy for the second launch of the Focusing Optics Solar X-ray Imager (FOXSI). FOXSI is a rocket experiment to perform high sensitivity HXR observations from 4 to 15 keV using the new technique of HXR focusing optics. The focal plane detector requires less than 100 micrometers position resolution (to take advantage of the angular resolution of the optics) and approximately equals 1 keV energy resolution (full width at half maximum (FWHM)) for spectroscopy down to 4 keV, with moderate cooling (greater than -30 C). Double-sided silicon strip detectors were used for the first FOXSI flight in 2012 to meet these criteria. To improve the detectors' efficiency (66% at 15 keV for the silicon detectors) and position resolution of 75 micrometers for the second launch, we fabricated double-sided CdTe strip detectors with a position resolution of 60 micrometers and almost 100% efficiency for the FOXSI energy range. The sensitive area is 7.67 mm x 7.67 mm, corresponding to the field of view of 791'' x 791''. An energy resolution of 1 keV (FWHM) and low-energy threshold of approximately equals 4 keV were achieved in laboratory calibrations. The second launch of FOXSI was performed on 11 December 2014, and images from the Sun were successfully obtained with the CdTe detector. Therefore, we successfully demonstrated the detector concept and the usefulness of this technique for future HXR observations of the Sun.

  15. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... Full Length Research Paper. Determination of lactic acid bacteria in Kaşar cheese and identification by Fourier transform infrared (FTIR) spectroscopy. İlkay Turhan1* and Zübeyde Öner2. 1Department of Nutrition and Dietetic, School of Health Sciences, T.C.Istanbul Arel University, 34537 Buyukcekmece /.

  16. Hyperfine structure of 147,149Sm measured using saturated absorption spectroscopy in combination with resonance-ionization mass spectroscopy

    International Nuclear Information System (INIS)

    Park, Hyunmin; Lee, Miran; Rhee, Yongjoo

    2003-01-01

    The hyperfine structures of four levels of the Sm isotopes have been measured by means of diode-laser-based Doppler-free saturated absorption spectroscopy in combination with a diode-laser-initiated resonance-ionization mass spectroscopy. It was demonstrated that combining the two spectroscopic methods was very effective for the identification and accurate measurement of the spectral lines of atoms with several isotopes, such as the rare-earth elements. From the obtained spectra, the hyperfine constants A and B for the odd-mass isotopes 147 Sm and 149 Sm were determined for four upper levels of the studied transitions.

  17. Ge and As x-ray absorption fine structure spectroscopic study of homopolar bonding, chemical order, and topology in Ge-As-S chalcogenide glasses

    International Nuclear Information System (INIS)

    Sen, S.; Ponader, C.W.; Aitken, B.G.

    2001-01-01

    The coordination environments of Ge and As atoms in Ge x As y S 1-x-y glasses with x:y=1:2, 1:1, and 2.5:1 and with wide-ranging S contents have been studied with Ge and As K-edge x-ray absorption fine structure spectroscopy. The coordination numbers of Ge and As atoms are found to be 4 and 3, respectively, in all glasses. The first coordination shells of Ge and As atoms in the stoichiometric and S-excess glasses consist of S atoms only, implying the preservation of chemical order at least over the length scale of the first coordination shell. As-As homopolar bonds are found to appear at low and intermediate levels of S deficiency, whereas Ge-Ge bonds are formed only in strongly S-deficient glasses indicating clustering of metal atoms and violation of chemical order in S-deficient glasses. The composition-dependent variation in chemical order in chalcogenide glasses has been hypothesized to result in topological changes in the intermediate-range structural units. The role of such topological transitions in controlling the structure-property relationships in chalcogenide glasses is discussed

  18. The Fine Transverse Structure of a Vortex Flow Beyond the Edge of a Disc Rotating in a Stratified Fluid

    Science.gov (United States)

    Chashechkin, Yu. D.; Bardakov, R. N.

    2018-02-01

    By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.

  19. Fine Structure in the Secondary Electron Emission Peak for Diamond Crystal with (100) Negative Electron Affinity Surface

    Science.gov (United States)

    Asnin, V. M.; Krainsky, I. L.

    1998-01-01

    A fine structure was discovered in the low-energy peak of the secondary electron emission spectra of the diamond surface with negative electron affinity. We studied this structure for the (100) surface of the natural type-IIb diamond crystal. We have found that the low-energy peak consists of a total of four maxima. The relative energy positions of three of them could be related to the electron energy minima near the bottom of the conduction band. The fourth peak, having the lowest energy, was attributed to the breakup of the bulk exciton at the surface during the process of secondary electron emission.

  20. On the Electronic Structure of Cu Chlorophyllin and Its Breakdown Products: A Carbon K-Edge X-ray Absorption Spectroscopy Study.

    Science.gov (United States)

    Witte, Katharina; Mantouvalou, Ioanna; Sánchez-de-Armas, Rocío; Lokstein, Heiko; Lebendig-Kuhla, Janina; Jonas, Adrian; Roth, Friedrich; Kanngießer, Birgit; Stiel, Holger

    2018-02-15

    Using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, the carbon backbone of sodium copper chlorophyllin (SCC), a widely used chlorophyll derivative, and its breakdown products are analyzed to elucidate their electronic structure and physicochemical properties. Using various sample preparation methods and complementary spectroscopic methods (including UV/Vis, X-ray photoelectron spectroscopy), a comprehensive insight into the SCC breakdown process is presented. The experimental results are supported by density functional theory calculations, allowing a detailed assignment of characteristic NEXAFS features to specific C bonds. SCC can be seen as a model system for the large group of porphyrins; thus, this work provides a novel and detailed description of the electronic structure of the carbon backbone of those molecules and their breakdown products. The achieved results also promise prospective optical pump/X-ray probe investigations of dynamic processes in chlorophyll-containing photosynthetic complexes to be analyzed more precisely.

  1. Frequency-comb based collinear laser spectroscopy of Be for nuclear structure investigations and many-body QED tests

    CERN Document Server

    Krieger, A; Geppert, Ch; Blaum, K; Bissell, M L; Frömmgen, N; Hammen, M; Kreim, K; Kowalska, M; Krämer, J; Neugart, R; Neyens, G; Sánchez, R; Tiedemann, D; Yordanov, D T; Zakova, M

    2016-01-01

    Absolute transition frequencies of the $2s\\,^2{\\rm{S}}_{1/2}$ $\\rightarrow$ $2p\\,^2{\\rm{P}}_{1/2,3/2}$ transitions in Be$^+$ were measured with a frequency comb in stable and short-lived isotopes at ISOLDE (CERN) using collinear laser spectroscopy. Quasi-simultaneous measurements in copropagating and counterpropagating geometry were performed to become independent from acceleration voltage determinations for Doppler-shift corrections of the fast ion beam. Isotope shifts and fine structure splittings were obtained from the absolute transition frequencies with accuracies better than 1\\,MHz and led to a precise determination of the nuclear charge radii of $^{7,10-12}$Be relative to the stable isotope $^9$Be. Moreover, an accurate determination of the $2p$ fine structure splitting allowed a test of high-precision bound-state QED calculations in the three-electron system. Here, we describe the laser spectroscopic method in detail, including several tests that were carried out to determine or estimate systematic un...

  2. Fine and hyperfine structure spectra of the ultra-violet 23S → 53P transition in 4He and 3He with a frequency doubled CW ring laser, detected via associative ionization

    International Nuclear Information System (INIS)

    Runge, S.; Pesnelle, A.; Perdrix, M.; Sevin, D.; Wolffer, N.; Watel, G.

    1982-01-01

    High resolution laser spectroscopy coupled to a sensitive method of detection via mass analysis of He + 2 ions produced in He(5 3 P) + He(1 1 S) collisions, is used to obtain the fine and hyperfine spectra of the ultra-violet He 2 3 S → 5 3 P transition. A cw tunable UV radiation around 294.5 nm is generated by intracavity frequency doubling a Rhodamine 6G single mode ring dye laser using an ADA crystal. Both spectra enable fine and hyperfine structures to be determined within a few MHz. The magnetic dipole coupling constant A of the 5 3 P term of 3 He is found to be -4326 +- 9 MHz (-0.1443 +- 0.0003 cm -1 ). (orig.)

  3. Fine structure in the inter-critical heat-affected zone of HQ130 super ...

    Indian Academy of Sciences (India)

    Unknown

    ponding to the quenched coarse grained region, the fine grained region, the ICHAZ and the sub-critical tempered region. The cooling time (t8/5) from 800°C to 500°C of the simulated HAZ was 5 s ~ 40 s, and the test process was controlled by a computer program. Weld joint was prepared by CO2 gas shielded arc welding.

  4. Structural properties of diamond fine particles and clusters prepared by detonation and decomposition of TNT

    Science.gov (United States)

    Saha, D. K.; Koga, K.; Takeo, H.

    1998-03-01

    The thermal parameter B for three different particle sizes of diamond samples (bulk powder 1-4 μm, fine particle 144-195 Å and cluster 55-61 Å) was determined by the grazing incidence X-ray diffraction method. The values of B were found to be in the range 0.50-0.70 Å 2 for particles in the size range 195-55 Å and 0.27 Å 2 for 1-4 μm. All of them are larger than that of diamond bulk. A clear size dependence of B, increasing with decreasing particle size, was found. By analysing X-ray diffraction data at several temperatures the magnitude of B was found to be due to BS (static part) instead of BT (dynamic part). The average BS values obtained were 0.04 Å 2, 0.19 Å 2 and 0.27 Å 2 for bulk powder, fine particle and cluster samples respectively. Ultrahigh resolution transmission electron microscope (TEM) observation confirmed the presence of strain, distortion, roughness and dislocation lines in many particles. TEM images of particles indicate that the clusters were not spherical in shape; they were mostly cubiform and some were truncated prism-like polyhedral. The present study reveals that the BS component is responsible for the large B value in diamond fine particles and clusters. No clear surface local atomic distortion was found in the particles.

  5. Effects of proton irradiation on structure of NdFeB permanent magnets studied by X-ray diffraction and X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Yang, L.; Zhen, L.; Xu, C.Y.; Sun, X.Y.; Shao, W.Z.

    2011-01-01

    The effects of proton irradiation on the structure of NdFeB permanent magnet were investigated by X-ray diffraction and X-ray absorption fine structure (XAFS). The results reveal that proton irradiation has no effect on the long-range structure, but significantly affects the atomic local structure of the NdFeB magnet. The alignment degree of the magnet decreases and the internal stress of the lattice increases after proton irradiation. XAFS results show that the coordination number of Fe-Nd in the first neighboring coordination shell of the Fe atoms decreases and the disorder degree increases.

  6. Effects of proton irradiation on structure of NdFeB permanent magnets studied by X-ray diffraction and X-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, L., E-mail: lzhen@hit.edu.c [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xu, C.Y.; Sun, X.Y.; Shao, W.Z. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-01-15

    The effects of proton irradiation on the structure of NdFeB permanent magnet were investigated by X-ray diffraction and X-ray absorption fine structure (XAFS). The results reveal that proton irradiation has no effect on the long-range structure, but significantly affects the atomic local structure of the NdFeB magnet. The alignment degree of the magnet decreases and the internal stress of the lattice increases after proton irradiation. XAFS results show that the coordination number of Fe-Nd in the first neighboring coordination shell of the Fe atoms decreases and the disorder degree increases.

  7. Using Jigsaw-Style Spectroscopy Problem-Solving to Elucidate Molecular Structure through Online Cooperative Learning

    Science.gov (United States)

    Winschel, Grace A.; Everett, Renata K.; Coppola, Brian P.; Shultz, Ginger V.

    2015-01-01

    Cooperative learning was employed as an instructional approach to facilitate student development of spectroscopy problem solving skills. An interactive online environment was used as a framework to structure weekly discussions around spectroscopy problems outside of class. Weekly discussions consisted of modified jigsaw-style problem solving…

  8. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has a charact......For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...

  9. Near-Edge X-ray Absorption Fine Structure Studies of Electrospun Poly(dimethylsiloxane)/Poly (methyl methacrylate)/Multiwall Carbon Nanotube Composites

    Science.gov (United States)

    Winter, A. Douglas; Larios, Eduardo; Alamgir, Faisal M.; Jaye, Cherno; Fischer, Daniel; Campo, Eva M.

    2014-01-01

    This work describes the near conduction band edge structure of electrospun mats of MWCNT-PDMS-PMMA by near edge X-Ray absorption fine structure (NEXAFS) spectroscopy. Effects of adding nanofillers of different sizes were addressed. Despite observed morphological variations and inhomogeneous carbon nanotube distribution, spun mats appeared homogeneous under NEXAFS analysis. Spectra revealed differences in emissions from glancing and normal spectra; which may evidence phase separation within the bulk of the micron-size fibers. Further, dichroic ratios show polymer chains did not align, even in the presence of nanofillers. Addition of nanofillers affected emissions in the C-H, C=O and C-C regimes, suggesting their involvement in interfacial matrix-carbon nanotube bonding. Spectral differences at glancing angles between pristine and composite mats suggest that geometric conformational configurations are taking place between polymeric chains and carbon nanotubes. These differences appear to be carbon nanotube-dimension dependent, and are promoted upon room temperature mixing and shear flow during electrospinning. CH-π bonding between polymer chains and graphitic walls, as well as H-bonds between impurities in the as-grown CNTs and polymer pendant groups are proposed bonding mechanisms promoting matrix conformation. PMID:24308286

  10. Fabrication of fine metal structures based on laser drawing method using interference pattern from co-propagating optical vortices

    Science.gov (United States)

    Sakamoto, Moritsugu; Hizatsuki, Takuya; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Goto, Kohei; Ono, Hiroshi

    2018-01-01

    We propose and demonstrate a photolithography method for fine metal structure fabrication based on laser drawing that uses the interference pattern generated by co-propagating optical vortices. A tiny dark core region of the optical vortex allows us to overcome the diffraction limit for Gaussian beams. This means that the proposed method can be used to fabricate finer structures than those produced by the conventional laser drawing method while using a Gaussian beam, even under low numerical aperture conditions. The feasibility of the proposed method was demonstrated experimentally using a system that included an axially symmetrical polarization element that can generate the co-propagating optical vortices using a common path optical system. Our method has potential to fabricate few tens of nanometer scale metal line structures by increasing numerical aperture conditions and should be applicable to the development of nanometer scale electronic and optical devices and structures, such as integrated circuits and metamaterials, without using electron beam lithography.

  11. Topics in electronic structure and spectroscopy of cuprates

    Science.gov (United States)

    Lin, Hsin

    I have applied first-principles calculations to investigate several interrelated problems concerned with the electronic structure and spectroscopy of cuprates. The specific topics addressed in this thesis are as follows. 1. By properly including doping effects beyond rigid band filling, a longstanding problem of the missing Bi-O pocket in the electronic structure of Bi2Sr2CaCu2O8 (Bi2212) is solved. The doping effect is explained in terms of Coulombic effect between layers and is a generic property of all cuprates. 2. A systematic study for Pb/O and rare-earth doping in Bi2212 is carried out to explain the experimental phase diagrams, and a possible new electron doped Bi2212 is predicted. 3. To investigate how the Mott insulators evolve into superconductors with the addition of holes, an analysis of angle-resolved photoemission (ARPES) data of La2-xSr xCuO4 is carried out over a wide doping range of x = 0.03 - 0.30. The spectrum displays the presence of the van Hove singularity (VHS) whose location in energy and three-dimensionality are in accord with the band theory predictions. A nascent metallic state is found in the lightly doped Mott insulator and develops spectral weight as doping increases. This metallic spectrum is 'universal' in the sense that its dispersion depends weakly on doping, in sharp contrast to the common expectation that dispersion is renormalized to zero at half-filling. This finding challenges existing theoretical scenarios for cuprates. 4. Self-consistent mean-field three- and four-band Hubbard models are used to study the Mott gap in electron-doped cuprates. The Hubbard terms are decomposed into a Mott-like term which describes the lifting of Cu bands due to energy cost U and a Slater-like term which describes an additional splitting of Cu bands due to antiferromagnetic (AFM) order. While no set of doping-independent parameters can explain the observed gaps for the entire doping range, the experimental results are consistent with a weakly

  12. Laser-induced blurring of molecular structure information in high harmonic spectroscopy

    DEFF Research Database (Denmark)

    Risoud, Francois; Leveque, Camille; Labeye, Marie

    2017-01-01

    High harmonic spectroscopy gives access to molecular structure with Angstrom resolution. Such information is encoded in the destructive interferences occurring between the harmonic emissions from the different parts of the molecule. By solving the time-dependent Schrodinger equation, either...

  13. [Correlation of fine structures of distributions of amplitudes of a photomultiplier dark current fluctuations with the Earth rotations about its axis].

    Science.gov (United States)

    Fedorov, M V; Belousov, L V; Voeĭkov, V L; Zenchenko, K I; Zenchenko, T A; Konradov, A A; Shnol', S E

    2001-01-01

    The fine structures of distributions of photomultiplier dark current fluctuations measured in two laboratories 2000 km distant from other: in the international Institute of Biophysics (Neuss, Germany) and in the Moscow State University (Moscow, Russia) were compared. It is shown that similar forms of appropriate histograms are apparently more often realized at both locations at the same local time. This confirms the previous conclusion that the fine structure of distributions correlates with rotation of the Earth about its axis.

  14. A cell for extended x-ray absorption fine structure studies of oxygen sensitive products of redox reactions

    International Nuclear Information System (INIS)

    Furenlid, L.R.; Renner, M.W.; Fajer, J.

    1990-01-01

    We describe a cell suitable for extended x-ray absorption fine structure (EXAFS) studies of oxygen and/or water sensitive products of redox reactions. The cell utilizes aluminized Mylar windows that are transparent to x rays, provide low gas permeability, and allow vacuum to be maintained in the cell. The windows are attached to the glassware with an epoxy that resists attack by common organic solvents. Additional side arms allow multiple spectroscopic probes of the same sample under anaerobic and anhydrous conditions

  15. Characterization of self-organized InGaN/GaN quantum dots by Diffraction Anomalous Fine Structure (DAFS)

    International Nuclear Information System (INIS)

    Piskorska, E.; Holy, V.; Siebert, M.; Schmidt, Th.; Falta, J.; Yamaguchi, T.; Hommel, D.; Renevier, H.

    2006-01-01

    The local chemical composition of InGaN quantum dots grown by a MBE method on GaN virtual substrates was investigated by x-ray diffraction anomalous fine-structure method. From the detailed numerical analysis of the data we were able to reconstruct the local neighborhood of Ga atoms at different positions in the dots. Using this approach, we found that the In content increases from 20% at the dot base to 40-50% at the top. (author) [pl

  16. Measuring the Electron’s Charge and the Fine-Structure Constant by Counting Electrons on a Capacitor

    Science.gov (United States)

    Williams, E. R.; Ghosh, Ruby N.; Martinis, John M.

    1992-01-01

    The charge of the electron can be determined by simply placing a known number of electrons on one electrode of a capacitor and measuring the voltage, Vs, across the capacitor. If Vs is measured in terms of the Josephson volt and the capacitor is measured in SI units then the fine-structure constant is the quantity determined. Recent developments involving single electron tunneling, SET, have shown bow to count the electrons as well as how to make an electrometer with sufficient sensitivity to measure the charge. PMID:28053434

  17. Probing turbid medium structure using ultra low coherence enhanced backscattering spectroscopy

    Science.gov (United States)

    DeAngelo, Bianca; Arzumanov, Grant; Matovu, Charles; Shanley, Patrick; Zeylikovich, Joseph; Xu, M.

    2010-02-01

    We report on experimental results and theoretical investigation on probing the structure of turbid medium using ultra low coherence enhanced backscattering spectroscopy where the spatial coherence length of the incident line light is not greater than 25 μm. The periodic structure contained in the low coherence enhanced backscattering spectroscopy is found to decrease with the dominant scatterer size. A theoretical model is proposed to explain the observations and is verified by Monte Carlo simulations.

  18. Structural characterization of chiral molecules using vibrational circular dichroism spectroscopy

    DEFF Research Database (Denmark)

    Lassen, Peter Rygaard

    2006-01-01

    chiral molecules. This project is about application of one such technique, circular dichroism (CD) spectroscopy, which measures the difference in absorption of left- and right circularly polarized light - hence the name circular dichroism. This study has focused on the infrared (IR) range because...... compounds of pharmaceutical interest. Others are transition metal complexes relevant for the search for parity-violation effects in vibrational spectroscopy (rhenium complexes), for asymmetric catalysis (Schiff-base complexes), or as model systems for metal centres in biology (Schiff-bases and heme....... Currently, only part of the enhancement can be reproduced theoretically, as demonstrated for the Schiff-bases. Their conformers and absolute configurations were also identified. As for proteins, the interpretation of their spectra is different, because the immense number of overlapping vibrational modes...

  19. PREFACE: The 15th International Conference on X-ray Absorption Fine Structure (XAFS15)

    Science.gov (United States)

    Wu, Z. Y.

    2013-04-01

    The 15th International Conference on X-ray Absorption Fine Structure (XAFS15) was held on 22-28 July 2012 in Beijing, P. R. China. About 340 scientists from 34 countries attended this important international event. Main hall Figure 1. Main hall of XAFS15. The rapidly increasing application of XAFS to the study of a large variety of materials and the operation of the new SR source led to the first meeting of XAFS users in 1981 in England. Following that a further 14 International Conferences have been held. Comparing a breakdown of attendees according to their national origin, it is clear that participation is spreading to include attendees from more and more countries every year. The strategy of development in China of science and education is increasing quickly thanks to the large investment in scientific and technological research and infrastructure. There are three Synchrotron Radiation facilities in mainland China, Hefei Light Source (HLS) in the National Natural Science Foundation of China (NSRL), Beijing Synchrotron Radiation Facility (BSRF) in the Institute of High Energy Physics, and Shanghai Synchrotron Radiation Facility (SSRF) in the Shanghai Institute of Applied Physics. More than 10000 users and over 5000 proposals run at these facilities. Among them, many teams from the USA, Japan, German, Italy, Russia, and other countries. More than 3000 manuscript were published in SCI journals, including (incomplete) Science (7), Nature (10), Nature Series (7), PNAS (3), JACS (12), Angew. Chem. Int. Ed. (15), Nano Lett. (2), etc. In XAFS15, the participants contributed 18 plenary invited talks, 16 parallel invited talks, 136 oral presentations, 12 special talks, and 219 poster presentations. Wide communication was promoted in the conference halls, the classical banquet restaurant, and the Great Wall. Parallel hallCommunicationPoster room Figure 2. Parallel hallFigure 3. CommunicationFigure 4. Poster room This volume contains 136 invited and contributed papers

  20. Structural analysis of the carbohydrate chains of glycoproteins by 500-MHz 1H-NMR spectroscopy

    International Nuclear Information System (INIS)

    Mutsaers, J.H.G.M.

    1986-01-01

    This thesis deals with the structural analysis by 500-MHz 1 H-NMR spectroscopy of carbohydrate chains obtained from glycoproteins. In the chapters 1 to 6 the structural analysis of N-glycosidically linked carbohydrate chains is described. The chapters 7 to 10 describe the structural analysis of O-glycosidically linked carbohydrate chains. 381 refs.; 44 figs.; 24 tabs.; 7 schemes

  1. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    Science.gov (United States)

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  2. Precise Study of Fine Structure in $^{14}$C Emission from $^{223}$Ra

    CERN Multimedia

    2002-01-01

    We request 10 shifts in two sessions of beam time at ISOLDE for the production of a $^{223}$Ra source. This source will be used with the superconducting spectrometer SOLENO at Orsay for a precise measurement (good statistics and energy resolution) of the fine stucture in the energy spectrum of $^{14}$C nuclei emitted by $^{223}$Ra, discovered at Orsay in July 1989. The measurement will be devoted to carry out the hindrance factors of the transitions to 15$\\!^-\\!$/2$\\,$ (1.423 MeV) and 5$\\!^+\\!$/2$\\,$ (1.567 MeV) excited states of $^{209}$Pb, which present a particular interest for obtaining spectroscopic information and testing nuclear models.

  3. Extended X-ray absorption fine structure studies of impulsive-type hardening in the heavily Be-doped ZnSe ternaries

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shabina; Singh, Pankaja [Barkatullah University, Bhopal (India); Mazher, Javed [Addis Ababa University, Addis Ababa (Ethiopia)

    2014-02-15

    Inherently soft zinc-selenides have been hardened through beryllium doping. High-quality stoichiometric ternaries of Be{sub x}Zn{sub 1-x}Se have been synthesized by using the Bridgeman technique. State-of-art X-ray absorption spectroscopy is performed by varying the concentration of the cationic dopant, Be, from 6% to 55% in the host ZnSe. Extended X-ray absorption fine structure analyses are carried out to study the next-neighbor and next nearest neighbor atomic positions, nature of the substitutional doping, extent of bond length homogeneity, the presence of involuntary contrast among path distances, and the crossover from a soft to a hard character of the ternary with increasing Be concentration. Our results indicate the presence of a non-regular impulsive hardening in the ternary with a disparity at the lower and the higher Be-doping levels, which are discussed vis-a-vis self-accommodation of substitutional dopants in the host lattice.

  4. Distinct local structure of nanoparticles and nanowires of V{sub 2}O{sub 5} probed by x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, B.; Maugeri, L.; Bendele, M.; Saini, N. L., E-mail: Naurang.Saini@roma1.infn.it [Dipartimento di Fisica, Universitá di Roma “La Sapienza” - P. le Aldo Moro 2, 00185 Roma (Italy); Iadecola, A. [Dipartimento di Fisica, Universitá di Roma “La Sapienza” - P. le Aldo Moro 2, 00185 Roma (Italy); Elettra, Sincrotrone Trieste, Strada Statale 14, Km 163.5, Basovizza, Trieste (Italy); Okubo, M.; Li, H.; Zhou, H. [National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba 305-8568 (Japan); Mizokawa, T. [Department of Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan)

    2013-12-16

    We have used V K-edge x-ray absorption spectroscopy to study local structures of bulk, nanoparticles and nanowires of V{sub 2}O{sub 5}. The extended x-ray absorption fine structure measurements show different local displacements in the three morphologically different V{sub 2}O{sub 5} samples. It is found that the nanowires have a significantly ordered chain structure in comparison to the V{sub 2}O{sub 5} bulk. In contrast, nanoparticles have larger interlayer disorder. The x-ray absorption near-edge structure spectra show different electronic structure that appears to be related with the local atomic disorder in the three V{sub 2}O{sub 5} samples.

  5. Fine Structure of the Low-Frequency Raman Phonon Bands of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Iliev, M. N.; Litvinchuk, A. P.; Arepalli, S.; Nikolaev, P.; Scott, C. D.

    1999-01-01

    The Raman spectra of singled-wall carbon nanotubes (SWNT) produced by laser and are process were studied between 5 and 500 kappa. The line width vs. temperature dependence of the low-frequency Raman bands between 150 and 200/ cm deviates from that expected for phonon decay through phonon-phonon scattering mechanism. The experimental results and their analysis provided convincing evidence that each of the low-frequency Raman lines is a superposition of several narrower Raman lines corresponding to tubes of nearly the same diameter. The application of Raman spectroscopy to probe the distribution of SWNT by both diameter and chirality is discussed.

  6. Fine-scale spatial genetic structure in predominantly selfing plants with limited seed dispersal: A rule or exception?

    Directory of Open Access Journals (Sweden)

    Sergei Volis

    2016-04-01

    Full Text Available Gene flow at a fine scale is still poorly understood despite its recognized importance for plant population demographic and genetic processes. We tested the hypothesis that intensity of gene flow will be lower and strength of spatial genetic structure (SGS will be higher in more peripheral populations because of lower population density. The study was performed on the predominantly selfing Avena sterilis and included: (1 direct measurement of dispersal in a controlled environment; and (2 analyses of SGS in three natural populations, sampled in linear transects at fixed increasing inter-plant distances. We found that in A. sterilis major seed dispersal is by gravity in close (less than 2 m vicinity of the mother plant, with a minor additional effect of wind. Analysis of SGS with six nuclear SSRs revealed a significant autocorrelation for the distance class of 1 m only in the most peripheral desert population, while in the two core populations with Mediterranean conditions, no genetic structure was found. Our results support the hypothesis that intensity of SGS increases from the species core to periphery as a result of decreased within-population gene flow related to low plant density. Our findings also show that predominant self-pollination and highly localized seed dispersal lead to SGS at a very fine scale, but only if plant density is not too high.

  7. Temporal Fine-Structure Coding and Lateralized Speech Perception in Normal-Hearing and Hearing-Impaired Listeners

    DEFF Research Database (Denmark)

    Locsei, Gusztav; Pedersen, Julie Hefting; Laugesen, Søren

    2016-01-01

    This study investigated the relationship between speech perception performance in spatially complex, lateralized listening scenarios and temporal fine-structure (TFS) coding at low frequencies. Young normal-hearing (NH) and two groups of elderly hearing-impaired (HI) listeners with mild or modera...... understanding in spatially complex environments, these limitations were unrelated to TFS coding abilities and were only weakly associated with a reduction in binaural-unmasking benefit for spatially separated competing sources.......This study investigated the relationship between speech perception performance in spatially complex, lateralized listening scenarios and temporal fine-structure (TFS) coding at low frequencies. Young normal-hearing (NH) and two groups of elderly hearing-impaired (HI) listeners with mild or moderate...... and interaural phase difference thresholds at 250 Hz. NH listeners had clearly better SRTs than the HI listeners. However, when maskers were spatially separated from the target, the amount of SRT benefit due to binaural unmasking differed only slightly between the groups. Neither the frequency discrimination...

  8. Direct Observation of the M1 Transition between the Ground Term Fine Structure Levels of W VIII

    Directory of Open Access Journals (Sweden)

    Momoe Mita

    2017-03-01

    Full Text Available We present a direct observation of the M1 transition between the fine structure splitting in the 4 f 13 5 s 2 5 p 6 2 F ground term of W VIII. The spectroscopic data of few-times ionized tungsten ions are important for the future ITER diagnostics, but there is a serious lack of data. The present study is part of an ongoing effort to solve this problem. Emission from the tungsten ions produced and trapped in a compact electron beam ion trap is observed with a Czerny–Turner visible spectrometer. Spectra in the EUV range are also observed at the same time to help identify the previously-unreported visible lines. The observed wavelength 574.47 ± 0.03 nm (air, which corresponds to the fine structure splitting of 17,402.5 ± 0.9 cm − 1 , shows reasonable agreement with the previously reported value 17,410 ± 5 cm − 1 obtained indirectly through the analysis of EUV spectra [Ryabtsev et al., Atoms 3 (2015 273].

  9. Gray matter textural heterogeneity as a potential in-vivo biomarker of fine structural abnormalities in Asperger syndrome.

    Science.gov (United States)

    Radulescu, E; Ganeshan, B; Minati, L; Beacher, F D C C; Gray, M A; Chatwin, C; Young, R C D; Harrison, N A; Critchley, H D

    2013-02-01

    Brain imaging studies contribute to the neurobiological understanding of Autism Spectrum Conditions (ASC). Herein, we tested the prediction that distributed neurodevelopmental abnormalities in brain development impact on the homogeneity of brain tissue measured using texture analysis (TA; a morphological method for surface pattern characterization). TA was applied to structural magnetic resonance brain scans of 54 adult participants (24 with Asperger syndrome (AS) and 30 controls). Measures of mean gray-level intensity, entropy and uniformity were extracted from gray matter images at fine, medium and coarse textures. Comparisons between AS and controls identified higher entropy and lower uniformity across textures in the AS group. Data reduction of texture parameters revealed three orthogonal principal components. These were used as regressors-of-interest in a voxel-based morphometry analysis that explored the relationship between surface texture variations and regional gray matter volume. Across the AS but not control group, measures of entropy and uniformity were related to the volume of the caudate nuclei, whereas mean gray-level was related to the size of the cerebellar vermis. Similar to neuropathological studies, our study provides evidence for distributed abnormalities in the structural integrity of gray matter in adults with ASC, in particular within corticostriatal and corticocerebellar networks. Additionally, this in-vivo technique may be more sensitive to fine microstructural organization than other more traditional magnetic resonance approaches and serves as a future testable biomarker in AS and other neurodevelopmental disorders.

  10. A tale of two pectins: Diverse fine structures can result from identical processive PME treatments on similar high DM substrates.

    Science.gov (United States)

    Owen, J L; Kent, L M; Ralet, M-C; Cameron, R G; Williams, M A K

    2017-07-15

    The effects of a processive pectin-methylesterase (PME) treatment on two different pectins, both possessing a high degree of methylesterification (DM), were investigated. While the starting samples were purportedly very similar in fine structure, the intermolecular DM distributions arising from their PME treatments were strikingly different. Herein, a simulation that illuminates the origin of this phenomenon is described. It is concluded that: (1) very different low-DM samples (with the same average DM) can be generated using the same processive PME, simply by a judicious choice of the high DM starting material; (2) observing the intermolecular DM distribution of the products of processive-PME-processing is an extremely sensitive discriminator of the fine structure of high DM starting materials; and (3) for PMEs with unknown action patterns the processive nature of the enzyme is most simply revealed by studying the changes it induces in the intermolecular DM distribution of very-highly-methylesterified homogalacturonans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Modeling the fine structure of the 2f1-f2 acoustic distortion product. I. Model development.

    Science.gov (United States)

    Sun, X M; Schmiedt, R A; He, N J; Lam, C F

    1994-10-01

    The fine structure of the 2f1-f2 acoustic distortion product (ADP) as a function of frequency has been measured in human subjects and shows a series of sharp peaks and valleys (rippling) with peak-to-valley level differences of up to 15-20 dB. In order to delineate the cause of the ADP rippling pattern, a computer model was developed to simulate the behavior of the ADP, specifically the ADP fine structure. The ADP model includes the middle ear and cochlea. The middle ear was treated as a simple signal delivery system in both the forward and reverse directions. The ADP was assumed to be generated within the cochlea by nonlinear elements taken to be the outer hair cells (OHCs), and an array of ADP generators was used to simulate the OHCs along the basilar membrane (BM). The magnitude and phase of the output of each of the ADP generators were functions of the local responses of the two primary traveling waves. The traveling waves were calculated from a passive transmission line model of the BM using the WKB approximation, coupled to a second-order resonance to mimic the contribution from active OHC feedback. The system output of ADP in dB was proportional to the weighted vectorial sum of all the components, arriving at the stapes. Parameters such as lateral coupling and feedback gain were examined.

  12. Human-modified landscapes: patterns of fine-scale woody vegetation structure in communal savannah rangelands

    CSIR Research Space (South Africa)

    Fisher, T

    2011-11-01

    Full Text Available catenas and using canonical correspondence analysis. Landscape position was significant in determining structure, indicating the importance of underlying biophysical factors. Differences in structure were settlement-specific, related to mean annual...

  13. Fine-scale structures in plasmas stimulated by a CO2 laser

    International Nuclear Information System (INIS)

    Grek, B.; Martin, F.; Johnston, T.W.; Pepin, H.; Mitchel, G.; Rheault, F.

    1978-01-01

    Remarkable density structures are observed in the plasma generated during the rise of a high-power CO 2 laser. Jetlike structures and density bowls are seen in interferograms. Infrared imaging shows that these bowls are linked to localized Brillouin-instability backscatter. Depolarization measurements also exhibit filamentary structures that extend far into the underdense regions of the plasma

  14. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure

    Science.gov (United States)

    Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.

    2016-01-01

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters. PMID:27491952

  15. Degradation products of profenofos as identified by high-field FTICR mass spectrometry: Isotopic fine structure approach.

    Science.gov (United States)

    Angthararuk, Dusit; Harir, Mourad; Schmitt-Kopplin, Philippe; Sutthivaiyakit, Somyote; Kettrup, Antonius; Sutthivaiyakit, Pakawadee

    2017-01-02

    This study was performed to identify the degradation products of profenofos "a phenyl organothiophosphate insecticide" in raw water (RW) collected from the entry point of Metropolitan Water Works Authority "Bangkaen, Thailand" and ultrapure water (UPW) with and without TiO 2 under simulated sunlight irradiation. Degradation of profenofos was followed with ultrahigh performance liquid chromatography (UHPLC) and follows pseudo first-order kinetic. Accordingly, high-field FTICR mass spectrometry coupled to an electrospray ionization source was used to reveal the degradation routes of profenofos and the isotopic fine structures (IFS) elucidations to approve the chemical structures of its degradation products. More degradation products were detected in UPW as compared to RW. Consequently, two main degradation pathways namely (i) interactive replacements of bromine and hydrogen by hydroxyl functional groups and (ii) rupture of PO, PS, CBr and CCl bonds were observed. None interactive replacement of chlorine by hydroxyl functional group was detected. Accordingly, mechanistical pathways of the main degradation products were established.

  16. Soft x-ray-excited luminescence and optical x-ray absorption fine structures of tris (8-hydroxyquinoline) aluminum

    Science.gov (United States)

    Naftel, S. J.; Zhang, P.; Kim, P.-S.; Sham, T. K.; Coulthard, I.; Antel, W. J.; Freeland, J. W.; Frigo, S. P.; Fung, M.-K.; Lee, S. T.; Hu, Y. F.; Yates, B. W.

    2001-03-01

    Photoluminescence from tris (8-hydroxyquinoline) aluminum (Alq3) films has been observed using tunable soft x rays as an excitation source. The photons were tuned to energies above and below the K absorption edges of C, N, O, and Al. The luminescence was in turn used to monitor the absorption. It was found that the luminescence induced by soft x ray exhibits additional emission bands at shorter wavelengths compared to ultraviolet excitation. While all K edges exhibit optical x-ray absorption fine structures (XAFS) similar to those of total electron and fluorescence yield, the optical XAFS at the C K-edge resonance are enhanced for the C1s to π* transitions, indicating site specificity. These observations are attributed to the energetics of the process and the local electronic structure.

  17. Fine-scale genetic structure and cryptic associations reveal evidence of kin-based sociality in the African forest elephant.

    Directory of Open Access Journals (Sweden)

    Stephanie G Schuttler

    Full Text Available Spatial patterns of relatedness within animal populations are important in the evolution of mating and social systems, and have the potential to reveal information on species that are difficult to observe in the wild. This study examines the fine-scale genetic structure and connectivity of groups within African forest elephants, Loxodonta cyclotis, which are often difficult to observe due to forest habitat. We tested the hypothesis that genetic similarity will decline with increasing geographic distance, as we expect kin to be in closer proximity, using spatial autocorrelation analyses and Tau K(r tests. Associations between individuals were investigated through a non-invasive genetic capture-recapture approach using network models, and were predicted to be more extensive than the small groups found in observational studies, similar to fission-fusion sociality found in African savanna (Loxodonta africana and Asian (Elephas maximus species. Dung samples were collected in Lopé National Park, Gabon in 2008 and 2010 and genotyped at 10 microsatellite loci, genetically sexed, and sequenced at the mitochondrial DNA control region. We conducted analyses on samples collected at three different temporal scales: a day, within six-day sampling sessions, and within each year. Spatial autocorrelation and Tau K(r tests revealed genetic structure, but results were weak and inconsistent between sampling sessions. Positive spatial autocorrelation was found in distance classes of 0-5 km, and was strongest for the single day session. Despite weak genetic structure, individuals within groups were significantly more related to each other than to individuals between groups. Social networks revealed some components to have large, extensive groups of up to 22 individuals, and most groups were composed of individuals of the same matriline. Although fine-scale population genetic structure was weak, forest elephants are typically found in groups consisting of kin and

  18. Study of the chemical environment of cerium in low silica calcium aluminosilicate glasses by extended X-ray absorption fine structure (EXAFS)

    Energy Technology Data Exchange (ETDEWEB)

    Novo, L.C.; Peixoto, S.M.B.; Santos, D.R.; Sampaio, J.A. [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ (Brazil). Lab. de Ciencias Fisicas

    2011-07-01

    Full text. Currently, great attention has been given to rare earth doped optical glasses. These elements by having the 4f shell partially filled exhibit a wealth of sharp fluorescent transitions representing almost every region of the visible and near-infrared portions of the electromagnetic spectrum, being of interest in photonics, when embedded in the glass matrix. In addition cerium oxide possess high hardness and stability to high temperatures, and it has been used in industry in different ways such as catalysts, fuel and solar cells, ultraviolet radiation filters, oxygen sensors and in the polishing of materials. In this context, cerium doped low silica calcium aluminosilicate (LSCA) glasses are considered good candidates for solid state laser active medium due to their good mechanical, optical and thermal properties. Recently it was shown that LSCA glasses doped with cerium oxide is a source of emitting white light, which is of technological applications interest. However it is known that increasing the dopant concentration in the glass matrix, an interaction of rare earth ions takes place leading to a closer proximity between the rare earth ions, and thus a reduction in their quantum efficiency. In this work, the local structure of Cerium in LSCA glasses was characterized by Extended X-Ray Absorption Fine Structure Spectroscopy (EXAFS). The EXAFS and XANES measurements were performed in the Ce L{sub III}-edge at the XAS beam line of LNLS facility (Campinas, Brazil) at room temperature. Structural parameters, coordination numbers (N), interatomic distance (R) and degree of disorder ({sigma}{sup 2}) were obtained from least squares fitting

  19. Simulation of Probe Position-Dependent Electron Energy-Loss Fine Structure

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, M. P.; Kapetanakis, M. D.; Prange, Micah P.; Varela, M.; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2014-03-31

    We present a theoretical framework for calculating probe-position-dependent electron energy-loss near-edge structure for the scanning transmission electron microscope by combining density functional theory with dynamical scattering theory. We show how simpler approaches to calculating near-edge structure fail to include the fundamental physics needed to understand the evolution of near-edge structure as a function of probe position and investigate the dependence of near-edge structure on probe size. It is within this framework that density functional theory should be presented, in order to ensure that variations of near-edge structure are truly due to local electronic structure and how much from the diffraction and focusing of the electron beam.

  20. Estimating the collapse of aggregated fine soil structure in a mountainous forested catchment.

    Science.gov (United States)

    Mouri, Goro; Shinoda, Seirou; Golosov, Valentin; Chalov, Sergey; Shiiba, Michiharu; Hori, Tomoharu; Oki, Taikan

    2014-06-01

    This paper describes the relationship of forest soil dryness and antecedent rainfall with suspended sediment (SS) yield due to extreme rainfall events and how this relationship affects the survival of forest plants. Several phenomena contribute to this relationship: increasing evaporation (amount of water vapour discharged from soil) due to increasing air temperature, decreasing moisture content in the soil, the collapse of aggregates of fine soil particles, and the resulting effects on forest plants. To clarify the relationships among climate variation, the collapse of soil particle aggregates, and rainfall-runoff processes, a numerical model was developed to reproduce such aggregate collapse in detail. The validity of the numerical model was confirmed by its application to the granitic mountainous catchment of the Nagara River basin in Japan and by comparison with observational data. The simulation suggests that important problems, such as the collapse of forest plants in response to decreases in soil moisture content and antecedent rainfall, will arise if air temperature continues to increase. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  2. Fine structure at the diffusion welded interface of Fe3Al/Q235 ...

    Indian Academy of Sciences (India)

    Unknown

    DO3 type body centred cubic (bcc) structure to α-Fe (Al) solid solution with B2 type bcc structure. ... the diffusion of alloy elements causes the transitional zone ... Table 1. Chemical composition and thermophysical properties of Fe3Al intermetallic compound. Chemical composition (wt%). Fe. Al. Cr. Nb. Zr. Mn. B. Ce. 81⋅02.

  3. Fine structural observation on the oogenesis and vitellogenesis of the Chinese soft-shelled turtle ( Pelodiseus sinensis).

    Science.gov (United States)

    Hei, Nainan; Yang, Ping; Yang, Yang; Liu, Jinxiong; Bao, Huijun; Liu, Haili; Zhang, Hui; Chen, Qiusheng

    2010-05-01

    Fine structure observations were performed by means of electron microscopy on oogenesis and vitellogenesis and the special functions of follicular cells in the Chinese soft-shelled turtle (Pelodiseus sinensis). Histological examination of the ovary showed a well developed lacunae system containing fine granules, fibres or gelatiniform materials with one or two germinal beds dispersed on the dorsal surface of the ovarian cortex. The process of oogenesis comprised 10 consecutive phases according to the morphology of the yolk platelets, follicular cells and zona pellucida (ZP). Electron microscopy of vitellogenesis revealed some of the mitochondria gradually being transformed into yolk granules. In the advanced stage of vitellogenesis, large amounts of rough endoplasmic reticula, Golgiosomes and other cell organelles that are involved in synthesis and secretion were observed in follicular cells. The ZP was formed by microvilli, thus increasing the absorptive surface of the oocyte and facilitating transport of nutrients from the follicular epithelium to the ooplasm. This study demonstrated that the ovaries of members of the Testudinidae share more features with Archosaurs than with Squamates, indicating that these features were phylogenetically conserved in the Archosauria. The present observations suggest that the accumulation of yolk materials was controlled by the intrinsic and extrinsic pathways as well as by the activity of follicular cells. These results might also support a sibling relationship of the Testudinidae with the Archosauria and not with all extant reptiles.

  4. X-ray diffraction study of the fine structure of twaron fibres in the temperature range 750 kelvin - 9500 kelvin

    International Nuclear Information System (INIS)

    Abu Obaid, A. A.

    1991-01-01

    The thesis dealt with the fine structural behaviour of twaron fibres, spun from the polymer poly (p-phenylene terephthalamide), due to physical treatments in the temperature range 75 to 984 kelvin (-198 to 675 degrees celsius). The treatments were annealing, cooling, cold ageing and vibratory milling. The structure was characterized by wide-angle x-ray diffraction (WAXS) and thermogravimetric analysis (TGA). The structural parameters included crystallinity, microparacrystal (mPc) sizes, net plane spacings, unit cell dimensions and mass stability. The TGA results indicated good mass stability up to 500 degrees celsius. The crystallinity and mPc sizes reached their maximum values after annealing the fibres at 425 degrees celsius (crystallinity increased by 5% and mPC sizes increased by approximately 40 to 50 %). After 500 degrees celsius, the crystallinity and mPC sizes dropped remarkably. Cooling the twaron fibres down to -198 degrees celsius did not affect the structure. Cold ageing of the fibres at -15 degrees celsius for periods up to 100 days, and cold ageing at -198 degrees celsius up to 48 hours did not affect the structure as well; however cold ageing at -198 degrees celsius for 120 hours caused a drop of 5% in the crystallinity and 10% in the mPc sizes. 35 refs., 28 figs., 9 tabs. (A.M.H.)

  5. Kinship, inbreeding and fine-scale spatial structure influence gut microbiota in a hindgut-fermenting tortoise.

    Science.gov (United States)

    Yuan, Michael L; Dean, Samantha H; Longo, Ana V; Rothermel, Betsie B; Tuberville, Tracey D; Zamudio, Kelly R

    2015-05-01

    Herbivorous vertebrates rely on complex communities of mutualistic gut bacteria to facilitate the digestion of celluloses and hemicelluloses. Gut microbes are often convergent based on diet and gut morphology across a phylogenetically diverse group of mammals. However, little is known about microbial communities of herbivorous hindgut-fermenting reptiles. Here, we investigate how factors at the individual level might constrain the composition of gut microbes in an obligate herbivorous reptile. Using multiplexed 16S rRNA gene sequencing, we characterized the faecal microbial community of a population of gopher tortoises (Gopherus polyphemus) and examined how age, genetic diversity, spatial structure and kinship influence differences among individuals. We recovered phylotypes associated with known cellulolytic function, including candidate phylum Termite Group 3, suggesting their importance for gopher tortoise digestion. Although host genetic structure did not explain variation in microbial composition and community structure, we found that fine-scale spatial structure, inbreeding, degree of relatedness and possibly ontogeny shaped patterns of diversity in faecal microbiomes of gopher tortoises. Our findings corroborate widespread convergence of faecal-associated microbes based on gut morphology and diet and demonstrate the role of spatial and demographic structure in driving differentiation of gut microbiota in natural populations. © 2015 John Wiley & Sons Ltd.

  6. Near-edge X-ray absorption fine structure studies of Cr1−xMxN coatings

    International Nuclear Information System (INIS)

    Mahbubur Rahman, M.; Duan, Alex; Jiang, Zhong-Tao; Xie, Zonghan; Wu, Alex; Amri, Amun; Cowie, Bruce; Yin, Chun-Yang

    2013-01-01

    Highlights: •Al or Si is doped on CrN and AlN coatings using magnetron sputtering system. •NEXAFS analysis is conducted to measure the Al and Si K-edges, and chromium L-edge. •Structural evolution of CrN matrix with addition of Al or Si element is investigated. -- Abstract: Cr 1−x M x N coatings, with doping concentrations (Si or Al) varying from 14.3 to 28.5 at.%, were prepared on AISI M2 tool steel substrates using a TEER UDP 650/4 closed field unbalanced magnetron sputtering system. Near-edge X-ray absorption fine structure (NEXAFS) characterization was carried out to measure the aluminum and silicon K-edges, as well as chromium L-edge, in the coatings. Two soft X-ray techniques, Auger electron yield (AEY) and total fluorescence yield (TFY), were employed to investigate the surface and inner structural properties of the materials in order to understand the structural evolution of CrN matrix with addition of Al (or Si) elements. Investigations on the local bonding states and grain boundaries of the coatings, using NEXAFS technique, provide significant information which facilitates understanding of the local electronic structure of the atoms and shed light on the origins of the high mechanical strength and oxidation resistance of these technologically important coatings

  7. Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks

    Science.gov (United States)

    Kanno, Yoichiro; Vokoun, Jason C.; Letcher, Benjamin H.

    2011-01-01

    Linear and heterogeneous habitat makes headwater stream networks an ideal ecosystem in which to test the influence of environmental factors on spatial genetic patterns of obligatory aquatic species. We investigated fine-scale population structure and influence of stream habitat on individual-level genetic differentiation in brook trout (Salvelinus fontinalis) by genotyping eight microsatellite loci in 740 individuals in two headwater channel networks (7.7 and 4.4 km) in Connecticut, USA. A weak but statistically significant isolation-by-distance pattern was common in both sites. In the field, many tagged individuals were recaptured in the same 50-m reaches within a single field season (summer to fall). One study site was characterized with a hierarchical population structure, where seasonal barriers (natural falls of 1.5–2.5 m in height during summer base-flow condition) greatly reduced gene flow and perceptible spatial patterns emerged because of the presence of tributaries, each with a group of genetically distinguishable individuals. Genetic differentiation increased when pairs of individuals were separated by high stream gradient (steep channel slope) or warm stream temperature in this site, although the evidence of their influence was equivocal. In a second site, evidence for genetic clusters was weak at best, but genetic differentiation between individuals was positively correlated with number of tributary confluences. We concluded that the population-level movement of brook trout was limited in the study headwater stream networks, resulting in the fine-scale population structure (genetic clusters and clines) even at distances of a few kilometres, and gene flow was mitigated by ‘riverscape’ variables, particularly by physical barriers, waterway distance (i.e. isolation-by-distance) and the presence of tributaries.

  8. Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin et al

    2008-01-01

    Full Text Available The main objectives of the present study were to investigate the chemical reduction of nitrate or nitrite species by zero-valent iron nanoparticle (ZVIN in aqueous solution and related reaction kinetics or mechanisms using fine structure characterization. This work also exemplifies the utilization of field emission-scanning electron microscope (FE–SEM, transmission electron microscopy (TEM, and x-ray diffraction (XRD to reveal the speciation and possible reaction pathway in a very complex adsorption and redox reaction process. Experimentally, ZVIN of this study was prepared by sodium borohydride reduction method at room temperature and ambient pressure. The morphology of as-synthesized ZVIN shows that the nearly ball and ultrafine particles ranged of 20–50 nm were observed with FE–SEM or TEM analysis. The kinetic model of nitrites or nitrates reductive reaction by ZVIN is proposed as a pseudo first-order kinetic equation. The nitrite and nitrate removal efficiencies using ZVIN were found 65–83% and 51–68%, respectively, based on three different initial concentrations. Based on the XRD pattern analyses, it is found that the quantitative relationship between nitrite and Fe(III or Fe(II is similar to the one between nitrate and Fe(III in the ZVIN study. The possible reason is due to the faster nitrite reduction by ZVIN. In fact, the occurrence of the relative faster nitrite reductive reaction suggested that the passivation of the ZVIN have a significant contribution to iron corrosion. The extended x-ray absorption fine structure (EXAFS or x-ray absorption near edge structure (XANES spectra show that the nitrites or nitrates reduce to N2 or NH3 while oxidizing the ZVIN to Fe2O3 or Fe3O4 electrochemically. It is also very clear that decontamination of nitrate or nitrite species in groundwater via the in-situ remediation with a ZVIN permeable reactive barrier would be environmentally attractive.

  9. Electronic structure of palladium and its relation to uv spectroscopy

    DEFF Research Database (Denmark)

    Christensen, N.E.

    1976-01-01

    The electronic-energy-band structure of palladium has been calculated by means of the relativistic augmented-plane-wave method covering energies up to 30 eV above the Fermi level. The optical interband transitions producing structure in the dielectric function up to photon energies of 25 eV have ...

  10. Application of molecular spectroscopy to the determination of organic structures

    International Nuclear Information System (INIS)

    Leicknam, J.P.

    1976-01-01

    Some brief accounts are presented followed by a discussion about various physico-chemical techniques: Raman spectrometry, infrared spectrometry, resonance Raman spectrometry, conformational analysis and polarized Rayleigh diffusion. Applications of the Nuclear Magnetic Resonance to nucleotide structure in aqueous solution are described as well as some applications of neutron scattering to the study of organic structures [fr

  11. Multiscale pore structure and constitutive models of fine-grained rocks

    Science.gov (United States)

    Heath, J. E.; Dewers, T. A.; Shields, E. A.; Yoon, H.; Milliken, K. L.

    2017-12-01

    A foundational concept of continuum poromechanics is the representative elementary volume or REV: an amount of material large enough that pore- or grain-scale fluctuations in relevant properties are dissipated to a definable mean, but smaller than length scales of heterogeneity. We determine 2D-equivalent representative elementary areas (REAs) of pore areal fraction of three major types of mudrocks by applying multi-beam scanning electron microscopy (mSEM) to obtain terapixel image mosaics. Image analysis obtains pore areal fraction and pore size and shape as a function of progressively larger measurement areas. Using backscattering imaging and mSEM data, pores are identified by the components within which they occur, such as in organics or the clastic matrix. We correlate pore areal fraction with nano-indentation, micropillar compression, and axysimmetic testing at multiple length scales on a terrigenous-argillaceous mudrock sample. The combined data set is used to: investigate representative elementary volumes (and areas for the 2D images); determine if scale separation occurs; and determine if transport and mechanical properties at a given length scale can be statistically defined. Clear scale separation occurs between REAs and observable heterogeneity in two of the samples. A highly-laminated sample exhibits fine-scale heterogeneity and an overlapping in scales, in which case typical continuum assumptions on statistical variability may break down. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  12. Study of structure and spectroscopy of water-hydroxide ion clusters ...

    Indian Academy of Sciences (India)

    In this paper, we explore the use of stochastic optimizer, namely simulated annealing (SA) followed by density function theory (DFT)-based strategy for evaluating the structure and infrared spectroscopy of (H2O) OH− clusters where = 1-6. We have shown that the use of SA can generate both global and local structures of ...

  13. Decoding the fine-scale structure of a breast cancer genome and transcriptome

    OpenAIRE

    Volik, Stanislav; Raphael, Benjamin J.; Huang, Guiqing; Stratton, Michael R.; Bignel, Graham; Murnane, John; Brebner, John H.; Bajsarowicz, Krystyna; Paris, Pamela L.; Tao, Quanzhou; Kowbel, David; Lapuk, Anna; Shagin, Dmitri A.; Shagina, Irina A.; Gray, Joe W.

    2006-01-01

    A comprehensive understanding of cancer is predicated upon knowledge of the structure of malignant genomes underlying its many variant forms and the molecular mechanisms giving rise to them. It is well established that solid tumor genomes accumulate a large number of genome rearrangements during tumorigenesis. End Sequence Profiling (ESP) maps and clones genome breakpoints associated with all types of genome rearrangements elucidating the structural organization of tumor genomes. Here we exte...

  14. Coupled-cluster response theory for near-edge x-ray-absorption fine structure of atoms and molecules

    DEFF Research Database (Denmark)

    Coriani, Sonia; Christiansen, Ove; Fransson, Thomas

    2012-01-01

    triple corrected excitation energies CCSDR(3). This work is a first step toward the extension of these theoretical electronic structure methods of well-established high accuracy in UV-vis absorption spectroscopies to applications concerned with x-ray radiation. From the imaginary part of the linear...... response function, the near K-edge x-ray absorption spectra of neon, water, and carbon monoxide are determined and compared with experiment. Results at the CCSD level show relative peak intensities in good agreement with experiment with discrepancies in transition energies due to incomplete treatment...

  15. Infrared Spectroscopy and Structure of (NO)(n) Clusters.

    Science.gov (United States)

    Hoshina, Hiromichi; Slipchenko, Mikhail; Prozument, Kirill; Verma, Deepak; Schmidt, Michael W; Ivanic, Joseph; Vilesov, Andrey F

    2016-02-04

    Nitrogen oxide clusters (NO)n have been studied in He droplets via infrared depletion spectroscopy and by quantum chemical calculations. The ν1 and ν5 bands of cis-ON-NO dimer have been observed at 1868.2 and 1786.5 cm(-1), respectively. Furthermore, spectral bands of the trimer and tetramer have been located in the vicinity of the corresponding dimer bands in accord with computed frequencies that place NO-stretch bands of dimer, trimer, and tetramer within a few wavenumbers of each other. In addition, a new line at 1878.1 cm(-1) close to the band origin of single molecules was assigned to van der Waals bound dimers of (NO)2, which are stabilized due to the rapid cooling in He droplets. Spectra of larger clusters (n > 5), have broad unresolved features in the vicinity of the dimer bands. Experiments and calculations indicate that trimers consist of a dimer and a loosely bound third molecule, whereas the tetramer consists of two weakly bound dimers.

  16. Precision test of many-body QED in the Be$^{+} 2p$ fine structure doublet using short-lived isotopes

    CERN Document Server

    Nörtershäuser, Wilfried; Krieger, Andreas; Pachucki, Krzysztof; Puchalski, Mariusz; Blaum, Klaus; Bissell, Mark L; Frömmgen, Nadja; Hammen, Michael; Kowalska, Magdalena; Krämer, Jörg; Kreim, Kim; Neugart, Rainer; Neyens, Gerda; Sánchez, Rodolfo; Yordanov, Deyan T

    2015-01-01

    Absolute transition frequencies of the $2s\\; ^2{\\rm S}_{1/2} \\rightarrow 2p\\;^2\\mathrm{P}_{1/2,3/2}$ transitions in Be$^+$ were measured for the isotopes $^{7,9-12}$Be. The fine structure splitting of the $2p$ state and its isotope dependence are extracted and compared to results of \\textit{ab initio} calculations using explicitly correlated basis functions, including relativistic and quantum electrodynamics effects at the order of $m \\alpha^6$ and $m \\alpha^7 \\ln \\alpha$. Accuracy has been improved in both the theory and experiment by 2 orders of magnitude, and good agreement is observed. This represents one of the most accurate tests of quantum electrodynamics for many-electron systems, being insensitive to nuclear uncertainties.

  17. The role of temporal fine structure information for the low pitch of high-frequency complex tones

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2011-01-01

    The fused low pitch evoked by complex tones containing only unresolved high-frequency components demonstrates the ability of the human auditory system to extract pitch using a temporal mechanism in the absence of spectral cues. However, the temporal features used by such a mechanism have been...... a matter of debate. For stimuli with components lying exclusively in high-frequency spectral regions, the slowly varying temporal envelope of sounds is often assumed to be the only information contained in auditory temporal representations, and it has remained controversial to what extent the fast...... amplitude fluctuations, or temporal fine structure (TFS), of the conveyed signal can be processed. Using a pitch-matching paradigm, the present study found that the low pitch of inharmonic transposed tones with unresolved components was consistent with the timing between the most prominent TFS maxima...

  18. Detection of O I and Si II far-infrared fine-structure emission from Alpha Orionis

    Science.gov (United States)

    Haas, Michael R.; Glassgold, Alfred E.

    1993-01-01

    We have detected forbidden O I 63 micron and forbidden Si II 35 micron emission from the oxygen-rich, M2 lab supergiant, Alpha Orionis (Betelgeuse). The forbidden O I line flux is 2.4 +/- 0.2 x 10 exp -18 W/sq cm, and the forbidden Si II line flux is 0.9 +/- 0.4 x 10 exp -18 W/sq cm. These fluxes are consistent with the thermal model of Rodgers and Glassgold (1991), which indicates that the emission arises in dense, warm gas in Alpha Ori's inner envelope and implies that nearly all of the available O and Si is in atomic form. This is the first reported detection of FIR, fine-structure emission from the inner or transition region of a circumstellar envelope, where molecules and dust are expected to form.

  19. Limits on evolution of the fine-structure constant in runaway dilaton models from Sunyaev–Zeldovich observations

    Directory of Open Access Journals (Sweden)

    R.F.L. Holanda

    2017-04-01

    Full Text Available In this paper, new bounds on possible variations of the fine structure constant, α, for a class of runaway dilaton models are performed. By considering a possible evolution with redshift, z, such as Δαα=−γln⁡(1+z, where in γ are the physical properties of the model, we constrain this parameter by using a deformed cosmic distance duality relation jointly with gas mass fraction (GMF measurements of galaxy clusters and luminosity distances of type Ia supernovae. The GMF's used in our analyses are from cluster mass data from 82 galaxy clusters in the redshift range 0.12

  20. Evidence of the nature of core-level photoemission satellites using angle-resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A.

    1997-01-01

    The authors present a unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level photoemission satellites by examining the satellite diffraction pattern in the Angle Resolved Photoemission Extended Fine Structure (ARPEFS) mode. They show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. They present ARPEFS data for the carbon 1s from (√3x√3)R30 CO/Cu(111) and p2mg(2xl)CO/Ni(110), nitrogen 1s from c(2x2) N 2 /Ni(100), cobalt 1s from p(1x1)Co/Cu(100), and nickel 3p from clean nickel (111). The satellite peaks and tails of the Doniach-Sunjic line shapes in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature

  1. Evidence of the nature of core-level photoemission satellites using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors present a unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level photoemission satellites by examining the satellite diffraction pattern in the Angle Resolved Photoemission Extended Fine Structure (ARPEFS) mode. They show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. They present ARPEFS data for the carbon 1s from ({radical}3x{radical}3)R30 CO/Cu(111) and p2mg(2xl)CO/Ni(110), nitrogen 1s from c(2x2) N{sub 2}/Ni(100), cobalt 1s from p(1x1)Co/Cu(100), and nickel 3p from clean nickel (111). The satellite peaks and tails of the Doniach-Sunjic line shapes in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature.

  2. Role of short-time acoustic temporal fine structure cues in sentence recognition for normal-hearing listeners.

    Science.gov (United States)

    Hou, Limin; Xu, Li

    2018-02-01

    Short-time processing was employed to manipulate the amplitude, bandwidth, and temporal fine structure (TFS) in sentences. Fifty-two native-English-speaking, normal-hearing listeners participated in four sentence-recognition experiments. Results showed that recovered envelope (E) played an important role in speech recognition when the bandwidth was > 1 equivalent rectangular bandwidth. Removing TFS drastically reduced sentence recognition. Preserving TFS greatly improved sentence recognition when amplitude information was available at a rate ≥ 10 Hz (i.e., time segment ≤ 100 ms). Therefore, the short-time TFS facilitates speech perception together with the recovered E and works with the coarse amplitude cues to provide useful information for speech recognition.

  3. Fine-scale spatial genetic structure analysis of the black truffle Tuber aestivum and its link to aroma variability.

    Science.gov (United States)

    Molinier, Virginie; Murat, Claude; Frochot, Henri; Wipf, Daniel; Splivallo, Richard

    2015-08-01

    Truffles are symbiotic fungi in high demand by food connoisseurs. Improving yield and product quality requires a better understanding of truffle genetics and aroma biosynthesis. One aim here was to investigate the diversity and fine-scale spatial genetic structure of the Burgundy truffle Tuber aestivum. The second aim was to assess how genetic structuring along with fruiting body maturation and geographical origin influenced single constituents of truffle aroma. A total of 39 Burgundy truffles collected in two orchards were characterized in terms of aroma profile (SPME-GC/MS) and genotype (microsatellites). A moderate genetic differentiation was observed between the populations of the two orchards. An important seasonal and spatial genetic structuring was detected. Within one orchard, individuals belonging to the same genet were generally collected during a single season and in the close vicinity from each other. Maximum genet size nevertheless ranged from 46 to 92 m. Geographical origin or maturity only had minor effects on aroma profiles but genetic structuring, specifically clonal identity, had a pronounced influence on the concentrations of C8 - and C4 -VOCs. Our results highlight a high seasonal genetic turnover and indicate that the aroma of Burgundy truffle is influenced by the identity of single clones/genets. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Mother-offspring distances reflect sex differences in fine-scale genetic structure of eastern grey kangaroos.

    Science.gov (United States)

    King, Wendy J; Garant, Dany; Festa-Bianchet, Marco

    2015-05-01

    Natal dispersal affects life history and population biology and causes gene flow. In mammals, dispersal is usually male-biased so that females tend to be philopatric and surrounded by matrilineal kin, which may lead to preferential associations among female kin. Here we combine genetic analyses and behavioral observations to investigate spatial genetic structure and sex-biased dispersal patterns in a high-density population of mammals showing fission-fusion group dynamics. We studied eastern grey kangaroos (Macropus giganteus) over 2 years at Wilsons Promontory National Park, Australia, and found weak fine-scale genetic structure among adult females in both years but no structure among adult males. Immature male kangaroos moved away from their mothers at 18-25 months of age, while immature females remained near their mothers until older. A higher proportion of male (34%) than female (6%) subadults and young adults were observed to disperse, although median distances of detected dispersals were similar for both sexes. Adult females had overlapping ranges that were far wider than the maximum extent of spatial genetic structure found. Female kangaroos, although weakly philopatric, mostly encounter nonrelatives in fission-fusion groups at high density, and therefore kinship is unlikely to strongly affect sociality.

  5. Extended x-ray absorption fine structure studies of amorphous and crystalline Si-Ge alloys with synchrotron radiation

    International Nuclear Information System (INIS)

    Kajiyama, Hiroshi

    1988-01-01

    Extended X-ray absorption fine structure (EXAFS) is a powerful probe to study the local structure around the atom of a specific element. In conventional EXAFS analysis, it has been known that reliable structures are obtained with the different values of absorption edge energy for different neighboring atoms. It is shown in this study that the Ge-K edge EXAFS resulting from the Ge-Ge and Ge-Si bonds in hydrogenated amorphous Si-Ge alloys was able to be excellently explained by a unique absorption edge energy value, provided that a newly developed formula based on the spherical wave function of photoelectrons is used. The microscopic structures of hydrogenated amorphous Si-Ge alloys and crystalline Si-Ge alloys have been determined using the EXAFS method. The lengths of Ge-Ge and Ge-Si bonds were constant throughout their entire composition range, and it was found that the length of Ge-Si bond was close to the average value of the bond lengths of both Ge and Si crystals. In crystalline Si-Ge alloys, it has been shown that the bonds relaxed completely, while the lattice constant varied monotonously with the composition. (Kako, I.)

  6. Laser Control of Self-Organization Process in Microscopic Region and Fabrication of Fine Microporous Structure

    Directory of Open Access Journals (Sweden)

    Yukimasa Matsumura

    2012-01-01

    Full Text Available We present a controlling technique of microporous structure by laser irradiation during self-organization process. Self-organization process is fabrication method of microstructure. Polymer solution was dropped on the substrate at high humid condition. Water in air appears dropping air temperature below the dew point. The honeycomb structure with regularly aligned pores on the film was fabricated by attaching water droplets onto the solution surface. We demonstrate that it was possible to prevent forming pores at the region of laser irradiation and flat surface was fabricated. We also demonstrated that a combination structure with two pore sizes and flat surface was produced by a single laser-pulse irradiation. Our method is a unique microfabrication processing technique that combines the advantages of bottom-up and top-down techniques. This method is a promising technique that can be applied to produce for photonic crystals, biological cell culturing, surface science and electronics fields, and so forth.

  7. Effect of heating temperature on the structure and fine texture of carbon-graphite pan fibres

    International Nuclear Information System (INIS)

    Varenkov, A.N.

    1976-01-01

    The structure and strength properties of carbon-graphite fibres obtained at 1000, 2000, 2750 and 3000 0 C from polyacrylonitrile (PAN) were investigated. The dependence of the interplanar distance, dimensions of the quasicrystallites and their orientations on the fibre temperature obtained were determined by X-ray structural analysis. A rise in formation temperature of the fibre leads to a decreased interplanar distance, (from 6.031 to 6.798 A), to growth of the quasicrystallites (from 14 to 99 A) and to a decrease in their degree of disorientation with respect to the fibre axis. Re-annealing influences the structure and properties of the fibres in the case where the temperature of the re-anneal exceeds the temperature at which the carbon-graphite fibre is obtained. Bombardment with neutrons ( E > 0.5 MeV) lowers the strength of the carbon-graphite fibres as a function of the irradiation dose. (author)

  8. The Fine Art in Structure of John Fowles’ Novel “The French Lieutenant’s Woman”

    Directory of Open Access Journals (Sweden)

    Oksana Levytska

    2013-12-01

    Full Text Available The article deals with the role of descriptive context in the structure of John Fowles’ novel “The French Lieutenant’s Woman”. Based on the intermedial analysis there was analyzed the semiotics of fine art in the novel, in particular an appeal to the Pre-Raphaelite art and the Renaissance painting. It was found that John Fowles’ works tend to use the poetics of different kinds of arts: the writer appeals to painting, operates its sign system, recodes signs of visual art by the language of a literary text, expanding the context of its understanding, interpretation and reception. There were studied intermedial connections of the novel with other works of arts. It was found that in the writer’s novels and stories were presented the most clearly visual arts in terms of their classification for the form of sensory perception. Among the arts in relation to time and space are dominated spatial arts: painting, sculpture, architecture, photography, decorative arts. The study focuses on the fine art, especially painting. The descriptive context is multivariation and multifunctional, it has manifestations on a level with the intermedial citation of painting, ekphrasis in landscape or portrait sketches, paintings of visualizing of characters’ imagination, allusions to works of art, etc., explicitly and implicitly represented in the texts. Intermedial analysis allows us to see the relationship of John Fowles’ novel with the Pre-Raphaelite art. In the character context the descriptive component increases literary, cultural and historical contextual characteristics. Introduced in the structure of a literary text the descriptive context on the semiotic level forms the axiological context. The system of ethical and aesthetic values of different cultural eras is extrapolated through the artistic context. So, the article studies the intermedial novel connections with other works of art. The descriptive context of the novel is manifested at

  9. A Voxel-Based Morphometry Study Reveals Local Brain Structural Alterations associated With Ambient Fine Particles in older women

    Directory of Open Access Journals (Sweden)

    Ramon Casanova

    2016-10-01

    Full Text Available Objective: Exposure to ambient fine particulate matter (PM2.5: PM with aerodynamic diameters <2.5µm has been linked with cognitive deficits in older adults. Using fine-grained voxel-wise analyses, we examined whether PM2.5 exposure also affects brain structure.Methods: Brain MRI data were obtained from 1,365 women (aged 71-89 in the Women’s Health Initiative Memory Study and local brain volumes were estimated using RAVENS (regional analysis of volumes in normalized space. Based on geocoded residential locations and air monitoring data from the U.S. Environmental Protection Agency, we employed a spatiotemporal model to estimate long-term (3-year average exposure to ambient PM2.5 preceding MRI scans. Voxel-wise linear regression models were fit separately to gray matter (GM and white matter (WM maps to analyze associations between brain structure and PM2.5 exposure, with adjustment for potential confounders. Results: Increased PM2.5 exposure was associated with smaller volumes in both cortical GM and subcortical WM areas. For GM, associations were clustered in the bilateral superior, middle, and medial frontal gyri. For WM, the largest clusters were in the frontal lobe, with smaller clusters in the temporal, parietal, and occipital lobes. No statistically significant associations were observed between PM2.5 exposure and hippocampal volumes. Conclusions: Long-term PM2.5 exposures may accelerate loss of both GM and WM in older women. While our previous work linked WM decreased volumes to PM2.5 air pollution, this is the first neuroimaging study reporting associations between air pollution exposure and smaller volumes of cortical GM. Our data support the hypothesized synaptic neurotoxicity of airborne particles.

  10. Thermohaline fine structure in an oceanographic front from seismic reflection profiling.

    Science.gov (United States)

    Holbrook, W Steven; Páramo, Pedro; Pearse, Scott; Schmitt, Raymond W

    2003-08-08

    We present acoustic images of oceanic thermohaline structure created from marine seismic reflection profiles across the major oceanographic front between the Labrador Current and the North Atlantic Current. The images show that distinct water masses can be mapped, and their internal structure imaged, using low-frequency acoustic reflections from sound speed contrasts at interfaces across which temperature changes. The warm/cold front is characterized by east-dipping reflections generated by thermohaline intrusions in the uppermost 1000 meters of the ocean. Our results imply that marine seismic reflection techniques can provide excellent spatial resolution of important oceanic phenomena, including thermohaline intrusions, internal waves, and eddies.

  11. Determining the Velocity Fine Structure by a Laser Anemometer in VAD operation

    DEFF Research Database (Denmark)

    Kristensen, Leif; Kirkegaard, Peter; Mikkelsen, Torben

    . Then it is necessary to “create” a mean wind by turning the laser beam. Since the instrument is not moved the beam will describe a cone which could be a VAD-scanning. In any case the measured velocity components will not be parallel and this implies that the measured structure function will contain a term which...... is proportional to the total variance. The theoretical expression for the line-filtered structure function is derived in two equivalent ways, one in physical space and one in wave-number space, of which the last can be reliably evaluated by numerical integration. Also a practical approximate equation, derived...

  12. The structure of liquid semiconductors, superionic conductors and glasses by neutron scattering, X-ray diffraction and extended X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Buchanan, P.

    2001-09-01

    A study of the applicability of modern X-ray and neutron scattering techniques to the study of the structure of liquid semiconductors and glasses has been made. The results demonstrate how neutron scattering with isotopic substitution (NDIS), anomalous X-ray scattering and Extended X-ray Absorption Fine Structure (EXAFS) can be successfully used to elucidate the structure of materials that cannot be studied by NDIS alone. The local coordination structure of Ag 2 Se in its room temperature, superionic and liquid phases has been determined using the EXAFS technique. This EXAFS data have been combined with previously available neutron diffraction data to provide a refinement of the structure obtained through neutron diffraction alone. The structure of GeO 2 has been determined to the full partial structure factor level using a combination of anomalous X-ray scattering and neutron diffraction measurements. The data are in good agreement with previously obtained results. The partial structure factors of P 40 Se 60 and P 50 Se 50 have been determined to the first order difference level using the anomalous X-ray diffraction technique. The structure of liquid Ga 2 Te 3 has been determined to the partial structure factor level using combined neutron diffraction with isotopic substitution (NDIS) and anomalous X-ray diffraction. The structure of liquid FeSe 2 has been determined to the first order difference level using the NDIS technique alone. The structure of liquid FeTe 2 was determined at the total structure factor level using neutron diffraction in order to estimate the effect of chalcogenide ion size on the structure. The results demonstrate the feasibility of the additional structural determination techniques for disordered materials made possible through the development of third generation X-ray synchrotron sources. (author)

  13. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  14. UV?Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore

    OpenAIRE

    Antosiewicz, Jan M.; Shugar, David

    2016-01-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV?Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  15. Fine Structure Study of the Plasma Coatings B4C-Ni-P

    Science.gov (United States)

    Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.

    2017-12-01

    The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.

  16. Fine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors

    NARCIS (Netherlands)

    Vicario, J; Walko, M; Meetsma, A; Feringa, Ben L.

    2006-01-01

    The introduction of bulky substituents at the stereogenic center of light-driven second-generation molecular motors results in an acceleration of the speed of rotation. This is due to a more strained structure with elongated C=C bonds and a higher energy level of the ground state relative to the

  17. Number Concentrations and Modal Structure of Indoor/Outdoor Fine Particles in Four European Cities.

    Czech Academy of Sciences Publication Activity Database

    Lazaridis, M.; Eleftheriadis, K.; Ždímal, Vladimír; Schwarz, Jaroslav; Wagner, Zdeněk; Ondráček, Jakub; Drossinos, Y.; Glytsos, T.; Vratolis, S.; Torseth, K.; Moravec, Pavel; Hussein, T.; Smolík, Jiří

    2017-01-01

    Roč. 17, č. 1 (2017), s. 131-146 ISSN 1680-8584 EU Projects: European Commission(XE) 315760 - HEXACOMM Institutional support: RVO:67985858 Keywords : indoor/outdoor aerosol * I/O ratio * modal structure Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD : Meteorology and atmospheric sciences Impact factor: 2.606, year: 2016

  18. Fine structures in Fe3Al alloy layer of a new hot dip aluminized steel

    Indian Academy of Sciences (India)

    Unknown

    structure and performance in the coating can be improved and service life of the aluminized steel can significantly be enhanced. 2. Experimental. The base metal of the aluminized steel used in this inves- tigation was mild steel (0⋅18%C), which was aluminized by the hot dip aluminizing technology (HDA). In order to.

  19. Fine structure at the diffusion welded interface of Fe3Al/Q235 ...

    Indian Academy of Sciences (India)

    Unknown

    pounds have unique properties, such as high yield strength at high temperature and excellent oxidation and corrosion resistance because of their long range ordered structure and coexistence of metallic bond (Mckameey et al 1991). When specially compared to other intermetallic com- pounds such as Ni3Al and Ti3Al, ...

  20. Fine-scale genetic structure and social organization in female white-tailed deer.

    Energy Technology Data Exchange (ETDEWEB)

    Comer, Christopher E.; Kilgo, John C.; D' Angelo, Gino J.; Glenn, Travis C.; Miller, Karl V.

    2005-07-01

    Abstract: Social behavior of white-tailed deer (Odocoileus virginianus) can have important management implications. The formation of matrilineal social groups among female deer has been documented and management strategies have been proposed based on this well-developed social structure. Using radiocollared (n = 17) and hunter or vehicle-killed (n = 21) does, we examined spatial and genetic structure in white-tailed deer on a 7,000-ha portion of the Savannah River Site in the upper Coastal Plain of South Carolina, USA. We used 14 microsatellite DNA loci to calculate pairwise relatedness among individual deer and to assign doe pairs to putative relationship categories. Linear distance and genetic relatedness were weakly correlated (r = –0.08, P = 0.058). Relationship categories differed in mean spatial distance, but only 60% of first-degree-related doe pairs (full sibling or mother–offspring pairs) and 38% of second-degree-related doe pairs (half sibling, grandmother–granddaughter pairs) were members of the same social group based on spatial association. Heavy hunting pressure in this population has created a young age structure among does, where the average age is <2.5 years, and <4% of does are >4.5 years old. This—combined with potentially elevated dispersal among young does—could limit the formation of persistent, cohesive social groups. Our results question the universal applicability of recently proposed models of spatial and genetic structuring in white-tailed deer, particularly in areas with differing harvest histories.

  1. Determining the Velocity Fine Structure by a Laser Anemometer with Fixed Orientation

    DEFF Research Database (Denmark)

    Kristensen, Leif; Kirkegaard, Peter; Mikkelsen, Torben

    We have studied the velocity structure functions and spectra which can be determined by a CW-laser anemometer and a (pulsed) lidar anemometer. We have found useful theoretical expressions for both types of anemometers and compared their filtering of the alongbeam turbulent velocity. The purpose has...

  2. Fine-scale genetic structure and social organization in female white-tailed deer

    Science.gov (United States)

    Christopher E. Comer; John C. Kilgo; Gino J. D' Angelo; Travis C. Glenn; Karl V. Miller

    2005-01-01

    Social behavior of white-tailed deer (Odocoileus virginianus) can have important management implications. The formation of matrilineal social groups among female deer has been documented and management strategies have been proposed based on this well-developed social structure. Using radiocollared (n = 17) and hunter or vehicle-killed (n = 21) does, we examined spatial...

  3. Electronic structure of EuN: Growth, spectroscopy, and theory

    DEFF Research Database (Denmark)

    Richter, J. H.; Ruck, B.J.; Simpson, M.

    2011-01-01

    We present a detailed study of the electronic structure of europium nitride (EuN), comparing spectroscopic data to the results of advanced electronic structure calculations. We demonstrate the epitaxial growth of EuN films, and show that in contrast to other rare-earth nitrides successful growth...... and XES) at the nitrogen K edge are compared to several different theoretical models, namely, local spin density functional theory with Hubbard U corrections (LSDA+U), dynamic mean field theory (DMFT) in the Hubbard-I approximation, and quasiparticle self-consistent GW (QSGW) calculations. The DMFT...

  4. A theory of self-organized zonal flow with fine radial structure in tokamak

    Science.gov (United States)

    Zhang, Y. Z.; Liu, Z. Y.; Xie, T.; Mahajan, S. M.; Liu, J.

    2017-12-01

    The (low frequency) zonal flow-ion temperature gradient (ITG) wave system, constructed on Braginskii's fluid model in tokamak, is shown to be a reaction-diffusion-advection system; it is derived by making use of a multiple spatiotemporal scale technique and two-dimensional (2D) ballooning theory. For real regular group velocities of ITG waves, two distinct temporal processes, sharing a very similar meso-scale radial structure, are identified in the nonlinear self-organized stage. The stationary and quasi-stationary structures reflect a particular feature of the poloidal group velocity. The equation set posed to be an initial value problem is numerically solved for JET low mode parameters; the results are presented in several figures and two movies that show the spatiotemporal evolutions as well as the spectrum analysis—frequency-wave number spectrum, auto power spectrum, and Lissajous diagram. This approach reveals that the zonal flow in tokamak is a local traveling wave. For the quasi-stationary process, the cycle of ITG wave energy is composed of two consecutive phases in distinct spatiotemporal structures: a pair of Cavitons growing and breathing slowly without long range propagation, followed by a sudden decay into many Instantons that carry negative wave energy rapidly into infinity. A spotlight onto the motion of Instantons for a given radial position reproduces a Blob-Hole temporal structure; the occurrence as well as the rapid decay of Caviton into Instantons is triggered by zero-crossing of radial group velocity. A sample of the radial profile of zonal flow contributed from 31 nonlinearly coupled rational surfaces near plasma edge is found to be very similar to that observed in the JET Ohmic phase [J. C. Hillesheim et al., Phys. Rev. Lett. 116, 165002 (2016)]. The theory predicts an interior asymmetric dipole structure associated with the zonal flow that is driven by the gradients of ITG turbulence intensity.

  5. Structural organization and spectroscopy of peptide-actinide(IV) complexes

    International Nuclear Information System (INIS)

    Dahou, S.

    2010-01-01

    The contamination of living organisms by actinide elements is at the origin of both radiological and chemical toxicity that may lead to severe dysfunction. Most of the data available on the actinide interaction with biological systems are macroscopic physiological measurements and are lacking a molecular description of the systems. Because of the intricacy of these systems, classical biochemical methods are difficult to implement. Our strategy consisted in designing simplified biomimetic peptides, and describing the corresponding intramolecular interactions with actinides. A carboxylic pentapeptide of the form DDPDD has been at the starting point of this work in order to further assess the influence of the peptide sequence on the topology of the complexes.To do so, various linear (Asp/Ala permutations, peptoids) and cyclic analogues have been synthesized. Furthermore, in order to include the hydroxamic function (with a high affinity for Fe(III)) in the peptide, both desferrioxamine and acetohydroxamic acid have been investigated. However because of difficulties in synthesis, we have not been able to test these peptides. Three actinide cations have been considered at oxidation state +IV (Th, Np, Pu) and compared to Fe(III), often considered as a biological surrogate of Pu(IV). The spatial arrangement of the peptide around the cation has been probed by spectrophotometry and X-ray Absorption Spectroscopy. The spectroscopic data and EXAFS data adjustment lead us to rationalize the topology of the complexes as a function of the peptide sequence: mix hydroxy polynuclear species for linear and cyclic peptides, mononuclear for the desferrioxamine complexes. Furthermore, significant differences have appeared between Fe(III) and actinide(IV), related to differences of reactivity in aqueous medium. (author)

  6. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B., E-mail: dturner@nyu.edu [Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 (United States)

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  7. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy.

    Science.gov (United States)

    Bizimana, Laurie A; Brazard, Johanna; Carbery, William P; Gellen, Tobias; Turner, Daniel B

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  8. On the relationship between the population of the fine structure levels of the ground electronic state of atomic oxygen and the translational temperature

    Science.gov (United States)

    Sharma, R.; Zygelman, B.; von Esse, F.; Dalgarno, A.

    1994-08-01

    Using a recent calculation of the cross sections for fine structure changing collisions during an encounter between two oxygen atoms in the ground electronic state, we determine the population of the fine structure levels of oxygen as a function of altitude for four model atmospheres representing conditions at 0 deg longitude, 45 deg latitude, at midday and midnight, and high and low solar and geomagnetic activity. We include the effect of electron impacts. The fine structure levels are shown to be in local thermodynamic equilibrium (LTE) at the local neutral atom translational temperature for altitudes up to 350 km and 400 km for midnight and midday, respectively, at low activity, and up to at least 600 km at high activity. At higher altitudes spotaneous emission causes deviation from LTE and overpopulates the lowest (J = 2) level at the expense of the other two levels.

  9. Recovery of distortion product otoacoustic emissions after a 2-kHz monaural sound-exposure in humans: effects on fine structures

    DEFF Research Database (Denmark)

    de Toro, Miguel Angel Aranda; Ordoñez, Rodrigo Pizarro; Reuter, Karen

    2010-01-01

    A better understanding of the vulnerability of the fine structures of distortion-product otoacoustic emissions (DPOAEs) after acoustic overexposure may improve the knowledge about DPOAE generation, cochlear damage, and lead to more efficient diagnostic tools. It is studied whether the DPOAE fine...... structures of 16 normal-hearing human subjects are systematically affected after a moderate monaural sound-exposure of 10 min to a 2-kHz tone normalized to an exposure level LEX,8h of 80 dBA. DPOAEs were measured before and in the following 70 min after the exposure. The experimental protocol allowed...... of the sound exposure. The results show that the effects on fine structures are highly individual and no systematic change was observed....

  10. Fine structure of spectral properties for random correlation matrices: an application to financial markets.

    Science.gov (United States)

    Livan, Giacomo; Alfarano, Simone; Scalas, Enrico

    2011-07-01

    We study some properties of eigenvalue spectra of financial correlation matrices. In particular, we investigate the nature of the large eigenvalue bulks which are observed empirically, and which have often been regarded as a consequence of the supposedly large amount of noise contained in financial data. We challenge this common knowledge by acting on the empirical correlation matrices of two data sets with a filtering procedure which highlights some of the cluster structure they contain, and we analyze the consequences of such filtering on eigenvalue spectra. We show that empirically observed eigenvalue bulks emerge as superpositions of smaller structures, which in turn emerge as a consequence of cross correlations between stocks. We interpret and corroborate these findings in terms of factor models, and we compare empirical spectra to those predicted by random matrix theory for such models.

  11. A fine structure genetic analysis evaluating ecoregional adaptability of a Bos taurus breed (Hereford.

    Directory of Open Access Journals (Sweden)

    H D Blackburn

    Full Text Available Ecoregional differences contribute to genetic environmental interactions and impact animal performance. These differences may become more important under climate change scenarios. Utilizing genetic diversity within a species to address such problems has not been fully explored. In this study Hereford cattle were genotyped with 50K Bead Chip or 770K Bovine Bead Chip to test the existence of genetic structure in five U.S. ecoregions characterized by precipitation, temperature and humidity and designated: cool arid (CA, cool humid (CH, transition zone (TZ, warm arid (WA, and warm humid (WH. SNP data were analyzed in three sequential analyses. Broad genetic structure was evaluated with STRUCTURE, and ADMIXTURE software using 14,312 SNPs after passing quality control variables. The second analysis was performed using principal coordinate analysis with 66 Tag SNPs associated in the literature with various aspects of environmental stressors (e.g., heat tolerance or production (e.g., milk production. In the third analysis TreeSelect was used with the 66 SNPs to evaluate if ecoregional allelic frequencies deviated from a central frequency and by so doing are indicative of directional selection. The three analyses suggested subpopulation structures associated with ecoregions from where animals were derived. ADMIXTURE and PCA results illustrated the importance of temperature and humidity and confirm subpopulation assignments. Comparisons of allele frequencies with TreeSelect showed ecoregion differences, in particular the divergence between arid and humid regions. Patterns of genetic variability obtained by medium and high density SNP chips can be used to acclimatize a temperately derived breed to various ecoregions. As climate change becomes an important factor in cattle production, this study should be used as a proof of concept to review future breeding and conservation schemes aimed at adaptation to climatic events.

  12. The interaction ability of cellulosic materials as a function of fine structure and Helmholtz surface energy

    OpenAIRE

    Kreže, Tatjana; Stana-Kleinschek, Karin; Ribitsch, Volker; Peršin, Zdenka; Sfiligoj-Smole, Majda

    2012-01-01

    Many chemical or physical modification processes significantly influence the accessibility of fiber forming polymers by causing structural changes. The wettability and sorption ability improvements of polymeric materials are major tasks during finishing processes. Different pre-treatment processes are used in order to improve the accessibility of dissociable groups, hydrophilicity, dyeability, and whiteness. These are usually alkaline purification, chemical bleaching and mercerization. In a p...

  13. Fine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium

    OpenAIRE

    Cigliano, Antonio; Gandaglia, Alessandro; Lepedda, Antonio Junior; Zinellu, Elisabetta; Naso, Filippo; Gastaldello, Alessandra; Aguiari, Paola; De Muro, Pierina; Gerosa, Gino; Spina, Michele; Formato, Marilena

    2012-01-01

    Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emerged to create cell repopulated decellularized scaffolds. This study was performed to determine the g...

  14. An optimized ultra-fine energy group structure for neutron transport calculations

    International Nuclear Information System (INIS)

    Huria, Harish; Ouisloumen, Mohamed

    2008-01-01

    This paper describes an optimized energy group structure that was developed for neutron transport calculations in lattices using the Westinghouse lattice physics code PARAGON. The currently used 70-energy group structure results in significant discrepancies when the predictions are compared with those from the continuous energy Monte Carlo methods. The main source of the differences is the approximations employed in the resonance self-shielding methodology. This, in turn, leads to ambiguous adjustments in the resonance range cross-sections. The main goal of developing this group structure was to bypass the self-shielding methodology altogether thereby reducing the neutronic calculation errors. The proposed optimized energy mesh has 6064 points with 5877 points spanning the resonance range. The group boundaries in the resonance range were selected so that the micro group cross-sections matched reasonably well with those derived from reaction tallies of MCNP for a number of resonance absorbers of interest in reactor lattices. At the same time, however, the fast and thermal energy range boundaries were also adjusted to match the MCNP reaction rates in the relevant ranges. The resulting multi-group library was used to obtain eigenvalues for a wide variety of reactor lattice numerical benchmarks and also the Doppler reactivity defect benchmarks to establish its adequacy. (authors)

  15. Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy.

    Science.gov (United States)

    Yang, Ke R; Matula, Adam J; Kwon, Gihan; Hong, Jiyun; Sheehan, Stafford W; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H; Tiede, David M; Chen, Lin X; Batista, Victor S

    2016-05-04

    The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.

  16. Fine-scale population structure of Malays in Peninsular Malaysia and Singapore and implications for association studies.

    Science.gov (United States)

    Hoh, Boon-Peng; Deng, Lian; Julia-Ashazila, Mat Jusoh; Zuraihan, Zakaria; Nur-Hasnah, Ma'amor; Nur-Shafawati, Ab Rajab; Hatin, Wan Isa; Endom, Ismail; Zilfalil, Bin Alwi; Khalid, Yusoff; Xu, Shuhua

    2015-07-22

    Fine scale population structure of Malays - the major population in Malaysia, has not been well studied. This may have important implications for both evolutionary and medical studies. Here, we investigated the population sub-structure of Malay involving 431 samples collected from all states from peninsular Malaysia and Singapore. We identified two major clusters of individuals corresponding to the north and south peninsular Malaysia. On an even finer scale, the genetic coordinates of the geographical Malay populations are in correlation with the latitudes (R(2) = 0.3925; P = 0.029). This finding is further supported by the pairwise FST of Malay sub-populations, of which the north and south regions showed the highest differentiation (FST [North-south] = 0.0011). The collective findings therefore suggest that population sub-structure of Malays are more heterogenous than previously expected even within a small geographical region, possibly due to factors like different genetic origins, geographical isolation, could result in spurious association as demonstrated in our analysis. We suggest that cautions should be taken during the stage of study design or interpreting the association signals in disease mapping studies which are expected to be conducted in Malay population in the near future.

  17. Structural study of aggregated β-carotene by absorption spectroscopy

    Science.gov (United States)

    Lu, Li Ping; Wei, Liang Shu

    2017-10-01

    By UV-visible absorption spectroscope, the aggregated β-carotene in hydrated ethanol was studied in the temperature range of 5 55°C, with different ethanol/water ratio. And the structural evolutions of these aggregates with time were detected. The spectrophotometric analysis showed that the aggregate of β-carotene formed in 1:1 ethanol/water solution transfered from H-type to J-type with temperature increase. In 2:1 ethanol/water solution a new type of aggregate with strong coupling was predicated by the appearing absorption peak located at about 550 nm. In the time scales of 48 houses all the aggregated structures were stable, but the absorption intensity decreased with time. It was concluded that the types of aggregated β-carotene which wouldn't change with time depended on the solvent composition and temperature.

  18. Nuclear structure of the transactinides – investigated by decay spectroscopy

    Directory of Open Access Journals (Sweden)

    Heßberger Fritz Peter

    2016-01-01

    Full Text Available Superheavy elements owe their stability due to a subtle balance between the disruptive Coulomb force and the attractive nuclear forces. Thus they represent an ideal laboratory to study basic interactions. The essential tools are detailed investigations of radioactive decay properties and nuclear structure of superheavy nuclei. The results of those studies will deliver valuable input to improve theoretical models. To fulfill this demand conclusive data of high quality are necessary, which is presently not so easy to meet due to small production cross sections and technical limitations (beam intensities, detection probabilities. Possibilities and problems concerning extraction of decay properties and nuclear structure information on the basis of a low number of observed decay events will be discussed for three illustrative examples, 257Rf, 257Lr, and 288Fl.

  19. Hemoglobin structural dynamics as monitored by resonance Raman spectroscopy

    International Nuclear Information System (INIS)

    Spiro, T.G.

    1981-01-01

    Resonance Raman spectra of the heme group are now understood at a level sufficient to provide a useful monitor of several heme structural features. Some porphyrin vibrational frequencies are sensitive to Fe oxidation state, or π-electron distribution, and give insight into the electronic structure of O 2 , CO and NO hemes. Others are sensitive to Fe spin-state, via the associated geometry variation, and provide an accurate index of the porphyrin core size. When examined during the photolysis of CO-hemoglobin via short laser pulses, these frequencies indicate that conversion from low- to h+gh-spin Fe 11 takes place within 30 ps of photolysis, presumably via intersystem-crossing in the excited state, but that the subsequent relaxation of the Fe atom out of the heme plane takes longer than 20 ns, probably because of restraint by the protein. Axial ligand modes have been identified for several heme derivatives. The Fe-imidazole frequency in deoxyhemoglobin is appreciably lowered in the T quaternary structure, as determined in both static and kinetic experiments, suggesting molecular tension or proximal imidazole H-bond weakening in the T state. (author)

  20. Structural control of ultra-fine CoPt nanodot arrays via electrodeposition process

    Science.gov (United States)

    Wodarz, Siggi; Hasegawa, Takashi; Ishio, Shunji; Homma, Takayuki

    2017-05-01

    CoPt nanodot arrays were fabricated by combining electrodeposition and electron beam lithography (EBL) for the use of bit-patterned media (BPM). To achieve precise control of deposition uniformity and coercivity of the CoPt nanodot arrays, their crystal structure and magnetic properties were controlled by controlling the diffusion state of metal ions from the initial deposition stage with the application of bath agitation. Following bath agitation, the composition gradient of the CoPt alloy with thickness was mitigated to have a near-ideal alloy composition of Co:Pt =80:20, which induces epitaxial-like growth from Ru substrate, thus resulting in the improvement of the crystal orientation of the hcp (002) structure from its initial deposition stages. Furthermore, the cross-sectional transmission electron microscope (TEM) analysis of the nanodots deposited with bath agitation showed CoPt growth along its c-axis oriented in the perpendicular direction, having uniform lattice fringes on the hcp (002) plane from the Ru underlayer interface, which is a significant factor to induce perpendicular magnetic anisotropy. Magnetic characterization of the CoPt nanodot arrays showed increase in the perpendicular coercivity and squareness of the hysteresis loops from 2.0 kOe and 0.64 (without agitation) to 4.0 kOe and 0.87 with bath agitation. Based on the detailed characterization of nanodot arrays, the precise crystal structure control of the nanodot arrays with ultra-high recording density by electrochemical process was successfully demonstrated.

  1. Fine-scale genetic structure analyses suggest further male than female dispersal in mountain gorillas.

    Science.gov (United States)

    Roy, Justin; Gray, Maryke; Stoinski, Tara; Robbins, Martha M; Vigilant, Linda

    2014-07-07

    Molecular studies in social mammals rarely compare the inferences gained from genetic analyses with field information, especially in the context of dispersal. In this study, we used genetic data to elucidate sex-specific dispersal dynamics in the Virunga Massif mountain gorilla population (Gorilla beringei beringei), a primate species characterized by routine male and female dispersal from stable mixed-sex social groups. Specifically, we conducted spatial genetic structure analyses for each sex and linked our genetically-based observations with some key demographic and behavioural data from this population. To investigate the spatial genetic structure of mountain gorillas, we analysed the genotypes of 193 mature individuals at 11 microsatellite loci by means of isolation-by-distance and spatial autocorrelation analyses. Although not all males and females disperse, female gorillas displayed an isolation-by-distance pattern among groups and a signal of dispersal at short distances from their natal group based on spatial autocorrelation analyses. In contrast, male genotypes were not correlated with spatial distance, thus suggesting a larger mean dispersal distance for males as compared to females. Both within sex and mixed-sex pairs were on average genetically more related within groups than among groups. Our study provides evidence for an intersexual difference in dispersal distance in the mountain gorilla. Overall, it stresses the importance of investigating spatial genetic structure patterns on a sex-specific basis to better understand the dispersal dynamics of the species under investigation. It is currently poorly understood why some male and female gorillas disperse while others remain in the natal group. Our results on average relatedness within and across groups confirm that groups often contain close relatives. While inbreeding avoidance may play a role in driving female dispersal, we note that more detailed dyadic genetic analyses are needed to shed light on

  2. Decoding the fine-scale structure of a breast cancer genome and transcriptome.

    Science.gov (United States)

    Volik, Stanislav; Raphael, Benjamin J; Huang, Guiqing; Stratton, Michael R; Bignel, Graham; Murnane, John; Brebner, John H; Bajsarowicz, Krystyna; Paris, Pamela L; Tao, Quanzhou; Kowbel, David; Lapuk, Anna; Shagin, Dmitri A; Shagina, Irina A; Gray, Joe W; Cheng, Jan-Fang; de Jong, Pieter J; Pevzner, Pavel; Collins, Colin

    2006-03-01

    A comprehensive understanding of cancer is predicated upon knowledge of the structure of malignant genomes underlying its many variant forms and the molecular mechanisms giving rise to them. It is well established that solid tumor genomes accumulate a large number of genome rearrangements during tumorigenesis. End Sequence Profiling (ESP) maps and clones genome breakpoints associated with all types of genome rearrangements elucidating the structural organization of tumor genomes. Here we extend the ESP methodology in several directions using the breast cancer cell line MCF-7. First, targeted ESP is applied to multiple amplified loci, revealing a complex process of rearrangement and co-amplification in these regions reminiscent of breakage/fusion/bridge cycles. Second, genome breakpoints identified by ESP are confirmed using a combination of DNA sequencing and PCR. Third, in vitro functional studies assign biological function to a rearranged tumor BAC clone, demonstrating that it encodes anti-apoptotic activity. Finally, ESP is extended to the transcriptome identifying four novel fusion transcripts and providing evidence that expression of fusion genes may be common in tumors. These results demonstrate the distinct advantages of ESP including: (1) the ability to detect all types of rearrangements and copy number changes; (2) straightforward integration of ESP data with the annotated genome sequence; (3) immortalization of the genome; (4) ability to generate tumor-specific reagents for in vitro and in vivo functional studies. Given these properties, ESP could play an important role in a tumor genome project.

  3. Finely Formed, Kinetically Modulated Wrinkle Structures in UV-Crosslinkable Liquid Prepolymers.

    Science.gov (United States)

    Park, Seung Koo; Kwark, Young-Je; Moon, Jaehyun; Joo, Chul Woong; Yu, Byounggon; Lee, Jeong-Ik

    2015-11-01

    Special characteristics of wrinkles such as a scattering source and a high surface area are finding use in high-tech applications. UV-crosslinkable prepolymers are occasionally used for fabricating wrinkled films. Wavelength of the wrinkles formed from the prepolymers is several tens and hundreds of micrometers. Here, a UV-crosslinkable liquid prepolymer is synthesized to spontaneously form wrinkle structures in the order of several micrometers. Double layers with a very thin hard skin and a soft and contractible foundation are formed at the same time, by ensuring that all the absorbance wavelengths of the photoinitiator are shorter than the minimum wavelength at which the prepolymer is transparent. The rate of photo-crosslinking reaction, R(p), is also found to affect the thickness of the skin and foundation layers at the early UV-curing stage. The first-order apparent rate constant, k(app), is between ≈0.20 and ≈0.69 s(-1) for the wrinkle formation. This wrinkle structures can be simply modulated by changing R(p). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Some Observations on the Fine Structure of the Giant Nerve Fibers of the Earthworm, Eisenia foetida

    Science.gov (United States)

    Hama, Kiyoshi

    1959-01-01

    Sectioned dorsal giant fibers of the earthworm Eisenia foetida have been studied with the electron microscope. The giant axon is surrounded by a Schwannian sheath in which the lamellae are arranged spirally. They can be traced from the outer surface of the Schwann cell to the axon-Schwann membranes. Irregularities in the spiral arrangement are frequently observed. Desmosome-like attachment areas occur on the giant fiber nerve sheath. These structures appear to be arranged bilaterally in columns which are oriented slightly obliquely to the long axis of the giant fiber and aligned linearly from the axon to the periphery of the sheath. At these sites they bind together apposing portions of Schwann cell membrane comprising the sheath. Longitudinal or oblique sections of the nerve sheath attachment areas are reminiscent of the Schmidt-Lantermann clefts of vertebrate peripheral nerve. Septa of the giant fibers have been examined. They are symmetrical or non-polarized and consist of the two plasma membranes of adjacent nerve units. Characteristic vesicular and tubular structures are associated with both cytoplasmic surfaces of these septa. PMID:13673048

  5. Quantitative analysis of total reflection X-ray fluorescence from finely layered structures using XeRay

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Zhiliang [James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA; Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA; Kerr, Daniel [Program in the Biophysical Sciences, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA; Hwang, Hyeondo Luke [James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA; Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA; Henderson, J. Michael [James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA; Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA; Suwatthee, Tiffany [The College, The University of Chicago, Chicago, Illinois 60637, USA; Slaw, Benjamin R. [James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA; Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA; Cao, Kathleen D. [James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA; Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA; Lin, Binhua [James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA; Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA; Bu, Wei [Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA; Lee, Ka Yee C. [James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA; Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA; Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA

    2017-03-01

    Total reflection x-ray fluorescence (TXRF) is a widely applicable experimental technique for studying chemical element distributions across finely layered structures at extremely high sensitivity. To promote and facilitate scientific discovery using TXRF, we developed a MATLAB-based software package with a graphical user interface, named XeRay, for quick, accurate, and intuitive data analysis. XeRay lets the user model any layered system, each layer with its independent chemical composition and thickness, and enables fine-tuned data fitting. The accuracy of XeRay has been tested in the analysis of TXRF data from both air/liquid interface and liquid/liquid interfacial studies and has been compared to literature results. In an air/liquid interface study, Ca2+ sequestration was measured at a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidic acid (SOPA) on a buffer solution of 1 mM CaCl2 at pH 7.5. Data analysis with XeRay reveals that each 1 nm2 of interfacial area contains 2.38 ± 0.06 Ca2+ ions, which corresponds to a 1:1 ratio between SOPA headgroups and Ca2+ ions, consistent with several earlier reports. For the liquid/liquid interface study of Sr2+ enrichment at the dodecane/surfactant/water interface, analysis using XeRay gives a surface enrichment of Sr2+ at 68+6-568-5+6 Å2 per ion, consistent with the result published for the same dataset.

  6. Quantitative analysis of total reflection X-ray fluorescence from finely layered structures using XeRay

    Science.gov (United States)

    Gong, Zhiliang; Kerr, Daniel; Hwang, Hyeondo Luke; Henderson, J. Michael; Suwatthee, Tiffany; Slaw, Benjamin R.; Cao, Kathleen D.; Lin, Binhua; Bu, Wei; Lee, Ka Yee C.

    2017-03-01

    Total reflection x-ray fluorescence (TXRF) is a widely applicable experimental technique for studying chemical element distributions across finely layered structures at extremely high sensitivity. To promote and facilitate scientific discovery using TXRF, we developed a MATLAB-based software package with a graphical user interface, named XeRay, for quick, accurate, and intuitive data analysis. XeRay lets the user model any layered system, each layer with its independent chemical composition and thickness, and enables fine-tuned data fitting. The accuracy of XeRay has been tested in the analysis of TXRF data from both air/liquid interface and liquid/liquid interfacial studies and has been compared to literature results. In an air/liquid interface study, Ca2+ sequestration was measured at a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidic acid (SOPA) on a buffer solution of 1 mM CaCl2 at pH 7.5. Data analysis with XeRay reveals that each 1 nm2 of interfacial area contains 2.38 ± 0.06 Ca2+ ions, which corresponds to a 1:1 ratio between SOPA headgroups and Ca2+ ions, consistent with several earlier reports. For the liquid/liquid interface study of Sr2+ enrichment at the dodecane/surfactant/water interface, analysis using XeRay gives a surface enrichment of Sr2+ at 68-5+6 Å2 per ion, consistent with the result published for the same dataset.

  7. Quantitative analysis of total reflection X-ray fluorescence from finely layered structures using XeRay.

    Science.gov (United States)

    Gong, Zhiliang; Kerr, Daniel; Hwang, Hyeondo Luke; Henderson, J Michael; Suwatthee, Tiffany; Slaw, Benjamin R; Cao, Kathleen D; Lin, Binhua; Bu, Wei; Lee, Ka Yee C

    2017-03-01

    Total reflection x-ray fluorescence (TXRF) is a widely applicable experimental technique for studying chemical element distributions across finely layered structures at extremely high sensitivity. To promote and facilitate scientific discovery using TXRF, we developed a MATLAB-based software package with a graphical user interface, named XeRay, for quick, accurate, and intuitive data analysis. XeRay lets the user model any layered system, each layer with its independent chemical composition and thickness, and enables fine-tuned data fitting. The accuracy of XeRay has been tested in the analysis of TXRF data from both air/liquid interface and liquid/liquid interfacial studies and has been compared to literature results. In an air/liquid interface study, Ca 2+ sequestration was measured at a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidic acid (SOPA) on a buffer solution of 1 mM CaCl 2 at pH 7.5. Data analysis with XeRay reveals that each 1 nm 2 of interfacial area contains 2.38 ± 0.06 Ca 2+ ions, which corresponds to a 1:1 ratio between SOPA headgroups and Ca 2+ ions, consistent with several earlier reports. For the liquid/liquid interface study of Sr 2+ enrichment at the dodecane/surfactant/water interface, analysis using XeRay gives a surface enrichment of Sr 2+ at 68 -5 +6 Å 2 per ion, consistent with the result published for the same dataset.

  8. A combined fit of total scattering and extended x-ray absorption fine structure data for local-structure determination in crystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Proffen, Thomas E [Los Alamos National Laboratory; Krayzman, Victor [NIST; Levin, Igor [NIST; Tucker, Matt [ISIS, UK

    2009-01-01

    Reverse Monte Carlo (RMC) refinements of local structure using a simultaneous fit of X-ray/neutron total scattering and extended X-ray absorption fine structure (EXAFS) data were developed to incorporate an explicit treatment of both single- and multiple-scattering contributions to EXAFS. The refinement algorithm, implemented as an extension to the public domain computer software RMCProfile, enables accurate modeling of EXAFS over distances encompassing several coordination shells around the absorbing species. The approach was first tested on Ni, which exhibits extensive multiple scattering in EXAFS, and then applied to perovskite-like SrAl{sub 1/2}Nb{sub 1/2}O{sub 3}. This compound crystal1izes with a cubic double-perovskite structure but presents a challenge for local-structure determination using a total pair-distribution function (PDF) alone because of overlapping peaks of the constituent partial PDFs (e.g. Al-O and Nb-O or Sr-O and O-O). The results obtained here suggest that the combined use of the total scattering and EXAFS data provides sufficient constraints for RMC refinements to recover fine details of local structure in complex perovskites. Among other results, it was found that the probability density distribution for Sr in SrAl{sub 1/2}Nb{sub 1/2}O{sub 3} adopts T{sub d} point-group symmetry for the Sr sites, determined by the ordered arrangement of Al and Nb, as opposed to a spherical distribution commonly assumed in traditional Rietveld refinements.

  9. On the Electronic Structure of Mesitylnickel Complexes of .alpha.-Diimines-Combining Structural Data, Spectroscopy and Calculations

    Czech Academy of Sciences Publication Activity Database

    Klein, A.; Bertagnolli, H.; Feth, M. P.; Záliš, Stanislav

    -, č. 13 (2004), s. 2784-2796 ISSN 1434-1948 R&D Projects: GA MŠk OC D14.20 Institutional research plan: CEZ:AV0Z4040901 Keywords : density functional calculations * electronic structure * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.336, year: 2004

  10. Changes to the structure of blood clots formed in the presence of fine particulate matter

    International Nuclear Information System (INIS)

    Metassan, Sofian; Routledge, Michael N; Ariens, Robert A S; Scott, D Julian

    2009-01-01

    Both long-term and short-term exposure (one to two hours) to particulate matter are associated with morbidity and mortality caused by cardiovascular diseases. The underlying mechanisms leading to cardiovascular events are unclear, however, changes to blood coagulability upon exposure to ultrafine particulate matter (UFPM, the smallest of which can enter the circulation) is a plausible mechanism. Objectives: This study aims to investigate the direct effects of particulate matter on fibrin polymerization, lateral aggregation and the formation of fibrin network structure. Methods: Standard Urban Particulate Matter (PM) was suspended in Tris buffer centrifuged and filtered with <200nm filter to obtain ultrafine PM or their water-soluble components. Purified normal fibrinogen was made to clot by adding thrombin and calcium chloride in the presence of varying concentrations of PM. Permeation properties (Darcy constant [Ks]) and turbidity of clots were measured to investigate the effects on flow-rate, pore size, and fibrin polymerization. In addition, confocal microscopy was performed to study detailed clot structure. Results: Total PM increased the Ks of clots in a dose dependant manner (Ks = 4.4, 6.9 and 13.2 x 10-9 cm2 for 0, 50 and 100 |ag/ml total PM concentrations, respectively). Filtered PM also produced a significant increase in Ks at PM concentration of 17 |ag/ml. Final turbidity measurements at 20min were obtained for varying concentrations of PM. Maximum optical density (OD) for 1 mg/ml fibrinogen at 0, 50, 100 and 200 |ag/ml total PM concentrations were 0.39, 0.42, 0.45 and 0.46, respectively. The maximum OD for 0, 17, 34 and 68 |ag/ml filtered PM concentrations were 0.39, 0.42 0.47 and 0.51, respectively, suggesting an increase in fibre diameter with increasing particulate concentration. The lag phase was significantly shorter and the rate of polymerisation was significantly faster in the presence of 68 |ag/ml filtered PM. Confocal microscopy results showed

  11. Random dynamics and relations between the number of fermion generations and the fine structure

    International Nuclear Information System (INIS)

    Nielsen, H.B.

    1989-01-01

    By looking at the structure and crude features of the parameters of the Standard Model we argue for some properties of physics at a more fundamental level, presumably the Planck energy scale. These properties suggest a picture of 'anti-grand-unification' in the sense that, contrary to usual grand unification, we do not expect a simple gauge group at the high energy level. Rather we expect to see a gauge algebra which is a cross product of several simple or abelian factors. A symmetry breaking mechanism called confusion may then break each set of isomorphic factors down to the diagonal subgroup, thereby explaining the fact that non of the direct product factors in the Standard Model are repeated. (orig.)

  12. Coronal Fine Structure in Dynamic Events Observed by Hi-C

    Science.gov (United States)

    Winebarger, Amy; Schuler, Timothy

    2013-01-01

    The High-Resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket on 2012 July 11 and captured roughly 345 s of high spatial and temporal resolution images of the solar corona in a narrowband 193 Angstrom channel. We have analyzed the fluctuations in intensity of Active Region 11520. We selected events based on a lifetime greater than 11 s (two Hi-C frames) and intensities greater than a threshold determined from the photon and readout noise. We compare the Hi-C events with those determined from AIA. We find that HI-C detects shorter and smaller events than AIA. We also find that the intensity increase in the Hi-C events is approx. 3 times greater than the intensity increase in the AIA events we conclude the events are related to linear sub-structure that is unresolved by AIA

  13. Fine structuration of low-temperature co-fired ceramic (LTCC) microreactors.

    Science.gov (United States)

    Jiang, Bo; Haber, Julien; Renken, Albert; Muralt, Paul; Kiwi-Minsker, Lioubov; Maeder, Thomas

    2015-01-21

    The development of microreactors that operate under harsh conditions is always of great interest for many applications. Here we present a microfabrication process based on low-temperature co-fired ceramic (LTCC) technology for producing microreactors which are able to perform chemical processes at elevated temperature (>400 °C) and against concentrated harsh chemicals such as sodium hydroxide, sulfuric acid and hydrochloric acid. Various micro-scale cavities and/or fluidic channels were successfully fabricated in these microreactors using a set of combined and optimized LTCC manufacturing processes. Among them, it has been found that laser micromachining and multi-step low-pressure lamination are particularly critical to the fabrication and quality of these microreactors. Demonstration of LTCC microreactors with various embedded fluidic structures is illustrated with a number of examples, including micro-mixers for studies of exothermic reactions, multiple-injection microreactors for ionone production, and high-temperature microreactors for portable hydrogen generation.

  14. Metre-wavelength fine structure in 30 extragalactic radio sources with sizes of a few arcsec

    International Nuclear Information System (INIS)

    Banhatti, D.G.; Ananthakrishnan, S.; Pramesh Rao, A.

    1983-01-01

    Interplanetary scintillation (IPS) observations at 327 MHz of an unbiased sample of 30 extragalactic radio sources having overall sizes between 1 and 4 arcsec, and flux densities greater than 1 Jy at 327 MHz are reported. From VLBI observations, these sources have been reported to contain compact components of sizes < approx.= to 0.02 arcsec contributing on an average about 25 per cent of the total emission at 5 HGz. The IPS observations show that about 45 per cent of the total emission at 327 MHz arises from structures of sizes between 0.05 and 0.5 arcsec (corresponding typically to 0.5 to 5 kpc). A comparison of the VLBI and IPS results indicates that the VLBI and IPS components probably refer to the same physical features in these sources. (author)

  15. Fine structure of the gnathosoma of archegozetes longisetosus [corrected] aoki (acari: oribatida, trhypochthoniidae).

    Science.gov (United States)

    Alberti, Gerd; Heethoff, Michael; Norton, Roy A; Schmelzle, Sebastian; Seniczak, Anna; Seniczak, Stanisław

    2011-09-01

    Oribatida are one of the main groups of Acari comprising mostly important decomposers in soils. Most species are particle feeders, an exceptional mode of nutrition in Arachnida. Hence, their feeding organs, the gnathosoma, are of special functional interest. We studied nearly all components using scanning and transmission electron microscopies as well as reconstructions based on synchrotron X-ray microtomography from the model oribatid Archegozetes longisetosus. Besides cuticular structures, we describe the full set of muscles and confirm the presence of a trochanter remnant at the base of the chelicera. Setae on the prodorsum and the anterior and posterior infracapitular setae are mechanoreceptors innervated by two dendrites ending with tubular bodies. Dendrites of adoral setae, anterior setae of the chelicerae, and the supracoxal setae show neither obvious tubular bodies nor wall or terminal pores. Thus their function remains obscure. For the first time, a muscular proprioreceptor has been found in Arachnida. It likely monitors the actions of muscles moving the movable digit of the chelicera. Glandular structures within and associated with the gnathosoma are described. Dermal glands represented by secretory porose areas are found within the infracapitulum. More complex associated glands comprise the podocephalic glands and the infracapitular glands, the ducts of which were traced completely for the first time. The components described are mostly fundamental for the gnathosoma of Actinotrichida (Acariformes), one of the two lineages of Acari, to which Oribatida belong. The gnathosoma is generally considered the most relevant putative synapomorphy of Acari. Since the monophyly of Acari has become more and more questionable during the last decades, a thorough reinvestigation of this body part is necessary for a comprehensive understanding of acarine and even arachnid phylogeny and evolution. This article provides a starting point of such a re-evaluation of the

  16. The eversible tentacle organs of Polyommatus caterpillars (Lepidoptera, Lycaenidae): Morphology, fine structure, sensory supply and functional aspects.

    Science.gov (United States)

    Gnatzy, W; Jatho, M; Kleinteich, T; Gorb, S N; Hustert, R

    2017-11-01

    In their late (3rd and 4th) larval stages, caterpillars of the myrmecophilous lycaenid (Lepidoptera) species Polyommatus coridon and Polyommatus icarus, possess on their 8th abdominal segment two eversible so called tentacle organs (TOs). Previous histological and behavioural results have proposed that the TOs may release a volatile substance that elicits "excited runs" in attendant ants. In our study we investigated for the first time the temporal in- and eversion pattern of TOs. Using nerve tracing, Micro-CT, light- and electron microscopy techniques we studied (i) the histology of the 8th abdominal segment, (ii) the fine structure of the cuticular and cellular apparatus of the TOs, (iii) the attachment sites of the retractor muscle of each TO and (iv) the fine structure of the long slender tentacle hairs which are exposed to the outside, when the TOs are everted and fold back into the TO-sac during inversion. Our data show that the tentacle hairs are typical insect mechanoreceptors, each innervated by a small bipolar sensory cell with a tubular body in the tip of the outer dendritic segment. The latter is enclosed by a cuticular sheath previously called the "internal cuticular duct" and misinterpreted in earlier studies as the space, where the tentacle hairs actively secrete fluids. However, we found no glandular structures nearby or in the wall of the TO-sac. Also we did not reveal any conspicuous signs of secretory activity in one of the enveloping cells belonging to a tentacle hair. Although highly unusual features for an insect mechanoreceptor are: (a) the hair-shaft lumen of tentacle hairs contains flocculent material as well small vesicles and (b) the thin cuticular wall of the hair-shaft and its spines possess few tiny pores. Our data do not support the assumption of previous studies that volatile substances are released via the tentacle organs during their interactions with ants which in turn are supposed to cause excited runs in ants. Copyright © 2017

  17. Fine-Scale Structures In Saturn's Rings: Waves, Wakes And Ghosts

    Science.gov (United States)

    Baillie, Kevin

    2011-07-01

    The Cassini mission provided wonderful tools to explore Saturn, its satellites and its rings system. The UVIS instrument allowed stellar occultation observations of structures in the rings with the best resolution available (around 10 meters depending on geometry and navigation), bringing our understanding of the physics of the rings to the next level. In particular, we have been able to observe, dissect, model and test the interactions between the satellites and the rings. We first looked at kilometer-wide structures generated by resonances with satellites orbiting outside the main rings. The observation of structures in the C ring and their association with a few new resonances allowed us to estimate some constraints on the physical characteristics of the rings. However, most of our observed structures could not be explained with simple resonances with external satellites and some other mechanism has to be involved. We located four density waves associated with the Mimas 4:1, the Atlas 2:1, the Mimas 6:2 and the Pandora 4:2 Inner Lindblad Resonances and one bending wave excited by the Titan -1:0 Inner Vertical Resonance. We could estimate a range of surface mass density from 0.22 (± 0.03) to 1.42 (± 0.21) g cm^{-2} and mass extinction coefficient from 0.13 (± 0.03) to 0.28 (± 0.06) cm^{2} g^{-1}. These mass extinction coefficient values are higher than those found in the A ring (0.01 - 0.02 cm^{2} g^{-1}) and in the Cassini Division (0.07 - 0.12 cm^{2} g^{-1} from Colwell et al. (2009), implying smaller particle sizes in the C ring. We can therefore imagine that the particles composing these different rings have either different origins or that their size distributions are not primordial and have evolved differently. We also estimate the mass of the C ring to be between 3.7 (± 0.9)× 10^{16} kg and 7.9 (± 2.0)× 10^{16} kg, equivalent to a moon of 28.0 (± 2.3) km to 36.2 (± 3.0) km radius (a little larger than Pan or Atlas) with a density comparable to

  18. Structure of potassium isotopes studied with collinear laser spectroscopy

    CERN Document Server

    AUTHOR|(CDS)2082445

    By exploring the structure of different nuclei, one can learn about the interaction between the nucleons, their building blocks. In this field of research, there is a strong interplay between experiment and theory. In particular, theory has a crucial role in the interpretation of the experimental results, while new experimental results provide testing ground and directions for theorists. In the light- and mid-mass regions of the nuclear chart, the shell model is very successful and widely used for calculations of the ground- as well as excited- states properties. It is based on associated larger energy gaps between single particle energy levels for isotopes with certain proton (Z) and neutron (N) numbers, which are called "magic numbers". It was believed that these numbers (8, 20, 28, ...) are preserved for all nuclei throughout the nuclear chart. However, during the last decades studies of the isotopes with an unbalanced number of protons and neutrons revealed that in these isotopes the shell gaps could chan...

  19. Local hydrated structure of an Fe2+/Fe3+ aqueous solution: an investigation using a combination of molecular dynamics and X-ray absorption fine structure methods

    International Nuclear Information System (INIS)

    Ye Qing; Zhou Jing; Zhao Haifeng; Chen Xing; Chu Wangsheng; Zheng Xusheng; Marcelli, Augusto; Wu Ziyu

    2013-01-01

    The hydrated shell of both Fe 2+ and Fe 3+ aqueous solutions are investigated by using the molecular dynamics (MD) and X-ray absorption structure (XAS) methods. The MD simulations show that the first hydrated shells of both Fe 2+ and Fe 3+ are characterized by a regular octahedron with an Fe-O distance of 2.08Å for Fe 2+ and 1.96Å for Fe 3+ , and rule out the occurrence of a Jahn-Teller distortion in the hydrated shell of an Fe 2+ aqueous solution. The corresponding X-ray absorption near edge fine structure (XANES) calculation successfully reproduces all features in the XANES spectra in Fe 2+ and Fe 3+ aqueous solution. A feature that is located at energy 1 eV higher than the white line (WL) in an Fe 3+ aqueous solution may be assigned to the contribution of the charge transfer. (authors)

  20. Two different zinc sites in bovine 5-aminolevulinate dehydratase distinguished by extended x-ray absorption fine structure

    International Nuclear Information System (INIS)

    Dent, A.J.; Hasnain, S.S.; Beyersmann, D.; Block, C.

    1990-01-01

    The zinc coordination in 5-aminolevulinate dehydratase was investigated by extended x-ray absorption fine structure (EXAFS) associated with the zinc K-edge. The enzyme binds 8 mol of zinc/mol of octameric protein, but only four zinc ions seem sufficient for full activity. The authors have undertaken a study on four forms of the enzyme: (a) the eight-zinc native enzyme; (b) the enzyme with only the four zinc sites necessary for full activation occupied; (c) the enzyme with the vacant sites of (b) occupied by four lead ions; (d) the product complex between (b) and porphobilinogen. They have shown that two structurally distinct types of zinc sites are available in the enzyme. The site necessary for activity has an average zinc environment best described by two/three histidines and one/zero oxygen from a group such as tyrosine or a solvent molecule at 2.06 ± 0.02 angstrom, one tyrosine or aspartate at 1.91 ± 0.03 angstrom, and one cysteine sulfur at 2.32 ± 0.03 angstrom with a total coordination of five ligands. The unoccupied site in (b) is dominated by a single contribution of four cysteinyl sulfur atoms at 2.28 ± 0.02 angstrom. Spectra from samples (c) and (d) show only small changes from that of (b), reflecting a slight rearrangement of the ligands around the zinc atom

  1. Effects of some inhibitors of protein synthesis on the chloroplast fine structure, CO2 fixation and the Hill reaction activity

    Directory of Open Access Journals (Sweden)

    S. Więckowski

    2015-01-01

    Full Text Available A comparative study concerning the effects of chloramphenicol (100 μg ml-1, actidione (10 μg ml-1, 5-bromouracil (190 μg ml-1, actinomycin D (30 μg ml-1 and DL-ethionine (800 μg ml-1 on the chloroplast fine structure, 14CO2 incorporation and the Hill reaction activity was the subject of the experiments presented in this paper. The experiments were conducted on bean seedlings under the conditions when chlorophyll accumulation was inhibited only partially. The results obtained indicate that chloromphenicol is responsible for the reduction of the number of grana per section of plastid and for the formation of numerous vesicles in the stroma. In the presence of actidione, actinomycin D or DL-ethionine the lamellae are poorly differentiated into .stroma and granum regions and there occur disturbances in the typical orientation of lamellae within chloroplasts. Only in the presence of 5-bromouracil the development of chloroplast structure resemble that in control plants. A comparison of the results obtained with those published earlier (Więckowski et al., 1974; Ficek and Więckowski, 1974 shows that such processes as assimilatory pigment accumulation, the rate of CO2 fixation, the Hill reaction activity, and the development of lamellar system are suppressed in a different extent by the inhibitors used.

  2. Structural behaviour of bamboo-reinforced foamed concrete slab containing polyvinyl wastes (PW as partial replacement of fine aggregate

    Directory of Open Access Journals (Sweden)

    Efe Ikponmwosa

    2017-10-01

    Full Text Available This paper reports the findings of experimental study to investigate the structural behaviour of bamboo-reinforced foamed concrete slab with polyvinyl waste as partial replacement of fine aggregates. The structural properties studied were: compressive strength, density, crack development pattern and propagation, failure pattern, load–deflection characteristics and the ultimate moment. Compressive strength and the density tests were also conducted using 150 × 150 × 150 cube specimens. The flexural behaviour was investigated by using 1300 × 500 × 100 mm slab specimens. The results showed that: (i partial replacement of sand with polyvinyl waste (PW improved the compressive strength of the foamed aerated concrete specimens, (ii that slab specimens with polyvinyl waste as partial replacement sand exhibited shear bending failure, (iii all the slab specimens with polyvinyl waste as partial replacement sand recorded lower values of deflection for the same loading, as the level of sand replacement with polyvinyl wastes increased, and (iv increase in the amount of sand replaced with polyvinyl wastes resulted in improved bending performance of the slab specimens.

  3. Alfvénic Dynamics and Fine Structuring of Discrete Auroral Arcs: Swarm and e-POP Observations

    Science.gov (United States)

    Miles, D.; Mann, I. R.; Pakhotin, I.; Burchill, J. K.; Howarth, A. D.; Knudsen, D. J.; Wallis, D. D.; Yau, A. W.; Lysak, R. L.

    2017-12-01

    The electrodynamics associated with dual discrete arc aurora with anti-parallel flow along the arcs were observed nearly simultaneously by the enhanced Polar Outflow Probe (e-POP) and the Swarm A and C spacecraft. Auroral imaging from e-POP reveal 1-10 km structuring of the arcs, which move and evolve on second timescales and confound the traditional single-spacecraft field-aligned current algorithms. High-cadence magnetic data from e-POP shows 1-10 Hz, presumably Alfvénic perturbations co-incident with and at the same scale size as the observed dynamic auroral fine structures. High-cadence electric and magnetic field data from Swarm A reveals non-stationary electrodynamics involving reflected and interfering Alfvén waves and signatures of modulation consistent with trapping in the Ionospheric Alfvén Resonator (IAR). Together, these observations suggest a role for Alfven waves, perhaps also the IAR, in discrete arc dynamics on 0.2 - 10s timescales and 1-10 km spatial scales.

  4. Determination of hexavalent chromium in plastic certified reference materials by X-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Ohata, Masaki; Matsubayashi, Nobuyuki

    2014-01-01

    X-ray absorption fine structure (XAFS) analysis with transmission mode was used to determine the percentages of hexavalent chromium {Cr(VI)} in total Cr in plastic certified reference materials (CRMs). Cr-K edge X-ray absorption near-edge structure (XANES) spectra were observed and the normalized pre-edge peaks of the spectrum where absorption data was summed was acquired for the determination of Cr(VI). Examination of different number of data point and range of photon energy for summed absorption of the pre-edge peak resulted in reproducible absorption data, though the measurements were carried out at different beam time and beam line. The concentrations of Cr(VI) in the plastic CRMs were also estimated from both the certified value of total Cr and the determined percentage of Cr(VI). The analytical procedure and the estimated concentrations can be useful for the determination of Cr(VI) in plastics with respect to RoHS (restriction of the use of hazardous substances in electrical and electronics equipment) directive

  5. Fine structure of tarsal sensory organs in the whip spider Admetus pumilio (Amblypygi, Arachnida).

    Science.gov (United States)

    Foelix, R F; Chu-Wang, I W; Beck, L

    1975-01-01

    The sensory organs on the tarsi of the antenniform first legs of the whip spider Admetus pumilio C. L. Koch (Amblypygi, Arachnida) were examined with the scanning and transmission electron microscope. At least four different types of hair sensilla were found: (1) thick-walled bristles, which have the characteristics of contact chemoreceptors (several chemoreceptive dendrites in the lumen plus two mechanoreceptors at the base); (2) short club sensilla, innervated by 4-6 neurons which terminate in a pore on the tip; they are possibly humidity receptors; (3) porous sensilla, which are either innervated by 20-25 neurons and have typical pore tubules, or they have 40-45 neurons but no pore tubules; both types are considered to be olfactory; (4) rod sensilla occur in clusters near segmental borders; they are innervated by only one large dendrite which branches inside the lumen. Other tarsal receptors are the claws, which correspond to contact chemoreceptors, and the pit organ which resembles the tarsal organ of spiders. Compared to other arthropod sensilla, the contact chemoreceptors are very similar to those of spiders, while the porous sensilla correspond structurally to olfactory receptors in insects; the club and rod sensilla seem to be typical for amblypygids.

  6. High Resolution Inkjet Printed Oxide Thin Film Transistors with Self-Aligned Fine Channel Bank Structure.

    Science.gov (United States)

    Zhang, Qing; Shao, Shuangshuang; Chen, Zheng; Pecunia, Vincenzo; Xia, Kai; Zhao, Jianwen; Cui, Zheng

    2018-04-12

    A self-aligned inkjet printing process has been developed to construct small channel metal oxide (a-IGZO) thin-film transistors (TFTs) with independent bottom gates on transparent glass substrates. Poly(methylsilsesquioxane) (PMSQ) was used to pattern hydrophobic banks on the transparent substrate instead of commonly used self-assembled octadecyltrichlorosilane (OTS). Photolithographic exposure from backside using bottom gate electrodes as mask formed hydrophilic channel areas for the TFTs. IGZO ink was selectively deposited by an inkjet printer in the hydrophilic channel region and confined by the hydrophobic bank structure, resulting in the precise deposition of semiconductor layers just above the gate electrodes. Inkjet-printed IGZO TFTs with independent gate electrodes of 10 μm width have been demonstrated, avoiding completely printed channel beyond the broad of the gate electrodes. The TFTs showed on/off ratios of 10 8 , maximum mobility of 3.3 cm 2 V -1 s -1 , negligible hysteresis and good uniformity. This method is conductive to minimizing the area of printed TFTs so as to the development of high resolution printing displays.

  7. Fine structure of the bird parasites Trichomonas gallinae and Tetratrichomonas gallinarum from cultures.

    Science.gov (United States)

    Mehlhorn, Heinz; Al-Quraishy, Saleh; Aziza, Amin; Hess, Michael

    2009-09-01

    The trophozoites of Trichomonas gallinae and Tetratrichomonas gallinarum were studied by means of light and electron microscopy after cloning and cultivating them axenically. T. gallinae trophozoites varied in shape reaching from ovoidal to pyriform and had a size of about 7-11 microm. They were provided with four free flagella and a fifth recurrent one, which did not become free at the posterior pole. The nucleus was ovoid, had a size of about 2.5-3 microm, and was situated closely below the basal bodies of the flagella. The axostyle consisted of a row of microtubules running from the region of the apical basal bodies to the posterior end of the cell. In addition to flagellated stages, which contained food vacuoles, hydrogenosomes, a costa-like structure, and glycogen granules besides lacunes of endoplasmic reticulum, spherical, nonflagellated, and cyst-like stages occurred. The trophozoites of T. gallinarum appeared mostly pear-shaped and ranged in size from 6 to 15 microm. They had also four free anterior flagella and a fifth recurrent one, which became free at the posterior pole in contrast to that of T. gallinae. Another clearly visible difference to T. gallinae was the occurrence of a sphere of lacunes of the endoplasmic reticulum surrounding in a regular distance the nucleus with its typical perinuclear membranes. Furthermore, the food vacuoles appeared very large. However, both species clearly differed from the trophozoites of Histomonas meleagridis.

  8. PDI Derivative through Fine-Tuning Molecular Structure for Fullerene-Free Organic Solar Cells

    KAUST Repository

    Sun, Hua

    2017-08-10

    A perylenediimide (PDI)-based small molecular (SM) acceptor with both an extended π-conjugation and a three dimensional structure concurrently is critical for achieving high performance PDI-based fullerene-free organic solar cells (OSCs). In this work, we designed and synthesized a novel PDI-based SM acceptor possessing both characteristics by fusing PDI units with a spiro core of 4,4’-spirobi[cyclopenta[2,1-b;3,4-b’]dithiophene(SCPDT) through the -position of the thiophene rings. An enhanced strong absorption in the range of 350–520 nm and arisen LUMO energy level of FSP was observed, compared with previous reported acceptor SCPDT-PDI4, in which the PDI units and SCPDT are not fused. OSCs based on PTB7-Th donor and FSP acceptor were fabricated and achieved a power conversion efficiency of up to 8.89% with DPE as an additive. Efficient and complementary photo absorption, favorable phase separation and balanced carrier mobilites in the blend film account for the high photovoltaic performance. This study offers an effective strategy to design high performance PDI-based acceptors.

  9. Effect of Hf on the fine structure of mesophyll cells from Glycine max, Merr

    Energy Technology Data Exchange (ETDEWEB)

    Wei, L.; Miller, G.W.

    1972-04-01

    A series of ultrastructural changes were observed in soybean leaves fumigated with 40 to 50 ppb of hydrogen fluoride. In the cytoplasm the presence of small vacuoles was the first noticeable initial change. The fragmentation of the vacuolar membrane occurred either simultaneously or followed immediately. Lipid-droplet-like globules and numerous vesicles occurred subsequently in the cytoplasm and increased as the injury became more severe. There was a decrease in polysomes and a detachment of ribosome from the rough endoplasmic reticulum. Free ribosome concentration also decreased as the injury became severe. Mitochondrial modifications involving dilation of outer and cristae membranes followed by reduction of both cristae number and matrix electron density and the disappearance of mitochondrial granules were observed in the chlorotic leaves. Electron dense inclusions accumulated in some mitochondria as well. The first noticeable change observed in the chloroplast was the presence of clusters of phytoferritin granules within the stoma after only 2 days of fumigation. Alterations in nuclear structures were observed in later stages of injury. Numerous small electron dense particles were found on various types of membranes in cells of severely chlorotic leaves. They were distributed on outer mitochondrial membranes, endoplasmic reticula, dictyosomes, tonoplasts, plasmalemma, nuclear envelopes, and disintegrating organelles and vesicles, but were never observed on membranes of chloroplasts and microbodies. The presence of fluoride has attracted the attention of many workers primarily in certain industrial areas where the emitted atmospheric fluoride concentrates and is accumulated by plants initiating injury. 6 references.

  10. Analysis of fine structure of X-ray spectra from laser-irradiated gold dot

    International Nuclear Information System (INIS)

    Yang Guohong; Zhang Jiyan; Zhang Baohan; Zhou Yuqing; Li Jun

    2000-01-01

    The X-ray emission spectra from highly stripped plasma of gold has been observed by focusing a Nd-glass frequency tripled laser beam onto the surface of the gold dot at the XINGGUANG II laser facilities. The spectra of gold ions in the range of 0.0003 nm-0.0004 nm was recorded using the plate PET (2d = 0.8742 nm) crystal spectrometer. The code of average energy of relativistic sub-arrays was built on the basis of the code MCDF (Multi-Configuration-Dirac-Fock). Using the spin-orbit-split-arrays (SOSA) formalism, mean wavelengths and full widths at half height of isolated peaks of sub-arrays of lower charged gold ions, isoelectronic with Cu, Zn, Ga and Ge, was calculated. Twenty-six lines are interpreted, they pertain mainly to transitions of 3d-nf (n = 5,6,7) of gold ions from Ni-like to As-like. These results of experiment and calculation have important application in plasma diagnostics and examination of high Z elemental atomic structure calculation

  11. Study of structure and spectroscopy of water–hydroxide ion clusters ...

    Indian Academy of Sciences (India)

    Experimen- talists are interested in determining the bonding,1–18 structure and spectroscopy of these systems and the- oreticians have contributed to the logical explanation of experimental findings. There are different types of systems ranging from atomic clusters, especially noble gas clusters (modelled by Lennard Jones ...

  12. Structural investigation of bistrifluron using x-ray crystallography, NMR spectroscopy, and molecular modeling

    CERN Document Server

    Moon, J K; Rhee, S K; Kim, G B; Yun, H S; Chung, B J; Lee, S S; Lim, Y H

    2002-01-01

    A new insecticide, bistrifluron acts as an inhibitor of insect development and interferes with the cuticle formation of insects. Since it shows low acute oral and dermal toxicities, it can be one of potent insecticides. Based on X-ray crystallography, NMR spectroscopy and molecular modeling, the structural studies of bistrifluron have been carried out.

  13. Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis

    Science.gov (United States)

    Nicole Labbe; David Harper; Timothy Rials; Thomas Elder

    2006-01-01

    In this work, the effect of temperature on charcoal structure and chemical composition is investigated for four tree species. Wood charcoal carbonized at various temperatures is analyzed by mid infrared spectroscopy coupled with multivariate analysis and by thermogravimetric analysis to characterize the chemical composition during the carbonization process. The...

  14. UV photoelectron yield spectroscopy of chalcopyrite structure Cu-In-Se thin films

    International Nuclear Information System (INIS)

    Kohiki, Shigemi; Nishitani, Mikihiko; Negami, Takayuki; Wada, Takahiro; Monjushiro, Hideaki; Watanabe, Iwao; Yokoyama, Yu

    1994-01-01

    Surface-sensitive UV photoelectron yield spectroscopy was employed to study electron acceptor levels at surfaces of chalcopyrite structure Cu-In-Se thin films. Surface Fermi level pinning was observed for Cu-rich films. Shallow acceptor levels ascribable to defects Cu In and V Cu were observed for near-stoichiometric and In-rich films respectively. (orig.)

  15. Electronic structure studies of BaFe2As2 by angle-resolved photoemission spectroscopy

    NARCIS (Netherlands)

    Fink, J.; Thirupathaiah, R.; Ovsyannikov, R.; Dürr, H.A.; Follath, R.; Huang, Y.; de Jong, S.; Golden, M.S.; Zhang, Y.Z.; Jeschke, H.O.; Valentí, R.; Felser, C.; Dastjani Farahani, S.; Rotter, M.; Johrendt, D.

    2009-01-01

    We report high resolution angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of BaFe2As2, which is one of the parent compounds of the Fe-pnictide superconductors. ARPES measurements have been performed at 20 and 300 K, corresponding to the orthorhombic

  16. Structural Evolution in Photoactive Yellow Protein Studied by Femtosecond Stimulated Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yoshizawa M.

    2013-03-01

    Full Text Available Ultrafast structural evolution in photoactive yellow protein (PYP is studied by femtosecond stimulated Raman spectroscopy. A comparison between wild-type PYP and E46Q mutant reveals that the hydrogen-bonding network surrounding the chromophore of PYP is immediately rearranged in the electronic excited state.

  17. High energy photoelectron spectroscopy in basic and applied science: Bulk and interface electronic structure

    International Nuclear Information System (INIS)

    Knut, Ronny; Lindblad, Rebecka; Gorgoi, Mihaela; Rensmo, Håkan; Karis, Olof

    2013-01-01

    Highlights: •We demonstrate how hard X-ray photoelectron spectroscopy can be used to investigate interface properties of multilayers. •By combining HAXPES and statistical methods we are able to provide quantitative analysis of the interface diffusion process. •We show how photoionization cross sections can be used to map partial density of states contributions to valence states. •We use HAXPES to provide insight into the valence electronic structure of e.g. multiferroics and dye-sensitized solar cells. -- Abstract: With the access of new high-performance electron spectrometers capable of analyzing electron energies up to the order of 10 keV, the interest for photoelectron spectroscopy has grown and many new applications of the technique in areas where electron spectroscopies were considered to have limited use have been demonstrated over the last few decades. The technique, often denoted hard X-ray photoelectron spectroscopy (HX-PES or HAXPES), to distinguish the experiment from X-ray photoelectron spectroscopy performed at lower energies, has resulted in an increasing interest in photoelectron spectroscopy in many areas. The much increased mean free path at higher kinetic energies, in combination with the elemental selectivity of the core level spectroscopies in general has led to this fact. It is thus now possible to investigate the electronic structure of materials with a substantially enhanced bulk sensitivity. In this review we provide examples from our own research using HAXPES which to date has been performed mainly at the HIKE facility at the KMC-1 beamline at HZB, Berlin. The review exemplifies the new opportunities using HAXPES to address both bulk and interface electronic properties in systems relevant for applications in magnetic storage, energy related research, but also in purely curiosity driven problems

  18. GDF9 and BMP15 Expressions and Fine Structure Changes During Folliculogenesis in Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Meryem İlkay Karagül1

    2018-02-01

    Full Text Available Background: Polycystic ovary syndrome is the most frequently seen endocrine disorder in women of reproductive age with a prevalence of about 10%. Aims: To investigate the efficiency of growth differentiation factor 9 and bone morphogenetic protein 15 during folliculogenesis in a dehydroepiandrosterone-induced mouse Polycystic ovary syndrome model. Study Design: Animal experimentation. Methods: Mice were divided into 3 groups: control, vehicle and Polycystic ovary syndrome. Polycystic ovary syndrome model mice were developed by the injection of dehydroepiandrosterone dissolved in 0.1 mL of sesame oil. Ovarian tissues were examined for growth differentiation factor 9 and bone morphogenetic protein 15 using immunofluorescent labelling and electron microscopic examinations. Results: The immunoreactivity of growth differentiation factor 9 and bone morphogenetic protein 15 proteins decreased (p<0.05 in the Polycystic ovary syndrome group (27.73±8.43 and 24.85±7.03, respectively compared with the control group (33.72±11.22 and 31.12±11.05, respectively and vehicle group (33.95±10.75 and 29.99±10.72, respectively. Apoptotic changes were observed in granulosa cells, lipid vacuoles increased in Theca cells and thickening and irregularities were noted in the basal lamina of granulosa cells. An increased electron density in the zona pellucida in some of the multilaminar primary and secondary follicles in the Polycystic ovary syndrome model was also observed at the ultrastructural level. Conclusion: These results suggest that the decrease in the growth differentiation factor 9 and bone morphogenetic protein 15 expression initiated at the primary follicle stage effect the follicle development and zona pellucida structure and may cause subfertility or infertility in Polycystic ovary syndrome

  19. GDF9 and BMP15 Expressions and Fine Structure Changes During Folliculogenesis in Polycystic Ovary Syndrome.

    Science.gov (United States)

    Karagül, Meryem İlkay; Aktaş, Savaş; Coşkun Yılmaz, Banu; Yılmaz, Mustafa; Orekici Temel, Gülhan

    2018-01-20

    Polycystic ovary syndrome is the most frequently seen endocrine disorder in women of reproductive age with a prevalence of about 10%. To investigate the efficiency of growth differentiation factor 9 and bone morphogenetic protein 15 during folliculogenesis in a dehydroepiandrosterone-induced mouse Polycystic ovary syndrome model. Animal experimentation. Mice were divided into 3 groups: control, vehicle and Polycystic ovary syndrome. Polycystic ovary syndrome model mice were developed by the injection of dehydroepiandrosterone dissolved in 0.1 mL of sesame oil. Ovarian tissues were examined for growth differentiation factor 9 and bone morphogenetic protein 15 using immunofluorescent labelling and electron microscopic examinations. The immunoreactivity of growth differentiation factor 9 and bone morphogenetic protein 15 proteins decreased (pPolycystic ovary syndrome group (27.73±8.43 and 24.85±7.03, respectively) compared with the control group (33.72±11.22 and 31.12±11.05, respectively) and vehicle group (33.95±10.75 and 29.99±10.72, respectively). Apoptotic changes were observed in granulosa cells, lipid vacuoles increased in Theca cells and thickening and irregularities were noted in the basal lamina of granulosa cells. An increased electron density in the zona pellucida in some of the multilaminar primary and secondary follicles in the Polycystic ovary syndrome model was also observed at the ultrastructural level. These results suggest that the decrease in the growth differentiation factor 9 and bone morphogenetic protein 15 expression initiated at the primary follicle stage effect the follicle development and zona pellucida structure and may cause subfertility or infertility in Polycystic ovary syndrome.

  20. Electronic Structure and Spectroscopy of HBr and HBr^+

    Science.gov (United States)

    Vazquez, Gabriel J.; Liebermann, H. P.; Lefebvre-Brion, H.

    2016-06-01

    We report preliminary ab initio electronic structure calculations of HBr and HBr^+. The computations were carried out employing the MRD-CI package, with a basis set of cc-pVQZ quality augmented with s--, p-- and d--type diffuse functions. In a first series of calculations, without inclusion of spin--orbit splitting, potential energy curves of about 20 doublet and quartet electronic states of HBr^+, and about 30 singlet and triplet (valence and Rydberg) states of HBr were computed. This exploratory step provides a perspective of the character, shape, leading configurations, energetics, and asymptotic behaviour of the electronic states. The calculations taking into account spin-orbit are currently being performed. Our study focuses mainly on the Rydberg states and their interactions with the repulsive valence states and with the bound valence ion-pair state. In particular, the current calculations seek to provide information that might be relevant to the interpretation of recent REMPI measurements which involve the interaction between the diabatic E^1Σ^+ Rydberg state and the diabatic V^1Σ^+ ion--pair state (which together constitute the adiabatic, double-well, B^1Σ^+ state). Several new states of both HBr and HBr^+ are reported. D. Zaouris, A. Kartakoullis, P. Glodic, P. C. Samartzis, H. R. Hródmarsson, Á. Kvaran, Phys. Chem. Chem. Phys., 17, 10468 (2015)

  1. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  2. Structure of ion-plated amorphous hydrogenated carbon films investigated by electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Muehling, I.; Bewilogua, K.; Breuer, K. (Sektion Physik/Elektronische Bauelemente, Technische Univ., Karl-Marx-Stadt (German Democratic Republic))

    1990-05-15

    Thin ion-plated amorphous hydrogenated carbon films were investigated by electron energy loss spectroscopy. From an analysis of the dielectric function, information on the film structure could be obtained. The results will be compared with those of electron diffraction studies. Differences between insulating and conducting substrates could be verified in the film structure and are related to surface charging effects. From an analysis of the oscillator strength sum rule the content of C sp{sup 2} atoms was estimated. (orig.).

  3. Electronic structure of Sr2RuO4 studied by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Iwasawa, H.; Aiura, Y.; Saitoh, T.; Yoshida, Y.; Hase, I.; Ikeda, S.I.; Bando, H.; Kubota, M.; Ono, K.

    2007-01-01

    Electronic structure of the monolayer strontium ruthenate Sr 2 RuO 4 was investigated by high-resolution angle-resolved photoemission spectroscopy. We present photon-energy (hν) dependence of the electronic structure near the Fermi level along the ΓM line. The hν dependence has shown a strong spectral weight modulation of the Ru 4d xy and 4d zx bands

  4. Communication: Evidence of structural phase transitions in silicalite-1 by infrared spectroscopy

    Science.gov (United States)

    Ballandras, Anthony; Weber, Guy; Paulin, Christian; Bellat, Jean-Pierre; Rotger, Maud

    2013-09-01

    The adsorption of trichloroethylene, perchloroethylene, and p-xylene on a MFI (Mobile-FIve) zeolite is studied using in situ FTIR spectroscopy at 298 K. Spectra of self-supported zeolites in contact with increasing pressures of pure gas were recorded at equilibrium in the mid-infrared domain. Analysis of the evolution of the shape and location of vibrational bands of the zeolite as a function of the amount adsorbed allowed the observation of structural modifications of the adsorbent for the first time by infrared spectroscopy.

  5. Spectroscopy of Deep Traps in Cu2S-CdS Junction Structures

    Directory of Open Access Journals (Sweden)

    Eugenijus Gaubas

    2012-12-01

    Full Text Available Cu2S-CdS junctions of the polycrystalline material layers have been examined by combining the capacitance deep level transient spectroscopy technique together with white LED light additional illumination (C-DLTS-WL and the photo-ionization spectroscopy (PIS implemented by the photocurrent probing. Three types of junction structures, separated by using the barrier capacitance characteristics of the junctions and correlated with XRD distinguished precipitates of the polycrystalline layers, exhibit different deep trap spectra within CdS substrates.

  6. Laser-spectroscopy studies of the nuclear structure of neutron-rich radium

    Science.gov (United States)

    Lynch, K. M.; Wilkins, S. G.; Billowes, J.; Binnersley, C. L.; Bissell, M. L.; Chrysalidis, K.; Cocolios, T. E.; Goodacre, T. Day; de Groote, R. P.; Farooq-Smith, G. J.; Fedorov, D. V.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Heinke, R.; Koszorús, Á.; Marsh, B. A.; Molkanov, P. L.; Naubereit, P.; Neyens, G.; Ricketts, C. M.; Rothe, S.; Seiffert, C.; Seliverstov, M. D.; Stroke, H. H.; Studer, D.; Vernon, A. R.; Wendt, K. D. A.; Yang, X. F.

    2018-02-01

    The neutron-rich radium isotopes, Ra-233222, were measured with Collinear Resonance Ionization Spectroscopy (CRIS) at the ISOLDE facility, CERN. The hyperfine structure of the 7 s2S10→7 s 7 p P31 transition was probed, allowing measurement of the magnetic moments, quadrupole moments, and changes in mean-square charge radii. These results are compared to existing literature values, and the new moments and change in mean-square charge radii of 231Ra are presented. Low-resolution laser spectroscopy of the very neutron-rich 233Ra has allowed the isotope shift and relative charge radius to be determined for the first time.

  7. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  8. Observational study on the fine structure and dynamics of a solar jet. II. Energy release process revealed by spectral analysis

    Science.gov (United States)

    Sakaue, Takahito; Tei, Akiko; Asai, Ayumi; Ueno, Satoru; Ichimoto, Kiyoshi; Shibata, Kazunari

    2018-01-01

    We report on a solar jet phenomenon associated with the C5.4 class flare on 2014 November 11. The data of the jet was provided by the Solar Dynamics Observatory, the X-Ray Telescope (XRT) aboard Hinode, and the Interface Region Imaging Spectrograph and Domeless Solar Telescope (DST) at Hida Observatory, Kyoto University. These plentiful data enabled us to present this series of papers to discuss all the processes of the observed phenomena, including energy storage, event trigger, and energy release. In this paper, we focus on the energy release process of the observed jet, and mainly describe our spectral analysis on the Hα data of DST to investigate the internal structure of the Hα jet and its temporal evolution. This analysis reveals that in the physical quantity distributions of the Hα jet, such as line-of-sight velocity and optical thickness, there is a significant gradient in the direction crossing the jet. We interpret this internal structure as the consequence of the migration of the energy release site, based on the idea of ubiquitous reconnection. Moreover, by measuring the horizontal flow of the fine structures in the jet, we succeeded in deriving the three-dimensional velocity field and the line-of-sight acceleration field of the Hα jet. The analysis result indicates that part of the ejecta in the Hα jet experienced additional acceleration after it had been ejected from the lower atmosphere. This secondary acceleration was found to occur in the vicinity of the intersection between the trajectories of the Hα jet and the X-ray jet observed by Hinode/XRT. We propose that a fundamental cause of this phenomenon is magnetic reconnection involving the plasmoid in the observed jet.

  9. Fine Structure of Diffuse Scattering Rings in Al-Li-Cu Quasicrystal: A Comparative X-ray and Electron Diffraction Study

    Science.gov (United States)

    Donnadieu, P.; Dénoyer, F.

    1996-11-01

    A comparative X-ray and electron diffraction study has been performed on Al-Li-Cu icosahedral quasicrystal in order to investigate the diffuse scattering rings revealed by a previous work. Electron diffraction confirms the existence of rings but shows that the rings have a fine structure. The diffuse aspect on the X-ray diffraction patterns is then due to an averaging effect. Recent simulations based on the model of canonical cells related to the icosahedral packing give diffractions patterns in agreement with this fine structure effect. Nous comparons les diagrammes de diffraction des rayon-X et des électrons obtenus sur les mêmes échantillons du quasicristal icosaèdrique Al-Li-Cu. Notre but est d'étudier les anneaux de diffusion diffuse mis en évidence par un travail précédent. Les diagrammes de diffraction électronique confirment la présence des anneaux mais ils montrent aussi que ces anneaux possèdent une structure fine. L'aspect diffus des anneaux révélés par la diffraction des rayons X est dû à un effet de moyenne. Des simulations récentes basées sur la décomposition en cellules canoniques de l'empilement icosaédrique produisent des diagrammes de diffraction en accord avec ces effects de structure fine.

  10. Differential cross sections of fine-structure transitions in K(4P)-He and -Ar collisions

    International Nuclear Information System (INIS)

    Mestdagh, J.M.; de Pujo, P.; Pascale, J.; Cuvellier, J.; Berlande, J.

    1987-01-01

    Differential cross sections for the transition K(4P/sub 3/2/→4P/sub 1/2/) induced by He and Ar have been studied both experimentally and theoretically. Calculations were performed using a full quantal close-coupling formalism. The angular distribution of the scattered atoms is measured by Doppler shift (ADDS method). The comparison with the theoretical calculations is performed on the basis of thorough kinematic analysis. In addition, the polarization effects corresponding to the experimental conditions are taken into account carefully. This allows one to test the accuracy of various interaction potentials available for the K-He and -Ar systems. The most interesting result concerns the K-He l-dependent pseudopotentials, which are found accurate to a sufficiently high level to allow good predictions of the observed differential cross-section patterns. In particular the positions and amplitudes of the cross-section oscillations at large center-of-mass scattering angles are well reproduced. The results for Ar show that the K-Ar potentials must be improved. Finally, taking the K(4P)-He fine-structure transition as an example, it has been shown how polarization effects may be used in ADDS measurements to obtain information on the dynamics of the collision process

  11. Relationship of magnetic field strength and brightness of fine-structure elements in the solar temperature minimum region

    Science.gov (United States)

    Cook, J. W.; Ewing, J. A.

    1990-01-01

    A quantitative relationship was determined between magnetic field strength (or magnetic flux) from photospheric magnetograph observations and the brightness temperature of solar fine-structure elements observed at 1600 A, where the predominant flux source is continuum emission from the solar temperature minimum region. A Kitt Peak magnetogram and spectroheliograph observations at 1600 A taken during a sounding rocket flight of the High Resolution Telescope and Spectrograph from December 11, 1987 were used. The statistical distributions of brightness temperature in the quiet sun at 1600 A, and absolute value of magnetic field strength in the same area were determined from these observations. Using a technique which obtains the best-fit relationship of a given functional form between these two histogram distributions, a quantitative relationship was determined between absolute value of magnetic field strength B and brightness temperature which is essentially linear from 10 to 150 G. An interpretation is suggested, in which a basal heating occurs generally, while brighter elements are produced in magnetic regions with temperature enhancements proportional to B.

  12. Fine-scale spatial genetic structure of Dalbergia nigra (Fabaceae), a threatened and endemic tree of the Brazilian Atlantic Forest.

    Science.gov (United States)

    de Oliveira Buzatti, Renata Santiago; Ribeiro, Renata Acácio; de Lemos Filho, José Pires; Lovato, Maria Bernadete

    2012-12-01

    The Atlantic Forest is one of the most diverse ecosystems in the world and considered a hotspot of biodiversity conservation. Dalbergia nigra (Fabaceae) is a tree endemic to the Brazilian Atlantic Forest, and has become threatened due to overexploitation of its valuable timber. In the present study, we analyzed the genetic diversity and fine-scale spatial genetic structure of D. nigra in an area of primary forest of a large reserve. All adult individuals (N = 112) were sampled in a 9.3 ha plot, and genotyped for microsatellite loci. Our results indicated high diversity with a mean of 8.6 alleles per locus, and expected heterozygosity equal to 0.74. The co-ancestry coefficients were significant for distances among trees up to 80 m. The Sp value was equal to 0.017 and indirect estimates of gene dispersal distances ranged from 89 to 144 m. No strong evidence of bottleneck or effects of human-disturbance was found. This study highlights that long-term efforts to protect a large area of Atlantic Forest have been effective towards maintaining the genetic diversity of D. nigra. The results of this study are important towards providing a guide for seed collection for ex-situ conservation and reforestation programmes of this threatened species.

  13. Fine-structure relaxation of O(3P) induced by collisions with He, H and H2

    Science.gov (United States)

    Lique, F.; Kłos, J.; Alexander, M. H.; Le Picard, S. D.; Dagdigian, P. J.

    2018-02-01

    The excitation of fine-structure levels of O(3P) by collisions is an important cooling process in the interstellar medium (ISM). We investigate here spin-orbit (de-)excitation of O(3Pj, j = 0, 1, 2) induced by collisions with He, H and H2 based on quantum scattering calculations of the relevant rate coefficients in the 10-1000 K temperature range. The underlying potential energy surfaces are derived from highly correlated abinitio calculations. Significant differences were found with the rate coefficients currently used in astrophysical applications. In particular, our new rate coefficients for collisions with H are up to a factor of 5 lower. Radiative transfer computations allow the assessment of the astrophysical impact of these new rate coefficients. In the case of molecular clouds, the new data are found to increase slightly the flux of the 3P1 → 3P2, while decreasing the flux of the 3P0 → 3P1 line. In the case of atomic clouds, the flux of both lines is predicted to decrease. The new rate coefficients are expected to impact significantly the modelling of cooling in astrophysical environments while also allowing new insights into oxygen chemistry in the ISM.

  14. Fine scale spatial genetic structure in Pouteria reticulata (Engl. Eyma (Sapotaceae, a dioecious, vertebrate dispersed tropical rain forest tree species

    Directory of Open Access Journals (Sweden)

    John W. Schroeder

    2014-08-01

    Full Text Available Dioecious tropical tree species often have small flowers and fleshy fruits indicative of small-insect pollination and vertebrate seed dispersal. We hypothesize that seed mediated gene flow should be exceed pollen-mediated gene flow in such species, leading to weak patterns of fine scale spatial genetic structure (SGS. In the present study, we characterize novel microsatellite DNA markers and test for SGS in sapling (N=100 and adult trees (N=99 of the dioecious canopy tree Pouteria reticulata (Sapotaceae in a 50 ha forest dynamics plot on Barro Colorado Island (BCI, Panama. The five genetic markers contained between five and 15 alleles per locus, totaling 51 alleles in the sample population. Significant SGS at local spatial scales (<100m was detected in the sapling (dbh≈1cm and adult (dbh≥20cm size classes, but was stronger in the former (sapling Sp=0.010±0.004, adult Sp=0.006±0.002, suggesting demographic thinning. The degree of SGS was lower than the value expected for non-vertebrate dispersed tropical trees (Sp=0.029, but similar to the average value for vertebrate dispersed tropical trees (Sp=0.009 affirming the dispersal potential of vertebrate dispersed tropical trees in faunally intact forests.

  15. Dark energy and equivalence principle constraints from astrophysical tests of the stability of the fine-structure constant

    Energy Technology Data Exchange (ETDEWEB)

    Martins, C.J.A.P.; Pinho, A.M.M.; Alves, R.F.C. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Pino, M. [Institut Domènech i Montaner, C/Maspujols 21-23, 43206 Reus (Spain); Rocha, C.I.S.A. [Externato Ribadouro, Rua de Santa Catarina 1346, 4000-447 Porto (Portugal); Wietersheim, M. von, E-mail: Carlos.Martins@astro.up.pt, E-mail: Ana.Pinho@astro.up.pt, E-mail: up201106579@fc.up.pt, E-mail: mpc_97@yahoo.com, E-mail: cisar97@hotmail.com, E-mail: maxivonw@gmail.com [Institut Manuel Sales i Ferré, Avinguda de les Escoles 6, 43550 Ulldecona (Spain)

    2015-08-01

    Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α, are becoming an increasingly powerful probe of new physics. Here we discuss how these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ, to the electromagnetic sector) the α variation. Specifically, current data tightly constrains a combination of ζ and the present dark energy equation of state w{sub 0}. Moreover, in these models the new degree of freedom inevitably couples to nucleons (through the α dependence of their masses) and leads to violations of the Weak Equivalence Principle. We obtain indirect bounds on the Eötvös parameter η that are typically stronger than the current direct ones. We discuss the model-dependence of our results and briefly comment on how the forthcoming generation of high-resolution ultra-stable spectrographs will enable significantly tighter constraints.

  16. Fine structures and ion images on fresh frozen dried ultrathin sections by transmission electron and scanning ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Takaya, K.; Okabe, M.; Sawataishi, M.; Takashima, H.; Yoshida, T

    2003-01-15

    Ion microscopy (IM) of air-dried or freeze-dried cryostat and semi-thin cryosections has provided ion images of elements and organic substances in wide areas of the tissue. For reproducible ion images by a shorter time of exposure to the primary ion beam, fresh frozen dried ultrathin sections were prepared by freezing the tissue in propane chilled with liquid nitrogen, cryocut at 60 nm, mounted on grids and silicon wafer pieces, and freeze-dried. Rat Cowper gland and sciatic nerve, bone marrow of the rat administered of lithium carbonate, tree frog and African toad spleen and buffy coat of atopic dermatitis patients were examined. Fine structures and ion images of the corresponding areas in the same or neighboring sections were observed by transmission electron microscopy (TEM) followed by sector type and time-of-flight type IM. Cells in the buffy coat contained larger amounts of potassium and magnesium while plasma had larger amounts of sodium and calcium. However, in the tissues, lithium, sodium, magnesium, calcium and potassium were distributed in the cell and calcium showed a granular appearance. A granular cell of the tree frog spleen contained sodium and potassium over the cell and magnesium and calcium were confined to granules.

  17. Fine structure of changes produced in cultured cells sampled at specified intervals during a single growth cycle of polio virus.

    Science.gov (United States)

    KALLMAN, F; WILLIAMS, R C; DULBECCO, R; VOGT, M

    1958-05-25

    Primary suspended cultures of rhesus monkey kidney cells were infected with poliomyelitis virus, type 1 (Brunhilde strain). The release of virus from these cells over a one-step growth curve was correlated with their change in fine structure, as seen in the electron microscope. Most of the cells were infected nearly simultaneously, and morphological changes developed in the cells were sufficiently synchronous to be classified into three stages. The earliest change (stage I) became visible at a time when virus release into the culture fluid begins, some 3 hours after adsorption. Accentuation of the abnormal characteristics soon occurs, at 4 to 7 hours after adsorption, and results in stage II. Stage III represents the appearance of cells after their rate of virus release had passed its maximum, and probably the abnormal morphology of these cells reflects non-specific physiological damage. There seems to be consistency between the previously described cellular changes as seen under the light microscope and the finer scale changes reported here. Cytoplasmic bodies, called U bodies, were seen in large number at the time when the virus release was the most rapid (stage II). While these bodies are not of proper size to be considered polio virus, they seem to be specifically related to the infection. No evidence was found for the presence of particles that could even be presumptively identified with those of polio virus.

  18. Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results

    Science.gov (United States)

    Murphy, M. T.; Webb, J. K.; Flambaum, V. V.; Dzuba, V. A.; Churchill, C. W.; Prochaska, J. X.; Barrow, J. D.; Wolfe, A. M.

    2001-11-01

    An experimental search for variation in the fundamental coupling constants is strongly motivated by modern high-energy physics theories. Comparison of quasar (QSO) absorption-line spectra with laboratory spectra provides a sensitive probe for variability of the fine-structure constant, α, over cosmological time-scales. We have previously developed and applied a new method providing an order-of-magnitude gain in precision over previous optical astrophysical constraints. Here we extend that work by including new quasar spectra of damped Lyman-α absorption systems. We also reanalyse our previous lower-redshift data and confirm our initial results. The constraints on α come from simultaneous fitting of absorption lines of subsets of the following species: Mgi, Mgii, Alii, Aliii, Siii, Crii, Feii, Niii and Znii. We present a detailed description of our methods and results based on an analysis of 49 quasar absorption systems (towards 28 QSOs) covering the redshift range [formmu2]0.5quote above is the raw value, not corrected for any of these systematic effects. The only significant systematic effects so far identified, if removed from our data, would lead to a more significant deviation of [formmu5]Δα/α from zero.

  19. Determination of the three-dimensional structure for weakly aligned biomolecules by NMR spectroscopy

    International Nuclear Information System (INIS)

    Shahkhatuni, Astghik A; Shahkhatuni, Aleksan G

    2002-01-01

    The key achievements and the potential of NMR spectroscopy for weakly aligned biomolecules are considered. Due to weak alignment, it becomes possible to determine a number of NMR parameters dependent on the orientation of biomolecules, which are averaged to zero in usual isotropic media. The addition of new orientational constraints to standard procedures of 3D structure determination markedly increases the achievable accuracy. The possibility of structure determination for biomolecules using only orientation-dependent parameters without invoking other NMR data is discussed. The methods of orientation, experimental techniques, and calculation methods are systematised. The main results obtained and the prospects of using NMR spectroscopy of weakly aligned systems to study different classes of biomolecules and to solve various problems of molecular biology are analysed. Examples of biomolecules whose structures have been determined using orientation-dependent parameters are given. The bibliography includes 508 references.

  20. The Fine Structure Constant

    Indian Academy of Sciences (India)

    IAS Admin

    important parameter in the field of atomic struc- ture. The values of the constants of ... tions in their core that produce carbon. As a result, .... atom in 1913. In other words, the size of a hydrogen atom is a factor α−2 ≈ 20000 times the size of an elec- tron. Another way of looking at α is to consider the ratio of the orbital speed of ...

  1. Down-regulation of an Auxin Response Factor in the tomato induces modification of fine pectin structure and tissue architecture.

    Science.gov (United States)

    Guillon, Fabienne; Philippe, Sully; Bouchet, Brigitte; Devaux, Marie-Françoise; Frasse, Pierre; Jones, Brian; Bouzayen, Mondher; Lahaye, Marc

    2008-01-01

    It has previously been shown that down-regulation of an auxin response factor gene (DR12) results in pleiotropic phenotypes including enhanced fruit firmness in antisense transgenic tomato (AS-DR12). To uncover the nature of the ripening-associated modifications affecting fruit texture, comparative analyses were performed of pectin composition and structure in cell wall pericarp tissue of wild-type and AS-DR12 fruit at mature green (MG) and red-ripe (RR) stages. Throughout ripening, pectin showed a decrease in methyl esterification and in the content of galactan side chains in both genotypes. At mature green stage, pectin content in methyl ester groups was slightly higher in AS-DR12 fruit than in wild type, but this ratio was reversed at the red-ripe stage. The amount of water- and oxalate-soluble pectins increased at the red-ripe stage in the wild type, but decreased in AS-DR12. The distribution of methyl ester groups on the homogalaturonan backbone differed between the two genotypes. There was no evidence of more calcium cross-linked homogalacturan involved in cell-to-cell adhesion in AS-DR12 compared with wild-type fruit. Furthermore, the outer pericarp contains higher proportion of small cells in AS-DR12 fruit than in wild type and higher occurrence of (1-->5) alpha-L-arabinan epitope at the RR stage. It is concluded that the increased firmness of transgenic fruit does not result from a major impairment of ripening-related pectin metabolism, but rather involves differences in pectin fine structure associated with changes in tissue architecture.

  2. Probing the structural details of xylan degradation by real-time NMR spectroscopy

    DEFF Research Database (Denmark)

    Petersen, Bent O.; Lok, Finn; Meier, Sebastian

    2014-01-01

    fraction of cereal cell wall polysaccharides consists of arabinoxylans. Arabinoxylan and its degradation products are therefore present in a variety of agro-industrial residues and products. Here, we undertook to track the structural details of wheat arabinoxylan degradation with high resolution NMR...... spectroscopy. More than 15 carbohydrate residues were distinguished in the substrate and more than 20 residues in partially degraded samples without any sample cleanup. The resolution of a plethora of structural motifs in situ permits the readout of persisting structures in degradation processes...

  3. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers

    Science.gov (United States)

    Fan, Wendy

    2011-01-01

    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  4. Vibrational structure of the polyunsaturated fatty acids eicosapentaenoic acid and arachidonic acid studied by infrared spectroscopy

    Science.gov (United States)

    Kiefer, Johannes; Noack, Kristina; Bartelmess, Juergen; Walter, Christian; Dörnenburg, Heike; Leipertz, Alfred

    2010-02-01

    The spectroscopic discrimination of the two structurally similar polyunsaturated C 20 fatty acids (PUFAs) 5,8,11,14,17-eicosapentaenoic acid and 5,8,11,14-eicosatetraenoic acid (arachidonic acid) is shown. For this purpose their vibrational structures are studied by means of attenuated total reflection (ATR) Fourier-transform infrared (FT-IR) spectroscopy. The fingerprint regions of the recorded spectra are found to be almost identical, while the C-H stretching mode regions around 3000 cm -1 show such significant differences as results of electronic and molecular structure alterations based on the different degree of saturation that both fatty acids can be clearly distinguished from each other.

  5. Structure of cesium loaded iron phosphate glasses: An infrared and Raman spectroscopy study

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Premila, M.; Amarendra, G.; Govindan Kutty, K.V.; Sundar, C.S.; Vasudeva Rao, P.R.

    2012-01-01

    The structure of cesium loaded iron phosphate glasses (IPG) was investigated using infrared and Raman spectroscopy. The spectra of the cesium doped samples revealed a structural modification of the parent glass owing to the incorporation of cesium. The structural changes could be correlated with the variation observed in the glass transition temperature of these glasses. Increased Cs-mediated cationic cross linking appears to be the reason for the initial rise in glass transition temperature up to 21 mol% Cs 2 O in IPG; while, breakdown of the phosphate network with increasing cesium content, brings down the glass transition temperature.

  6. Line strengths, A-factors and absorption cross-sections for fine structure lines in multiplets and hyperfine structure components in lines in atomic spectrometry - a user's guide

    International Nuclear Information System (INIS)

    Axner, Ove; Gustafsson, Joergen; Omenetto, Nicolo; Winefordner, James D.

    2004-01-01

    This work summarizes and elucidates a number of fundamental concepts in atomic spectrometry regarding the 'strengths' of transitions between various energy levels and states in atoms. Although several of the expressions and rules for line strengths of transitions reported here can be found, in one way or another, in various books dealing with atomic structure, atomic spectrometry or quantum mechanics, the treatment in such books can be variously complex and difficult to follow for a non-experienced reader. In addition, detailed information about transition-specific 'strengths' of transitions used to be restricted to line strengths, whereas most experiments rather need transition-specific A-factors or transition-specific absorption cross-sections. This work therefore aims at pointing out the most important aspects of the concept of 'strengths' of transitions between various energy levels and states in atoms by presenting explicit expressions for not only relative and absolute line strengths but also oscillator strengths (f-values), A-factors and absorption cross-sections, for transitions between fine structure levels within a multiplet as well as for hyperfine structure components within a line (i.e. between hyperfine structure levels), including their mutual relations, in a consistent and user-friendly manner. The work also recapitulates the most important summation rules for line strengths, oscillator strengths (f-values), A-factors and absorption cross-sections for lines within multiplets and hyperfine structure components within lines. Many of the expressions are illustrated with clear and intelligible examples. For the sake of clarity and completeness, the work also comprises a short review of the nomenclature for atomic structure and transitions

  7. Effect of metal ion on the structure and function of LiPDF: The study of the fine structure around the metal site using XANES

    International Nuclear Information System (INIS)

    Wang Yu; Chu Wangsheng; Yang Feifei; Yu Meijuan; Zhao Haifeng; Gong Weimin; Dong Yuhui; Xie Yaning; Wu, Ziyu

    2010-01-01

    We used X-ray absorption near edge structure (XANES) spectroscopy to investigate the metal-dependent enzymatic activity of the peptide deformylase from Leptospira interrogans (LiPDF). Ab initio full multiple scattering calculations performed by MXAN are applied to obtain the local structure of the cobalt-containing LiPDF (Co-LiPDF) and zinc-containing LiPDF (Zn-LiPDF) around the metal sites in pH9.0 buffer solution. The result shows the cobalt-wat1 (the bond water molecule) distance of Co-LiPDF is 1.89 A, much shorter than that of Zn-LiPDF, 2.50 A. That is an essential factor for its low catalytic activity.

  8. Effect of metal ion on the structure and function of LiPDF: The study of the fine structure around the metal site using XANES

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yu [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Chu Wangsheng, E-mail: cws@ihep.ac.c [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Yang Feifei; Yu Meijuan; Zhao Haifeng [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Gong Weimin [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Dong Yuhui; Xie Yaning [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Ziyu, E-mail: wuzy@ustc.edu.c [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2010-07-21

    We used X-ray absorption near edge structure (XANES) spectroscopy to investigate the metal-dependent enzymatic activity of the peptide deformylase from Leptospira interrogans (LiPDF). Ab initio full multiple scattering calculations performed by MXAN are applied to obtain the local structure of the cobalt-containing LiPDF (Co-LiPDF) and zinc-containing LiPDF (Zn-LiPDF) around the metal sites in pH9.0 buffer solution. The result shows the cobalt-wat1 (the bond water molecule) distance of Co-LiPDF is 1.89 A, much shorter than that of Zn-LiPDF, 2.50 A. That is an essential factor for its low catalytic activity.

  9. Adsorption site and structure determination of c(2x2) N{sub 2}/Ni(100) using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors have determined the atomic spatial structure of c(2x2) N2Ni(100) with Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the nitrogen 1s core level using monochromatized x-rays from beamline 6.1 at SSRL and beamline 9.3.2 at the ALS. The chemically shifted N 1s peak intensities were summed together to obtain ARPEFS curves for both nitrogen atoms in the molecule. They used a new, highly-optimized program based on the Rehr-Albers scattering matrix formalism to find the adsorption site and to quantitatively determine the bond-lengths. The nitrogen molecule stands upright at an atop site, with a N-Ni bond length of 2.25(1) {angstrom}, a N-N bond length of 1.10(7) {angstrom}, and a first layer Ni-Ni spacing of 1.76(4) {angstrom}. The shake-up peak shows an identical ARPEFS diffraction pattern, confirming its intrinsic nature and supporting a previous use of this feature to decompose the peak into contributions from the chemically inequivalent nitrogen atoms. Comparison to a previously published theoretical treatment of N-N-Ni and experimental structures of analogous adsorbate systems demonstrates the importance of adsorbate-adsorbate interactions in weakly chemisorbed systems.

  10. Structure of transformer oil-based magnetic fluids studied using acoustic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kudelcik, Jozef, E-mail: kudelcik@fyzika.uniza.sk [Department of Physics, University of Zilina, Univerzitna 1, 010 01 Zilina (Slovakia); Bury, Peter; Drga, Jozef [Department of Physics, University of Zilina, Univerzitna 1, 010 01 Zilina (Slovakia); Kopcansky, Peter; Zavisova, Vlasta; Timko, Milan [Department of Magnetism, IEP SAS, Watsonova 47, 040 01 Kosice (Slovakia)

    2013-01-15

    The structural changes in transformer oil-based magnetic fluids upon the effect of an external magnetic field and temperature were studied by acoustic spectroscopy. The attenuation of acoustic wave was measured as a function of the magnetic field in the range of 0-300 mT and in the temperature range of 15-35 Degree-Sign C for various magnetic nanoparticles concentrations. The effect of anisotropy of the acoustic attenuation was determined, too. The both strong influence of the magnetic field on the acoustic attenuation and its hysteresis were observed. When a magnetic field is increased, the interaction between the external magnetic field and the magnetic moments of the nanoparticles occurs, leading to the aggregation of magnetic nanoparticles and following clusters formation. However, the temperature of magnetic fluids also has very important influence on the structural changes because of the mechanism of thermal motion that acts against the cluster creation. The observed influences of both magnetic field and temperature on the investigated magnetic fluid structure are discussed. - Highlights: Black-Right-Pointing-Pointer Structural changes in transformer oil-based magnetic fluids were investigated. Black-Right-Pointing-Pointer The acoustic spectroscopy as the method of investigation was used. Black-Right-Pointing-Pointer The influence of magnetic field on the structural was studied. Black-Right-Pointing-Pointer The influence of temperatures on the structures was investigated, too. Black-Right-Pointing-Pointer The influence of external conditions on the structure of MF is interpreted.

  11. Production of photofission fragments and study of their nuclear structure by laser spectroscopy

    International Nuclear Information System (INIS)

    Gangrskij, Yu.P.; Zemlyanoj, S.G.; Karaivanov, D.V.; Marinova, K.P.; Markov, B.N.; Mel'nikova, L.M.; Myshinskij, G.V.; Penionzhkevich, Yu.Eh.; Zhemenik, V.I.

    2005-01-01

    The prospective nuclear structure investigations of the fission fragments by resonance laser spectroscopy methods are discussed. Research in this field is currently being carried out as part of the DRIBs project, which is under development at the Laboratory of Nuclear Reactions, JINR. The fission fragments under study are mainly very neutron-rich nuclei near the proton (Z=50) and neutron (N=50 and 82) closed shells, nuclei in the region of strong deformation (N>60 and N>90) and nuclei with high-spin isomeric states. Resonance laser spectroscopy is used successfully in the study of the structure of such nuclei. It allows one to determine a number of nuclear parameters (mean-square charge radius, magnetic dipole and electric quadrupole moments) and to make conclusions about the collective and single particle properties of the nuclei

  12. Identification of inks and structural characterization of contemporary artistic prints by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oujja, M. [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Vila, A. [Departament de Pintura, Conservacio-Restauracio, Facultat de Belles Arts, Universitat de Barcelona, Pau Gargallo 4, 08028 Barcelona (Spain); Rebollar, E. [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Garcia, J.F. [Departament de Pintura, Conservacio-Restauracio, Facultat de Belles Arts, Universitat de Barcelona, Pau Gargallo 4, 08028 Barcelona (Spain); Castillejo, M. [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)]. E-mail: marta.castillejo@iqfr.csic.es

    2005-08-31

    Identification of the inks used in artistic prints and the order in which different ink layers have been applied on a paper substrate are important factors to complement the classical stylistic aspects for the authentication of this type of objects. Laser-induced breakdown spectroscopy (LIBS) is investigated to determine the chemical composition and structural distribution of the constituent materials of model prints made by applying one or two layers of several blue and black inks on an Arches paper substrate. By using suitable laser excitation conditions, identification of the inks was possible by virtue of emissions from key elements present in their composition. Analysis of successive spectra on the same spot allowed the identification of the order in which the inks were applied on the paper. The results show the potential of laser-induced breakdown spectroscopy for the chemical and structural characterization of artistic prints.

  13. Structural and functional probing of the biogenic amine transporters by fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Rasmussen, Søren G F; Adkins, Erika M; Carroll, F Ivy

    2003-01-01

    Fluorescence spectroscopy techniques have proven extremely powerful for probing the molecular structure and function of membrane proteins. In this review, it will be described how we have applied a series of these techniques to the biogenic amine transporters, which are responsible for the cleara......Fluorescence spectroscopy techniques have proven extremely powerful for probing the molecular structure and function of membrane proteins. In this review, it will be described how we have applied a series of these techniques to the biogenic amine transporters, which are responsible...... for the clearance of dopamine, norepinephrine, and serotonin from the synaptic cleft. In our studies, we have focused on the serotonin transporter (SERT) for which we have established a purification procedure upon expression of the transporter in Sf-9 insect cells. Importantly, the purified transporter displays...

  14. Local structure of Fe in Fe-doped misfit-layered calcium cobaltite: An X-ray absorption spectroscopy study

    International Nuclear Information System (INIS)

    Prasoetsopha, Natkrita; Pinitsoontorn, Supree; Bootchanont, Atipong; Kidkhunthod, Pinit; Srepusharawoot, Pornjuk; Kamwanna, Teerasak; Amornkitbamrung, Vittaya; Kurosaki, Ken; Yamanaka, Shinsuke

    2013-01-01

    Polycrystalline Ca 3 Co 4−x Fe x O 9+δ ceramics (x=0, 0.01, 0.03, 0.05) were fabricated using a simple thermal hydro-decomposition method and a spark plasma sintering technique. Thermoelectric property measurements showed that increasing Fe concentration resulted in a decrease in electrical resistivity, thermopower and thermal conductivity, leading to an improvement in the dimensionless figure-of-merit, >35% for x=0.05 at 1073 K. An X-ray absorption spectroscopy technique was used to investigate the local structure of Fe ions in the Ca 3 Co 4−x Fe x O 9+δ structure for the first time. By fitting data from the extended X-ray absorption fine structure (EXAFS) spectra and analyzing the X-ray absorption near-edge structure (XANES) spectra incorporated with first principle simulation, it was shown that Fe was substituted for Co in the the Ca 2 CoO 3 (rocksalt, RS) layer rather than in the CoO 2 layer. Variation in the thermoelectric properties as a function of Fe concentration was attributed to charge transfer between the CoO 2 and the RS layers. The origin of the preferential Fe substitution site was investigated considering the ionic radii of Co and Fe and the total energy of the system. - Graphical abstract: The Fe K-edge XANES spectra of: (a) experimental result in comparison to the simulated spectra when Fe atoms were substituted in the RS layer; (b) with magnetic moment; (c) without magnetic moment, and in the CoO 2 layer; (d) with magnetic moment and (e) without magnetic moment. Highlights: • Synthesis, structural studies, and thermoelectric properties of Ca 3 Co 4−x Fe x O 9+δ . • Direct evidence for the local structure of the Fe ions in the Ca 3 Co 4−x Fe x O 9+δ using XAS analysis. • EXAFS and XANES analysis showed that Fe was likely to be situated in the RS layer structure. • Changes in TE property with Fe content was due to charge transfer between the CoO 2 and the RS layers. • Total energy calculation showed energetically favorable Fe

  15. Characterization of alkanethiol/ZnO structures by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ogata, K.; Hama, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.

    2005-01-01

    1-Propanethiol (CH 3 CH 2 CH 2 SH) was connected with O-polar zinc oxide (ZnO) surfaces toward biofunctional devices. X-ray photoelectron spectroscopy (XPS) measurement revealed that the S-O bonds were formed between 1-propanethiol and ZnO layers. Although the surface coverage of the molecule is less than a few percent, 1-propanethiol/ZnO structures were stable even at thermal treatment of 400 deg. C

  16. Studying phase structure of burned ferrous manganese ores by method of nuclear gamma-resonance spectroscopy

    OpenAIRE

    Shayakhmetov, B.; Issagulov, A.; Baisanov, A.; Karakeyeva, G.; Issagulovа, D.

    2014-01-01

    In the given article there are presented the results of studying the phase structure of burned ferrous manganese ores of Zhomart and Zapadny Kamys deposits of by the method of Mossbauer spectroscopy. There is established a variety of iron location forms in the studied materials and their quantitative content that allows to define the degree of completing regenerative processes at magnetizing roasting, and also the processes of formation of solid solutions (Fe1-XMX3O4 and stabilization of Fe1-...

  17. Structure and Absolute Configuration of Ginkgolide B Characterized by IR- and VCD Spectroscopy

    DEFF Research Database (Denmark)

    Andersen, Niels Højmark; Christensen, N.J.; Lassen, Peter Rygaard

    2010-01-01

    Experimental and calculated (B3LYP/6-31G(d)) vibrational Circular dichroism (VCD) and IR spectra are compared, illustrating that the structure and absolute configuration of ginkgolide B (GB) may be characterized directly in solution. A conformational search for GB using MacroModel and subsequent ....... This is the first detailed investigation of the spectroscopic fingerprint region (850-1300 cm(-1)) of the natural product GB employing infrared absorption and VCD spectroscopy. Chirality 22:217-223, 2010....

  18. Infrared spectroscopy for studying structure and aging effects in rhamnolipid biosurfactants

    OpenAIRE

    Kiefer, Johannes; Radzuan, Mohd Nazren; Winterburn, James

    2017-01-01

    Biosurfactants are produced by microorganisms and represent amphiphilic compounds with polar and non-polar moieties; hence they can be used to stabilize emulsions, e.g. in the cosmetic and food sectors. Their structure and its changes when exposed to light and elevated temperature are yet to be fully understood. In this study, we demonstrate that attenuated total reflection infrared (ATR-IR) spectroscopy is a useful tool for the analysis of biosurfactants, using rhamnolipids produced by ferme...

  19. Calibration of the fine-structure constant of graphene by time-dependent density-functional theory

    Science.gov (United States)

    Sindona, A.; Pisarra, M.; Vacacela Gomez, C.; Riccardi, P.; Falcone, G.; Bellucci, S.

    2017-11-01

    One of the amazing properties of graphene is the ultrarelativistic behavior of its loosely bound electrons, mimicking massless fermions that move with a constant velocity, inversely proportional to a fine-structure constant αg of the order of unity. The effective interaction between these quasiparticles is, however, better controlled by the coupling parameter αg*=αg/ɛ , which accounts for the dynamic screening due to the complex permittivity ɛ of the many-valence electron system. This concept was introduced in a couple of previous studies [Reed et al., Science 330, 805 (2010) and Gan et al., Phys. Rev. B 93, 195150 (2016)], where inelastic x-ray scattering measurements on crystal graphite were converted into an experimentally derived form of αg* for graphene, over an energy-momentum region on the eV Å -1 scale. Here, an accurate theoretical framework is provided for αg*, using time-dependent density-functional theory in the random-phase approximation, with a cutoff in the interaction between excited electrons in graphene, which translates to an effective interlayer interaction in graphite. The predictions of the approach are in excellent agreement with the above-mentioned measurements, suggesting a calibration method to substantially improve the experimental derivation of αg*, which tends to a static limiting value of ˜0.14 . Thus, the ab initio calibration procedure outlined demonstrates the accuracy of perturbation expansion treatments for the two-dimensional gas of massless Dirac fermions in graphene, in parallel with quantum electrodynamics.

  20. Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant

    Science.gov (United States)

    Bainbridge, Matthew B.; Webb, John K.

    2017-06-01

    A new and automated method is presented for the analysis of high-resolution absorption spectra. Three established numerical methods are unified into one `artificial intelligence' process: a genetic algorithm (Genetic Voigt Profile FIT, gvpfit); non-linear least-squares with parameter constraints (vpfit); and Bayesian model averaging (BMA). The method has broad application but here we apply it specifically to the problem of measuring the fine structure constant at high redshift. For this we need objectivity and reproducibility. gvpfit is also motivated by the importance of obtaining a large statistical sample of measurements of Δα/α. Interactive analyses are both time consuming and complex and automation makes obtaining a large sample feasible. In contrast to previous methodologies, we use BMA to derive results using a large set of models and show that this procedure is more robust than a human picking a single preferred model since BMA avoids the systematic uncertainties associated with model choice. Numerical simulations provide stringent tests of the whole process and we show using both real and simulated spectra that the unified automated fitting procedure out-performs a human interactive analysis. The method should be invaluable in the context of future instrumentation like ESPRESSO on the VLT and indeed future ELTs. We apply the method to the zabs = 1.8389 absorber towards the zem = 2.145 quasar J110325-264515. The derived constraint of Δα/α = 3.3 ± 2.9 × 10-6 is consistent with no variation and also consistent with the tentative spatial variation reported in Webb et al. and King et al.