WorldWideScience

Sample records for fine scale structures

  1. Fine-Scale Genetic Structure in Finland

    Directory of Open Access Journals (Sweden)

    Sini Kerminen

    2017-10-01

    Full Text Available Coupling dense genotype data with new computational methods offers unprecedented opportunities for individual-level ancestry estimation once geographically precisely defined reference data sets become available. We study such a reference data set for Finland containing 2376 such individuals from the FINRISK Study survey of 1997 both of whose parents were born close to each other. This sampling strategy focuses on the population structure present in Finland before the 1950s. By using the recent haplotype-based methods ChromoPainter (CP and FineSTRUCTURE (FS we reveal a highly geographically clustered genetic structure in Finland and report its connections to the settlement history as well as to the current dialectal regions of the Finnish language. The main genetic division within Finland shows striking concordance with the 1323 borderline of the treaty of Nöteborg. In general, we detect genetic substructure throughout the country, which reflects stronger regional genetic differences in Finland compared to, for example, the UK, which in a similar analysis was dominated by a single unstructured population. We expect that similar population genetic reference data sets will become available for many more populations in the near future with important applications, for example, in forensic genetics and in genetic association studies. With this in mind, we report those extensions of the CP + FS approach that we found most useful in our analyses of the Finnish data.

  2. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Science.gov (United States)

    Gretchen H. Roffler; Sandra L. Talbot; Gordon Luikart; George K. Sage; Kristy L. Pilgrim; Layne G. Adams; Michael K. Schwartz

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale...

  3. Fine-scaled human genetic structure revealed by SNP microarrays.

    Science.gov (United States)

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  4. Clonal growth and fine-scale genetic structure in tanoak (Notholithocarpus densiflorus: Fagaceae)

    Science.gov (United States)

    Richard S. Dodd; Wasima Mayer; Alejandro Nettel; Zara Afzal-Rafii

    2013-01-01

    The combination of sprouting and reproduction by seed can have important consequences on fine-scale spatial distribution of genetic structure (SGS). SGS is an important consideration for species’ restoration because it determines the minimum distance among seed trees to maximize genetic diversity while not prejudicing locally adapted genotypes. Local environmental...

  5. FINE-SCALE STRUCTURES OF FLUX ROPES TRACKED BY ERUPTING MATERIAL

    Energy Technology Data Exchange (ETDEWEB)

    Li Ting; Zhang Jun, E-mail: liting@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-06-20

    We present Solar Dynamics Observatory observations of two flux ropes tracked out by material from a surge and a failed filament eruption on 2012 July 29 and August 4, respectively. For the first event, the interaction between the erupting surge and a loop-shaped filament in the east seems to 'peel off' the filament and add bright mass into the flux rope body. The second event is associated with a C-class flare that occurs several minutes before the filament activation. The two flux ropes are, respectively, composed of 85 {+-} 12 and 102 {+-} 15 fine-scale structures, with an average width of about 1.''6. Our observations show that two extreme ends of the flux rope are rooted in opposite polarity fields and each end is composed of multiple footpoints (FPs) of fine-scale structures. The FPs of the fine-scale structures are located at network magnetic fields, with magnetic fluxes from 5.6 Multiplication-Sign 10{sup 18} Mx to 8.6 Multiplication-Sign 10{sup 19} Mx. Moreover, almost half of the FPs show converging motion of smaller magnetic structures over 10 hr before the appearance of the flux rope. By calculating the magnetic fields of the FPs, we deduce that the two flux ropes occupy at least 4.3 Multiplication-Sign 10{sup 20} Mx and 7.6 Multiplication-Sign 10{sup 20} Mx magnetic fluxes, respectively.

  6. Clonal diversity and fine-scale genetic structure in a high andean treeline population

    Czech Academy of Sciences Publication Activity Database

    Peng, Y.; Macek, P.; Macková, Jana; Romoleroux, K.; Hensen, I.

    2015-01-01

    Roč. 47, č. 1 (2015), s. 59-65 ISSN 0006-3606 Grant - others:GA AV ČR(CZ) IAA601110702; GA MŠk(CZ) LM2010009 Program:IA Institutional support: RVO:60077344 Keywords : AFLP * clonal diversity * clonal propagation * fine-scale genetic structure * Polylepis reticulata * treeline Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.944, year: 2015

  7. Coupling Fine-Scale Root and Canopy Structure Using Ground-Based Remote Sensing

    Directory of Open Access Journals (Sweden)

    Brady S. Hardiman

    2017-02-01

    Full Text Available Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL and ground penetrating radar (GPR along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation at multiple spatial scales ≤10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.

  8. Dispersal, mating events and fine-scale genetic structure in the lesser flat-headed bats.

    Directory of Open Access Journals (Sweden)

    Panyu Hua

    Full Text Available Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and F(ST estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise F(ST values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females.

  9. Dispersal, mating events and fine-scale genetic structure in the lesser flat-headed bats.

    Science.gov (United States)

    Hua, Panyu; Zhang, Libiao; Guo, Tingting; Flanders, Jon; Zhang, Shuyi

    2013-01-01

    Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus) is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and F(ST) estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise F(ST) values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females.

  10. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Science.gov (United States)

    Roffler, Gretchen H.; Talbot, Sandra L.; Luikart, Gordon; Sage, George K.; Pilgrim, Kristy L.; Adams, Layne G.; Schwartz, Michael K.

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.

  11. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius)

    DEFF Research Database (Denmark)

    Milano, I.; Babbucci, M.; Cariani, A.

    2014-01-01

    fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (FCT = 0.016) and weak differentiation within basins...... even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess largeand fine-scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European...

  12. Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum.

    Science.gov (United States)

    Rico, Y; Wagner, H H

    2016-11-01

    Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations.

  13. Fine-scale population structure and the era of next-generation sequencing.

    Science.gov (United States)

    Henn, Brenna M; Gravel, Simon; Moreno-Estrada, Andres; Acevedo-Acevedo, Suehelay; Bustamante, Carlos D

    2010-10-15

    Fine-scale population structure characterizes most continents and is especially pronounced in non-cosmopolitan populations. Roughly half of the world's population remains non-cosmopolitan and even populations within cities often assort along ethnic and linguistic categories. Barriers to random mating can be ecologically extreme, such as the Sahara Desert, or cultural, such as the Indian caste system. In either case, subpopulations accumulate genetic differences if the barrier is maintained over multiple generations. Genome-wide polymorphism data, initially with only a few hundred autosomal microsatellites, have clearly established differences in allele frequency not only among continental regions, but also within continents and within countries. We review recent evidence from the analysis of genome-wide polymorphism data for genetic boundaries delineating human population structure and the main demographic and genomic processes shaping variation, and discuss the implications of population structure for the distribution and discovery of disease-causing genetic variants, in the light of the imminent availability of sequencing data for a multitude of diverse human genomes.

  14. Cultural transmission of tool use combined with habitat specializations leads to fine-scale genetic structure in bottlenose dolphins

    NARCIS (Netherlands)

    Kopps, Anna M.; Ackermann, Corinne Y.; Sherwin, William B.; Allen, Simon J.; Bejder, Lars; Kruetzen, Michael

    2014-01-01

    Socially learned behaviours leading to genetic population structure have rarely been described outside humans. Here, we provide evidence of fine-scale genetic structure that has probably arisen based on socially transmitted behaviours in bottlenose dolphins (Tursiops sp.) in western Shark Bay,

  15. Restricted gene flow and fine-scale population structuring in tool using New Caledonian crows

    Science.gov (United States)

    Rutz, C.; Ryder, T. B.; Fleischer, R. C.

    2012-04-01

    New Caledonian crows Corvus moneduloides are the most prolific avian tool users. It has been suggested that some aspects of their complex tool use behaviour are under the influence of cultural processes, involving the social transmission—and perhaps even progressive refinement—of tool designs. Using microsatellite and mt-haplotype profiling of crows from three distinct habitats (dry forest, farmland and beachside habitat), we show that New Caledonian crow populations can exhibit significant fine-scale genetic structuring. Our finding that some sites of cultural isolation of crow groups. Restricted movement of birds between local populations at such small spatial scales, especially across habitat boundaries, illustrates how specific tool designs could be preserved over time, and how tool technologies of different crow groups could diverge due to drift and local selection pressures. Young New Caledonian crows have an unusually long juvenile dependency period, during which they acquire complex tool-related foraging skills. We suggest that the resulting delayed natal dispersal drives population-divergence patterns in this species. Our work provides essential context for future studies that examine the genetic makeup of crow populations across larger geographic areas, including localities with suspected cultural differences in crow tool technologies.

  16. Regulation of the demographic structure in isomorphic biphasic life cycles at the spatial fine scale.

    Directory of Open Access Journals (Sweden)

    Vasco Manuel Nobre de Carvalho da Silva Vieira

    Full Text Available Isomorphic biphasic algal life cycles often occur in the environment at ploidy abundance ratios (Haploid:Diploid different from 1. Its spatial variability occurs within populations related to intertidal height and hydrodynamic stress, possibly reflecting the niche partitioning driven by their diverging adaptation to the environment argued necessary for their prevalence (evolutionary stability. Demographic models based in matrix algebra were developed to investigate which vital rates may efficiently generate an H:D variability at a fine spatial resolution. It was also taken into account time variation and type of life strategy. Ploidy dissimilarities in fecundity rates set an H:D spatial structure miss-fitting the ploidy fitness ratio. The same happened with ploidy dissimilarities in ramet growth whenever reproductive output dominated the population demography. Only through ploidy dissimilarities in looping rates (stasis, breakage and clonal growth did the life cycle respond to a spatially heterogeneous environment efficiently creating a niche partition. Marginal locations were more sensitive than central locations. Related results have been obtained experimentally and numerically for widely different life cycles from the plant and animal kingdoms. Spore dispersal smoothed the effects of ploidy dissimilarities in fertility and enhanced the effects of ploidy dissimilarities looping rates. Ploidy dissimilarities in spore dispersal could also create the necessary niche partition, both over the space and time dimensions, even in spatial homogeneous environments and without the need for conditional differentiation of the ramets. Fine scale spatial variability may be the key for the prevalence of isomorphic biphasic life cycles, which has been neglected so far.

  17. Fine-Scale Human Population Structure in Southern Africa Reflects Ecogeographic Boundaries.

    Science.gov (United States)

    Uren, Caitlin; Kim, Minju; Martin, Alicia R; Bobo, Dean; Gignoux, Christopher R; van Helden, Paul D; Möller, Marlo; Hoal, Eileen G; Henn, Brenna M

    2016-09-01

    Recent genetic studies have established that the KhoeSan populations of southern Africa are distinct from all other African populations and have remained largely isolated during human prehistory until ∼2000 years ago. Dozens of different KhoeSan groups exist, belonging to three different language families, but very little is known about their population history. We examine new genome-wide polymorphism data and whole mitochondrial genomes for >100 South Africans from the ≠Khomani San and Nama populations of the Northern Cape, analyzed in conjunction with 19 additional southern African populations. Our analyses reveal fine-scale population structure in and around the Kalahari Desert. Surprisingly, this structure does not always correspond to linguistic or subsistence categories as previously suggested, but rather reflects the role of geographic barriers and the ecology of the greater Kalahari Basin. Regardless of subsistence strategy, the indigenous Khoe-speaking Nama pastoralists and the N|u-speaking ≠Khomani (formerly hunter-gatherers) share ancestry with other Khoe-speaking forager populations that form a rim around the Kalahari Desert. We reconstruct earlier migration patterns and estimate that the southern Kalahari populations were among the last to experience gene flow from Bantu speakers, ∼14 generations ago. We conclude that local adoption of pastoralism, at least by the Nama, appears to have been primarily a cultural process with limited genetic impact from eastern Africa. Copyright © 2016 by the Genetics Society of America.

  18. Breed locally, disperse globally: Fine-scale genetic structure despite landscape-scale panmixia in a fire-specialist

    Science.gov (United States)

    Jennifer C. Pierson; Fred W. Allendorf; Pierre Drapeau; Michael K. Schwartz

    2013-01-01

    An exciting advance in the understanding of metapopulation dynamics has been the investigation of how populations respond to ephemeral patches that go 'extinct' during the lifetime of an individual. Previous research has shown that this scenario leads to genetic homogenization across large spatial scales. However, little is known about fine-scale genetic...

  19. Fine-scale crustal structure of the Azores Islands from teleseismic receiver functions

    Science.gov (United States)

    Spieker, K.; Rondenay, S.; Ramalho, R. S.; Thomas, C.; Helffrich, G. R.

    2016-12-01

    The Azores plateau is located near the Mid-Atlantic Ridge (MAR) and consists of nine islands, most of which lie east of the MAR. Various methods including seismic reflection, gravity, and passive seismic imaging have been used to investigate the crustal thickness beneath the islands. They have yielded thickness estimates that range between roughly 10 km and 30 km, but until now models of the fine-scale crustal structure have been lacking. A comparison of the crustal structure beneath the islands that lie west and east of the MAR might give further constraints on the evolution of the islands. For example, geochemical studies carried out across the region predict the existence of volcanic interfaces that should be detected seismically within the shallow crust of some of the islands. In this study, we use data from ten seismic stations located on the Azores Islands to investigate the crustal structure with teleseismic P-wave receiver functions. We query our resulting receiver functions for signals associated with the volcanic edifice, the crust-mantle boundary, and potential underplated layers beneath the various islands. The islands west of the MAR have a crustal structure comprising two discontinuities - an upper one at 1-2 km depth marking the base of the volcanic edifice, and a lower one at 10 km depth that we interpret as crust-mantle boundary. The islands east of the MAR can be subdivided into two groups. The central islands that are closer to the MAR exhibit a crustal structure similar to that of the western islands, with a volcanic edifice reaching a depth of 2 km and an average crust-mantle boundary at around 12 km depth. The easternmost islands, located on the oldest lithosphere, exhibit a more complex crustal structure with evidence for a mid-crustal interface and an underplated layer, yielding an effective crust-mantle boundary at >15 km depth. The difference in structure between proximal and distal islands might be related to the age of the plate at the

  20. The Fine Structure Constant

    Indian Academy of Sciences (India)

    IAS Admin

    The article discusses the importance of the fine structure constant in quantum mechanics, along with the brief history of how it emerged. Al- though Sommerfelds idea of elliptical orbits has been replaced by wave mechanics, the fine struc- ture constant he introduced has remained as an important parameter in the field of ...

  1. Ultra-Fine Scale Spatially-Integrated Mapping of Habitat and Occupancy Using Structure-From-Motion.

    Directory of Open Access Journals (Sweden)

    Philip McDowall

    Full Text Available Organisms respond to and often simultaneously modify their environment. While these interactions are apparent at the landscape extent, the driving mechanisms often occur at very fine spatial scales. Structure-from-Motion (SfM, a computer vision technique, allows the simultaneous mapping of organisms and fine scale habitat, and will greatly improve our understanding of habitat suitability, ecophysiology, and the bi-directional relationship between geomorphology and habitat use. SfM can be used to create high-resolution (centimeter-scale three-dimensional (3D habitat models at low cost. These models can capture the abiotic conditions formed by terrain and simultaneously record the position of individual organisms within that terrain. While coloniality is common in seabird species, we have a poor understanding of the extent to which dense breeding aggregations are driven by fine-scale active aggregation or limited suitable habitat. We demonstrate the use of SfM for fine-scale habitat suitability by reconstructing the locations of nests in a gentoo penguin colony and fitting models that explicitly account for conspecific attraction. The resulting digital elevation models (DEMs are used as covariates in an inhomogeneous hybrid point process model. We find that gentoo penguin nest site selection is a function of the topography of the landscape, but that nests are far more aggregated than would be expected based on terrain alone, suggesting a strong role of behavioral aggregation in driving coloniality in this species. This integrated mapping of organisms and fine scale habitat will greatly improve our understanding of fine-scale habitat suitability, ecophysiology, and the complex bi-directional relationship between geomorphology and habitat use.

  2. Fine-scale structure of the mid-mantle characterised by global stacks of PP precursors

    Science.gov (United States)

    Bentham, H. L. M.; Rost, S.; Thorne, M. S.

    2017-08-01

    Subduction zones are likely a major source of compositional heterogeneities in the mantle, which may preserve a record of the subduction history and mantle convection processes. The fine-scale structure associated with mantle heterogeneities can be studied using the scattered seismic wavefield that arrives as coda to or as energy preceding many body wave arrivals. In this study we analyse precursors to PP by creating stacks recorded at globally distributed stations. We create stacks aligned on the PP arrival in 5° distance bins (with range 70-120°) from 600 earthquakes recorded at 193 stations stacking a total of 7320 seismic records. As the energy trailing the direct P arrival, the P coda, interferes with the PP precursors, we suppress the P coda by subtracting a best fitting exponential curve to this energy. The resultant stacks show that PP precursors related to scattering from heterogeneities in the mantle are present for all distances. Lateral variations are explored by producing two regional stacks across the Atlantic and Pacific hemispheres, but we find only negligible differences in the precursory signature between these two regions. The similarity of these two regions suggests that well mixed subducted material can survive at upper and mid-mantle depth. To describe the scattered wavefield in the mantle, we compare the global stacks to synthetic seismograms generated using a Monte Carlo phonon scattering technique. We propose a best-fitting layered heterogeneity model, BRT2017, characterised by a three layer mantle with a background heterogeneity strength (ɛ = 0.8%) and a depth-interval of increased heterogeneity strength (ɛ = 1%) between 1000 km and 1800 km. The scalelength of heterogeneity is found to be 8 km throughout the mantle. Since mantle heterogeneity of 8 km scale may be linked to subducted oceanic crust, the detection of increased heterogeneity at mid-mantle depths could be associated with stalled slabs due to increases in viscosity

  3. Demonstrating the Uneven Importance of Fine-Scale Forest Structure on Snow Distributions using High Resolution Modeling

    Science.gov (United States)

    Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.

    2016-12-01

    Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications

  4. The impact of mating systems and dispersal on fine-scale genetic structure at maternally, paternally and biparentally inherited markers.

    Science.gov (United States)

    Shaw, Robyn E; Banks, Sam C; Peakall, Rod

    2018-01-01

    For decades, studies have focused on how dispersal and mating systems influence genetic structure across populations or social groups. However, we still lack a thorough understanding of how these processes and their interaction shape spatial genetic patterns over a finer scale (tens-hundreds of metres). Using uniparentally inherited markers may help answer these questions, yet their potential has not been fully explored. Here, we use individual-level simulations to investigate the effects of dispersal and mating system on fine-scale genetic structure at autosomal, mitochondrial and Y chromosome markers. Using genetic spatial autocorrelation analysis, we found that dispersal was the major driver of fine-scale genetic structure across maternally, paternally and biparentally inherited markers. However, when dispersal was restricted (mean distance = 100 m), variation in mating behaviour created strong differences in the comparative level of structure detected at maternally and paternally inherited markers. Promiscuity reduced spatial genetic structure at Y chromosome loci (relative to monogamy), whereas structure increased under polygyny. In contrast, mitochondrial and autosomal markers were robust to differences in the specific mating system, although genetic structure increased across all markers when reproductive success was skewed towards fewer individuals. Comparing males and females at Y chromosome vs. mitochondrial markers, respectively, revealed that some mating systems can generate similar patterns to those expected under sex-biased dispersal. This demonstrates the need for caution when inferring ecological and behavioural processes from genetic results. Comparing patterns between the sexes, across a range of marker types, may help us tease apart the processes shaping fine-scale genetic structure. © 2017 John Wiley & Sons Ltd.

  5. Landscape-Level and Fine-Scale Genetic Structure of the Neo tropical Tree Protium spruceanum (Burseraceae)

    International Nuclear Information System (INIS)

    Vieira, F.D.A.; Fajardo, C.G.; De Souza, A.M.; Dulciniea De Carvalho, D.

    2010-01-01

    Knowledge of genetic structure at different scales and correlation with the current landscape is fundamental for evaluating the importance of evolutionary processes and identifying conservation units. Here, we used allozyme loci to examine the spatial genetic structure (SGS) of 230 individuals of Protium spruceanum, a native canopy-emergent in five fragments of Brazilian Atlantic forest (1 to 11.8 ha), and four ecological corridors (460 to 1000 m length). Wright's FST statistic and Mantel tests revealed little evidence of significant genetic structure at the landscape-scale (FST=0.027; rM=-0.051, P=.539). At fine-scale SGS, low levels of relatedness within fragments and corridors (Sp=0.008, P>.05) were observed. Differences in the levels and distribution of the SGS at both spatial scales are discussed in relation to biological and conservation strategies of corridors and forest fragments.

  6. Feral pig populations are structured at fine spatial scales in tropical Queensland, Australia.

    Science.gov (United States)

    Lopez, Jobina; Hurwood, David; Dryden, Bart; Fuller, Susan

    2014-01-01

    Feral pigs occur throughout tropical far north Queensland, Australia and are a significant threat to biodiversity and World Heritage values, agriculture and are a vector of infectious diseases. One of the constraints on long-lasting, local eradication of feral pigs is the process of reinvasion into recently controlled areas. This study examined the population genetic structure of feral pigs in far north Queensland to identify the extent of movement and the scale at which demographically independent management units exist. Genetic analysis of 328 feral pigs from the Innisfail to Tully region of tropical Queensland was undertaken. Seven microsatellite loci were screened and Bayesian clustering methods used to infer population clusters. Sequence variation at the mitochondrial DNA control region was examined to identify pig breed. Significant population structure was identified in the study area at a scale of 25 to 35 km, corresponding to three demographically independent management units (MUs). Distinct natural or anthropogenic barriers were not found, but environmental features such as topography and land use appear to influence patterns of gene flow. Despite the strong, overall pattern of structure, some feral pigs clearly exhibited ancestry from a MU outside of that from which they were sampled indicating isolated long distance dispersal or translocation events. Furthermore, our results suggest that gene flow is restricted among pigs of domestic Asian and European origin and non-random mating influences management unit boundaries. We conclude that the three MUs identified in this study should be considered as operational units for feral pig control in far north Queensland. Within a MU, coordinated and simultaneous control is required across farms, rainforest areas and National Park Estates to prevent recolonisation from adjacent localities.

  7. Fine-scale spatial genetic structure in predominantly selfing plants with limited seed dispersal: A rule or exception?

    Directory of Open Access Journals (Sweden)

    Sergei Volis

    2016-04-01

    Full Text Available Gene flow at a fine scale is still poorly understood despite its recognized importance for plant population demographic and genetic processes. We tested the hypothesis that intensity of gene flow will be lower and strength of spatial genetic structure (SGS will be higher in more peripheral populations because of lower population density. The study was performed on the predominantly selfing Avena sterilis and included: (1 direct measurement of dispersal in a controlled environment; and (2 analyses of SGS in three natural populations, sampled in linear transects at fixed increasing inter-plant distances. We found that in A. sterilis major seed dispersal is by gravity in close (less than 2 m vicinity of the mother plant, with a minor additional effect of wind. Analysis of SGS with six nuclear SSRs revealed a significant autocorrelation for the distance class of 1 m only in the most peripheral desert population, while in the two core populations with Mediterranean conditions, no genetic structure was found. Our results support the hypothesis that intensity of SGS increases from the species core to periphery as a result of decreased within-population gene flow related to low plant density. Our findings also show that predominant self-pollination and highly localized seed dispersal lead to SGS at a very fine scale, but only if plant density is not too high.

  8. Fine-scale genetic structure and cryptic associations reveal evidence of kin-based sociality in the African forest elephant.

    Directory of Open Access Journals (Sweden)

    Stephanie G Schuttler

    Full Text Available Spatial patterns of relatedness within animal populations are important in the evolution of mating and social systems, and have the potential to reveal information on species that are difficult to observe in the wild. This study examines the fine-scale genetic structure and connectivity of groups within African forest elephants, Loxodonta cyclotis, which are often difficult to observe due to forest habitat. We tested the hypothesis that genetic similarity will decline with increasing geographic distance, as we expect kin to be in closer proximity, using spatial autocorrelation analyses and Tau K(r tests. Associations between individuals were investigated through a non-invasive genetic capture-recapture approach using network models, and were predicted to be more extensive than the small groups found in observational studies, similar to fission-fusion sociality found in African savanna (Loxodonta africana and Asian (Elephas maximus species. Dung samples were collected in Lopé National Park, Gabon in 2008 and 2010 and genotyped at 10 microsatellite loci, genetically sexed, and sequenced at the mitochondrial DNA control region. We conducted analyses on samples collected at three different temporal scales: a day, within six-day sampling sessions, and within each year. Spatial autocorrelation and Tau K(r tests revealed genetic structure, but results were weak and inconsistent between sampling sessions. Positive spatial autocorrelation was found in distance classes of 0-5 km, and was strongest for the single day session. Despite weak genetic structure, individuals within groups were significantly more related to each other than to individuals between groups. Social networks revealed some components to have large, extensive groups of up to 22 individuals, and most groups were composed of individuals of the same matriline. Although fine-scale population genetic structure was weak, forest elephants are typically found in groups consisting of kin and

  9. Fine-scale genetic structure and cryptic associations reveal evidence of kin-based sociality in the African forest elephant.

    Science.gov (United States)

    Schuttler, Stephanie G; Philbrick, Jessica A; Jeffery, Kathryn J; Eggert, Lori S

    2014-01-01

    Spatial patterns of relatedness within animal populations are important in the evolution of mating and social systems, and have the potential to reveal information on species that are difficult to observe in the wild. This study examines the fine-scale genetic structure and connectivity of groups within African forest elephants, Loxodonta cyclotis, which are often difficult to observe due to forest habitat. We tested the hypothesis that genetic similarity will decline with increasing geographic distance, as we expect kin to be in closer proximity, using spatial autocorrelation analyses and Tau K(r) tests. Associations between individuals were investigated through a non-invasive genetic capture-recapture approach using network models, and were predicted to be more extensive than the small groups found in observational studies, similar to fission-fusion sociality found in African savanna (Loxodonta africana) and Asian (Elephas maximus) species. Dung samples were collected in Lopé National Park, Gabon in 2008 and 2010 and genotyped at 10 microsatellite loci, genetically sexed, and sequenced at the mitochondrial DNA control region. We conducted analyses on samples collected at three different temporal scales: a day, within six-day sampling sessions, and within each year. Spatial autocorrelation and Tau K(r) tests revealed genetic structure, but results were weak and inconsistent between sampling sessions. Positive spatial autocorrelation was found in distance classes of 0-5 km, and was strongest for the single day session. Despite weak genetic structure, individuals within groups were significantly more related to each other than to individuals between groups. Social networks revealed some components to have large, extensive groups of up to 22 individuals, and most groups were composed of individuals of the same matriline. Although fine-scale population genetic structure was weak, forest elephants are typically found in groups consisting of kin and based on matrilines

  10. Fine-scale population genetic structure of arctic foxes (Vulpes lagopus) in the High Arctic.

    Science.gov (United States)

    Lai, Sandra; Quiles, Adrien; Lambourdière, Josie; Berteaux, Dominique; Lalis, Aude

    2017-12-01

    The arctic fox (Vulpes lagopus) is a circumpolar species inhabiting all accessible Arctic tundra habitats. The species forms a panmictic population over areas connected by sea ice, but recently, kin clustering and population differentiation were detected even in regions where sea ice was present. The purpose of this study was to examine the genetic structure of a population in the High Arctic using a robust panel of highly polymorphic microsatellites. We analyzed the genotypes of 210 individuals from Bylot Island, Nunavut, Canada, using 15 microsatellite loci. No pattern of isolation-by-distance was detected, but a spatial principal component analysis (sPCA) revealed the presence of genetic subdivisions. Overall, the sPCA revealed two spatially distinct genetic clusters corresponding to the northern and southern parts of the study area, plus another subdivision within each of these two clusters. The north-south genetic differentiation partly matched the distribution of a snow goose colony, which could reflect a preference for settling into familiar ecological environments. Secondary clusters may result from higher-order social structures (neighbourhoods) that use landscape features to delimit their borders. The cryptic genetic subdivisions found in our population may highlight ecological processes deserving further investigations in arctic foxes at larger, regional spatial scales.

  11. Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks

    Science.gov (United States)

    Kanno, Yoichiro; Vokoun, Jason C.; Letcher, Benjamin H.

    2011-01-01

    Linear and heterogeneous habitat makes headwater stream networks an ideal ecosystem in which to test the influence of environmental factors on spatial genetic patterns of obligatory aquatic species. We investigated fine-scale population structure and influence of stream habitat on individual-level genetic differentiation in brook trout (Salvelinus fontinalis) by genotyping eight microsatellite loci in 740 individuals in two headwater channel networks (7.7 and 4.4 km) in Connecticut, USA. A weak but statistically significant isolation-by-distance pattern was common in both sites. In the field, many tagged individuals were recaptured in the same 50-m reaches within a single field season (summer to fall). One study site was characterized with a hierarchical population structure, where seasonal barriers (natural falls of 1.5–2.5 m in height during summer base-flow condition) greatly reduced gene flow and perceptible spatial patterns emerged because of the presence of tributaries, each with a group of genetically distinguishable individuals. Genetic differentiation increased when pairs of individuals were separated by high stream gradient (steep channel slope) or warm stream temperature in this site, although the evidence of their influence was equivocal. In a second site, evidence for genetic clusters was weak at best, but genetic differentiation between individuals was positively correlated with number of tributary confluences. We concluded that the population-level movement of brook trout was limited in the study headwater stream networks, resulting in the fine-scale population structure (genetic clusters and clines) even at distances of a few kilometres, and gene flow was mitigated by ‘riverscape’ variables, particularly by physical barriers, waterway distance (i.e. isolation-by-distance) and the presence of tributaries.

  12. Fine-scale population structure of Malays in Peninsular Malaysia and Singapore and implications for association studies.

    Science.gov (United States)

    Hoh, Boon-Peng; Deng, Lian; Julia-Ashazila, Mat Jusoh; Zuraihan, Zakaria; Nur-Hasnah, Ma'amor; Nur-Shafawati, Ab Rajab; Hatin, Wan Isa; Endom, Ismail; Zilfalil, Bin Alwi; Khalid, Yusoff; Xu, Shuhua

    2015-07-22

    Fine scale population structure of Malays - the major population in Malaysia, has not been well studied. This may have important implications for both evolutionary and medical studies. Here, we investigated the population sub-structure of Malay involving 431 samples collected from all states from peninsular Malaysia and Singapore. We identified two major clusters of individuals corresponding to the north and south peninsular Malaysia. On an even finer scale, the genetic coordinates of the geographical Malay populations are in correlation with the latitudes (R(2) = 0.3925; P = 0.029). This finding is further supported by the pairwise FST of Malay sub-populations, of which the north and south regions showed the highest differentiation (FST [North-south] = 0.0011). The collective findings therefore suggest that population sub-structure of Malays are more heterogenous than previously expected even within a small geographical region, possibly due to factors like different genetic origins, geographical isolation, could result in spurious association as demonstrated in our analysis. We suggest that cautions should be taken during the stage of study design or interpreting the association signals in disease mapping studies which are expected to be conducted in Malay population in the near future.

  13. Introducing close-range photogrammetry for characterizing forest understory plant diversity and surface fuel structure at fine scales

    Science.gov (United States)

    Benjamin C. Bright; E. Louise Loudermilk; Scott M. Pokswinski; Andrew T. Hudak; Joseph J. O' Brien

    2016-01-01

    Methods characterizing fine-scale fuels and plant diversity can advance understanding of plant-fire interactions across scales and help in efforts to monitor important ecosystems such as longleaf pine (Pinus palustris Mill.) forests of the southeastern United States. Here, we evaluate the utility of close-range photogrammetry for measuring fuels and plant...

  14. Fine structures of wing scales in Sasakia charonda butterflies as photonic crystals

    Czech Academy of Sciences Publication Activity Database

    Matějková, Jiřina; Shiojiri, S.; Shiojiri, M.

    2009-01-01

    Roč. 236, č. 2 (2009), s. 88-93 ISSN 0022-2720 Institutional research plan: CEZ:AV0Z20650511 Keywords : Butterfly * field-emission scanning electron microscopy * photonic crystal * Sasakia charonda * wing scale Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.612, year: 2009

  15. Human-modified landscapes: patterns of fine-scale woody vegetation structure in communal savannah rangelands

    CSIR Research Space (South Africa)

    Fisher, T

    2011-11-01

    Full Text Available structure in five communal rangelands around 12 settlements in Bushbuckridge, a municipality in the Kruger to Canyons Biosphere Reserve (South Africa). The importance of underlying abiotic factors was evaluated by measuring size class distributions across...

  16. High genetic diversity and fine-scale spatial structure in the marine flagellate Oxyrrhis marina (Dinophyceae uncovered by microsatellite loci.

    Directory of Open Access Journals (Sweden)

    Chris D Lowe

    2010-12-01

    Full Text Available Free-living marine protists are often assumed to be broadly distributed and genetically homogeneous on large spatial scales. However, an increasing application of highly polymorphic genetic markers (e.g., microsatellites has provided evidence for high genetic diversity and population structuring on small spatial scales in many free-living protists. Here we characterise a panel of new microsatellite markers for the common marine flagellate Oxyrrhis marina. Nine microsatellite loci were used to assess genotypic diversity at two spatial scales by genotyping 200 isolates of O. marina from 6 broad geographic regions around Great Britain and Ireland; in one region, a single 2 km shore line was sampled intensively to assess fine-scale genetic diversity. Microsatellite loci resolved between 1-6 and 7-23 distinct alleles per region in the least and most variable loci respectively, with corresponding variation in expected heterozygosities (H(e of 0.00-0.30 and 0.81-0.93. Across the dataset, genotypic diversity was high with 183 genotypes detected from 200 isolates. Bayesian analysis of population structure supported two model populations. One population was distributed across all sampled regions; the other was confined to the intensively sampled shore, and thus two distinct populations co-occurred at this site. Whilst model-based analysis inferred a single UK-wide population, pairwise regional F(ST values indicated weak to moderate population sub-division (0.01-0.12, but no clear correlation between spatial and genetic distance was evident. Data presented in this study highlight extensive genetic diversity for O. marina; however, it remains a substantial challenge to uncover the mechanisms that drive genetic diversity in free-living microorganisms.

  17. Fine-scale genetic structure and social organization in female white-tailed deer

    Science.gov (United States)

    Christopher E. Comer; John C. Kilgo; Gino J. D' Angelo; Travis C. Glenn; Karl V. Miller

    2005-01-01

    Social behavior of white-tailed deer (Odocoileus virginianus) can have important management implications. The formation of matrilineal social groups among female deer has been documented and management strategies have been proposed based on this well-developed social structure. Using radiocollared (n = 17) and hunter or vehicle-killed (n = 21) does, we examined spatial...

  18. Fine-scale genetic structure and social organization in female white-tailed deer.

    Energy Technology Data Exchange (ETDEWEB)

    Comer, Christopher E.; Kilgo, John C.; D' Angelo, Gino J.; Glenn, Travis C.; Miller, Karl V.

    2005-07-01

    Abstract: Social behavior of white-tailed deer (Odocoileus virginianus) can have important management implications. The formation of matrilineal social groups among female deer has been documented and management strategies have been proposed based on this well-developed social structure. Using radiocollared (n = 17) and hunter or vehicle-killed (n = 21) does, we examined spatial and genetic structure in white-tailed deer on a 7,000-ha portion of the Savannah River Site in the upper Coastal Plain of South Carolina, USA. We used 14 microsatellite DNA loci to calculate pairwise relatedness among individual deer and to assign doe pairs to putative relationship categories. Linear distance and genetic relatedness were weakly correlated (r = –0.08, P = 0.058). Relationship categories differed in mean spatial distance, but only 60% of first-degree-related doe pairs (full sibling or mother–offspring pairs) and 38% of second-degree-related doe pairs (half sibling, grandmother–granddaughter pairs) were members of the same social group based on spatial association. Heavy hunting pressure in this population has created a young age structure among does, where the average age is <2.5 years, and <4% of does are >4.5 years old. This—combined with potentially elevated dispersal among young does—could limit the formation of persistent, cohesive social groups. Our results question the universal applicability of recently proposed models of spatial and genetic structuring in white-tailed deer, particularly in areas with differing harvest histories.

  19. Microsatellite variation suggests a recent fine-scale population structure of Drosophila sechellia, a species endemic of the Seychelles archipelago.

    Science.gov (United States)

    Legrand, Delphine; Vautrin, Dominique; Lachaise, Daniel; Cariou, Marie-Louise

    2011-07-01

    Drosophila sechellia is closely related to the cosmopolitan and widespread model species, D. simulans. This species, endemic to the Seychelles archipelago, is specialized on the fruits of Morinda citrifolia, and harbours the lowest overall genetic diversity compared to other species of Drosophila. This low diversity is associated with a small population size. In addition, no obvious population structure has been evidenced so far across islands of the Seychelles archipelago. Here, a microsatellite panel of 17 loci in ten populations from nine islands of the Seychelles was used to assess the effect of the D. sechellia's fragmented distribution on the fine-scale population genetic structure, the migration pattern, as well as on the demography of the species. Contrary to previous results, also based on microsatellites, no evidence for population contraction in D. sechellia was found. The results confirm previous studies based on gene sequence polymorphism that showed a long-term stable population size for this species. Interestingly, a pattern of Isolation By Distance which had not been described yet in D. sechellia was found, with evidence of first-generation migrants between some neighbouring islands. Bayesian structuring algorithm results were consistent with a split of D. sechellia into two main groups of populations: Silhouette/Mahé versus all the other islands. Thus, microsatellites suggest that variability in D. sechellia is most likely explained by local genetic exchanges between neighbouring islands that have recently resulted in slight differentiation of the two largest island populations from all the others.

  20. Local topography shapes fine-scale spatial genetic structure in the Arkansas Valley evening primrose, Oenothera harringtonii (Onagraceae).

    Science.gov (United States)

    Rhodes, Matthew K; Fant, Jeremie B; Skogen, Krissa A

    2014-01-01

    Identifying factors that shape the spatial distribution of genetic variation is crucial to understanding many population- and landscape-level processes. In this study, we explore fine-scale spatial genetic structure in Oenothera harringtonii (Onagraceae), an insect-pollinated, gravity-dispersed herb endemic to the grasslands of south-central and southeastern Colorado, USA. We genotyped 315 individuals with 11 microsatellite markers and utilized a combination of spatial autocorrelation analyses and landscape genetic models to relate life history traits and landscape features to dispersal processes. Spatial genetic structure was consistent with theoretical expectations of isolation by distance, but this pattern was weak (Sp = 0.00374). Anisotropic analyses indicated that spatial genetic structure was markedly directional, in this case consistent with increased dispersal along prominent slopes. Landscape genetic models subsequently confirmed that spatial genetic variation was significantly influenced by local topographic heterogeneity, specifically that geographic distance, elevation and aspect were important predictors of spatial genetic structure. Among these variables, geographic distance was ~68% more important than elevation in describing spatial genetic variation, and elevation was ~42% more important than aspect after removing the effect of geographic distance. From these results, we infer a mechanism of hydrochorous seed dispersal along major drainages aided by seasonal monsoon rains. Our findings suggest that landscape features may shape microevolutionary processes at much finer spatial scales than typically considered, and stress the importance of considering how particular dispersal vectors are influenced by their environmental context. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Evidence of novel fine-scale structural variation at autism spectrum disorder candidate loci

    Directory of Open Access Journals (Sweden)

    Hedges Dale J

    2012-04-01

    Full Text Available Abstract Background Autism spectrum disorders (ASD represent a group of neurodevelopmental disorders characterized by a core set of social-communicative and behavioral impairments. Gamma-aminobutyric acid (GABA is the major inhibitory neurotransmitter in the brain, acting primarily via the GABA receptors (GABR. Multiple lines of evidence, including altered GABA and GABA receptor expression in autistic patients, indicate that the GABAergic system may be involved in the etiology of autism. Methods As copy number variations (CNVs, particularly rare and de novo CNVs, have now been implicated in ASD risk, we examined the GABA receptors and genes in related pathways for structural variation that may be associated with autism. We further extended our candidate gene set to include 19 genes and regions that had either been directly implicated in the autism literature or were directly related (via function or ancestry to these primary candidates. For the high resolution CNV screen we employed custom-designed 244 k comparative genomic hybridization (CGH arrays. Collectively, our probes spanned a total of 11 Mb of GABA-related and additional candidate regions with a density of approximately one probe every 200 nucleotides, allowing a theoretical resolution for detection of CNVs of approximately 1 kb or greater on average. One hundred and sixty-eight autism cases and 149 control individuals were screened for structural variants. Prioritized CNV events were confirmed using quantitative PCR, and confirmed loci were evaluated on an additional set of 170 cases and 170 control individuals that were not included in the original discovery set. Loci that remained interesting were subsequently screened via quantitative PCR on an additional set of 755 cases and 1,809 unaffected family members. Results Results include rare deletions in autistic individuals at JAKMIP1, NRXN1, Neuroligin4Y, OXTR, and ABAT. Common insertion/deletion polymorphisms were detected at several

  2. Pollen-mediated gene flow and fine-scale spatial genetic structure in Olea europaea subsp. europaea var. sylvestris.

    Science.gov (United States)

    Beghè, D; Piotti, A; Satovic, Z; de la Rosa, R; Belaj, A

    2017-03-01

    Wild olive ( Olea europaea subsp. europaea var. sylvestris ) is important from an economic and ecological point of view. The effects of anthropogenic activities may lead to the genetic erosion of its genetic patrimony, which has high value for breeding programmes. In particular, the consequences of the introgression from cultivated stands are strongly dependent on the extent of gene flow and therefore this work aims at quantitatively describing contemporary gene flow patterns in wild olive natural populations. The studied wild population is located in an undisturbed forest, in southern Spain, considered one of the few extant hotspots of true oleaster diversity. A total of 225 potential father trees and seeds issued from five mother trees were genotyped by eight microsatellite markers. Levels of contemporary pollen flow, in terms of both pollen immigration rates and within-population dynamics, were measured through paternity analyses. Moreover, the extent of fine-scale spatial genetic structure (SGS) was studied to assess the relative importance of seed and pollen dispersal in shaping the spatial distribution of genetic variation. The results showed that the population under study is characterized by a high genetic diversity, a relatively high pollen immigration rate (0·57), an average within-population pollen dispersal of about 107 m and weak but significant SGS up to 40 m. The population is a mosaic of several intermingled genetic clusters that is likely to be generated by spatially restricted seed dispersal. Moreover, wild oleasters were found to be self-incompatible and preferential mating between some genotypes was revealed. Knowledge of the within-population genetic structure and gene flow dynamics will lead to identifying possible strategies aimed at limiting the effect of anthropogenic activities and improving breeding programmes for the conservation of olive tree forest genetic resources. © The Author 2016. Published by Oxford University Press on behalf

  3. Higher fine-scale genetic structure in peripheral than in core populations of a long-lived and mixed-mating conifer - eastern white cedar (Thuja occidentalis L.)

    Science.gov (United States)

    2012-01-01

    Background Fine-scale or spatial genetic structure (SGS) is one of the key genetic characteristics of plant populations. Several evolutionary and ecological processes and population characteristics influence the level of SGS within plant populations. Higher fine-scale genetic structure may be expected in peripheral than core populations of long-lived forest trees, owing to the differences in the magnitude of operating evolutionary and ecological forces such as gene flow, genetic drift, effective population size and founder effects. We addressed this question using eastern white cedar (Thuja occidentalis) as a model species for declining to endangered long-lived tree species with mixed-mating system. Results We determined the SGS in two core and two peripheral populations of eastern white cedar from its Maritime Canadian eastern range using six nuclear microsatellite DNA markers. Significant SGS ranging from 15 m to 75 m distance classes was observed in the four studied populations. An analysis of combined four populations revealed significant positive SGS up to the 45 m distance class. The mean positive significant SGS observed in the peripheral populations was up to six times (up to 90 m) of that observed in the core populations (15 m). Spatial autocorrelation coefficients and correlograms of single and sub-sets of populations were statistically significant. The extent of within-population SGS was significantly negatively correlated with all genetic diversity parameters. Significant heterogeneity of within-population SGS was observed for 0-15 m and 61-90 m between core and peripheral populations. Average Sp, and gene flow distances were higher in peripheral (Sp = 0.023, σg = 135 m) than in core (Sp = 0.014, σg = 109 m) populations. However, the mean neighborhood size was higher in the core (Nb = 82) than in the peripheral (Nb = 48) populations. Conclusion Eastern white cedar populations have significant fine-scale genetic structure at short distances. Peripheral

  4. Higher fine-scale genetic structure in peripheral than in core populations of a long-lived and mixed-mating conifer - eastern white cedar (Thuja occidentalis L.

    Directory of Open Access Journals (Sweden)

    Pandey Madhav

    2012-04-01

    Full Text Available Abstract Background Fine-scale or spatial genetic structure (SGS is one of the key genetic characteristics of plant populations. Several evolutionary and ecological processes and population characteristics influence the level of SGS within plant populations. Higher fine-scale genetic structure may be expected in peripheral than core populations of long-lived forest trees, owing to the differences in the magnitude of operating evolutionary and ecological forces such as gene flow, genetic drift, effective population size and founder effects. We addressed this question using eastern white cedar (Thuja occidentalis as a model species for declining to endangered long-lived tree species with mixed-mating system. Results We determined the SGS in two core and two peripheral populations of eastern white cedar from its Maritime Canadian eastern range using six nuclear microsatellite DNA markers. Significant SGS ranging from 15 m to 75 m distance classes was observed in the four studied populations. An analysis of combined four populations revealed significant positive SGS up to the 45 m distance class. The mean positive significant SGS observed in the peripheral populations was up to six times (up to 90 m of that observed in the core populations (15 m. Spatial autocorrelation coefficients and correlograms of single and sub-sets of populations were statistically significant. The extent of within-population SGS was significantly negatively correlated with all genetic diversity parameters. Significant heterogeneity of within-population SGS was observed for 0-15 m and 61-90 m between core and peripheral populations. Average Sp, and gene flow distances were higher in peripheral (Sp = 0.023, σg = 135 m than in core (Sp = 0.014, σg = 109 m populations. However, the mean neighborhood size was higher in the core (Nb = 82 than in the peripheral (Nb = 48 populations. Conclusion Eastern white cedar populations have significant fine-scale genetic structure at short

  5. Fine structure of cluster decays

    International Nuclear Information System (INIS)

    Dumitrescu, O.

    1993-07-01

    Within the one level R-matrix approach the hindrance factors of the radioactive decays in which are emitted α and 14 C - nuclei are calculated. The generalization to radioactive decays in which are emitted heavier clusters such as e.g. 20 O, 24 Ne, 25 Ne, 28 Mg. 30 Mg, 32 Si and 34 Si is straightforward. The interior wave functions are supposed to be given by the shell model with effective residual interactions (e.g. the large scale shell model code-OXBASH - in the Michigan State University version for nearly spherical nuclei or by the enlarged superfluid model - ESM - recently proposed for deformed nuclei). The exterior wave functions are calculated from a cluster - nucleus double - folding model potential obtained with the M3Y interaction. As examples of the cluster decay fine structure we analyzed the particular cases of α - decay of 241 Am and 14 C -decay of 233 Ra. Good agreement with the experimental data is obtained. (author). 78 refs, 2 figs, 6 tabs

  6. Fine-scale population genetic structure and short-range sex-biased dispersal in a solitary carnivore, Lutra lutra

    Czech Academy of Sciences Publication Activity Database

    Quaglietta, L.; Fonseca, V. C.; Hájková, Petra; Mira, A.; Boitani, L.

    2013-01-01

    Roč. 94, č. 3 (2013), s. 561-571 ISSN 0022-2372 Institutional support: RVO:68081766 Keywords : conservation genetics * dispersal distances * Eurasian otter * isolation by distance * radiotracking * restricted gene flow * spatial relatedness structure * spatiotemporal scale Subject RIV: EG - Zoology Impact factor: 2.225, year: 2013

  7. Berry's Phase and Fine Structure

    CERN Document Server

    Binder, B

    2002-01-01

    Irrational numbers can be assigned to physical entities based on iterative processes of geometric objects. It is likely that iterative round trips of vector signals include a geometric phase component. If so, this component will couple back to the round trip frequency or path length generating an non-linear feedback loop (i.e. induced by precession). In this paper such a quantum feedback mechanism is defined including generalized fine structure constants in accordance with the fundamental gravitomagnetic relation of spin-orbit coupling. Supported by measurements, the general relativistic and topological background allows to propose, that the deviation of the fine structure constant from 1/137 could be assigned to Berry's phase. The interpretation is straightforward: spacetime curvature effects can be greatly amplified by non-linear phase-locked feedback-loops adjusted to single-valued phase relationships in the quantum regime.

  8. Fine-scale structures and material flows of quiescent filaments observed by the New Vacuum Solar Telescope

    Science.gov (United States)

    Yan, Xiao-Li; Xue, Zhi-Ke; Xiang, Yong-Yuan; Yang, Li-Heng

    2015-10-01

    Study of the small-scale structures and material flows associated with solar quiescent filaments is very important for understanding the formation and equilibrium of solar filaments. Using high resolution Hα data observed by the New Vacuum Solar Telescope, we present the structures of barbs and material flows along the threads across the spine in two quiescent filaments on 2013 September 29 and on 2012 November 2, respectively. During the evolution of the filament barb, several parallel tube-shaped structures formed and the width of the structures ranged from about 2.3 Mm to 3.3 Mm. The parallel tube-shaped structures merged together accompanied by material flows from the spine to the barb. Moreover, the boundary between the barb and surrounding atmosphere was very neat. The counter-streaming flows were not found to appear alternately in the adjacent threads of the filament. However, the large-scale patchy counter-streaming flows were detected in the filament. The flows in one patch of the filament have the same direction but flows in the adjacent patch have opposite direction. The patches of two opposite flows with a size of about 10″ were alternately exhibited along the spine of the filament. The velocity of these material flows ranged from 5.6 km s-1 to 15.0 km s-1. The material flows along the threads of the filament did not change their direction for about two hours and fourteen minutes during the evolution of the filament. Our results confirm that the large-scale counter-streaming flows with a certain width along the threads of solar filaments exist and are coaligned well with the threads.

  9. FINE-SCALE STRUCTURE OF THE QUASAR 3C 279 MEASURED WITH 1.3 mm VERY LONG BASELINE INTERFEROMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Lu Rusen; Fish, Vincent L.; Doeleman, Sheperd S.; Crew, Geoffrey; Cappallo, Roger J. [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Akiyama, Kazunori; Honma, Mareki [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Algaba, Juan C.; Ho, Paul T. P.; Inoue, Makoto [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan, R.O.C. (China); Bower, Geoffrey C.; Dexter, Matt [Department of Astronomy, Radio Astronomy Laboratory, University of California Berkeley, 601 Campbell, Berkeley, CA 94720-3411 (United States); Brinkerink, Christiaan [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Chamberlin, Richard [Caltech Submillimeter Observatory, 111 Nowelo Street, Hilo, HI 96720 (United States); Freund, Robert [Arizona Radio Observatory, Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Friberg, Per [James Clerk Maxwell Telescope, Joint Astronomy Centre, 660 North A' ohoku Place, University Park, Hilo, HI 96720 (United States); Gurwell, Mark A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Jorstad, Svetlana G. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Krichbaum, Thomas P. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Loinard, Laurent, E-mail: rslu@haystack.mit.edu [Centro de Radiostronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, 58089 Morelia, Michoacan (Mexico); and others

    2013-07-20

    We report results from five day very long baseline interferometry observations of the well-known quasar 3C 279 at 1.3 mm (230 GHz) in 2011. The measured nonzero closure phases on triangles including stations in Arizona, California, and Hawaii indicate that the source structure is spatially resolved. We find an unusual inner jet direction at scales of {approx}1 pc extending along the northwest-southeast direction (P.A. = 127 Degree-Sign {+-} 3 Degree-Sign ), as opposed to other (previously) reported measurements on scales of a few parsecs showing inner jet direction extending to the southwest. The 1.3 mm structure corresponds closely with that observed in the central region of quasi-simultaneous super-resolution Very Long Baseline Array images at 7 mm. The closure phase changed significantly on the last day when compared with the rest of observations, indicating that the inner jet structure may be variable on daily timescales. The observed new direction of the inner jet shows inconsistency with the prediction of a class of jet precession models. Our observations indicate a brightness temperature of {approx}8 Multiplication-Sign 10{sup 10} K in the 1.3 mm core, much lower than that at centimeter wavelengths. Observations with better uv coverage and sensitivity in the coming years will allow the discrimination between different structure models and will provide direct images of the inner regions of the jet with 20-30 {mu}as (5-7 light months) resolution.

  10. FINE-SCALE STRUCTURE OF THE QUASAR 3C 279 MEASURED WITH 1.3 mm VERY LONG BASELINE INTERFEROMETRY

    International Nuclear Information System (INIS)

    Lu Rusen; Fish, Vincent L.; Doeleman, Sheperd S.; Crew, Geoffrey; Cappallo, Roger J.; Akiyama, Kazunori; Honma, Mareki; Algaba, Juan C.; Ho, Paul T. P.; Inoue, Makoto; Bower, Geoffrey C.; Dexter, Matt; Brinkerink, Christiaan; Chamberlin, Richard; Freund, Robert; Friberg, Per; Gurwell, Mark A.; Jorstad, Svetlana G.; Krichbaum, Thomas P.; Loinard, Laurent

    2013-01-01

    We report results from five day very long baseline interferometry observations of the well-known quasar 3C 279 at 1.3 mm (230 GHz) in 2011. The measured nonzero closure phases on triangles including stations in Arizona, California, and Hawaii indicate that the source structure is spatially resolved. We find an unusual inner jet direction at scales of ∼1 pc extending along the northwest-southeast direction (P.A. = 127° ± 3°), as opposed to other (previously) reported measurements on scales of a few parsecs showing inner jet direction extending to the southwest. The 1.3 mm structure corresponds closely with that observed in the central region of quasi-simultaneous super-resolution Very Long Baseline Array images at 7 mm. The closure phase changed significantly on the last day when compared with the rest of observations, indicating that the inner jet structure may be variable on daily timescales. The observed new direction of the inner jet shows inconsistency with the prediction of a class of jet precession models. Our observations indicate a brightness temperature of ∼8 × 10 10 K in the 1.3 mm core, much lower than that at centimeter wavelengths. Observations with better uv coverage and sensitivity in the coming years will allow the discrimination between different structure models and will provide direct images of the inner regions of the jet with 20-30 μas (5-7 light months) resolution.

  11. Elements of the geological structure of the Western Siberian platform determined from a review of fine-scale satellite photographs in oil and gas prospecting research

    Energy Technology Data Exchange (ETDEWEB)

    Borovskii, V V; Klopov, A L; Peskovskii, I D; Podsosova, L L

    1980-01-01

    Dislocations with breaks in continuity and annular objects are identified on fine-scale satellite photographs within the region of the Western Siberian platform. Based on an integrated interpretation of the geological and geophysical data, it is predicted that there exists a relation between the annular objects and the geological structure of deep portions of the earth's crust, the pre-Jurassic basement, and certain levels of the platform mantle. Procedural techniques for the use of magnetic and gravitional data for the purpose of obtaining information about the geological nature of the identified objects are considered.

  12. Recovering the fine structures in solar images

    Science.gov (United States)

    Karovska, Margarita; Habbal, S. R.; Golub, L.; Deluca, E.; Hudson, Hugh S.

    1994-01-01

    Several examples of the capability of the blind iterative deconvolution (BID) technique to recover the real point spread function, when limited a priori information is available about its characteristics. To demonstrate the potential of image post-processing for probing the fine scale and temporal variability of the solar atmosphere, the BID technique is applied to different samples of solar observations from space. The BID technique was originally proposed for correction of the effects of atmospheric turbulence on optical images. The processed images provide a detailed view of the spatial structure of the solar atmosphere at different heights in regions with different large-scale magnetic field structures.

  13. Fine-scale community structure analysis of ANME in Nyegga sediments with high and low methane flux

    Directory of Open Access Journals (Sweden)

    Irene eRoalkvam

    2012-06-01

    Full Text Available To obtain knowledge on how regional variations in methane seepage rates influence the stratification, abundance and diversity of anaerobic methanotrophs (ANME we analyzed the vertical microbial stratification in a gravity core from a methane micro-seeping area at Nyegga by using 454-pyrosequencing of 16S rRNA gene tagged amplicons and quantitative PCR. The results were compared with previously obtained data from the more active G11 pockmark, characterized by higher methane flux. A downcore stratification and high relative abundance of ANME was observed in both cores, with transition from an ANME-2a/b dominated community in low-sulfide and low-methane horizons to ANME-1 dominance in horizons near the sulfate methane transition zone (SMTZ. The stratification was over a wider spatial region and at greater depth in the core with lower methane flux, and the total 16S rRNA copy numbers were two orders of magnitude lower than in the sediments at G11 pockmark. A fine-scale view into the ANME communities at each location was achieved through OTU clustering of ANME-affiliated sequences. The majority of ANME-1 sequences from both sampling sites clustered within one OTU, while ANME-2a/b sequences were represented in unique OTUs. We suggest that free living ANME-1 is the most abundant taxon in Nyegga cold seeps, and also the main consumer of methane. The specific ANME-2a/b ecotypes could reflect adaptations to the geochemical composition at each location, with different affinities to methane. Given that the ANME-2a/b population could be sustained in less active seepage areas, this subgroup could be potential seed populations in newly developed methane-enriched environments.

  14. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata

    Directory of Open Access Journals (Sweden)

    Meghann K. Devlin-Durante

    2017-11-01

    Full Text Available The advent of next-generation sequencing tools has made it possible to conduct fine-scale surveys of population differentiation and genome-wide scans for signatures of selection in non-model organisms. Such surveys are of particular importance in sharply declining coral species, since knowledge of population boundaries and signs of local adaptation can inform restoration and conservation efforts. Here, we use genome-wide surveys of single-nucleotide polymorphisms in the threatened Caribbean elkhorn coral, Acropora palmata, to reveal fine-scale population structure and infer the major barrier to gene flow that separates the eastern and western Caribbean populations between the Bahamas and Puerto Rico. The exact location of this break had been subject to discussion because two previous studies based on microsatellite data had come to differing conclusions. We investigate this contradiction by analyzing an extended set of 11 microsatellite markers including the five previously employed and discovered that one of the original microsatellite loci is apparently under selection. Exclusion of this locus reconciles the results from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data detected 13 candidate loci under positive selection, however there was no correlation between available environmental parameters and genetic distance. Together, these results suggest that reef restoration efforts should use local sources and utilize existing functional variation among geographic regions in ex situ crossing experiments to improve stress resistance of this species.

  15. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata.

    Science.gov (United States)

    Devlin-Durante, Meghann K; Baums, Iliana B

    2017-01-01

    The advent of next-generation sequencing tools has made it possible to conduct fine-scale surveys of population differentiation and genome-wide scans for signatures of selection in non-model organisms. Such surveys are of particular importance in sharply declining coral species, since knowledge of population boundaries and signs of local adaptation can inform restoration and conservation efforts. Here, we use genome-wide surveys of single-nucleotide polymorphisms in the threatened Caribbean elkhorn coral, Acropora palmata , to reveal fine-scale population structure and infer the major barrier to gene flow that separates the eastern and western Caribbean populations between the Bahamas and Puerto Rico. The exact location of this break had been subject to discussion because two previous studies based on microsatellite data had come to differing conclusions. We investigate this contradiction by analyzing an extended set of 11 microsatellite markers including the five previously employed and discovered that one of the original microsatellite loci is apparently under selection. Exclusion of this locus reconciles the results from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data detected 13 candidate loci under positive selection, however there was no correlation between available environmental parameters and genetic distance. Together, these results suggest that reef restoration efforts should use local sources and utilize existing functional variation among geographic regions in ex situ crossing experiments to improve stress resistance of this species.

  16. Recent Demographic History and Present Fine-Scale Structure in the Northwest Atlantic Leatherback (Dermochelys coriacea) Turtle Population

    Science.gov (United States)

    Molfetti, Érica; Torres Vilaça, Sibelle; Georges, Jean-Yves; Plot, Virginie; Delcroix, Eric; Le Scao, Rozen; Lavergne, Anne; Barrioz, Sébastien; dos Santos, Fabrício Rodrigues; de Thoisy, Benoît

    2013-01-01

    The leatherback turtle Dermochelys coriacea is the most widely distributed sea turtle species in the world. It exhibits complex life traits: female homing and migration, migrations of juveniles and males that remain poorly known, and a strong climatic influence on resources, breeding success and sex-ratio. It is consequently challenging to understand population dynamics. Leatherbacks are critically endangered, yet the group from the Northwest Atlantic is currently considered to be under lower risk than other populations while hosting some of the largest rookeries. Here, we investigated the genetic diversity and the demographic history of contrasted rookeries from this group, namely two large nesting populations in French Guiana, and a smaller one in the French West Indies. We used 10 microsatellite loci, of which four are newly isolated, and mitochondrial DNA sequences of the control region and cytochrome b. Both mitochondrial and nuclear markers revealed that the Northwest Atlantic stock of leatherbacks derives from a single ancestral origin, but show current genetic structuration at the scale of nesting sites, with the maintenance of migrants amongst rookeries. Low nuclear genetic diversities are related to founder effects that followed consequent bottlenecks during the late Pleistocene/Holocene. Most probably in response to climatic oscillations, with a possible influence of early human hunting, female effective population sizes collapsed from 2 million to 200. Evidence of founder effects and high numbers of migrants make it possible to reconsider the population dynamics of the species, formerly considered as a metapopulation model: we propose a more relaxed island model, which we expect to be a key element in the currently observed recovering of populations. Although these Northwest Atlantic rookeries should be considered as a single evolutionary unit, we stress that local conservation efforts remain necessary since each nesting site hosts part of the genetic

  17. Fine Structure of Plasmaspheric Hiss

    Science.gov (United States)

    Summers, D.; Omura, Y.; Nakamura, S.; Kletzing, C.

    2014-12-01

    Plasmaspheric hiss plays a key role in controlling the structure and dynamics of Earth's radiation belts.The quiet time slot region between the inner and outer belts can be explained as a steady-state balance between earthward radial diffusion and pitch-angle scattering loss of energetic electrons to the atmosphere induced by plasmaspheric hiss. Plasmaspheric hiss can also induce gradual precipitation loss of MeV electrons from the outer radiation belt. Plasmaspheric hiss has been widely regarded as a broadband,structureless,incoherent emission. Here, by examining burst-mode vector waveform data from the EMFISIS instrument on the Van Allen Probes mission,we show that plasmaspheric hiss is a coherent emission with complex fine structure. Specifically, plasmaspheric hiss appears as discrete rising tone and falling tone elements. By means of waveform analysis we identify typical amplitudes,phase profiles,and sweep rates of the rising and falling tone elements. The new observations reported here can be expected to fuel a re-examination of the properties of plasmaspheric hiss, including a further re-analysis of the generation mechanism for hiss.

  18. A study of human DPOAE fine structure

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    height and ripple prevalence. Temporary changes of the DPOAE fine structure are analyzed by measuring DPOAE both before and after exposing some of the subjects to an intense sound. The characteristic patterns of fine structure can be found in the DPOAE of all subjects, though they are individual and vary...... fine structures are obtained from 74 normalhearing humans using primary levels of L1/L2=65/45 dB. The subjects belong to groups with different age and exposure history. A classification algorithm is developed, which quantifies the fine structure by the parameters ripple place, ripple width, ripple...

  19. Imaging the Fine-Scale Structure of the San Andreas Fault in the Northern Gabilan Range with Explosion and Earthquake Sources

    Science.gov (United States)

    Xin, H.; Thurber, C. H.; Zhang, H.; Wang, F.

    2014-12-01

    A number of geophysical studies have been carried out along the San Andreas Fault (SAF) in the Northern Gabilan Range (NGR) with the purpose of characterizing in detail the fault zone structure. Previous seismic research has revealed the complex structure of the crustal volume in the NGR region in two-dimensions (Thurber et al., 1996, 1997), and there has been some work on the three-dimensional (3D) structure at a coarser scale (Lin and Roecker, 1997). In our study we use earthquake body-wave arrival times and differential times (P and S) and explosion arrival times (only P) to image the 3D P- and S-wave velocity structure of the upper crust along the SAF in the NGR using double-difference (DD) tomography. The earthquake and explosion data types have complementary strengths - the earthquake data have good resolution at depth and resolve both Vp and Vs structure, although only where there are sufficient seismic rays between hypocenter and stations, whereas the explosions contribute very good near-surface resolution but for P waves only. The original dataset analyzed by Thurber et al. (1996, 1997) included data from 77 local earthquakes and 8 explosions. We enlarge the dataset with 114 more earthquakes that occurred in the study area, obtain improved S-wave picks using an automated picker, and include absolute and cross-correlation differential times. The inversion code we use is the algorithm tomoDD (Zhang and Thurber, 2003). We assess how the P and S velocity models and earthquake locations vary as we alter the inversion parameters and the inversion grid. The new inversion results show clearly the fine-scale structure of the SAF at depth in 3D, sharpening the image of the velocity contrast from the southwest side to the northeast side.

  20. Fine-scale analysis of genetic structure in the brooding coral Seriatopora hystrix from the Red Sea

    Science.gov (United States)

    Maier, E.; Tollrian, R.; Nürnberger, B.

    2009-09-01

    The dispersal of gametes and larvae plays a key role in the population dynamics of sessile marine invertebrates. Species with internal fertilisation are often associated with very localised larval dispersal, which may cause small-scale patterns of neutral genetic variation. This study on the brooding coral Seriatopora hystrix from the Red Sea focused on the smallest possible scale: Two S. hystrix stands (~100 colonies each) near Dahab were completely sampled, mapped and analysed at five microsatellite markers. The sexual mode of reproduction, the likely occurrence of selfing and the level of immigration were in agreement with previous studies on this species. Contrary to previous findings, both stands were in Hardy-Weinberg proportions. Also, no evidence for spatially restricted larval dispersal within the sampled areas was found. Differences between this and previous studies on S. hystrix could reflect variation in life history or varying environmental conditions, which opens intriguing questions for future research.

  1. Resolving the fine-scale velocity structure of continental hyperextension at the Deep Galicia Margin using full-waveform inversion

    Science.gov (United States)

    Davy, R. G.; Morgan, J. V.; Minshull, T. A.; Bayrakci, G.; Bull, J. M.; Klaeschen, D.; Reston, T. J.; Sawyer, D. S.; Lymer, G.; Cresswell, D.

    2018-01-01

    Continental hyperextension during magma-poor rifting at the Deep Galicia Margin is characterized by a complex pattern of faulting, thin continental fault blocks and the serpentinization, with local exhumation, of mantle peridotites along the S-reflector, interpreted as a detachment surface. In order to understand fully the evolution of these features, it is important to image seismically the structure and to model the velocity structure to the greatest resolution possible. Traveltime tomography models have revealed the long-wavelength velocity structure of this hyperextended domain, but are often insufficient to match accurately the short-wavelength structure observed in reflection seismic imaging. Here, we demonstrate the application of 2-D time-domain acoustic full-waveform inversion (FWI) to deep-water seismic data collected at the Deep Galicia Margin, in order to attain a high-resolution velocity model of continental hyperextension. We have used several quality assurance procedures to assess the velocity model, including comparison of the observed and modeled waveforms, checkerboard tests, testing of parameter and inversion strategy and comparison with the migrated reflection image. Our final model exhibits an increase in the resolution of subsurface velocities, with particular improvement observed in the westernmost continental fault blocks, with a clear rotation of the velocity field to match steeply dipping reflectors. Across the S-reflector, there is a sharpening in the velocity contrast, with lower velocities beneath S indicative of preferential mantle serpentinization. This study supports the hypothesis that normal faulting acts to hydrate the upper-mantle peridotite, observed as a systematic decrease in seismic velocities, consistent with increased serpentinization. Our results confirm the feasibility of applying the FWI method to sparse, deep-water crustal data sets.

  2. Fine-scale population structure of two anemones (Stichodactyla gigantea and Heteractis magnifica) in Kimbe Bay, Papua New Guinea

    KAUST Repository

    Gatins, Remy

    2014-12-01

    Anemonefish are one of the main groups that have been used over the last decade to empirically measure larval dispersal and connectivity in coral reef populations. A few species of anemones are integral to the life history of these fish, as well as other obligate symbionts, yet the biology and population structure of these anemones remains poorly understood. The aim of this study was to measure the genetic structure of these anemones within and between two reefs in order to assess their reproductive mode and dispersal potential. To do this, we sampled almost exhaustively two anemones species (Stichodactyla gigantea and Heteractis magnifica) at two small islands in Kimbe Bay (Papua New Guinea) separated by approximately 25 km. Both the host anemones and the anemonefish are heavily targeted for the aquarium trade, in addition to the populations being affected by bleaching pressures (Hill and Scott 2012; Hobbs et al. 2013; Saenz- Agudelo et al. 2011; Thomas et al. 2014), therefore understanding their biology is crucial for better management strategies. Panels of microsatellite markers were developed for each species using next generation sequencing tools. Clonality analyses confirm six pairs of identical genotypes for S. gigantea (n=350) and zero for H. magnifica (n=128), indicating presence/absence of asexual reproduction in this region. S. gigantea showed low structure between islands (FST= 0.003, p-value= 0.000), however, even if the majority of the individuals were unrelated (r~0), 81 families that shared 50% of their genetic material formed from two to four members were found. Out of these families, 45% were found with individuals only within Tuare Island, 11% only in Kimbe Island, and 44% were sharing individuals among islands. In comparison, H. magnifica showed no structure (FST= 0.002, p-value= 0.278), mean relatedness indicated the majority of individuals were unrelated, and 31 families were identified. Families again consisted from two to four members and

  3. Multiple SNP markers reveal fine-scale population and deep phylogeographic structure in European anchovy (Engraulis encrasicolus L.).

    KAUST Repository

    Zarraonaindia, Iratxe

    2012-07-30

    Geographic surveys of allozymes, microsatellites, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) have detected several genetic subdivisions among European anchovy populations. However, these studies have been limited in their power to detect some aspects of population structure by the use of a single or a few molecular markers, or by limited geographic sampling. We use a multi-marker approach, 47 nDNA and 15 mtDNA single nucleotide polymorphisms (SNPs), to analyze 626 European anchovies from the whole range of the species to resolve shallow and deep levels of population structure. Nuclear SNPs define 10 genetic entities within two larger genetically distinctive groups associated with oceanic variables and different life-history traits. MtDNA SNPs define two deep phylogroups that reflect ancient dispersals and colonizations. These markers define two ecological groups. One major group of Iberian-Atlantic populations is associated with upwelling areas on narrow continental shelves and includes populations spawning and overwintering in coastal areas. A second major group includes northern populations in the North East (NE) Atlantic (including the Bay of Biscay) and the Mediterranean and is associated with wide continental shelves with local larval retention currents. This group tends to spawn and overwinter in oceanic areas. These two groups encompass ten populations that differ from previously defined management stocks in the Alboran Sea, Iberian-Atlantic and Bay of Biscay regions. In addition, a new North Sea-English Channel stock is defined. SNPs indicate that some populations in the Bay of Biscay are genetically closer to North Western (NW) Mediterranean populations than to other populations in the NE Atlantic, likely due to colonizations of the Bay of Biscay and NW Mediterranean by migrants from a common ancestral population. Northern NE Atlantic populations were subsequently established by migrants from the Bay of Biscay. Populations along the Iberian

  4. Fine scale population genetic structure and within tree distribution of mating types of Venturia effusa, cause of pecan scab in the USA

    Science.gov (United States)

    Scab (caused by Venturia effusa) is the major disease of pecan in the southeastern USA. There is no information available on the fine scale population genetic diversity. Four cv. Wichita trees (populations) were sampled hierarchically. Within each tree canopy, 4 approximately evenly spaced terminals...

  5. Fine structure studies of terbium atoms

    International Nuclear Information System (INIS)

    Abhay Kumar; Bandyopadhyay, Krishnanath; Niraj Kumar

    2012-01-01

    Terbium (Z = 65) is a typical rare-earth element. Fine structure of spectural lines of terbium (Tb) are presented using the laser optogalvanic spectroscopic technique. Altogether eighty transitions in the 5686-6367 A range have been observed in the fine structure spectrum of 159 Tb. Wavelengths of all the observed transitions have been determined. Out of 80 transitions of Tb, a total of 59 transitions are being reported for the first time. Classifications of 39 new transitions have been provided using the known energy levels, Doppler-limited optogalvanic spectroscopic technique is employed to study the fine structure (fs) 159 Tb. (author)

  6. Fine-scale population genetic structure of the Bengal tiger (Panthera tigris tigris) in a human-dominated western Terai Arc Landscape, India.

    Science.gov (United States)

    Singh, Sujeet Kumar; Aspi, Jouni; Kvist, Laura; Sharma, Reeta; Pandey, Puneet; Mishra, Sudhanshu; Singh, Randeep; Agrawal, Manoj; Goyal, Surendra Prakash

    2017-01-01

    Despite massive global conservation strategies, tiger populations continued to decline until recently, mainly due to habitat loss, human-animal conflicts, and poaching. These factors are known to affect the genetic characteristics of tiger populations and decrease local effective population sizes. The Terai Arc Landscape (TAL) at the foothills of the Himalaya is one of the 42 source sites of tigers around the globe. Therefore, information on how landscape features and anthropogenic factors affect the fine-scale spatial genetic structure and variation of tigers in TAL is needed to develop proper management strategies for achieving long-term conservation goals. We document, for the first time, the genetic characteristics of this tiger population by genotyping 71 tiger samples using 13 microsatellite markers from the western region of TAL (WTAL) of 1800 km2. Specifically, we aimed to estimate the genetic variability, population structure, and gene flow. The microsatellite markers indicated that the levels of allelic diversity (MNA = 6.6) and genetic variation (Ho = 0.50, HE = 0.64) were slightly lower than those reported previously in other Bengal tiger populations. We observed moderate gene flow and significant genetic differentiation (FST= 0.060) and identified the presence of cryptic genetic structure using Bayesian and non-Bayesian approaches. There was low and significantly asymmetric migration between the two main subpopulations of the Rajaji Tiger Reserve and the Corbett Tiger Reserve in WTAL. Sibship relationships indicated that the functionality of the corridor between these subpopulations may be retained if the quality of the habitat does not deteriorate. However, we found that gene flow is not adequate in view of changing land use matrices. We discuss the need to maintain connectivity by implementing the measures that have been suggested previously to minimize the level of human disturbance, including relocation of villages and industries, prevention of

  7. Fine-scale population genetic structure of the Bengal tiger (Panthera tigris tigris in a human-dominated western Terai Arc Landscape, India.

    Directory of Open Access Journals (Sweden)

    Sujeet Kumar Singh

    Full Text Available Despite massive global conservation strategies, tiger populations continued to decline until recently, mainly due to habitat loss, human-animal conflicts, and poaching. These factors are known to affect the genetic characteristics of tiger populations and decrease local effective population sizes. The Terai Arc Landscape (TAL at the foothills of the Himalaya is one of the 42 source sites of tigers around the globe. Therefore, information on how landscape features and anthropogenic factors affect the fine-scale spatial genetic structure and variation of tigers in TAL is needed to develop proper management strategies for achieving long-term conservation goals. We document, for the first time, the genetic characteristics of this tiger population by genotyping 71 tiger samples using 13 microsatellite markers from the western region of TAL (WTAL of 1800 km2. Specifically, we aimed to estimate the genetic variability, population structure, and gene flow. The microsatellite markers indicated that the levels of allelic diversity (MNA = 6.6 and genetic variation (Ho = 0.50, HE = 0.64 were slightly lower than those reported previously in other Bengal tiger populations. We observed moderate gene flow and significant genetic differentiation (FST= 0.060 and identified the presence of cryptic genetic structure using Bayesian and non-Bayesian approaches. There was low and significantly asymmetric migration between the two main subpopulations of the Rajaji Tiger Reserve and the Corbett Tiger Reserve in WTAL. Sibship relationships indicated that the functionality of the corridor between these subpopulations may be retained if the quality of the habitat does not deteriorate. However, we found that gene flow is not adequate in view of changing land use matrices. We discuss the need to maintain connectivity by implementing the measures that have been suggested previously to minimize the level of human disturbance, including relocation of villages and industries

  8. Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape.

    Science.gov (United States)

    López-Uribe, Margarita M; Morreale, Stephen J; Santiago, Christine K; Danforth, Bryan N

    2015-01-01

    Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei's GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for enhancing

  9. Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape.

    Directory of Open Access Journals (Sweden)

    Margarita M López-Uribe

    Full Text Available Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei's GST = 0.011. Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting

  10. Looking inside giant resonance fine structure

    International Nuclear Information System (INIS)

    Ponomarev, V.Yu.; Voronov, V.V.

    1993-01-01

    Microscopic calculations of the fine structure of giant resonances for spherical nuclei are presented. Excited states are treated by wave function which takes into account coupling of simple one-phonon configurations with more complex ones. Nuclear structure calculations are applied to the description of the γ-decay of resonances into the ground and low-lying excited states. 16 refs.; 4 figs

  11. Edge separation using diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Ravel, B.; Bouldin, C.E.; Renevier, H.; Hodeau, J.L.; Berar, J.F.

    1999-01-01

    We exploit the crystallographic sensitivity of the Diffraction Anomalous Fine-Structure (DAFS) measurement to separate the fine structure contributions of different atomic species with closely spaced resonant energies. In BaTiO 3 the Ti K edge and Ba Lm edges are separated by 281 eV, or about 8.2 Angstrom -1 ), thus severely limiting the information content of the Ti K edge signal. Using the site selectivity of DAFS we can separate the two fine structure spectra using an iterative Kramers-Kronig method, thus extending the range of the Ti K edge spectrum. This technique has application to many rare earth/transition metal compounds, including many magnetic materials of technological significance for which K and L edges overlap in energy. (au)

  12. Study of fine structure of deformed hafnium

    International Nuclear Information System (INIS)

    Voskresenskaya, L.A.; Petukhova, A.S.; Kovalev, K.S.

    1978-01-01

    Variations in the hafnium fine structure following the cold plastic deformation have been studied. The fine structure condition has been studied through the harmonic analysis of the profile of the X-ray diffraction line, obtained at the DRON-I installation. Received has been the dependence of the crystal lattice microdistortions value on the deformation extent for hafnium. This dependence is compared with the corresponding one for zirconium. It is found out that at all the deformations the microdistortion distribution is uniform. The microdistortion value grows with the increase in the compression. During the mechanical impact higher microdistortions of the crystal lattice occur in the hafnium rather than in zirconium

  13. Strained spiral vortex model for turbulent fine structure

    Science.gov (United States)

    Lundgren, T. S.

    1982-01-01

    A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.

  14. Renal fine structures detected by NMR imaging

    International Nuclear Information System (INIS)

    Zilch, H.G.

    1986-01-01

    A significantly improved image quality is achieved by the technique described, as compared to the magnetic resonance data obtained so far. The detailed analysis of the kidney goes as deep as into anatomic fine structures, and there is reason to hope for far better diagnostic details. (orig.) [de

  15. Derivation of the fine-structure constant

    International Nuclear Information System (INIS)

    Samec, A.

    1980-01-01

    The fine-structure constant is derived as a dynamical property of quantum electrodynamics. Single-particle solutions of the coupled Maxwell and Dirac equations have a physical charge spectrum. The solutions are used to construct lepton-and quark-like particles. The strong, weak, electromagnetic, and gravitational forces are described as the interactions of complex charges in multiple combinations

  16. Higher fine-scale genetic structure in peripheral than in core populations of a long-lived and mixed-mating conifer--eastern white cedar (Thuja occidentalis L.).

    Science.gov (United States)

    Pandey, Madhav; Rajora, Om P

    2012-04-05

    Fine-scale or spatial genetic structure (SGS) is one of the key genetic characteristics of plant populations. Several evolutionary and ecological processes and population characteristics influence the level of SGS within plant populations. Higher fine-scale genetic structure may be expected in peripheral than core populations of long-lived forest trees, owing to the differences in the magnitude of operating evolutionary and ecological forces such as gene flow, genetic drift, effective population size and founder effects. We addressed this question using eastern white cedar (Thuja occidentalis) as a model species for declining to endangered long-lived tree species with mixed-mating system. We determined the SGS in two core and two peripheral populations of eastern white cedar from its Maritime Canadian eastern range using six nuclear microsatellite DNA markers. Significant SGS ranging from 15 m to 75 m distance classes was observed in the four studied populations. An analysis of combined four populations revealed significant positive SGS up to the 45 m distance class. The mean positive significant SGS observed in the peripheral populations was up to six times (up to 90 m) of that observed in the core populations (15 m). Spatial autocorrelation coefficients and correlograms of single and sub-sets of populations were statistically significant. The extent of within-population SGS was significantly negatively correlated with all genetic diversity parameters. Significant heterogeneity of within-population SGS was observed for 0-15 m and 61-90 m between core and peripheral populations. Average Sp, and gene flow distances were higher in peripheral (Sp = 0.023, σg = 135 m) than in core (Sp = 0.014, σg = 109 m) populations. However, the mean neighborhood size was higher in the core (Nb = 82) than in the peripheral (Nb = 48) populations. Eastern white cedar populations have significant fine-scale genetic structure at short distances. Peripheral populations have several

  17. Fine-scale genetic characterization of Plasmodium falciparum ...

    Indian Academy of Sciences (India)

    RESEARCH ARTICLE. Fine-scale genetic characterization of Plasmodium falciparum .... Materials and methods. The DNA ... the order and location of genes (as per the PlasmoDB data resources, available at ... There is currently an. Figure 5.

  18. Fine Structure of 211 Po Alpha Decay

    International Nuclear Information System (INIS)

    Mirea, M.

    2000-01-01

    Recently, a theory based on the Landau-Zener effect was developed intending to describe quantitatively the cluster decay fine structure phenomenon. It was claimed that the same promotion effect can also govern the fine structure in the case of α-decay. This formalism intends to explain the fine structure of α-decay by considering single-particle transitions due to the radial and the rotational couplings. The levels with the same good quantum numbers associated to some symmetries of the system cannot in general intersect, but exhibit quasi-crossings, or pseudo-crossings, or avoided level crossings. The system is characterised by an axial symmetry, therefore the good quantum numbers are the projections of the nucleon spin Ω. The radial coupling causes transitions of the unpaired nucleon near the avoided level crossings. True crossings can also be obtained between levels characterized by different quantum numbers. Generally, the rotational coupling has a maximum strength in the vicinity of the true crossings. Transitions due to both couplings are taken into account in order to explain the excitations of the unpaired nucleon. For a tunnelling velocity of 9 x 10 6 fm/fs, the ratio between the intensity for transitions to the first excited state and to the ground state was found to be 0.0071 and the obtained ratio of the same parameter between the second excited state and the ground state was 0.0062, in good agreement with experimental data. These calculations suggest that the α-decay fine structure phenomenon can be explained quantitatively by describing the decaying system with molecular models and it can be stated that the quantitative characteristics of this phenomenon are ruled by dynamical effects. (author)

  19. Fine structure transitions in Fe XIV

    Science.gov (United States)

    Nahar, Sultana N.

    2013-07-01

    Results are reported for Fe XIV energy levels and transitions obtained from the ab initio relativistic Breit-Pauli R-matrix (BPRM) method. BPRM method developed under the Iron Project is capable of calculating very large number of fine structure energy levels and corresponding transitions. However, unlike in the atomic structure calculations, where levels are identified spectroscopically based on the leading percentage contributions of configurations, BPRM is incapable of such identification of the levels and hence the transitions. The main reason for it is that the percentage contributions can not be determined exactly from the large number of channels in the R-matrix space. The present report describes an identification method that uses considerations of quantum defects of channels, contributions of channel from outer regions, Hund's rule, and angular momenta algebra for addition and completeness of fine structure components. The present calculations are carried out using a close coupling wave function expansion that included 26 core excitations from configurations 2s22p63s2, 2s22p63s3p,2s22p63p2,2s22p63s3d, and 2s22p63p3d. A total of 1002 fine structure levels with n ⩽ 10, l⩽9, and 0.5 ⩽J⩽ 9.5 with even and odd parities and the corresponding 130,520 electric dipole allowed (E1) fine structure transitions, a most complete set for astrophysical modelings of spectral analysis and opacities, is presented. Large number of new energy levels are found and identified. The energies agree very well, mostly in less than 1% with the highest being 1.9%, with the 68 observed fine structure levels. While the high lying levels may have some uncertainty, an overall accuracy of energy levels should be within 10%. BPRM transitions have been benchmarked with the existing most accurate calculated transition probabilities with very good agreement for most cases. Based on the accuracy of the method and comparisons, most of the transitions can be rated with A (⩽10%) to C (

  20. Fine structure of 25 extragalactic radio sources

    International Nuclear Information System (INIS)

    Wittels, J.J.; Knight, C.A.; Shapiro, I.I.; Hinteregger, H.F.; Rogers, A.E.E.; Whitney, A.R.; Clark, T.A.; Hutton, L.K.; Marandino, G.E.; Neill, A.E.; Ronnang, B.G.; Rydbeck, O.E.H.; Klemperer, W.K.; Warnock, W.W.

    1975-01-01

    Between 1972 April and 1973 May, 25 extragalactic radio sources were observed interferometrically at 7.8 GHz(lambdaapprox. =3.8 cm) with five pairings of antennas. These sources exhibit a broad variety of fine structures from very simple to complex. Although the structure and the total power of some of these sources have remained unchanged within the sensitivity of our measurements during the year of observations, both the total flux and the correlated flux of others have undergone large changes in a few weeks

  1. Fine structure of synapses on dendritic spines

    Directory of Open Access Journals (Sweden)

    Michael eFrotscher

    2014-09-01

    Full Text Available Camillo Golgi’s Reazione Nera led to the discovery of dendritic spines, small appendages originating from dendritic shafts. With the advent of electron microscopy (EM they were identified as sites of synaptic contact. Later it was found that changes in synaptic strength were associated with changes in the shape of dendritic spines. While live-cell imaging was advantageous in monitoring the time course of such changes in spine structure, EM is still the best method for the simultaneous visualization of all cellular components, including actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise localization of molecules in relation to synaptic structures. Previous EM studies of spines and synapses were performed in tissue subjected to aldehyde fixation and dehydration in ethanol, which is associated with protein denaturation and tissue shrinkage. It has remained an issue to what extent fine structural details are preserved when subjecting the tissue to these procedures. In the present review, we report recent studies on the fine structure of spines and synapses using high-pressure freezing (HPF, which avoids protein denaturation by aldehydes and results in an excellent preservation of ultrastructural detail. In these studies, HPF was used to monitor subtle fine-structural changes in spine shape associated with chemically induced long-term potentiation (cLTP at identified hippocampal mossy fiber synapses. Changes in spine shape result from reorganization of the actin cytoskeleton. We report that cLTP was associated with decreased immunogold labeling for phosphorylated cofilin (p-cofilin, an actin-depolymerizing protein. Phosphorylation of cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton. Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying the changes in spine shape associated with cLTP. The findings reviewed here establish HPF as

  2. Relativistic corrections to fine structure of positronium

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Faustov, R.N.

    1997-01-01

    On the basis of the quasipotential method, we have calculated the relativistic corrections in the positronium fine structure intervals 2 3 S 1 -2 3 P J . The contributions of order of mα 6 for the positronium S-levels were obtained from the one-photon, two-photon interactions and the second-order perturbation theory. We have obtained also the contribution of the two-photon annihilation diagrams to the interaction operator of the P-wave positronium. The corrections of order of α 5 R ∞ and α 5 1nαR ∞ to the P-wave energy levels of positronium were calculated

  3. Fine structure in deformed proton emitting nuclei

    International Nuclear Information System (INIS)

    Sonzogni, A. A.; Davids, C. N.; Woods, P. J.; Seweryniak, D.; Carpenter, M. P.; Ressler, J. J.; Schwartz, J.; Uusitalo, J.; Walters, W. B.

    1999-01-01

    In a recent experiment to study the proton radioactivity of the highly deformed 131 Eu nucleus, two proton lines were detected. The higher energy one was assigned to the ground-state to ground-state decay, while the lower energy, to the ground-state to the 2 + state decay. This constitutes the first observation of fine structure in proton radioactivity. With these four measured quantities, proton energies, half-life and branching ratio, it is possible to determine the Nilsson configuration of the ground state of the proton emitting nucleus as well as the 2 + energy and nuclear deformation of the daughter nucleus. These results will be presented and discussed

  4. Molecular Eigensolution Symmetry Analysis and Fine Structure

    Directory of Open Access Journals (Sweden)

    William G. Harter

    2013-01-01

    Full Text Available Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES. Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES used in Born-Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v, then applied to families of Oh clusters in SF6 spectra and to extreme clusters.

  5. Revisit to diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Kawaguchi, T.; Fukuda, K.; Tokuda, K.; Shimada, K.; Ichitsubo, T.; Oishi, M.; Mizuki, J.; Matsubara, E.

    2014-01-01

    The diffraction anomalous fine structure method has been revisited by applying this measurement technique to polycrystalline samples and using an analytical method with the logarithmic dispersion relation. The diffraction anomalous fine structure (DAFS) method that is a spectroscopic analysis combined with resonant X-ray diffraction enables the determination of the valence state and local structure of a selected element at a specific crystalline site and/or phase. This method has been improved by using a polycrystalline sample, channel-cut monochromator optics with an undulator synchrotron radiation source, an area detector and direct determination of resonant terms with a logarithmic dispersion relation. This study makes the DAFS method more convenient and saves a large amount of measurement time in comparison with the conventional DAFS method with a single crystal. The improved DAFS method has been applied to some model samples, Ni foil and Fe 3 O 4 powder, to demonstrate the validity of the measurement and the analysis of the present DAFS method

  6. Angle-resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs

  7. Fine-scale foraging ecology of leatherback turtles

    Directory of Open Access Journals (Sweden)

    Bryan P Wallace

    2015-02-01

    Full Text Available Remote tracking of migratory species and statistical modeling of behaviors have enabled identification of areas that are of high ecological value to these widely distributed taxa. However, direct observations at fine spatio-temporal scales are often needed to correctly interpret behaviors. In this study, we combined GPS-derived locations and archival dive records (1 sec sampling rate with animal-borne video footage from foraging leatherback turtles (Dermochelys coriacea in Nova Scotia, Canada (Northwest Atlantic Ocean to generate the most highly detailed description of natural leatherback behavior presented to date. Turtles traveled shorter distances at slower rates and increased diving rates in areas of high prey abundance, which resulted in higher prey capture rates. Increased foraging effort (e.g., dive rate, dive duration, prey handling time, number of bites was not associated with increased time at the surface breathing to replenish oxygen stores. Instead, leatherbacks generally performed short, shallow dives in the photic zone to or above the thermocline, where they disproportionately captured prey at bottoms of dives and during ascents. This foraging strategy supports visual prey detection, allows leatherbacks to exploit physically structured prey at relatively shallow depths (typically <30m, and increases time turtles spend in warmer water temperatures, thus optimizing net energy acquisition. Our results demonstrate that leatherbacks appear to be continuously foraging during daylight hours while in continental shelf waters of Nova Scotia, and that leatherback foraging behavior is driven by prey availability, not by whether or not a turtle is in a resource patch characterized by a particular size or prey density. Our study demonstrates the fundamental importance of obtaining field-based, direct observations of true behaviors at fine spatial and temporal scales to enhance our efforts to both study and manage migratory species.

  8. Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure.

    Directory of Open Access Journals (Sweden)

    Gabriela Moura

    Full Text Available BACKGROUND: Codon usage and codon-pair context are important gene primary structure features that influence mRNA decoding fidelity. In order to identify general rules that shape codon-pair context and minimize mRNA decoding error, we have carried out a large scale comparative codon-pair context analysis of 119 fully sequenced genomes. METHODOLOGIES/PRINCIPAL FINDINGS: We have developed mathematical and software tools for large scale comparative codon-pair context analysis. These methodologies unveiled general and species specific codon-pair context rules that govern evolution of mRNAs in the 3 domains of life. We show that evolution of bacterial and archeal mRNA primary structure is mainly dependent on constraints imposed by the translational machinery, while in eukaryotes DNA methylation and tri-nucleotide repeats impose strong biases on codon-pair context. CONCLUSIONS: The data highlight fundamental differences between prokaryotic and eukaryotic mRNA decoding rules, which are partially independent of codon usage.

  9. Observations of fine-scale transport structure in the upper troposphere from the High-performance Instrumented Airborne Platform for Environmental Research

    Science.gov (United States)

    Bowman, Kenneth P.; Pan, Laura L.; Campos, Teresa; Gao, Rushan

    2007-09-01

    The Progressive Science Mission in December 2005 was the first research use of the new NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) aircraft. The Stratosphere-Troposphere Analyses of Regional Transport (START) component of the mission was designed to investigate the dynamical and chemical structure of the upper troposphere and lower stratosphere. Flight 5 of the Progressive Science mission was a START flight that sampled near the tropopause in an area between the main jet stream and a large, quasi-stationary, cutoff low. The large-scale flow in this region was characterized by a hyperbolic (saddle) point. In this study the in situ measurements by HIAPER are combined with flow analyses and satellite data to investigate the quasi-isentropic stirring of trace species in the upper troposphere. As expected from theoretical considerations, strong stretching and folding deformation of the flow near the hyperbolic point resulted in rapid filamentation of air masses and sharp gradients of constituents. Calculations of the stirring using operational meteorological analyses from the NCEP Global Forecast System model produced excellent agreement with HIAPER and satellite observations of trace species. Back trajectories indicate that elevated ozone levels in some filaments likely came from a large stratospheric intrusion that occurred upstream in the jet over the north Pacific Ocean. The methods presented here can be used with operational forecasts for future flight planning.

  10. Sexual recombination in Colletotrichum lindemuthianum occurs on a fine scale.

    Science.gov (United States)

    Souza, E A; Camargo, O A; Pinto, J M A

    2010-09-08

    Glomerella cingulata f. sp phaseoli is the sexual phase of the fungus Colletotrichum lindemuthianum, the causal agent of common bean anthracnose. This fungus is of great concern, because it causes large economic losses in common bean crops. RAPD markers of five populations of G. cingulata f. sp phaseoli from two Brazilian states were analyzed to determine if this population possesses the sexual reproductive potential to generate the genetic variation that is observed in this phytopathogen. We identified 128 polymorphic bands, amplified by 28 random primers. The estimates of genetic similarity in this analysis ranged from 0.43 to 1.00, and the dendrogram generated from analysis of all genotypes displayed five principal groups, coinciding with the five populations. Genetic differentiation was observed between the populations (GST=0.6455); 69% of the overall observed genetic variation was between individual populations and 31% of the variance was within the sub-populations. We identified significant levels of linkage disequilibrium in all populations. However, the values of the disequilibrium ranged from low to moderate, indicating that this pathogen maintains a genetic structure consistent with sexual reproduction. The mean contribution of sexual reproduction was determined by comparison of the amplitudes of genetic similarity of isolates from sexual and asexual phases. These results support the hypothesis that recombination plays an important role in determining the amplitude of variability in this pathogen population and that this determination occurs on a fine scale.

  11. An Einstein-Cartan Fine Structure Constant Definition

    Directory of Open Access Journals (Sweden)

    Stone R. A. Jr.

    2010-01-01

    Full Text Available The fine structure constant definition given in Stone R.A. Jr. Progress in Physics, 2010, v.1, 11-13 is compared to an Einstein-Cartan fine structure constant definition. It is shown that the Einstein-Cartan definition produces the correct pure theory value, just not the measure value. To produce the measured value, the pure theory Einstein-Cartan fine structure constant requires only the new variables and spin coupling of the fine structure constant definition in [1].

  12. Fine structure of charge exchange lines observed in laboratory plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ida, K.; Nishimura, S. [National Inst. for Fusion Science, Nagoya (Japan); Kondo, K.

    1997-01-01

    The influence of the fine structure of charge exchange lines appears only at the plasma edge or in the recombining phase where the ion temperature is low enough. The observed spectra in Li III and C VI are consistent with the sum of fine-structure components populated by statistical weights (assuming complete l-mixing) not by direct charge exchange cross sections. Some discrepancy was observed in the intensity ratio of fine-structure components between the observation and calculation for C VI in the recombining phase. The fine-structure of charge exchange lines gives an apparent Doppler shift in plasma rotation velocity measurement using charge exchange spectroscopy. (author)

  13. Fine-scale temporal and spatial variation of taxon and clonal structure in the Daphnia longispina hybrid complex in heterogeneous environments

    Czech Academy of Sciences Publication Activity Database

    Yin, M.; Petrusek, A.; Seďa, Jaromír; Wolinska, J.

    2012-01-01

    Roč. 12, January (2012), s. 1-12 ISSN 1471-2148 R&D Projects: GA AV ČR(CZ) IAA600960901 Institutional support: RVO:60077344 Keywords : species complex * genetic-structure * interspecific hybridization * cyclic parthenogenesis * population-dynamics Subject RIV: EG - Zoology Impact factor: 3.285, year: 2012

  14. A quantitative analysis of fine scale distribution of intertidal meiofauna in response to food resources

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Gauns, M.

    Fine scale vertical and spatial distribution of meiofauna in relation to food abundance was studied in the intertidal sediment at Dias Beach. The major abiotic factors showed significant changes and progressive fine scale decrease in vertical...

  15. Image-Based Fine-Scale Infrastructure Monitoring

    Science.gov (United States)

    Detchev, Ivan Denislavov

    Monitoring the physical health of civil infrastructure systems is an important task that must be performed frequently in order to ensure their serviceability and sustainability. Additionally, laboratory experiments where individual system components are tested on the fine-scale level provide essential information during the structural design process. This type of inspection, i.e., measurements of deflections and/or cracks, has traditionally been performed with instrumentation that requires access to, or contact with, the structural element being tested; performs deformation measurements in only one dimension or direction; and/or provides no permanent visual record. To avoid the downsides of such instrumentation, this dissertation proposes a remote sensing approach based on a photogrammetric system capable of three-dimensional reconstruction. The proposed system is low-cost, consists of off-the-shelf components, and is capable of reconstructing objects or surfaces with homogeneous texture. The scientific contributions of this research work address the drawbacks in currently existing literature. Methods for in-situ multi-camera system calibration and system stability analysis are proposed in addition to methods for deflection/displacement monitoring, and crack detection and characterization in three dimensions. The mathematical model for the system calibration is based on a single or multiple reference camera(s) and built-in relative orientation constraints where the interior orientation and the mounting parameters for all cameras are explicitly estimated. The methods for system stability analysis can be used to comprehensively check for the cumulative impact of any changes in the system parameters. They also provide a quantitative measure of this impact on the reconstruction process in terms of image space units. Deflection/displacement monitoring of dynamic surfaces in three dimensions is achieved with the system by performing an innovative sinusoidal fitting

  16. Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests.

    Science.gov (United States)

    Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J

    2016-03-01

    Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species.

  17. Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests

    Science.gov (United States)

    Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J

    2016-01-01

    Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species. PMID:26696137

  18. Parallel integer sorting with medium and fine-scale parallelism

    Science.gov (United States)

    Dagum, Leonardo

    1993-01-01

    Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.

  19. Coherent fine scale eddies in turbulence transition of spatially-developing mixing layer

    International Nuclear Information System (INIS)

    Wang, Y.; Tanahashi, M.; Miyauchi, T.

    2007-01-01

    To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar-turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Re ω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (u k ), and decreases to 1.2u k , which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and α:β:γ = -5:1:4 in the transition process. In addition to Kelvin-Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow

  20. Atomic fine structure in a space of constant curvature

    International Nuclear Information System (INIS)

    Bessis, N.; Bessis, G.; Shamseddine, R.

    1982-01-01

    As a contribution to a tentative formulation of atomic physics in a curved space, the determination of atomic fine structure energies in a space of constant curvature is investigated. Starting from the Dirac equation in a curved space-time, the analogue of the Pauli equation in a general coordinate system is derived. The theoretical curvature induced shifts and splittings of the fine structure energy levels are put in evidence and examined for the particular case of the hydrogenic n=2 levels. (author)

  1. Spin fine structure of optically excited quantum dot molecules

    Science.gov (United States)

    Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2007-06-01

    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.

  2. The fine-structure constant before quantum mechanics

    International Nuclear Information System (INIS)

    Kragh, Helge

    2003-01-01

    This paper focuses on the early history of the fine-structure constant, largely the period until 1925. Contrary to what is generally assumed, speculations concerning the interdependence of the elementary electric charge and Planck's constant predated Arnold Sommerfeld's 1916 discussion of the dimensionless constant. This paper pays particular attention to a little known work from 1914 in which G N Lewis and E Q Adams derived what is effectively a numerical expression for the fine-structure constant

  3. Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces

    KAUST Repository

    Khan, Naeemullah

    2017-11-09

    We formulate an energy for segmentation that is designed to have preference for segmenting the coarse over fine structure of the image, without smoothing across boundaries of regions. The energy is formulated by integrating a continuum of scales from a scale space computed from the heat equation within regions. We show that the energy can be optimized without computing a continuum of scales, but instead from a single scale. This makes the method computationally efficient in comparison to energies using a discrete set of scales. We apply our method to texture and motion segmentation. Experiments on benchmark datasets show that a continuum of scales leads to better segmentation accuracy over discrete scales and other competing methods.

  4. Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces

    KAUST Repository

    Khan, Naeemullah; Hong, Byung-Woo; Yezzi, Anthony; Sundaramoorthi, Ganesh

    2017-01-01

    We formulate an energy for segmentation that is designed to have preference for segmenting the coarse over fine structure of the image, without smoothing across boundaries of regions. The energy is formulated by integrating a continuum of scales from a scale space computed from the heat equation within regions. We show that the energy can be optimized without computing a continuum of scales, but instead from a single scale. This makes the method computationally efficient in comparison to energies using a discrete set of scales. We apply our method to texture and motion segmentation. Experiments on benchmark datasets show that a continuum of scales leads to better segmentation accuracy over discrete scales and other competing methods.

  5. Electromagnetic characterization of fine-scale particulate composite materials

    International Nuclear Information System (INIS)

    Talbot, P.; Konn, A.M.; Brosseau, C.

    2002-01-01

    We report the results of the composition and frequency-dependent complex permittivity and permeability of ZnO and γ-Fe 2 O 3 composites prepared by powder pressing. The electromagnetic properties of these materials exhibit a strong dependence on the powder size of the starting materials. In the microwave frequency range, the permittivity and permeability show nonlinear variations with volume fraction of Fe 2 O 3 . As the particle size decreases from a few micrometers to a few tens of nanometers, the data indicate that local mesostructural factors such as shape anisotropy, porosity and possible effect of the binder are likely to be intertwined in the understanding of electromagnetic properties of fine-scale particulate composite materials

  6. Censored rainfall modelling for estimation of fine-scale extremes

    Science.gov (United States)

    Cross, David; Onof, Christian; Winter, Hugo; Bernardara, Pietro

    2018-01-01

    Reliable estimation of rainfall extremes is essential for drainage system design, flood mitigation, and risk quantification. However, traditional techniques lack physical realism and extrapolation can be highly uncertain. In this study, we improve the physical basis for short-duration extreme rainfall estimation by simulating the heavy portion of the rainfall record mechanistically using the Bartlett-Lewis rectangular pulse (BLRP) model. Mechanistic rainfall models have had a tendency to underestimate rainfall extremes at fine temporal scales. Despite this, the simple process representation of rectangular pulse models is appealing in the context of extreme rainfall estimation because it emulates the known phenomenology of rainfall generation. A censored approach to Bartlett-Lewis model calibration is proposed and performed for single-site rainfall from two gauges in the UK and Germany. Extreme rainfall estimation is performed for each gauge at the 5, 15, and 60 min resolutions, and considerations for censor selection discussed.

  7. Cosmological constraints on variations of the fine structure constant at the epoch of recombination

    International Nuclear Information System (INIS)

    Menegoni, E; Galli, S; Archidiacono, M; Calabrese, E; Melchiorri, A

    2013-01-01

    In this brief work we investigate any possible variation of the fine structure constant at the epoch of recombination. The recent measurements of the Cosmic Microwave Background anisotropies at arcminute angular scales performed by the ACT and SPT experiments are probing the damping regime of Cosmic Microwave Background fluctuations. We study the role of a mechanism that could affect the shape of the Cosmic Microwave Background angular fluctuations at those scales, namely a change in the recombination process through variations in the fine structure constant α

  8. The Fine Structure of Herman Rings

    DEFF Research Database (Denmark)

    Fagella, Nuria; Henriksen, Christian

    2017-01-01

    We study the geometric structure of the boundary of Herman rings in a model family of Blaschke products of degree 3 (up to quasiconformal deformation). Shishikura’s quasiconformal surgery relates the Herman ring to the Siegel disk of a quadratic polynomial. By studying the regularity properties...

  9. Determination of the piezoelectric properties of fine scale PZT fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L.J.; Bowen, C.R. [Bath Univ. (United Kingdom). Dept. of Engineering and Applied Science

    2002-07-01

    Finite element (FE) modelling is used to determine the effect of fibre volume fraction, aspect ratio and polymer matrix stiffness on the d{sub 33} coefficients of 1-3 connectivity piezoelectric fibre composites. The aim is to use these observations as a means of determining the d{sub 33} of fine scale lead zirconate titanate (PZT) fibres. Results from a 1-D analytical model fit well with FE predictions for low aspect ratios. Two commercially available PZT-5A fibres, produced via the viscous suspension spinning process (VSSP) and an extrusion process, were fabricated into 1-3 composites with varying fibre volume fractions. The composite d{sub 33} measurements are compared to the model predictions and used to determine the d{sub 33} coefficients of the fibers. The d{sub 33} of the VSSP fibres and extruded fibres is measured as 365 pCN{sup -1} and 235 pCN{sup -1} respectively using this method. The large difference in the piezoelectric coefficients is possibly linked to the grain size and porosity, which is examined using scanning electron microscopy. (orig.)

  10. Spectral fine structure effects on material and doppler reactivity worth

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1975-01-01

    New formulations concerning the fine structure effects on the reactivity worth of resonances are developed and conclusions are derived following the extension to more general types of perturbations which include: the removal of resonance material at finite temperatures and the temperature variation of part of the resonance material. It is concluded that the flux method can overpredict the reactivity worth of resonance materials more than anticipated. Calculations on the Doppler worth were carried out; the results can be useful for asessing the contribution of the fine structure effects to the large discrepancy that exists between the calculated and measured small sample Doppler worths. (B.G.)

  11. Fine-structure constant: Is it really a constant

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1982-01-01

    It is often claimed that the fine-structure ''constant'' α is shown to be strictly constant in time by a variety of astronomical and geophysical results. These constrain its fractional rate of change alpha-dot/α to at least some orders of magnitude below the Hubble rate H 0 . We argue that the conclusion is not as straightforward as claimed since there are good physical reasons to expect alpha-dot/α 0 . We propose to decide the issue by constructing a framework for a variability based on very general assumptions: covariance, gauge invariance, causality, and time-reversal invariance of electromagnetism, as well as the idea that the Planck-Wheeler length (10 -33 cm) is the shortest scale allowable in any theory. The framework endows α with well-defined dynamics, and entails a modification of Maxwell electrodynamics. It proves very difficult to rule it out with purely electromagnetic experiments. In a cosmological setting, the framework predicts an alpha-dot/α which can be compatible with the astronomical constraints; hence, these are too insensitive to rule out α variability. There is marginal conflict with the geophysical constraints: however, no firm decision is possible because of uncertainty about various cosmological parameters. By contrast the framework's predictions for spatial gradients of α are in fatal conflict with the results of the Eoetvoes-Dicke-Braginsky experiments. Hence these tests of the equivalence principle rule out with confidence spacetime variability of α at any level

  12. The Fine Structure of Equity-Index Option Dynamics

    DEFF Research Database (Denmark)

    Andersen, Torben G.; Bondarenko, Oleg; Todorov, Viktor

    We analyze the high-frequency dynamics of S&P 500 equity-index option prices by constructing an assortment of implied volatility measures. This allows us to infer the underlying fine structure behind the innovations in the latent state variables driving the movements of the volatility surface...

  13. Fine structure of fields in 2D photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.

    2006-01-01

    We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....

  14. Fine-structure energy levels, oscillator strengths and lifetimes of ...

    Indian Academy of Sciences (India)

    with the experimental results compiled in the NIST Data Base. Many new ... Keywords. Relativistic fine-structure levels; oscillator strengths; lifetimes. ... have calculated oscillator strengths and lifetimes using the Briet–Pauli R-Matrix ..... [2] The Opacity Project Team, The Opacity Project (Institute of Physics Publishing,. Bristol ...

  15. The prediction and discovery of Rayleigh line fine structure

    International Nuclear Information System (INIS)

    Fabelinskii, Immanuil L

    2000-01-01

    The history of the theoretical prediction and experimental discovery of the Rayleigh line fine structure (which belongs to one of the most important phenomena in optics and physics of condensed matter) is discussed along with the history of first publications concerning this topic. (from the history of physics)

  16. Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation

    Science.gov (United States)

    Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.

    2018-01-01

    Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.

  17. Fine structure of the isoscalar giant quadrupole resonance in 40Ca due to Landau damping?

    International Nuclear Information System (INIS)

    Usman, I.; Buthelezi, Z.; Carter, J.; Cooper, G.R.J.; Fearick, R.W.; Foertsch, S.V.; Fujita, H.; Fujita, Y.; Kalmykov, Y.; Neumann-Cosel, P. von; Neveling, R.; Papakonstantinou, P.; Richter, A.; Roth, R.; Shevchenko, A.; Sideras-Haddad, E.; Smit, F.D.

    2011-01-01

    The fragmentation of the Isoscalar Giant Quadrupole Resonance (ISGQR) in 40 Ca has been investigated in high energy-resolution experiments using proton inelastic scattering at E p =200 MeV. Fine structure is observed in the region of the ISGQR and its characteristic energy scales are extracted from the experimental data by means of a wavelet analysis. The experimental scales are well described by Random Phase Approximation (RPA) and second-RPA calculations with an effective interaction derived from a realistic nucleon-nucleon interaction by the Unitary Correlation Operator Method (UCOM). In these results characteristic scales are already present at the mean-field level pointing to their origination in Landau damping, in contrast to the findings in heavier nuclei and also to SRPA calculations for 40 Ca based on phenomenological effective interactions, where fine structure is explained by the coupling to two-particle-two-hole (2p-2h) states.

  18. An estimation of the fine structure constant using fiber bundles

    International Nuclear Information System (INIS)

    Ross, D.K.

    1986-01-01

    Ross calculates g 0 /e, where g 0 is the strength of an elementary magnetic monopole and e is the charge on the electron, in terms of a ratio of loop sizes in the twisted and untwisted principal fiber bundles with U (1) the structure group and R 3 -(0) the base space. The result involves the present distance around the U (1) space and, rather surprisingly, the structure of the quantum gravitational vacuum. Combining this result with the expression for eg 0 from the Dirac quantization conditions gives a final estimate for the fine structure constant, alpha, near 1/100

  19. Fine structure and analytical quantum-defect wave functions

    International Nuclear Information System (INIS)

    Kostelecky, V.A.; Nieto, M.M.; Truax, D.R.

    1988-01-01

    We investigate the domain of validity of previously proposed analytical wave functions for atomic quantum-defect theory. This is done by considering the fine-structure splitting of alkali-metal and singly ionized alkaline-earth atoms. The Lande formula is found to be naturally incorporated. A supersymmetric-type integer is necessary for finite results. Calculated splittings correctly reproduce the principal features of experimental values for alkali-like atoms

  20. Simple Model with Time-Varying Fine-Structure ``Constant''

    Science.gov (United States)

    Berman, M. S.

    2009-10-01

    Extending the original version written in colaboration with L.A. Trevisan, we study the generalisation of Dirac's LNH, so that time-variation of the fine-structure constant, due to varying electrical and magnetic permittivities is included along with other variations (cosmological and gravitational ``constants''), etc. We consider the present Universe, and also an inflationary scenario. Rotation of the Universe is a given possibility in this model.

  1. Fine structure of the exciton electroabsorption in semiconductor superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Monozon, B.S., E-mail: borismonozon@mail.ru [Physics Department, Marine Technical University, 3 Lotsmanskaya Str., 190008 St.Petersburg (Russian Federation); Schmelcher, P. [Zentrum für Optische Quantentechnologien, The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2017-02-15

    Wannier-Mott excitons in a semiconductor layered superlattice (SL) are investigated analytically for the case that the period of the superlattice is much smaller than the 2D exciton Bohr radius. Additionally we assume the presence of a longitudinal external static electric field directed parallel to the SL axis. The exciton states and the optical absorption coefficient are derived in the tight-binding and adiabatic approximations. Strong and weak electric fields providing spatially localized and extended electron and hole states, respectively, are studied. The dependencies of the exciton states and the exciton absorption spectrum on the SL parameters and the electric field strength are presented in an explicit form. We focus on the fine structure of the ground quasi-2D exciton level formed by the series of closely spaced energy levels adjacent from the high frequencies. These levels are related to the adiabatically slow relative exciton longitudinal motion governed by the potential formed by the in-plane exciton state. It is shown that the external electric fields compress the fine structure energy levels, decrease the intensities of the corresponding optical peaks and increase the exciton binding energy. A possible experimental study of the fine structure of the exciton electroabsorption is discussed.

  2. Alpine Ecohydrology Across Scales: Propagating Fine-scale Heterogeneity to the Catchment and Beyond

    Science.gov (United States)

    Mastrotheodoros, T.; Pappas, C.; Molnar, P.; Burlando, P.; Hadjidoukas, P.; Fatichi, S.

    2017-12-01

    In mountainous ecosystems, complex topography and landscape heterogeneity govern ecohydrological states and fluxes. Here, we investigate topographic controls on water, energy and carbon fluxes across different climatic regimes and vegetation types representative of the European Alps. We use an ecohydrological model to perform fine-scale numerical experiments on a synthetic domain that comprises a symmetric mountain with eight catchments draining along the cardinal and intercardinal directions. Distributed meteorological model input variables are generated using observations from Switzerland. The model computes the incoming solar radiation based on the local topography. We implement a multivariate statistical framework to disentangle the impact of landscape heterogeneity (i.e., elevation, aspect, flow contributing area, vegetation type) on the simulated water, carbon, and energy dynamics. This allows us to identify the sensitivities of several ecohydrological variables (including leaf area index, evapotranspiration, snow-cover and net primary productivity) to topographic and meteorological inputs at different spatial and temporal scales. We also use an alpine catchment as a real case study to investigate how the natural variability of soil and land cover affects the idealized relationships that arise from the synthetic domain. In accordance with previous studies, our analysis shows a complex pattern of vegetation response to radiation. We find also different patterns of ecosystem sensitivity to topography-driven heterogeneity depending on the hydrological regime (i.e., wet vs. dry conditions). Our results suggest that topography-driven variability in ecohydrological variables (e.g. transpiration) at the fine spatial scale can exceed 50%, but it is substantially reduced ( 5%) when integrated at the catchment scale.

  3. Exploring the fine structure at the limb in coronal holes

    Science.gov (United States)

    Karovska, Magarita; Blundell, Solon F.; Habbal, Shadia Rifai

    1994-01-01

    The fine structure of the solar limb in coronal holes is explored at temperatures ranging from 10(exp 4) to 10(exp 6) K. An image enhancement algorithm orignally developed for solar eclipse observations is applied to a number of simultaneous multiwavelength observations made with the Harvard Extreme Ultraviolet Spectrometer experiment on Skylab. The enhanced images reveal the presence of filamentary structures above the limb with a characteristic separation of approximately 10 to 15 sec . Some of the structures extend from the solar limb into the corona to at least 4 min above the solar limb. The brightness of these structures changes as a function of height above the limb. The brightest emission is associated with spiculelike structures in the proximity of the limb. The emission characteristic of high-temperature plasma is not cospatial with the emission at lower temperatures, indicating the presence of different temperature plasmas in the field of view.

  4. Diffraction anomalous fine structure using X-ray anomalous dispersion

    International Nuclear Information System (INIS)

    Soejima, Yuji; Kuwajima, Shuichiro

    1998-01-01

    A use of X-ray anomalous dispersion effects for structure investigation has recently been developed by using synchrotron radiation. One of the interesting method is the observation of anomalous fine structure which arise on diffraction intensity in energy region of incident X-ray at and higher than absorption edge. The phenomenon is so called Diffraction Anomalous Fine Structure (DAFS). DAFS originates in the same physical process an that of EXAFS: namely photoelectric effect at the corresponding atom and the interaction of photoelectron waves between the atom and neighboring atoms. In contrast with EXAFS, the method is available for only the crystalline materials, but shows effective advantages of the structure investigations by a use of diffraction: one is the site selectivity and the other is space selectivity. In the present study, demonstrations of a use of X-ray anomalous dispersion effect for the superstructure determination will be given for the case of PbZrO 3 , then recent trial investigations of DAFS in particular on the superlattice reflections will be introduced. In addition, we discuss about Forbidden Reflection near Edge Diffraction (FRED) which is more recently investigated as a new method of the structure analysis. (author)

  5. Origin of fine structure of the giant dipole resonance in s d -shell nuclei

    Science.gov (United States)

    Fearick, R. W.; Erler, B.; Matsubara, H.; von Neumann-Cosel, P.; Richter, A.; Roth, R.; Tamii, A.

    2018-04-01

    A set of high-resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the giant dipole resonance (GDR) in s d -shell nuclei. Understanding is achieved by comparison with random phase approximation calculations for deformed nuclei using for the first time a realistic nucleon-nucleon interaction derived from the Argonne V18 potential with the unitary correlation operator method and supplemented by a phenomenological three-nucleon contact interaction. A wavelet analysis allows one to extract significant scales both in the data and calculations characterizing the fine structure of the GDR. The fair agreement for scales in the range of a few hundred keV supports the surmise that the fine structure arises from ground-state deformation driven by α clustering.

  6. Theoretical approaches to x-ray absorption fine structure

    International Nuclear Information System (INIS)

    Rehr, J. J.; Albers, R. C.

    2000-01-01

    Dramatic advances in the understanding of x-ray absorption fine structure (XAFS) have been made over the past few decades, which have led ultimately to a highly quantitative theory. This review covers these developments from a unified multiple-scattering viewpoint. The authors focus on extended x-ray absorption fine structure (EXAFS) well above an x-ray edge, and, to a lesser extent, on x-ray absorption near-edge structure (XANES) closer to an edge. The discussion includes both formal considerations, derived from a many-electron formulation, and practical computational methods based on independent-electron models, with many-body effects lumped into various inelastic losses and energy shifts. The main conceptual issues in XAFS theory are identified and their relative importance is assessed; these include the convergence of the multiple-scattering expansion, curved-wave effects, the scattering potential, inelastic losses, self-energy shifts, and vibrations and structural disorder. The advantages and limitations of current computational approaches are addressed, with particular regard to quantitative experimental comparisons. (c) 2000 The American Physical Society

  7. Astronomical constraints on the cosmic evolution of the fine structure constant and possible quantum dimensions.

    Science.gov (United States)

    Carilli, C L; Menten, K M; Stocke, J T; Perlman, E; Vermeulen, R; Briggs, F; de Bruyn , A G; Conway, J; Moore, C P

    2000-12-25

    We present measurements of absorption by the 21 cm hyperfine transition of neutral hydrogen toward radio sources at substantial look-back times. These data are used in combination with observations of rotational transitions of common interstellar molecules to set limits on the evolution of the fine structure constant: alpha/ alphatheory, the limit on the secular evolution of the scale factor of the compact dimensions, R, is &Rdot/ Rbig bang, of DeltaR /R<10(-5).

  8. Scaling of structural failure

    Energy Technology Data Exchange (ETDEWEB)

    Bazant, Z.P. [Northwestern Univ., Evanston, IL (United States); Chen, Er-Ping [Sandia National Lab., Albuquerque, NM (United States)

    1997-01-01

    This article attempts to review the progress achieved in the understanding of scaling and size effect in the failure of structures. Particular emphasis is placed on quasibrittle materials for which the size effect is complicated. Attention is focused on three main types of size effects, namely the statistical size effect due to randomness of strength, the energy release size effect, and the possible size effect due to fractality of fracture or microcracks. Definitive conclusions on the applicability of these theories are drawn. Subsequently, the article discusses the application of the known size effect law for the measurement of material fracture properties, and the modeling of the size effect by the cohesive crack model, nonlocal finite element models and discrete element models. Extensions to compression failure and to the rate-dependent material behavior are also outlined. The damage constitutive law needed for describing a microcracked material in the fracture process zone is discussed. Various applications to quasibrittle materials, including concrete, sea ice, fiber composites, rocks and ceramics are presented.

  9. On the value of the fine structure constant

    International Nuclear Information System (INIS)

    Bosi, L.

    1997-01-01

    The fine structure constant can be approximately expressed as α = (20 var-phi 4 ) -1 where var-phi is the golden ratio (1 + √5)/2: the discrepancy between the present and the true value of α -1 is lower than 3.4· 10 -4 . This simple occurrence would be not fortuitous, thus suggesting a hidden physical meaning. A tentative and qualitative explanation is proposed which is based only on symmetry considerations involving both the Von Klitzing resistance and the vacuum impedance

  10. New Tests for Variations of the Fine Structure Constant

    Science.gov (United States)

    Prestage, John D.

    1995-01-01

    We describe a new test for possible variations of the fine structure constant, by comparisons of rates between clocks based on hyperfine transitions in alkali atomos with different atomic number Z. H- maser, Cs and Hg+ clocks have a different dependence on ia relativistic contributions of order (Z. Recent H-maser vs Hg+ clock comparison data improves laboratory limits on a time variation by 100-fold to giveFuture laser cooled clocks (Be+, Rb, Cs, Hg+, etc.), when compared, will yield the most senstive of all tests for.

  11. Relativistic corrections to the fine structure of positronium

    International Nuclear Information System (INIS)

    Faustov, R. N.; Martynenko, A. P.

    1997-01-01

    The quasipotential method is used to calculate relativistic corrections in the positronium-fine-structure intervals 2 3 S 1 -2 3 P J . From analysis of one- and two-photon interactions, corrections of order mα 6 are found for positronium S states in the second order of perturbation theory. The contribution of the two-photon annihilation diagrams to the interaction operator for P-wave positronium is determined, and corrections of orders α 5 R ∞ and α 5 ln αR ∞ to the P-wave levels of positronium are calculated

  12. Distortion product otoacoustic emission fine structure of symphony orchestra musicians

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    2006-01-01

    Otoacoustic emissions (OAE) are sounds produced by the healthy inner ear. They can be measured as low-level signals in the ear canal and are used to monitor the functioning of outer hair cells.Several studies indicate that OAE might be a more sensitive measure to detect early noise-induced hearing...... losses than puretone audiometry. The distortion product otoacoustic emission (DPOAE) fine structure is obtained when the ear is stimulated by dual tone stimuli using a high frequency resolution. It is characterized by quasi-periodic variations across frequency, as it can be observed in the hearing...

  13. Topological map of the Hofstadter butterfly: Fine structure of Chern numbers and Van Hove singularities

    Energy Technology Data Exchange (ETDEWEB)

    Naumis, Gerardo G., E-mail: naumis@fisica.unam.mx [Departamento de Física–Química, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 20-364, 01000 México, Distrito Federal (Mexico); Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Escuela Superior de Física y Matemáticas, ESIA-Zacatenco, Instituto Politécnico Nacional, México D.F. (Mexico)

    2016-04-29

    The Hofstadter butterfly is a quantum fractal with a highly complex nested set of gaps, where each gap represents a quantum Hall state whose quantized conductivity is characterized by topological invariants known as the Chern numbers. Here we obtain simple rules to determine the Chern numbers at all scales in the butterfly fractal and lay out a very detailed topological map of the butterfly by using a method used to describe quasicrystals: the cut and projection method. Our study reveals the existence of a set of critical points that separates orderly patterns of both positive and negative Cherns that appear as a fine structure in the butterfly. This fine structure can be understood as a small tilting of the projection subspace in the cut and projection method and by using a Chern meeting formula. Finally, we prove that the critical points are identified with the Van Hove singularities that exist at every band center in the butterfly landscape. - Highlights: • Use a higher dimensional approach to build a topological map of the Hofstadter butterfly. • There is a fine structure of Chern numbers around each rational flux. • Van Hove singularities are limiting points for topological sequences of the fine flux.

  14. Topological map of the Hofstadter butterfly: Fine structure of Chern numbers and Van Hove singularities

    International Nuclear Information System (INIS)

    Naumis, Gerardo G.

    2016-01-01

    The Hofstadter butterfly is a quantum fractal with a highly complex nested set of gaps, where each gap represents a quantum Hall state whose quantized conductivity is characterized by topological invariants known as the Chern numbers. Here we obtain simple rules to determine the Chern numbers at all scales in the butterfly fractal and lay out a very detailed topological map of the butterfly by using a method used to describe quasicrystals: the cut and projection method. Our study reveals the existence of a set of critical points that separates orderly patterns of both positive and negative Cherns that appear as a fine structure in the butterfly. This fine structure can be understood as a small tilting of the projection subspace in the cut and projection method and by using a Chern meeting formula. Finally, we prove that the critical points are identified with the Van Hove singularities that exist at every band center in the butterfly landscape. - Highlights: • Use a higher dimensional approach to build a topological map of the Hofstadter butterfly. • There is a fine structure of Chern numbers around each rational flux. • Van Hove singularities are limiting points for topological sequences of the fine flux.

  15. Spatial Downscaling of TRMM Precipitation Using Geostatistics and Fine Scale Environmental Variables

    Directory of Open Access Journals (Sweden)

    No-Wook Park

    2013-01-01

    Full Text Available A geostatistical downscaling scheme is presented and can generate fine scale precipitation information from coarse scale Tropical Rainfall Measuring Mission (TRMM data by incorporating auxiliary fine scale environmental variables. Within the geostatistical framework, the TRMM precipitation data are first decomposed into trend and residual components. Quantitative relationships between coarse scale TRMM data and environmental variables are then estimated via regression analysis and used to derive trend components at a fine scale. Next, the residual components, which are the differences between the trend components and the original TRMM data, are then downscaled at a target fine scale via area-to-point kriging. The trend and residual components are finally added to generate fine scale precipitation estimates. Stochastic simulation is also applied to the residual components in order to generate multiple alternative realizations and to compute uncertainty measures. From an experiment using a digital elevation model (DEM and normalized difference vegetation index (NDVI, the geostatistical downscaling scheme generated the downscaling results that reflected detailed characteristics with better predictive performance, when compared with downscaling without the environmental variables. Multiple realizations and uncertainty measures from simulation also provided useful information for interpretations and further environmental modeling.

  16. Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping.

    Science.gov (United States)

    Mitchell, Matthew G E; Johansen, Kasper; Maron, Martine; McAlpine, Clive A; Wu, Dan; Rhodes, Jonathan R

    2018-05-01

    Urban areas are sources of land use change and CO 2 emissions that contribute to global climate change. Despite this, assessments of urban vegetation carbon stocks often fail to identify important landscape-scale drivers of variation in urban carbon, especially the potential effects of landscape structure variables at different spatial scales. We combined field measurements with Light Detection And Ranging (LiDAR) data to build high-resolution models of woody plant aboveground carbon across the urban portion of Brisbane, Australia, and then identified landscape scale drivers of these carbon stocks. First, we used LiDAR data to quantify the extent and vertical structure of vegetation across the city at high resolution (5×5m). Next, we paired this data with aboveground carbon measurements at 219 sites to create boosted regression tree models and map aboveground carbon across the city. We then used these maps to determine how spatial variation in land cover/land use and landscape structure affects these carbon stocks. Foliage densities above 5m height, tree canopy height, and the presence of ground openings had the strongest relationships with aboveground carbon. Using these fine-scale relationships, we estimate that 2.2±0.4 TgC are stored aboveground in the urban portion of Brisbane, with mean densities of 32.6±5.8MgCha -1 calculated across the entire urban land area, and 110.9±19.7MgCha -1 calculated within treed areas. Predicted carbon densities within treed areas showed strong positive relationships with the proportion of surrounding tree cover and how clumped that tree cover was at both 1km 2 and 1ha resolutions. Our models predict that even dense urban areas with low tree cover can have high carbon densities at fine scales. We conclude that actions and policies aimed at increasing urban carbon should focus on those areas where urban tree cover is most fragmented. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Fine structure study on low concentration zinc substituted hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Hu, Wei; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2012-01-01

    The fine structure of zinc substituted hydroxyapatite was studied using experimental analysis and first-principles calculations. The synthetic hydroxyapatite nanoparticles containing low Zn concentration show rod-like morphology. The crystallite sizes and unit-cell volumes tended to decrease with the increased Zn concentration according to X-ray diffraction patterns. The Zn K-edge X-ray absorption spectra and fitting results suggest that the hydroxyapatite doped with 0.1 mole% zinc is different in the zinc coordination environments compared with that containing more zinc. The density function theory calculations were performed on zinc substituted hydroxyapatite. Two mechanisms included replacing calcium by zinc and inserting zinc along the hydroxyl column and were investigated, and the related substitution energies were calculated separately. It is found that the substitution energies are negative and lowest for inserting zinc between the two oxygen atoms along the hydroxyl column (c-axis). Combined with the spectral analysis, it is suggested that the inserting mechanism is favored for low concentration zinc substituted hydroxyapatite. Highlights: ► We investigate the fine structure of hydroxyapatite with low content of Zn. ► XANES spectra are similar but a little different at low zinc content. ► Zinc ions influence hydroxyapatite crystal formation and lattice parameters. ► Formation energies are calculated according to plane-wave density function theory. ► Low content of zinc prefers to locate at hydroxyl column in hydroxyapatite lattice.

  18. QED Based Calculation of the Fine Structure Constant

    Energy Technology Data Exchange (ETDEWEB)

    Lestone, John Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-13

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. Here, semi-classical approaches are used to obtain a more intuitive feel for what causes electrostatics, and the anomalous magnetic moment of the electron. These intuitive arguments lead to a possible answer to the question of the nature of charge. Virtual photons, with a reduced wavelength of λ, are assumed to interact with isolated electrons with a cross section of πλ2. This interaction is assumed to generate time-reversed virtual photons that are capable of seeking out and interacting with other electrons. This exchange of virtual photons between particles is assumed to generate and define the strength of electromagnetism. With the inclusion of near-field effects the model presented here gives a fine structure constant of ~1/137 and an anomalous magnetic moment of the electron of ~0.00116. These calculations support the possibility that near-field corrections are the key to understanding the numerical value of the dimensionless fine structure constant.

  19. Measurement of the fine structure in 33P helium

    International Nuclear Information System (INIS)

    Yang, D.

    1985-01-01

    The author measured two positions of the Zeeman level crossing between the (J,M) = (2,2) and (0,0) and between the (J,M) = (1,1) and (0,0) sublevels of the 3 3 P state in helium. The zero field fine structure splittings were calculated from these two measured values. These splittings are of interest for a precision test of quantum electrodynamics and giving an independent contribution to fine structure constant determination. This experiment uses time resolved level crossing spectroscopy. A pulsed beam of helium 2 3 S metastables is excited by a pulse of 388.9 nm dye laser light to the 3 3 P state in a dc magnetic field interaction region. After a certain delay time, a 532 nm laser pulse ionizes the atoms from the 3 3 P state. The photoelectrons are detected by a microchannel plate. The magnetic field is in the z direction, while the atomic beam and the two laser beams are in the xy plane. These two laser beams couterpropagate at a 45 0 angle for the atomic beam for convenience. The photoionization signal is recorded as a function of magnetic field near each of the two crossing positions. Results for these two crossing positions are in agreement with, but more precise than, the previously reported results

  20. Influence of musical training on sensitivity to temporal fine structure.

    Science.gov (United States)

    Mishra, Srikanta K; Panda, Manasa R; Raj, Swapna

    2015-04-01

    The objective of this study was to extend the findings that temporal fine structure encoding is altered in musicians by examining sensitivity to temporal fine structure (TFS) in an alternative (non-Western) musician model that is rarely adopted--Indian classical music. The sensitivity to TFS was measured by the ability to discriminate two complex tones that differed in TFS but not in envelope repetition rate. Sixteen South Indian classical (Carnatic) musicians and 28 non-musicians with normal hearing participated in this study. Musicians have significantly lower relative frequency shift at threshold in the TFS task compared to non-musicians. A significant negative correlation was observed between years of musical experience and relative frequency shift at threshold in the TFS task. Test-retest repeatability of thresholds in the TFS tasks was similar for both musicians and non-musicians. The enhanced performance of the Carnatic-trained musicians suggests that the musician advantage for frequency and harmonicity discrimination is not restricted to training in Western classical music, on which much of the previous research on musical training has narrowly focused. The perceptual judgments obtained from non-musicians were as reliable as those of musicians.

  1. Black Holes and Quantum Theory: The Fine Structure Constant Connection

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available The new dynamical theory of space is further confirmed by showing that the effective “black hole” masses M BH in 19 spherical star systems, from globular clusters to galaxies, with masses M , satisfy the prediction that M BH = α 2 M , where α is the fine structure constant. As well the necessary and unique generalisations of the Schr ̈ odinger and Dirac equations permit the first derivation of gravity from a deeper theory, showing that gravity is a quantum effect of quantum matter interacting with the dynamical space. As well the necessary generalisation of Maxwell’s equations displays the observed light bending effects. Finally it is shown from the generalised Dirac equation where the spacetime mathematical formalism, and the accompanying geodesic prescription for matter trajectories, comes from. The new theory of space is non-local and we see many parallels between this and quantum theory, in addition to the fine structure constant manifesting in both, so supporting the argument that space is a quantum foam system, as implied by the deeper information-theoretic theory known as Process Physics. The spatial dynamics also provides an explanation for the “dark matter” effect and as well the non-locality of the dynamics provides a mechanism for generating the uniformity of the universe, so explaining the cosmological horizon problem.

  2. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    Science.gov (United States)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we

  3. Fine-scale variability of isopycnal salinity in the California Current System

    Science.gov (United States)

    Itoh, Sachihiko; Rudnick, Daniel L.

    2017-09-01

    This paper examines the fine-scale structure and seasonal fluctuations of the isopycnal salinity of the California Current System from 2007 to 2013 using temperature and salinity profiles obtained from a series of underwater glider surveys. The seasonal mean distributions of the spectral power of the isopycnal salinity gradient averaged over submesoscale (12-30 km) and mesoscale (30-60 km) ranges along three survey lines off Monterey Bay, Point Conception, and Dana Point were obtained from 298 transects. The mesoscale and submesoscale variance increased as coastal upwelling caused the isopycnal salinity gradient to steepen. Areas of elevated variance were clearly observed around the salinity front during the summer then spread offshore through the fall and winter. The high fine-scale variances were observed typically above 25.8 kg m-3 and decreased with depth to a minimum at around 26.3 kg m-3. The mean spectral slope of the isopycnal salinity gradient with respect to wavenumber was 0.19 ± 0.27 over the horizontal scale of 12-60 km, and 31%-35% of the spectra had significantly positive slopes. In contrast, the spectral slope over 12-30 km was mostly flat, with mean values of -0.025 ± 0.32. An increase in submesoscale variability accompanying the steepening of the spectral slope was often observed in inshore areas; e.g., off Monterey Bay in winter, where a sharp front developed between the California Current and the California Under Current, and the lower layers of the Southern California Bight, where vigorous interaction between a synoptic current and bottom topography is to be expected.

  4. Acoustic fine structure may encode biologically relevant information for zebra finches.

    Science.gov (United States)

    Prior, Nora H; Smith, Edward; Lawson, Shelby; Ball, Gregory F; Dooling, Robert J

    2018-04-18

    The ability to discriminate changes in the fine structure of complex sounds is well developed in birds. However, the precise limit of this discrimination ability and how it is used in the context of natural communication remains unclear. Here we describe natural variability in acoustic fine structure of male and female zebra finch calls. Results from psychoacoustic experiments demonstrate that zebra finches are able to discriminate extremely small differences in fine structure, which are on the order of the variation in acoustic fine structure that is present in their vocal signals. Results from signal analysis methods also suggest that acoustic fine structure may carry information that distinguishes between biologically relevant categories including sex, call type and individual identity. Combined, our results are consistent with the hypothesis that zebra finches can encode biologically relevant information within the fine structure of their calls. This study provides a foundation for our understanding of how acoustic fine structure may be involved in animal communication.

  5. Fine-structure energy levels, oscillator strengths and transition probabilities in Ni XVI

    International Nuclear Information System (INIS)

    Deb, N.C.; Msezane, A.Z.

    2001-01-01

    Fine-structure energy levels relative to the ground state, oscillator strengths and transition probabilities for transitions among the lowest 40 fine-structure levels belonging to the configurations 3s 2 3p, 3s3p 2 , 3s 2 3d, 3p 3 and 3s3p3d of Ni XVI are calculated using a large scale CI in program CIV3 of Hibbert. Relativistic effects are included through the Breit-Pauli approximation via spin-orbit, spin-other-orbit, spin-spin, Darwin and mass correction terms. The existing discrepancies between the calculated and measured values for many of the relative energy positions are resolved in the present calculation which yields excellent agreement with measurement. Also, many of our oscillator strengths for allowed and intercombination transitions are in very good agreement with the recommended data by the National Institute of Standard and Technology (NIST). (orig.)

  6. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates.

    Science.gov (United States)

    Kaneko, Takuya; Ye, Bing

    2015-09-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and postsynaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography.

  7. The utility of satellite observations for constraining fine-scale and transient methane sources

    Science.gov (United States)

    Turner, A. J.; Jacob, D.; Benmergui, J. S.; Brandman, J.; White, L.; Randles, C. A.

    2017-12-01

    Resolving differences between top-down and bottom-up emissions of methane from the oil and gas industry is difficult due, in part, to their fine-scale and often transient nature. There is considerable interest in using atmospheric observations to detect these sources. Satellite-based instruments are an attractive tool for this purpose and, more generally, for quantifying methane emissions on fine scales. A number of instruments are planned for launch in the coming years from both low earth and geostationary orbit, but the extent to which they can provide fine-scale information on sources has yet to be explored. Here we present an observation system simulation experiment (OSSE) exploring the tradeoffs between pixel resolution, measurement frequency, and instrument precision on the fine-scale information content of a space-borne instrument measuring methane. We use the WRF-STILT Lagrangian transport model to generate more than 200,000 column footprints at 1.3×1.3 km2 spatial resolution and hourly temporal resolution over the Barnett Shale in Texas. We sub-sample these footprints to match the observing characteristics of the planned TROPOMI and GeoCARB instruments as well as different hypothetical observing configurations. The information content of the various observing systems is evaluated using the Fisher information matrix and its singular values. We draw conclusions on the capabilities of the planned satellite instruments and how these capabilities could be improved for fine-scale source detection.

  8. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.C.; Mani, V.; Mohanty, K.K. [Univ. of Houston, TX (United States)

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  9. Genetic and evolutionary correlates of fine-scale recombination rate variation in Drosophila persimilis.

    Science.gov (United States)

    Stevison, Laurie S; Noor, Mohamed A F

    2010-12-01

    Recombination is fundamental to meiosis in many species and generates variation on which natural selection can act, yet fine-scale linkage maps are cumbersome to construct. We generated a fine-scale map of recombination rates across two major chromosomes in Drosophila persimilis using 181 SNP markers spanning two of five major chromosome arms. Using this map, we report significant fine-scale heterogeneity of local recombination rates. However, we also observed "recombinational neighborhoods," where adjacent intervals had similar recombination rates after excluding regions near the centromere and telomere. We further found significant positive associations of fine-scale recombination rate with repetitive element abundance and a 13-bp sequence motif known to associate with human recombination rates. We noted strong crossover interference extending 5-7 Mb from the initial crossover event. Further, we observed that fine-scale recombination rates in D. persimilis are strongly correlated with those obtained from a comparable study of its sister species, D. pseudoobscura. We documented a significant relationship between recombination rates and intron nucleotide sequence diversity within species, but no relationship between recombination rate and intron divergence between species. These results are consistent with selection models (hitchhiking and background selection) rather than mutagenic recombination models for explaining the relationship of recombination with nucleotide diversity within species. Finally, we found significant correlations between recombination rate and GC content, supporting both GC-biased gene conversion (BGC) models and selection-driven codon bias models. Overall, this genome-enabled map of fine-scale recombination rates allowed us to confirm findings of broader-scale studies and identify multiple novel features that merit further investigation.

  10. Astrophysical extended X-ray absorption fine-structure analysis

    International Nuclear Information System (INIS)

    Woo, J.W.; Forrey, R.C.; Cho, K.; Department of Physics and Division of Applied Sciences, Harvard University)

    1997-01-01

    We present an astrophysical extended X-ray absorption fine-structure (EXAFS) analysis (AEA) tool. The AEA tool is designed to generate a numerical model of the modification to the X-ray absorption coefficient due to the EXAFS phenomenon. We have constructed a complete database (elements up to the atomic number 92) of EXAFS parameters: central atom phase shift (2δ 1 ), backscattering phase shift (φ b ), and backscattering amplitude (F). Using the EXAFS parameter data base, the AEA tool can generate a numerical model of any compound when the atomic numbers of neighboring atoms and their distances to the central X-ray-absorbing atom are given. copyright 1997 The American Astronomical Society

  11. Alpha-decay fine structure versus electromagnetic transitions

    International Nuclear Information System (INIS)

    Peltonen, S.

    2003-01-01

    Alpha decay of even-even Rn isotopes is studied microscopically along the lines of Phys. Rev. C 64, 302 (2001). The results are compared against experimental fine-structure hindrance factors (HFs). We consider problems related to reproducing observed HFs with nuclear models, especially in case of the collective 2 + - excitations. We use the QRPA model with isovector SDI interaction in order to systematically evaluate theoretical HFs. Pairing gaps and the experimental energy of the 2 + - state fix all interaction parameters except the ratio between the isovector and isoscalar interaction strengths that is used as an additional free parameter of the model. Correlation between the electromagnetic E2-strength and HFs is observed, depending both on the isotope and the excitation energy. The choice of the single particle basis appears to affect strongly the theoretical HFs. Further and even more systematical studies are required in order explain this behaviour. (author)

  12. Time variation of the fine structure constant driven by quintessence

    International Nuclear Information System (INIS)

    Anchordoqui, Luis; Goldberg, Haim

    2003-01-01

    There are indications from the study of quasar absorption spectra that the fine structure constant α may have been measurably smaller for redshifts z>2. Analyses of other data ( 149 Sm fission rate for the Oklo natural reactor, variation of 187 Re β-decay rate in meteorite studies, atomic clock measurements) which probe variations of α in the more recent past imply much smaller deviations from its present value. In this work we tie the variation of α to the evolution of the quintessence field proposed by Albrecht and Skordis, and show that agreement with all these data, as well as consistency with Wilkinson Microwave Anisotropy Probe observations, can be achieved for a range of parameters. Some definite predictions follow for upcoming space missions searching for violations of the equivalence principle

  13. Fine structure in the cluster decays of the translead nuclei

    International Nuclear Information System (INIS)

    Dumitrescu, O.; Cioaca, C.

    1994-06-01

    Within the one level R-matrix approach several hindrance factors for the radioactive decays in which are emitted α and other nuclei (such as 14 C and 20 O) are calculated. The interior wave functions are supposed to be given by the shell model with effective residual interactions. The exterior wave functions are calculated from a cluster - nucleus double - folding model potential with the M3Y interaction. As examples of the cluster decay fine structure we analyzed the particular cases of α - decay of 255 Fm, 14 C - decay of 223 Ra and 20 O - decay of 229 Th and 225 Fm. Good agreement with the experimental data is obtained. (author). 38 refs, 6 tabs

  14. Scaling structure loads for SMA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Song, Jeong Guk; Jeon, Sang Ho; Lim, Hak Kyu; Lee, Kwang Nam [KEPCO ENC, Yongin (Korea, Republic of)

    2012-10-15

    When the Seismic Margin Analysis(SMA) is conducted, the new structural load generation with Seismic Margin Earthquake(SME) is the time consuming work. For the convenience, EPRI NP 6041 suggests the scaling of the structure load. The report recommend that the fixed base(rock foundation) structure designed using either constant modal damping or modal damping ratios developed for a single material damping. For these cases, the SME loads can easily and accurately be calculated by scaling the spectral accelerations of the individual modes for the new SME response spectra. EPRI NP 6041 provides two simple methodologies for the scaling structure seismic loads which are the dominant frequency scaling methodology and the mode by mode scaling methodology. Scaling of the existing analysis to develop SME loads is much easier and more efficient than performing a new analysis. This paper is intended to compare the calculating results of two different methodologies.

  15. Scaling structure loads for SMA

    International Nuclear Information System (INIS)

    Lee, Dong Won; Song, Jeong Guk; Jeon, Sang Ho; Lim, Hak Kyu; Lee, Kwang Nam

    2012-01-01

    When the Seismic Margin Analysis(SMA) is conducted, the new structural load generation with Seismic Margin Earthquake(SME) is the time consuming work. For the convenience, EPRI NP 6041 suggests the scaling of the structure load. The report recommend that the fixed base(rock foundation) structure designed using either constant modal damping or modal damping ratios developed for a single material damping. For these cases, the SME loads can easily and accurately be calculated by scaling the spectral accelerations of the individual modes for the new SME response spectra. EPRI NP 6041 provides two simple methodologies for the scaling structure seismic loads which are the dominant frequency scaling methodology and the mode by mode scaling methodology. Scaling of the existing analysis to develop SME loads is much easier and more efficient than performing a new analysis. This paper is intended to compare the calculating results of two different methodologies

  16. Fishermen Follow Fine-Scale Physical Ocean Features for Finance

    Directory of Open Access Journals (Sweden)

    James R. Watson

    2018-02-01

    Full Text Available The seascapes on which many millions of people make their living and secure food have complex and dynamic spatial features—the figurative hills and valleys—that influence where and how people work at sea. Here, we quantify the physical mosaic of the surface ocean by identifying Lagrangian Coherent Structures for a whole seascape—the U.S. California Current Large Marine Ecosystem—and assess their impact on the spatial distribution of fishing. We observe that there is a mixed response: some fisheries track these physical features, and others avoid them. These spatial behaviors map to economic impacts, in particular we find that tuna fishermen can expect to make three times more revenue per trip if fishing occurs on strong Lagrangian Coherent Structures. However, we find no relationship for salmon and pink shrimp fishing trips. These results highlight a connection between the biophysical state of the oceans, the spatial patterns of human activity, and ultimately the economic welfare of coastal communities.

  17. Doubly stochastic Poisson process models for precipitation at fine time-scales

    Science.gov (United States)

    Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao

    2012-09-01

    This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.

  18. The structure of hydrate bearing fine grained marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Priest, J.; Kingston, E.; Clayton, C. [Southampton Univ., Highfield (United Kingdom). School of Civil Engineering and the Environment; Schultheiss, P.; Druce, M. [Geotek Ltd., Daventry (United Kingdom)

    2008-07-01

    This paper discussed the structure of naturally occurring methane gas hydrates in fine-grained sediments from core samples recovered using in situ pressures from the eastern margin of the Indian Ocean. High resolution X-ray computed tomography (CT) images were taken of gas hydrate cores. The hydrate structure was examined and comparisons were made between low resolution X-ray images obtained on the cores prior to sub-sectioning and depressurization procedures. The X-ray images showed the presence of high-angle, sub-parallel veins within the recovered sediments. The scans indicated that the hydrates occurred as fracture filing veins throughout the core. Fracture orientation was predominantly sub-vertical. Thick millimetric hydrate veins were composed of sub-millimetric veins with variations in fracture angle. The analysis indicated that hydrate formation was episodic in nature and subject to changes in the stress regime. Results of the study showed that depressurization and subsequent freezing alter the structure of the sediment even when the gas hydrate has not been altered. A large proportion of the hydrate survived when outside of its stability region. The self-preserving behaviour of the hydrate was attributed to the endothermic nature of gas hydrate dissociation. It was concluded that the accurate physical characterization of gas hydrates can only be conducted when the core section remains under in situ stress conditions. 13 refs., 9 figs.

  19. The importance of source positions during radio fine structure observations

    International Nuclear Information System (INIS)

    Chernov, Guennadi P.; Yan Yi-Hua; Fu Qi-Jun

    2014-01-01

    The measurement of positions and sizes of radio sources in the observations of the fine structure of solar radio bursts is a determining factor for the selection of the radio emission mechanism. The identical parameters describing the radio sources for zebra structures (ZSs) and fiber bursts confirm there is a common mechanism for both structures. It is very important to measure the size of the source in the corona to determine if it is distributed along the height or if it is point-like. In both models of ZSs (the double plasma resonance (DPR) and the whistler model) the source must be distributed along the height, but by contrast to the stationary source in the DPR model, in the whistler model the source should be moving. Moreover, the direction of the space drift of the radio source must correlate with the frequency drift of stripes in the dynamic spectrum. Some models of ZSs require a local source, for example, the models based on the Bernstein modes, or on explosive instability. The selection of the radio emission mechanism for fast broadband pulsations with millisecond duration also depends on the parameters of their radio sources. (mini-volume: solar radiophysics — recent results on observations and theories)

  20. Galaxy clusters, type Ia supernovae and the fine structure constant

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, R.F.L. [Departamento de Física, Universidade Estadual da Paraíba, street Baraúnas, Campina Grande, PB, 58429-500 (Brazil); Busti, V.C. [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP, CEP 05508-090 Brazil (Brazil); Colaço, L.R. [Departamento de Física, Universidade Federal de Campina Grande, street Aprígio Veloso, Campina Grande, PB, 58429-900 (Brazil); Alcaniz, J.S. [Observatório Nacional, Street José Cristino, Rio de Janeiro, RJ, 20921-400 (Brazil); Landau, S.J., E-mail: holanda@uepb.edu.br, E-mail: viniciusbusti@gmail.com, E-mail: colacolrc@gmail.com, E-mail: alcaniz@on.br, E-mail: slandau@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Viamonte, Buenos Aires, 1053 Argentina (Argentina)

    2016-08-01

    As is well known, measurements of the Sunyaev-Zeldovich effect can be combined with observations of the X-ray surface brightness of galaxy clusters to estimate the angular diameter distance to these structures. In this paper, we show that this technique depends on the fine structure constant, α. Therefore, if α is a time-dependent quantity, e.g., α = α{sub 0}φ( z ), where φ is a function of redshift, we argue that current data do not provide the real angular diameter distance, D {sub A}( z ), to the cluster, but instead D {sub A}{sup data}( z ) = φ( z ){sup 2} D {sub A}( z ). We use this result to derive constraints on a possible variation of α for a class of dilaton runaway models considering a sample of 25 measurements of D {sub A}{sup data}( z ) in redshift range 0.023 < z < 0.784 and estimates of D {sub A}( z ) from current type Ia supernovae observations. We find no significant indication of variation of α with the present data.

  1. Chromospheric counterparts of solar transition region unresolved fine structure loops

    Science.gov (United States)

    Pereira, Tiago M. D.; Rouppe van der Voort, Luc; Hansteen, Viggo H.; De Pontieu, Bart

    2018-04-01

    Low-lying loops have been discovered at the solar limb in transition region temperatures by the Interface Region Imaging Spectrograph (IRIS). They do not appear to reach coronal temperatures, and it has been suggested that they are the long-predicted unresolved fine structures (UFS). These loops are dynamic and believed to be visible during both heating and cooling phases. Making use of coordinated observations between IRIS and the Swedish 1-m Solar Telescope, we study how these loops impact the solar chromosphere. We show for the first time that there is indeed a chromospheric signal of these loops, seen mostly in the form of strong Doppler shifts and a conspicuous lack of chromospheric heating. In addition, we find that several instances have a inverse Y-shaped jet just above the loop, suggesting that magnetic reconnection is driving these events. Our observations add several puzzling details to the current knowledge of these newly discovered structures; this new information must be considered in theoretical models. Two movies associated to Fig. 1 are available at http://https://www.aanda.org

  2. Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster

    Science.gov (United States)

    Song, Yun S.

    2012-01-01

    Estimating fine-scale recombination maps of Drosophila from population genomic data is a challenging problem, in particular because of the high background recombination rate. In this paper, a new computational method is developed to address this challenge. Through an extensive simulation study, it is demonstrated that the method allows more accurate inference, and exhibits greater robustness to the effects of natural selection and noise, compared to a well-used previous method developed for studying fine-scale recombination rate variation in the human genome. As an application, a genome-wide analysis of genetic variation data is performed for two Drosophila melanogaster populations, one from North America (Raleigh, USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombination rate variation is widespread throughout the D. melanogaster genome, across all chromosomes and in both populations. At the fine-scale, a conservative, systematic search for evidence of recombination hotspots suggests the existence of a handful of putative hotspots each with at least a tenfold increase in intensity over the background rate. A wavelet analysis is carried out to compare the estimated recombination maps in the two populations and to quantify the extent to which recombination rates are conserved. In general, similarity is observed at very broad scales, but substantial differences are seen at fine scales. The average recombination rate of the X chromosome appears to be higher than that of the autosomes in both populations, and this pattern is much more pronounced in the African population than the North American population. The correlation between various genomic features—including recombination rates, diversity, divergence, GC content, gene content, and sequence quality—is examined using the wavelet analysis, and it is shown that the most notable difference between D. melanogaster and humans is in the correlation between recombination and

  3. Fine-Scale Population Estimation by 3D Reconstruction of Urban Residential Buildings

    Science.gov (United States)

    Wang, Shixin; Tian, Ye; Zhou, Yi; Liu, Wenliang; Lin, Chenxi

    2016-01-01

    Fine-scale population estimation is essential in emergency response and epidemiological applications as well as urban planning and management. However, representing populations in heterogeneous urban regions with a finer resolution is a challenge. This study aims to obtain fine-scale population distribution based on 3D reconstruction of urban residential buildings with morphological operations using optical high-resolution (HR) images from the Chinese No. 3 Resources Satellite (ZY-3). Specifically, the research area was first divided into three categories when dasymetric mapping was taken into consideration. The results demonstrate that the morphological building index (MBI) yielded better results than built-up presence index (PanTex) in building detection, and the morphological shadow index (MSI) outperformed color invariant indices (CIIT) in shadow extraction and height retrieval. Building extraction and height retrieval were then combined to reconstruct 3D models and to estimate population. Final results show that this approach is effective in fine-scale population estimation, with a mean relative error of 16.46% and an overall Relative Total Absolute Error (RATE) of 0.158. This study gives significant insights into fine-scale population estimation in complicated urban landscapes, when detailed 3D information of buildings is unavailable. PMID:27775670

  4. Fine-Scale Population Estimation by 3D Reconstruction of Urban Residential Buildings

    Directory of Open Access Journals (Sweden)

    Shixin Wang

    2016-10-01

    Full Text Available Fine-scale population estimation is essential in emergency response and epidemiological applications as well as urban planning and management. However, representing populations in heterogeneous urban regions with a finer resolution is a challenge. This study aims to obtain fine-scale population distribution based on 3D reconstruction of urban residential buildings with morphological operations using optical high-resolution (HR images from the Chinese No. 3 Resources Satellite (ZY-3. Specifically, the research area was first divided into three categories when dasymetric mapping was taken into consideration. The results demonstrate that the morphological building index (MBI yielded better results than built-up presence index (PanTex in building detection, and the morphological shadow index (MSI outperformed color invariant indices (CIIT in shadow extraction and height retrieval. Building extraction and height retrieval were then combined to reconstruct 3D models and to estimate population. Final results show that this approach is effective in fine-scale population estimation, with a mean relative error of 16.46% and an overall Relative Total Absolute Error (RATE of 0.158. This study gives significant insights into fine-scale population estimation in complicated urban landscapes, when detailed 3D information of buildings is unavailable.

  5. Measuring Fine-Scale White-Tailed Deer Movements and Environmental Influences Using GPS Collars

    International Nuclear Information System (INIS)

    Webb, S.L.; Strickland, B.K.; Demarais, S.; Webb, S.L.; Gee, K.L.; DeYoung, R.W.

    2010-01-01

    Few studies have documented fine-scale movements of ungulate species, including white-tailed deer (Odocoileus virginianus), despite the advent of global positioning system (GPS) technology incorporated into tracking devices. We collected fine-scale temporal location estimates (i.e., 15 min/relocation attempt) from 17 female and 15 male white-tailed deer over 7 years and 3 seasons in Oklahoma, USA. Our objectives were to document fine-scale movements of females and males and determine effects of reproductive phase, moon phase, and short-term weather patterns on movements. Female and male movements were primarily crepuscular. Male total daily movements were 20% greater during rut (7,363? 364) than postrut (6,156 m±260). Female daily movements were greatest during post parturition (3,357 91), followed by parturition (2,902 m±107), and pre parturition (2,682 m±121). We found moon phase had no effect on daily, nocturnal, and diurnal deer movements and fine-scale temporal weather conditions had an inconsistent influence on deer movement patterns within season. Our data suggest that hourly and daily variation in weather events have minimal impact on movements of white-tailed deer in southern latitudes. Instead, routine crepuscular movements, presumed to maximize thermoregulation and minimize predation risk, appear to be the most important factors influencing movements.

  6. Measuring Fine-Scale White-Tailed Deer Movements and Environmental Influences Using GPS Collars

    Directory of Open Access Journals (Sweden)

    Stephen L. Webb

    2010-01-01

    Full Text Available Few studies have documented fine-scale movements of ungulate species, including white-tailed deer (Odocoileus virginianus, despite the advent of global positioning system (GPS technology incorporated into tracking devices. We collected fine-scale temporal location estimates (i.e., 15 min/relocation attempt from 17 female and 15 male white-tailed deer over 7 years and 3 seasons in Oklahoma, USA. Our objectives were to document fine-scale movements of females and males and determine effects of reproductive phase, moon phase, and short-term weather patterns on movements. Female and male movements were primarily crepuscular. Male total daily movements were 20% greater during rut (7,363m±364 than postrut (6,156m±260. Female daily movements were greatest during postparturition (3,357m±91, followed by parturition (2,902m±107, and preparturition (2,682m±121. We found moon phase had no effect on daily, nocturnal, and diurnal deer movements and fine-scale temporal weather conditions had an inconsistent influence on deer movement patterns within season. Our data suggest that hourly and daily variation in weather events have minimal impact on movements of white-tailed deer in southern latitudes. Instead, routine crepuscular movements, presumed to maximize thermoregulation and minimize predation risk, appear to be the most important factors influencing movements.

  7. GeneRecon—A coalescent based tool for fine-scale association mapping

    DEFF Research Database (Denmark)

    Mailund, Thomas; Schierup, Mikkel Heide; Pedersen, Christian Nørgaard Storm

    2006-01-01

    GeneRecon is a tool for fine-scale association mapping using a coalescence model. GeneRecon takes as input case-control data from phased or unphased SNP and micro-satellite genotypes. The posterior distribution of disease locus position is obtained by Metropolis Hastings sampling in the state space...

  8. 75 FR 60407 - Gulf of the Farallones National Marine Sanctuary Permit Application Project Titled: Fine Scale...

    Science.gov (United States)

    2010-09-30

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Gulf of the Farallones National Marine Sanctuary Permit Application Project Titled: Fine Scale, Long-Term Tracking of Adult White Sharks AGENCY: Office of National Marine Sanctuaries (ONMS), National Ocean Service (NOS), National...

  9. Fine scale heterogeneity in the Earth's upper mantle - observation and interpretation

    DEFF Research Database (Denmark)

    Thybo, Hans

    2014-01-01

    can be correlated to main plate tectonic features, such as oceanic spreading centres, continental rift zones and subducting slabs. Much seismological mantle research is now concentrated on imaging fine scale heterogeneity, which may be detected and imaged with high-resolution seismic data with dense...

  10. Spatial variability of night temperatures at a fine scale over the Stellenbosch wine district, South Africa

    Directory of Open Access Journals (Sweden)

    Valérie Bonnardot

    2012-03-01

    Significance and impact of the study: In the context of climate change, it is crucial to improve knowledge of current climatic conditions at fine scale during periods of grapevine growth and berry ripening in order to have a baseline from which to work when discussing and considering future local adaptations to accommodate to a warmer environnement.

  11. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M.G.; Ouedraogo, T.; Kumar, L.; Sanou, S.; Langevelde, F. van; Kiema, A.; Koppel, J. van de; Andel, J. van; Hearne, J.; Skidmore, A.K.; Ridder, N. de; Stroosnijder, L.; Prins, H.H.T.

    2002-01-01

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  12. GeneRecon Users' Manual — A coalescent based tool for fine-scale association mapping

    DEFF Research Database (Denmark)

    Mailund, T

    2006-01-01

    GeneRecon is a software package for linkage disequilibrium mapping using coalescent theory. It is based on Bayesian Markov-chain Monte Carlo (MCMC) method for fine-scale linkage-disequilibrium gene mapping using high-density marker maps. GeneRecon explicitly models the genealogy of a sample of th...

  13. Comparing three spaceborne optical sensors via fine scale pixel-based urban land cover classification products

    CSIR Research Space (South Africa)

    Breytenbach, Andre

    2013-08-01

    Full Text Available Accessibility to higher resolution earth observation satellites suggests an improvement in the potential for fine scale image classification. In this comparative study, imagery from three optical satellites (WorldView-2, Pléiades and RapidEye) were...

  14. Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus

    DEFF Research Database (Denmark)

    Meyer, Kerstin B; O'Reilly, Martin; Michailidou, Kyriaki

    2013-01-01

    The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of...

  15. Distortion product otoacoustic emission fine structure as an early hearing loss predictor

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    2006-01-01

    height, and ripple prevalence. Temporary changes of the DPOAE fine structure are analyzed by measuring DPOAE both before and after exposing some of the subjects to an intense sound. The characteristic patterns of fine structure can be found in the DPOAE of all subjects, though they are individual...... fine structures are obtained from 74 normal-hearing humans using primary levels of L1/L2=65/45 dB. The subjects belong to groups with different ages and exposure histories. A classification algorithm is developed, which quantifies the fine structure by the parameter's ripple place, ripple width, ripple...

  16. Ordinary mode auroral kilometric radiation fine structure observed by DE 1

    International Nuclear Information System (INIS)

    Benson, R.F.; Mellott, M.M.; Huff, R.L.; Gurnett, D.A.

    1988-01-01

    The fine structure observed with intense right-hand extraordinary (R-X) mode auroral kilometric radiation (AKR) has received major theoretical attention. Data from the Dynamics Explorer 1 plasma wave instrument indicate that left-hand ordinary (L-O) mode AKR posses similar fine structure. Several theories have been proposed to explain the fine structure of the R-X mode AKR. In order to account for the L-O mode fine structure, these theories will have to be modified to produce the L-O mode directly or will have to rely on mode conversion processes from the R-X to the L-O mode

  17. Exciton fine structure in CdSe nanoclusters

    International Nuclear Information System (INIS)

    Leung, K.; Pokrant, S.; Whaley, K.B.

    1998-01-01

    The fine structure in the CdSe nanocrystal absorption spectrum is computed by incorporating two-particle electron-hole interactions and spin-orbit coupling into a tight-binding model, with an expansion in electron-hole single-particle states. The exchange interaction and spin-orbit coupling give rise to dark, low-lying states that are predominantly triplet in character, as well as to a manifold of exciton states that are sensitive to the nanocrystal shape. Near the band gap, the exciton degeneracies are in qualitative agreement with the effective mass approximation (EMA). However, instead of the infinite lifetimes for dark states characteristic of the EMA, we obtain finite radiative lifetimes for the dark states. In particular, for the lowest, predominantly triplet, states we obtain radiative lifetimes of microseconds, in qualitative agreement with the experimental measured lifetimes. The resonant Stokes shifts obtained from the splitting between the lowest dark and bright states are also in good agreement with experimental values for larger crystallites. Higher-lying states exhibit significantly more complex behavior than predicted by EMA, due to extensive mixing of electron-hole pair states. copyright 1998 The American Physical Society

  18. Coupled channels description of the α-decay fine structure

    Science.gov (United States)

    Delion, D. S.; Ren, Zhongzhou; Dumitrescu, A.; Ni, Dongdong

    2018-05-01

    We review the coupled channels approach of α transitions to excited states. The α-decaying states are identified as narrow outgoing Gamow resonances in an α-daughter potential. The real part of the eigenvalue corresponds to the Q-value, while the imaginary part determines the half of the total α-decay width. We first review the calculations describing transitions to rotational states treated by the rigid rotator model, in even–even, odd-mass and odd–odd nuclei. It is found that the semiclassical method overestimates the branching ratios to excited 4+ for some even–even α-emitters and fails in explaining the unexpected inversion of branching ratios of some odd-mass nuclei, while the coupled-channels results show good agreement with the experimental data. Then, we review the coupled channels method for α-transitions to 2+ vibrational and transitional states. We present the results of the Coherent State Model that describes in a unified way the spectra of vibrational, transitional and rotational nuclei. We evidence general features of the α-decay fine structure, namely the linear dependence between α-intensities and excitation energy, the linear correlation between the strength of the α-core interaction and spectroscopic factor, and the inverse correlation between the nuclear collectivity, given by electromagnetic transitions, and α-clustering.

  19. Fine-scale patterns of population stratification confound rare variant association tests.

    Directory of Open Access Journals (Sweden)

    Timothy D O'Connor

    Full Text Available Advances in next-generation sequencing technology have enabled systematic exploration of the contribution of rare variation to Mendelian and complex diseases. Although it is well known that population stratification can generate spurious associations with common alleles, its impact on rare variant association methods remains poorly understood. Here, we performed exhaustive coalescent simulations with demographic parameters calibrated from exome sequence data to evaluate the performance of nine rare variant association methods in the presence of fine-scale population structure. We find that all methods have an inflated spurious association rate for parameter values that are consistent with levels of differentiation typical of European populations. For example, at a nominal significance level of 5%, some test statistics have a spurious association rate as high as 40%. Finally, we empirically assess the impact of population stratification in a large data set of 4,298 European American exomes. Our results have important implications for the design, analysis, and interpretation of rare variant genome-wide association studies.

  20. Simulating Fine-Scale Marine Pollution Plumes for Autonomous Robotic Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Muhammad Fahad

    2018-05-01

    Full Text Available Marine plumes exhibit characteristics such as intermittency, sinuous structure, shape and flow field coherency, and a time varying concentration profile. Due to the lack of experimental quantification of these characteristics for marine plumes, existing work often assumes marine plumes exhibit behavior similar to aerial plumes and are commonly modeled by filament based Lagrangian models. Our previous field experiments with Rhodamine dye plumes at Makai Research Pier at Oahu, Hawaii revealed that marine plumes show similar characteristics to aerial plumes qualitatively, but quantitatively they are disparate. Based on the field data collected, this paper presents a calibrated Eulerian plume model that exhibits the qualitative and quantitative characteristics exhibited by experimentally generated marine plumes. We propose a modified model with an intermittent source, and implement it in a Robot Operating System (ROS based simulator. Concentration time series of stationary sampling points and dynamic sampling points across cross-sections and plume fronts are collected and analyzed for statistical parameters of the simulated plume. These parameters are then compared with statistical parameters from experimentally generated plumes. The comparison validates that the simulated plumes exhibit fine-scale qualitative and quantitative characteristics similar to experimental plumes. The ROS plume simulator facilitates future evaluations of environmental monitoring strategies by marine robots, and is made available for community use.

  1. On the fine structure of the Vavilov-Cherenkov radiation

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Kartavenko, V.G.; Zrelov, V.P.

    2003-01-01

    The aim of this paper is to study the fine structure of the Cherenkov rings. We analyze Zrelov's experiments in which the Cherenkov radiation was detected without using the special focusing devices. The broad Cherenkov ring was observed in the plane perpendicular to the motion axis. Using the exact and approximate formulae, we investigate how a charge uniformly moving in a medium radiates in a finite space interval. The formulae obtained describe the radiation intensity in the whole space interval, inside and outside the Cherenkov ring. In the plane perpendicular to the motion axis, the radiation fills mainly the finite ring. Its width, proportional to the motion interval, and the energy released in this ring do not depend on the position of the observation plane. Outside the Cherenkov ring, the radiation intensity suddenly drops. Inside it, the radiation intensity exhibits small oscillations which are due to the interference of the Vavilov-Cherenkov radiation and bremsstrahlung. The increase in the radiation intensity at the ends of the Cherenkov ring is associated with the shock waves arising at the beginning and the end of the charge motion and at the moments when the charge velocity coincides with the light velocity in a medium. For the chosen motion interval, the well-known Tamm formula does not describe the radiation intensity inside the Cherenkov ring for any position of the observation plane. Outside the Cherenkov ring, the Tamm formula is valid only at very large observation distances. Theoretical calculations are in satisfactory agreement with experimental data. Thus, the combined experimental and theoretical study of the unfocused Cherenkov rings allows one to obtain information on the physical processes accompanying the Cherenkov radiation (bremsstrahlung, transition of the light velocity barrier, etc.)

  2. Fine structure of the isoscalar giant quadrupole resonance from high-resolution inelastic proton scattering experiments

    International Nuclear Information System (INIS)

    Shevchenko, A.

    2005-02-01

    In the present work the phenomenon of fine structure in the region of the isoscalar giant quadrupole resonance in a number of heavy and medium-heavy nuclei is systematically investigated for the first time. High energy-resolution inelastic proton scattering experiments were carried out in September-October 2001 and in October 2003 at the iThemba LABS cyclotron facility in South Africa with an incident proton energy of 200 MeV. The obtained data with the energy resolution of triangle E 58 Ni, 89 Y, 90 Zr, 120 Sn, 142 Nd, 166 Er, 208 Pb), thereby establishing the global character of this phenomenon. Fine structure can be described using characteristic energy scales, appearing as a result of the decay of collective modes towards the compound nucleus through a hierarchy of couplings to complex degrees of freedom. For the extraction of the characteristic energy scales from the spectra an entropy index method and a novel technique based on the wavelet analysis are utilized. The global analysis of available data shows the presence of three groups of scales, according to their values. To the first group belong the scales with the values around and below 100 keV, which were detected in all the nuclei studied. The second group contains intermediate scales in the range of 100 keV to 1 MeV. These scales show large variations depending on the nuclear structure of the nucleus. The largest scales above 1 MeV are classified to the third group, describing the global structure of the resonance (the width). The interpretation of the observed scales is realized via the comparison with microscopic model calculations including the coupling of the initial one-particle-one-hole excitations to more complex configurations. A qualitative agreement of the experimentally observed scales with those obtained from the theoretical predictions supports the suggestion of the origin of fine structure from the coupling to the two-particle-two-hole states. However, quantitatively, large deviations are

  3. [The role of temporal fine structure in tone recognition and music perception].

    Science.gov (United States)

    Zhou, Q; Gu, X; Liu, B

    2017-11-07

    The sound signal can be decomposed into temporal envelope and temporal fine structure information. The temporal envelope information is crucial for speech perception in quiet environment, and the temporal fine structure information plays an important role in speech perception in noise, Mandarin tone recognition and music perception, especially the pitch and melody perception.

  4. A study of the fine structure, enzyme activities and pattern of 14CO2 ...

    African Journals Online (AJOL)

    A detailed study of selected grasses has been made with respect to fine structures characteristics, enzyme activities associated with C-4 and C-3 pathway photosynthesis, and short term carbon dioxide-14 incorporation experiments. A good correlation was obtained between the fine structure, the carbon pathway and the ...

  5. METHODS OF RECEIVING OF FINE-GRAINED STRUCTURE OF CASTINGS AT CRYSTALLIZATION

    Directory of Open Access Journals (Sweden)

    N. K. Tolochko

    2012-01-01

    Full Text Available The article deals with methods for fine-grained structure of ingots during crystallization depending on the used foundry technologies. It is shown that by using modern scientific and technological advances may improve the traditional and the development of new casting processes, providing production of cast parts with over fine-grained structure and enhanced properties.

  6. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, Antonios; Chen, Xiaohui; Hill, Robert; Cattell, Michael J

    2013-06-01

    Leucite glass-ceramics used to produce all-ceramic restorations can suffer from brittle fracture and wear the opposing teeth. High strength and fine crystal sized leucite glass-ceramics have recently been reported. The objective of this study is to investigate whether fine and nano-scale leucite glass-ceramics with minimal matrix microcracking are associated with a reduction in in vitro tooth wear. Human molar cusps (n=12) were wear tested using a Bionix-858 testing machine (300,000 simulated masticatory cycles) against experimental fine crystal sized (FS), nano-scale crystal sized (NS) leucite glass-ceramics and a commercial leucite glass-ceramic (Ceramco-3, Dentsply, USA). Wear was imaged using Secondary Electron Imaging (SEI) and quantified using white-light profilometry. Both experimental groups were found to produce significantly (pceramic) loss than the FS group. Increased waviness and damage was observed on the wear surfaces of the Ceramco-3 glass-ceramic disc/tooth group in comparison to the experimental groups. This was also indicated by higher surface roughness values for the Ceramco-3 glass-ceramic disc/tooth group. Fine and nano-sized leucite glass-ceramics produced a reduction in in vitro tooth wear. The high strength low wear materials of this study may help address the many problems associated with tooth enamel wear and restoration failure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Predictive Modelling to Identify Near-Shore, Fine-Scale Seabird Distributions during the Breeding Season.

    Science.gov (United States)

    Warwick-Evans, Victoria C; Atkinson, Philip W; Robinson, Leonie A; Green, Jonathan A

    2016-01-01

    During the breeding season seabirds are constrained to coastal areas and are restricted in their movements, spending much of their time in near-shore waters either loafing or foraging. However, in using these areas they may be threatened by anthropogenic activities such as fishing, watersports and coastal developments including marine renewable energy installations. Although many studies describe large scale interactions between seabirds and the environment, the drivers behind near-shore, fine-scale distributions are not well understood. For example, Alderney is an important breeding ground for many species of seabird and has a diversity of human uses of the marine environment, thus providing an ideal location to investigate the near-shore fine-scale interactions between seabirds and the environment. We used vantage point observations of seabird distribution, collected during the 2013 breeding season in order to identify and quantify some of the environmental variables affecting the near-shore, fine-scale distribution of seabirds in Alderney's coastal waters. We validate the models with observation data collected in 2014 and show that water depth, distance to the intertidal zone, and distance to the nearest seabird nest are key predictors in the distribution of Alderney's seabirds. AUC values for each species suggest that these models perform well, although the model for shags performed better than those for auks and gulls. While further unexplained underlying localised variation in the environmental conditions will undoubtedly effect the fine-scale distribution of seabirds in near-shore waters we demonstrate the potential of this approach in marine planning and decision making.

  8. Predictive Modelling to Identify Near-Shore, Fine-Scale Seabird Distributions during the Breeding Season.

    Directory of Open Access Journals (Sweden)

    Victoria C Warwick-Evans

    Full Text Available During the breeding season seabirds are constrained to coastal areas and are restricted in their movements, spending much of their time in near-shore waters either loafing or foraging. However, in using these areas they may be threatened by anthropogenic activities such as fishing, watersports and coastal developments including marine renewable energy installations. Although many studies describe large scale interactions between seabirds and the environment, the drivers behind near-shore, fine-scale distributions are not well understood. For example, Alderney is an important breeding ground for many species of seabird and has a diversity of human uses of the marine environment, thus providing an ideal location to investigate the near-shore fine-scale interactions between seabirds and the environment. We used vantage point observations of seabird distribution, collected during the 2013 breeding season in order to identify and quantify some of the environmental variables affecting the near-shore, fine-scale distribution of seabirds in Alderney's coastal waters. We validate the models with observation data collected in 2014 and show that water depth, distance to the intertidal zone, and distance to the nearest seabird nest are key predictors in the distribution of Alderney's seabirds. AUC values for each species suggest that these models perform well, although the model for shags performed better than those for auks and gulls. While further unexplained underlying localised variation in the environmental conditions will undoubtedly effect the fine-scale distribution of seabirds in near-shore waters we demonstrate the potential of this approach in marine planning and decision making.

  9. Fine Scale ANUClimate Data for Ecosystem Modeling and Assessment of Plant Functional Types

    Science.gov (United States)

    Hutchinson, M. F.; Kesteven, J. L.; Xu, T.; Evans, B. J.; Togashi, H. F.; Stein, J. L.

    2015-12-01

    High resolution spatially extended values of climate variables play a central role in the assessment of climate and projected future climate in ecosystem modeling. The ground based meteorological network remains a key resource for deriving these spatially extended climate variables. We report on the production, and applications, of new anomaly based fine scale spatial interpolations of key climate variables at daily and monthly time scale, across the Australian continent. The methods incorporate several innovations that have significantly improved spatial predictive accuracy, as well as providing a platform for the incorporation of additional remotely sensed data. The interpolated climate data are supporting many continent-wide ecosystem modeling applications and are playing a key role in testing optimality hypotheses associated with plant functional types (PFTs). The accuracy, and robustness to data error, of anomaly-based interpolation has been enhanced by incorporating physical process aspects of the different climate variables and employing robust statistical methods implemented in the ANUSPLIN package. New regression procedures have also been developed to estimate "background" monthly climate normals from all stations with minimal records to substantially increase the density of supporting spatial networks. Monthly mean temperature interpolation has been enhanced by incorporating process based coastal effects that have reduced predictive error by around 10%. Overall errors in interpolated monthly temperature fields are around 25% less than errors reported by an earlier study. For monthly and daily precipitation, a new anomaly structure has been devised to take account of the skewness in precipitation data and the large proportion of zero values that present significant challenges to standard interpolation methods. The many applications include continent-wide Gross Primary Production modeling and assessing constraints on light and water use efficiency derived

  10. Data, data everywhere: detecting spatial patterns in fine-scale ecological information collected across a continent

    Science.gov (United States)

    Kevin M. Potter; Frank H. Koch; Christopher M. Oswalt; Basil V. Iannone

    2016-01-01

    Context Fine-scale ecological data collected across broad regions are becoming increasingly available. Appropriate geographic analyses of these data can help identify locations of ecological concern. Objectives We present one such approach, spatial association of scalable hexagons (SASH), whichidentifies locations where ecological phenomena occur at greater...

  11. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  12. Phylogeography of var gene repertoires reveals fine-scale geospatial clustering of Plasmodium falciparum populations in a highly endemic area.

    Science.gov (United States)

    Tessema, Sofonias K; Monk, Stephanie L; Schultz, Mark B; Tavul, Livingstone; Reeder, John C; Siba, Peter M; Mueller, Ivo; Barry, Alyssa E

    2015-01-01

    Plasmodium falciparum malaria is a major global health problem that is being targeted for progressive elimination. Knowledge of local disease transmission patterns in endemic countries is critical to these elimination efforts. To investigate fine-scale patterns of malaria transmission, we have compared repertoires of rapidly evolving var genes in a highly endemic area. A total of 3680 high-quality DBLα-sequences were obtained from 68 P. falciparum isolates from ten villages spread over two distinct catchment areas on the north coast of Papua New Guinea (PNG). Modelling of the extent of var gene diversity in the two parasite populations predicts more than twice as many var gene alleles circulating within each catchment (Mugil = 906; Wosera = 1094) than previously recognized in PNG (Amele = 369). In addition, there were limited levels of var gene sharing between populations, consistent with local parasite population structure. Phylogeographic analyses demonstrate that while neutrally evolving microsatellite markers identified population structure only at the catchment level, var gene repertoires reveal further fine-scale geospatial clustering of parasite isolates. The clustering of parasite isolates by village in Mugil, but not in Wosera was consistent with the physical and cultural isolation of the human populations in the two catchments. The study highlights the microheterogeneity of P. falciparum transmission in highly endemic areas and demonstrates the potential of var genes as markers of local patterns of parasite population structure. © 2014 John Wiley & Sons Ltd.

  13. Fine Resolution Termohaline Structure Of The Yuctatan Coastal Sea

    Science.gov (United States)

    Marino-Tapia, I.; Enriquez-Ortiz, C.; Capurro, L.; Euan-Avila, J.

    2007-05-01

    In the Yucatan peninsula there are a variety processes that drastically affect the thermohaline structure of the coastal seas. Some of these include hyperhaline lagoons that export salt to the ocean, upwelling events that propagate to the coast, persistent submarine groundwater discharges, and very high evaporation rates caused by the intense solar radiation. On July 2006 a fine resolution oceanographic campaign was performed on the Yucatan coast to study the detailed structure of thermohaline processes and currents from the shore to the 10 m isobath. A total of sixty nine transects that cover the entire northern stretch of the Yucatan coast were made. The transects extend seven kilometers in the offshore direction and have an alongshore spacing of 5 km. The temperature and salinity characteristics of the water column were monitored with a SEABIRD SBE 19 CTD performing profiles every 500 m along each transect. Ocean currents were measures along the same transect using a 1.5 MHz Acoustic Doppler Profiler (Sontek). The results clearly show the effects of coastal lagoons on the adjoining sea, with net salt export associated with hyperhaline lagoons (e.g. Ria Lagartos) or more estuarine influence of lagoons such as Celestun, where groundwater discharges play the role of rivers on the estuary. An assessment of this influence on the coastal ocean will be presented. It is well known the meteor impact at the end of the Cretacic era at Chicxulub, Yucatan, generated a crater with multiple rings which is evident from horizontal gravity gradients of the Yucatan mainland, and that associated with the outer ring there is a high concentration of cenotes (sinkholes) (Pope et al. 1991; Hildebrand, et al. 1995). It has also been shown that groundwater flows along this cenote ring towards the ocean, and the zones where the ring intersects the coast (Celestun and Dzilam Bravo) have impressive geologic features known as `submarine water springs' where freshwater springs as a fountain

  14. Large scale structure and baryogenesis

    International Nuclear Information System (INIS)

    Kirilova, D.P.; Chizhov, M.V.

    2001-08-01

    We discuss a possible connection between the large scale structure formation and the baryogenesis in the universe. An update review of the observational indications for the presence of a very large scale 120h -1 Mpc in the distribution of the visible matter of the universe is provided. The possibility to generate a periodic distribution with the characteristic scale 120h -1 Mpc through a mechanism producing quasi-periodic baryon density perturbations during inflationary stage, is discussed. The evolution of the baryon charge density distribution is explored in the framework of a low temperature boson condensate baryogenesis scenario. Both the observed very large scale of a the visible matter distribution in the universe and the observed baryon asymmetry value could naturally appear as a result of the evolution of a complex scalar field condensate, formed at the inflationary stage. Moreover, for some model's parameters a natural separation of matter superclusters from antimatter ones can be achieved. (author)

  15. PROPERTIES AND MODELING OF UNRESOLVED FINE STRUCTURE LOOPS OBSERVED IN THE SOLAR TRANSITION REGION BY IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Reep, Jeffrey W.; Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-08-01

    Recent observations from the Interface Region Imaging Spectrograph ( IRIS ) have discovered a new class of numerous low-lying dynamic loop structures, and it has been argued that they are the long-postulated unresolved fine structures (UFSs) that dominate the emission of the solar transition region. In this letter, we combine IRIS measurements of the properties of a sample of 108 UFSs (intensities, lengths, widths, lifetimes) with one-dimensional non-equilibrium ionization simulations, using the HYDRAD hydrodynamic model to examine whether the UFSs are now truly spatially resolved in the sense of being individual structures rather than being composed of multiple magnetic threads. We find that a simulation of an impulsively heated single strand can reproduce most of the observed properties, suggesting that the UFSs may be resolved, and the distribution of UFS widths implies that they are structured on a spatial scale of 133 km on average. Spatial scales of a few hundred kilometers appear to be typical for a range of chromospheric and coronal structures, and we conjecture that this could be an important clue for understanding the coronal heating process.

  16. Modelling Soil-Landscapes in Coastal California Hills Using Fine Scale Terrestrial Lidar

    Science.gov (United States)

    Prentice, S.; Bookhagen, B.; Kyriakidis, P. C.; Chadwick, O.

    2013-12-01

    Digital elevation models (DEMs) are the dominant input to spatially explicit digital soil mapping (DSM) efforts due to their increasing availability and the tight coupling between topography and soil variability. Accurate characterization of this coupling is dependent on DEM spatial resolution and soil sampling density, both of which may limit analyses. For example, DEM resolution may be too coarse to accurately reflect scale-dependent soil properties yet downscaling introduces artifactual uncertainty unrelated to deterministic or stochastic soil processes. We tackle these limitations through a DSM effort that couples moderately high density soil sampling with a very fine scale terrestrial lidar dataset (20 cm) implemented in a semiarid rolling hillslope domain where terrain variables change rapidly but smoothly over short distances. Our guiding hypothesis is that in this diffusion-dominated landscape, soil thickness is readily predicted by continuous terrain attributes coupled with catenary hillslope segmentation. We choose soil thickness as our keystone dependent variable for its geomorphic and hydrologic significance, and its tendency to be a primary input to synthetic ecosystem models. In defining catenary hillslope position we adapt a logical rule-set approach that parses common terrain derivatives of curvature and specific catchment area into discrete landform elements (LE). Variograms and curvature-area plots are used to distill domain-scale terrain thresholds from short range order noise characteristic of very fine-scale spatial data. The revealed spatial thresholds are used to condition LE rule-set inputs, rendering a catenary LE map that leverages the robustness of fine-scale terrain data to create a generalized interpretation of soil geomorphic domains. Preliminary regressions show that continuous terrain variables alone (curvature, specific catchment area) only partially explain soil thickness, and only in a subset of soils. For example, at spatial

  17. The influence of fine-scale habitat features on regional variation in population performance of alpine White-tailed Ptarmigan

    Science.gov (United States)

    Fedy, B.; Martin, K.

    2011-01-01

    It is often assumed (explicitly or implicitly) that animals select habitat features to maximize fitness. However, there is often a mismatch between preferred habitats and indices of individual and population measures of performance. We examined the influence of fine-scale habitat selection on the overall population performance of the White-tailed Ptarmigan (Lagopus leucura), an alpine specialist, in two subdivided populations whose habitat patches are configured differently. The central region of Vancouver Island, Canada, has more continuous and larger habitat patches than the southern region. In 2003 and 2004, using paired logistic regression between used (n = 176) and available (n = 324) sites, we identified food availability, distance to standing water, and predator cover as preferred habitat components . We then quantified variation in population performance in the two regions in terms of sex ratio, age structure (n = 182 adults and yearlings), and reproductive success (n = 98 females) on the basis of 8 years of data (1995-1999, 2002-2004). Region strongly influenced females' breeding success, which, unsuccessful hens included, was consistently higher in the central region (n = 77 females) of the island than in the south (n = 21 females, P = 0.01). The central region also had a much higher proportion of successful hens (87%) than did the south (55%, P < 0.001). In light of our findings, we suggest that population performance is influenced by a combination of fine-scale habitat features and coarse-scale habitat configuration. ?? The Cooper Ornithological Society 2011.

  18. Complementary information on CdSe/ZnSe quantum dot local structure from extended X-ray absorption fine structure and diffraction anomalous fine structure measurements

    International Nuclear Information System (INIS)

    Piskorska-Hommel, E.; Holý, V.; Caha, O.; Wolska, A.; Gust, A.; Kruse, C.; Kröncke, H.; Falta, J.; Hommel, D.

    2012-01-01

    The extended X-ray absorption fine structure (EXAFS) and diffraction anomalous fine structure (DAFS) have been applied to investigate a local structure for the CdSe/ZnSe quantum dots grown by molecular beam epitaxy (MBE) and migration-enhanced epitaxy (MEE). The aim was to study the intermixing of Cd and Zn atoms, chemical compositions and strain induced by cap-layer. The EXAFS at the Cd K-edge and DAFS at the Se K-edge proved the intermixing of Cd and Zn atoms. The distances Cd–Se (2.61 Å) found from EXAFS and DAFS analysis for h 1 region is closer to that in bulk CdSe (2.62 Å). The DAFS analysis revealed the differences in the local structure in two investigated regions (i.e. different iso-strain volumes) on the quantum dots. It was found that the investigated areas differ in the Cd concentration. To explain the experimental results the theoretical calculation based on a full valence-force field (VFF) model was performed. The theoretical VFF model fully explains the experimental data.

  19. The Charge-Mass-Spin Relation of Clifford Polyparticles, Kerr-Newman Black Holes and the Fine Structure Constant

    CERN Document Server

    Castro, C

    2003-01-01

    A Clifford-algebraic interpretation is proposed of the charge, mass, spin relationship found recently by Cooperstock and Faraoini which was based on the Kerr-Newman metric solutions of the Einstein-Maxwell equations. The components of the polymomentum associated with a Clifford polyparticle in four dimensions provide for such a charge, mass, spin relationship without the problems encountered in Kaluza-Klein compactifications which furnish an unphysically large value for the electron charge. A physical reasoning behind such charge, mass, spin relationship is provided, followed by a discussion on the geometrical derivation of the fine structure constant by Wyler, Smith, Gonzalez-Martin and Smilga. To finalize, the renormalization of electric charge is discussed and some remarks are made pertaining the modifications of the charge-scale relationship, when the spin of the polyparticle changes with scale, that may cast some light into the alleged Astrophysical variations of the fine structure constant.

  20. QUIESCENT PROMINENCES IN THE ERA OF ALMA: SIMULATED OBSERVATIONS USING THE 3D WHOLE-PROMINENCE FINE STRUCTURE MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Gunár, Stanislav; Heinzel, Petr [Astronomical Institute, The Czech Academy of Sciences, 25165 Ondřejov (Czech Republic); Mackay, Duncan H. [School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Anzer, Ulrich [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85740 Garching bei München (Germany)

    2016-12-20

    We use the detailed 3D whole-prominence fine structure model to produce the first simulated high-resolution ALMA observations of a modeled quiescent solar prominence. The maps of synthetic brightness temperature and optical thickness shown in the present paper are produced using a visualization method for synthesis of the submillimeter/millimeter radio continua. We have obtained the simulated observations of both the prominence at the limb and the filament on the disk at wavelengths covering a broad range that encompasses the full potential of ALMA. We demonstrate here extent to which the small-scale and large-scale prominence and filament structures will be visible in the ALMA observations spanning both the optically thin and thick regimes. We analyze the relationship between the brightness and kinetic temperature of the prominence plasma. We also illustrate the opportunities ALMA will provide for studying the thermal structure of the prominence plasma from the cores of the cool prominence fine structure to the prominence–corona transition region. In addition, we show that detailed 3D modeling of entire prominences with their numerous fine structures will be important for the correct interpretation of future ALMA observations of prominences.

  1. Constraining spatial variations of the fine-structure constant in symmetron models

    Directory of Open Access Journals (Sweden)

    A.M.M. Pinho

    2017-06-01

    Full Text Available We introduce a methodology to test models with spatial variations of the fine-structure constant α, based on the calculation of the angular power spectrum of these measurements. This methodology enables comparisons of observations and theoretical models through their predictions on the statistics of the α variation. Here we apply it to the case of symmetron models. We find no indications of deviations from the standard behavior, with current data providing an upper limit to the strength of the symmetron coupling to gravity (log⁡β2<−0.9 when this is the only free parameter, and not able to constrain the model when also the symmetry breaking scale factor aSSB is free to vary.

  2. Fine structure of the mineralized teeth of the chiton Acanthopleura echinata (Mollusca: Polyplacophora).

    Science.gov (United States)

    Wealthall, Rosamund J; Brooker, Lesley R; Macey, David J; Griffin, Brendan J

    2005-08-01

    The major lateral teeth of the chiton Acanthopleura echinata are composite structures composed of three distinct mineral zones: a posterior layer of magnetite; a thin band of lepidocrocite just anterior to this; and apatite throughout the core and anterior regions of the cusp. Biomineralization in these teeth is a matrix-mediated process, in which the minerals are deposited around fibers, with the different biominerals described as occupying architecturally discrete compartments. In this study, a range of scanning electron microscopes was utilized to undertake a detailed in situ investigation of the fine structure of the major lateral teeth. The arrangement of the organic and biomineral components of the tooth is similar throughout the three zones, having no discrete borders between them, and with crystallites of each mineral phase extending into the adjacent mineral zone. Along the posterior surface of the tooth, the organic fibers are arranged in a series of fine parallel lines, but just within the periphery their appearance takes on a "fish scale"-like pattern, reflective of the cross section of a series of units that are overlaid, and offset from each other, in adjacent rows. The units are approximately 2 microm wide and 0.6 microm thick and comprise biomineral plates separated by organic fibers. Two types of subunits make up each "fish scale": one is elongate and curved and forms a trough, in which the other, rod-like unit, is nestled. Adjacent rod and trough units are aligned into large sheets that define the fracture plane of the tooth. The alignment of the plates of rod-trough units is complex and exhibits extreme spatial variation within the tooth cusp. Close to the posterior surface the plates are essentially horizontal and lie in a lateromedial plane, while anteriorly they are almost vertical and lie in the posteroanterior plane. An understanding of the fine structure of the mineralized teeth of chitons, and of the relationship between the organic and

  3. Impaired perception of temporal fine structure and musical timbre in cochlear implant users.

    Science.gov (United States)

    Heng, Joseph; Cantarero, Gabriela; Elhilali, Mounya; Limb, Charles J

    2011-10-01

    Cochlear implant (CI) users demonstrate severe limitations in perceiving musical timbre, a psychoacoustic feature of sound responsible for 'tone color' and one's ability to identify a musical instrument. The reasons for this limitation remain poorly understood. In this study, we sought to examine the relative contributions of temporal envelope and fine structure for timbre judgments, in light of the fact that speech processing strategies employed by CI systems typically employ envelope extraction algorithms. We synthesized "instrumental chimeras" that systematically combined variable amounts of envelope and fine structure in 25% increments from two different source instruments with either sustained or percussive envelopes. CI users and normal hearing (NH) subjects were presented with 150 chimeras and asked to determine which instrument the chimera more closely resembled in a single-interval two-alternative forced choice task. By combining instruments with similar and dissimilar envelopes, we controlled the valence of envelope for timbre identification and compensated for envelope reconstruction from fine structure information. Our results show that NH subjects utilize envelope and fine structure interchangeably, whereas CI subjects demonstrate overwhelming reliance on temporal envelope. When chimeras were created from dissimilar envelope instrument pairs, NH subjects utilized a combination of envelope (p = 0.008) and fine structure information (p = 0.009) to make timbre judgments. In contrast, CI users utilized envelope information almost exclusively to make timbre judgments (p < 0.001) and ignored fine structure information (p = 0.908). Interestingly, when the value of envelope as a cue was reduced, both NH subjects and CI users utilized fine structure information to make timbre judgments (p < 0.001), although the effect was quite weak in CI users. Our findings confirm that impairments in fine structure processing underlie poor perception of musical timbre in CI

  4. Development of a remote sensing network for time-sensitive detection of fine scale damage to transportation infrastructure : [final report].

    Science.gov (United States)

    2015-09-23

    This research project aimed to develop a remote sensing system capable of rapidly identifying fine-scale damage to critical transportation infrastructure following hazard events. Such a system must be pre-planned for rapid deployment, automate proces...

  5. Fine structure and spectral index measurements in natural uranium - graphite lattices; Mesures fines dans des reseaux a graphite

    Energy Technology Data Exchange (ETDEWEB)

    Cogne, F; Journet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The experiments described in this report have been carried out for the most part in the critical facility MARIUS, and a few during the start up of the EDF-1 power reactor. The first part deals with the fine structure measurements made in various lattices and with their analysis. Integration over the neutron spectrum of the mono-kinetic disadvantage factor derived by the A.B.H method yields results in good agreement with the experiments. The second part deals with spectral indexes measurements (Pu/U, In/Mn) made at room temperature in MARIUS. Comparison are made of experiments with calculations using various thermalization models. Experiments carried out at higher temperatures in EDF-1 are also described. (authors) [French] Les mesures decrites dans ce rapport ont ete faites pour la plupart dans l'empilement critique MARIUS sur des reseaux a graphite-uranium naturel. Une premiere partie traite des mesures de structure fine faites dans differents reseaux et de leur interpretation. On montre en particulier qu'une integration sur le spectre d'un calcul monocinetique type A.B.H. rend bien compte des experiences. Dans une deuxieme partie, on donne les resultats de mesures d'indices de spectre Pu/U et In/Mn faites sur des reseaux froids a MARIUS et leur comparaison avec les differents modeles de calculs de thermalisation. On donne egalement les resultats de quelques mesures en temperature effectuees lors du demarrage du reacteur EDF-1. (auteurs)

  6. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure.

    Science.gov (United States)

    Johnson, Tiffany A; Baranowski, Lauren G

    2012-01-01

    To determine whether common approaches to setting stimulus parameters influence the depth of fine structure present in the distortion product otoacoustic emission (DPOAE) response. Because the presence of fine structure has been suggested as a possible source of errors, if one of the common parametric approaches results in reduced fine-structure depth, it may be preferred over other approaches. DPOAE responses were recorded in a group of 21 subjects with normal hearing for 1/3-octave intervals surrounding 3 f2s (1, 2, and 4 kHz) at three L2s (30, 45, and 55 dB SPL). For each f2 and L2 combination, L1 and f2/f1 were set according to three commonly used parametric approaches. These included a simple approach, the approach recommended by Kummer et al., and the approach described by Johnson et al. These three approaches primarily differ in the recommended relationship between L1 and L2. For each parametric approach, DPOAE fine structure was evaluated by varying f2 in small steps. Differences in DPOAE level and DPOAE fine-structure depth across f2, L2, and the various stimulus parameters were evaluated using repeated-measures analysis of variance. As expected, significant variations in DPOAE level were observed across the three parametric approaches. For stimulus levels #45 dB SPL, the simple stimuli resulted in lower DPOAE levels than were observed for other approaches. An unexpected finding was that stimulus parameters developed by Johnson et al., which were believed to produce higher DPOAE levels than other approaches, produced the lowest DPOAE levels of the three approaches when f2 = 4 kHz. Significant differences in fine-structure depth were also observed. Greater fine-structure depth was observed with the simple parameters, although this effect was restricted to L2 # 45 dB SPL. When L2 = 55 dB SPL, all three parametric approaches resulted in equivalent fine-structure depth. A significant difference in fine-structure depth across the 3 f2s was also observed. The

  7. A triple-scale crystal plasticity modeling and simulation on size effect due to fine-graining

    International Nuclear Information System (INIS)

    Kurosawa, Eisuke; Aoyagi, Yoshiteru; Tadano, Yuichi; Shizawa, Kazuyuki

    2010-01-01

    In this paper, a triple-scale crystal plasticity model bridging three hierarchical material structures, i.e., dislocation structure, grain aggregate and practical macroscopic structure is developed. Geometrically necessary (GN) dislocation density and GN incompatibility are employed so as to describe isolated dislocations and dislocation pairs in a grain, respectively. Then the homogenization method is introduced into the GN dislocation-crystal plasticity model for derivation of the governing equation of macroscopic structure with the mathematical and physical consistencies. Using the present model, a triple-scale FE simulation bridging the above three hierarchical structures is carried out for f.c.c. polycrystals with different mean grain size. It is shown that the present model can qualitatively reproduce size effects of macroscopic specimen with ultrafine-grain, i.e., the increase of initial yield stress, the decrease of hardening ratio after reaching tensile strength and the reduction of tensile ductility with decrease of its grain size. Moreover, the relationship between macroscopic yielding of specimen and microscopic grain yielding is discussed and the mechanism of the poor tensile ductility due to fine-graining is clarified. (author)

  8. Fire structures pine serotiny at different scales.

    Science.gov (United States)

    Hernández-Serrano, Ana; Verdú, Miguel; González-Martínez, Santiago C; Pausas, Juli G

    2013-12-01

    Serotiny (delayed seed release with the consequent accumulation of a canopy seedbank) confers fitness benefits in environments with crown-fire regimes. Thus, we predicted that serotiny level should be higher in populations recurrently subjected to crown-fires than in populations where crown-fires are rare. In addition, under a high frequency of fires, space and resources are recurrently available, permitting recruitment around each mother to follow the seed rain shadow. Thus, we also predicted spatial aggregation of serotiny within populations. We compared serotiny, considering both the proportion and the age of serotinous cones, in populations living in contrasting fire regimes for two iconic Mediterranean pine species (Pinus halepensis, P. pinaster). We framed our results by quantitatively comparing the strength of the fire-serotiny relationship with previous studies worldwide. For the two species, populations living under high crown-fire recurrence regimes had a higher serotiny level than those populations where the recurrence of crown-fires was low. For P. halepensis (the species with higher serotiny), populations in high fire recurrence regimes had higher fine-scale spatial aggregation of serotiny than those inhabiting low fire recurrence systems. The strength of the observed fire-serotiny relationship in P. halepensis is among the highest in published literature. Fire regime shapes serotiny level among populations, and in populations with high serotiny, recurrent fires maintain a significant spatial structure for this trait. Consequently, fire has long-term evolutionary implications at different scales, emphasizing its prominent role in shaping the ecology of pines.

  9. Fine Structure of Wing Scales in Chrysozephyrus Ataxus Butterflies

    Czech Academy of Sciences Publication Activity Database

    Matějková-Plšková, J.; Mika, Filip; Shiojiri, S.; Shiojiri, M.

    2011-01-01

    Roč. 52, č. 3 (2011), s. 297-303 ISSN 1345-9678 R&D Projects: GA ČR GP102/09/P543 Institutional research plan: CEZ:AV0Z20650511 Keywords : thermozephyrus ataxus * photonic crystal * field-emission scanning electron microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.699, year: 2011

  10. Fine Scale Baleen Whale Behavior Observed Via Tagging Over Daily Time Scales

    Science.gov (United States)

    2014-09-30

    system to do a comparison between the two. While at Wildlife Computers, I also asked for and they kindly provided a small change in how their MK10...cetacean behavior at intermediate daily time scales. Recent efforts to assess the impacts of sound on marine mammals and to estimate foraging ...efficiency have called for the need to measure daily activity budgets to quantify how much of each day an individual devotes to foraging , resting

  11. Directional fine structure in absorption of white x rays: A tomographic interpretation

    International Nuclear Information System (INIS)

    Korecki, P.; Szymonski, M.; Tolkiehn, M.; Novikov, D. V.; Materlik, G.

    2006-01-01

    We discuss directional fine structure in absorption of white x rays for tomographic imaging of crystal structure at the atomic level. The interference between a direct x-ray beam and the secondary waves coherently scattered inside a specimen modifies the total wave field at the position of the absorbing atoms. For a white x-ray beam, the wave field variations cancel out by energy integration for all directions, except for the near forward scattering components, coinciding with the incident beam. Therefore, two-dimensional patterns of the angular-dependent fine structure in absorption of white x rays can be interpreted as real-space projections of atomic structure. In this work, we present a theory describing the directional fine structure in white x-ray absorption and a tomographic approach for crystal structure retrieval developed on its basis. The tomographic algorithm is applied to the experimental x-ray absorption data recorded for GaP crystals

  12. Assessment of plant species diversity based on hyperspectral indices at a fine scale.

    Science.gov (United States)

    Peng, Yu; Fan, Min; Song, Jingyi; Cui, Tiantian; Li, Rui

    2018-03-19

    Fast and nondestructive approaches of measuring plant species diversity have been a subject of excessive scientific curiosity and disquiet to environmentalists and field ecologists worldwide. In this study, we measured the hyperspectral reflectances and plant species diversity indices at a fine scale (0.8 meter) in central Hunshandak Sandland of Inner Mongolia, China. The first-order derivative value (FD) at each waveband and 37 hyperspectral indices were used to assess plant species diversity. Results demonstrated that the stepwise linear regression of FD can accurately estimate the Simpson (R 2  = 0.83), Pielou (R 2  = 0.87) and Shannon-Wiener index (R 2  = 0.88). Stepwise linear regression of FD (R 2  = 0.81, R 2  = 0.82) and spectral vegetation indices (R 2  = 0.51, R 2  = 0.58) significantly predicted the Margalef and Gleason index. It was proposed that the Simpson, Pielou and Shannon-Wiener indices, which are widely used as plant species diversity indicators, can be precisely estimated through hyperspectral indices at a fine scale. This research promotes the development of methods for assessment of plant diversity using hyperspectral data.

  13. Fine scale distribution constrains cadmium accumulation rates in two geographical groups of Franciscana dolphin from Argentina

    International Nuclear Information System (INIS)

    Polizzi, P.S.; Chiodi Boudet, L.N.; Romero, M.B.; Denuncio, P.E.; Rodríguez, D.H.

    2013-01-01

    Highlights: • Fine scale distribution of two Argentine stocks constrains the Cd accumulation rates. • Cadmium levels and accumulation patterns were different between geographic groups. • Marine diet has a major influence than the impact degree of origin environment. • Engraulis anchoita is the main Cd vector species in Argentine shelf for Franciscana. • Information is valuable for the conservation of Franciscana, a vulnerable species. -- Abstract: Franciscana dolphin is an endemic cetacean in the southwestern Atlantic Ocean and is classified as Vulnerable A3d by the International Union for Conservation of Nature. Cadmium accumulation was assessed in two geographic groups from Argentina; one inhabits the La Plata River estuary, a high anthropogenic impacted environment, and the other is distributed in marine coastal, with negligible pollution. Despite the environment, marine dolphins showed an increase of renal Cd concentrations since trophic independence; while in estuarine dolphins was from 6 years. This is associated with dietary Argentine anchovy which was absent in the diet of estuarine dolphins, being a trophic vector of cadmium in shelf waters of Argentina. Cluster analysis also showed high levels of cd in association with the presence of anchovy in the stomach. The difference in the fine scale distribution of species influences dietary exposure to Cd and, along with other data, indicates two stocks in Argentina

  14. Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons.

    Science.gov (United States)

    Toju, Hirokazu; Kishida, Osamu; Katayama, Noboru; Takagi, Kentaro

    2016-01-01

    Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community succession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi, our knowledge of the assembly processes of belowground fungi has been limited. In particular, we still have limited knowledge of how diverse functional groups of fungi interact with each other in facilitative and competitive ways in soil. Based on the high-throughput sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how taxonomically and functionally diverse fungi showed correlated fine-scale distributions in soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, networks depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter) and A (surface soil) horizons. The results then led to the working hypothesis that mycorrhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (modular) networks of facilitative, antagonistic, and/or competitive interactions in belowground ecosystems. Overall, this study provides a research basis for further understanding how interspecific interactions, along with sharing of niches among fungi, drive the dynamics of poorly explored biospheres in soil.

  15. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir.

    Science.gov (United States)

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-09-23

    The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.

  16. Fine-tuning structural RNA alignments in the twilight zone

    Directory of Open Access Journals (Sweden)

    Schirmer Stefanie

    2010-04-01

    Full Text Available Abstract Background A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Results Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Conclusions Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index.

  17. The basis of orientation decoding in human primary visual cortex: fine- or coarse-scale biases?

    Science.gov (United States)

    Maloney, Ryan T

    2015-01-01

    Orientation signals in human primary visual cortex (V1) can be reliably decoded from the multivariate pattern of activity as measured with functional magnetic resonance imaging (fMRI). The precise underlying source of these decoded signals (whether by orientation biases at a fine or coarse scale in cortex) remains a matter of some controversy, however. Freeman and colleagues (J Neurosci 33: 19695-19703, 2013) recently showed that the accuracy of decoding of spiral patterns in V1 can be predicted by a voxel's preferred spatial position (the population receptive field) and its coarse orientation preference, suggesting that coarse-scale biases are sufficient for orientation decoding. Whether they are also necessary for decoding remains an open question, and one with implications for the broader interpretation of multivariate decoding results in fMRI studies. Copyright © 2015 the American Physiological Society.

  18. The electronic fine structure of 4-nitrophenyl functionalized single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Chakraborty, Amit K; Coleman, Karl S; Dhanak, Vinod R

    2009-01-01

    Controlling the electronic structure of carbon nanotubes (CNTs) is of great importance to various CNT based applications. Herein the electronic fine structure of single-walled carbon nanotube films modified with 4-nitrophenyl groups, produced following reaction with 4-nitrobenzenediazonium tetrafluoroborate, was investigated for the first time. Various techniques such as x-ray and ultra-violet photoelectron spectroscopy, and near edge x-ray absorption fine structure studies were used to explore the electronic structure, and the results were compared with the measured electrical resistances. A reduction in number of the π electronic states in the valence band consistent with the increased resistance of the functionalized nanotube films was observed.

  19. 2fl-f2 DPOAE fine structure for 12 symphony orchestra musicians before and after rehearsal

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    2005-01-01

    The distortion product otoacoustic emission (DPOAE) fine structure is revealed, when measuring DPOAE with a very fine frequency resolution. It is characterized by consistent maxima and minima with notches of up to 20 dB depth. The fine structure is known also from absolute hearing thresholds...

  20. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  1. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    Science.gov (United States)

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  2. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Badawi, N.; Aamand, Jens

    2014-01-01

    across pesticide classes: they include some soil characteristics (pH) and some agricultural management practices (pesticide application, tillage), while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance......Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we...... critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates...

  3. The origin of fine structure in near-field scanning optical lithography of an electroactive polymer

    International Nuclear Information System (INIS)

    Cotton, Daniel V; Belcher, Warwick J; Dastoor, Paul C; Fell, Christopher J

    2008-01-01

    Near-field scanning optical lithography (NSOL) has been used to produce arbitrary structures of the electroactive polymer polyphenylenevinylene at sizes comparable to optical wavelengths, which are of interest for integrated optical devices. The structures are characterized using AFM and SEM and exhibit interesting fine structure. The characteristic size and shape of the lithographic features and their associated fine structure have been examined in the context of the electric field distribution at the near-field scanning optical microscope tip. In particular, the Bethe-Bouwkamp model for electric field distribution at an aperture has been used in combination with a recently developed model for precursor solubility dependence on UV energy dose to predict the characteristics of lithographic features produced by NSOL. The fine structure in the lithographic features is also investigated and explained. Suggestions for the further improvement of the technique are made.

  4. Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals.

    Science.gov (United States)

    Biadala, Louis; Siebers, Benjamin; Beyazit, Yasin; Tessier, Mickaël D; Dupont, Dorian; Hens, Zeger; Yakovlev, Dmitri R; Bayer, Manfred

    2016-03-22

    We report on a temperature-, time-, and spectrally resolved study of the photoluminescence of type-I InP/ZnS colloidal nanocrystals with varying core size. By studying the exciton recombination dynamics we assess the exciton fine structure in these systems. In addition to the typical bright-dark doublet, the photoluminescence stems from an upper bright state in spite of its large energy splitting (∼100 meV). This striking observation results from dramatically lengthened thermalization processes among the fine structure levels and points to optical-phonon bottleneck effects in InP/ZnS nanocrystals. Furthermore, our data show that the radiative recombination of the dark exciton scales linearly with the bright-dark energy splitting for CdSe and InP nanocrystals. This finding strongly suggests a universal dangling bonds-assisted recombination of the dark exciton in colloidal nanostructures.

  5. Pulsed EM Field Response of a Thin, High-Contrast, Finely Layered Structure With Dielectric and Conductive Properties

    NARCIS (Netherlands)

    De Hoop, A.T.; Jiang, L.

    2009-01-01

    The response of a thin, high-contrast, finely layered structure with dielectric and conductive properties to an incident, pulsed, electromagnetic field is investigated theoretically. The fine layering causes the standard spatial discretization techniques to solve Maxwell's equations numerically to

  6. Fine-structure excitation of Fe II and Fe III due to collisions with electrons

    Science.gov (United States)

    Wan, Yier; Qi, Yueying; Favreau, Connor; Loch, Stuart; Stancil, P.; Ballance, Connor; McLaughlin, Brendan

    2018-06-01

    Atomic data of iron peak elements are of great importance in astronomical observations. Among all the ionization stages of iron, Fe II and Fe III are of particular importance because of the high cosmic abundance, relatively low ionization potential and complex open d-shell atomic structure. Fe II and Fe III emission are observed from nearly all classes of astronomical objects over a wide spectral range from the infrared to the ultraviolet. To meaningfully interpret these spectra, astronomers have to employ highly complex modeling codes with reliable collision data to simulate the astrophysical observations. The major aim of this work is to provide reliable atomic data for diagnostics. We present new collision strengths and effective collisions for electron impact excitation of Fe II and Fe III for the forbidden transitions among the fine-structure levels of the ground terms. A very fine energy mesh is used for the collision strengths and the effective collision strengths are calculated over a wide range of electron temperatures of astrophysical importance (10-2000 K). The configuration interaction state wave functions are generated with a scaled Thomas-Fermi-Dirac-Amaldi (TFDA) potential, while the R-matrix plus intermediate coupling frame transformation (ICFT), Breit-Pauli R-matrix and Dirac R-matrix packages are used to obtain collision strengths. Influences of the different methods and configuration expansions on the collisional data are discussed. Comparison is made with earlier theoretical work and differences are found to occur at the low temperatures considered here.This work was funded by NASA grant NNX15AE47G.

  7. A five-dimensional model of varying fine structure constant

    Indian Academy of Sciences (India)

    an effective theory, under the form of an improved version of the 5D Kaluza-Klein theory. 1. Introduction ... where Н = Н( ) denotes the self-interaction potential of and В its source term. ... expansion rate (Hubble parameter),. = (Ш) is the scale ...

  8. Large scale nuclear structure studies

    International Nuclear Information System (INIS)

    Faessler, A.

    1985-01-01

    Results of large scale nuclear structure studies are reported. The starting point is the Hartree-Fock-Bogoliubov solution with angular momentum and proton and neutron number projection after variation. This model for number and spin projected two-quasiparticle excitations with realistic forces yields in sd-shell nuclei similar good results as the 'exact' shell-model calculations. Here the authors present results for a pf-shell nucleus 46 Ti and results for the A=130 mass region where they studied 58 different nuclei with the same single-particle energies and the same effective force derived from a meson exchange potential. They carried out a Hartree-Fock-Bogoliubov variation after mean field projection in realistic model spaces. In this way, they determine for each yrast state the optimal mean Hartree-Fock-Bogoliubov field. They apply this method to 130 Ce and 128 Ba using the same effective nucleon-nucleon interaction. (Auth.)

  9. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications

    Directory of Open Access Journals (Sweden)

    Arnaud eDechesne

    2014-12-01

    Full Text Available Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates inter-studies comparisons. However, it is clear that the presence and activity of pesticide degraders is often highly spatially variable with coefficients of variation often exceeding 50% and frequently displays nonrandom spatial patterns. A few controlling factors have tentatively been identified across pesticide classes: they include some soil characteristics (pH and some agricultural management practices (pesticide application, tillage, while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance of spatial heterogeneity on the fate of pesticides in soil has been difficult to obtain but modelling and experimental systems that do not include soil’s full complexity reveal that this heterogeneity must be considered to improve prediction of pesticide biodegradation rates or of leaching risks. Overall, studying the spatial heterogeneity of pesticide biodegradation is a relatively new field at the interface of agronomy, microbial ecology, and geosciences and a wealth of novel data is being collected from these different disciplinary perspectives. We make suggestions on possible avenues to take full advantage of these investigations for a better understanding and prediction of the fate of pesticides in soil.

  10. Structure analysis of InN film using extended X-ray absorption fine structure method

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, T.; Kobayashi, T.; Hirata, S. [Core Technology Development Center, Core Technology and Network Company, Sony Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa 243-0014 (Japan); Kudo, Y.; Liu, K.L. [Technology Solutions Center, Sony Corporation, 4-16-1 Okata, Atsugi, Kanagawa 243-0021 (Japan); Uruga, T.; Honma, T. [Japan Synchrotron Radiation Research Institute, Mikazuki-cho, Hyogo 679-5198 (Japan); Saito, Y.; Hori, M.; Nanishi, Y. [Department of Photonics, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577 (Japan)

    2002-12-01

    We investigated the local atomic structure around In atoms of MBE-grown InN which has a direct bandgap energy of 0.8 eV, using extended X-ray absorption fine structure (EXAFS) oscillation of In K-edge. The signals from the first-nearest neighbor atoms (N) and second-nearest atoms (In) from In atoms were clearly observed and the atomic bond length of In-N and In-In was estimated to be d{sub In-N}=0.215 nm and d{sub In-In}=0.353 nm, respectively. The In-N bond length of d{sub In-In}=0.353 nm was closed to the a-axis lattice constant of a=0.3536 nm, which was determined using X-ray diffraction measurements. The obtained local atomic structure agreed with the calculated ideal structure. We conclude, therefore, that the InN film with a bandgap energy of 0.8 eV has a high structural symmetry in the range of a few A around In atoms. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  11. Structure analysis of InN film using extended X-ray absorption fine structure method

    International Nuclear Information System (INIS)

    Miyajima, T.; Kobayashi, T.; Hirata, S.; Kudo, Y.; Liu, K.L.; Uruga, T.; Honma, T.; Saito, Y.; Hori, M.; Nanishi, Y.

    2002-01-01

    We investigated the local atomic structure around In atoms of MBE-grown InN which has a direct bandgap energy of 0.8 eV, using extended X-ray absorption fine structure (EXAFS) oscillation of In K-edge. The signals from the first-nearest neighbor atoms (N) and second-nearest atoms (In) from In atoms were clearly observed and the atomic bond length of In-N and In-In was estimated to be d In-N =0.215 nm and d In-In =0.353 nm, respectively. The In-N bond length of d In-In =0.353 nm was closed to the a-axis lattice constant of a=0.3536 nm, which was determined using X-ray diffraction measurements. The obtained local atomic structure agreed with the calculated ideal structure. We conclude, therefore, that the InN film with a bandgap energy of 0.8 eV has a high structural symmetry in the range of a few A around In atoms. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  12. Simulations of fine structures on the zero field steps of Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Scheuermann, M.; Chi, C. C.; Pedersen, Niels Falsig

    1986-01-01

    Fine structures on the zero field steps of long Josephson tunnel junctions are simulated for junctions with the bias current injected into the junction at the edges. These structures are due to the coupling between self-generated plasma oscillations and the traveling fluxon. The plasma oscillations...... are generated by the interaction of the bias current with the fluxon at the junction edges. On the first zero field step, the voltages of successive fine structures are given by Vn=[h-bar]/2e(2omegap/n), where n is an even integer. Applied Physics Letters is copyrighted by The American Institute of Physics....

  13. Fine-scale patterns of vegetation assembly in the monitoring of changes in coastal sand-dune landscapes

    Directory of Open Access Journals (Sweden)

    J. Honrado

    2010-02-01

    Full Text Available Understanding dune ecosystem responses to multi-scale environmental changes can provide the framework for reliable forecasts and cost-efficient protocols for detecting shifts in prevailing coastal dynamics. Based on the hypothesis that stress and disturbance interact as primary community controls in coastal dunes, we studied the fine-scale floristic assembly of foredune vegetation, in its relation to topography, along regional and local environmental gradients in the 200 km long coastline of northern Portugal, encompassing a major biogeographic transition in western Europe. Thirty topographic profiles perpendicular to the shoreline were recorded at ten sites along the regional climate gradient, and vegetation was sampled by recording the frequency of plant species along those profiles. Quantitative topographic attributes of vegetated dune profiles (e.g. length or height exhibited wide variations relatable to differences in prevailing coastal dynamics. Metrics of taxonomic diversity (e.g. total species richness and its additive beta component and of the functional composition of vegetation were highly correlated to attributes of dune topography. Under transgressive dynamics, vegetation profiles have fewer species, increased dominance, lower turnover rates, and lower total vegetation cover. These changes may drive a decrease in structural and functional diversity, with important consequences for resistance, resilience and other ecosystem properties. Moreover, differences in both vegetation assembly (in meta-stable dunes and response to increased disturbance (in eroding dunes between distinct biogeographic contexts highlight a possible decline in facilitation efficiency under extreme physical stress (i.e. under Mediterranean climate and support the significance of functional approaches in the study of local ecosystem responses to disturbance along regional gradients. Our results strongly suggest that assessing fine-scale community assembly can

  14. Observations of the birth and fine structure of sunspot penumbrae

    International Nuclear Information System (INIS)

    Collados, M.; Garcia de la Rosa, J.I.; Moreno-Insertis, F.; Vazquez, M.

    1985-01-01

    High resolution white-light pictures of sunspot penumbrae are presented. These include pictures showing details of their filamentary structure and some instances of birth of a penumbra. The observations are discussed in the framework of current penumbra theories. A series of pictures have been presented, which give additional evidence of the existence of dark penumbral filaments as individual structures. With respect to the birth of the penumbra some new observational aspects can be seen. The existence of the filamentary penumbra even in the first moments, its non uniformity and its short length are the major aspects derived from the pictures

  15. Fine Structure of a Laser-Plasma Filament in Air

    International Nuclear Information System (INIS)

    Eisenmann, Shmuel; Pukhov, Anatoly; Zigler, Arie

    2007-01-01

    The ability to select and stabilize a single filament during propagation of an ultrashort high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present detailed measurements of plasma density variations along laser propagation. Over the length of the filament, electron density variations of 3 orders of magnitude are measured. They display evidence of a meter-long postionization range, along which a self-guided structure is observed coupled with a low plasma density, corresponding to ∼3 orders of magnitude decrease from the peak density level

  16. Fine Structure of a Laser-Plasma Filament in Air

    Science.gov (United States)

    Eisenmann, Shmuel; Pukhov, Anatoly; Zigler, Arie

    2007-04-01

    The ability to select and stabilize a single filament during propagation of an ultrashort high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present detailed measurements of plasma density variations along laser propagation. Over the length of the filament, electron density variations of 3 orders of magnitude are measured. They display evidence of a meter-long postionization range, along which a self-guided structure is observed coupled with a low plasma density, corresponding to ˜3 orders of magnitude decrease from the peak density level.

  17. Ecosystem structure and function in the SPRUCE chambers at fine resolution

    Science.gov (United States)

    Glenn, N. F.; Graham, J.; Spaete, L.; Hanson, P. J.

    2017-12-01

    The Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE; operated by DOE's Oak Ridge National Laboratory) aims to assess biological and ecological responses in a peat bog to a range of increased temperatures and the presence of elevated atmospheric CO2 concentrations. We are using terrestrial laser scanning (TLS) to monitor vegetation productivity and hummock-hollow structure at cm-scale in the SPRUCE plots to complement in-situ measurements of gross and net primary production. The hummock-hollow peatland microtopography is associated with fluctuating water levels and sphagnum mosses, and ultimately controls C and methane cycling. We estimate tree growth by calculating increases in tree height and canopy voxel volume between years with the TLS data. Microtopography is also characterized over time with TLS but by using gridded cells to classify regions into hummocks or hollows. Spectroscopy to quantify water content in the sphagnum is used to further classify these microtopographic regions. As multiple years of data collection occur, we will couple our fine-scale remote sensing measurements with in-situ measurements of CO2 and CH4 flux measures to capture species-specific productivity responses to warming and increased CO2.

  18. Functional nanometer-scale structures

    Science.gov (United States)

    Chan, Tsz On Mario

    Nanometer-scale structures have properties that are fundamentally different from their bulk counterparts. Much research effort has been devoted in the past decades to explore new fabrication techniques, model the physical properties of these structures, and construct functional devices. The ability to manipulate and control the structure of matter at the nanoscale has made many new classes of materials available for the study of fundamental physical processes and potential applications. The interplay between fabrication techniques and physical understanding of the nanostructures and processes has revolutionized the physical and material sciences, providing far superior properties in materials for novel applications that benefit society. This thesis consists of two major aspects of my graduate research in nano-scale materials. In the first part (Chapters 3--6), a comprehensive study on the nanostructures based on electrospinning and thermal treatment is presented. Electrospinning is a well-established method for producing high-aspect-ratio fibrous structures, with fiber diameter ranging from 1 nm--1 microm. A polymeric solution is typically used as a precursor in electrospinning. In our study, the functionality of the nanostructure relies on both the nanostructure and material constituents. Metallic ions containing precursors were added to the polymeric precursor following a sol-gel process to prepare the solution suitable for electrospinning. A typical electrospinning process produces as-spun fibers containing both polymer and metallic salt precursors. Subsequent thermal treatments of the as-spun fibers were carried out in various conditions to produce desired structures. In most cases, polymer in the solution and the as-spun fibers acted as a backbone for the structure formation during the subsequent heat treatment, and were thermally removed in the final stage. Polymers were also designed to react with the metallic ion precursors during heat treatment in some

  19. Fine structural dependence of ultraviolet reflections in the King Penguin beak horn.

    Science.gov (United States)

    Dresp, Birgitta; Langley, Keith

    2006-03-01

    The visual perception of many birds extends into the near-ultraviolet (UV) spectrum and ultraviolet is used by some to communicate. The beak horn of the King Penguin (Aptenodytes patagonicus) intensely reflects in the ultraviolet and this appears to be implicated in partner choice. In a preliminary study, we recently demonstrated that this ultraviolet reflectance has a structural basis, resulting from crystal-like photonic structures, capable of reflecting in the near-UV. The present study attempted to define the origin of the photonic elements that produce the UV reflectance and to better understand how the UV signal is optimized by their fine structure. Using light and electron microscopic analysis combined with new spectrophotometric data, we describe here in detail the fine structure of the entire King Penguin beak horn in addition to that of its photonic crystals. The data obtained reveal a one-dimensional structural periodicity within this tissue and demonstrate a direct relationship between its fine structure and its function. In addition, they suggest how the photonic structures are produced and how they are stabilized. The measured lattice dimensions of the photonic crystals, together with morphological data on its composition, permit predictions of the wavelength of reflected light. These correlate well with experimentally observed values. The way the UV signal is optimized by the fine structure of the beak tissue is discussed with regard to its putative biological role.

  20. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

    2001-04-30

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would

  1. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Suardini, P.J. [Custom Coals, International, Pittsburgh, PA (United States)

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  2. Fine-scale features on bioreplicated decoys of the emerald ash borer provide necessary visual verisimilitude

    Science.gov (United States)

    Domingue, Michael J.; Pulsifer, Drew P.; Narkhede, Mahesh S.; Engel, Leland G.; Martín-Palma, Raúl J.; Kumar, Jayant; Baker, Thomas C.; Lakhtakia, Akhlesh

    2014-03-01

    The emerald ash borer (EAB), Agrilus planipennis, is an invasive tree-killing pest in North America. Like other buprestid beetles, it has an iridescent coloring, produced by a periodically layered cuticle whose reflectance peaks at 540 nm wavelength. The males perform a visually mediated ritualistic mating flight directly onto females poised on sunlit leaves. We attempted to evoke this behavior using artificial visual decoys of three types. To fabricate decoys of the first type, a polymer sheet coated with a Bragg-stack reflector was loosely stamped by a bioreplicating die. For decoys of the second type, a polymer sheet coated with a Bragg-stack reflector was heavily stamped by the same die and then painted green. Every decoy of these two types had an underlying black absorber layer. Decoys of the third type were produced by a rapid prototyping machine and painted green. Fine-scale features were absent on the third type. Experiments were performed in an American ash forest infested with EAB, and a European oak forest home to a similar pest, the two-spotted oak borer (TSOB), Agrilus biguttatus. When pinned to leaves, dead EAB females, dead TSOB females, and bioreplicated decoys of both types often evoked the complete ritualized flight behavior. Males also initiated approaches to the rapidly prototyped decoy, but would divert elsewhere without making contact. The attraction of the bioreplicated decoys was also demonstrated by providing a high dc voltage across the decoys that stunned and killed approaching beetles. Thus, true bioreplication with fine-scale features is necessary to fully evoke ritualized visual responses in insects, and provides an opportunity for developing insecttrapping technologies.

  3. Fine structure of dielectric function of cadmium fluoride

    International Nuclear Information System (INIS)

    Kalugin, A.I.; Sobolev, V.V.

    2005-01-01

    Full text : The electric structure of solids has been extensively investigated for several decades within the density functional theory. However many problems are appeared. One of them, the problem of correct calculation of the transition matrix elements, is very important to calculate the optical properties of crystals. In many papers the results are obtained without taking into account the probabilities of transitions. The goal of this work is the calculation of spectrum with and without taking into account the matrix elements influence of matrix elements on the optical properties of cadmium fluoride. Also localizations of transitions in Brillouin Zone (BZ) were calculated. This work contains interesting information about the electronic structure of cadmium fluoride

  4. Fine resolution mapping of population age-structures for health and development applications.

    Science.gov (United States)

    Alegana, V A; Atkinson, P M; Pezzulo, C; Sorichetta, A; Weiss, D; Bird, T; Erbach-Schoenberg, E; Tatem, A J

    2015-04-06

    The age-group composition of populations varies considerably across the world, and obtaining accurate, spatially detailed estimates of numbers of children under 5 years is important in designing vaccination strategies, educational planning or maternal healthcare delivery. Traditionally, such estimates are derived from population censuses, but these can often be unreliable, outdated and of coarse resolution for resource-poor settings. Focusing on Nigeria, we use nationally representative household surveys and their cluster locations to predict the proportion of the under-five population in 1 × 1 km using a Bayesian hierarchical spatio-temporal model. Results showed that land cover, travel time to major settlements, night-time lights and vegetation index were good predictors and that accounting for fine-scale variation, rather than assuming a uniform proportion of under 5 year olds can result in significant differences in health metrics. The largest gaps in estimated bednet and vaccination coverage were in Kano, Katsina and Jigawa. Geolocated household surveys are a valuable resource for providing detailed, contemporary and regularly updated population age-structure data in the absence of recent census data. By combining these with covariate layers, age-structure maps of unprecedented detail can be produced to guide the targeting of interventions in resource-poor settings.

  5. Fine structure of striations observed in barium plasma injections in the magnetospheric cleft

    International Nuclear Information System (INIS)

    Simons, D.J.; Eastman, T.E.; Pongratz, M.B.

    1976-01-01

    In January and November of 1975, the Los Alamos Scientific Laboratory sponsored four high altitude shaped charge barium plasma injections in the magnetospheric cleft region. These experiments were TORDO UNO (January 6), TORDO DOS (January 11), PERIQUITO UNO (November 25), and PERIQUITO DOS (November 28). All four injections took place near 500 km altitude, and optical data were taken from two aircraft and a ground station. The TORDO DOS and the PERIQUITO experiments showed rapid formation of striations (within one minute after injection), and fast horizontal spreading in contrast with TORDO UNO. In PERIQUITO DOS, the debris cloud spread magnetically east-west with a small net northerly motion. TORDO UNO shows very rapid poleward motion, and the remaining two events resulted in magnetically east-west horizontal spreading, with no noticeable poleward motion. Striations observed in the PERIQUITO DOS experiment separate in opposite directions with relative velocities of up to 3 km/sec. These field-aligned structures appear to form in sheets of approximately constant magnetic latitude. Significant spatial variations occur on a scale of less than 200 meters. Spatial frequency power spectra across these striations have been determined at various times. Observations of the debris cloud and the fast barium streak show strong field-aligned coherency of striation fine structure, indicating a field line mapping of transverse electric fields and gradients

  6. Fine structure of sprites and proposed global observations

    DEFF Research Database (Denmark)

    Mende, S.B; Frey, H.U.; Rairden, R.l.

    2002-01-01

    structures of columniform sprites (C sprites) consisted of slant directed, nearly vertically aligned columns of intense pinpoint like beads. The distance of the sprites from the observer was measured and the altitude and vertical spacing of the beads were estimated. The distribution of beads showed...... bore-sighted photometers. The imager will locate the sprites near the earth limb and make global synoptic measurements while the photometers will measure the spectral and temporal properties of sprites and other upper atmospheric luminous phenomena in a number of different wavelength regions...

  7. Big bang nucleosynthesis with a varying fine structure constant and nonstandard expansion rate

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Kawasaki, Masahiro

    2004-01-01

    We calculate the primordial abundances of light elements produced during big bang nucleosynthesis when the fine structure constant and/or the cosmic expansion rate take nonstandard values. We compare them with the recent values of observed D, 4 He, and 7 Li abundances, which show a slight inconsistency among themselves in the standard big bang nucleosynthesis scenario. This inconsistency is not solved by considering either a varying fine structure constant or a nonstandard expansion rate separately but solutions are found by their simultaneous existence

  8. On a fine structure of a primary impulse of a magnetic storm sudden commencement

    International Nuclear Information System (INIS)

    Parkhomov, V.A.

    1985-01-01

    A fine structure of a primary reverse impulse of a sudden commencement (SSC*) of a magnetic storm is analyzed. 200 cases of SSC* recorded in 1965-79 have been chosen for the investigation. It is shown that the preliminary impulse of the sudden copmencement of magnetic storms has a fine structure in the form of the train of damped oscillations in Pc2-3 range of < or approximately 2 min durations. The excitation of oscillations is related with the propagation of the fast magnetoacoustic wave which is generated during interaction of the interplanetary shock wave with the earth magnetosphere

  9. Downscaling Surface Water Inundation from Coarse Data to Fine-Scale Resolution: Methodology and Accuracy Assessment

    Directory of Open Access Journals (Sweden)

    Guiping Wu

    2015-11-01

    Full Text Available The availability of water surface inundation with high spatial resolution is of fundamental importance in several applications such as hydrology, meteorology and ecology. Medium spatial resolution sensors, like MODerate-resolution Imaging Spectroradiometer (MODIS, exhibit a significant potential to study inundation dynamics over large areas because of their high temporal resolution. However, the low spatial resolution provided by MODIS is not appropriate to accurately delineate inundation over small scale. Successful downscaling of water inundation from coarse to fine resolution would be crucial for improving our understanding of complex inundation characteristics over the regional scale. Therefore, in this study, we propose an innovative downscaling method based on the normalized difference water index (NDWI statistical regression algorithm towards generating small-scale resolution inundation maps from MODIS data. The method was then applied to the Poyang Lake of China. To evaluate the performance of the proposed downscaling method, qualitative and quantitative comparisons were conducted between the inundation extent of MODIS (250 m, Landsat (30 m and downscaled MODIS (30 m. The results indicated that the downscaled MODIS (30 m inundation showed significant improvement over the original MODIS observations when compared with simultaneous Landsat (30 m inundation. The edges of the lakes become smoother than the results from original MODIS image and some undetected water bodies were delineated with clearer shapes in the downscaled MODIS (30 m inundation map. With respect to high-resolution Landsat TM/ETM+ derived inundation, the downscaling procedure has significantly increased the R2 and reduced RMSE and MAE both for the inundation area and for the value of landscape metrics. The main conclusion of this study is that the downscaling algorithm is promising and quite feasible for the inundation mapping over small-scale lakes.

  10. In situ remediation of hexavalent chromium with pyrite fines : bench scale demonstration

    International Nuclear Information System (INIS)

    Cathum, S.; Wong, W.P.; Brown, C.E.

    2002-01-01

    An in situ remediation technique for chromium contaminated soil with pyrite fines was presented. Past industrial activities and lack of disposal facilities have contributed to a serious problem dealing with chromium, which cannot be eliminated from the environment because it is an element. Both bench-scale and laboratory testing was conducted to confirm the efficiency of the proposed process which successfully converted Cr(VI) into Cr(III) in soil and water. Cr(III) is less toxic and immobile in the environment compared to Cr(VI) which moves freely in the soil matrix, posing a risk to the groundwater quality. pH in the range of 2.0 to 7.6 has no effect on the reactivity of pyrite towards Cr(VI). The optimization of the bench-scale treatment resulted in a large volume of chromium waste, mostly from the control experiments and column hydrology testing. These waste streams were treated according to municipal guidelines before disposal to the environment. Samples of chromium waste before and after treatment were analyzed. Cr (VI) was completely mineralized to below guideline levels. It was determined that several conditions, including contact time between pyrite and Cr(VI), are crucial for complete mineralization of Cr(VI). 13 refs., 8 tabs., 9 figs

  11. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch

    Science.gov (United States)

    Poole, Kate; Herget, Regina; Lapatsina, Liudmila; Ngo, Ha-Duong; Lewin, Gary R.

    2014-01-01

    In sensory neurons, mechanotransduction is sensitive, fast and requires mechanosensitive ion channels. Here we develop a new method to directly monitor mechanotransduction at defined regions of the cell-substrate interface. We show that molecular-scale (~13 nm) displacements are sufficient to gate mechanosensitive currents in mouse touch receptors. Using neurons from knockout mice, we show that displacement thresholds increase by one order of magnitude in the absence of stomatin-like protein 3 (STOML3). Piezo1 is the founding member of a class of mammalian stretch-activated ion channels, and we show that STOML3, but not other stomatin-domain proteins, brings the activation threshold for Piezo1 and Piezo2 currents down to ~10 nm. Structure–function experiments localize the Piezo modulatory activity of STOML3 to the stomatin domain, and higher-order scaffolds are a prerequisite for function. STOML3 is the first potent modulator of Piezo channels that tunes the sensitivity of mechanically gated channels to detect molecular-scale stimuli relevant for fine touch. PMID:24662763

  12. Mapping to Support Fine Scale Epidemiological Cholera Investigations: A Case Study of Spatial Video in Haiti

    Directory of Open Access Journals (Sweden)

    Andrew Curtis

    2016-02-01

    Full Text Available The cartographic challenge in many developing world environments suffering a high disease burden is a lack of granular environmental covariates suitable for modeling disease outcomes. As a result, epidemiological questions, such as how disease diffuses at intra urban scales are extremely difficult to answer. This paper presents a novel geospatial methodology, spatial video, which can be used to collect and map environmental covariates, while also supporting field epidemiology. An example of epidemic cholera in a coastal town of Haiti is used to illustrate the potential of this new method. Water risks from a 2012 spatial video collection are used to guide a 2014 survey, which concurrently included the collection of water samples, two of which resulted in positive lab results “of interest” (bacteriophage specific for clinical cholera strains to the current cholera situation. By overlaying sample sites on 2012 water risk maps, a further fifteen proposed water sample locations are suggested. These resulted in a third spatial video survey and an additional “of interest” positive water sample. A potential spatial connection between the “of interest” water samples is suggested. The paper concludes with how spatial video can be an integral part of future fine-scale epidemiological investigations for different pathogens.

  13. Optimization of compositions of multicomponent fine-grained fiber concretes modified at different scale levels.

    Directory of Open Access Journals (Sweden)

    NIZINA Tatyana Anatolevna,

    2017-04-01

    Full Text Available The paper deals with perspectives of modification of cement composites at different scale levels (nano-, micro-, macro-. Main types of micro- and nanomodifiers used in modern concrete technology are presented. Advantages of fullerene particles applied in nanomodification of cement concretes have been shown. Use of complex modifiers based on dispersed fibers, mineral additives and nanoparticles is proposed. These are the basic components of the fiber fine-grained concretes: cement of class CEM I 42,5R produced by JSC «Mordovcement», river sand of Novostepanovskogo quarry (Smolny settlement, Ichalkovsky district, Republic of Mordovia, densified condensed microsilica (DCM-85 produced by JSC «Kuznetskie Ferrosplavy» (Novokuznetsk, highly active metakaolin white produced by LLC «D-Meta» (Dneprodzerzhinsk, waterproofing additive in concrete mix «Penetron Admix» produced by LLC «Waterproofing materials plant «Penetron» (Ekaterinburg, polycarboxylate superplasticizer Melflux 1641 F (Construction Polymers BASF, Germany. Dispersed reinforcement of concretes was provided by injection of the fibers of three types: polypropylene multifilament fiber with cutting length of 12 mm, polyacrylonitrile synthetic fiber FibARM Fiber WВ with cutting length of 12 mm and basalt microfiber «Astroflex-MBM» modified by astralene with length about 100÷500 microns. Analysis of results of the study focused on saturated D-optimal plan was carried out by polynomial models «mixture I, mixture II, technology – properties» that considers the impact of six variable factors. Optimum fields of variation of fine-grained modified fiber concrete components have been identified by the method of experimental-statistical modeling. Polygons of distribution levels of factors of modified cement fiber concretes are constructed, that allowed tracing changes in fields of tensile in compressive strength and tensile strength in bending at age of 28 days depending on target

  14. The connection between the electromagnetic fine structure constant α-bar0 and the monster Lie algebra

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2008-01-01

    The essay gives arguments for deriving the electromagnetic fine structure constant from maximally symmetric spaces. A connection between the order of some subgroups of the monster simple group, the ratio of the proton mass to the electron mass and the fine structure constant is found. A derivation of the fine structure constant from the number of elements in the Cristoffel symbol and the order of the reflection group F 4 is given

  15. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films

    International Nuclear Information System (INIS)

    Naftel, S.J.; Coulthard, I.; Hu, Y.; Sham, T.K.; Zinke-Allmang, M.

    1998-01-01

    Cobalt silicide thin films, prepared on Si(100) wafers, have been studied by X-ray absorption near edge structures (XANES) at the Si K-, L 2,3 - and Co K-edges utilizing both total electron (TEY) and fluorescence yield (FLY) detection as well as extended X-ray absorption fine structure (EXAFS) at the Co K-edge. Samples made using DC sputter deposition on clean Si surfaces and MBE were studied along with a bulk CoSi 2 sample. XANES and EXAFS provide information about the electronic structure and morphology of the films. It was found that the films studied have essentially the same structure as bulk CoSi 2 . Both the spectroscopy and materials characterization aspects of XAFS (X-ray absorption fine structures) are discussed

  16. Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope

    Science.gov (United States)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  17. Fine-structure resolved rotational transitions and database for CN+H2 collisions

    Science.gov (United States)

    Burton, Hannah; Mysliwiec, Ryan; Forrey, Robert C.; Yang, B. H.; Stancil, P. C.; Balakrishnan, N.

    2018-06-01

    Cross sections and rate coefficients for CN+H2 collisions are calculated using the coupled states (CS) approximation. The calculations are benchmarked against more accurate close-coupling (CC) calculations for transitions between low-lying rotational states. Comparisons are made between the two formulations for collision energies greater than 10 cm-1. The CS approximation is used to construct a database which includes highly excited rotational states that are beyond the practical limitations of the CC method. The database includes fine-structure resolved rotational quenching transitions for v = 0 and j ≤ 40, where v and j are the vibrational and rotational quantum numbers of the initial state of the CN molecule. Rate coefficients are computed for both para-H2 and ortho-H2 colliders. The results are shown to be in good agreement with previous calculations, however, the rates are substantially different from mass-scaled CN+He rates that are often used in astrophysical models.

  18. Fine Structure in Quasar Flows Revealed by Lens-Aided Multi-Angle Spectroscopy (LAMAS)

    Science.gov (United States)

    Green, Paul J.

    2006-09-01

    Spectral differences between lensed quasar image components are common. Since lensing is intrinsically achromatic, these differences are typically explained as the effect of either microlensing, or as light path time delays sampling intrinsic quasar spectral variability. In some cases, neither explanation seems sufficient. Here we advance a novel third hypothesis: some spectral differences are due to small line-of- sight differences through quasar disk wind outflows, taking the widest separation lens SDSSJ1004+4112 as a key example. We show that small changes in sightline may traverse streams with significantly differing columns. The implications are many. Fine structure in these outflows may change the observed spectra on arcsec scales. Though difficult to detect observationally, high ionization, high velocity-width streams may sculpt the optical and X-ray spectra of most quasars. We discuss existing multi-epoch optical/UV spectroscopy and results from X-ray observations both by Chandra and XMM in this context, and sketch further possible tests. The author gratefully acknowledges support through NASA contract NAS8-03060 (CXC).

  19. Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.

    Science.gov (United States)

    Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai

    2016-07-20

    Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.

  20. Renal fine structures detected by NMR imaging. First communication concerning an optimized technique

    Energy Technology Data Exchange (ETDEWEB)

    Zilch, H.G.

    1986-11-01

    A significantly improved image quality is achieved by the technique described, as compared to the magnetic resonance data obtained so far. The detailed analysis of the kidney goes as deep as into anatomic fine structures, and there is reason to hope for far better diagnostic details.

  1. Fine structure transition cross sections for several alkali+rare gas systems

    International Nuclear Information System (INIS)

    Olson, R.E.

    1975-01-01

    The energy dependence E(cm) 2 P1/2→ 2 P3/2 fine structure transition of the lowest excited states of the alkali are calculated for the following systems: Na, K, Rb+He, Ne, Ar and Cs+He. Encouraging agreement between theory and experiment is obtained [fr

  2. Experimental determination of the relativistic fine structure splitting in a pionic atom

    International Nuclear Information System (INIS)

    Wang, K.-C.; Boehm, F.; Hahn, A.A.; Henrikson, H.E.; Miller, J.P.; Powers, R.J.; Vogel, P.; Vuilleumier, J.-L.; Kunselman, R.

    1978-01-01

    Using a high-resolution crystal spectrometer, the authors have measured the energy splitting of the pionic 5g-4f and 5f-4d transitions in Ti. The observed fine structure splitting agrees, within the experimental error of 3%, with the splitting arising from the calculated relativistic term and other small corrections for spinless particles. (Auth.)

  3. Photoionization modeling of the LWS fine-structure lines in IR bright galaxies

    Science.gov (United States)

    Satyapal, S.; Luhman, M. L.; Fischer, J.; Greenhouse, M. A.; Wolfire, M. G.

    1997-01-01

    The long wavelength spectrometer (LWS) fine structure line spectra from infrared luminous galaxies were modeled using stellar evolutionary synthesis models combined with photoionization and photodissociation region models. The calculations were carried out by using the computational code CLOUDY. Starburst and active galactic nuclei models are presented. The effects of dust in the ionized region are examined.

  4. Temperature-dependent fine structure splitting in InGaN quantum dots

    Science.gov (United States)

    Wang, Tong; Puchtler, Tim J.; Zhu, Tongtong; Jarman, John C.; Kocher, Claudius C.; Oliver, Rachel A.; Taylor, Robert A.

    2017-07-01

    We report the experimental observation of temperature-dependent fine structure splitting in semiconductor quantum dots using a non-polar (11-20) a-plane InGaN system, up to the on-chip Peltier cooling threshold of 200 K. At 5 K, a statistical average splitting of 443 ± 132 μeV has been found based on 81 quantum dots. The degree of fine structure splitting stays relatively constant for temperatures less than 100 K and only increases above that temperature. At 200 K, we find that the fine structure splitting ranges between 2 and 12 meV, which is an order of magnitude higher than that at low temperatures. Our investigations also show that phonon interactions at high temperatures might have a correlation with the degree of exchange interactions. The large fine structure splitting at 200 K makes it easier to isolate the individual components of the polarized emission spectrally, increasing the effective degree of polarization for potential on-chip applications of polarized single-photon sources.

  5. Extended X-ray absorption fine structure investigation of nitrogen stabilized expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2010-01-01

    As-delivered austenitic stainless steel and nitrogen stabilized expanded austenite, both fully nitrided and denitrided (in H2), were investigated with Cr, Fe and Ni extended X-ray absorption fine structure. The data shows pronounced short-range ordering of Cr and N. For the denitrided specimen...

  6. Fine structure of the CCl3 UV absorption spectrum and CCl3 kinetics

    DEFF Research Database (Denmark)

    Ellermann, T.

    1992-01-01

    The UV gas-phase spectrum of CCl3 was recorded in the range 220-300 nm using pulse radiolysis of CHCl3/SF6 or CCl4/Ar gas mixtures. The UV spectrum exhibits a pronounced vibrational fine structure which is assigned to transition into the (C2A1'(3s)) Rydberg state. The vibronic progression has...

  7. The architecture and fine structure of gill filaments in the brown ...

    African Journals Online (AJOL)

    The architecture and fine structure of gill filaments in the brown mussel, Perna perna. MA Gregory' ... exhibit many of the characteristics which are widely sought in sentinel ... tion surveys (Gardner, Connell, Eagle, Moldan, Oliff, Orren ..... From the undifferentiated cell/lateral cell interface to the cen- .... amorphous material.

  8. On the relationship between multi-channel envelope and temporal fine structure

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel; Decorsiere, Remi Julien Blaise; Dau, Torsten

    2011-01-01

    The envelope of a signal is broadly defined as the slow changes in time of the signal, where as the temporal fine structure (TFS) are the fast changes in time, i.e. the carrier wave(s) of the signal. The focus of this paper is on envelope and TFS in multi-channel systems. We discuss the differenc...

  9. Fine structure and immunocytochemistry of a new chemosensory system in the Chiton larva (Mollusca: Polyplacophora)

    DEFF Research Database (Denmark)

    Haszprunar, Gerhard; Friedrich, Stefan; Wanninger, Andreas

    2002-01-01

    symmetrically situated pairs lying dorsolaterally and ventrolaterally in the pretrochal part of the trochophore-like larva and they send axons into the cerebral commissure. They are lost at metamorphosis. The fine structure of these cells strongly resembles that of so-called "ampullary cells" known from various...

  10. A new method for estimating carbon dioxide emissions from transportation at fine spatial scales

    Energy Technology Data Exchange (ETDEWEB)

    Shu Yuqin [School of Geographical Science, South China Normal University, Guangzhou 510631 (China); Lam, Nina S N; Reams, Margaret, E-mail: gis_syq@126.com, E-mail: nlam@lsu.edu, E-mail: mreams@lsu.edu [Department of Environmental Sciences, Louisiana State University, Baton Rouge, 70803 (United States)

    2010-10-15

    Detailed estimates of carbon dioxide (CO{sub 2}) emissions at fine spatial scales are useful to both modelers and decision makers who are faced with the problem of global warming and climate change. Globally, transport related emissions of carbon dioxide are growing. This letter presents a new method based on the volume-preserving principle in the areal interpolation literature to disaggregate transportation-related CO{sub 2} emission estimates from the county-level scale to a 1 km{sup 2} grid scale. The proposed volume-preserving interpolation (VPI) method, together with the distance-decay principle, were used to derive emission weights for each grid based on its proximity to highways, roads, railroads, waterways, and airports. The total CO{sub 2} emission value summed from the grids within a county is made to be equal to the original county-level estimate, thus enforcing the volume-preserving property. The method was applied to downscale the transportation-related CO{sub 2} emission values by county (i.e. parish) for the state of Louisiana into 1 km{sup 2} grids. The results reveal a more realistic spatial pattern of CO{sub 2} emission from transportation, which can be used to identify the emission 'hot spots'. Of the four highest transportation-related CO{sub 2} emission hotspots in Louisiana, high-emission grids literally covered the entire East Baton Rouge Parish and Orleans Parish, whereas CO{sub 2} emission in Jefferson Parish (New Orleans suburb) and Caddo Parish (city of Shreveport) were more unevenly distributed. We argue that the new method is sound in principle, flexible in practice, and the resultant estimates are more accurate than previous gridding approaches.

  11. Findings and Challenges in Fine-Resolution Large-Scale Hydrological Modeling

    Science.gov (United States)

    Her, Y. G.

    2017-12-01

    Fine-resolution large-scale (FL) modeling can provide the overall picture of the hydrological cycle and transport while taking into account unique local conditions in the simulation. It can also help develop water resources management plans consistent across spatial scales by describing the spatial consequences of decisions and hydrological events extensively. FL modeling is expected to be common in the near future as global-scale remotely sensed data are emerging, and computing resources have been advanced rapidly. There are several spatially distributed models available for hydrological analyses. Some of them rely on numerical methods such as finite difference/element methods (FDM/FEM), which require excessive computing resources (implicit scheme) to manipulate large matrices or small simulation time intervals (explicit scheme) to maintain the stability of the solution, to describe two-dimensional overland processes. Others make unrealistic assumptions such as constant overland flow velocity to reduce the computational loads of the simulation. Thus, simulation efficiency often comes at the expense of precision and reliability in FL modeling. Here, we introduce a new FL continuous hydrological model and its application to four watersheds in different landscapes and sizes from 3.5 km2 to 2,800 km2 at the spatial resolution of 30 m on an hourly basis. The model provided acceptable accuracy statistics in reproducing hydrological observations made in the watersheds. The modeling outputs including the maps of simulated travel time, runoff depth, soil water content, and groundwater recharge, were animated, visualizing the dynamics of hydrological processes occurring in the watersheds during and between storm events. Findings and challenges were discussed in the context of modeling efficiency, accuracy, and reproducibility, which we found can be improved by employing advanced computing techniques and hydrological understandings, by using remotely sensed hydrological

  12. Determining the Velocity Fine Structure by a Laser Anemometer with Fixed Orientation

    DEFF Research Database (Denmark)

    Kristensen, Leif; Kirkegaard, Peter; Mikkelsen, Torben

    We have studied the velocity structure functions and spectra which can be determined by a CW-laser anemometer and a (pulsed) lidar anemometer. We have found useful theoretical expressions for both types of anemometers and compared their filtering of the alongbeam turbulent velocity. The purpose h...... been to establish a basis for remote determining of turbulence fine-structure in terms of the rate of dissipation of specific kinetic energy in the atmospheric boundary layer....

  13. Content and structure of future teachers’ aesthetic perception of fine and decorative applied art creations

    Directory of Open Access Journals (Sweden)

    Liudmyla Lisunova

    2017-03-01

    Full Text Available The content and structure of future teachers’ aesthetic perception of fine and decorativeapplied art creations in the system of professional training are delivered in this article. Thestructural components and stages (phases of aesthetic perception process are determined, therole of art as the most powerful source of reality in the process of future teachers’ aestheticperception of art are revealed.Key words: contents and structure of aesthetic perception, future teachers of art, fineand decorative applied art creations

  14. Determining the velocity fine structure by a laser anemometer with fixed orientation

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, Leif; Kirkegaard, P.; Mikkelsen, Torben

    2011-02-15

    We have studied the velocity structure functions and spectra which can be determined by a CW-laser anemometer and a (pulsed) lidar anemometer. We have found useful theoretical expressions for both types of anemometers and compared their filtering of the along-beam turbulent velocity. The purpose has been to establish a basis for remote determining of turbulence fine-structure in terms of the rate of dissipation of specific kinetic energy in the atmospheric boundary layer. (Author)

  15. Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages

    NARCIS (Netherlands)

    Yoon, I.K.; Getis, A.; Aldstadt, J.; Rothman, A.L.; Tannitisupawong, D.; Koenraadt, C.J.M.; Fansiri, T.; Jones, J.W.; Morrison, A.C.; Jarman, R.G.; Nisalak, A.; Mammen Jr., M.P.; Thammapalo, S.; Srikiatkhachorn, A.; Green, S.; Libraty, D.H.; Gibbons, R.V.; Endy, T.; Pimgate, C.; Scott, T.W.

    2012-01-01

    Background Based on spatiotemporal clustering of human dengue virus (DENV) infections, transmission is thought to occur at fine spatiotemporal scales by horizontal transfer of virus between humans and mosquito vectors. To define the dimensions of local transmission and quantify the factors that

  16. Applications of random forest feature selection for fine-scale genetic population assignment.

    Science.gov (United States)

    Sylvester, Emma V A; Bentzen, Paul; Bradbury, Ian R; Clément, Marie; Pearce, Jon; Horne, John; Beiko, Robert G

    2018-02-01

    Genetic population assignment used to inform wildlife management and conservation efforts requires panels of highly informative genetic markers and sensitive assignment tests. We explored the utility of machine-learning algorithms (random forest, regularized random forest and guided regularized random forest) compared with F ST ranking for selection of single nucleotide polymorphisms (SNP) for fine-scale population assignment. We applied these methods to an unpublished SNP data set for Atlantic salmon ( Salmo salar ) and a published SNP data set for Alaskan Chinook salmon ( Oncorhynchus tshawytscha ). In each species, we identified the minimum panel size required to obtain a self-assignment accuracy of at least 90% using each method to create panels of 50-700 markers Panels of SNPs identified using random forest-based methods performed up to 7.8 and 11.2 percentage points better than F ST -selected panels of similar size for the Atlantic salmon and Chinook salmon data, respectively. Self-assignment accuracy ≥90% was obtained with panels of 670 and 384 SNPs for each data set, respectively, a level of accuracy never reached for these species using F ST -selected panels. Our results demonstrate a role for machine-learning approaches in marker selection across large genomic data sets to improve assignment for management and conservation of exploited populations.

  17. Improving Genetic Algorithm with Fine-Tuned Crossover and Scaled Architecture

    Directory of Open Access Journals (Sweden)

    Ajay Shrestha

    2016-01-01

    Full Text Available Genetic Algorithm (GA is a metaheuristic used in solving combinatorial optimization problems. Inspired by evolutionary biology, GA uses selection, crossover, and mutation operators to efficiently traverse the solution search space. This paper proposes nature inspired fine-tuning to the crossover operator using the untapped idea of Mitochondrial DNA (mtDNA. mtDNA is a small subset of the overall DNA. It differentiates itself by inheriting entirely from the female, while the rest of the DNA is inherited equally from both parents. This unique characteristic of mtDNA can be an effective mechanism to identify members with similar genes and restrict crossover between them. It can reduce the rate of dilution of diversity and result in delayed convergence. In addition, we scale the well-known Island Model, where instances of GA are run independently and population members exchanged periodically, to a Continental Model. In this model, multiple web services are executed with each web service running an island model. We applied the concept of mtDNA in solving Traveling Salesman Problem and to train Neural Network for function approximation. Our implementation tests show that leveraging these new concepts of mtDNA and Continental Model results in relative improvement of the optimization quality of GA.

  18. Fine scale microstructure in cast and aged duplex stainless steels investigated by small angle neutron scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Lin, J.S.; Spooner, S.

    1986-02-01

    Small angle neutron scattering (SANS) allows clustering phenomena to be studied in systems for which the constituent atoms do not differ greatly in atomic number. This investigation used SANS to characterize the fine scale microstructure in two cast and aged duplex stainless steels; aging times extended up to eight years. The steels differed in ferrite content by about a factor of two. The scattering at lowest q was dominated by magnetic scattering effects associated with the ferrite phase. In the range 0.025 less than or equal to q less than or equal to 0.2A -1 , additional scattering due to a precipitating phase rich in Ni and Si was observed. This scattering was rather intense and revealed a volume fraction of precipitate, in the ferrite, estimated to be 12 to 18% after long time aging. After about 70,000 hours at 400 0 C, there were about 10 18 precipitate particles per cm 3 some 50A in mean diameter, and they were distributed in a nonrandom manner, i.e., spatially, short-range-ordered. This investigation suggests that after aging some 70,000 hours at 400 0 C, the precipitate in the ferrite phase is undergoing Ostwald ripening. The present data are insufficient to indicate at what time this ripening process began

  19. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Héloïse Bastide

    2013-06-01

    Full Text Available Various approaches can be applied to uncover the genetic basis of natural phenotypic variation, each with their specific strengths and limitations. Here, we use a replicated genome-wide association approach (Pool-GWAS to fine-scale map genomic regions contributing to natural variation in female abdominal pigmentation in Drosophila melanogaster, a trait that is highly variable in natural populations and highly heritable in the laboratory. We examined abdominal pigmentation phenotypes in approximately 8000 female European D. melanogaster, isolating 1000 individuals with extreme phenotypes. We then used whole-genome Illumina sequencing to identify single nucleotide polymorphisms (SNPs segregating in our sample, and tested these for associations with pigmentation by contrasting allele frequencies between replicate pools of light and dark individuals. We identify two small regions near the pigmentation genes tan and bric-à-brac 1, both corresponding to known cis-regulatory regions, which contain SNPs showing significant associations with pigmentation variation. While the Pool-GWAS approach suffers some limitations, its cost advantage facilitates replication and it can be applied to any non-model system with an available reference genome.

  20. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster.

    Science.gov (United States)

    Bastide, Héloïse; Betancourt, Andrea; Nolte, Viola; Tobler, Raymond; Stöbe, Petra; Futschik, Andreas; Schlötterer, Christian

    2013-06-01

    Various approaches can be applied to uncover the genetic basis of natural phenotypic variation, each with their specific strengths and limitations. Here, we use a replicated genome-wide association approach (Pool-GWAS) to fine-scale map genomic regions contributing to natural variation in female abdominal pigmentation in Drosophila melanogaster, a trait that is highly variable in natural populations and highly heritable in the laboratory. We examined abdominal pigmentation phenotypes in approximately 8000 female European D. melanogaster, isolating 1000 individuals with extreme phenotypes. We then used whole-genome Illumina sequencing to identify single nucleotide polymorphisms (SNPs) segregating in our sample, and tested these for associations with pigmentation by contrasting allele frequencies between replicate pools of light and dark individuals. We identify two small regions near the pigmentation genes tan and bric-à-brac 1, both corresponding to known cis-regulatory regions, which contain SNPs showing significant associations with pigmentation variation. While the Pool-GWAS approach suffers some limitations, its cost advantage facilitates replication and it can be applied to any non-model system with an available reference genome.

  1. Activity patterns and fine-scale resource partitioning in the gregarious Kihansi spray toad Nectophrynoides asperginis in captivity.

    Science.gov (United States)

    Rija, Alfan A; Goboro, Ezekiel M; Mwamende, Kuruthumu A; Said, Abubakari; Kohi, Edward M; Hassan, Shombe N

    2014-01-01

    Understanding the behavior of species threatened with extinction is important for conservation planning and for solving problems facing species in captivity and the wild. We examined diurnal activity budgets and habitat use of the extinct in the wild Kihansi spray toad to provide insights into ongoing conservation initiatives for this species. Observations on eight target behaviors were made each morning and evening for 14 days, in two subpopulations at Kihansi and University of Dar es Salaam captive breeding centers. There were significantly more bouts of resting than calling, amplexing, hunting, walking, climbing, or feeding. There was no difference in mean time spent in each activity between the two subpopulations. The use of habitat was variable between age classes, subpopulations and sampling time. Young toads spent significantly more time resting at the top of vegetation and on walls while adults rested more on logs. Further, adults foraged more on the walls and vegetation in the morning and on the ground in the evening. Contrastingly, young toads foraged more on the ground in the morning and switched to elevated patches during evening. The similarity of the toads' behavior suggests that important biological traits are still maintained in captivity and retained across toad generations. Furthermore, temporal and spatial variations in the use of habitat structures between age groups suggest fine-scale resource partitioning to reduce competition in this gregarious species. These results highlight the importance of maintaining diverse habitat structures in captivity and are useful for planning species reintroduction and future restocking programs. © 2014 Wiley Periodicals, Inc.

  2. Electronic fine structure and recombination dynamics in single InAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, R.

    2008-01-28

    In the work at hand single InAs/GaAs quantum dots (QDs) are examined via cathodoluminescence spectroscopy. A thorough analysis of the spectra leads to an unambiguous assignment of the lines to the decay of specific excitonic complexes. A special aspect of the Coulomb interaction, the exchange interaction, gives rise to a fine structure in the initial and final states of an excitonic decay. This leads to a fine structure in the emission spectra that again is unique for every excitonic complex. The exchange interaction is discussed in great detail in this work.QDs of different sizes are investigated and the influence on the electronic properties is monitored. Additionally, the structure is modified ex situ by a thermal annealing process. The changes of the spectra under different annealing temperatures are traced. Finally, recombination dynamics of different excitonic complexes are examined by performing time-resolved cathodoluminescence spectroscopy. (orig.)

  3. Electronic fine structure and recombination dynamics in single InAs quantum dots

    International Nuclear Information System (INIS)

    Seguin, R.

    2008-01-01

    In the work at hand single InAs/GaAs quantum dots (QDs) are examined via cathodoluminescence spectroscopy. A thorough analysis of the spectra leads to an unambiguous assignment of the lines to the decay of specific excitonic complexes. A special aspect of the Coulomb interaction, the exchange interaction, gives rise to a fine structure in the initial and final states of an excitonic decay. This leads to a fine structure in the emission spectra that again is unique for every excitonic complex. The exchange interaction is discussed in great detail in this work.QDs of different sizes are investigated and the influence on the electronic properties is monitored. Additionally, the structure is modified ex situ by a thermal annealing process. The changes of the spectra under different annealing temperatures are traced. Finally, recombination dynamics of different excitonic complexes are examined by performing time-resolved cathodoluminescence spectroscopy. (orig.)

  4. Computational applications of DNA structural scales

    DEFF Research Database (Denmark)

    Baldi, P.; Chauvin, Y.; Brunak, Søren

    1998-01-01

    that these scales provide an alternative or complementary compact representation of DNA sequences. As an example, we construct a strand-invariant representation of DNA sequences. The scales can also be used to analyze and discover new DNA structural patterns, especially in combination with hidden Markov models......Studies several different physical scales associated with the structural features of DNA sequences from a computational standpoint, including dinucleotide scales, such as base stacking energy and propeller twist, and trinucleotide scales, such as bendability and nucleosome positioning. We show...

  5. Fine Structure in Helium-like Fluorine by Fast-Beam Laser Spectroscopy

    Science.gov (United States)

    Myers, E. G.; Thompson, J. K.; Silver, J. D.

    1998-05-01

    With the aim of providing an additional precise test of higher-order corrections to high precision calculations of fine structure in helium and helium-like ions(T. Zhang, Z.-C. Yan and G.W.F. Drake, Phys. Rev. Lett. 77), 1715 (1996)., a measurement of the 2^3P_2,F - 2^3P_1,F' fine structure in ^19F^7+ is in progress. The method involves doppler-tuned laser spectroscopy using a CO2 laser on a foil-stripped fluorine ion beam. We aim to achieve a higher precision, compared to an earlier measurement(E.G. Myers, P. Kuske, H.J. Andrae, I.A. Armour, H.A. Klein, J.D. Silver, and E. Traebert, Phys. Rev. Lett. 47), 87 (1981)., by using laser beams parallel and anti-parallel to the ion beam, to obtain partial cancellation of the doppler shift(J.K. Thompson, D.J.H. Howie and E.G. Myers, Phys. Rev. A 57), 180 (1998).. A calculation of the hyperfine structure, allowing for relativistic, QED and nuclear size effects, will be required to obtain the ``hyperfine-free'' fine structure interval from the measurements.

  6. Quantitative rainfall metrics for comparing volumetric rainfall retrievals to fine scale models

    Science.gov (United States)

    Collis, Scott; Tao, Wei-Kuo; Giangrande, Scott; Fridlind, Ann; Theisen, Adam; Jensen, Michael

    2013-04-01

    Precipitation processes play a significant role in the energy balance of convective systems for example, through latent heating and evaporative cooling. Heavy precipitation "cores" can also be a proxy for vigorous convection and vertical motions. However, comparisons between rainfall rate retrievals from volumetric remote sensors with forecast rain fields from high-resolution numerical weather prediction simulations are complicated by differences in the location and timing of storm morphological features. This presentation will outline a series of metrics for diagnosing the spatial variability and statistical properties of precipitation maps produced both from models and retrievals. We include existing metrics such as Contoured by Frequency Altitude Diagrams (Yuter and Houze 1995) and Statistical Coverage Products (May and Lane 2009) and propose new metrics based on morphology, cell and feature based statistics. Work presented focuses on observations from the ARM Southern Great Plains radar network consisting of three agile X-Band radar systems with a very dense coverage pattern and a C Band system providing site wide coverage. By combining multiple sensors resolutions of 250m2 can be achieved, allowing improved characterization of fine-scale features. Analyses compare data collected during the Midlattitude Continental Convective Clouds Experiment (MC3E) with simulations of observed systems using the NASA Unified Weather Research and Forecasting model. May, P. T., and T. P. Lane, 2009: A method for using weather radar data to test cloud resolving models. Meteorological Applications, 16, 425-425, doi:10.1002/met.150, 10.1002/met.150. Yuter, S. E., and R. A. Houze, 1995: Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part II: Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity. Mon. Wea. Rev., 123, 1941-1963, doi:10.1175/1520-0493(1995)1232.0.CO;2.

  7. Fine-scale movement decisions of tropical forest birds in a fragmented landscape.

    Science.gov (United States)

    Gillies, Cameron S; Beyer, Hawthorne L; St Clair, Colleen Cassady

    2011-04-01

    The persistence of forest-dependent species in fragmented landscapes is fundamentally linked to the movement of individuals among subpopulations. The paths taken by dispersing individuals can be considered a series of steps built from individual route choices. Despite the importance of these fine-scale movement decisions, it has proved difficult to collect such data that reveal how forest birds move in novel landscapes. We collected unprecedented route information about the movement of translocated forest birds from two species in the highly fragmented tropical dry forest of Costa Rica. In this pasture-dominated landscape, forest remains in patches or riparian corridors, with lesser amounts of living fencerows and individual trees or "stepping stones." We used step selection functions to quantify how route choice was influenced by these habitat elements. We found that the amount of risk these birds were willing to take by crossing open habitat was context dependent. The forest-specialist Barred Antshrike (Thamnophilus doliatus) exhibited stronger selection for forested routes when moving in novel landscapes distant from its territory relative to locations closer to its territory. It also selected forested routes when its step originated in forest habitat. It preferred steps ending in stepping stones when the available routes had little forest cover, but avoided them when routes had greater forest cover. The forest-generalist Rufous-naped Wren (Campylorhynchus rufinucha) preferred steps that contained more pasture, but only when starting from non-forest habitats. Our results showed that forested corridors (i.e., riparian corridors) best facilitated the movement of a sensitive forest specialist through this fragmented landscape. They also suggested that stepping stones can be important in highly fragmented forests with little remaining forest cover. We expect that naturally dispersing birds and species with greater forest dependence would exhibit even stronger

  8. Using Moss to Detect Fine-Scaled Deposition of Heavy Metals in Urban Environments

    Science.gov (United States)

    Jovan, S.; Donovan, G.; Demetrios, G.; Monleon, V. J.; Amacher, M. C.

    2017-12-01

    Mosses are commonly used as bio-indicators of heavy metal deposition to forests. Their application in urban airsheds is relatively rare. Our objective was to develop fine-scaled, city-wide maps for heavy metals in Portland, Oregon, to identify pollution "hotspots" and serve as a screening tool for more effective placement of air quality monitoring instruments. In 2013 we measured twenty-two elements in epiphytic moss sampled on a 1km x1km sampling grid (n = 346). We detected large hotspots of cadmium and arsenic in two neighborhoods associated with stained glass manufacturers. Air instruments deployed by local regulators measured cadmium concentrations 49 times and arsenic levels 155 times the state health benchmarks. Moss maps also detected a large nickel hotspot in a neighborhood near a forge where air instruments later measured concentrations 4 times the health benchmark. In response, the facilities implemented new pollution controls, air quality improved in all three affected neighborhoods, revision of regulations for stained glass furnace emissions are underway, and Oregon's governor launched an initiative to develop health-based (vs technology-based) regulations for air toxics in the state. The moss maps also indicated a couple dozen smaller hotspots of heavy metals, including lead, chromium, and cobalt, in Portland neighborhoods. Ongoing follow-up work includes: 1) use of moss sampling by local regulators to investigate source and extent of the smaller hotspots, 2) use of lead isotopes to determine origins of higher lead levels observed in moss collected from the inner city, and 3) co-location of air instruments and moss sampling to determine accuracy, timeframe represented, and seasonality of heavy metals in moss.

  9. Fine structure in plasma waves and radiation near the plasma frequency in Earth's foreshock

    Science.gov (United States)

    Cairns, Iver H.

    1994-01-01

    Novel observations are presented of intrunsic fine structure in the frequency spectrum of electomagnetic (EM) radiation and plasma waves near the electron plasma frequency f(sub p) during a period of unusually high interplanetary magnetic field strength. Measured using the wideband receiver on the International Sun-Earth Explorer (ISEE) 1 spacecraft, fine-structured emissions are observed both in the solar wind and the foreshock, The fine structure is shown to correspond to emissions spaced above f(sub p) near half harmonies of the electon cyclotron frequency f(sub ce), i.e., near f(sub p) + nf(sub ce)/2. These appear to be the first space physics observations of emissions spaced by f(sub ce)/2. Indirect but strong arguments are used to discriminate between EM and electrostatic (ES) signals, to identify whether ISEE 1 is in the solar wind or the foreshock, and to determine the relative frequencies of the emissions and the local f(sub p). The data are consistent with generation of the ES and EM emissions in the foreshock, with subsequent propagation of the EM emissions into the solar wind. It remains possible that some emissions currently identified as ES have significant EM character. The ES and EM emisions often merge into one another with minimal changes in frequency, arguing that their source regions and generation mechanisms are related and imposing significant constraints on theories. The f(sub ce)/2 ES and EM fine structures observed may be intrinsic to the emission mechanisms or to superposition of two series of signals with f(sub ce) spacing that differ in starting frequency by f(sub ce)/2. Present theories for nonlinear wave coupling processes, cyclotron maser emission, and other linear instability processes are all unable to explain multiple EM and/or ES components spaced by approximately f(sub ce)/2 above f(sub p) for f(sub p)/f(sub ce) much greater than 1 and typical for shock beams parameters. Suitable avenues for further theoretical research are

  10. STM study on surface relief, ultra-fine structure and transformation mechanism of bainite in steels

    International Nuclear Information System (INIS)

    Fang, H.S.; Yang, Z.G.; Wang, J.J.; Zheng, Y.K.

    1995-01-01

    The surface reliefs accompanying lower bainite transformation in steels have been studied by scanning tunneling microscopy (STM). With the exclusive vertical resolution of STM, we observed that the surface relief associated with bainite is a group of surface reliefs related to subplates, subunits and sub-subunits. From the bainite plate to the sub-subunit in it, the reliefs are in a tent shape, not of invariant plane strain (IPS) type. The fine structure of bainite in a steel has also been shown by STM and TEM that bainite plate is composed of subplates, subunits and sub-subunits. On the basis of the fine structure inside a bainitic ferrite plate observed under STM, sympathetic-ledgewise mechanism of bainite formation is proposed. (orig.)

  11. Fine structures of atomic excited states: precision atomic spectroscopy and electron-ion collision process

    International Nuclear Information System (INIS)

    Gao Xiang; Cheng Cheng; Li Jiaming

    2011-01-01

    Scientific research fields for future energies such as inertial confinement fusion researches and astrophysics studies especially with satellite observatories advance into stages of precision physics. The relevant atomic data are not only enormous but also of accuracy according to requirements, especially for both energy levels and the collision data. The fine structure of high excited states of atoms and ions can be measured by precision spectroscopy. Such precision measurements can provide not only knowledge about detailed dynamics of electron-ion interactions but also a bench mark examination of the accuracy of electron-ion collision data, especially incorporating theoretical computations. We illustrate that by using theoretical calculation methods which can treat the bound states and the adjacent continua on equal footing. The precision spectroscopic measurements of excited fine structures can be served as stringent tests of electron-ion collision data. (authors)

  12. Evidence from n=2 fine structure transitions for the production of fast excited state positronium

    International Nuclear Information System (INIS)

    Ley, R.; Niebling, K.D.; Schwarz, R.; Werth, G.

    1990-01-01

    Fine structure transitions in the first excited state of positronium (Ps) have been measured using 'Backscatter Ps' production on a Mo surface by observation of a change in the emitted Lyman-α intensity under resonant microwave irradiation. Production, fine structure transitions and Lyman-α decay of the Ps atoms took place inside a waveguide designed to transmit the microwave frequencies of 8.6, 13.0 and 18.5 GHz for the transitions from the 2 3 S 1 state to the 2 3 P J , J=2, 1, 0, states, respectively. In the presence of a magnetic field, all transitions observed show a shift to higher frequencies, compared with earlier calculations and measurements in zero magnetic field. The deviations exceed the expected Zeeman shift significantly but may be explained by assuming a motional Stark effect for Ps with kinetic energies of several eV. (author)

  13. Small scale structure on cosmic strings

    International Nuclear Information System (INIS)

    Albrecht, A.

    1989-01-01

    I discuss our current understanding of cosmic string evolution, and focus on the question of small scale structure on strings, where most of the disagreements lie. I present a physical picture designed to put the role of the small scale structure into more intuitive terms. In this picture one can see how the small scale structure can feed back in a major way on the overall scaling solution. I also argue that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small structure, which I argue in any case would be extremely valuable in filling the gaps in our resent understanding of cosmic string evolution. 24 refs., 8 figs

  14. POC-scale testing of an advanced fine coal dewatering equipment/technique

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, J.G.; Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Rawls, P. [Department of Energy, Pittsburgh, PA (United States)

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  15. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina; Alexander, Caroline [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Golub, Leon; DeLuca, Edward [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Schuler, Timothy, E-mail: amy.r.winebarger@nasa.gov [State University of New York College at Buffalo, 1300 Elmwood Avenue, Buffalo, NY 14222 (United States)

    2014-05-20

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  16. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    International Nuclear Information System (INIS)

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina; Alexander, Caroline; Golub, Leon; DeLuca, Edward; Schuler, Timothy

    2014-01-01

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent

  17. Preferred Compression Speed for Speech and Music and Its Relationship to Sensitivity to Temporal Fine Structure

    OpenAIRE

    Moore, Brian C. J.; S?k, Aleksander

    2016-01-01

    Multichannel amplitude compression is widely used in hearing aids. The preferred compression speed varies across individuals. Moore (2008) suggested that reduced sensitivity to temporal fine structure (TFS) may be associated with preference for slow compression. This idea was tested using a simulated hearing aid. It was also assessed whether preferences for compression speed depend on the type of stimulus: speech or music. Twenty-two hearing-impaired subjects were tested, and the stimulated h...

  18. Fusion reaction yield in focused discharges with variable energy and plasma fine structure

    International Nuclear Information System (INIS)

    Bortolotti, A.; Brzosko, J.S.; Chiara, P. De; Kilic, H.; Mezzetti, F.; Nardi, V.; Powell, C.; Wang, J.

    1992-01-01

    The same linear correlation between the distribution parameters (ΔT and Max ΔV) of the radial current density J between electrodes and the fusion reaction yield per pulse, Y, in the plasma focus (PF) pinch was quantitatively determined from different PF machines. Contact prints of current-sheath fragments (CSF) ejected from the pinch are obtained from 2.5-MeV-D + ions. CSF's show the same submillimetric fine structure of the pinch. (author) 3 refs., 2 tabs

  19. Fine defective structure of silicon carbide powders obtained from different starting materials

    Directory of Open Access Journals (Sweden)

    Tomila T.V.

    2006-01-01

    Full Text Available The fine defective structure of silicon carbide powders obtained from silicic acid-saccharose, aerosil-saccharose, aerosil-carbon black, and hydrated cellulose-silicic acid gel systems was investigated. The relation between IR absorption characteristics and the microstructure of SiC particles obtained from different starting materials was established. The numerical relationship between the lattice parameter a and the frequency νTO is presented.

  20. Structure and properties of permeable fine-fibrous materials fabricated of powders

    Energy Technology Data Exchange (ETDEWEB)

    Fedorchenko, I M; Kostornov, A G; Kirichenko, O V; Guzhva, N S [AN Ukrainskoj SSR, Kiev. Inst. Problem Materialovedeniya

    1982-09-01

    Effect of main structural characteristics of fine fibrous materials (FFM) of nickel and Ni-Cr, Ni-Mo, Ni-Cr-Mo, Ni-Fe-Cr, Ni-Fe alloys on their hydraulic and mechanical properties was studied. FFM was produced by sintering of polymer fibers filled with metal powders and converted to felts. It was shown, that the level of permeable material properties increases with reduction of filament diameter.

  1. Structure and properties of permeable fine-fibrous materials fabricated of powders

    International Nuclear Information System (INIS)

    Fedorchenko, I.M.; Kostornov, A.G.; Kirichenko, O.V.; Guzhva, N.S.

    1982-01-01

    Effect of main structural characteristicf of fine fibrous materials (FFM) of nickel and Ni-Cr, Ni-Mo, Ni-Cr-Mo, Ni-Fe-Cr, Ni-Fe alloys on their hydraulic and mechanical properties was studied. FFM was produced by sintering of polymer fibers filled with metal powders and converted to felts. It was shown, that the level of permeable material properties increases with reduction of filament diameter

  2. Single-particle effects in fine structure of super-asymmetric fission

    International Nuclear Information System (INIS)

    Mirea, M.

    1999-01-01

    Energy spectrum measurements concerning the 14 C decay from 223 Ra revealed a fine structure with an intense branch on the excited state of the daughter 209 Pb. Apart the great number of microscopic--macroscopic attempts of different authors in describing this behavior (compiled recently), this phenomenon was explained quantitatively using the Landau--Zener effect, i.e., the promotion mechanism of a unpaired nucleon between two levels characterised by the same quantum numbers connected to some symmetries of the nuclear system in the region where an avoided level crossing is exhibited. The adiabatic levels during the super-asymmetric fission process were determined with a new version of the two--centre shell model especially constructed for very large mass--asymmetries. The half--lives are obtained in the framework of the Wentzel--Kramers--Brillouin approximation. The amount of the variation of the barrier height in the excited channels was estimated accounting the specialization energy which can be interpreted as the excess of the energy of a nucleon with a given spin over the energy for the same spin nucleon state of lowest energy. It is evidenced that the fine structure of cluster decay is due to two competitive effects: the Landau--Zener effect which enhances the probability to have an excited daughter in the final channel and the specialization energy which increases the potential barrier and therefore leads to a diminution of the penetrability. This formalism was used for predictions of the fine structure in the case of 14 C decay of 225 Ac and to explain the fine structure of alpha decay. (author)

  3. New Constraints on Spatial Variations of the Fine Structure Constant from Clusters of Galaxies

    Directory of Open Access Journals (Sweden)

    Ivan De Martino

    2016-12-01

    Full Text Available We have constrained the spatial variation of the fine structure constant using multi-frequency measurements of the thermal Sunyaev-Zeldovich effect of 618 X-ray selected clusters. Although our results are not competitive with the ones from quasar absorption lines, we improved by a factor 10 and ∼2.5 previous results from Cosmic Microwave Background power spectrum and from galaxy clusters, respectively.

  4. Polarized fine structure in the excitation spectrum of a negatively charged quantum dot

    OpenAIRE

    Ware, M. E.; Stinaff, E. A.; Gammon, D.; Doty, M. F.; Bracker, A. S.; Gershoni, D.; Korenev, V. L.; Badescu, S. C.; Lyanda-Geller, Y.; Reinecke, T. L.

    2005-01-01

    We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of qua...

  5. Visualization of Wave Propagation and Fine Structure in Frictional Motion of Unconstrained Soft Microstructured Tapes

    DEFF Research Database (Denmark)

    Heepe, Lars; Filippov, Alexander E.; Kovalev, Alexander E.

    2017-01-01

    from previous friction tests of microstructured elastomers fixed onto a rigid support, allowing only for shear deformations of surface microstructures and the backing layer, but not for stretching of the entire sample. Three different types of microstructured tapes were tested and their frictional...... behavior compared to results from numerical simulations. In both experimental and numerical cases, visualization of wave propagation and fine structure in friction is obtained....

  6. The 16th International Conference on X-ray Absorption Fine Structure (XAFS16)

    Science.gov (United States)

    Grunwaldt, J.-D.; Hagelstein, M.; Rothe, J.

    2016-05-01

    This preface of the proceedings volume of the 16th International Conference on X- ray Absorption Fine Structure (XAFS16) gives a glance on the five days of cutting-edge X-ray science which were held in Karlsruhe, Germany, August 23 - 28, 2015. In addition, several satellite meetings took place in Hamburg, Berlin and Stuttgart, a Sino-German workshop, three data analysis tutorials as well as special symposia on industrial catalysis and XFELs were held at the conference venue.

  7. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    Science.gov (United States)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  8. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA

    Science.gov (United States)

    Roger D. Ottmar; John I. Blake; William T. Crolly

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuel beds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for...

  9. Rotational and fine structure of open-shell molecules in nearly degenerate electronic states

    Science.gov (United States)

    Liu, Jinjun

    2018-03-01

    An effective Hamiltonian without symmetry restriction has been developed to model the rotational and fine structure of two nearly degenerate electronic states of an open-shell molecule. In addition to the rotational Hamiltonian for an asymmetric top, this spectroscopic model includes the energy separation between the two states due to difference potential and zero-point energy difference, as well as the spin-orbit (SO), Coriolis, and electron spin-molecular rotation (SR) interactions. Hamiltonian matrices are computed using orbitally and fully symmetrized case (a) and case (b) basis sets. Intensity formulae and selection rules for rotational transitions between a pair of nearly degenerate states and a nondegenerate state have also been derived using all four basis sets. It is demonstrated using real examples of free radicals that the fine structure of a single electronic state can be simulated with either a SR tensor or a combination of SO and Coriolis constants. The related molecular constants can be determined precisely only when all interacting levels are simulated simultaneously. The present study suggests that analysis of rotational and fine structure can provide quantitative insights into vibronic interactions and related effects.

  10. Atomistic theory of excitonic fine structure in InAs/InP nanowire quantum dot molecules

    Science.gov (United States)

    Świderski, M.; Zieliński, M.

    2017-03-01

    Nanowire quantum dots have peculiar electronic and optical properties. In this work we use atomistic tight binding to study excitonic spectra of artificial molecules formed by a double nanowire quantum dot. We demonstrate a key role of atomistic symmetry and nanowire substrate orientation rather than cylindrical shape symmetry of a nanowire and a molecule. In particular for [001 ] nanowire orientation we observe a nonvanishing bright exciton splitting for a quasimolecule formed by two cylindrical quantum dots of different heights. This effect is due to interdot coupling that effectively reduces the overall symmetry, whereas single uncoupled [001 ] quantum dots have zero fine structure splitting. We found that the same double quantum dot system grown on [111 ] nanowire reveals no excitonic fine structure for all considered quantum dot distances and individual quantum dot heights. Further we demonstrate a pronounced, by several orders of magnitude, increase of the dark exciton optical activity in a quantum dot molecule as compared to a single quantum dot. For [111 ] systems we also show spontaneous localization of single particle states in one of nominally identical quantum dots forming a molecule, which is mediated by strain and origins from the lack of the vertical inversion symmetry in [111 ] nanostructures of overall C3 v symmetry. Finally, we study lowering of symmetry due to alloy randomness that triggers nonzero excitonic fine structure and the dark exciton optical activity in realistic nanowire quantum dot molecules of intermixed composition.

  11. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Pentlehner, D.; Slenczka, A.

    2015-01-01

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broad (Δν > 100 cm −1 ) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time

  12. Bloch oscillations of ultracold atoms and measurement of the fine structure constant; Oscillations de Bloch d'atomes ultrafroids et mesure de la constante de structure fine

    Energy Technology Data Exchange (ETDEWEB)

    Clade, P

    2005-10-15

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10{sup -9}, in conjunction with a careful study of systematic effects (5 10{sup -9}), has led us to a determination of alpha with an uncertainty of 6.7 10{sup -9}: {alpha}{sup -1}(Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  13. Time Resolved Scanning PIV measurements at fine scales in a turbulent jet

    International Nuclear Information System (INIS)

    Cheng, Y.; Torregrosa, M.M.; Villegas, A.; Diez, F.J.

    2011-01-01

    The temporal and spatial complexity of turbulent flows at intermediate and small scales has prevented the acquisition of full three-dimensional experimental data sets for validating classical turbulent theory and Direct Numerical Simulations (DNS). Experimental techniques like Particle Velocimetry, PIV, allow non-intrusive planar measurements of turbulent flows. The present work applied a Time Resolved Scanning PIV system, TRS-PIV, capable of obtaining three-dimensional two-component velocities to measure the small scales of a turbulent jet. When probing the small scales of these flows with PIV, the uncertainty of the measured turbulent properties are determined by the characteristics of the PIV system and specially the thickness of the laser sheet. A measurement of the particle distribution across the thickness of the laser sheet is proposed as a more detailed description of the PIV sheet thickness. The high temporal and spatial resolution of the TRS-PIV system allowed obtaining quasi-instantaneous volumetric vector fields at the far field of a round turbulent jet in water, albeit for a low Reynolds number of 1478 due to the speed limitations of the present camera and scanning system. Six of the nine components of the velocity gradient tensor were calculated from the velocity measurements. This allowed the visualization with near Kolmogorov-scale resolution of the velocity gradient structures in three-dimensional space. In general, these structures had a complex geometry corresponding to elongated shapes in the form of sheets and tubes. An analysis of the probability density function, pdf, of the velocity gradients calculated showed that the on-diagonal (off-diagonal) velocity gradient components were very similar to each other even for events at the tails of the pdfs, as required for homogeneous isotropy. The root mean square of the components of the velocity gradients is also calculated and their ratio of off-diagonal components to on-diagonal components

  14. High-resolution x-ray spectroscopy of coherent bremsstrahlung fine structure

    International Nuclear Information System (INIS)

    Lund, M.W.

    1989-01-01

    The aim of this research was to provide experimental evidence for fine structure due to umklapp by distinct reciprocal lattice vectors in coherent bremsstrahlung spectra. The spontaneous emission of photons by relativistic electrons transversing thin crystals is made possible by recoil of the crystal, which absorbs momentum in multiples of ℎG where G is a reciprocal lattice vector. Previous work in the MeV-GeV beam energy range used detectors whose energy resolution was greater than 10%. By fitting a Johann wavelength dispersive spectrometer to a transmission electron microscope the author obtained coherent bremsstrahlung spectra of very high quality with energy resolution of 1%. Important to this result were also the fine angular collimation, small energy width of the electron beam in the microscope, and the accurate control of crystal orientation possible in a modern goniometer stage. The theory of the design of bent crystal x-ray spectrometers is extended to include effects of defocus and aberrations. The theory for diffraction from a stationary three dimensional grating due to a dipole radiator moving at relativistic speeds is derived as well as several other broadening mechanisms stemming from experimental variables. This dissertation provides the first experimental observations and corresponding theoretical background for the fine structure of coherent bremsstrahlung due to umklapp by different G-vectors in the same reciprocal lattice plane

  15. Solution spectroelectrochemical cell for in situ X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Antonio, M.R.; Soderholm, L.

    1995-01-01

    A purpose-built spectroelectrochemical cell for in situ fluorescence XAFS (X-ray Absorption Fine Structure) measurements of bulk solution species during constant-potential electrolysis is described. The cell performance was demonstrated by the collection of europium L 3 -edge XANES (X-ray Absorption Near Edge Structure) throughout the course of electrolysis of an aqueous solution of EuCl 3 ·6H 2 O in 1 M H 2 SO 4 . The europium L 3 -edge resonances reported here for the Eu III and Eu II ions demonstrate that their 2p 3/2 → 5d electronic transition probabilities are not the same

  16. Fine structure and function of the alimentary epithelium in Artemia salina nauplii

    Energy Technology Data Exchange (ETDEWEB)

    Hootman, S R; Conte, F P

    1974-01-01

    The fine structure of the alimentary tract in the second instar nauplius of the brine shrimp, Artemia salina, has been described. The foregut and hindgut of the larva are composed of cuboidal epithelium which is cuticularized. The epithelium of the midgut and gastric caeca is columnar and is characterized by apical microvilli, basal membrane infolds, and abundant mitochondria. The structural characteristics of the midgut cells correlate with previous physiological and biochemical evidence on both adult and larval brine shrimp which indicates that the midgut plays an important role in absorption and osmoregulation in these animals.

  17. Fine-scale differences in diel activity among nocturnal freshwater planarias (Platyhelminthes: Tricladida

    Directory of Open Access Journals (Sweden)

    Cicolani Bruno

    2011-04-01

    , consistent with their photonegative characteristics. The fine-scale differences in diel behavior among these three triclad species may not be sufficient to allow coexistence in the wild, with the nonnative D. tigrina eventually displacing D. polychroa and P. tenuis in many European waters. The link between planarian diel rhythms and ecological characteristics are worth of further, detailed investigation.

  18. Multiscale modeling and nested simulations of three-dimensional ionospheric plasmas: Rayleigh–Taylor turbulence and nonequilibrium layer dynamics at fine scales

    International Nuclear Information System (INIS)

    Mahalov, Alex

    2014-01-01

    Multiscale modeling and high resolution three-dimensional simulations of nonequilibrium ionospheric dynamics are major frontiers in the field of space sciences. The latest developments in fast computational algorithms and novel numerical methods have advanced reliable forecasting of ionospheric environments at fine scales. These new capabilities include improved physics-based predictive modeling, nesting and implicit relaxation techniques that are designed to integrate models of disparate scales. A range of scales, from mesoscale to ionospheric microscale, are included in a 3D modeling framework. Analyses and simulations of primary and secondary Rayleigh–Taylor instabilities in the equatorial spread F (ESF), the response of the plasma density to the neutral turbulent dynamics, and wave breaking in the lower region of the ionosphere and nonequilibrium layer dynamics at fine scales are presented for coupled systems (ions, electrons and neutral winds), thus enabling studies of mesoscale/microscale dynamics for a range of altitudes that encompass the ionospheric E and F layers. We examine the organizing mixing patterns for plasma flows, which occur due to polarized gravity wave excitations in the neutral field, using Lagrangian coherent structures (LCS). LCS objectively depict the flow topology and the extracted scintillation-producing irregularities that indicate a generation of ionospheric density gradients, due to the accumulation of plasma. The scintillation effects in propagation, through strongly inhomogeneous ionospheric media, are induced by trapping electromagnetic (EM) waves in parabolic cavities, which are created by the refractive index gradients along the propagation paths. (paper)

  19. Investigating the Relationships between Canopy Characteristics and Snow Depth Distribution at Fine Scales: Preliminary Results from the SnowEX TLS Campaign

    Science.gov (United States)

    Glenn, N. F.; Uhlmann, Z.; Spaete, L.; Tennant, C.; Hiemstra, C. A.; McNamara, J.

    2017-12-01

    Predicting changes in forested seasonal snowpacks under altered climate scenarios is one of the most pressing hydrologic challenges facing today's society. Airborne- and satellite-based remote sensing methods hold the potential to transform measurements of terrestrial water stores in snowpack, improve process representations of snowpack accumulation and ablation, and to generate high quality predictions that inform potential strategies to better manage water resources. While the effects of forest on snowpack are well documented, many of the fine-scale processes influenced by the forest-canopy are not directly accounted for because most snow models don't explicitly represent canopy structure and canopy heterogeneity. This study investigates the influence of forest canopy on snowpack distribution at fine scales and quantifies the influence of canopy heterogeneity on snowpack accumulation and ablation processes. We use terrestrial laser scanning (TLS) data collected during the SnowEX campaign to discover how the relationships between canopy and snow distributions change across scales. Our sample scales range from individual trees to patches of trees across the Grand Mesa, CO, SnowEx site.

  20. Development of fine-resolution analyses and expanded large-scale forcing properties: 2. Scale awareness and application to single-column model experiments

    Science.gov (United States)

    Feng, Sha; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Vogelmann, Andrew M.; Endo, Satoshi

    2015-01-01

    three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy's Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multiscale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scales larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.

  1. A Nonlinear Transmission Line Model of the Cochlea With Temporal Integration Accounts for Duration Effects in Threshold Fine Structure

    DEFF Research Database (Denmark)

    Verhey, Jesko L.; Mauermann, Manfred; Epp, Bastian

    2017-01-01

    For normal-hearing listeners, auditory pure-tone thresholds in quiet often show quasi periodic fluctuations when measured with a high frequency resolution, referred to as threshold fine structure. Threshold fine structure is dependent on the stimulus duration, with smaller fluctuations for short...... than for long signals. The present study demonstrates how this effect can be captured by a nonlinear and active model of the cochlear in combination with a temporal integration stage. Since this cochlear model also accounts for fine structure and connected level dependent effects, it is superior...

  2. 5 K extended X-ray absorption fine structure and 40 K 10-s resolved extended X-ray absorption fine structure studies of photolyzed carboxymyoglobin

    International Nuclear Information System (INIS)

    Teng, T.Y.; Huang, H.W.; Olah, G.A.

    1987-01-01

    A previous extended X-ray absorption fine structure (EXAFS) study of photolyzed carboxymyoglobin (MbCO) has provoked much discussion on the heme structure of the photoproduct (Mb*CO). The EXAFS interpretation that the Fe-Co distance increases by no more than 0.05 A following photodissociation has been regarded as inconsistent with optical, infrared, and magnetic susceptibility studies. The present experiment was performed with well-characterized dry film samples in which MbCO molecules were embedded in a poly(vinyl alcohol) matrix. The sample had a high protein concentration (12 mM) to yield adequate EXAFS signals but was very thin (40 μm) so that complete photolysis could be easily achieved by a single flash from a xenon lamp. Although the electronic state of Mb*CO resembles that of deoxymyoglobin (deoxy-Mb), direct comparison of EXAFS spectra indicates that structurally Mb*CO is much closer to MbCO than to deoxy-Mb. Our EXAFS analysis shows that photolysis of MbCO at 5 K leads to a stable intermediate state in which CO has moved away from iron by a distance of 0.27-0.45 A, but the 5-coordinate heme structure is strained in a form similar to that of MbCO; the resolution of the CO position depends on the structure parameters of MbCO which we use as a reference for the analysis of Mb*CO. At 40 K, from 1 to 10 s after photolysis, 42% of the photoproduct has relaxed to the ground state, and the EXAFS spectrum of the remaining photoproduct is indistinguishable from that of the 5 K photoproduct

  3. A Modeling Framework for Improved Characterization of Near-Road Exposure at Fine Scales

    Science.gov (United States)

    Traffic-related air pollutants could cause adverse health impact to communities near roadways. To estimate the population risk and locate "hotspots" in the near-road environment, quantifying the exposure at a fine spatial resolution is essential. A new state-of-the-art ...

  4. Application showcases for a small scale membrane contactor for fine chemical processes

    NARCIS (Netherlands)

    Roelands, C.P.M.; Ngene, I.S.

    2011-01-01

    The transition from batch to continuous processing in fine-chemicals industries offers many advantages; among these are a high volumetric productivity, improved control over reaction conditions resulting in a higher yield and selectivity, a small footprint and a safer process due to a smaller

  5. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers.

    Science.gov (United States)

    Ponti, Luigi; Gutierrez, Andrew Paul; Ruti, Paolo Michele; Dell'Aquila, Alessandro

    2014-04-15

    The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests.

  6. Temporal changes in vegetation of a virgin beech woodland remnant: stand-scale stability with intensive fine-scale dynamics governed by stand dynamic events

    Directory of Open Access Journals (Sweden)

    Tibor Standovár

    2017-03-01

    Full Text Available The aim of this resurvey study is to check if herbaceous vegetation on the forest floor exhibits overall stability at the stand-scale in spite of intensive dynamics at the scale of individual plots and stand dynamic events (driven by natural fine scale canopy gap dynamics. In 1996, we sampled a 1.5 ha patch using 0.25 m² plots placed along a 5 m × 5 m grid in the best remnant of central European montane beech woods in Hungary. All species in the herbaceous layer and their cover estimates were recorded. Five patches representing different stand developmental situations (SDS were selected for resurvey. In 2013, 306 plots were resurveyed by using blocks of four 0.25 m² plots to test the effects of imperfect relocation. We found very intensive fine-scale dynamics in the herbaceous layer with high species turnover and sharp changes in ground layer cover at the local-scale (< 1 m2. A decrease in species richness and herbaceous layer cover, as well as high species turnover, characterized the closing gaps. Colonization events and increasing species richness and herbaceous layer cover prevailed in the two newly created gaps. A pronounced decrease in the total cover, but low species turnover and survival of the majority of the closed forest specialists was detected by the resurvey at the stand-scale. The test aiming at assessing the effect of relocation showed a higher time effect than the effect of imprecise relocation. The very intensive fine-scale dynamics of the studied beech forest are profoundly determined by natural stand dynamics. Extinction and colonisation episodes even out at the stand-scale, implying an overall compositional stability of the herbaceous vegetation at the given spatial and temporal scale. We argue that fine-scale gap dynamics, driven by natural processes or applied as a management method, can warrant the survival of many closed forest specialist species in the long-run. Nomenclature: Flora Europaea (Tutin et al. 2010 for

  7. An Investigation of the Fine Spatial Structure of Meteor Streams Using the Relational Database ``Meteor''

    Science.gov (United States)

    Karpov, A. V.; Yumagulov, E. Z.

    2003-05-01

    We have restored and ordered the archive of meteor observations carried out with a meteor radar complex ``KGU-M5'' since 1986. A relational database has been formed under the control of the Database Management System (DBMS) Oracle 8. We also improved and tested a statistical method for studying the fine spatial structure of meteor streams with allowance for the specific features of application of the DBMS. Statistical analysis of the results of observations made it possible to obtain information about the substance distribution in the Quadrantid, Geminid, and Perseid meteor streams.

  8. The fine structure of the sperm of the round goby (Neogobius melanostomus)

    Science.gov (United States)

    Allen, Jeffrey D.; Walker, Glenn K.; Nichols, Susan J.; Sorenson, Dorothy

    2004-01-01

    The fine structural details of the spermatozoon of the round goby are presented for the first time in this study. Scanning and transmission electron microscopic examination of testis reveals an anacrosomal spermatozoon with a slightly elongate head and uniformly compacted chromatin. The midpiece contains a single, spherical mitochondrion. Two perpendicularly oriented centrioles lie in a deep, eccentric nuclear fossa with no regularly observed connection to the nucleus. The flagellum develops bilateral fins soon after emerging from the fossa; each extends approximately 1 A?m from the axoneme and persists nearly the length of the flagellum.

  9. Fine-structural effects of 1200-R abdominal x irradiation on rat intestinal epithelium

    International Nuclear Information System (INIS)

    Lieb, R.J.; McDonald, T.F.; McKenney, J.R.

    1977-01-01

    Male Charles River CD rats were shielded from the xiphoid process cranially with lead and were exposed to 1200-R abdominal x irradiation. Animals were sacrificed at 1 through 4 days following irradiation and tissues from both ileum and jejunum were prepared for electron microscopic examination. At the fine-structural level early changes were confined to a proliferation and dilation of smooth endoplasmic reticulum and to an increase in the number of lysosomes. At 4 days postirradiation, cells covering the villi were cuboidal rather than columnar and appeared to be immature crypt-type cells. The appearance of these cells was coincident with the onset of diarrhea in these animals

  10. Experimental determination of the relativistic fine-structure splitting in pionic Ti and Fe atoms

    International Nuclear Information System (INIS)

    Wang, K.; Boehm, F.; Bovet, E.; Hahn, A.A.; Henrikson, H.E.; Miller, J.P.; Powers, R.J.; Vogel, P.; Vuilleumier, J.; Kunselman, A.R.

    1980-01-01

    Using a high-resolution crystal spectrometer we have measured the relativistic angular-momentum splittings of the 5g-4f and 5f-4d transitions in pionic Ti and Fe atoms. The observed fine-structure splittings of 85.3 +- 3.0 eV in π - Ti and 158.5 +- 7.8 eV in π - Fe agree with the calculated splittings of 88.5 and 167.6 eV, respectively, arising from the Klein-Gordon equation and from small corrections due to vacuum polarization, strong interaction, and electron screening

  11. Evolution of the fine-structure constant in runaway dilaton models

    Energy Technology Data Exchange (ETDEWEB)

    Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Vielzeuf, P.E., E-mail: pvielzeuf@ifae.es [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Martinelli, M., E-mail: martinelli@thphys.uni-heidelberg.de [Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 16, 69120, Heidelberg (Germany); Calabrese, E., E-mail: erminia.calabrese@astro.ox.ac.uk [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Pandolfi, S., E-mail: stefania@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

    2015-04-09

    We study the detailed evolution of the fine-structure constant α in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent α measurements and discuss ways to distinguish it from alternative models for varying α. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical ΛCDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT), together with more sensitive α measurements, will thus dramatically constrain these scenarios.

  12. Evolution of the fine-structure constant in runaway dilaton models

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.; Vielzeuf, P.E.; Martinelli, M.; Calabrese, E.; Pandolfi, S.

    2015-01-01

    We study the detailed evolution of the fine-structure constant α in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent α measurements and discuss ways to distinguish it from alternative models for varying α. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical ΛCDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT), together with more sensitive α measurements, will thus dramatically constrain these scenarios

  13. Surface extended x-ray absorption fine structure of low-Z absorbates using fluorescence detection

    International Nuclear Information System (INIS)

    Stoehr, J.; Kollin, E.B.; Fischer, D.A.; Hastings, J.B.; Zaera, F.; Sette, F.

    1985-05-01

    Comparison of x-ray fluorescence yield (FY) and electron yield surface extended x-ray absorption fine structure spectra above the S K-edge for c(2 x 2) S on Ni(100) reveals an order of magnitude higher sensitivity of the FY technique. Using FY detection, thiophene (C 4 H 4 S) chemisorption on Ni(100) is studied with S coverages down to 0.08 monolayer. The molecule dissociates at temperatures as low as 100K by interaction with fourfold hollow Ni sites. Blocking of these sites by oxygen leaves the molecule intact

  14. Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot

    Science.gov (United States)

    Ware, M. E.; Stinaff, E. A.; Gammon, D.; Doty, M. F.; Bracker, A. S.; Gershoni, D.; Korenev, V. L.; Bădescu, Ş. C.; Lyanda-Geller, Y.; Reinecke, T. L.

    2005-10-01

    We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.

  15. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    Science.gov (United States)

    Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.

    2008-11-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.

  16. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    International Nuclear Information System (INIS)

    Bracker, Allan S; Gammon, Daniel; Korenev, Vladimir L

    2008-01-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information

  17. Extended X-ray absorption fine structure (EXAFS) studies of supported catalysts

    International Nuclear Information System (INIS)

    Joyner, R.W.

    1979-01-01

    Since the rebirth of interest in extended X-ray absorption fine structure there have been several studies of systems of catalytic interest. This note is a preliminary account of an investigation of supported platinum catalysts and NiO/Al 2 O 3 catalysts. Experiments were performed on pressed disc samples at the DESY synchrotron, Hamburg, using the EXAFS spectrometer. The synchrotron operated at 7 GeV energy with a circulating current of approximately 4 mA; spectrum accumulation time was typically 45 minutes. (author)

  18. EXANA, a program for analysing EXtended energy loss fine structures, EXELFS spectra

    International Nuclear Information System (INIS)

    Tafreshi, M.A.; Bohm, C.; Csillag, S.

    1992-09-01

    This paper is a users guide and reference manual for the EXANA, an IBM or IBM compatible PC-based program used for analysing extended fine structures occurring on the high energy side of the ionisation edges. The RDF (Radial Distance Function) obtained from this analysis contains information about the number, distance, and type of the nearby atoms, as well as the inelastic mean free path and disorder in distances from the centre atom to the atoms in a atomic shell around it. The program can be made available on request. (au)

  19. Sensitivity of ultracold-atom scattering experiments to variation of the fine-structure constant

    International Nuclear Information System (INIS)

    Borschevsky, A.; Beloy, K.; Flambaum, V. V.; Schwerdtfeger, P.

    2011-01-01

    We present numerical calculations for cesium and mercury to estimate the sensitivity of the scattering length to the variation of the fine-structure constant α. The method used follows the ideas of Chin and Flambaum [Phys. Rev. Lett. 96, 230801 (2006)], where the sensitivity to the variation of the electron-to-proton mass ratio β was considered. We demonstrate that for heavy systems, the sensitivity to the variation of α is of the same order of magnitude as to the variation of β. Near narrow Feshbach resonances, the enhancement of the sensitivity may exceed nine orders of magnitude.

  20. Fine structure of the giant M1 resonance in 90Zr.

    Science.gov (United States)

    Rusev, G; Tsoneva, N; Dönau, F; Frauendorf, S; Schwengner, R; Tonchev, A P; Adekola, A S; Hammond, S L; Kelley, J H; Kwan, E; Lenske, H; Tornow, W; Wagner, A

    2013-01-11

    The M1 excitations in the nuclide 90Zr have been studied in a photon-scattering experiment with monoenergetic and linearly polarized beams from 7 to 11 MeV. More than 40 J(π)=1+ states have been identified from observed ground-state transitions, revealing the fine structure of the giant M1 resonance with a centroid energy of 9 MeV and a sum strength of 4.17(56) μ(N)(2). The result for the total M1 strength and its fragmentation are discussed in the framework of the three-phonon quasiparticle-phonon model.

  1. Analysis of the local structure of AlN:Mn using X-ray absorption fine structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Takao [Materials Laboratories, Sony Corporation, 4-14-1 Asahi-cho, Atsugi-shi, Kanagawa 243-0014 (Japan); Kudo, Yoshihiro [Materials Analysis Lab., Sony Corporation, 4-18-1 Okada, Atsugi-shi, Kanagawa 243-0021 (Japan); Uruga, Tomoya [Japan Synchrotron Radiation Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hara, Kazuhiko [Research Inst. of Electronics, Shizuoka Univ., 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan)

    2006-06-15

    The local structure around the Mn atoms in MOCVD-grown AlN:Mn films which show Mn-related red-orange photoluminescence with a 600nm-peak at room temperature was investigated using the X-ray absorption fine structure (XAFS) measurements. We found that Mn atoms occupy Al lattice sites in the AlN film and that the Mn ions have a charge between +2 and +3. From these results, we think that the red-orange luminescence is caused by the transition of d-electrons in the Mn ions. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Multiscale pore structure and constitutive models of fine-grained rocks

    Science.gov (United States)

    Heath, J. E.; Dewers, T. A.; Shields, E. A.; Yoon, H.; Milliken, K. L.

    2017-12-01

    A foundational concept of continuum poromechanics is the representative elementary volume or REV: an amount of material large enough that pore- or grain-scale fluctuations in relevant properties are dissipated to a definable mean, but smaller than length scales of heterogeneity. We determine 2D-equivalent representative elementary areas (REAs) of pore areal fraction of three major types of mudrocks by applying multi-beam scanning electron microscopy (mSEM) to obtain terapixel image mosaics. Image analysis obtains pore areal fraction and pore size and shape as a function of progressively larger measurement areas. Using backscattering imaging and mSEM data, pores are identified by the components within which they occur, such as in organics or the clastic matrix. We correlate pore areal fraction with nano-indentation, micropillar compression, and axysimmetic testing at multiple length scales on a terrigenous-argillaceous mudrock sample. The combined data set is used to: investigate representative elementary volumes (and areas for the 2D images); determine if scale separation occurs; and determine if transport and mechanical properties at a given length scale can be statistically defined. Clear scale separation occurs between REAs and observable heterogeneity in two of the samples. A highly-laminated sample exhibits fine-scale heterogeneity and an overlapping in scales, in which case typical continuum assumptions on statistical variability may break down. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  3. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    Directory of Open Access Journals (Sweden)

    Florian Holon

    Full Text Available Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m. It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures

  4. Fine-Scale Cartography of Human Impacts along French Mediterranean Coasts: A Relevant Map for the Management of Marine Ecosystems.

    Science.gov (United States)

    Holon, Florian; Mouquet, Nicolas; Boissery, Pierre; Bouchoucha, Marc; Delaruelle, Gwenaelle; Tribot, Anne-Sophie; Deter, Julie

    2015-01-01

    Ecosystem services provided by oceans and seas support most human needs but are threatened by human activities. Despite existing maps illustrating human impacts on marine ecosystems, information remains either large-scale but rough and insufficient for stakeholders (1 km² grid, lack of data along the coast) or fine-scale but fragmentary and heterogeneous in methodology. The objectives of this study are to map and quantify the main pressures exerted on near-coast marine ecosystems, at a large spatial scale though in fine and relevant resolution for managers (one pixel = 20 x 20 m). It focuses on the French Mediterranean coast (1,700 km of coastline including Corsica) at a depth of 0 to 80 m. After completing and homogenizing data presently available under GIS on the bathymetry and anthropogenic pressures but also on the seabed nature and ecosystem vulnerability, we provide a fine modeling of the extent and impacts of 10 anthropogenic pressures on marine habitats. The considered pressures are man-made coastline, boat anchoring, aquaculture, urban effluents, industrial effluents, urbanization, agriculture, coastline erosion, coastal population and fishing. A 1:10 000 continuous habitat map is provided considering 11 habitat classes. The marine bottom is mostly covered by three habitats: infralittoral soft bottom, Posidonia oceanica meadows and circalittoral soft bottom. Around two thirds of the bottoms are found within medium and medium high cumulative impact categories. Seagrass meadows are the most impacted habitats. The most important pressures (in area and intensity) are urbanization, coastal population, coastal erosion and man-made coastline. We also identified areas in need of a special management interest. This work should contribute to prioritize environmental needs, as well as enhance the development of indicators for the assessment of the ecological status of coastal systems. It could also help better apply and coordinate management measures at a relevant

  5. Extended x-ray absorption fine structure: Studies of zinc-neutralized sulfonated polystyrene ionomers

    International Nuclear Information System (INIS)

    Ding, Y.S.; Yarusso, D.J.; Pan, H.K.D.; Cooper, S.L.

    1984-01-01

    Extended x-ray absorption fine structure (EXAFS) measurements were performed on a series of zinc-neutralized sulfonated polystyrene ionomers and the local structure around the zinc atom was determined. An interference effect in the EXAFS signal between sulfur and oxygen atoms was found to be significant in these materials. A model for the local structure in the zinc-neutralized sulfonated polystyrene ionomers is proposed which suggests a highly ordered tetrahedral coordination of oxygen around the zinc atoms at a distance of 1.97 +- 0.02 A. In addition there are four sulfur atoms and four oxygen atoms at a distance of 3.15 +- 0.05 A. No zinc-zinc coordination within 5 A was detected in this study

  6. Fine- and hyperfine structure investigations of the even-parity configuration system of the atomic holmium

    Science.gov (United States)

    Stefanska, D.; Ruczkowski, J.; Elantkowska, M.; Furmann, B.

    2018-04-01

    In this work new experimental results concerning the hyperfine structure (hfs) for the even-parity level system of the holmium atom (Ho I) were obtained; additionally, hfs data obtained recently as a by-product in investigations of the odd-parity level system were summarized. In the present work the values of the magnetic dipole and the electric quadrupole hfs constants A and B were determined for 24 even-parity levels, for 14 of them for the first time. On the basis of these results, as well as on available literature data, a parametric study of the fine structure and the hyperfine structure for the even-parity configurations of atomic holmium was performed. A multi-configuration fit of 7 configurations was carried out, taking into account second-order of the perturbation theory. For unknown electronic levels predicted values of the level energies and hfs constants are given, which can facilitate further experimental investigations.

  7. Revised description of the fine structure of in situ "zooxanthellae" genus Symbiodinium.

    Science.gov (United States)

    Wakefield, T S; Farmer, M A; Kempf, S C

    2000-08-01

    The fine structure of the symbiotic dinoflagellate genus Symbiodinium has been well described. All of the published descriptions are based on tissue that was fixed in standard aldehyde and osmium fixatives and dehydrated in an ethanol series before embedding. When the technique of freeze-substitution was used to fix tissue from Cassiopeia xamachana, Aiptasia pallida, and Phyllactis flosculifera and prepare it for embedding, thecal vesicles were revealed within the in situ symbionts of all three species. Although these structures have been identified in cultured symbionts, they have never been described in the in situ symbionts. A review of the literature has revealed several instances where thecal vesicles were either overlooked or identified incorrectly. Thus the formal description of the genus Symbiodinium, which describes the in situ symbionts, contains information that is based on artifact and should be revised. A revision of the genus is suggested, and the true nature of these structures and their significance in the symbiotic association are discussed.

  8. `Fingerprint' Fine Structure in the Solar Decametric Radio Spectrum Solar Physics

    Science.gov (United States)

    Zlotnik, E. Y.; Zaitsev, V. V.; Melnik, V. N.; Konovalenko, A. A.; Dorovskyy, V. V.

    2015-07-01

    We study a unique fine structure in the dynamic spectrum of the solar radio emission discovered by the UTR-2 radio telescope (Kharkiv, Ukraine) in the frequency band of 20 - 30 MHz. The structure was observed against the background of a broadband type IV radio burst and consisted of parallel drifting narrow bands of enhanced emission and absorption on the background emission. The observed structure differs from the widely known zebra pattern at meter and decimeter wavelengths by the opposite directions of the frequency drift within a single stripe at a given time. We show that the observed properties can be understood in the framework of the radiation mechanism by virtue of the double plasma resonance effect in a nonuniform coronal magnetic trap. We propose a source model providing the observed frequency drift of the stripes.

  9. Development of solar flares and features of the fine structure of solar radio emission

    Science.gov (United States)

    Chernov, G. P.; Fomichev, V. V.; Yan, Y.; Tan, B.; Tan, Ch.; Fu, Q.

    2017-11-01

    The reason for the occurrence of different elements of the fine structure of solar radio bursts in the decimeter and centimeter wavelength ranges has been determined based on all available data from terrestrial and satellite observations. In some phenomena, fast pulsations, a zebra structre, fiber bursts, and spikes have been observed almost simultaneously. Two phenomena have been selected to show that the pulsations of radio emission are caused by particles accelerated in the magnetic reconnection region and that the zebra structure is excited in a source, such as a magnetic trap for fast particles. The complex combination of unusual fiber bursts, zebra structure, and spikes in the phenomenon on December 1, 2004, is associated with a single source, a magnetic island formed after a coronal mass ejection.

  10. Universal Scaling Relations in Scale-Free Structure Formation

    Science.gov (United States)

    Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.

    2018-04-01

    A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM∝M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters and even dark matter halos. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power law tail of dA/d lnΣ∝Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D∝R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM halos) tend to a ρ∝R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation and detailed "full physics" hydrodynamical simulations. We find that these power-laws are good first order descriptions in all cases.

  11. Large-scale structure of the Universe

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.

    1978-01-01

    The problems, discussed at the ''Large-scale Structure of the Universe'' symposium are considered on a popular level. Described are the cell structure of galaxy distribution in the Universe, principles of mathematical galaxy distribution modelling. The images of cell structures, obtained after reprocessing with the computer are given. Discussed are three hypothesis - vortical, entropic, adiabatic, suggesting various processes of galaxy and galaxy clusters origin. A considerable advantage of the adiabatic hypothesis is recognized. The relict radiation, as a method of direct studying the processes taking place in the Universe is considered. The large-scale peculiarities and small-scale fluctuations of the relict radiation temperature enable one to estimate the turbance properties at the pre-galaxy stage. The discussion of problems, pertaining to studying the hot gas, contained in galaxy clusters, the interactions within galaxy clusters and with the inter-galaxy medium, is recognized to be a notable contribution into the development of theoretical and observational cosmology

  12. Landscape genetic analyses reveal fine-scale effects of forest fragmentation in an insular tropical bird.

    Science.gov (United States)

    Khimoun, Aurélie; Peterman, William; Eraud, Cyril; Faivre, Bruno; Navarro, Nicolas; Garnier, Stéphane

    2017-10-01

    Within the framework of landscape genetics, resistance surface modelling is particularly relevant to explicitly test competing hypotheses about landscape effects on gene flow. To investigate how fragmentation of tropical forest affects population connectivity in a forest specialist bird species, we optimized resistance surfaces without a priori specification, using least-cost (LCP) or resistance (IBR) distances. We implemented a two-step procedure in order (i) to objectively define the landscape thematic resolution (level of detail in classification scheme to describe landscape variables) and spatial extent (area within the landscape boundaries) and then (ii) to test the relative role of several landscape features (elevation, roads, land cover) in genetic differentiation in the Plumbeous Warbler (Setophaga plumbea). We detected a small-scale reduction of gene flow mainly driven by land cover, with a negative impact of the nonforest matrix on landscape functional connectivity. However, matrix components did not equally constrain gene flow, as their conductivity increased with increasing structural similarity with forest habitat: urban areas and meadows had the highest resistance values whereas agricultural areas had intermediate resistance values. Our results revealed a higher performance of IBR compared to LCP in explaining gene flow, reflecting suboptimal movements across this human-modified landscape, challenging the common use of LCP to design habitat corridors and advocating for a broader use of circuit theory modelling. Finally, our results emphasize the need for an objective definition of landscape scales (landscape extent and thematic resolution) and highlight potential pitfalls associated with parameterization of resistance surfaces. © 2017 John Wiley & Sons Ltd.

  13. Fine Structure of Tibetan Kefir Grains and Their Yeast Distribution, Diversity, and Shift

    Science.gov (United States)

    Lu, Man; Wang, Xingxing; Sun, Guowei; Qin, Bing; Xiao, Jinzhou; Yan, Shuling; Pan, Yingjie; Wang, Yongjie

    2014-01-01

    Tibetan kefir grains (TKGs), a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i) yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii) the diversity of yeasts is relatively low on genus level with three dominant species – Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii) S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic associations between S

  14. Fine structure of Tibetan kefir grains and their yeast distribution, diversity, and shift.

    Directory of Open Access Journals (Sweden)

    Man Lu

    Full Text Available Tibetan kefir grains (TKGs, a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii the diversity of yeasts is relatively low on genus level with three dominant species--Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic

  15. The variation of the fine-structure constant from disformal couplings

    Energy Technology Data Exchange (ETDEWEB)

    De Bruck, Carsten van; Mifsud, Jurgen [Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Nunes, Nelson J., E-mail: c.vandebruck@sheffield.ac.uk, E-mail: jmifsud1@sheffield.ac.uk, E-mail: njnunes@fc.ul.pt [Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, PT1749-016 Lisboa (Portugal)

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.

  16. The variation of the fine-structure constant from disformal couplings

    International Nuclear Information System (INIS)

    De Bruck, Carsten van; Mifsud, Jurgen; Nunes, Nelson J.

    2015-01-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory

  17. Measurement of the fine-structure constant as a test of the Standard Model

    Science.gov (United States)

    Parker, Richard H.; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger

    2018-04-01

    Measurements of the fine-structure constant α require methods from across subfields and are thus powerful tests of the consistency of theory and experiment in physics. Using the recoil frequency of cesium-133 atoms in a matter-wave interferometer, we recorded the most accurate measurement of the fine-structure constant to date: α = 1/137.035999046(27) at 2.0 × 10‑10 accuracy. Using multiphoton interactions (Bragg diffraction and Bloch oscillations), we demonstrate the largest phase (12 million radians) of any Ramsey-Bordé interferometer and control systematic effects at a level of 0.12 part per billion. Comparison with Penning trap measurements of the electron gyromagnetic anomaly ge ‑ 2 via the Standard Model of particle physics is now limited by the uncertainty in ge ‑ 2; a 2.5σ tension rejects dark photons as the reason for the unexplained part of the muon’s magnetic moment at a 99% confidence level. Implications for dark-sector candidates and electron substructure may be a sign of physics beyond the Standard Model that warrants further investigation.

  18. Upscale or downscale: applications of fine scale remotely sensed data to Chagas disease in Argentina and schistosomiasis in Kenya.

    Science.gov (United States)

    Kitron, Uriel; Clennon, Julie A; Cecere, M Carla; Gürtler, Ricardo E; King, Charles H; Vazquez-Prokopec, Gonzalo

    2006-11-01

    Depending on the research question or the public health application, the appropriate resolution of the data varies temporally, spatially, and, for satellite data, spectrally and radiometrically. Regardless of the scale used to address a research or public health question, the temptation is always there to extrapolate from fine-resolution data or to interpolate from coarse resolution studies. In both cases, the relevance of data and analyses conducted on one spatial level to other levels cannot be taken for granted. Spatial heterogeneity on the micro-scale may not be detected using coarse spatial resolution, and conversely, general patterns on the macro-scale may not be detected using fine spatial resolution. Two studies are described where the transmission dynamics and risk of infection was assessed on the micro-scale starting with household level studies in one community, and the study area was extended gradually to consider several communities and sources for vectors or intermediate hosts. In a study of Chagas disease in northwest Argentina, the reinfestation process of communities by the main domestic vector was analyzed using spatial statistics; sources within and outside communities as well as the distance of reinfestation were identified. In a study of urinary schistosomiasis in coastal Kenya, age dependent and directional focal clustering of infections was detected around some aquatic habitats, and a hydrological model was developed to detect least cost dispersal routes that allow snails to reinfest dried-up habitats. Some general aspects of focal statistics are discussed. Several general questions need to be considered in geospatial health studies, including the following: (i) what are the best criteria for selecting the spatial (and temporal) unit of intervention and analysis? (ii) how do the key measures of risk and transmission dynamics vary with scale? (iii) how do we integrate processes occurring at diverse spatial and temporal scales? All of these

  19. Extended x-ray absorption fine structure (EXAFS): a novel probe for local structure of glassy solids

    International Nuclear Information System (INIS)

    Wong, J.

    1979-01-01

    The extended x-ray absorption fine structure (EXAFS) is the oscillation in the absorption coefficient extending a few hundred eVs on the high energy side of an x-ray absorption edge. This mode of spectroscopy has recently been realized to be a powerful tool in probing the local atomic structure of all states of matter, particularly with the advent of intense synchrotron radiation. More importantly is the unique ability of EXAFS to probe the structure and dynamics around individual atomic species in a multi-atomic system. In this paper, the physical processes associated with the EXAFS phenomenon will be discussed. Experimental results obtained at the Stanford Synchrotron Radiation Laboratory on some oxide and metallic glasses will be presented. The local structure in these materials are elucidated using a Fourier transform technique

  20. Fine-Scale Bacterial Beta Diversity within a Complex Ecosystem (Zodletone Spring, OK, USA): The Role of the Rare Biosphere

    Science.gov (United States)

    Youssef, Noha H.; Couger, M. B.; Elshahed, Mostafa S.

    2010-01-01

    Background The adaptation of pyrosequencing technologies for use in culture-independent diversity surveys allowed for deeper sampling of ecosystems of interest. One extremely well suited area of interest for pyrosequencing-based diversity surveys that has received surprisingly little attention so far, is examining fine scale (e.g. micrometer to millimeter) beta diversity in complex microbial ecosystems. Methodology/Principal Findings We examined the patterns of fine scale Beta diversity in four adjacent sediment samples (1mm apart) from the source of an anaerobic sulfide and sulfur rich spring (Zodletone spring) in southwestern Oklahoma, USA. Using pyrosequencing, a total of 292,130 16S rRNA gene sequences were obtained. The beta diversity patterns within the four datasets were examined using various qualitative and quantitative similarity indices. Low levels of Beta diversity (high similarity indices) were observed between the four samples at the phylum-level. However, at a putative species (OTU0.03) level, higher levels of beta diversity (lower similarity indices) were observed. Further examination of beta diversity patterns within dominant and rare members of the community indicated that at the putative species level, beta diversity is much higher within rare members of the community. Finally, sub-classification of rare members of Zodletone spring community based on patterns of novelty and uniqueness, and further examination of fine scale beta diversity of each of these subgroups indicated that members of the community that are unique, but non novel showed the highest beta diversity within these subgroups of the rare biosphere. Conclusions/Significance The results demonstrate the occurrence of high inter-sample diversity within seemingly identical samples from a complex habitat. We reason that such unexpected diversity should be taken into consideration when exploring gamma diversity of various ecosystems, as well as planning for sequencing-intensive metagenomic

  1. Fine-scale flight strategies of gulls in urban airflows indicate risk and reward in city living.

    Science.gov (United States)

    Shepard, Emily L C; Williamson, Cara; Windsor, Shane P

    2016-09-26

    Birds modulate their flight paths in relation to regional and global airflows in order to reduce their travel costs. Birds should also respond to fine-scale airflows, although the incidence and value of this remains largely unknown. We resolved the three-dimensional trajectories of gulls flying along a built-up coastline, and used computational fluid dynamic models to examine how gulls reacted to airflows around buildings. Birds systematically altered their flight trajectories with wind conditions to exploit updraughts over features as small as a row of low-rise buildings. This provides the first evidence that human activities can change patterns of space-use in flying birds by altering the profitability of the airscape. At finer scales still, gulls varied their position to select a narrow range of updraught values, rather than exploiting the strongest updraughts available, and their precise positions were consistent with a strategy to increase their velocity control in gusty conditions. Ultimately, strategies such as these could help unmanned aerial vehicles negotiate complex airflows. Overall, airflows around fine-scale features have profound implications for flight control and energy use, and consideration of this could lead to a paradigm-shift in the way ecologists view the urban environment.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).

  2. A Conceptual Framework for the Assessment of Cumulative Exposure to Air Pollution at a Fine Spatial Scale

    Directory of Open Access Journals (Sweden)

    Kihal-Talantikite Wahida

    2016-03-01

    Full Text Available Many epidemiological studies examining long-term health effects of exposure to air pollutants have characterized exposure by the outdoor air concentrations at sites that may be distant to subjects’ residences at different points in time. The temporal and spatial mobility of subjects and the spatial scale of exposure assessment could thus lead to misclassification in the cumulative exposure estimation. This paper attempts to fill the gap regarding cumulative exposure assessment to air pollution at a fine spatial scale in epidemiological studies investigating long-term health effects. We propose a conceptual framework showing how major difficulties in cumulative long-term exposure assessment could be surmounted. We then illustrate this conceptual model on the case of exposure to NO2 following two steps: (i retrospective reconstitution of NO2 concentrations at a fine spatial scale; and (ii a novel approach to assigning the time-relevant exposure estimates at the census block level, using all available data on residential mobility throughout a 10- to 20-year period prior to that for which the health events are to be detected. Our conceptual framework is both flexible and convenient for the needs of different epidemiological study designs.

  3. A Conceptual Framework for the Assessment of Cumulative Exposure to Air Pollution at a Fine Spatial Scale

    Science.gov (United States)

    Wahida, Kihal-Talantikite; Padilla, Cindy M.; Denis, Zmirou-Navier; Olivier, Blanchard; Géraldine, Le Nir; Philippe, Quenel; Séverine, Deguen

    2016-01-01

    Many epidemiological studies examining long-term health effects of exposure to air pollutants have characterized exposure by the outdoor air concentrations at sites that may be distant to subjects’ residences at different points in time. The temporal and spatial mobility of subjects and the spatial scale of exposure assessment could thus lead to misclassification in the cumulative exposure estimation. This paper attempts to fill the gap regarding cumulative exposure assessment to air pollution at a fine spatial scale in epidemiological studies investigating long-term health effects. We propose a conceptual framework showing how major difficulties in cumulative long-term exposure assessment could be surmounted. We then illustrate this conceptual model on the case of exposure to NO2 following two steps: (i) retrospective reconstitution of NO2 concentrations at a fine spatial scale; and (ii) a novel approach to assigning the time-relevant exposure estimates at the census block level, using all available data on residential mobility throughout a 10- to 20-year period prior to that for which the health events are to be detected. Our conceptual framework is both flexible and convenient for the needs of different epidemiological study designs. PMID:26999170

  4. Alfvénic Dynamics and Fine Structuring of Discrete Auroral Arcs: Swarm and e-POP Observations

    Science.gov (United States)

    Miles, D.; Mann, I. R.; Pakhotin, I.; Burchill, J. K.; Howarth, A. D.; Knudsen, D. J.; Wallis, D. D.; Yau, A. W.; Lysak, R. L.

    2017-12-01

    The electrodynamics associated with dual discrete arc aurora with anti-parallel flow along the arcs were observed nearly simultaneously by the enhanced Polar Outflow Probe (e-POP) and the Swarm A and C spacecraft. Auroral imaging from e-POP reveal 1-10 km structuring of the arcs, which move and evolve on second timescales and confound the traditional single-spacecraft field-aligned current algorithms. High-cadence magnetic data from e-POP shows 1-10 Hz, presumably Alfvénic perturbations co-incident with and at the same scale size as the observed dynamic auroral fine structures. High-cadence electric and magnetic field data from Swarm A reveals non-stationary electrodynamics involving reflected and interfering Alfvén waves and signatures of modulation consistent with trapping in the Ionospheric Alfvén Resonator (IAR). Together, these observations suggest a role for Alfven waves, perhaps also the IAR, in discrete arc dynamics on 0.2 - 10s timescales and 1-10 km spatial scales.

  5. X-ray absorption fine structure (XAFS) spectroscopy: a tool for structural studies in material sciences (abstract)

    International Nuclear Information System (INIS)

    Akhtar, M.J.

    2011-01-01

    XAFS spectroscopy has revealed itself as a powerful technique for structural characterization of the local atomic environment of individual atomic species, including bond distances, coordination numbers and type of nearest neighbors surrounding the central atom. This technique is particularly useful for materials that show considerable structural and chemical disorder. XAFS spectroscopy has found extensive applications in determining the local atomic and electronic structure of the absorbing centers (atoms) in the materials science, physics, chemistry, biology and geophysics. X-ray absorption edges contain a variety of information on the chemical state and the local structure of the absorbing atom. On the higher energy side of an absorption edge fine structure is observed due to backscattering of the emitted photoelectron. The post-edge region can be divided into two parts. The X-ray Absorption Near Edge Structure (XANES) which extends up to 50 eV of an absorption edge, the spectrum is interpreted in terms of the appropriate components of the local density of states, which would be expected to be sensitive to the valence state of the atom. The intensity, shape and location of the absorption edge features provide information on the valence state, electronic structure and coordination geometry of the absorbing atom.The Extended X-ray Absorption Fine Structure (EXAFS) region is dominated by the single scattering processes and extends up to 1000 eV above the edge and provides information on the radial distribution (coordination number, radial distance and type of neighboring atoms) around the central atom. The results on perovskite based and spinel ferrites systems will be presented, where valence state and cation distributions are determined; the present study will show focus on SrFeO/sub 3/, MnFe/sub 2/O/sub 4/ and Zn/sub 1-x/Ni/sub x/Fe/sub 2/O/sub 4/ materials. (author)

  6. Estimation of non-linear effective permeability of magnetic materials with fine structure

    International Nuclear Information System (INIS)

    Waki, H.; Igarashi, H.; Honma, T.

    2006-01-01

    This paper describes a homogenization method for magnetic materials with fine structure. In this method, the structures of the magnetic materials are assumed to be periodic, and the unit cell is defined. The effective permeability is determined on the basis of magnetic energy balance in the unit cell. This method can be applied not only for linear problems but also for non-linear ones. In this paper, estimation of the effective permeability of non-linear magnetic materials by using the homogenization method is described in detail, and then the validity for the non-liner problems is tested for two-dimensional problems. It is shown that this homogenization method gives accurate non-linear effective permeability

  7. The origin of large scale cosmic structure

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Palmer, P.L.

    1985-01-01

    The paper concerns the origin of large scale cosmic structure. The evolution of density perturbations, the nonlinear regime (Zel'dovich's solution and others), the Gott and Rees clustering hierarchy, the spectrum of condensations, and biassed galaxy formation, are all discussed. (UK)

  8. Inflation, large scale structure and particle physics

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences ... Hybrid inflation; Higgs scalar field; structure formation; curvation. ... We then discuss a particle physics model of supersymmetric hybrid inflation at the intermediate scale in which ... May 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board ...

  9. Fine structure and optical properties of biological polarizers in crustaceans and cephalopods

    Science.gov (United States)

    Chiou, Tsyr-Huei; Caldwell, Roy L.; Hanlon, Roger T.; Cronin, Thomas W.

    2008-04-01

    The lighting of the underwater environment is constantly changing due to attenuation by water, scattering by suspended particles, as well as the refraction and reflection caused by the surface waves. These factors pose a great challenge for marine animals which communicate through visual signals, especially those based on color. To escape this problem, certain cephalopod mollusks and stomatopod crustaceans utilize the polarization properties of light. While the mechanisms behind the polarization vision of these two animal groups are similar, several distinctive types of polarizers (i.e. the structure producing the signal) have been found in these animals. To gain a better knowledge of how these polarizers function, we studied the relationships between fine structures and optical properties of four types of polarizers found in cephalopods and stomatopods. Although all the polarizers share a somewhat similar spectral range, around 450- 550 nm, the reflectance properties of the signals and the mechanisms used to produce them have dramatic differences. In cephalopods, stack-plates polarizers produce the polarization patterns found on the arms and around their eyes. In stomatopods, we have found one type of beam-splitting polarizer based on photonic structures and two absorptive polarizer types based on dichroic molecules. These stomatopod polarizers may be found on various appendages, and on the cuticle covering dorsal or lateral sides of the animal. Since the efficiencies of all these polarizer types are somewhat sensitive to the change of illumination and viewing angle, how these animals compensate with different behaviors or fine structural features of the polarizer also varies.

  10. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both the ash and sulfur contents of run-of-mine coals. The extent of cleaning depends on the liberation characteristics of the coal, which generally improve with reducing particle size. however, since most of the advanced technologies are wet processes, the clean coal product must be dewatered before it can be transported and burned in conventional boilers. This additional treatment step significantly increases the processing cost and makes the industrial applicability of these advanced technologies much less attractive. In order to avoid problems associated with fine coal dewatering, researchers at the Pittsburgh Energy Technology Center (PETC) developed a novel triboelectrostatic separation (TES) process that can remove mineral matter from dry coal. In this technique, finely pulverized coal is brought into contact with a material (such as copper) having a work function intermediate to that of the carbonaceous material and associated mineral matter. Carbonaceous particles having a relatively low work function become positively charged, while particles of mineral matter having significantly higher work functions become negatively charged. once the particles become selectively charged, a separation can be achieved by passing the particle stream through an electrically charged field. Details related to the triboelectrostatic charging phenomenon have been discussed elsewhere (Inculet, 1984).

  11. Small scale structure formation in chameleon cosmology

    International Nuclear Information System (INIS)

    Brax, Ph.; Bruck, C. van de; Davis, A.C.; Green, A.M.

    2006-01-01

    Chameleon fields are scalar fields whose mass depends on the ambient matter density. We investigate the effects of these fields on the growth of density perturbations on sub-galactic scales and the formation of the first dark matter halos. Density perturbations on comoving scales R<1 pc go non-linear and collapse to form structure much earlier than in standard ΛCDM cosmology. The resulting mini-halos are hence more dense and resilient to disruption. We therefore expect (provided that the density perturbations on these scales have not been erased by damping processes) that the dark matter distribution on small scales would be more clumpy in chameleon cosmology than in the ΛCDM model

  12. Fine-scale estimation of carbon monoxide and fine particulate matter concentrations in proximity to a road intersection by using wavelet neural network with genetic algorithm

    Science.gov (United States)

    Wang, Zhanyong; Lu, Feng; He, Hong-di; Lu, Qing-Chang; Wang, Dongsheng; Peng, Zhong-Ren

    2015-03-01

    At road intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly in the green-light period, which generates higher velocity fluctuation and thus higher emission rates. Additionally, the frequent changes of wind direction further add the highly variable dispersion of pollutants at the street scale. It is, therefore, very difficult to estimate the distribution of pollutant concentrations using conventional deterministic causal models. For this reason, a hybrid model combining wavelet neural network and genetic algorithm (GA-WNN) is proposed for predicting 5-min series of carbon monoxide (CO) and fine particulate matter (PM2.5) concentrations in proximity to an intersection. The proposed model is examined based on the measured data under two situations. As the measured pollutant concentrations are found to be dependent on the distance to the intersection, the model is evaluated in three locations respectively, i.e. 110 m, 330 m and 500 m. Due to the different variation of pollutant concentrations on varied time, the model is also evaluated in peak and off-peak traffic time periods separately. Additionally, the proposed model, together with the back-propagation neural network (BPNN), is examined with the measured data in these situations. The proposed model is found to perform better in predictability and precision for both CO and PM2.5 than BPNN does, implying that the hybrid model can be an effective tool to improve the accuracy of estimating pollutants' distribution pattern at intersections. The outputs of these findings demonstrate the potential of the proposed model to be applicable to forecast the distribution pattern of air pollution in real-time in proximity to road intersection.

  13. Mirror dark matter and large scale structure

    International Nuclear Information System (INIS)

    Ignatiev, A.Yu.; Volkas, R.R.

    2003-01-01

    Mirror matter is a dark matter candidate. In this paper, we reexamine the linear regime of density perturbation growth in a universe containing mirror dark matter. Taking adiabatic scale-invariant perturbations as the input, we confirm that the resulting processed power spectrum is richer than for the more familiar cases of cold, warm and hot dark matter. The new features include a maximum at a certain scale λ max , collisional damping below a smaller characteristic scale λ S ' , with oscillatory perturbations between the two. These scales are functions of the fundamental parameters of the theory. In particular, they decrease for decreasing x, the ratio of the mirror plasma temperature to that of the ordinary. For x∼0.2, the scale λ max becomes galactic. Mirror dark matter therefore leads to bottom-up large scale structure formation, similar to conventional cold dark matter, for x(less-or-similar sign)0.2. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime. The differences pertain to scales smaller than λ S ' in the linear regime, and generally in the nonlinear regime because mirror dark matter is chemically complex and to some extent dissipative. Lyman-α forest data and the early reionization epoch established by WMAP may hold the key to distinguishing mirror dark matter from WIMP-style cold dark matter

  14. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.

    Science.gov (United States)

    De Roeck, Els; Van Coillie, Frieke; De Wulf, Robert; Soenen, Karen; Charlier, Johannes; Vercruysse, Jozef; Hantson, Wouter; Ducheyne, Els; Hendrickx, Guy

    2014-12-01

    The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke, as a case in point, this study illustrates the potential of very high resolution (VHR) optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of transmitted by freshwater snails. The vector thrives in small water bodies (SWBs), such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA) that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations.

  15. Cooling pipeline disposing structure for large-scaled cryogenic structure

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki.

    1996-01-01

    The present invention concerns an electromagnetic force supporting structure for superconductive coils. As the size of a cryogenic structure is increased, since it takes much cooling time, temperature difference between cooling pipelines and the cryogenic structure is increased over a wide range, and difference of heat shrinkage is increased to increase thermal stresses. Then, in the cooling pipelines for a large scaled cryogenic structure, the cooling pipelines and the structure are connected by way of a thin metal plate made of a material having a heat conductivity higher than that of the material of the structure by one digit or more, and the thin metal plate is bent. The displacement between the cryogenic structure and the cooling pipelines caused by heat shrinkage is absorbed by the elongation/shrinkage of the bent structure of the thin metal plate, and the thermal stresses due to the displacement is reduced. In addition, the heat of the cryogenic structures is transferred by way of the thin metal plate. Then, the cooling pipelines can be secured to the cryogenic structure such that cooling by heat transfer is enabled by absorbing a great deviation or three dimensional displacement due to the difference of the temperature distribution between the cryogenic structure enlarged in the scale and put into the three dimensional shape, and the cooling pipelines. (N.H.)

  16. Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons

    International Nuclear Information System (INIS)

    Sokell, E.; Zamith, S.; Bouchene, M.A.; Girard, B.

    2000-01-01

    The precession of orbital and spin angular momentum vectors has been observed in a pump-probe study of the 4P fine-structure states of atomic potassium. A femtosecond pump pulse prepared a coherent superposition of the two fine-structure components. A time-delayed probe pulse then ionized the system after it had been allowed to evolve freely. Oscillations recorded in the ion signal reflect the evolution of the orientation of the orbital and spin angular momentum due to spin-orbit coupling. This interpretation gives physical insight into the cause of the half-period phase shift observed when the relative polarizations of the laser pulses were changed from parallel to perpendicular. Finally, it is shown that these changes in the orientation of the spin momentum vector of the system can be utilized to produce highly spin-polarized free electrons on the femtosecond scale. (author)

  17. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    Science.gov (United States)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access

  18. X-ray Absorption Fine Structure (XAFS) Studies of Oxide Glasses—A 45-Year Overview

    Science.gov (United States)

    Zanotto, Edgar Dutra

    2018-01-01

    X-ray Absorption Fine Structure (XAFS) spectroscopy has been widely used to characterize the short-range order of glassy materials since the theoretical basis was established 45 years ago. Soon after the technique became accessible, mainly due to the existence of Synchrotron laboratories, a wide range of glassy materials was characterized. Silicate glasses have been the most studied because they are easy to prepare, they have commercial value and are similar to natural glasses, but borate, germanate, phosphate, tellurite and other less frequent oxide glasses have also been studied. In this manuscript, we review reported advances in the structural characterization of oxide-based glasses using this technique. A focus is on structural characterization of transition metal ions, especially Ti, Fe, and Ni, and their role in different properties of synthetic oxide-based glasses, as well as their important function in the formation of natural glasses and magmas, and in nucleation and crystallization. We also give some examples of XAFS applications for structural characterization of glasses submitted to high pressure, glasses used to store radioactive waste and medieval glasses. This updated, comprehensive review will likely serve as a useful guide to clarify the details of the short-range structure of oxide glasses. PMID:29382102

  19. WAVELENGTH ACCURACY OF THE KECK HIRES SPECTROGRAPH AND MEASURING CHANGES IN THE FINE STRUCTURE CONSTANT

    International Nuclear Information System (INIS)

    Griest, Kim; Whitmore, Jonathan B.; Wolfe, Arthur M.; Prochaska, J. Xavier; Howk, J. Christopher; Marcy, Geoffrey W.

    2010-01-01

    We report on an attempt to accurately wavelength calibrate four nights of data taken with the Keck HIRES spectrograph on QSO PHL957, for the purpose of determining whether the fine structure constant was different in the past. Using new software and techniques, we measured the redshifts of various Ni II, Fe II, Si II, etc. lines in a damped Lyα system at z = 2.309. Roughly half the data were taken through the Keck iodine cell which contains thousands of well calibrated iodine lines. Using these iodine exposures to calibrate the normal Th-Ar Keck data pipeline output, we found absolute wavelength offsets of 500 m s -1 to 1000 m s -1 with drifts of more than 500 m s -1 over a single night, and drifts of nearly 2000 m s -1 over several nights. These offsets correspond to an absolute redshift of uncertainty of about Δz ∼ 10 -5 (Δλ ∼ 0.02 A), with daily drifts of around Δz ∼ 5 x 10 -6 (Δλ ∼ 0.01 A), and multiday drifts of nearly Δz ∼ 2 x 10 -5 (∼0.04 A). The causes of the wavelength offsets are not known, but since claimed shifts in the fine structure constant would result in velocity shifts of less than 100 m s -1 , this level of systematic uncertainty may make it difficult to use Keck HIRES data to constrain the change in the fine structure constant. Using our calibrated data, we applied both our own fitting software and standard fitting software to measure Δα/α, but discovered that we could obtain results ranging from significant detection of either sign, to strong null limits, depending upon which sets of lines and which fitting method were used. We thus speculate that the discrepant results on Δα/α reported in the literature may be due to random fluctuations coming from underestimated systematic errors in wavelength calibration and fitting procedure.

  20. Identifying Where REDD+ Financially Out-Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach.

    Science.gov (United States)

    Abram, Nicola K; MacMillan, Douglas C; Xofis, Panteleimon; Ancrenaz, Marc; Tzanopoulos, Joseph; Ong, Robert; Goossens, Benoit; Koh, Lian Pin; Del Valle, Christian; Peter, Lucy; Morel, Alexandra C; Lackman, Isabelle; Chung, Robin; Kler, Harjinder; Ambu, Laurentius; Baya, William; Knight, Andrew T

    2016-01-01

    Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e) would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e) would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380-416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD

  1. Identifying Where REDD+ Financially Out-Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach.

    Directory of Open Access Journals (Sweden)

    Nicola K Abram

    Full Text Available Reducing Emissions from Deforestation and forest Degradation (REDD+ aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380-416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia. Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by

  2. Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats.

    Science.gov (United States)

    McGregor, Hugh W; Legge, Sarah; Jones, Menna E; Johnson, Christopher N

    2014-01-01

    Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores.

  3. Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats.

    Directory of Open Access Journals (Sweden)

    Hugh W McGregor

    Full Text Available Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores.

  4. Tracking fine-scale seasonal evolution of surface water extent in Central Alaska and the Canadian Shield

    Science.gov (United States)

    Cooley, S. W.; Smith, L. C.; Pitcher, L. H.; Pavelsky, T.; Topp, S.

    2017-12-01

    Quantifying spatial and temporal variability in surface water storage at high latitudes is critical for assessing environmental sensitivity to climate change. Traditionally the tradeoff between high spatial and high temporal resolution space-borne optical imagery has limited the ability to track fine-scale changes in surface water extent. However, the recent launch of hundreds of earth-imaging CubeSats by commercial satellite companies such as Planet opens up new possibilities for monitoring surface water from space. In this study we present a comparison of seasonal evolution of surface water extent in two study areas with differing geologic, hydrologic and permafrost regimes, namely, the Yukon Flats in Central Alaska and the Canadian Shield north of Yellowknife, N.W.T. Using near-daily 3m Planet CubeSat imagery, we track individual lake surface area from break-up to freeze-up during summer 2017 and quantify the spatial and temporal variability in inundation extent. We validate our water delineation method and inundation extent time series using WorldView imagery, coincident in situ lake shoreline mapping and pressure transducer data for 19 lakes in the Northwest Territories and Alaska collected during the NASA Arctic Boreal Vulnerability Experiment (ABoVE) 2017 field campaign. The results of this analysis demonstrate the value of CubeSat imagery for dynamic surface water research particularly at high latitudes and illuminate fine-scale drivers of cold regions surface water extent.

  5. Puzzles of large scale structure and gravitation

    International Nuclear Information System (INIS)

    Sidharth, B.G.

    2006-01-01

    We consider the puzzle of cosmic voids bounded by two-dimensional structures of galactic clusters as also a puzzle pointed out by Weinberg: How can the mass of a typical elementary particle depend on a cosmic parameter like the Hubble constant? An answer to the first puzzle is proposed in terms of 'Scaled' Quantum Mechanical like behaviour which appears at large scales. The second puzzle can be answered by showing that the gravitational mass of an elementary particle has a Machian character (see Ahmed N. Cantorian small worked, Mach's principle and the universal mass network. Chaos, Solitons and Fractals 2004;21(4))

  6. Electronic structure study of Co doped CeO2 nanoparticles using X-ray absorption fine structure spectroscopy

    International Nuclear Information System (INIS)

    Kumar, Shalendra; Gautam, Sanjeev; Song, T.K.; Chae, Keun Hwa; Jang, K.W.; Kim, S.S.

    2014-01-01

    Highlights: • The electronic structural of Co–CeO 2 nanoparticles is investigated using XAFS. • Ce M 5,4 , Ce L 3 and O K edge NEXAFS reveal that the Ce-ions are in +4 valence state. • The NEXAFS spectrum performed at Co L3,2-edge confirms Co-ion in 2+ state. • The EXAFS analysis also show that Co ions are occupying Ce position in doped CeO 2 . • The distances between Ce–O and Ce–Ce/Co in all shells decreases with Co doping. - Abstract: We investigated the electronic structure of well characterized Co doped CeO 2 nanoparticles using X-ray absorption fine structure (XAFS) spectroscopy. Near edge X-ray absorption fine structure (NEXAFS) spectra at Ce M 5,4 , Ce L 3 and O K-edge conclude that the Ce-ions are in +4 valence state in pure as well as in Co doped CeO 2 nanoparticles. The local structure around Ce-atom in Co doped CeO 2 nanoparticles was also determined using extended X-ray absorption fine structure (EXAFS) spectroscopy at Ce L 3 edge. The EXAFS analysis suggest that the inter-atomic distance of Ce–O, Ce–Ce/Co decreases with Co doping, which indicate a contraction of the lattice. The decease in Ce–O distance also reflect that there is a formation of oxygen vacancies in CeO 2 matrix. The Debye–Waller factor also shows the consistent behaviour for all the coordination shells. The atomic multiplet calculations for Co L 3,2 -edge was performed to determine the valence state, symmetry and field splitting, which reflect that Co-ions are in 2+ state and substituted at Ce-site with crystal field splitting of 10Dq=-0.57eV. The XAFS measurements reveal that the Co-ions occupy the Ce position in the CeO 2 host matrix and create a oxygen vacancy

  7. Natural selection drives the fine-scale divergence of a coevolutionary arms race involving a long-mouthed weevil and its obligate host plant

    Directory of Open Access Journals (Sweden)

    Toju Hirokazu

    2009-01-01

    Full Text Available Abstract Background One of the major recent advances in evolutionary biology is the recognition that evolutionary interactions between species are substantially differentiated among geographic populations. To date, several authors have revealed natural selection pressures mediating the geographically-divergent processes of coevolution. How local, then, is the geographic structuring of natural selection in coevolutionary systems? Results I examined the spatial scale of a "geographic selection mosaic," focusing on a system involving a seed-predatory insect, the camellia weevil (Curculio camelliae, and its host plant, the Japanese camellia (Camellia japonica. In this system, female weevils excavate camellia fruits with their extremely-long mouthparts to lay eggs into seeds, while camellia seeds are protected by thick pericarps. Quantitative evaluation of natural selection demonstrated that thicker camellia pericarps are significantly favored in some, but not all, populations within a small island (Yakushima Island, Japan; diameter ca. 30 km. At the extreme, camellia populations separated by only several kilometers were subject to different selection pressures. Interestingly, in a population with the thickest pericarps, camellia individuals with intermediate pericarp thickness had relatively high fitness when the potential costs of producing thick pericarps were considered. Also importantly, some parameters of the weevil - camellia interaction such as the severity of seed infestation showed clines along temperature, suggesting the effects of climate on the fine-scale geographic differentiation of the coevolutionary processes. Conclusion These results show that natural selection can drive the geographic differentiation of interspecific interactions at surprisingly small spatial scales. Future studies should reveal the evolutionary/ecological outcomes of the "fine scale geographic mosaics" in biological communities.

  8. Fine and Coarse-Scale Patterns of Vegetation Diversity on Reclaimed Surface Mine-land Over a 40-Year Chronosequence.

    Science.gov (United States)

    Bohrer, Stefanie L; Limb, Ryan F; Daigh, Aaron L; Volk, Jay M; Wick, Abbey F

    2017-03-01

    Rangelands are described as heterogeneous, due to patterning in species assemblages and productivity that arise from species dispersal and interactions with environmental gradients and disturbances across multiple scales. The objectives of rangeland reclamation are typically vegetation establishment, plant community productivity, and soil stability. However, while fine-scale diversity is often promoted through species-rich seed mixes, landscape heterogeneity and coarse-scale diversity are largely overlooked. Our objectives were to evaluate fine and coarse-scale vegetation patterns across a 40-year reclamation chronosequence on reclaimed surface coalmine lands. We hypothesized that both α-diversity and β-diversity would increase and community patch size and species dissimilarity to reference sites would decrease on independent sites over 40 years. Plant communities were surveyed on 19 post-coalmine reclaimed sites and four intact native reference sites in central North Dakota mixed-grass prairie. Our results showed no differences in α or β-diversity and plant community patch size over the 40-year chronosequence. However, both α-diversity and β-diversity on reclaimed sites was similar to reference sites. Native species establishment was limited due to the presence of non-native species such as Kentucky bluegrass (Poa pratensis) on both the reclaimed and reference sites. Species composition was different between reclaimed and reference sites and community dissimilarity increased on reclaimed sites over the 40-year chronosequence. Plant communities resulting from reclamation followed non-equilibrium succession, even with consistent seeds mixes established across all reclaimed years. This suggests post-reclamation management strategies influence species composition outcomes and land management strategies applied uniformly may not increase landscape-level diversity.

  9. Atlas of fine structures of dynamic spectra of solar type IV-dm and some type II radio bursts

    International Nuclear Information System (INIS)

    Slottje, C.

    1982-01-01

    The author presents an atlas of spectral fine structures of solar radio bursts of types IV and II around 1 m wavelength, as obtained with a multichannel spectrograph at Dwingeloo. The structures form largely a collection of observations of these events during late 1968 through 1974, thus covering almost entirely the declining branch of solar cycle 20. The spectrograph has an extra enhanced contrast output with properties quite different from those of the commonly used swept frequency spectrographs. The corresponding instrumental characteristics and effects are discussed. A classification of fine structures and an analysis of their statistical properties and of those of the pertinent radio events are also given. (Auth.)

  10. Fine structure of the stimulated Raman spectrum in compressed hydrogen. The relaxation-oscillation mode of backscattered Stokes emission

    International Nuclear Information System (INIS)

    Bespalov, V.G.; Efimov, Yu.N.; Staselko, D.I.

    1992-01-01

    This paper studies the emission spectra of backscattered stimulated Raman scattering (SRS) in compressed hydrogen in the relaxation-oscillation mode and the compression SRS mode for the minimum width of the spontaneous scattering spectrum (in the region of the Dicke dip). It is shown that the generation of a train of Stokes-emission subpulses results in the appearance of fine structure in the backscattered SRS spectrum. The influence of the temporal structure of reflected Stokes pulses on this spectrum and on the appearance of fine structure in it is analyzed. The conditions for generating spectrally limited (without phase modulation), extremely coherent Stokes pulses are explained. 18 refs., 3 figs

  11. Monte Carlo Simulations of Electron Energy-Loss Spectra with the Addition of Fine Structure from Density Functional Theory Calculations.

    Science.gov (United States)

    Attarian Shandiz, Mohammad; Guinel, Maxime J-F; Ahmadi, Majid; Gauvin, Raynald

    2016-02-01

    A new approach is presented to introduce the fine structure of core-loss excitations into the electron energy-loss spectra of ionization edges by Monte Carlo simulations based on an optical oscillator model. The optical oscillator strength is refined using the calculated electron energy-loss near-edge structure by density functional theory calculations. This approach can predict the effects of multiple scattering and thickness on the fine structure of ionization edges. In addition, effects of the fitting range for background removal and the integration range under the ionization edge on signal-to-noise ratio are investigated.

  12. Fine reservoir structure modeling based upon 3D visualized stratigraphic correlation between horizontal wells: methodology and its application

    Science.gov (United States)

    Chenghua, Ou; Chaochun, Li; Siyuan, Huang; Sheng, James J.; Yuan, Xu

    2017-12-01

    As the platform-based horizontal well production mode has been widely applied in petroleum industry, building a reliable fine reservoir structure model by using horizontal well stratigraphic correlation has become very important. Horizontal wells usually extend between the upper and bottom boundaries of the target formation, with limited penetration points. Using these limited penetration points to conduct well deviation correction means the formation depth information obtained is not accurate, which makes it hard to build a fine structure model. In order to solve this problem, a method of fine reservoir structure modeling, based on 3D visualized stratigraphic correlation among horizontal wells, is proposed. This method can increase the accuracy when estimating the depth of the penetration points, and can also effectively predict the top and bottom interfaces in the horizontal penetrating section. Moreover, this method will greatly increase not only the number of points of depth data available, but also the accuracy of these data, which achieves the goal of building a reliable fine reservoir structure model by using the stratigraphic correlation among horizontal wells. Using this method, four 3D fine structure layer models have been successfully built of a specimen shale gas field with platform-based horizontal well production mode. The shale gas field is located to the east of Sichuan Basin, China; the successful application of the method has proven its feasibility and reliability.

  13. Constraints on a possible variation of the fine structure constant from galaxy cluster data

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, R.F.L. [Departamento de Física, Universidade Estadual da Paraíba, 58429-500, Campina Grande – PB (Brazil); Landau, S.J.; Sánchez G, I.E. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and IFIBA, CONICET, Ciudad Universitaria – PabI, Buenos Aires 1428 (Argentina); Alcaniz, J.S. [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro – RJ (Brazil); Busti, V.C., E-mail: holanda@uepb.edu.br, E-mail: slandau@df.uba.ar, E-mail: alcaniz@on.br, E-mail: isg.cos@gmail.com, E-mail: vinicius.busti@astro.iag.usp.br [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, 05508-090, São Paulo – SP (Brazil)

    2016-05-01

    We propose a new method to probe a possible time evolution of the fine structure constant α from X-ray and Sunyaev-Zel'dovich measurements of the gas mass fraction ( f {sub gas}) in galaxy clusters. Taking into account a direct relation between variations of α and violations of the distance-duality relation, we discuss constraints on α for a class of dilaton runaway models. Although not yet competitive with bounds from high- z quasar absorption systems, our constraints, considering a sample of 29 measurements of f {sub gas}, in the redshift interval 0.14 < z < 0.89, provide an independent estimate of α variation at low and intermediate redshifts. Furthermore, current and planned surveys will provide a larger amount of data and thus allow to improve the limits on α variation obtained in the present analysis.

  14. Fine structure near the starting frequency of solar type III radio bursts

    Energy Technology Data Exchange (ETDEWEB)

    Benz, A.O.; Zlobec, P.; Jaeggi, M.

    1982-06-01

    We have systematically analyzed the period in time and frequency adjacent to the beginning of type III bursts digitally recorded at Bleien during the second half of 1980. A surprisingly high percentage (10%, possibly more than 20%) of the type III bursts show fine structure in the form of narrow-banded spikes of 0.05 s and less duration, which form clusters of relatively large bandwidth. These spikes are not totally polarized (contrary to claims in the literature) and they are uniformly distributed over the disk. Individual spikes often show highly variable polarization, which may even change sense. The average degree of polarization of the clouds has a wider distribution than that of the associated type III bursts, but generally the same sign. Spikes are considerably different from type I bursts.

  15. Bloch oscillations of ultracold atoms and measurement of the fine structure constant

    International Nuclear Information System (INIS)

    Clade, P.

    2005-10-01

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10 -9 , in conjunction with a careful study of systematic effects (5 10 -9 ), has led us to a determination of alpha with an uncertainty of 6.7 10 -9 : α -1 (Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  16. 3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-04-01

    Full Text Available A theory of 3-space explains the phenomenon of gravity as arising from the time-dependence and inhomogeneity of the differential flow of this 3-space. The emergent theory of gravity has two gravitational constants: G - Newton's constant, and a dimensionless constant alpha. Various experiments and astronomical observations have shown that alpha is the fine structure constant ~1/137. Here we analyse the Greenland Ice Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision this value of alpha. This and other successful tests of this theory of gravity, including the supermassive black holes in globular clusters and galaxies, and the "dark-matter" effect in spiral galaxies, shows the validity of this theory of gravity. This success implies that the non-relativistic Newtonian gravity was fundamentally flawed from the beginning, and that this flaw was inherited by the relativistic General Relativity theory of gravity.

  17. 3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-04-01

    Full Text Available A theory of 3-space explains the phenomenon of gravity as arising from the time-dependence and inhomogeneity of the differential flow of this 3-space. The emergent theory of gravity has two gravitational constants: GN — Newton’s constant, and a dimensionless constant α. Various experiments and astronomical observations have shown that α is the fine structure constant ≈ 1/137. Here we analyse the Greenland Ice Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision this value of α. This and other successful tests of this theory of gravity, including the supermassive black holes in globular clusters and galaxies, and the “dark-matter” effect in spiral galaxies, shows the validity of this theory of gravity. This success implies that the non-relativistic Newtonian gravity was fundamentally flawed from the beginning, and that this flaw was inherited by the relativistic General Relativity theory of gravity.

  18. Fine structure of V2+ energy levels in CsCaF3:V2+

    International Nuclear Information System (INIS)

    Avram, C.N.; Brik, M.G.

    2004-01-01

    Theoretical investigations of the fine structure of the lasing 4 T 2g level in a CsCaF 3 :V 2+ crystal were carried out. The spin-orbit splitting of the 4 T 2g term in the static low crystal field was obtained from the Eisenstein matrices and using parameters (Dq, B, C, ζ SO ) appropriate for the 4 T 2g - 4 A 2g zero-phonon line. The 4 T 2g spinor splitting has been modeled by the second-order spin-orbit Hamiltonian. The effect of the dynamical Jahn-Teller interaction on the spin-orbit splitting of the 4 T 2g term was taken into account; the Jahn-Teller stabilization energy, ZPL splitting and the Huang-Rhys parameter for the e g normal mode were all evaluated

  19. Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

    1984-01-01

    The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures

  20. New constraints on variations of the fine structure constant from CMB anisotropies

    International Nuclear Information System (INIS)

    Menegoni, Eloisa; Melchiorri, Alessandro; Galli, Silvia; Bartlett, James G.; Martins, C. J. A. P.

    2009-01-01

    We demonstrate that recent measurements of cosmic microwave background temperature and polarization anisotropy made by the ACBAR, QUAD, and BICEP experiments substantially improve the cosmological constraints on possible variations of the fine structure constant in the early universe. This data, combined with the five year observations from the WMAP mission, yield the constraint α/α 0 =0.987±0.012 at 68% C.L. The inclusion of the new Hubble Space Telescope constraints on the Hubble constant further increases the accuracy to α/α 0 =1.001±0.007 at 68% C.L., bringing possible deviations from the current value below the 1% level and improving previous constraints by a factor of ∼3.

  1. Fisher matrix forecasts for astrophysical tests of the stability of the fine-structure constant

    Directory of Open Access Journals (Sweden)

    C.S. Alves

    2017-07-01

    Full Text Available We use Fisher Matrix analysis techniques to forecast the cosmological impact of astrophysical tests of the stability of the fine-structure constant to be carried out by the forthcoming ESPRESSO spectrograph at the VLT (due for commissioning in late 2017, as well by the planned high-resolution spectrograph (currently in Phase A for the European Extremely Large Telescope. Assuming a fiducial model without α variations, we show that ESPRESSO can improve current bounds on the Eötvös parameter—which quantifies Weak Equivalence Principle violations—by up to two orders of magnitude, leading to stronger bounds than those expected from the ongoing tests with the MICROSCOPE satellite, while constraints from the E-ELT should be competitive with those of the proposed STEP satellite. Should an α variation be detected, these measurements will further constrain cosmological parameters, being particularly sensitive to the dynamics of dark energy.

  2. Inelastic electron scattering, fine structure of M1 giant resonances and Gamow-Teller states

    International Nuclear Information System (INIS)

    Richter, A.

    1983-01-01

    Recent progress in obtaining detailed fine structure distributions of magnetic giant resonances in nuclei using high resolution inelastic electron scattering at low energy is discussed. Specific examples chosen are the medium heavy nuclei 40 42 44 48 Ca in which M1 excitations are due to neutron spin-flip transitions and the N=28 isotones 50 Ti, 52 Cr and 54 Fe where in addition also proton excitations contribute to the measured M1 strength. It is found that the M1 strength is very fragmented and considerably quenched in comparison to predictions of shell model calculations in a model space that includes up to 2p-2h excitations. Finally, the old problem of M1 strength in 208 Pb is revisited and the results of a form factor measurement of a recently discovered low lying Jsup(π)=1 + state by nuclear resonance fluorescence are presented. (Auth.)

  3. Fine-structure processing, frequency selectivity and speech perception in hearing-impaired listeners

    DEFF Research Database (Denmark)

    Strelcyk, Olaf; Dau, Torsten

    2008-01-01

    Hearing-impaired people often experience great difficulty with speech communication when background noise is present, even if reduced audibility has been compensated for. Other impairment factors must be involved. In order to minimize confounding effects, the subjects participating in this study...... consisted of groups with homogeneous, symmetric audiograms. The perceptual listening experiments assessed the intelligibility of full-spectrum as well as low-pass filtered speech in the presence of stationary and fluctuating interferers, the individual's frequency selectivity and the integrity of temporal...... modulation were obtained. In addition, these binaural and monaural thresholds were measured in a stationary background noise in order to assess the persistence of the fine-structure processing to interfering noise. Apart from elevated speech reception thresholds, the hearing impaired listeners showed poorer...

  4. Representations of U(2∞ and the Value of the Fine Structure Constant

    Directory of Open Access Journals (Sweden)

    William H. Klink

    2005-12-01

    Full Text Available A relativistic quantum mechanics is formulated in which all of the interactions are in the four-momentum operator and Lorentz transformations are kinematic. Interactions are introduced through vertices, which are bilinear in fermion and antifermion creation and annihilation operators, and linear in boson creation and annihilation operators. The fermion-antifermion operators generate a unitary Lie algebra, whose representations are fixed by a first order Casimir operator (corresponding to baryon number or charge. Eigenvectors and eigenvalues of the four-momentum operator are analyzed and exact solutions in the strong coupling limit are sketched. A simple model shows how the fine structure constant might be determined for the QED vertex.

  5. Polarizability of Kr6+ from high-L Kr5+ fine-structure measurements

    International Nuclear Information System (INIS)

    Lundeen, S. R.; Fehrenbach, C. W.

    2007-01-01

    The transition between n=55 and n=109 Rydberg levels of Kr 5+ has been studied at high resolution using the resonant excitation stark ionization spectroscopy method. Resolved excitation of L=6, 7, 8, and 9 levels in n=55 lead to a determination of the fine-structure energies of these levels. Interpreted with the long-range polarization model, this leads to a measurement of the dipole polarizabilities of Zn-like Kr 6+ , α d =2.69(4)a 0 3 . Obtaining a value of the quadrupole polarizability from the data will require additional theoretical input. Factors contributing to the signal and noise levels in measurements of this type are discussed

  6. Sample-angle feedback for diffraction anomalous fine-structure spectroscopy

    International Nuclear Information System (INIS)

    Cross, J.O.; Elam, W.T.; Harris, V.G.; Kirkland, J.P.; Bouldin, C.E.; Sorensen, L.B.

    1998-01-01

    Diffraction anomalous fine-structure (DAFS) experiments measure Bragg peak intensities as continuous functions of photon energy near a core-level excitation. Measuring the integrated intensity at each energy makes the experiments prohibitively slow; however, in many cases DAFS can be collected quickly by measuring only the peak intensity at the center of the rocking curve. A piezoelectric-actuator-driven stage has been designed and tested as part of a sample-angle feedback circuit for locking onto the maximum of the rocking curve while the energy is scanned. Although software peak-tracking requires only a simple calculation of diffractometer angles, it is found that the additional hardware feedback dramatically improves the reproducibility of the data

  7. Grazing incidence diffraction anomalous fine structure of self-assembled semiconductor nanostructures

    International Nuclear Information System (INIS)

    Grenier, S.; Letoublon, A.; Proietti, M.G.; Renevier, H.; Gonzalez, L.; Garcia, J.M.; Priester, C.; Garcia, J.

    2003-01-01

    We have studied self-organized quantum wires of InAs, grown by molecular beam epitaxy onto a InP(0 0 1) substrate, by means of grazing incidence diffraction anomalous fine structure (DAFS). The equivalent quantum wires thickness is 2.5 monolayers. We measured the (4 4 0) and (4 2 0) GIDAFS spectra, at the As K-edge, keeping the incidence and exit angles close to the InP critical angle. The analysis of both the smooth and oscillatory contributions of the DAFS spectrum, provide valuable information about composition and strain inside the quantum wires and close to the interface. We also show preliminary results on InAs wires encapsulated by a 40 A thick InP capping layer, suggesting the DAFS capability of probing different iso-strain regions of the wires

  8. Damping Properties vs. Structure Fineness of the High-zinc Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    W.K. Krajewski

    2012-09-01

    Full Text Available The subject of this study is the presentation of relation between the degree of structure fineness and ultrasonic wave dampingcoefficient for the high-zinc aluminium alloys represented in this study by the sand mould cast alloy Al - 20 wt% Zn (AlZn20. Thestudied alloy was refined with a modifying (Al,Zn-Ti3 ternary master alloy, introducing Ti in the amount of 400 pm into metal. Based on the analysis of the initial and modified alloy macrostructure images and ultrasonic testing, it was found that the addition of (Al,Zn-Ti3 master alloy, alongside a significant fragmentation of grains, does not reduce the coefficient of ultrasonic waves with a frequency of 1 MHz.

  9. Fine-structure energy levels and radiative lifetime in Mo XIV

    International Nuclear Information System (INIS)

    Wang Xiaodong; Pei Dong; Jiang Renbin; Wang Wanjue

    2002-01-01

    Energy levels, radiative lifetime and various transition parameters for allowed transitions among the 1508 fine-structure levels belong to the (1s 2 2s 2 2p 6 3s 2 3p 6 ) 3d 10 4l, 3d 9 4l 2 , 3d 10 5l, 3d 9 4l4m, 3d 10 6l, 3d 10 7l and so on configurations of the Cu-like ions Mo XIV have been calculated by using the expanded fully relativistic GRASP code. The results are compared with those available in the literature, and the accuracy of the present data is assessed. Energy levels are expected to be accurate to within 0.81%. The authors have found some long lifetime levels

  10. Fine-structural changes in the midgut of old Drosophila melanogaster

    Science.gov (United States)

    Anton-Erxleben, F.; Miquel, J.; Philpott, D. E.

    1983-01-01

    Senescent fine-structural changes in the midgut of Drosophila melanogaster are investigated. A large number of midgut mitochondria in old flies exhibit nodular cristae and a tubular system located perpendicular to the normal cristae orientation. Anterior intestinal cells show a senescent accumulation of age pigment, either with a surrounding two-unit membrane or without any membrane. The predominant localization of enlarged mitochondria and pigment in the luminal gut region may be related to the polarized metabolism of the intestinal cells. Findings concur with previous observations of dense-body accumulations and support the theory that mitochondria are involved in the aging of fixed post-mitotic cells. Demonstrated by statistical analyses is that mitochondrial size increase is related to mitochondrial variation increase.

  11. Fine structure and development of the collar enamel in gars, Lepisosteus oculatus, Actinopterygii

    Science.gov (United States)

    Sasagawa, Ichiro; Ishiyama, Mikio; Yokosuka, Hiroyuki; Mikami, Masato

    2008-06-01

    The fine structure of collar enamel and the cells constituting the enamel organ during amelogenesis in Lepisosteus oculatus was observed by light, scanning electron and transmission electron microscopy. In the enamel, slender crystals were arranged perpendicular to the surface and the stripes that were parallel to the surface were observed, suggesting that the enamel in Lepisosteus shares common morphological features with that in sarcopterygian fish and amphibians. Ameloblasts containing developed Golgi apparatus, rough endoplasmic reticulum (rER) and secretory granules were found in the secretory stage. In the maturation stage, a ruffled border was not seen at the distal end of the ameloblasts, while many mitochondria and lysosome-like granules were obvious in the distal cytoplasm. The enamel organ consisted of the outer dental epithelial cells, stratum reticulum cells and ameloblasts, but there was no stratum intermedium. It is likely that the ameloblasts have less absorptive function in comparison with the inner dental epithelial cells facing cap enameloid.

  12. Determining biological fine structure by differential absorption of soft x-rays

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.; Warren, J.B.

    1979-06-01

    The use of soft x-ray contact microscopy in examining histochemically treated human tissue embedded in plastic and exposed as unstained thin sections is demonstrated. When our preliminary data revealed that we could clearly image not only the histochemical reaction product, but the unstained biological fine structure of the surrounding tissues, we decided to test our hypothesis further and see if we could image unstained biological molecular aggregates as well. For this part of the investigation, we chose to examine hydrated proteoglycan aggregates. Proteoglycans are an essential component of the organic matrix of cartilage, and play a primary role in the retention and maintenance of extracellular water. To avoid any artifacts due to the introduction of exogeneous materials, and examine the proteoglycan aggregates in their hydrated, natural configuration, we made contact x-ray images of isolated proteoglycan aggregates in water

  13. Higher-order Stark effect on magnetic fine structure of the helium atom

    Energy Technology Data Exchange (ETDEWEB)

    Magunov, A.; Pal' chikov, V.; Pivovarov, V. [National Research Inst. for Physical-Technical and Radiotechnical Measurements (VNIIFTRI), Mendeleevo, Moscow Region (Russian Federation); Ovsiannikov, V. [Dept. of Physics, Voronezh State Univ. (Russian Federation); Oppen, G. von [Inst. fuer Analytische und Atomare Physik at Technische Univ. Berlin (Germany)

    2001-07-01

    We have calculated the scalar and tensor dipole polarizabilities ({beta}) and hyperpolarizabilities ({gamma}) of excited 1s2p {sup 3}P{sub 0}, 1s2p {sup 3}P{sub 2}- states of helium. Our theory includes fine structure of triplet sublevels. Semiempirical and accurate electron-correlated wave functions have been used to determine the static values of {beta} and {gamma}. Numerical calculations are carried out using sums of oscillator strengths and, alternatively, with the Green function for the excited valence electron. Specifically, we present results for the integral over the continuum, for second- and fourth-order matrix elements. The corresponding estimations indicate that these corrections are of the order of 23% for the scalar part of polarizability and only of the order of 3% for the tensor part.

  14. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  15. Production of fine structures in type III solar radio bursts due to turbulent density profiles

    International Nuclear Information System (INIS)

    Loi, Shyeh Tjing; Cairns, Iver H.; Li, Bo

    2014-01-01

    Magnetic reconnection events in the corona release energetic electron beams along open field lines, and the beams generate radio emission at multiples of the electron plasma frequency f p to produce type III solar radio bursts. Type III bursts often exhibit irregularities in the form of flux modulations with frequency and/or local temporal advances and delays, and a type IIIb burst represents the extreme case where a type III burst is fragmented into a chain of narrowband features called striae. Remote and in situ spacecraft measurements have shown that density turbulence is ubiquitous in the corona and solar wind, and often exhibits a Kolmogorov power spectrum. In this work, we numerically investigate the effects of one-dimensional macroscopic density turbulence (along the beam direction) on the behavior of type III bursts, and find that this turbulence produces stria-like fine structures in the dynamic spectra of both f p and 2 f p radiation. Spectral and temporal fine structures in the predicted type III emission are produced by variations in the scattering path lengths and group speeds of radio emission, and in the locations and sizes of emitting volumes. Moderate turbulence levels yield flux enhancements with much broader half-power bandwidths in f p than 2 f p emission, possibly explaining the often observed type IIIb-III harmonic pairs as being where intensifications in 2 f p radiation are not resolved observationally. Larger turbulence levels producing trough-peak regions in the plasma density profile may lead to broader, resolvable intensifications in 2 f p radiation, which may account for the type IIIb-IIIb pairs that are sometimes observed.

  16. New algorithm improves fine structure of the barley consensus SNP map

    Directory of Open Access Journals (Sweden)

    Endelman Jeffrey B

    2011-08-01

    Full Text Available Abstract Background The need to integrate information from multiple linkage maps is a long-standing problem in genetics. One way to visualize the complex ordinal relationships is with a directed graph, where each vertex in the graph is a bin of markers. When there are no ordering conflicts between the linkage maps, the result is a directed acyclic graph, or DAG, which can then be linearized to produce a consensus map. Results New algorithms for the simplification and linearization of consensus graphs have been implemented as a package for the R computing environment called DAGGER. The simplified consensus graphs produced by DAGGER exactly capture the ordinal relationships present in a series of linkage maps. Using either linear or quadratic programming, DAGGER generates a consensus map with minimum error relative to the linkage maps while remaining ordinally consistent with them. Both linearization methods produce consensus maps that are compressed relative to the mean of the linkage maps. After rescaling, however, the consensus maps had higher accuracy (and higher marker density than the individual linkage maps in genetic simulations. When applied to four barley linkage maps genotyped at nearly 3000 SNP markers, DAGGER produced a consensus map with improved fine structure compared to the existing barley consensus SNP map. The root-mean-squared error between the linkage maps and the DAGGER map was 0.82 cM per marker interval compared to 2.28 cM for the existing consensus map. Examination of the barley hardness locus at the 5HS telomere, for which there is a physical map, confirmed that the DAGGER output was more accurate for fine structure analysis. Conclusions The R package DAGGER is an effective, freely available resource for integrating the information from a set of consistent linkage maps.

  17. Investigation on the fine structure of sea-breeze during ESCOMPTE experiment

    Science.gov (United States)

    Puygrenier, V.; Lohou, F.; Campistron, B.; Saïd, F.; Pigeon, G.; Bénech, B.; Serça, D.

    2005-03-01

    Surface and remote-sensing instruments deployed during ESCOMPTE experiment over the Marseille area, along the Mediterranean coast, were used to investigate the fine structure of the atmospheric boundary layer (ABL) during sea-breeze circulation in relation to pollutant transport and diffusion. Six sea-breeze events are analyzed with a particular focus on 25 June 2001. Advection of cool and humid marine air over land has a profound influence on the daytime ABL characteristics. This impact decreases rapidly with the inland distance from the sea. Nearby the coast (3 km inland), the mixing height Zi rises up to 750 m and falls down after 15:00 (UT) when the breeze flow reaches its maximum intensity. A more classical evolution of the ABL is observed at only 11-km inland where Zi culminates in the morning and stabilizes in the afternoon at about 1000 m height. Fine inspection of the data revealed an oscillation of the sea-breeze with a period about 2 h 47 min. This feature, clearly discernable for 3 days at least, is present in several atmospheric variables such as wind, temperature, not only at the ground but also aloft in the ABL as observed by sodar/RASS and UHF wind profilers. In particular, the mixing height Zi deduced from UHF profilers observations is affected also by the same periodicity. This pulsated sea-breeze is observed principally above Marseille and, at the northern and eastern shores of the Berre pond. In summary, the periodic intrusion over land of cool marine air modifies the structure of the ABL in the vicinity of the coast from the point of view of stability, turbulent motions and pollutants concentration. An explanation of the source of this pulsated sea-breeze is suggested.

  18. Geometrical scaling in charm structure function ratios

    International Nuclear Information System (INIS)

    Boroun, G.R.; Rezaei, B.

    2014-01-01

    By using a Laplace-transform technique, we solve the next-to-leading-order master equation for charm production and derive a compact formula for the ratio R c =F L cc ¯ /F 2 cc ¯ , which is useful for extracting the charm structure function from the reduced charm cross section, in particular, at DESY HERA, at small x. Our results show that this ratio is independent of x at small x. In this method of determining the ratios, we apply geometrical scaling in charm production in deep inelastic scattering (DIS). Our analysis shows that the renormalization scales have a sizable impact on the ratio R c at high Q 2 . Our results for the ratio of the charm structure functions are in a good agreement with some phenomenological models

  19. Fine-scale hydrodynamics influence the spatio-temporal distribution of harbour porpoises at a coastal hotspot

    Science.gov (United States)

    Jones, A. R.; Hosegood, P.; Wynn, R. B.; De Boer, M. N.; Butler-Cowdry, S.; Embling, C. B.

    2014-11-01

    The coastal Runnelstone Reef, off southwest Cornwall (UK), is characterised by complex topography and strong tidal flows and is a known high-density site for harbour porpoise (Phocoena phocoena); a European protected species. Using a multidisciplinary dataset including: porpoise sightings from a multi-year land-based survey, Acoustic Doppler Current Profiling (ADCP), vertical profiling of water properties and high-resolution bathymetry; we investigate how interactions between tidal flow and topography drive the fine-scale porpoise spatio-temporal distribution at the site. Porpoise sightings were distributed non-uniformly within the survey area with highest sighting density recorded in areas with steep slopes and moderate depths. Greater numbers of sightings were recorded during strong westward (ebbing) tidal flows compared to strong eastward (flooding) flows and slack water periods. ADCP and Conductivity Temperature Depth (CTD) data identified fine-scale hydrodynamic features, associated with cross-reef tidal flows in the sections of the survey area with the highest recorded densities of porpoises. We observed layered, vertically sheared flows that were susceptible to the generation of turbulence by shear instability. Additionally, the intense, oscillatory near surface currents led to hydraulically controlled flow that transitioned from subcritical to supercritical conditions; indicating that highly turbulent and energetic hydraulic jumps were generated along the eastern and western slopes of the reef. The depression and release of isopycnals in the lee of the reef during cross-reef flows revealed that the flow released lee waves during upslope currents at specific phases of the tidal cycle when the highest sighting rates were recorded. The results of this unique, fine-scale field study provide new insights into specific hydrodynamic features, produced through tidal forcing, that may be important for creating predictable foraging opportunities for porpoises at a

  20. Fine surface structure of unfixed and hydrated macrophages observed by laser-plasma x-ray contact microscopy

    International Nuclear Information System (INIS)

    Yamamoto, Yoshimasa; Friedman, Herman; Yoshimura, Hideyuki; Kinjo, Yasuhito; Shioda, Seiji; Debari, Kazuhiro; Shinohara, Kunio; Rajyaguru, Jayshree; Richardson, Martin

    2000-01-01

    A compact, high-resolution, laser-plasma, x-ray contact microscope using a table-top Nd:glass laser system has been developed and utilized for the analysis of the surface structure of live macrophages. Fine fluffy surface structures of murine peritoneal macrophages, which were live, hydrolyzed and not sliced and stained, were observed by the x-ray microscope followed by analysis using an atomic force microscopy. In order to compare with other techniques, a scanning electron microscopy (SEM) was utilized to observe the surface structure of the macrophages. The SEM offered a fine whole cell image of the same macrophages, which were fixed and dehydrated, but the surfaces were ruffled and different from that of x-ray images. A standard light microscope was also utilized to observe the shape of live whole macrophages. Light microscopy showed some fluffy surface structures of the macrophages, but the resolution was too low to observe the fine structures. Thus, the findings of fine fluffy surface structures of macrophages by x-ray microscopy provide valuable information for studies of phagocytosis, cell spreading and adherence, which are dependent on the surface structure of macrophages. Furthermore, the present study also demonstrates the usefulness of x-ray microscopy for analysis of structures of living cells

  1. Design of scaled down structural models

    Science.gov (United States)

    Simitses, George J.

    1994-07-01

    In the aircraft industry, full scale and large component testing is a very necessary, time consuming, and expensive process. It is essential to find ways by which this process can be minimized without loss of reliability. One possible alternative is the use of scaled down models in testing and use of the model test results in order to predict the behavior of the larger system, referred to herein as prototype. This viewgraph presentation provides justifications and motivation for the research study, and it describes the necessary conditions (similarity conditions) for two structural systems to be structurally similar with similar behavioral response. Similarity conditions provide the relationship between a scaled down model and its prototype. Thus, scaled down models can be used to predict the behavior of the prototype by extrapolating their experimental data. Since satisfying all similarity conditions simultaneously is in most cases impractical, distorted models with partial similarity can be employed. Establishment of similarity conditions, based on the direct use of the governing equations, is discussed and their use in the design of models is presented. Examples include the use of models for the analysis of cylindrical bending of orthotropic laminated beam plates, of buckling of symmetric laminated rectangular plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.

  2. Challenges for Large Scale Structure Theory

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I will describe some of the outstanding questions in Cosmology where answers could be provided by observations of the Large Scale Structure of the Universe at late times.I will discuss some of the theoretical challenges which will have to be overcome to extract this information from the observations. I will describe some of the theoretical tools that might be useful to achieve this goal. 

  3. Multi-Contextual Segregation and Environmental Justice Research: Toward Fine-Scale Spatiotemporal Approaches

    Directory of Open Access Journals (Sweden)

    Yoo Min Park

    2017-10-01

    Full Text Available Many environmental justice studies have sought to examine the effect of residential segregation on unequal exposure to environmental factors among different social groups, but little is known about how segregation in non-residential contexts affects such disparity. Based on a review of the relevant literature, this paper discusses the limitations of traditional residence-based approaches in examining the association between socioeconomic or racial/ethnic segregation and unequal environmental exposure in environmental justice research. It emphasizes that future research needs to go beyond residential segregation by considering the full spectrum of segregation experienced by people in various geographic and temporal contexts of everyday life. Along with this comprehensive understanding of segregation, the paper also highlights the importance of assessing environmental exposure at a high spatiotemporal resolution in environmental justice research. The successful integration of a comprehensive concept of segregation, high-resolution data and fine-grained spatiotemporal approaches to assessing segregation and environmental exposure would provide more nuanced and robust findings on the associations between segregation and disparities in environmental exposure and their health impacts. Moreover, it would also contribute to significantly expanding the scope of environmental justice research.

  4. Multi-Contextual Segregation and Environmental Justice Research: Toward Fine-Scale Spatiotemporal Approaches.

    Science.gov (United States)

    Park, Yoo Min; Kwan, Mei-Po

    2017-10-10

    Many environmental justice studies have sought to examine the effect of residential segregation on unequal exposure to environmental factors among different social groups, but little is known about how segregation in non-residential contexts affects such disparity. Based on a review of the relevant literature, this paper discusses the limitations of traditional residence-based approaches in examining the association between socioeconomic or racial/ethnic segregation and unequal environmental exposure in environmental justice research. It emphasizes that future research needs to go beyond residential segregation by considering the full spectrum of segregation experienced by people in various geographic and temporal contexts of everyday life. Along with this comprehensive understanding of segregation, the paper also highlights the importance of assessing environmental exposure at a high spatiotemporal resolution in environmental justice research. The successful integration of a comprehensive concept of segregation, high-resolution data and fine-grained spatiotemporal approaches to assessing segregation and environmental exposure would provide more nuanced and robust findings on the associations between segregation and disparities in environmental exposure and their health impacts. Moreover, it would also contribute to significantly expanding the scope of environmental justice research.

  5. Multiwavelength anomalous diffraction and diffraction anomalous fine structure to study composition and strain of semiconductor nano structures

    International Nuclear Information System (INIS)

    Favre-Nicolin, V.; Proietti, M.G.; Leclere, C.; Renevier, H.; Katcho, N.A.; Richard, M.I.

    2012-01-01

    The aim of this paper is to illustrate the use of Multi-Wavelength Anomalous Diffraction (MAD) and Diffraction Anomalous Fine Structure (DAFS) spectroscopy for the study of structural properties of semiconductor nano-structures. We give a brief introduction on the basic principles of these techniques providing a detailed bibliography. Then we focus on the data reduction and analysis and we give specific examples of their application on three different kinds of semiconductor nano-structures: Ge/Si nano-islands, AlN capped GaN/AlN Quantum Dots and AlGaN/AlN Nano-wires. We show that the combination of MAD and DAFS is a very powerful tool to solve the structural problem of these materials of high technological impact. In particular, the effects of composition and strain on diffraction are disentangled and composition can be determined in a reliable way, even at the interface between nano-structure and substrate. We show the great possibilities of this method and give the reader the basic tools to undertake its use. (authors)

  6. Phylogenetic relatedness limits co-occurrence at fine spatial scales: evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa.

    Science.gov (United States)

    Slingsby, Jasper A; Verboom, G Anthony

    2006-07-01

    Species co-occurrence at fine spatial scales is expected to be nonrandom with respect to phylogeny because of the joint effects of evolutionary (trait convergence and conservatism) and ecological (competitive exclusion and habitat filtering) processes. We use data from 11 existing vegetation surveys to test whether co-occurrence in schoenoid sedge assemblages in the Cape Floristic Region shows significant phylogenetic structuring and to examine whether this changes with the phylogenetic scale of the analysis. We provide evidence for phylogenetic overdispersion in an alliance of closely related species (the reticulate-sheathed Tetraria clade) using both quantile regression analysis and a comparison between the mean observed and expected phylogenetic distances between co-occurring species. Similar patterns are not evident when the analyses are performed at a broader phylogenetic scale. Examination of six functional traits suggests a general pattern of trait conservatism within the reticulate-sheathed Tetraria clade, suggesting a potential role for interspecific competition in structuring co-occurrence within this group. We suggest that phylogenetic overdispersion of communities may be common throughout many of the Cape lineages, since interspecific interactions are likely intensified in lineages with large numbers of species restricted to a small geographic area, and we discuss the potential implications for patterns of diversity in the Cape.

  7. Study of structural colour of Hebomoia glaucippe butterfly wing scales

    Science.gov (United States)

    Shur, V. Ya; Kuznetsov, D. K.; Pryakhina, V. I.; Kosobokov, M. S.; Zubarev, I. V.; Boymuradova, S. K.; Volchetskaya, K. V.

    2017-10-01

    Structural colours of Hebomoia glaucippe butterfly wing scales have been studied experimentally using high resolution scanning electron microscopy. Visualization of scales structures and computer simulation allowed distinguishing correlation between nanostructures on the scales and their colour.

  8. Development of Ultra-Fine-Grained Structure in AISI 321 Austenitic Stainless Steel

    Science.gov (United States)

    Tiamiyu, A. A.; Szpunar, J. A.; Odeshi, A. G.; Oguocha, I.; Eskandari, M.

    2017-12-01

    Ultra-fine-grained (UFG) structure was developed in AISI 321 austenitic stainless steel (ASS) using cryogenic rolling followed by annealing treatments at 923 K, 973 K, 1023 K, and 1073 K (650 °C, 700 °C, 750 °C, and 800 °C) for different lengths of time. The α'-martensite to γ-austenite reversion behavior and the associated texture development were analyzed in the cryo-rolled specimens after annealing. The activation energy, Q, required for the reversion of α'-martensite to γ-austenite in the steel was estimated to be 80 kJ mol-1. TiC precipitates and unreversed triple junction α'-martensite played major roles in the development of UFG structure through the Zener pinning of grain boundaries. The optimum annealing temperature and time for the development of UFG structure in the cryo-rolled AISI 321 steel are (a) 923 K (650 °C) for approximately 28800 seconds and (b) 1023 K (750 °C) for 600 seconds, with average grain sizes of 0.22 and 0.31 µm, respectively. Annealing at 1023 K (750 °C) is considered a better alternative since the volume fraction of precipitated carbides in specimens annealed at 1023 K (750 °C) are less than those annealed at 923 K (650 °C). More so, the energy consumption during prolonged annealing time to achieve an UFG structure at 923 K (650 °C) is higher due to low phase reversion rate. The hardness of the UFG specimens is 195 pct greater than that of the as-received steel. The higher volume fraction of TiC precipitates in the UFG structure may be an additional source of hardening. Micro and macrotexture analysis indicated {110}〈uvw〉 as the major texture component of the austenite grains in the UFG structure. Its intensity is stronger in the specimen annealed at low temperatures.

  9. Correlative Structural Biology: How to Investigate the Fine Details of Viral Structure

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Wright

    2010-01-01

    Full Text Available Commentary on Byeon, I.J.; Meng, X.; Jung, J.; Zhao, G.; Yang, R.; Ahn, J.; Shi, J.; Concel, J.; Aiken, C.; Zhang, P.; Gronenborn, A.M. Structural convergence between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell 2009, 139, 780-790.

  10. Asymmetric larval head and mandibles of Hydrophilus acuminatus (Insecta: Coleoptera, Hydrophilidae): Fine structure and embryonic development.

    Science.gov (United States)

    Sato, Shun'ichi; Inoda, Toshio; Niitsu, Shuhei; Kubota, Souichirou; Goto, Yuji; Kobayashi, Yukimasa

    2017-11-01

    The larvae of a water scavenger beetle, Hydrophilus acuminatus, have strongly asymmetric mandibles; the right one is long and slender, whereas the left one is short and stout. The fine structure and embryonic development of the head capsule and mandibles of this species were examined using light and scanning electron microscopy, and asymmetries in shape were detected in these structures applying an elliptic Fourier analysis. The larval mandibles are asymmetric in the following aspects: whole length, the number, structure and arrangement of retinacula (inner teeth), and size and shape of both the molar and incisor regions. The larval head is also asymmetric; the left half of the head capsule is larger than the right, and the left adductor muscle of the mandible is much thicker than the right. The origin and developmental process of asymmetric mandibles were traced in developing embryos whose developmental period is about 270 h and divided into 10 stages. Mandibular asymmetries are produced by the cumulative effects of six stepwise modifications that occur from about 36% of the total developmental time onward. The significance of these modifications was discussed with respect to the functional advantages of asymmetries and the phylogeny of members of the Hydrophilidae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Aviation Model: A Fine-Scale Numerical Weather Prediction System for Aviation Applications at the Hong Kong International Airport

    Directory of Open Access Journals (Sweden)

    Wai-Kin Wong

    2013-01-01

    Full Text Available The Hong Kong Observatory (HKO is planning to implement a fine-resolution Numerical Weather Prediction (NWP model for supporting the aviation weather applications at the Hong Kong International Airport (HKIA. This new NWP model system, called Aviation Model (AVM, is configured at a horizontal grid spacing of 600 m and 200 m. It is based on the WRF-ARW (Advance Research WRF model that can have sufficient computation efficiency in order to produce hourly updated forecasts up to 9 hours ahead on a future high performance computer system with theoretical peak performance of around 10 TFLOPS. AVM will be nested inside the operational mesoscale NWP model of HKO with horizontal resolution of 2 km. In this paper, initial numerical experiment results in forecast of windshear events due to seabreeze and terrain effect are discussed. The simulation of sea-breeze-related windshear is quite successful, and the headwind change observed from flight data could be reproduced in the model forecast. Some impacts of physical processes on generating the fine-scale wind circulation and development of significant convection are illustrated. The paper also discusses the limitations in the current model setup and proposes methods for the future development of AVM.

  12. Solvation structure determination of nickel(II) ion in six nitriles using extended X-ray absorption fine structure spectroscopy

    International Nuclear Information System (INIS)

    Inada, Yasuhiro; Funahashi, Shigenobu

    1997-01-01

    The solvation structures of the nickel(II) ion in six nitriles have been determined using X-ray absorption fine structure spectroscopy. The coordination number and the Ni-N bond length are 6 and 206.9 ± 0.6 pm in acetonitrile, 5.9 ± 0.2 and 206.9 ± 0.6 pm in propionitrile, 6.0 ± 0.2 and 206.8 ± 0.6 pm in butyronitrile, 6.0 ± 0.2 and 206.8 ± 0.6 pm in isobutyronitrile, 6.0 ± 0.2 and 206.8 ± 0.6 pm in valeronitrile, and 6.0 ± 0.2 and 206.5 ± 0.7 pm in benzonitrile, respectively. The structure parameters around the nickel(II) ion in all the nitriles are not affected by the bulkiness of the nitrile molecules. On the basis of the obtained structure parameters, we have discussed the structural characteristics around the nickel(II) ion with nitrogen and oxygen donor solvents and the reaction mechanisms for nitrile exchange on the nickel(II) ion. (author)

  13. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Caroline L Poli

    Full Text Available During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra, in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level, the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance

  14. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico

    Science.gov (United States)

    Poli, Caroline L.; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G.R.

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird

  15. New analysis methods for skin fine-structure via optical image and development of 3D skin Cycloscan(™).

    Science.gov (United States)

    Han, J Y; Nam, G W; Lee, H K; Kim, M J; Kim, E J

    2015-11-01

    This study was conducted to develop methods for measuring skin fine-structure via optical image and apparatus for photographing to analyze efficacy of anti-aging. We developed an apparatus named 3D Skin CycloScan(™) to evaluate the efficacy of cosmetics by imagification of skin fine-structure such as wrinkles, pores, and skin texture. The semi-sphere shaped device has 12 different sequential flashing light sources captures optical image simultaneously in one second to exclude the influence of the subject's movement. The normal map that is extracted through shape from shading method is composed of face contour and skin fine-structure parts. When the low-frequency component which is the result of the Gaussian Filter application is eliminated, we can get only skin fine-structure. In this normal map, it is possible to extract two-dimensional vector map called direction map and we can regulate the intensity of the image of wrinkles, pores, and skin texture after filtering the direction map. We performed a clinical study to apply this new apparatus and methods to evaluate an anti-aging efficacy of cosmetics visually and validate with other conventional methods. After using anti-aging cream including 2% adenosine for 8 weeks, the total amount of fine wrinkle around eye area detected via 3D Skin CycloScan(™) was reduced by 12.1%. Also, wrinkles on crow's feet measured by PRIMOS COMPACT(®) (GFMesstechnik GmbH, Germany) reduced 11.7%. According to an aspect of the present study, by changing the direction of the lights toward to subject's skin, we can obtain the information about the fine structures present on the skin such as wrinkles, pores, or skin texture and represent it as an image. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Effects of land use and fine-scale environmental heterogeneity on net ecosystem production over a temperate coniferous forest landscape

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David P.; Guzy, Michael; Lefsky, Michael A.; Tuyl, Steve van; Sun, Osbert; Law, Beverly E. [Oregon State Univ. Corvallis, OR (United States). Dept. of Forest Science; Daly, Chris [Oregon State Univ., Corvallis, OR (United States). Dept. of Geosciences

    2003-04-01

    In temperate coniferous forests, spatial variation in net ecosystem production (NEP) is often associated with variation in stand age and heterogeneity in environmental factors such as soil depth. However, coarse spatial resolution analyses used to evaluate the terrestrial contribution to global NEP do not generally incorporate these effects. In this study, a fine-scale (25 m grid) analysis of NEP over a 164-km{sup 2} area of productive coniferous forests in the Pacific Northwest region of the United States was made to evaluate the effects of including fine scale information in landscape-scale NEP assessments. The Enhanced Thematic Mapper (ETM+) sensor resolved five cover classes in the study area and further differentiated between young, mature and old-growth conifer stands. ETM+ was also used to map current leaf area index (LAI) based on an empirical relationship of observed LAI to spectral vegetation indices. A daily time step climatology, based on 18 years of meteorological observations, was distributed (1 km resolution) over the mountainous terrain of the study area using the DAYMET model. Estimates of carbon pools and flux associated with soil, litter, coarse woody debris and live trees were then generated by running a carbon cycle model (Biome-BGC) to a state that reflected the current successional status and LAI of each grid cell, as indicated by the remote sensing observations. Estimated annual NEP for 1997 over the complete study area averaged 230 g C m{sup 2}, with most of the area acting as a carbon sink. The area-wide NEP is strongly positive because of reduced harvesting in the last decade and the recovery of areas harvested between 1940 and 1990. The average value was greater than would be indicated if the entire area was assumed to be a mature conifer stand, as in a coarse-scale analysis. The mean NEP varied interannually by over a factor of two. This variation was 38% less than the interannual variation for a single point. The integration of process

  17. Effects of land use and fine-scale environmental heterogeneity on net ecosystem production over a temperate coniferous forest landscape

    International Nuclear Information System (INIS)

    Turner, David P.; Guzy, Michael; Lefsky, Michael A.; Tuyl, Steve van; Sun, Osbert; Law, Beverly E.; Daly, Chris

    2003-01-01

    In temperate coniferous forests, spatial variation in net ecosystem production (NEP) is often associated with variation in stand age and heterogeneity in environmental factors such as soil depth. However, coarse spatial resolution analyses used to evaluate the terrestrial contribution to global NEP do not generally incorporate these effects. In this study, a fine-scale (25 m grid) analysis of NEP over a 164-km 2 area of productive coniferous forests in the Pacific Northwest region of the United States was made to evaluate the effects of including fine scale information in landscape-scale NEP assessments. The Enhanced Thematic Mapper (ETM+) sensor resolved five cover classes in the study area and further differentiated between young, mature and old-growth conifer stands. ETM+ was also used to map current leaf area index (LAI) based on an empirical relationship of observed LAI to spectral vegetation indices. A daily time step climatology, based on 18 years of meteorological observations, was distributed (1 km resolution) over the mountainous terrain of the study area using the DAYMET model. Estimates of carbon pools and flux associated with soil, litter, coarse woody debris and live trees were then generated by running a carbon cycle model (Biome-BGC) to a state that reflected the current successional status and LAI of each grid cell, as indicated by the remote sensing observations. Estimated annual NEP for 1997 over the complete study area averaged 230 g C m 2 , with most of the area acting as a carbon sink. The area-wide NEP is strongly positive because of reduced harvesting in the last decade and the recovery of areas harvested between 1940 and 1990. The average value was greater than would be indicated if the entire area was assumed to be a mature conifer stand, as in a coarse-scale analysis. The mean NEP varied interannually by over a factor of two. This variation was 38% less than the interannual variation for a single point. The integration of process models

  18. Angle-resolved photoemission extended fine structure: Multiple layers of emitters and multiple initial states

    International Nuclear Information System (INIS)

    Huff, W.R.A.; Kellar, S.A.; Moler, E.J.; California Univ., Berkeley, CA; Chen, Y.; Wu, H.; Shirley, D.A.; Hussain, Z.

    1995-01-01

    Recently, angle-resolved photoemission extended fine structure (ARPEFS) has been applied to experimental systems involving multiple layers of emitters and non-s core-level photoemission in an effort to broaden the utility of the technique. Most of the previous systems have been comprised of atomic or molecular overlayers adsorbed onto a single-crystal, metal surface and the photoemission data were taken from an s atomic core-level in the overlayer. For such a system, the acquired ARPEFS data is dominated by the p o final state wave backscattering from the substrate atoms and is well understood. In this study, we investigate ARPEFS as a surface-region structure determination technique when applied to experimental systems comprised of multiple layers of photoemitters and arbitrary initial state core-level photoemission. Understanding the data acquired from multiple layers of photoemitters is useful for studying multilayer interfaces, ''buried'' surfaces, and clean crystals in ultra- high vacuum. The ability to apply ARPEFS to arbitrary initial state core-level photoemission obviously opens up many systems to analysis. Efforts have been ongoing to understand such data in depth. We present clean Cu(111) 3s, 3p, and 3d core-level, normal photoemission data taken on a high resolution soft x-ray beamline 9.3.2 at the Advanced Light Source in Berkeley, California and clean Ni(111) 3p normal photoemission data taken at the National Synchrotron Light Source in Upton, New York, USA

  19. Electron impact excitation of fine-structure levels of neon-like titanium (Ti XIII)

    International Nuclear Information System (INIS)

    Gupta, G.P.; Deb, N.C.; Msezane, A.Z.

    1999-01-01

    The authors present results of a Breit-Pauli R-matrix calculation for the electron impact excitation of neon-like titanium, in which the 27 lowest fine-structure target levels arising out of the 4 lowest configurations 2s 2 2p 6 , 2s 2 2p 5 3s, 2s 2 2p 5 3p, and 2s 2 2p 5 3d are included. These target levels are represented by configuration interaction wave functions using the 1s, 2s, 2p, 3s, 3p, and 3d basic orbitals. The relativistic effects are included in the Breit-Pauli approximation via one-body mass correction, Darwin, and spin-orbit interaction terms in the scattering equations. For many transitions, complex resonance structures are found in the excitation cross sections. The excitation cross sections are integrated over a Maxwellian distribution of electron energies to give electron excitation rate coefficients over a wide temperature range from 150 to 600 eV. The relative populations for different electron densities and temperatures are also presented

  20. Insight into the biological effects of acupuncture points by X-ray absorption fine structure.

    Science.gov (United States)

    Liu, Chenglin; Liu, Qinghua; Zhang, Dongming; Liu, Wei; Yan, Xiaohui; Zhang, Xinyi; Oyanagi, Hiroyuki; Pan, Zhiyun; Hu, Fengchun; Wei, Shiqiang

    2018-06-02

    Exploration of the biological effects of transition metal ions in acupuncture points is essential to clarify the functional mechanism of acupuncture treatment. Here we show that in the SP6 acupuncture point (Sanyinjiao) the Fe ions are in a high-spin state of approximately t 2g 4.5 e g 1.5 in an Fe-N(O) octahedral crystal field. The Fe K-edge synchrotron radiation X-ray absorption fine structure results reveal that the Fe-N and Fe-O bond lengths in the SP6 acupuncture point are 2.05 and 2.13 Å, respectively, and are 0.05-0.10 Å longer than those in the surrounding tissue. The distorted atomic structure reduces the octahedral symmetry and weakens the crystal field around the Fe ions by approximately 0.3 eV, leading to the high-spin configuration of the Fe ions, which is favorable for strengthening the magnetotransport and oxygen transportation properties in the acupuncture point by the enhanced spin coherence. This finding might provide some insight into the microscopic effect of the atomic and electronic interactions of transition metal ions in the acupuncture point. Graphical Abstract ᅟ.

  1. Fine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium

    Directory of Open Access Journals (Sweden)

    Antonio Cigliano

    2012-01-01

    Full Text Available Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emerged to create cell repopulated decellularized scaffolds. This study was performed to determine the glycosaminoglycans content, distribution, and disaccharides composition in porcine aortic and pulmonary valves and in pericardium before and after a detergent-based decellularization procedure. The fine structural characteristics of galactosaminoglycans chondroitin sulfate and dermatan sulfate were examined by FACE. Furthermore, the mechanical properties of decellularized pericardium and its propensity to be repopulated by in vitro seeded fibroblasts were investigated. Results show that galactosaminoglycans and hyaluronan are differently distributed between pericardium and valves and within heart valves themselves before and after decellularization. The distribution of glycosaminoglycans is also dependent from the vascular district and topographic localization. The decellularization protocol adopted resulted in a relevant but not selective depletion of galactosaminoglycans. As a whole, data suggest that both decellularized porcine heart valves and bovine pericardium represent promising materials bearing the potential for future development of tissue engineered heart valve scaffolds.

  2. Development of powder diffraction anomalous fine structure method and applications to electrode materials for rechargeable batteries

    International Nuclear Information System (INIS)

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Oishi, Masatsugu; Ichitsubo, Tetsu; Matsubara, Eiichiro; Mizuki, Jun'ichiro

    2015-01-01

    A powder diffraction anomalous fine structure (P-DAFS) method is developed both in analytical and experimental techniques and applied to cathode materials for lithium ion batteries. The DAFS method, which is an absorption spectroscopic technique through a scattering measurement, enables us to analyze the chemical states and the local structures of a certain element at different sites, thanks to the nature of x-ray diffraction, where the contributions from each site are different at each diffraction. Electrode materials for rechargeable batteries frequently exhibit the interchange between Li and a transition metal, which is known as the cation mixing phenomena. This cation mixing significantly affects the whole electrode properties; therefore, the site-distinguished understanding of the roles of the transition metal is essential for further material design by controlling and positively utilizing this cation mixing phenomenon. However, the developments of the P-DAFS method are required for the applications to the practical materials such as the electrode materials. In the present study, a direct analysis technique to extract the absorption spectrum from the scattering without using the conventional iterative calculations, fast and accurate measurement techniques of the P-DAFS method, and applications to a typical electrode material of Li 1-x Ni 1+x O 2 , which exhibits the significant cation mixing, are described. (author)

  3. Wavelength dispersive X-ray absorption fine structure imaging by parametric X-ray radiation

    International Nuclear Information System (INIS)

    Inagaki, Manabu; Sakai, Takeshi; Sato, Isamu; Hayakawa, Yasushi; Nogami, Kyoko; Tanaka, Toshinari; Hayakawa, Ken; Nakao, Keisuke

    2008-01-01

    The parametric X-ray radiation (PXR) generator system at Laboratory for Electron Beam Research and Application (LEBRA) in Nihon University is a monochromatic and coherent X-ray source with horizontal wavelength dispersion. The energy definition of the X-rays, which depends on the horizontal size of the incident electron beam on the generator target crystal, has been investigated experimentally by measuring the X-ray absorption near edge structure (XANES) spectra on Cu and CuO associated with conventional X-ray absorption imaging technique. The result demonstrated the controllability of the spectrum resolution of XANES by adjusting of the horizontal electron beam size on the target crystal. The XANES spectra were obtained with energy resolution of several eV at the narrowest case, which is in qualitative agreement with the energy definition of the PXR X-rays evaluated from geometrical consideration. The result also suggested that the wavelength dispersive X-ray absorption fine structure measurement associated with imaging technique is one of the promising applications of PXR. (author)

  4. Evidence for the distortion product frequency place as a source of distribution product otoacoustic emission (DPOAE) fine structure in humans : I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1

    NARCIS (Netherlands)

    Mauermann, M; Uppenkamp, S; van Hengel, P.W.J.; Kollmeier, B

    1999-01-01

    Critical experiments were performed in order to validate the two-source hypothesis of distortion product otoacoustic emissions (DPOAE) generation. Measurements of the spectral fine structure of DPOAE in response to stimulation with two sinusoids have been:performed with normal-hearing subjects. The

  5. Fishing for space: fine-scale multi-sector maritime activities influence fisher location choice.

    Directory of Open Access Journals (Sweden)

    Alex N Tidd

    Full Text Available The European Union and other states are moving towards Ecosystem Based Fisheries Management to balance food production and security with wider ecosystem concerns. Fishing is only one of several sectors operating within the ocean environment, competing for renewable and non-renewable resources that overlap in a limited space. Other sectors include marine mining, energy generation, recreation, transport and conservation. Trade-offs of these competing sectors are already part of the process but attempts to detail how the seas are being utilised have been primarily based on compilations of data on human activity at large spatial scales. Advances including satellite and shipping automatic tracking enable investigation of factors influencing fishers' choice of fishing grounds at spatial scales relevant to decision-making, including the presence or avoidance of activities by other sectors. We analyse the determinants of English and Welsh scallop-dredging fleet behaviour, including competing sectors, operating in the eastern English Channel. Results indicate aggregate mining activity, maritime traffic, increased fishing costs, and the English inshore 6 and French 12 nautical mile limits negatively impact fishers' likelihood of fishing in otherwise suitable areas. Past success, net-benefits and fishing within the 12 NM predispose fishers to use areas. Systematic conservation planning has yet to be widely applied in marine systems, and the dynamics of spatial overlap of fishing with other activities have not been studied at scales relevant to fisher decision-making. This study demonstrates fisher decision-making is indeed affected by the real-time presence of other sectors in an area, and therefore trade-offs which need to be accounted for in marine planning. As marine resource extraction demands intensify, governments will need to take a more proactive approach to resolving these trade-offs, and studies such as this will be required as the evidential

  6. Improving Shade Modelling in a Regional River Temperature Model Using Fine-Scale LIDAR Data

    Science.gov (United States)

    Hannah, D. M.; Loicq, P.; Moatar, F.; Beaufort, A.; Melin, E.; Jullian, Y.

    2015-12-01

    Air temperature is often considered as a proxy of the stream temperature to model the distribution areas of aquatic species water temperature is not available at a regional scale. To simulate the water temperature at a regional scale (105 km²), a physically-based model using the equilibrium temperature concept and including upstream-downstream propagation of the thermal signal was developed and applied to the entire Loire basin (Beaufort et al., submitted). This model, called T-NET (Temperature-NETwork) is based on a hydrographical network topology. Computations are made hourly on 52,000 reaches which average 1.7 km long in the Loire drainage basin. The model gives a median Root Mean Square Error of 1.8°C at hourly time step on the basis of 128 water temperature stations (2008-2012). In that version of the model, tree shadings is modelled by a constant factor proportional to the vegetation cover on 10 meters sides the river reaches. According to sensitivity analysis, improving the shade representation would enhance T-NET accuracy, especially for the maximum daily temperatures, which are currently not very well modelized. This study evaluates the most efficient way (accuracy/computing time) to improve the shade model thanks to 1-m resolution LIDAR data available on tributary of the LoireRiver (317 km long and an area of 8280 km²). Two methods are tested and compared: the first one is a spatially explicit computation of the cast shadow for every LIDAR pixel. The second is based on averaged vegetation cover characteristics of buffers and reaches of variable size. Validation of the water temperature model is made against 4 temperature sensors well spread along the stream, as well as two airborne thermal infrared imageries acquired in summer 2014 and winter 2015 over a 80 km reach. The poster will present the optimal length- and crosswise scale to characterize the vegetation from LIDAR data.

  7. Fishing for space: fine-scale multi-sector maritime activities influence fisher location choice.

    Science.gov (United States)

    Tidd, Alex N; Vermard, Youen; Marchal, Paul; Pinnegar, John; Blanchard, Julia L; Milner-Gulland, E J

    2015-01-01

    The European Union and other states are moving towards Ecosystem Based Fisheries Management to balance food production and security with wider ecosystem concerns. Fishing is only one of several sectors operating within the ocean environment, competing for renewable and non-renewable resources that overlap in a limited space. Other sectors include marine mining, energy generation, recreation, transport and conservation. Trade-offs of these competing sectors are already part of the process but attempts to detail how the seas are being utilised have been primarily based on compilations of data on human activity at large spatial scales. Advances including satellite and shipping automatic tracking enable investigation of factors influencing fishers' choice of fishing grounds at spatial scales relevant to decision-making, including the presence or avoidance of activities by other sectors. We analyse the determinants of English and Welsh scallop-dredging fleet behaviour, including competing sectors, operating in the eastern English Channel. Results indicate aggregate mining activity, maritime traffic, increased fishing costs, and the English inshore 6 and French 12 nautical mile limits negatively impact fishers' likelihood of fishing in otherwise suitable areas. Past success, net-benefits and fishing within the 12 NM predispose fishers to use areas. Systematic conservation planning has yet to be widely applied in marine systems, and the dynamics of spatial overlap of fishing with other activities have not been studied at scales relevant to fisher decision-making. This study demonstrates fisher decision-making is indeed affected by the real-time presence of other sectors in an area, and therefore trade-offs which need to be accounted for in marine planning. As marine resource extraction demands intensify, governments will need to take a more proactive approach to resolving these trade-offs, and studies such as this will be required as the evidential foundation for future

  8. Fine-scale spatial climate variation and drought mediate the likelihood of reburning

    Science.gov (United States)

    Sean A. Parks; Marc‐Andre Parisien; Carol Miller; Lisa M. Holsinger; Larry Scott Baggett

    2018-01-01

    In many forested ecosystems, it is increasingly recognized that the probability of burning is substantially reduced within the footprint of previously burned areas. This self‐limiting effect of wildland fire is considered a fundamental emergent property of ecosystems and is partly responsible for structuring landscape heterogeneity (i.e., mosaics of different age...

  9. Contrasting patterns of fine-scale herb layer species composition in temperate forests

    Czech Academy of Sciences Publication Activity Database

    Chudomelová, Markéta; Zelený, D.; Li, C.-F.

    2017-01-01

    Roč. 80, APR 2017 (2017), s. 24-31 ISSN 1146-609X Institutional support: RVO:67985939 Keywords : spatial structures * environmental heterogenity * oak forest Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 1.652, year: 2016

  10. Neutrinos and large-scale structure

    International Nuclear Information System (INIS)

    Eisenstein, Daniel J.

    2015-01-01

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos

  11. Neutrinos and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, Daniel J. [Daniel J. Eisenstein, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS #20, Cambridge, MA 02138 (United States)

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  12. Changes in the Fine Structure of Stochastic Distributions as a Consequence of Space-Time Fluctuations

    Directory of Open Access Journals (Sweden)

    Shnoll S. E.

    2006-04-01

    Full Text Available This is a survey of the fine structure stochastic distributions in measurements obtained by me over 50 years. It is shown: (1 The forms of the histograms obtained at each geographic point (at each given moment of time are similar with high probability, even if we register phenomena of completely different nature --- from biochemical reactions to the noise in a gravitational antenna, or alpha-decay. (2 The forms of the histograms change with time. The iterations of the same form have the periods of the stellar day (1.436 min, the solar day (1.440 min, the calendar year (365 solar days, and the sidereal year (365 solar days plus 6 hours and 9 min. (3 At the same instants of the local time, at different geographic points, the forms of the histograms are the same, with high probability. (4 The forms of the histograms depend on the locations of the Moon and the Sun with respect to the horizon. (5 All the facts are proof of the dependance of the form of the histograms on the location of the measured objects with respect to stars, the Sun, and the Moon. (6 At the instants of New Moon and the maxima of solar eclipses there are specific forms of the histograms. (7 It is probable that the observed correlations are not connected to flow power changes (the changes of the gravity force --- we did not find the appropriate periods in changes in histogram form. (8 A sharp anisotropy of space was discovered, registered by alpha-decay detectors armed with collimators. Observations at 54 North (the collimator was pointed at the Pole Star showed no day-long periods, as was also the case for observations at 82 North, near the Pole. Histograms obtained by observations with an Easterly-directed collimator were determined every 718 minutes (half stellar day and with observations using a Westerly-directed collimator. (9 Collimators rotating counter-clockwise, in parallel with the celestial equator, gave the probability of changes in histograms as the number of the

  13. Changes in the Fine Structure of Stochastic Distributions as a Consequence of Space-Time Fluctuations

    Directory of Open Access Journals (Sweden)

    Shnoll S. E.

    2006-04-01

    Full Text Available This is a survey of the fine structure stochastic distributions in measurements obtained by me over 50 years. It is shown: (1 The forms of the histograms obtained at each geographic point (at each given moment of time are similar with high probability, even if we register phenomena of completely different nature — from biochemical reactions to the noise in a gravitational antenna, or α-decay. (2 The forms of the histograms change with time. The iterations of the same form have the periods of the stellar day (1.436 min, the solar day (1.440 min, the calendar year (365 solar days, and the sidereal year (365 solar days plus 6 hours and 9 min. (3 At the same instants of the local time, at different geographic points, the forms of the histograms are the same, with high probability. (4 The forms of the histograms depend on the locations of the Moon and the Sun with respect to the horizon. (5 All the facts are proof of the dependance of the form of the histograms on the location of the measured objects with respect to stars, the Sun, and the Moon. (6 At the instants of New Moon and the maxima of solar eclipses there are specific forms of the histograms. (7 It is probable that the observed correlations are not connected to flow power changes (the changes of the gravity force — we did not find the appropriate periods in changes in histogram form. (8 A sharp anisotropy of space was discovered, registered by α-decay detectors armed with collimators. Observations at 54◦ North (the collimator was pointed at the Pole Star showed no day-long periods, as was also the case for observations at 82◦ North, near the Pole. Histograms obtained by observations with an Easterly-directed collimator were determined every 718 minutes (half stellar day and with observations using a Westerly-directed collimator. (9 Collimators rotating counter-clockwise, in parallel with the celestial equator, gave the probability of changes in histograms as the number of the

  14. Modeling fine-scale geological heterogeneity-examples of sand lenses in tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Comunian, Alessandro; Oriani, Fabio

    2013-01-01

    that hamper subsequent simulation. Transition probability (TP) and multiple-point statistics (MPS) were employed to simulate sand lens heterogeneity. We used one cross-section to parameterize the spatial correlation and a second, parallel section as a reference: it allowed testing the quality......Sand lenses at various spatial scales are recognized to add heterogeneity to glacial sediments. They have high hydraulic conductivities relative to the surrounding till matrix and may affect the advective transport of water and contaminants in clayey till settings. Sand lenses were investigated...... on till outcrops producing binary images of geological cross-sections capturing the size, shape and distribution of individual features. Sand lenses occur as elongated, anisotropic geobodies that vary in size and extent. Besides, sand lenses show strong non-stationary patterns on section images...

  15. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots.

    Science.gov (United States)

    Stukenbrock, Eva H; Dutheil, Julien Y

    2018-03-01

    Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. Copyright © 2018 Stukenbrock and Dutheil.

  16. Evaluating β Diversity as a Surrogate for Species Representation at Fine Scale.

    Directory of Open Access Journals (Sweden)

    Paul Beier

    Full Text Available Species turnover or β diversity is a conceptually attractive surrogate for conservation planning. However, there has been only 1 attempt to determine how well sites selected to maximize β diversity represent species, and that test was done at a scale too coarse (2,500 km2 sites to inform most conservation decisions. We used 8 plant datasets, 3 bird datasets, and 1 mammal dataset to evaluate whether sites selected to span β diversity will efficiently represent species at finer scale (sites sizes < 1 ha to 625 km2. We used ordinations to characterize dissimilarity in species assemblages (β diversity among plots (inventory data or among grid cells (atlas data. We then selected sites to maximize β diversity and used the Species Accumulation Index, SAI, to evaluate how efficiently the surrogate (selecting sites for maximum β diversity represented species in the same taxon. Across all 12 datasets, sites selected for maximum β diversity represented species with a median efficiency of 24% (i.e., the surrogate was 24% more effective than random selection of sites, and an interquartile range of 4% to 41% efficiency. β diversity was a better surrogate for bird datasets than for plant datasets, and for atlas datasets with 10-km to 14-km grid cells than for atlas datasets with 25-km grid cells. We conclude that β diversity is more than a mere descriptor of how species are distributed on the landscape; in particular β diversity might be useful to maximize the complementarity of a set of sites. Because we tested only within-taxon surrogacy, our results do not prove that β diversity is useful for conservation planning. But our results do justify further investigation to identify the circumstances in which β diversity performs well, and to evaluate it as a cross-taxon surrogate.

  17. Fine-Scale Distributions of Zooplankton in the Northern San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Wim Kimmerer

    2016-10-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss3art2 We studied zooplankton distributions in the upper San Francisco Estuary at nested scales of tens to thousands of meters. The purposes of the study were to assess how well the Interagency Ecological Program (IEP zooplankton monitoring represents abundance, and to investigate the variability of plankton on scales similar to those of foraging by fish. Samples were taken at three sites in the western Sacramento–San Joaquin Delta. We took 18 sets of six samples each with a plankton net along transects from near shore to center channel, and six sets of ten samples in the vicinity of a drifter either in mid-channel or near shore. Sampling took place in June–July 2014 during neap and spring tides, ebb and flood, day and night (transects only. Analysis focused on three common copepod species. Transect samples showed little consistent variation along transects, except that Pseudodiaptomus forbesi was less abundant nearshore than offshore by day at Big Break, the most landward site. The ratio of adults to adults + copepodites was strongly and positively related to turbidity by day but not by night, indicating demersal behavior. Drifter samples showed a minimum standard deviation of log10 sample counts of about 0.1, indicating that about two-thirds of replicate abundance values were within 80 % to 125% of the mean. A measure of difference between plankton samples at pairs of sample points was unrelated to distance between sample points for drifter samples, weakly related along transects for Limnoithona spp. stages, and strongly related for P. forbesi mainly because of the along-transect gradients at Big Break. The IEP sampling program is representative of plankton abundance except for demersal organisms, which can be ten-fold more abundant by night than by day. Small planktivorous fish could forage in patches of up to ~25% higher abundance than the mean.

  18. Genetic analysis reveals efficient sexual spore dispersal at a fine spatial scale in Armillaria ostoyae, the causal agent of root-rot disease in conifers.

    Science.gov (United States)

    Dutech, Cyril; Labbé, Frédéric; Capdevielle, Xavier; Lung-Escarmant, Brigitte

    Armillaria ostoyae (sometimes named Armillaria solidipes) is a fungal species causing root diseases in numerous coniferous forests of the northern hemisphere. The importance of sexual spores for the establishment of new disease centres remains unclear, particularly in the large maritime pine plantations of southwestern France. An analysis of the genetic diversity of a local fungal population distributed over 500 ha in this French forest showed genetic recombination between genotypes to be frequent, consistent with regular sexual reproduction within the population. The estimated spatial genetic structure displayed a significant pattern of isolation by distance, consistent with the dispersal of sexual spores mostly at the spatial scale studied. Using these genetic data, we inferred an effective density of reproductive individuals of 0.1-0.3 individuals/ha, and a second moment of parent-progeny dispersal distance of 130-800 m, compatible with the main models of fungal spore dispersal. These results contrast with those obtained for studies of A. ostoyae over larger spatial scales, suggesting that inferences about mean spore dispersal may be best performed at fine spatial scales (i.e. a few kilometres) for most fungal species. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Structural control of ultra-fine CoPt nanodot arrays via electrodeposition process

    Energy Technology Data Exchange (ETDEWEB)

    Wodarz, Siggi [Department of Applied Chemistry, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Hasegawa, Takashi; Ishio, Shunji [Department of Materials Science, Akita University, Akita City 010-8502 (Japan); Homma, Takayuki, E-mail: t.homma@waseda.jp [Department of Applied Chemistry, Waseda University, Shinjuku, Tokyo 169-8555 (Japan)

    2017-05-15

    CoPt nanodot arrays were fabricated by combining electrodeposition and electron beam lithography (EBL) for the use of bit-patterned media (BPM). To achieve precise control of deposition uniformity and coercivity of the CoPt nanodot arrays, their crystal structure and magnetic properties were controlled by controlling the diffusion state of metal ions from the initial deposition stage with the application of bath agitation. Following bath agitation, the composition gradient of the CoPt alloy with thickness was mitigated to have a near-ideal alloy composition of Co:Pt =80:20, which induces epitaxial-like growth from Ru substrate, thus resulting in the improvement of the crystal orientation of the hcp (002) structure from its initial deposition stages. Furthermore, the cross-sectional transmission electron microscope (TEM) analysis of the nanodots deposited with bath agitation showed CoPt growth along its c-axis oriented in the perpendicular direction, having uniform lattice fringes on the hcp (002) plane from the Ru underlayer interface, which is a significant factor to induce perpendicular magnetic anisotropy. Magnetic characterization of the CoPt nanodot arrays showed increase in the perpendicular coercivity and squareness of the hysteresis loops from 2.0 kOe and 0.64 (without agitation) to 4.0 kOe and 0.87 with bath agitation. Based on the detailed characterization of nanodot arrays, the precise crystal structure control of the nanodot arrays with ultra-high recording density by electrochemical process was successfully demonstrated. - Highlights: • Ultra-fine CoPt nanodot arrays were fabricated by electrodeposition. • Crystallinity of hcp (002) was improved with uniform composition formation. • Uniform formation of hcp lattices leads to an increase in the coercivity.

  20. The morphodynamics and internal structure of intertidal fine-gravel dunes: Hills Flats, Severn Estuary, UK

    Science.gov (United States)

    Carling, P. A.; Radecki-Pawlik, A.; Williams, J. J.; Rumble, B.; Meshkova, L.; Bell, P.; Breakspear, R.

    2006-01-01

    In the macrotidal Severn estuary, UK, the dynamics of intertidal fine-gravel dunes were investigated. These dunes are migrating across a bedrock platform. Systematic observations were made of hydraulic climate, geometry, migration rates and internal sedimentary structures of the dunes. During spring tides, the ebb flow is dominant, dunes grow in height and have ebb orientated geometry with bedrock floors in the troughs. During neap tides, a weak flood flow may dominate. Dunes then are flood orientated or symmetrical. Neap dune heights decrease and the eroded sediment is stored in the dune troughs where the bedrock becomes blanketed by muddy gravel. During spring tides, instantaneous bed shear stresses reach 8 N m - 2 , sufficient to disrupt a 9 mm-gravel armour layer. However, a sustained bed shear stress of 4 N m - 2 is required to initiate dune migration at which time the critical depth-mean velocity is 1 m s - 1 . Ebb and flood inequalities in the bed shear stress explain the changes in dune asymmetry and internal structures. During flood tides, the crests of the dunes reverse such that very mobile sedimentary 'caps' overlie a more stable dune 'core'. Because ebb tides dominate, internal structures of the caps often are characterised by ebb orientated steep open-work foresets developed by strong tidal currents and some lower angle crossbeds deposited as weaker currents degrade foresets. The foresets forming the caps may be grouped into cosets (tidal bundles) and are separated from mud-infused cores of crossbeds that lie below, by reactivation and erosion surfaces blanketed by discontinuous mud drapes. The cores often exhibit distinctive muddy toe sets that define the spacing of tidal cosets.

  1. Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results

    Science.gov (United States)

    Murphy, M. T.; Webb, J. K.; Flambaum, V. V.; Dzuba, V. A.; Churchill, C. W.; Prochaska, J. X.; Barrow, J. D.; Wolfe, A. M.

    2001-11-01

    An experimental search for variation in the fundamental coupling constants is strongly motivated by modern high-energy physics theories. Comparison of quasar (QSO) absorption-line spectra with laboratory spectra provides a sensitive probe for variability of the fine-structure constant, α, over cosmological time-scales. We have previously developed and applied a new method providing an order-of-magnitude gain in precision over previous optical astrophysical constraints. Here we extend that work by including new quasar spectra of damped Lyman-α absorption systems. We also reanalyse our previous lower-redshift data and confirm our initial results. The constraints on α come from simultaneous fitting of absorption lines of subsets of the following species: Mgi, Mgii, Alii, Aliii, Siii, Crii, Feii, Niii and Znii. We present a detailed description of our methods and results based on an analysis of 49 quasar absorption systems (towards 28 QSOs) covering the redshift range [formmu2]0.5quote above is the raw value, not corrected for any of these systematic effects. The only significant systematic effects so far identified, if removed from our data, would lead to a more significant deviation of [formmu5]Δα/α from zero.

  2. A tale of two pectins: Diverse fine structures can result from identical processive PME treatments on similar high DM subtrates

    Science.gov (United States)

    The effects of a processive pectin-methylesterase treatment on two different pectins, both possessing a high degree of methylesterification, were investigated. While the starting samples were purportedly very similar in fine structure, and even though the sample-averaged degree of methylesterificati...

  3. Optimum conditions for the determination of ionization potentials, appearance potentials and fine structure in ionization efficiency curves using edd technique

    International Nuclear Information System (INIS)

    Selim, Ezzat T.; El-Kholy, S.B.; Zahran, Nagwa F.

    1978-01-01

    The optimum conditions for determining ionization potentials as well as fine structure in electron impact ionization efficiency curves are studied using energy distribution difference technique. Applying these conditions to Ar + , Kr + , CO + 2 and N + from N 2 , very good agreement is obtained when compared with results determined by other techniques including UV spectroscopy. The merits and limitation of the technique are also discussed

  4. On the effects of the two-body non-fine-structure operators of the Breit-Pauli Hamiltonian

    International Nuclear Information System (INIS)

    Badnell, N.R.

    1997-01-01

    We have incorporated the two-body non-fine-structure operators of the Breit-Pauli Hamiltonian, namely contact spin-spin, two-body Darwin and orbit-orbit, into the program AUTOSTRUCTURE. Illustrative results are presented, including some for reactions involving the process of autoionization. (author)

  5. Standard model and fine structure constant at Planck distances in the Bennett-Brene-Nielsen-Picek random dynamics

    International Nuclear Information System (INIS)

    Laperashvili, L.V.

    1994-01-01

    The first part of the present paper contains a review of papers by Nielsen, Bennett, Brene and Picek which underly the model called random dynamics. The second part of the paper is devoted to calculating the fine structure constant by means of the path integration in the U(1)-lattice gauge theory

  6. All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide

    Directory of Open Access Journals (Sweden)

    D. Simin

    2016-07-01

    Full Text Available We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-^{28}SiC and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3/2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100  nT/sqrt[Hz] within a volume of 3×10^{-7}mm^{3} at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3  mm^{3}, the projection noise limit is below 100  fT/sqrt[Hz].

  7. Atomic transition energies and the variation of the fine-structure constant α

    International Nuclear Information System (INIS)

    Borschevsky, Anastasia; Eliav, Ephraim; Ishikawa, Yasuyuki; Kaldor, Uzi

    2006-01-01

    Relativistic energy shifts of atomic excitation energies, showing the dependence of these energies on the value of the fine-structure constant α, are needed to extract past changes in α from spectra of distant quasars. These shifts are calculated by the Fock-space coupled cluster method and its extrapolated intermediate Hamiltonian extension, which allow high-accuracy treatment of electron correlation. The accuracy of the method is tested by comparing 33 transition energies in heavy atoms (obtained with the laboratory α) with experiment; the average error is 258 cm -1 , and the largest error is 711 cm -1 . This may be compared with an average error of 432 cm -1 and a maximum error of 2150 cm -1 in the work of Dzuba et al., who reported most of the available energy shift calculations. The enhanced accuracy is due to more extensive inclusion of electron correlation. To obtain the energy shifts, we repeated the calculations with different values of α (within 0.1% of the current value). Our shifts differ by up to 30% from the values given by Dzuba et al., with an average difference of 9%. Based on the better quality of the present-day excitation energies, we believe the energy shifts reported here are more accurate than earlier work

  8. Fine-grained parallelism accelerating for RNA secondary structure prediction with pseudoknots based on FPGA.

    Science.gov (United States)

    Xia, Fei; Jin, Guoqing

    2014-06-01

    PKNOTS is a most famous benchmark program and has been widely used to predict RNA secondary structure including pseudoknots. It adopts the standard four-dimensional (4D) dynamic programming (DP) method and is the basis of many variants and improved algorithms. Unfortunately, the O(N(6)) computing requirements and complicated data dependency greatly limits the usefulness of PKNOTS package with the explosion in gene database size. In this paper, we present a fine-grained parallel PKNOTS package and prototype system for accelerating RNA folding application based on FPGA chip. We adopted a series of storage optimization strategies to resolve the "Memory Wall" problem. We aggressively exploit parallel computing strategies to improve computational efficiency. We also propose several methods that collectively reduce the storage requirements for FPGA on-chip memory. To the best of our knowledge, our design is the first FPGA implementation for accelerating 4D DP problem for RNA folding application including pseudoknots. The experimental results show a factor of more than 50x average speedup over the PKNOTS-1.08 software running on a PC platform with Intel Core2 Q9400 Quad CPU for input RNA sequences. However, the power consumption of our FPGA accelerator is only about 50% of the general-purpose micro-processors.

  9. The Low Pitch of High-Frequency Complex Tones Relies on Temporal Fine Structure Information

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2010-01-01

    High-frequency complex tones containing only unresolved harmonic components with a frequency spacing Δf usually evoke a low pitch equal to Δf. However, for inharmonic components, the low pitch is often found to deviate slightly from Δf. Whether this pitch shift relies exclusively on temporal fine...... structure (TFS) cues has been a matter of debate. It is also controversial up to which frequency TFS information remains available, and to what extent envelope cues become dominant as frequency increases. Using a pitch-matching paradigm, this study investigated whether the pitch of transposed tones.......5]. All stimuli were presented at 50 dB SPL in broadband pink-noise (13.5 dB/Hz at 1 kHz), and 40 matches per condition were obtained. For fenv = fc/11.5, the results favored hypothesis A for all values of fc, indicating that TFS cues are available and used for pitch extraction, up to at least 7 k...

  10. Preferred Compression Speed for Speech and Music and Its Relationship to Sensitivity to Temporal Fine Structure.

    Science.gov (United States)

    Moore, Brian C J; Sęk, Aleksander

    2016-09-07

    Multichannel amplitude compression is widely used in hearing aids. The preferred compression speed varies across individuals. Moore (2008) suggested that reduced sensitivity to temporal fine structure (TFS) may be associated with preference for slow compression. This idea was tested using a simulated hearing aid. It was also assessed whether preferences for compression speed depend on the type of stimulus: speech or music. Twenty-two hearing-impaired subjects were tested, and the stimulated hearing aid was fitted individually using the CAM2A method. On each trial, a given segment of speech or music was presented twice. One segment was processed with fast compression and the other with slow compression, and the order was balanced across trials. The subject indicated which segment was preferred and by how much. On average, slow compression was preferred over fast compression, more so for music, but there were distinct individual differences, which were highly correlated for speech and music. Sensitivity to TFS was assessed using the difference limen for frequency at 2000 Hz and by two measures of sensitivity to interaural phase at low frequencies. The results for the difference limens for frequency, but not the measures of sensitivity to interaural phase, supported the suggestion that preference for compression speed is affected by sensitivity to TFS. © The Author(s) 2016.

  11. Updated constraints on spatial variations of the fine-structure constant

    Directory of Open Access Journals (Sweden)

    A.M.M. Pinho

    2016-05-01

    Full Text Available Recent work by Webb et al. has provided indications of spatial variations of the fine-structure constant, α, at a level of a few parts per million. Using a dataset of 293 archival measurements, they further show that a dipole provides a statistically good fit to the data, a result subsequently confirmed by other authors. Here we show that a more recent dataset of dedicated measurements further constrains these variations: although there are only 10 such measurements, their uncertainties are considerably smaller. We find that a dipolar variation is still a good fit to the combined dataset, but the amplitude of such a dipole must be somewhat smaller: 8.1±1.7 ppm for the full dataset, versus 9.4±2.2 ppm for the Webb et al. data alone, both at the 68.3% confidence level. Constraints on the direction on the sky of such a dipole are also significantly improved. On the other hand the data can't yet discriminate between a pure spatial dipole and one with an additional redshift dependence.

  12. HELICAL MOTIONS OF FINE-STRUCTURE PROMINENCE THREADS OBSERVED BY HINODE AND IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Takenori J. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Liu, Wei [Bay Area Environmental Research Institute, 625 2nd Street, Suite 209, Petaluma, CA 94952 (United States); Tsuneta, Saku, E-mail: joten.okamoto@nao.ac.jp [ISAS/JAXA, Sagamihara, Kanagawa 252-5210 (Japan)

    2016-11-10

    Fine-structure dynamics in solar prominences holds critical clues to understanding their physical nature of significant space-weather implications. We report evidence of rotational motions of horizontal helical threads in two active-region prominences observed by the Hinode and/or Interface Region Imaging Spectrograph satellites at high resolution. In the first event, we found transverse motions of brightening threads at speeds up to 55 km s{sup -1} seen in the plane of the sky. Such motions appeared as sinusoidal space–time trajectories with a typical period of ∼390 s, which is consistent with plane-of-sky projections of rotational motions. Phase delays at different locations suggest the propagation of twists along the threads at phase speeds of 90–270 km s{sup -1}. At least 15 episodes of such motions occurred in two days, none associated with an eruption. For these episodes, the plane-of-sky speed is linearly correlated with the vertical travel distance, suggestive of a constant angular speed. In the second event, we found Doppler velocities of 30–40 km s{sup -1} in opposite directions in the top and bottom portions of the prominence, comparable to the plane-of-sky speed. The moving threads have about twice broader line widths than stationary threads. These observations, when taken together, provide strong evidence for rotations of helical prominence threads, which were likely driven by unwinding twists triggered by magnetic reconnection between twisted prominence magnetic fields and ambient coronal fields.

  13. The running fine structure constant α(E) via the Adler function

    International Nuclear Information System (INIS)

    Jegerlehner, F.

    2008-06-01

    We present an up-to-date analysis for a precise determination of the effective fine structure constant and discuss the prospects for future improvements. We advocate to use a determination monitored by the Adler function which allows us to exploit perturbative QCD in an optimal well controlled way. Together with a long term program of hadronic cross section measurements at energies up to a few GeV, a determination of α(M Z ) at a precision comparable to the one of the Z mass M Z should be feasible. Presently α(E) at E >1 GeV is the least precisely known of the fundamental parameters of the SM. Since, in spite of substantial progress due to new BaBar exclusive data, the region 1.4 to 2.4 GeV remains the most problematic one a major step in the reduction of the uncertainties are expected from VEPP-2000 and from a possible ''high-energy'' option DAFNE-2 at Frascati. The up-to-date evaluation reads Δ (5) had (M 2 Z )=0.027515±0.000149 or α -1 (M 2 Z )=128.957±0.020. (orig.)

  14. Fine structure of spermatogenesis in polyopisthocotylid monogeneans (Protomicrocotyle ivoriensis, Gastrocotyle sp.).

    Science.gov (United States)

    Schmahl, G; Obiekezie, A

    1991-01-01

    The development of spermatozoa in the polyopisthocotylean fish-gill flukes Protomicrocotyle ivoriensis and Gastrocotyle sp. was investigated by light and transmission electron microscopy. In both species the spermatogonia were undifferentiated cells, the cytoplasm of which contained numerous free ribosomes, and successive mitoses gave rise to primary spermatocytes, which are clearly identified by the presence of synaptonemal complexes in their nuclei. As compared with that of the spermatogonia, the cytoplasm of the primary spermatocytes contained an increased number of ribosomes. Golgi complexes were frequently seen in the spermatocytes of P. ivoriensis but not in Gastrocotyle sp. In P. ivoriensis the secondary spermatocytes were separated by interspaces between the irregularly shaped cell surfaces. In both species a syncytial mass of spermatids developed, which gave rise to 64 spermatozoa. Cross sections of the mature spermatozoa of both species revealed the presence of numerous submembranous microtubules and two axonemes showing a pattern of 9 doublet peripheral microtubules plus a central one. In contrast to microtubules plus a central one. In contrast to P. ivoriensis, in Gastrocotyle sp. the axonemes originated from different places at the axis of the spermatozoon. With respect to the other results obtained, the spermiogenesis and the fine structure of spermatozoa of both species studied were similar to previous findings in other polyopisthocotyleans.

  15. Finite difference method calculations of X-ray absorption fine structure for copper

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, J.D. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia); Chantler, C.T. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)]. E-mail: chantler@physics.unimelb.edu.au; Witte, C. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)

    2007-01-15

    The finite difference method is extended to calculate X-ray absorption fine structure (XAFS) for solid state copper. These extensions include the incorporation of a Monte Carlo frozen phonon technique to simulate the effect of thermal vibrations under a correlated Debye-Waller model, and the inclusion of broadening effects from inelastic processes. Spectra are obtained over an energy range in excess of 300 eV above the K absorption edge-more than twice the greatest energy range previously reported for a solid state calculation using this method. We find this method is highly sensitive to values of the photoelectron inelastic mean free path, allowing us to probe the accuracy of current models of this parameter, particularly at low energies. We therefore find that experimental data for the photoelectron inelastic mean free path can be obtained by this method. Our results compare favourably with high precision measurements of the X-ray mass attenuation coefficient for copper, reaching agreement to within 3%, and improving previous results using the finite difference method by an order of magnitude.

  16. Dynamic magnetization models for soft ferromagnetic materials with coarse and fine domain structures

    Energy Technology Data Exchange (ETDEWEB)

    Zirka, S.E., E-mail: zirka@email.dp.ua [Department of Physics and Technology, Dnepropetrovsk National University, Gagarin 72, 49050 Dnepropetrovsk (Ukraine); Moroz, Y.I. [Department of Physics and Technology, Dnepropetrovsk National University, Gagarin 72, 49050 Dnepropetrovsk (Ukraine); Steentjes, S.; Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Schinkelstr. 4, 52056 Aachen (Germany); Chwastek, K. [Faculty of Electrical Engineering, Czestochowa University of Technology, al. AK 17, 42-201 Czestochowa (Poland); Zurek, S. [Megger Instruments Ltd., Archcliffe Road, Dover, Kent, CT17 9EN (United Kingdom); Harrison, R.G. [Department of Electronics, Carleton University, Ottawa, Canada K1S 5B6 (Canada)

    2015-11-15

    We consider dynamic models, both numerical and analytical, that reproduce the magnetization field H(B) and the energy loss in ferromagnetic sheet materials with different domain structures. Conventional non-oriented (NO) and grain-oriented (GO) electrical steels are chosen as typical representatives of fine-domain and coarse-domain materials. The commonly-accepted loss separation procedures in these materials are critically analyzed. The use of a well-known simplified (“classical”) expression for the eddy-current loss is identified as the primary source of mistaken evaluations of excess loss in NO steel, in which the loss components can only be evaluated using the Maxwell (penetration) equation. The situation is quite different in GO steel, in which the loss separation is uncertain, but the total dynamic loss is several times higher than that explained by any version (numerical or analytical) of the classical approach. To illustrate the uncertainty of the loss separation in GO steel, we show that the magnetization field, and thus the total loss, in this material can be represented with equal accuracy using either the existing three-component approach or our proposed two-component technique, which makes no distinction between classical eddy-current and excess fields and losses. - Highlights: • Critical analysis of a ferromagnetic-material loss-separation principle. • This is to warn materials-science engineers about the inaccuracies resulting from this principle. • A transient model having a single dynamic component is proposed.

  17. Can temporal fine structure represent the fundamental frequency of unresolved harmonics?

    Science.gov (United States)

    Oxenham, Andrew J; Micheyl, Christophe; Keebler, Michael V

    2009-04-01

    At least two modes of pitch perception exist: in one, the fundamental frequency (F0) of harmonic complex tones is estimated using the temporal fine structure (TFS) of individual low-order resolved harmonics; in the other, F0 is derived from the temporal envelope of high-order unresolved harmonics that interact in the auditory periphery. Pitch is typically more accurate in the former than in the latter mode. Another possibility is that pitch can sometimes be coded via the TFS from unresolved harmonics. A recent study supporting this third possibility [Moore et al. (2006a). J. Acoust. Soc. Am. 119, 480-490] based its conclusion on a condition where phase interaction effects (implying unresolved harmonics) accompanied accurate F0 discrimination (implying TFS processing). The present study tests whether these results were influenced by audible distortion products. Experiment 1 replicated the original results, obtained using a low-level background noise. However, experiments 2-4 found no evidence for the use of TFS cues with unresolved harmonics when the background noise level was raised, or the stimulus level was lowered, to render distortion inaudible. Experiment 5 measured the presence and phase dependence of audible distortion products. The results provide no evidence that TFS cues are used to code the F0 of unresolved harmonics.

  18. A glimpsing account of the role of temporal fine structure information in speech recognition.

    Science.gov (United States)

    Apoux, Frédéric; Healy, Eric W

    2013-01-01

    Many behavioral studies have reported a significant decrease in intelligibility when the temporal fine structure (TFS) of a sound mixture is replaced with noise or tones (i.e., vocoder processing). This finding has led to the conclusion that TFS information is critical for speech recognition in noise. How the normal -auditory system takes advantage of the original TFS, however, remains unclear. Three -experiments on the role of TFS in noise are described. All three experiments measured speech recognition in various backgrounds while manipulating the envelope, TFS, or both. One experiment tested the hypothesis that vocoder processing may artificially increase the apparent importance of TFS cues. Another experiment evaluated the relative contribution of the target and masker TFS by disturbing only the TFS of the target or that of the masker. Finally, a last experiment evaluated the -relative contribution of envelope and TFS information. In contrast to previous -studies, however, the original envelope and TFS were both preserved - to some extent - in all conditions. Overall, the experiments indicate a limited influence of TFS and suggest that little speech information is extracted from the TFS. Concomitantly, these experiments confirm that most speech information is carried by the temporal envelope in real-world conditions. When interpreted within the framework of the glimpsing model, the results of these experiments suggest that TFS is primarily used as a grouping cue to select the time-frequency regions -corresponding to the target speech signal.

  19. Fine structures in 14C emission of 223Ra and 224Ra

    International Nuclear Information System (INIS)

    Hourani, E.; Rosier, L.; Berrier-Ronsin, G.; Elayi, A.; Mueller, A.C.; Rappenecker, G.; Rotbard, G.; Renou, G.; Liebe, A.; Stab, L.

    1991-01-01

    The measurement of the energy spectrum of 14 C nuclei emitted in the spontaneous radioactivity from 223 Ra and 224 Ra has been carried out, using thin and intense sources (480 MBq for 223 Ra and 3550 MBq for 224 Ra). The sources were obtained by implanting mass-separated beams from ISOLDE (CERN) into Al and vitreous C catchers. The measurement was performed with the supraconducting solenoidal spectrometer SOLENO installed at Orsay. The discovery, of a fine structure in the energy spectrum of 14 C emission from 223 Ra, which is analogous to the one known for α emission, is confirmed. Only 13% of the branching ratio in 14 C decay leads to the ground state of the residual nucleus, while 8l% to the first excited state. For 14 C emission of 224 Ra, a lower limit of 2 for the hindrance factor has been measured for the transition to the first excited state in the residual nucleus. Also, a precise identification in Z with a E·ΔE telescope has been performed for the radiation from the 223 Ra source. (author) 22 refs., 11 figs., 1 tab

  20. The Potamophylax nigricornis group (Trichoptera, Limnephilidae: resolution of phylogenetic species by fine structure analysis

    Directory of Open Access Journals (Sweden)

    Oláh, J.

    2013-11-01

    Full Text Available Applying the phylogenetic species concept and the sexual selection theory we have reviewed some natal aspects of incipient species and their accelerated evolution. How can we recognise early stages of divergence? Which selection pressures are at work during speciation? Which pathways accelerate the speed of speciation? Which kinds of trait variabilities makes difficult to find initial split criteria? Elaborating the principles of Fine Structure Analysis (FSA and the morphological Initial Split Criteria (ISP it was discovered that the European spring dwelling caddisfly Potamophylax nigricornis doesn’tbelong to a single species. It represents an entire species group with seventeen peripatric species evolving on the southernperipheries of the distributional area. Four new species subgroups have been erected: Potamophylax nigricornis new species subgroup, P. elegantulus new species subgroup, P. horgos new species subgroup, P. simas new species subgroup. Eleven new species have been described: Potamophylax apados sp. nov., P. fules sp. nov., P. fureses sp. nov., P. hasas sp. novov., P. horgos sp. nov., P. kethas sp. nov., P. lemezes sp. nov., P. peremes sp. nov., P. simas sp. nov., P. tuskes sp. nov., P. ureges sp. nov. One Potamophylax sp. nov. has been differentiated and three new species status have been documented:Potamophylax elegantulus (Klapálek stat. n., P. mista (Navás stat. nov., P. testaceus (Zetterstedt stat. nov.

  1. Niche divergence facilitated by fine-scale ecological partitioning in a recent cichlid fish adaptive radiation.

    Science.gov (United States)

    Ford, Antonia G P; Rüber, Lukas; Newton, Jason; Dasmahapatra, Kanchon K; Balarin, John D; Bruun, Kristoffer; Day, Julia J

    2016-12-01

    Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype-environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large-scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  2. Fine-Scale Fluctuations in the Corona Observed with Hi-C

    Science.gov (United States)

    Winebarger, Amy; Schuler, Timothy

    2013-01-01

    The High Resolution Coronal Imager(HiC) flew aboard a NASA sounding rocket on 2012 July11 and captured roughly 345 s of high spatial and temporal resolution images of the solar corona in a narrowband 193 Angstrom channel. We have analyzed the fluctuations in intensity of Active Region11520.We selected events based on a lifetime greater than 11s (twoHiC frames)and intensities greater than a threshold determined from the average background intensity in a pixel and the photon and electronic noise. We find fluctuations occurring down to the smallest timescale(11s).Typical intensity fluctuations are 20% background intensity, while some events peaka t100%the background intensity.Generally the fluctuations are clustered in solar structures, particularly the moss.We interpret the fluctuations in the moss as indicative of heating events. We use the observed events to model the active region core.

  3. Morphology and dynamics of aurora at fine scale: first results from the ASK instrument

    Directory of Open Access Journals (Sweden)

    H. Dahlgren

    2008-05-01

    Full Text Available The ASK instrument (Auroral Structure and Kinetics is a narrow field auroral imager, providing simultaneous images of aurora in three different spectral bands at multiple frames per second resolution. The three emission species studied are O2+ (5620 Å, O+ (7319 Å and O (7774 Å. ASK was installed and operated for the first time in an observational campaign on Svalbard, from December 2005 to March 2006. The measurements were supported by data from the Spectrographic Imaging Facility (SIF. The relation between the morphology and dynamics of the visible aurora and its spectral characteristics is studied for selected events from this period. In these events it is found that dynamic aurora is coupled to high energy electron precipitation. By studying the O2+/O intensity ratio we find that some auroral filaments are caused by higher energy precipitation within regions of lower energy precipitation, whereas other filaments are the result of a higher particle flux compared to the surroundings.

  4. Fine-scale variation and genetic determinants of alternative splicing across individuals.

    Directory of Open Access Journals (Sweden)

    Jasmin Coulombe-Huntington

    2009-12-01

    Full Text Available Recently, thanks to the increasing throughput of new technologies, we have begun to explore the full extent of alternative pre-mRNA splicing (AS in the human transcriptome. This is unveiling a vast layer of complexity in isoform-level expression differences between individuals. We used previously published splicing sensitive microarray data from lymphoblastoid cell lines to conduct an in-depth analysis on splicing efficiency of known and predicted exons. By combining publicly available AS annotation with a novel algorithm designed to search for AS, we show that many real AS events can be detected within the usually unexploited, speculative majority of the array and at significance levels much below standard multiple-testing thresholds, demonstrating that the extent of cis-regulated differential splicing between individuals is potentially far greater than previously reported. Specifically, many genes show subtle but significant genetically controlled differences in splice-site usage. PCR validation shows that 42 out of 58 (72% candidate gene regions undergo detectable AS, amounting to the largest scale validation of isoform eQTLs to date. Targeted sequencing revealed a likely causative SNP in most validated cases. In all 17 incidences where a SNP affected a splice-site region, in silico splice-site strength modeling correctly predicted the direction of the micro-array and PCR results. In 13 other cases, we identified likely causative SNPs disrupting predicted splicing enhancers. Using Fst and REHH analysis, we uncovered significant evidence that 2 putative causative SNPs have undergone recent positive selection. We verified the effect of five SNPs using in vivo minigene assays. This study shows that splicing differences between individuals, including quantitative differences in isoform ratios, are frequent in human populations and that causative SNPs can be identified using in silico predictions. Several cases affected disease-relevant genes and

  5. Fine-scale spatial distribution of orchid mycorrhizal fungi in the soil of host-rich grasslands.

    Science.gov (United States)

    Voyron, Samuele; Ercole, Enrico; Ghignone, Stefano; Perotto, Silvia; Girlanda, Mariangela

    2017-02-01

    Mycorrhizal fungi are essential for the survival of orchid seedlings under natural conditions. The distribution of these fungi in soil can constrain the establishment and resulting spatial arrangement of orchids at the local scale, but the actual extent of occurrence and spatial patterns of orchid mycorrhizal (OrM) fungi in soil remain largely unknown. We addressed the fine-scale spatial distribution of OrM fungi in two orchid-rich Mediterranean grasslands by means of high-throughput sequencing of fungal ITS2 amplicons, obtained from soil samples collected either directly beneath or at a distance from adult Anacamptis morio and Ophrys sphegodes plants. Like ectomycorrhizal and arbuscular mycobionts, OrM fungi (tulasnelloid, ceratobasidioid, sebacinoid and pezizoid fungi) exhibited significant horizontal spatial autocorrelation in soil. However, OrM fungal read numbers did not correlate with distance from adult orchid plants, and several of these fungi were extremely sporadic or undetected even in the soil samples containing the orchid roots. Orchid mycorrhizal 'rhizoctonias' are commonly regarded as unspecialized saprotrophs. The sporadic occurrence of mycobionts of grassland orchids in host-rich stands questions the view of these mycorrhizal fungi as capable of sustained growth in soil. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Fine-scale distribution of zooplankton is linked to phytoplankton species composition and abundance in a North Norwegian fjord system

    Science.gov (United States)

    Norrbin, F.; Priou, P. D.; Varela, A. P.

    2016-02-01

    We studied the influence of dense layers of phytoplankton and aggregates on shaping the vertical distribution of zooplankton in a North Norwegian fjord using a Video Plankton Recorder (VPR). This instrument provided fine-scale vertical distribution (cm-m scale) of planktonic organisms as well as aggregates of marine snow in relation to environmental conditions. At the height - later stage of the spring phytoplankton bloom in May, the outer part of the fjord was dominated by Phaeocystis pouchetii, while diatoms (Chaetoceros spp.) were dominating in the innermost basin. Small copepods species like Pseudocalanus spp., Microsetella norvegica, and Oithona spp. prevailed over larger copepod species in the inner part of the fjord whereas the outer part was dominated by large copepods like Calanus finmarchicus. While the zooplankton where spread out over the water column during the early stage of the bloom, in May they were linked to the phytoplankton vertical distribution and in the winter situation they were found in deeper waters. Herbivorous zooplankton species were affected by phytoplankton species composition; C. finmarchicus and Pseudocalanus spp. avoided the dense layer of P. pouchetii while herbivorous zooplankton matched the distribution of the diatom-dominated bloom. Small, omnivorous copepod species like Microsetella sp., Oithona sp. and Pseudocalanus sp. were often associated with dense layers of snow aggregates. This distribution may provide a shelter from predators as well as a food source. Natural or anthropogenic-induced changes in phytoplankton composition and aggregate distribution may thus influence food-web interactions.

  7. Seeing Scale: Richard Dunn’s Structuralism

    Directory of Open Access Journals (Sweden)

    Keith Broadfoot

    2012-11-01

    Full Text Available Writing on the occasion of a retrospective of Richard Dunn’s work, Terence Maloon argued that ‘structuralism had an important bearing on virtually all of Richard Dunn’s mature works’, with ‘his modular, “crossed” formats’ being the most obvious manifestation of this. In this article I wish to reconsider this relation, withdrawing from a broad consideration of the framework of structuralism to focus on some of the quite particular ideas that Lacan proposed in response to structuralism. Beginning from a pivotal painting in the 1960s that developed out of Dunn’s experience of viewing the work of Barnett Newman, I wish to suggest a relation between the ongoing exploration of the thematic of scale in Dunn’s work and the idea of the symbolic that Lacan derives from structuralist thought. This relation, I argue, opens up a different way of understanding the art historical transition from Minimalism to Conceptual art.

  8. X ray absorption fine structure of systems in the anharmonic limit

    Science.gov (United States)

    Mustredeleon, J.; Conradson, S. D.; Batistic, I.; Bishop, A. R.; Raistrick, I.; Jackson, W. E.; Brown, G. E.

    A new approach to the analysis of x-ray absorption fine structure (XAFS) data is presented. It is based on the use of radial distribution functions directly calculated from a single-particle ion Hamiltonian containing model potentials. The starting point of this approach is the statistical average of the XAFS for an atomic pair. This average can be computed using a radial distribution function (RDF), which can be expressed in terms of the eigenvalues and wavefunctions associated with the model potential. The pair potential describing the ionic motion is then expressed in terms of parameters that are determined by fitting this statistical average to the experimental XAFS spectrum. This approach allows the use of XAFS as a tool for mapping near-neighbor interatomic potentials, and allows the treatment of systems which exhibit strongly anharmonic potentials which can be treated by perturbative methods. Using this method we have analyzed the high temperature behavior of the oxygen contributions to the Fe K-edge XAFS in the ferrosilicate minerals andradite (Ca3Fe2Si3O12) and magnesiowustite (Mg(0.9)Fe(0.1)O). Using a temperature dependent anharmonic correction derived from these model compounds, we have found evidence for a local structural change in the Fe-O coordination environment upon melting of the geologically important mineral fayalite (Fe2SiO4). We have also employed this method to the study of the axial oxygen contributions to the polarized Cu K-edge XAFS on oriented samples of YBa2Cu3O7 and related compounds. From this study we find evidence for an axial oxygen-centered lattice distortion accompanying the superconducting phase transition and a correlation between this distortion and Tc. The relation of the observed lattice distortion to mechanisms of superconductivity is discussed.

  9. X-ray absorption fine structure of systems in the anharmonic limit

    International Nuclear Information System (INIS)

    Mustre de Leon, J.; Conradson, S.D.; Batistic, I.; Bishop, A.R.; Raistrick, I.; Jackson, W.E.; Brown, G.E.

    1991-01-01

    A new approach to the analysis of x-ray absorption fine structure (XAFS) data is presented. It is based on the use of radial distribution functions directly calculated from a single-particle ion hamiltonian containing model potentials. The starting point of this approach is the statistical average of the XAFS for an atomic pair. This average can be computed using a radial distribution function (RDF), which can be expressed in terms of the eigenvalues and wavefunctions associated with the model potential. The pair potential describing the ionic motion is then expressed in terms of parameters that are determined by fitting this statistical average to the experimental XAFS spectrum. This approach allow the use of XAFS as a tool for mapping near-neighbor interatomic potentials, and allows the treatment of systems which exhibit strongly anharmonic potentials which can be treated by perturbative methods. Using this method we have analyzed the high temperature behavior of the oxygen contributions to the Fe K-edge XAFS in the ferrosilicate minerals andradite (Ca 3 Fe 2 Si 3 O 12 ) and magnesiowustite (Mg 0.9 Fe 0.1 O). Using a temperature dependent anharmonic correction derived from these model compounds, we have found evidence for a local structural change in the Fe-O coordination environment upon melting of the geologically important mineral fayalite (Fe 2 SiO 4 ). We have also employed this method to the study of the axial oxygen contributions to the polarized Cu K-edge XAFS on oriented samples of YBa 2 Cu 3 O 7 and related compounds. From this study we find evidence for an axial oxygen-centered lattice distortion accompanying the superconducting phase transition and a correlation between this distortion and T c . The relation of the observed lattice distortion to mechanisms of superconductivity is discussed. 33 refs., 6 figs

  10. A UAV-Based Fog Collector Design for Fine-Scale Aerobiological Sampling

    Science.gov (United States)

    Gentry, Diana; Guarro, Marcello; Demachkie, Isabella Siham; Stumfall, Isabel; Dahlgren, Robert P.

    2017-01-01

    Airborne microbes are found throughout the troposphere and into the stratosphere. Knowing how the activity of airborne microorganisms can alter water, carbon, and other geochemical cycles is vital to a full understanding of local and global ecosystems. Just as on the land or in the ocean, atmospheric regions vary in habitability; the underlying geochemical, climatic, and ecological dynamics must be characterized at different scales to be effectively modeled. Most aerobiological studies have focused on a high level: 'How high are airborne microbes found?' and 'How far can they travel?' Most fog and cloud water studies collect from stationary ground stations (point) or along flight transects (1D). To complement and provide context for this data, we have designed a UAV-based modified fog and cloud water collector to retrieve 4D-resolved samples for biological and chemical analysis.Our design uses a passive impacting collector hanging from a rigid rod suspended between two multi-rotor UAVs. The suspension design reduces the effect of turbulence and potential for contamination from the UAV downwash. The UAVs are currently modeled in a leader-follower configuration, taking advantage of recent advances in modular UAVs, UAV swarming, and flight planning.The collector itself is a hydrophobic mesh. Materials including Tyvek, PTFE, nylon, and polypropylene monofilament fabricated via laser cutting, CNC knife, or 3D printing were characterized for droplet collection efficiency using a benchtop atomizer and particle counter. Because the meshes can be easily and inexpensively fabricated, a set can be pre-sterilized and brought to the field for 'hot swapping' to decrease cross-contamination between flight sessions or use as negative controls.An onboard sensor and logging system records the time and location of each sample; when combined with flight tracking data, the samples can be resolved into a 4D volumetric map of the fog bank. Collected samples can be returned to the lab for

  11. Morphology and dynamics of aurora at fine scale: first results from the ASK instrument

    Directory of Open Access Journals (Sweden)

    H. Dahlgren

    2008-05-01

    Full Text Available The ASK instrument (Auroral Structure and Kinetics is a narrow field auroral imager, providing simultaneous images of aurora in three different spectral bands at multiple frames per second resolution. The three emission species studied are O2+ (5620 Å, O+ (7319 Å and O (7774 Å. ASK was installed and operated for the first time in an observational campaign on Svalbard, from December 2005 to March 2006. The measurements were supported by data from the Spectrographic Imaging Facility (SIF. The relation between the morphology and dynamics of the visible aurora and its spectral characteristics is studied for selected events from this period. In these events it is found that dynamic aurora is coupled to high energy electron precipitation. By studying the O2+/O intensity ratio we find that some auroral filaments are caused by higher energy precipitation within regions of lower energy precipitation, whereas other filaments are the result of a higher particle flux compared to the surroundings.

  12. Structure of bimetallic clusters. Extended x-ray absorption fine structure (EXAFS) studies of Rh--Cu clusters

    International Nuclear Information System (INIS)

    Meitzner, G.; Via, G.H.; Lytle, F.W.; Sinfelt, J.H.

    1983-01-01

    An investigation of the structure of the bimetallic clusters present in rhodium--copper catalysts was conducted with the use of extended x-ray absorption fine structure (EXAFS) measurements. Two catalysts were studied, both employing silica as a support for the clusters and both containing 1 wt. % rhodium. In one catalyst the Cu:Rh atomic ratio was 1:2 and in the other 1:1. Studies were made of the EXAFS associated with the K absorption edges of the rhodium and copper. The results of the EXAFS studies indicate that copper concentrates at the surface of the rhodium--copper clusters. In this regard the results are similar to our earlier reported results on ruthenium--copper clusters. However, the extent of surface segregation of the copper appears to be less pronounced for rhodium--copper clusters. This result is reasonable on the basis that rhodium and copper, unlike ruthenium and copper, exhibit at least some miscibility in the bulk

  13. Iron phosphate glasses: Bulk properties and atomic scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.; Asuvathraman, R.; Dube, Charu L.; Gandy, Amy S.; Govindan Kutty, K. V.; Jolley, Kenny; Vasudeva Rao, P. R.; Smith, Roger

    2017-10-01

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. % of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.

  14. Urban landscape genomics identifies fine-scale gene flow patterns in an avian invasive.

    Science.gov (United States)

    Low, G W; Chattopadhyay, B; Garg, K M; Irestedt, M; Ericson, Pgp; Yap, G; Tang, Q; Wu, S; Rheindt, F E

    2018-01-01

    Invasive species exert a serious impact on native fauna and flora and have been the target of many eradication and management efforts worldwide. However, a lack of data on population structure and history, exacerbated by the recency of many species introductions, limits the efficiency with which such species can be kept at bay. In this study we generated a novel genome of high assembly quality and genotyped 4735 genome-wide single nucleotide polymorphic (SNP) markers from 78 individuals of an invasive population of the Javan Myna Acridotheres javanicus across the island of Singapore. We inferred limited population subdivision at a micro-geographic level, a genetic patch size (~13-14 km) indicative of a pronounced dispersal ability, and barely an increase in effective population size since introduction despite an increase of four to five orders of magnitude in actual population size, suggesting that low population-genetic diversity following a bottleneck has not impeded establishment success. Landscape genomic analyses identified urban features, such as low-rise neighborhoods, that constitute pronounced barriers to gene flow. Based on our data, we consider an approach targeting the complete eradication of Javan Mynas across Singapore to be unfeasible. Instead, a mixed approach of localized mitigation measures taking into account urban geographic features and planning policy may be the most promising avenue to reducing the adverse impacts of this urban pest. Our study demonstrates how genomic methods can directly inform the management and control of invasive species, even in geographically limited datasets with high gene flow rates.

  15. Time-resolved pump-probe X-ray absorption fine structure spectroscopy of Gaq3

    International Nuclear Information System (INIS)

    Dicke, Benjamin

    2013-01-01

    Gallium(tris-8-hydroxyquinoline) (Gaq 3 ) belongs to a class of metal organic compounds, used as electron transport layer and emissive layer in organic light emitting diodes. Many research activities have concentrated on the optical and electronic properties, especially of the homologue molecule aluminum(tris-8-hydroxyquinoline) (Alq 3 ). Knowledge of the first excited state S 1 structure of these molecules could provide deeper insight into the processes involved into the operation of electronic devices, such as OLEDs and, hence, it could further improve their efficiency and optical properties. Until now the excited state structure could not be determined experimentally. Most of the information about this structure mainly arises from theoretical calculations. X-ray absorption fine structure (XAFS) spectroscopy is a well developed technique to determine both, the electronic and the geometric properties of a sample. The connection of ultrashort pulsed X-ray sources with a pulsed laser system offers the possibility to use XAFS as a tool for studying the transient changes of a sample induced by a laser pulse. In the framework of this thesis a new setup for time-resolved pump-probe X-ray absorption spectroscopy at PETRA III beamline P11 was developed for measuring samples in liquid form. In this setup the sample is pumped into its photo-excited state by a femtosecond laser pump pulse with 343 nm wavelength and after a certain time delay probed by an X-ray probe pulse. In this way the first excited singlet state S 1 of Gaq 3 dissolved in benzyl alcohol was analyzed. A structural model for the excited state structure of the Gaq 3 molecule based on the several times reproduced results of the XAFS experiments is proposed. According to this model it was found that the Ga-N A bond length is elongated, while the Ga-O A bond length is shortened upon photoexcitation. The dynamics of the structural changes were not the focus of this thesis. Nevertheless the excited state lifetime

  16. Grid sensitivity capability for large scale structures

    Science.gov (United States)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  17. Dipolar modulation of Large-Scale Structure

    Science.gov (United States)

    Yoon, Mijin

    For the last two decades, we have seen a drastic development of modern cosmology based on various observations such as the cosmic microwave background (CMB), type Ia supernovae, and baryonic acoustic oscillations (BAO). These observational evidences have led us to a great deal of consensus on the cosmological model so-called LambdaCDM and tight constraints on cosmological parameters consisting the model. On the other hand, the advancement in cosmology relies on the cosmological principle: the universe is isotropic and homogeneous on large scales. Testing these fundamental assumptions is crucial and will soon become possible given the planned observations ahead. Dipolar modulation is the largest angular anisotropy of the sky, which is quantified by its direction and amplitude. We measured a huge dipolar modulation in CMB, which mainly originated from our solar system's motion relative to CMB rest frame. However, we have not yet acquired consistent measurements of dipolar modulations in large-scale structure (LSS), as they require large sky coverage and a number of well-identified objects. In this thesis, we explore measurement of dipolar modulation in number counts of LSS objects as a test of statistical isotropy. This thesis is based on two papers that were published in peer-reviewed journals. In Chapter 2 [Yoon et al., 2014], we measured a dipolar modulation in number counts of WISE matched with 2MASS sources. In Chapter 3 [Yoon & Huterer, 2015], we investigated requirements for detection of kinematic dipole in future surveys.

  18. Responses in large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Barreira, Alexandre; Schmidt, Fabian, E-mail: barreira@MPA-Garching.MPG.DE, E-mail: fabians@MPA-Garching.MPG.DE [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2017-06-01

    We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ''bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients , which are only a function of the hard wavenumber k . Further, the responses up to n -th order completely describe the ( n +2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance Cov{sup NG}{sub ℓ=0}( k {sub 1}, k {sub 2}), in the limit where one of the modes, say k {sub 2}, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k {sub 2} ∼< 0.06 h Mpc{sup −1}, and for any k {sub 1} ∼> 2 k {sub 2}. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.

  19. Responses in large-scale structure

    Science.gov (United States)

    Barreira, Alexandre; Schmidt, Fabian

    2017-06-01

    We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ``bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients, which are only a function of the hard wavenumber k. Further, the responses up to n-th order completely describe the (n+2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance CovNGl=0(k1,k2), in the limit where one of the modes, say k2, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k2 lesssim 0.06 h Mpc-1, and for any k1 gtrsim 2k2. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.

  20. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA

    International Nuclear Information System (INIS)

    Ottmar, Roger D.; Blake, John I.; Crolly, William T.

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuelbeds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for building fuelbeds and mapping fire behavior potential, evaluating fuel treatment options for effectiveness, and providing a comparative analysis of landscape modeled fire behavior using three different data sources including the Fuel Characteristic Classification System, LANDFIRE, and the Southern Wildfire Risk Assessment. The research demonstrates that fine scale fuel measurements associated with fuel inventories repeated over time can be used to assess broad scale wildland fire potential and hazard mitigation treatment effectiveness in the southeastern USA and similar fire prone regions. Additional investigations will be needed to modify and improve these processes and capture the true potential of these fine scale data sets for fire and fuel management planning.