WorldWideScience

Sample records for fine particles responsible

  1. Fine particle retention within stream storage areas at base flow and in response to a storm event

    Science.gov (United States)

    Drummond, J. D.; Larsen, L. G.; González-Pinzón, R.; Packman, A. I.; Harvey, Judson

    2017-01-01

    Fine particles (1–100 µm), including particulate organic carbon (POC) and fine sediment, influence stream ecological functioning because they may contain or have a high affinity to sorb nitrogen and phosphorus. These particles are immobilized within stream storage areas, especially hyporheic sediments and benthic biofilms. However, fine particles are also known to remobilize under all flow conditions. This combination of downstream transport and transient retention, influenced by stream geomorphology, controls the distribution of residence times over which fine particles influence stream ecosystems. The main objective of this study was to quantify immobilization and remobilization rates of fine particles in a third-order sand-and-gravel bed stream (Difficult Run, Virginia, USA) within different geomorphic units of the stream (i.e., pool, lateral cavity, and thalweg). During our field injection experiment, a thunderstorm-driven spate allowed us to observe fine particle dynamics during both base flow and in response to increased flow. Solute and fine particles were measured within stream surface waters, pore waters, sediment cores, and biofilms on cobbles. Measurements were taken at four different subsurface locations with varying geomorphology and at multiple depths. Approximately 68% of injected fine particles were retained during base flow until the onset of the spate. Retention was evident even after the spate, with 15.4% of the fine particles deposited during base flow still retained within benthic biofilms on cobbles and 14.9% within hyporheic sediment after the spate. Thus, through the combination of short-term remobilization and long-term retention, fine particles can serve as sources of carbon and nutrients to downstream ecosystems over a range of time scales.

  2. Fine particle retention within stream storage areas at base flow and in response to a storm event

    Science.gov (United States)

    Drummond, J. D.; Larsen, L. G.; González-Pinzón, R.; Packman, A. I.; Harvey, J. W.

    2017-07-01

    Fine particles (1-100 µm), including particulate organic carbon (POC) and fine sediment, influence stream ecological functioning because they may contain or have a high affinity to sorb nitrogen and phosphorus. These particles are immobilized within stream storage areas, especially hyporheic sediments and benthic biofilms. However, fine particles are also known to remobilize under all flow conditions. This combination of downstream transport and transient retention, influenced by stream geomorphology, controls the distribution of residence times over which fine particles influence stream ecosystems. The main objective of this study was to quantify immobilization and remobilization rates of fine particles in a third-order sand-and-gravel bed stream (Difficult Run, Virginia, USA) within different geomorphic units of the stream (i.e., pool, lateral cavity, and thalweg). During our field injection experiment, a thunderstorm-driven spate allowed us to observe fine particle dynamics during both base flow and in response to increased flow. Solute and fine particles were measured within stream surface waters, pore waters, sediment cores, and biofilms on cobbles. Measurements were taken at four different subsurface locations with varying geomorphology and at multiple depths. Approximately 68% of injected fine particles were retained during base flow until the onset of the spate. Retention was evident even after the spate, with 15.4% of the fine particles deposited during base flow still retained within benthic biofilms on cobbles and 14.9% within hyporheic sediment after the spate. Thus, through the combination of short-term remobilization and long-term retention, fine particles can serve as sources of carbon and nutrients to downstream ecosystems over a range of time scales.

  3. Response of consumer and research grade indoor air quality monitors to residential sources of fine particles.

    Science.gov (United States)

    Singer, B C; Delp, W W

    2018-04-23

    The ability to inexpensively monitor PM 2.5 to identify sources and enable controls would advance residential indoor air quality (IAQ) management. Consumer IAQ monitors incorporating low-cost optical particle sensors and connections with smart home platforms could provide this service if they reliably detect PM 2.5 in homes. In this study, particles from typical residential sources were generated in a 120 m 3 laboratory and time-concentration profiles were measured with 7 consumer monitors (2-3 units each), 2 research monitors (Thermo pDR-1500, MetOne BT-645), a Grimm Mini Wide-Range Aerosol Spectrometer (GRM), and a Tapered Element Oscillating Microbalance with Filter Dynamic Measurement System (FDMS), a Federal Equivalent Method for PM 2.5 . Sources included recreational combustion (candles, cigarettes, incense), cooking activities, an unfiltered ultrasonic humidifier, and dust. FDMS measurements, filter samples, and known densities were used to adjust the GRM to obtain time-resolved mass concentrations. Data from the research monitors and 4 of the consumer monitors-AirBeam, AirVisual, Foobot, Purple Air-were time correlated and within a factor of 2 of the estimated mass concentrations for most sources. All 7 of the consumer and both research monitors substantially under-reported or missed events for which the emitted mass was comprised of particles smaller than 0.3 μm diameter. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Seasonal variations in fine particle composition from Beijing prompt oxidative stress response in mouse lung and liver.

    Science.gov (United States)

    Pardo, Michal; Xu, Fanfan; Qiu, Xinghua; Zhu, Tong; Rudich, Yinon

    2018-06-01

    Exposure to air pollution can induce oxidative stress, inflammation and adverse health effects. To understand how seasonal and chemical variations drive health impacts, we investigated indications for oxidative stress and inflammation in mice exposed to water and organic extracts from urban fine particles/PM 2.5 (particles with aerodynamic diameter ≤ 2.5 μm) collected in Beijing, China. Higher levels of pollution components were detected in heating season (HS, winter and part of spring) PM 2.5 than in the non-heating season (NHS, summer and part of spring and autumn) PM 2.5 . HS samples were high in metals for the water extraction and high in polycyclic aromatic hydrocarbons (PAHs) for the organic extraction compared to their controls. An increased inflammatory response was detected in the lung and liver following exposure to the organic extracts compared to the water extracts, and mostly in the HS PM 2.5 . While reduced antioxidant response was observed in the lung, it was activated in the liver, again, more in the HS extracts. Nrf2 transcription factor, a master regulator of stress response that controls the basal oxidative capacity and induces the expression of antioxidant response, and its related genes were induced. In the liver, elevated levels of lipid peroxidation adducts were measured, correlated with histologic analysis that revealed morphologic features of cell damage and proliferation, indicating oxidative and toxic damage. In addition, expression of genes related to detoxification of PAHs was observed. Altogether, the study suggests that the acute effects of PM 2.5 can vary seasonally with stronger health effects in the HS than in the NHS in Beijing, China and that some secondary organs may be susceptible for the exposure damage. Specifically, the liver is a potential organ influenced by exposure to organic components such as PAHs from coal or biomass burning and heating. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Response of spontaneously hypertensive rats to inhalation of fine and ultrafine particles from traffic: experimental controlled study

    Directory of Open Access Journals (Sweden)

    Dormans Jan AMA

    2006-05-01

    Full Text Available Abstract Background Many epidemiological studies have shown that mass concentrations of ambient particulate matter (PM are associated with adverse health effects in the human population. Since PM is still a very crude measure, this experimental study has explored the role of two distinct size fractions: ultrafine (3 to 3613 μg/m3 for fCAP and from 269μg/m3 to 556 μg/m3 for u+fCAP. Results Ammonium, nitrate, and sulphate ions accounted for 56 ± 16% of the total fCAP mass concentrations, but only 17 ± 6% of the u+fCAP mass concentrations. Unambiguous particle uptake in alveolar macrophages was only seen after u+fCAP exposures. Neither fCAP nor u+fCAP induced significant changes of cytotoxicity or inflammation in the lung. However, markers of oxidative stress (heme oxygenase-1 and malondialdehyde were affected by both fCAP and u+fCAP exposure, although not always significantly. Additional analysis revealed heme oxygenase-1 (HO-1 levels that followed a nonmonotonic function with an optimum at around 600 μg/m3 for fCAP. As a systemic response, exposure to u+fCAP and fCAP resulted in significant decreases of the white blood cell concentrations. Conclusion Minor pulmonary and systemic effects are observed after both fine and ultrafine + fine PM exposure. These effects do not linearly correlate with the CAP mass. A greater component of traffic CAP and/or a larger proportion ultrafine PM does not strengthen the absolute effects.

  6. Fractal aggregation and breakup of fine particles

    Directory of Open Access Journals (Sweden)

    Li Bingru

    2016-01-01

    Full Text Available Breakup may exert a controlling influence on particle size distributions and particles either are fractured or are eroded particle-by-particle through shear. The shear-induced breakage of fine particles in turbulent conditions is investigated using Taylor-expansion moment method. Their equations have been derived in continuous form in terms of the number density function with particle volume. It suitable for future implementation in computational fluid dynamics modeling.

  7. Charge neutrality of fine particle (dusty) plasmas and fine particle cloud under gravity

    Energy Technology Data Exchange (ETDEWEB)

    Totsuji, Hiroo, E-mail: totsuji-09@t.okadai.jp

    2017-03-11

    The enhancement of the charge neutrality due to the existence of fine particles is shown to occur generally under microgravity and in one-dimensional structures under gravity. As an application of the latter, the size and position of fine particle clouds relative to surrounding plasmas are determined under gravity. - Highlights: • In fine particle (dusty) plasmas, the charge neutrality is much enhanced by the existence of fine particles. • The enhancement of charge neutrality generally occurs under microgravity and gravity. • Structure of fine particle clouds under gravity is determined by applying the enhanced charge neutrality.

  8. The interaction of fine particles with stranded oil

    International Nuclear Information System (INIS)

    Owens, E.H.

    1999-01-01

    The interaction of micron-sized mineral particles with stranded oil reduces its adhesion to solid surfaces, such as sediments or bedrock. The net result is the formation of stable, micron-sized, oil droplets that disperse into the water column. In turn, the increase in surface area makes the oil more available for biodegradation. Oil and Fine-particle Interaction ('OFI') can explain how oiled shorelines are cleaned naturally in the absence of wave action in very sheltered coastal environments. Fine-particle interaction can be accelerated during a spill response by relocating the oiled sediments into the surf zone. This has been achieved successfully on two occasions to date: the Tampa Bay response in Florida, and the Sea Empress operation in Wales. Sediment relocation also causes physical abrasion by the hydraulic action of waves so that the processes of fine-particle interaction and surf washing usually occur in combination on open coasts. (author)

  9. Numerical modeling of fine particle fractal aggregates in turbulent flow

    Directory of Open Access Journals (Sweden)

    Cao Feifeng

    2015-01-01

    Full Text Available A method for prediction of fine particle transport in a turbulent flow is proposed, the interaction between particles and fluid is studied numerically, and fractal agglomerate of fine particles is analyzed using Taylor-expansion moment method. The paper provides a better understanding of fine particle dynamics in the evolved flows.

  10. Computer Models Simulate Fine Particle Dispersion

    Science.gov (United States)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  11. Fine particles in the Soufriere eruption plume

    Science.gov (United States)

    Woods, D. C.; Chuan, R. L.

    1982-01-01

    The size distributions of fine particles measured at tropospheric altitudes in the periphery of the eruption plume formed during the April 17, 1979 eruption of Soufriere Volcano and in the low-level effluents on May 15, 1979 were found to be bimodal, having peak concentrations at geometric mean diameters of 1.1 and 0.23 micrometers. Scanning electron microscopy and energy-dispersive X-ray analysis of the samples revealed an abundance of aluminum and silicon and traces of sodium, magnesium, chlorine, potassium, calcium, and iron in the large-particle mode. The submicrometer-sized particles were covered with liquid containing sulfur, assumed to be in the form of liquid sulfuric acid.

  12. Fine particle magnetic mineralogy of archaeological ceramics

    International Nuclear Information System (INIS)

    Atkinson, D; King, J A

    2005-01-01

    This study investigated the magnetic mineralogy of a worldwide collection of archaeological pottery. The mineral types, the mass fractions and the domain states of the constituent magnetic fine particles were elucidated from a range of measurements including magnetic hysteresis behaviour, the acquisition of isothermal remanence, low field susceptibility and thermomagnetic curves. The magnetic mineralogy of most samples was dominated by magnetite. Titanomagnetites with limited titanium substitution and cation deficient magnetites (indicative of low temperature oxidation) were dominant in some samples. Haematite was detected in 53% of the samples, but seldom contributed much to the saturation magnetization. Magnetic particle sizes are skewed to smaller sizes, with sherds mostly having a large superparamagnetic or a stable single domain fraction. Low temperature susceptibility data suggest that 30% of samples had some multidomain component. The percentage by mass of magnetic material in the ancient pottery studied was less than 0.8% for all but one of the samples and the majority of samples contain less than 0.3% by weight of magnetic fine particles. The presence of low temperature oxidation in many samples and the occurrence of a multidomain component in a third of the collection suggest that ancient pottery may not always be suitable for determining the intensity of the ancient geomagnetic field

  13. Probing fine magnetic particles with neutron scattering

    International Nuclear Information System (INIS)

    Pynn, R.

    1991-01-01

    Because thermal neutrons are scattered both by nuclei and by unpaired electrons, they provide an ideal probe for studying the atomic and magnetic structures of fine-grained magnetic materials, including nanocrystalline solids, thin epitaxial layers, and colloidal suspensions of magnetic particles, known as ferrofluids. Diffraction, surface reflection, and small angle neutron scattering (SANS) are the techniques used. With the exception of surface reflection, these methods are described in this article. The combination of SANS with refractive-index matching and neutron polarisation analysis is particularly powerful because it allows the magnetic and atomic structures to be determined independently. This technique has been used to study both dilute and concentrated ferrofluid suspensions of relatively monodisperse cobalt particles, subjected to a series of applied magnetic fields. The size of the cobalt particle core and the surrounding surfactant layer were determined. The measured interparticle structure factor agrees well with a recent theory that allows correlations in binary mixtures of magnetic particles to be calculated in the case of complete magnetic alignment. When one of the species in such a binary mixture is a nonmagnetic, cyclindrical macromolecule, application of a magnetic field leads to some degree of alignment of the nonmagnetic species. This result has been demonstrated with tobacco mosaic virus suspended in a water-based ferrofluid

  14. NARSTO fine-particle and ozone assessments

    International Nuclear Information System (INIS)

    Hales, Jeremy M.

    2003-01-01

    The NARSTO ozone and fine-particle assessments compile and present policy-relevant scientific information. - NARSTO, a tri-national North American consortium for applied tropospheric pollution research, conducts periodic assessments of air-pollution behavior to provide an information interface between the research community and individuals working in policy analysis and air-quality management. The first of these, entitled An Assessment of Tropospheric Ozone Pollution-A North American Perspective, appeared in late 2000 and has been circulated widely throughout the United States, Canada, Mexico, Europe, and South America. The second (currently) entitled NARSTO Assessment of the Atmospheric Science on Particulate Matter, is presently in its third-draft phase and is available for general review. A fourth draft, incorporating comments from the current review stage, will be submitted in January 2002 to a tri-national review committee composed of the Canadian Royal Society, the US National Academy of Sciences, and the Mexican Red de Desarrollo e Investigacion de la Calidad del Aire en Grandes Ciudades. Finalization of the document will follow this review, which will conclude in July 2000. Publication is expected in December 2002. These two assessments contain substantial amounts of policy-relevant information, which is of interest to the research community as well as those working in policy analysis and air-quality management. This presentation provides a brief overview of features and findings of the two documents

  15. The fine particle emissions of energy production in Finland

    International Nuclear Information System (INIS)

    Ohlstroem, M.

    1998-01-01

    The main purpose of this master's thesis was to define the fine particle (PM2.5, diameter under 2,5 μm) emissions of the energy production and to compare the calculated emission factors between different energy production concepts. The purpose was also to define what is known about fine particle emissions and what should still be studied/measured. The purpose was also to compare briefly the fine particle emissions of energy production and vehicle traffic, and their correlations to the fine particle concentrations of urban air. In the theory part of this work a literature survey was made about fine particles in energy production, especially how they form and how they are separated from the flue gas. In addition, the health effects caused by fine particles, and different measuring instruments were presented briefly. In the experimental part of this work, the aim was to find out the fine particle emissions of different energy production processes by calculating specific emission factors (mg/MJ fuel ) from powerplants' annual total particulate matter emissions (t/a), which were obtained from VAHTI-database system maintained by the Finnish Environmental Institute, and by evaluating the share of fine particles from total emissions with the help of existing measurement results. Only those energy production processes which produce significantly direct emissions of solid particles have been treated (pulverised combustion and oil burners from burner combustion, fluidized bed combustion processes, grate boilers, recovery boilers and diesel engines). The processes have been classified according to boiler type, size category, main fuel and also according to dust separation devices. To be able to compare different energy production processes, shared specific emission factor have been calculated for the similar subprocesses. The fine particle emissions depend strongest on the boiler size category and dust separation devices used. Spent fuel or combustion technique does not have

  16. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing–Tianjin–Hebei region

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2017-10-01

    Full Text Available The Beijing–Tianjin–Hebei (BTH region has been suffering from the most severe fine-particle (PM2. 5 pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM. The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24–36 % to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM

  17. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region

    Science.gov (United States)

    Zhao, Bin; Wu, Wenjing; Wang, Shuxiao; Xing, Jia; Chang, Xing; Liou, Kuo-Nan; Jiang, Jonathan H.; Gu, Yu; Jang, Carey; Fu, Joshua S.; Zhu, Yun; Wang, Jiandong; Lin, Yan; Hao, Jiming

    2017-10-01

    The Beijing-Tianjin-Hebei (BTH) region has been suffering from the most severe fine-particle (PM2. 5) pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM) technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM). The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24-36 %) to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA) to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM2. 5 concentrations. The contributions of primary

  18. Differences in allergic inflammatory responses between urban PM2.5 and fine particle derived from desert-dust in murine lungs

    Energy Technology Data Exchange (ETDEWEB)

    He, Miao, E-mail: hemiao@mail.cmu.edu.cn [Environment and Non-communicable Disease Research Center, School of Public Health, China Medical University, Shenyang 110122 (China); Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201 (Japan); Ichinose, Takamichi, E-mail: ichinose@oita-nhs.ac.jp [Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201 (Japan); Kobayashi, Makoto [Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa 920-0293 (Japan); Arashidani, Keiichi [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Fukuoka 807-8555 (Japan); Yoshida, Seiichi [Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201 (Japan); Nishikawa, Masataka [Environmental Chemistry Division, National Institute for Environmental Studies, Ibaraki 305-8506 (Japan); Takano, Hirohisa [Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530 (Japan); Sun, Guifan [Environment and Non-communicable Disease Research Center, School of Public Health, China Medical University, Shenyang 110122 (China); Shibamoto, Takayuki [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States)

    2016-04-15

    The biological and chemical natures of materials adsorbed onto fine particulate matter (PM2.5) vary by origin and passage routes. The exacerbating effects of the two samples—urban PM2.5 (U-PM2.5) collected during the hazy weather in a Chinese city and fine particles (ASD-PM2.5) collected during Asian sand dust (ASD) storm event days in Japan—on murine lung eosinophilia were compared to clarify the role of toxic materials in PM2.5. The amounts of β-glucan and mineral components were higher in ASD-PM2.5 than in U-PM2.5. On the other hand, organic chemicals, including polycyclic aromatic hydrocarbons (PAHs), were higher in U-PM2.5 than in ASD-PM2.5. When BALB/c mice were intratracheally instilled with U-PM2.5 and ASD-PM2.5 (total 0.4 mg/mouse) with or without ovalbumin (OVA), various biological effects were observed, including enhancement of eosinophil recruitment induced by OVA in the submucosa of the airway, goblet cell proliferation in the bronchial epithelium, synergic increase of OVA-induced eosinophil-relevant cytokines and a chemokine in bronchoalveolar lavage fluid, and increase of serum OVA-specific IgG1 and IgE. Data demonstrate that U-PM2.5 and ASD-PM2.5 induced allergic inflammatory changes and caused lung pathology. U-PM2.5 and ASD-PM2.5 increased F4/80{sup +} CD11b{sup +} cells, indicating that an influx of inflammatory and exudative macrophages in lung tissue had occurred. The ratio of CD206 positive F4/80{sup +} CD11b{sup +} cells (M2 macrophages) in lung tissue was higher in the OVA + ASD-PM2.5 treated mice than in the OVA + U-PM2.5 treated mice. These results suggest that the lung eosinophilia exacerbated by both PM2.5 is due to activation of a Th2-associated immune response along with induced M2 macrophages and the exacerbating effect is greater in microbial element (β-glucan)-rich ASD-PM2.5 than in organic chemical-rich U-PM2.5. - Highlights: • The aggravating effects of urban-PM2.5 and desert-PM2.5 on lung eosinophilia were compared.

  19. Differences in allergic inflammatory responses between urban PM2.5 and fine particle derived from desert-dust in murine lungs

    International Nuclear Information System (INIS)

    He, Miao; Ichinose, Takamichi; Kobayashi, Makoto; Arashidani, Keiichi; Yoshida, Seiichi; Nishikawa, Masataka; Takano, Hirohisa; Sun, Guifan; Shibamoto, Takayuki

    2016-01-01

    The biological and chemical natures of materials adsorbed onto fine particulate matter (PM2.5) vary by origin and passage routes. The exacerbating effects of the two samples—urban PM2.5 (U-PM2.5) collected during the hazy weather in a Chinese city and fine particles (ASD-PM2.5) collected during Asian sand dust (ASD) storm event days in Japan—on murine lung eosinophilia were compared to clarify the role of toxic materials in PM2.5. The amounts of β-glucan and mineral components were higher in ASD-PM2.5 than in U-PM2.5. On the other hand, organic chemicals, including polycyclic aromatic hydrocarbons (PAHs), were higher in U-PM2.5 than in ASD-PM2.5. When BALB/c mice were intratracheally instilled with U-PM2.5 and ASD-PM2.5 (total 0.4 mg/mouse) with or without ovalbumin (OVA), various biological effects were observed, including enhancement of eosinophil recruitment induced by OVA in the submucosa of the airway, goblet cell proliferation in the bronchial epithelium, synergic increase of OVA-induced eosinophil-relevant cytokines and a chemokine in bronchoalveolar lavage fluid, and increase of serum OVA-specific IgG1 and IgE. Data demonstrate that U-PM2.5 and ASD-PM2.5 induced allergic inflammatory changes and caused lung pathology. U-PM2.5 and ASD-PM2.5 increased F4/80 + CD11b + cells, indicating that an influx of inflammatory and exudative macrophages in lung tissue had occurred. The ratio of CD206 positive F4/80 + CD11b + cells (M2 macrophages) in lung tissue was higher in the OVA + ASD-PM2.5 treated mice than in the OVA + U-PM2.5 treated mice. These results suggest that the lung eosinophilia exacerbated by both PM2.5 is due to activation of a Th2-associated immune response along with induced M2 macrophages and the exacerbating effect is greater in microbial element (β-glucan)-rich ASD-PM2.5 than in organic chemical-rich U-PM2.5. - Highlights: • The aggravating effects of urban-PM2.5 and desert-PM2.5 on lung eosinophilia were compared. • Both PM2.5 enhanced

  20. Innovations in the flotation of fine and coarse particles

    Science.gov (United States)

    Fornasiero, D.; Filippov, L. O.

    2017-07-01

    Research on the mechanisms of particle-bubble interaction has provided valuable information on how to improve the flotation of fine (100 µm) with novel flotation machines which provide higher collision and attachment efficiencies of fine particles with bubbles and lower detachment of the coarse particles. Also, new grinding methods and technologies have reduced energy consumption in mining and produced better mineral liberation and therefore flotation performance.

  1. Performance of a New Fine Particle Impact Damper

    Directory of Open Access Journals (Sweden)

    Yanchen Du

    2008-01-01

    Full Text Available The energy dissipation mechanisms of conventional impact damper (CID are mainly momentum exchange and friction. During the impact process, a lot of vibration energy cannot be exhausted but reverberated among the vibration partners. Besides, the CID may produce the additional vibration to the system or even amplify the response in the low-frequency vibration. To overcome these shortcomings, this paper proposes a new fine particle impact damper (FPID which for the first time introduces the fine particle plastic deformation as an irreversible energy sink. Then, the experiments of the cantilevered beam with the CID and that with the FPID are, respectively, carried out to investigate the behavior of FPID. The experimental results indicate that the FPID has a better performance in vibration damping than in the CID and the FPID works well in control of the vibration with frequency lower than 50 Hz, which is absent to the non-obstructive particle damper. Thus, the FPID has a bright and significant application future because most of the mechanical vibration falls in the range of low freqency.

  2. A hazard to health? Fine particles arouse worldwide interest

    Energy Technology Data Exchange (ETDEWEB)

    Karas, J; Oesch, P

    1998-07-01

    The most recent studies show that particles contained in the air that we breathe may have harmful effects on the health of asthmatics, children and old people in particular. Particle material found in ambient air is formed by emissions resulting from traffic, industry and other use of fuels. Nature`s own sources also have a significant effect on particle concentrations. The mechanisms by which fine particles may produce negative health effects are so far unknown. At present it is therefore impossible to assess the effects of emissions of fine particles resulting, for instance, from the use of fossil fuels

  3. Fine Particle Matter (PM2.5) Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Fine particulate matter or PM2.5 (total mass of particles below 2.5 micron is diameter) is known to cause adverse health effects in humans.See the following websites...

  4. Autonomous patterning of cells on microstructured fine particles

    International Nuclear Information System (INIS)

    Takeda, Iwori; Kawanabe, Masato; Kaneko, Arata

    2015-01-01

    Regularly patterned cells can clarify cellular function and are required in some biochip applications. This study examines cell patterning along microstructures and the effect of microstructural geometry on selective cellular adhesion. Particles can be autonomously assembled on a soda-lime glass substrate that is chemically patterned by immersion in a suspension of fine particles. By adopting various sizes of fine particles, we can control the geometry of the microstructure. Cells adhere more readily to microstructured fine particles than to flat glass substrate. Silica particles hexagonally packed in 5–40 μm line and space microstructures provide an effective cell scaffold on the glass substrate. Cultured cells tend to attach and proliferate along the microstructured region while avoiding the flat region. The difference in cell adhesion is attributed to their geometries, as both of the silica particles and soda-lime glass are hydrophilic related with cell adhesiveness. After cell seeding, cells adhered to the flat region migrated toward the microstructured region. For most of the cells to assemble on the scaffold, the scaffolding microstructures must be spaced by at most 65 μm. - Highlights: • PS and SiO 2 particles provide effective scaffolds for cells. • Cells that adhere to microstructured particles successfully proliferate and differentiate. • Selective adhesion and growth along the scaffold can be achieved by patterning the fine particle microstructure. • Cells adhered to flat regions migrate toward microstructured regions. • Selective adhesion by cells depends on the microstructural geometry; specifically, on the inter-line spacing

  5. EFFECT OF BODY SIZE ON BREATHING PATTERN AND FINE PARTICLE DEPOSITION IN CHILDREN

    Science.gov (United States)

    Inter-child variability in breathing patterns may contribute to variability in fine particle, lung deposition and morbidity in children associated with those particles. Fractional deposition (DF) of fine particles (2um monodisperse, carnauba wax particles) was measured in healthy...

  6. Health impact of exposure to fine particles. Epidemiology of short-term effects

    International Nuclear Information System (INIS)

    Peters, Annette; Wichmann, H.-Erich; Univ. Muenchen; Heinrich, Joachim

    2002-01-01

    Epidemiological studies on short-term effects of fine particles are investigating whether morbidity or mortality increase on days with high particle concentrations. Multi-center studies have shown on a daily basis that there is an increase in morbidity and/or mortality in association with particle concentrations. Studies on the effects of particles on the respiratory tract have indicated that there is an impact of particles at their place of deposition. In addition, numerous studies have revealed that particles also have effects on the cardiovascular system, including acute-phase reactions, increased hospital admissions, and also an increase in cardiovascular disease mortality in association with elevated particle concentrations. For PM 10 consistent effects were found. Furthermore, the analyses showed that no threshold value could be established, but a linear dose-effect relation. Studies measuring PM 2.5 point to fine particles being mainly responsible for these effects. Current studies show that in addition to fine particles, ultra-fine particles can cause further health effects. (orig.) [de

  7. Deposition of fine and ultrafine particles on indoor surface materials

    DEFF Research Database (Denmark)

    Afshari, Alireza; Reinhold, Claus

    2008-01-01

    -scale test chamber. Experiments took place in a 32 m3 chamber with walls and ceiling made of glass. Prior to each experiment the chamber was flushed with outdoor air to reach an initial particle concentration typical of indoor air in buildings with natural ventilation. The decay of particle concentrations...... The aim of this study was the experimental determination of particle deposition for both different particle size fractions and different indoor surface materials. The selected surface materials were glass, gypsum board, carpet, and curtain. These materials were tested vertically in a full...... was monitored. Seven particle size fractions were studied. These comprised ultrafine and fine particles. Deposition was higher on carpet and curtain than on glass and gypsum board. Particles ranging from 0.3 to 0.5 µm had the lowest deposition. This fraction also has the highest penetration and its indoor...

  8. Characterization of fine particles using optomagnetic measurements

    DEFF Research Database (Denmark)

    Fock, Jeppe; Jonasson, Christian; Johansson, Christer

    2017-01-01

    The remanent magnetic moment and the hydrodynamic size are important parameters for the synthesis and applications of magnetic nanoparticles (MNPs). We present the theoretical basis for the determination of the remanent magnetic moment and the hydrodynamic size of MNPs with a narrow size...... distribution using optomagnetic measurements. In these, the 2nd harmonic variation of the intensity of light transmitted through an MNP suspension is measured as a function of an applied axial oscillating magnetic field. We first show how the measurements of the optomagnetic signal magnitude at a low frequency...... vs. magnetic field amplitude can be used to determine the MNP moment. Subsequently, we use linear response theory to describe the dynamic non-equilibrium response of the MNP suspension at low magnetic field amplitudes and derive a link between optomagnetic measurements and magnetic AC susceptibility...

  9. The sedimentation of fine particles in liquid foams

    OpenAIRE

    Rouyer , Florence; Fritz , Christelle; Pitois , Olivier

    2010-01-01

    International audience; We investigate the sedimentation of fine particles in liquid channels of foams. The study combines numerical simulations with experiments performed in foams and in isolated vertical foam channels. Results show that particulate motion is controlled by the confinement parameter (l) and the mobility of the channel surfaces modelled by interfacial shear viscosity. Interestingly, whereas the position of the particle within the channel cross-section is expected to be a relev...

  10. Source contributions to atmospheric fine carbon particle concentrations

    Science.gov (United States)

    Andrew Gray, H.; Cass, Glen R.

    A Lagrangian particle-in-cell air quality model has been developed that facilitates the study of source contributions to atmospheric fine elemental carbon and fine primary total carbon particle concentrations. Model performance was tested using spatially and temporally resolved emissions and air quality data gathered for this purpose in the Los Angeles area for the year 1982. It was shown that black elemental carbon (EC) particle concentrations in that city were dominated by emissions from diesel engines including both on-highway and off-highway applications. Fine primary total carbon particle concentrations (TC=EC+organic carbon) resulted from the accumulation of small increments from a great variety of emission source types including both gasoline and diesel powered highway vehicles, stationary source fuel oil and gas combustion, industrial processes, paved road dust, fireplaces, cigarettes and food cooking (e.g. charbroilers). Strategies for black elemental carbon particle concentration control will of necessity need to focus on diesel engines, while controls directed at total carbon particle concentrations will have to be diversified over a great many source types.

  11. Chemical characterisation of fine particles from biomass burning

    Energy Technology Data Exchange (ETDEWEB)

    Saarnio, K.

    2013-10-15

    Biomass burning has lately started to attract attention because there is a need to decrease the carbon dioxide (CO{sub 2}) emissions from the combustion of fossil fuels. Biomass is considered as CO{sub 2} neutral fuel. However, the burning of biomass is one of the major sources of fine particles both at the local and global scale. In addition to the use of biomass as a fuel for heat energy production, biomass burning emissions can be caused, e.g. by slash-and-burn agriculture and wild open-land fires. Indeed, the emissions from biomass burning are crucially important for the assessment of the potential impacts on global climate and local air quality and hence on human health. The chemical composition of fine particles has a notable influence on these impacts. The overall object of this thesis was to gain knowledge on the chemistry of fine particles that originate from biomass burning as well as on the contribution of biomass burning emissions to the ambient fine particle concentrations. For this purpose novel analytical methods were developed and tested in this thesis. Moreover, the thesis is based on ambient aerosol measurements that were carried out in six European countries at 12 measurement sites during 2002-2011. Additionally, wood combustion experiments were conducted in a laboratory. The measurements included a wide range of techniques: filter and impactor samplings, offline chemical analyses (chromatographic and mass spectrometric techniques, thermal-optical method), and online measurements of particles' physical properties and chemical composition (incl. particle number and mass concentrations and size distributions, concentrations of carbonaceous components, water-soluble ions, and tracer compounds). This thesis presents main results of different studies aimed towards chemical characterisation of fine particle emissions from biomass burning. It was found that wood combustion had a significant influence on atmospheric fine particle concentrations in

  12. Sintering of Fine Particles in Suspension Plasma Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Leszek Latka

    2010-07-01

    Full Text Available Suspension plasma spraying is a process that enables the production of finely grained nanometric or submicrometric coatings. The suspensions are formulated with the use of fine powder particles in water or alcohol with some additives. Subsequently, the suspension is injected into plasma jet and the liquid additives evaporate. The remaining fine solids are molten and subsequently agglomerate or remain solid, depending on their trajectory in the plasma jet. The coating’s microstructure results from these two groups of particles arriving on a substrate or previously deposited coating. Previous experimental studies carried out for plasma sprayed titanium oxide and hydroxyapatite coatings enabled us to observe either a finely grained microstructure or, when a different suspension injection mode was used, to distinguish two zones in the microstructure. These two zones correspond to the dense zone formed from well molten particles, and the agglomerated zone formed from fine solid particles that arrive on the substrate in a solid state. The present paper focuses on the experimental and theoretical analysis of the formation process of the agglomerated zone. The experimental section establishes the heat flux supplied to the coating during deposition. In order to achieve this, calorimetric measurements were made by applying experimental conditions simulating the real coatings’ growth. The heat flux was measured to be in the range from 0.08 to 0.5 MW/m2,depending on the experimental conditions. The theoretical section analyzes the sintering during the coating’s growth, which concerns the fine particles arriving on the substrate in the solid state. The models of volume, grain boundary and surface diffusion were analyzed and adapted to the size and chemistry of the grains, temperature and time scales corresponding to the suspension plasma spraying conditions. The model of surface diffusion was found to best describe the sintering during suspension

  13. The dispersion of fine chitosan particles by beads-milling

    Science.gov (United States)

    Rochima, Emma; Utami, Safira; Hamdani, Herman; Azhary, Sundoro Yoga; Praseptiangga, Danar; Joni, I. Made; Panatarani, Camellia

    2018-02-01

    This research aimed to produce fine chitosan particles from a crab shell waste by beads-milling method by two different concentration of PEG as dispersing agent (150 and 300 wt. %). The characterization was performed to obtain the size and size distribution, the characteristics of functional groups and the degree of deacetylation. The results showed that the chitosan fine particles was obtained with a milling time 120 minutes with the best concentration of PEG 400 150 wt. %. The average particle size of the as-prepared suspension is 584 nm after addition of acetic acid solution (1%, v/v). Beads milling process did not change the glucosamine and N-acetylglucosamine content on chitosan structure which is indicated by degree of deacetylation higher than 70%. It was concluded that beads milling process can be applied to prepare chitosan fineparticles by proper adjustment in the milling time, pH and dosage of dispersing agent.

  14. Pulmonary function response in smokers and patients with chronic obstructive lung diseae (COPD) following exposure to concentrated fine (PM2.5) particles

    Science.gov (United States)

    Population-based studies strongly suggest that smokers and patients with COPD may be susceptible to particulate matter (PM). The reported associations were stronger with fine than coarse PM .These findings, however, have not been supported by laboratory or clinical data. We stu...

  15. Dynamic Simulation of Random Packing of Polydispersive Fine Particles

    Science.gov (United States)

    Ferraz, Carlos Handrey Araujo; Marques, Samuel Apolinário

    2018-02-01

    In this paper, we perform molecular dynamic (MD) simulations to study the two-dimensional packing process of both monosized and random size particles with radii ranging from 1.0 to 7.0 μm. The initial positions as well as the radii of five thousand fine particles were defined inside a rectangular box by using a random number generator. Both the translational and rotational movements of each particle were considered in the simulations. In order to deal with interacting fine particles, we take into account both the contact forces and the long-range dispersive forces. We account for normal and static/sliding tangential friction forces between particles and between particle and wall by means of a linear model approach, while the long-range dispersive forces are computed by using a Lennard-Jones-like potential. The packing processes were studied assuming different long-range interaction strengths. We carry out statistical calculations of the different quantities studied such as packing density, mean coordination number, kinetic energy, and radial distribution function as the system evolves over time. We find that the long-range dispersive forces can strongly influence the packing process dynamics as they might form large particle clusters, depending on the intensity of the long-range interaction strength.

  16. IBA and synchrotron methods for sub-micron fine particle characterisation

    International Nuclear Information System (INIS)

    Cohen, D.D.; Siegele, R. Stampfl. A.; Cai, Z.; Ilinski, P.; Rodrigues, W.; Legnini, D.G.; Yun, W.; Lai, B.

    1999-01-01

    Fine air-borne particles, whose average diameters are 2.5 μm and less (PM2.5), are known to play significant roles in a number of human and environmental issues. They may penetrate deep into the human lung system and are believed, due to their small size or due to toxins adsorbed onto their surfaces, to be responsible for up to 60,000 and 10,000 deaths in the U.S. and U.K. respectively. Health studies within NSW, Australia carried out by the NSW EPA, have shown increased hospital admissions and excess deaths related to high fine particle pollution episodes. A number of environmental issues are affected by the amount and type of fine-particles in the air. The white and brown hazes that occur in populated cities causing poor visibility are due to light scattering from fine particles. These same particles are easily transported large distances in the lower atmosphere playing a key role in global pollution and climate forcing. Current knowledge of fine-particle concentrations and constituents is very limited. Sources of fine particles are both natural and man-made. Over the past few years considerable work on the characterisation of these particles has been going on at ANSTO using accelerator based ion beam analysis (IBA) methods. X-ray fluorescence using ion beams from accelerators and synchrotron fluorescence are complementary techniques. This is well demonstrated by the plot. PIXE has higher cross sections for low Z elements, but for high Z elements closer to the excitation energy (16keV) synchrotron radiation cross sections are larger. Both techniques are multi-elemental analysis techniques

  17. Sources of mutagenic activity in urban fine particles

    International Nuclear Information System (INIS)

    Stevens, R.K.; Lewis, C.W.; Dzubay, T.G.; Cupitt, L.T.; Lewtas, J.

    1990-01-01

    Samples were collected during the winter of 1984-1985 in the cities of Albuquerque, NM and Raleigh NC as part of a US Environmental Protection Agency study to evaluate methods to determine the emission sources contributing to the mutagenic properties of extractable organic matter (EOM) present in fine particles. Data derived from the analysis of the composition of these fine particles served as input to a multi-linear regression (MLR) model used to calculate the relative contribution of wood burning and motor vehicle sources to mutagenic activity observed in the extractable organic matter. At both sites the mutagenic potency of EOM was found to be greater (3-5 times) for mobile sources when compared to wood smoke extractable organics. Carbon-14 measurements which give a direct determination of the amount of EOM that originated from wood burning were in close agreement with the source apportionment results derived from the MLR model

  18. A Constitutive Relationship for Gravelly Soil Considering Fine Particle Suffusion.

    Science.gov (United States)

    Zhang, Yuning; Chen, Yulong

    2017-10-23

    Suffusion erosion may occur in sandy gravel dam foundations that use suspended cutoff walls. This erosion causes a loss of fine particles, degrades the soil strength and deformation moduli, and adversely impacts the cutoff walls of the dam foundation, as well as the overlying dam body. A comprehensive evaluation of these effects requires models that quantitatively describe the effects of fine particle losses on the stress-strain relationships of sandy gravels. In this work, we propose an experimental scheme for studying these types of models, and then perform triaxial and confined compression tests to determine the effects of particle losses on the stress-strain relationships. Considering the Duncan-Chang E-B model, quantitative expressions describing the relationship between the parameters of the model and the particle losses were derived. The results show that particle losses did not alter the qualitative stress-strain characteristics of the soils; however, the soil strength and deformation moduli were degraded. By establishing the relationship between the parameters of the model and the losses, the same model can then be used to describe the relationship between sandy gravels and erosion levels that vary in both time and space.

  19. A Constitutive Relationship for Gravelly Soil Considering Fine Particle Suffusion

    Directory of Open Access Journals (Sweden)

    Yuning Zhang

    2017-10-01

    Full Text Available Suffusion erosion may occur in sandy gravel dam foundations that use suspended cutoff walls. This erosion causes a loss of fine particles, degrades the soil strength and deformation moduli, and adversely impacts the cutoff walls of the dam foundation, as well as the overlying dam body. A comprehensive evaluation of these effects requires models that quantitatively describe the effects of fine particle losses on the stress-strain relationships of sandy gravels. In this work, we propose an experimental scheme for studying these types of models, and then perform triaxial and confined compression tests to determine the effects of particle losses on the stress-strain relationships. Considering the Duncan-Chang E-B model, quantitative expressions describing the relationship between the parameters of the model and the particle losses were derived. The results show that particle losses did not alter the qualitative stress-strain characteristics of the soils; however, the soil strength and deformation moduli were degraded. By establishing the relationship between the parameters of the model and the losses, the same model can then be used to describe the relationship between sandy gravels and erosion levels that vary in both time and space.

  20. Characterization of ultrafine and fine particles from CHP Plants

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    Samples of particles collected at CHP plants in the project 'Survey of emissions from CHP Plants' have been analysed in this project to give information on the morphology and chemical composition of individual particle size classes. The objective of this project was to characterize ultrafine and fine particles emitted to the atmosphere from Danish CHP plants. Nine CHP plants were selected in the Emission Survey Project as being representative for the different types of CHP plants operating in Denmark: 1) Three Waste-to Energy (WTE) plants. 2) Three biomass fired (BM) plants (two straw fired, one wood/saw dust fired). 3) Two gas fired (GF) plants (one natural gas, one landfill gas fired). 4) One gasoil (GO) fired plant. At the WTE and BM plants, various types of emission control systems implemented. The results from these plants represent the composition and size distribution of combustion particles that are emitted from the plants emission control systems. The measured emissions of particles from the waste-to-energy plants WTE1-3 are generally very low. The number and mass concentrations of ultrafine particles (PM{sub 0.1}) were particularly low in the flue gas from WTE2 and WTE3, where bag filters are used for the reduction of particle emissions. The EDX analysis of particles from the WTE plants indicates that the PM{sub 0.1} that penetrates the ECS at WTE can contain high fractions of metals such as Fe, Mn and Cu. The SEM analysis of particles from WTE1-3 showed that the particles were generally porous and irregular in shape. The concentrations of particles in the flue gas from the biomass plants were generally higher than found for the WTE plants. The time series results showed that periodical, high concentration peaks of PM emissions occur from BM1 and BM2. The chemical composition of the particles emitted from the three biomass plants is generally dominated by C, O and S, and to some extend also Fe and Si. A high amount of Cu was found in selected

  1. Rotating drum tests of particle suspensions within a fines dispersion

    Science.gov (United States)

    Cabrera, Miguel Angel; Gollin, Devis; Kaitna, Roland; Wu, Wei

    2014-05-01

    Natural flows like mudflows, debris flow, and hyperconcentrated flows are commonly composed by a matrix of particles suspended in a viscous fluid. The nature of the interactions between particles immersed in a fluid is related to its size. While coarse particles (sand, gravel, and boulders) interact with each other or with the surrounding fluid, a dispersion of fine particles interacts with each other through colloidal forces or Brownian motion effects (Coussot and Piau, 1995, and Ancey and Jorrot, 2001). The predominance of one of the previous interactions defines the rheology of the flow. On this sense, experimental insight is required to validate the limits where the rheology of a dispersion of fines is valid. For this purpose, an experimental program in a rotating drum is performed over samples of sand, loess, and kaolin. The solid concentration and angular velocity of the rotating drum are varied. Height and normal loads are measured during flow. High-speed videos are performed to obtain the flow patterns of the mixtures. The experiments provide new laboratory evidence of granular mixture behaviour within an increased viscous fluid phase and its characterization. The results show an apparent threshold in terms of solid concentration, in which the mixtures started to behave as a shear-dependent material.

  2. ESF collection effectiveness, a study in fine particle dynamics

    International Nuclear Information System (INIS)

    Winegardner, W.K.; Owczarski, P.C.

    1985-04-01

    The characterization and dynamic behavior of fine particles are the main subjects of an ongoing investigation of the particle collection effectiveness of the engineered safety feature (ESF) systems in nuclear power plants. This investigation is part of a larger study of the release of radionuclides to the environment from such plants during postulated accidents that are severe but extremely unlikely. The ESF systems are installed to prevent the occurrence of severe accidents or mitigate their consequences. Several of these engineered systems can serve as particle collection devices. This report focuses on the analytical models that were developed to predict particle behavior in two systems that were not specifically designed for particle retention: the ice compartments of ice condenser containment systems in Pressurized Water Reactors (PWRs) and the suppression pools of Boiling Water Reactors (BWRs). The following section summarizes the topics considered in the development of models and computer codes for estimating the particle retention effectiveness of these two ESF systems. After the summary this paper describes the two ESF systems in more detail and discusses the behavior of particles in both situations

  3. Characterization of road runoff with regard to seasonal variations, particle size distribution and the correlation of fine particles and pollutants.

    Science.gov (United States)

    Hilliges, R; Endres, M; Tiffert, A; Brenner, E; Marks, T

    2017-03-01

    Urban runoff is known to transport a significant pollutant load consisting of e.g. heavy metals, salts and hydrocarbons. Interactions between solid and dissolved compounds, proper understanding of particle size distribution, dissolved pollutant fractions and seasonal variations is crucial for the selection and development of appropriate road runoff treatment devices. Road runoff at an arterial road in Augsburg, Germany, has been studied for 3.5 years. A strong seasonal variation was observed, with increased heavy metal concentrations with doubled and tripled median concentrations for heavy metals during the cold season. Correlation analysis showed that de-icing salt is not the only factor responsible for increased pollutant concentrations in winter. During the cold period, the fraction of dissolved metals was lower compared to the warm season. In road dust, the highest metal concentrations were measured for fine particles. Metals in road runoff were found to show a significant correlation to fine particles SS63 (removal rates.

  4. Pulmonary responses in current smokers and ex-smokers following a two hour exposure at rest to clean air and fine ambient air particles.

    Science.gov (United States)

    BACKGROUND: Increased susceptibility of smokers to ambient PM may potentially promote development of COPD and accelerate already present disease. OBJECTIVES: To characterize the acute and subacute lung function response and inflammatory effects of controlled chamber exposure t...

  5. Theoretical Studies of Strongly Interacting Fine Particle Systems

    Science.gov (United States)

    Fearon, Michael

    Available from UMI in association with The British Library. A theoretical analysis of the time dependent behaviour of a system of fine magnetic particles as a function of applied field and temperature was carried out. The model used was based on a theory assuming Neel relaxation with a distribution of particle sizes. This theory predicted a linear variation of S_{max} with temperature and a finite intercept, which is not reflected by experimental observations. The remanence curves of strongly interacting fine-particle systems were also investigated theoretically. It was shown that the Henkel plot of the dc demagnetisation remanence vs the isothermal remanence is a useful representation of interactions. The form of the plot was found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is investigated. These results are consistent with a previous experimental study. Finally the results of the noise power spectral density for erased and saturated recording media are presented, so that characterisation of interparticle interactions may be carried out with greater accuracy.

  6. Deviation from the superparamagnetic behaviour of fine-particle systems

    CERN Document Server

    Malaescu, I

    2000-01-01

    Studies concerning superparamagnetic behaviour of fine magnetic particle systems were performed using static and radiofrequency measurements, in the range 1-60 MHz. The samples were: a ferrofluid with magnetite particles dispersed in kerosene (sample A), magnetite powder (sample B) and the same magnetite powder dispersed in a polymer (sample C). Radiofrequency measurements indicated a maximum in the imaginary part of the complex magnetic susceptibility, for each of the samples, at frequencies with the magnitude order of tens of MHz, the origin of which was assigned to Neel-type relaxation processes. The static measurements showed a Langevin-type dependence of magnetisation M and of susceptibility chi, on the magnetic field for sample A. For samples B and C deviations from this type of dependence were found. These deviations were analysed qualitatively and explained in terms of the interparticle interactions, dispersion medium influence and surface effects.

  7. Fine particles flotation of the Moatize coal/Mozambique

    Science.gov (United States)

    Castro, Amilton; de Brum, Irineu A. S.

    2017-11-01

    This study was done from a sample of coal mined at the Vale-Mozambique mine, located in Moatize district, Tete Province. The aim of this work is to analyze the reagent system in the flotation of coal fines belonging to the UCB layer. Among coal processing methods, flotation stands out as one of the most important for the concentration of this material, in particular in the treatment of fine particles. The total feed of the Vale-Mozambique processing plant is 8000 tph of coal, where 10% of this feed corresponds to the fine fraction that feeds the flotation circuit. The material used in this study had a particle size of 96% smaller than 0.25 mm. The reagents used in the flotation tests were Betacol and diesel oil as hydrophobizing agents and MIBC as frother. The range of Betacol concentrations in the first test phase was 200 g / t at 500 g / t, and in the second phase 200 g / t at 500 g / t of diesel oil and MIBC were kept constant at 300 g / t. The immediate analysis followed the Brazilian standards: NBR 8289, NBR 8293, NBR 8290, NBR 8299. The results showed that it is possible, from a feed with the ash content around 22.84%, to obtain products with levels below of 10% ash, with a mass recovery around 50%. The recovery of carbonaceous matter was also evaluated and presented positive results. Complementing this study, the effect of H2O recovery was evaluated and it was observed that for the concentrations of Betacol the recoveries ranged from 6 to 9%, and for diesel oil plus MIBC were 4 to 7%.

  8. The additive association of indoor cigarette and marijuana smoking on potential exposure to fine particles

    OpenAIRE

    Posis, Alexander Ivan; Klepeis, Neil; Bellettiere, John; Liles, Sandy; Berardi, Vincent; Nguyen, Ben; Hughes, Suzanne; Hovell, Melbourne

    2017-01-01

    Air particle monitors were placed in 298 homes of families with at least 1 cigarette smoker and 1 child under the age of 14. After monitors continuously measured fine particle counts (0.5 to 2.5 microns) for at least 7 days, participants were interviewed about past 7-day frequency of cigarette and marijuana smoking, other PGEs (e.g., burning candles, burning food) and ventilation activities such as use of exhaust fans. Dichotomized survey responses (any vs. none) from 193 ho...

  9. Iron solubility related to particle sulfur content in source emission and ambient fine particles.

    Science.gov (United States)

    Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J

    2012-06-19

    The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.

  10. Preparation of UO_2 Fine Particle by Hydrolysis of Uranium(IV) Alkoxide

    OpenAIRE

    Satoh, Isamu; Takahashi, Mitsuyuki; Miura, Shigeyuki

    1997-01-01

    Fine particles of uranium(IV) dioxides were obtained by hydrolysis of uranium(IV) ethoxide which was synthesized by reacting uranium tetrachloride with sodium ethoxide. The monodispersed submicrometer particles were confirmed by SEM observation.

  11. Element determination of fine particles in environmental aerosols using PIXE

    International Nuclear Information System (INIS)

    Garcia O, B.; Aldape U, F.

    2007-01-01

    The Mexico city is classified as one of the more populated cities of the world which presents a decrease in the air quality and that gives place to a severe problematic in atmospheric pollution. To cooperate in the solution of this problem it is necessary to carry out studies that allow a better knowledge of the atmosphere of the city. This study presents the results of a monitoring campaign of fine particle carried out from September 21 to December 12, 2001 in three sites of the Mexico City center area. The samples were collected every third day with a collector type unit of heaped filters (Gent). The analysis of these samples was carried out in the 2 MV accelerator of the National Institute of Nuclear Research (ININ) applying the PIXE technique and with this analysis its were identified in the samples approximately 15 elements in each one of the 3 sites and was calculated the concentration in that its were present. With these results a database was created and by means of it mathematical treatment the Enrichment factor (FE), the time series of each element and the multiple correlation matrix were evaluated. The obtained results showed that the Civil Registration site (Salto del Agua) it was the more polluted coinciding that to a bigger concentration of activities a bigger increase in the pollution is generated. (Author)

  12. Physicochemical characteristics and occupational exposure to coarse, fine and ultrafine particles during building refurbishment activities

    Energy Technology Data Exchange (ETDEWEB)

    Azarmi, Farhad; Kumar, Prashant, E-mail: p.kumar@surrey.ac.uk, E-mail: prashant.kumar@cantab.net; Mulheron, Mike [University of Surrey, Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences (United Kingdom); Colaux, Julien L.; Jeynes, Chris [University of Surrey, Faculty of Engineering and Physical Sciences, Ion Beam Centre (United Kingdom); Adhami, Siavash; Watts, John F. [University of Surrey, The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences (United Kingdom)

    2015-08-15

    Understanding of the emissions of coarse (PM{sub 10} ≤10 μm), fine (PM{sub 2.5} ≤2.5 μm) and ultrafine particles (UFP <100 nm) from refurbishment activities and their dispersion into the nearby environment is of primary importance for developing efficient risk assessment and management strategies in the construction and demolition industry. This study investigates the release, occupational exposure and physicochemical properties of particulate matter, including UFPs, from over 20 different refurbishment activities occurring at an operational building site. Particles were measured in the 5–10,000-nm-size range using a fast response differential mobility spectrometer and a GRIMM particle spectrometer for 55 h over 8 days. The UFPs were found to account for >90 % of the total particle number concentrations and <10 % of the total mass concentrations released during the recorded activities. The highest UFP concentrations were 4860, 740, 650 and 500 times above the background value during wall-chasing, drilling, cementing and general demolition activities, respectively. Scanning electron microscopy, X-ray photoelectron spectroscopy and ion beam analysis were used to identify physicochemical characteristics of particles and attribute them to probable sources considering the size and the nature of the particles. The results confirm that refurbishment activities produce significant levels (both number and mass) of airborne particles, indicating a need to develop appropriate regulations for the control of occupational exposure of operatives undertaking building refurbishment.

  13. Characteristics of fine and coarse particles of natural and urban aerosols of Brazil

    International Nuclear Information System (INIS)

    Orsini, C.M.Q.; Tabacniks, M.H.; Artaxo Netto, P.E.; Andrade, M.F.; Kerr, A.

    1986-02-01

    Fine and coarse particles have been sampled from 1982 to 1985 in one natural forest seacoast site (Jureia) and five urban-industrial cities (Vitoria, Salvador, Porto Alegre, Sao Paulo, and Belo Horizonte). The time variations of concentrations in air and the relative elemental compositions of fine and coarse particle fractions, sampled by Nuclepore stacked filter units (SFU), have been determined gravimetrically and by PIXE analysis, respectively. Enrichment factors and correlation coefficients of the trace elements measured lead to unambiguous characterization of soil dust and sea salt, both major aerosol sources that emit coarse particles, and soil dust is also a significant source of fine particles. (Author) [pt

  14. Experimental investigation on improving the removal effect of WFGD system on fine particles by heterogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Jingjing; Yang, Linjun; Yan, Jinpei; Xiong, Guilong; Shen, Xianglin [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Heterogeneous condensation of water vapor as a preconditioning technique for the removal of fine particles from flue gas was investigated experimentally in a wet flue gas desulfurization (WFGD) system. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO{sub 2} absorption zone and at the top of the wet FGD scrubber by adding steam in the gas inlet and above the scrubbing liquid inlet of the scrubber, respectively. The condensational grown droplets were then removed by the scrubbing liquid and a high-efficiency demister. The results show that the effectiveness of the WFGD system for removal of fine particles is related to the SO{sub 2} absorbent and the types of scrubber employed. Despite a little better effectiveness for the removal of fine particles in the rotating-stream-tray scrubber at the same liquid-to-gas ratio, The similar trends are obtained between the spray scrubber and rotating-stream-tray scrubber. Due to the formation of aerosol particles in the limestone and ammonia-based FGD processes, the fine particle removal efficiencies are lower than those for Na{sub 2}CO{sub 3} and water. The performance of the WFGD system for removal of fine particles can be significantly improved for both steam addition cases, for which the removal efficiency increases with increasing amount of added steam. A high liquid to gas ratio is beneficial for efficient removal of fine particles by heterogeneous condensation of water vapor.

  15. Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.J.; Bao, J.J.; Yan, J.P.; Liu, J.H.; Song, S.J.; Fan, F.X. [Southeast University, Nanjing (China). School of Energy & Environment

    2010-01-01

    A novel process to remove fine particles with high efficiency by heterogeneous condensation in a wet flue gas desulfurization (WFGD) system is presented. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO{sub 2} absorption zone and at the top of the wet FGD scrubber by adding steam in the gas inlet and above the scrubbing liquid inlet of the scrubber, respectively. The condensational grown droplets were then removed by the scrubbing liquid and a high-efficiency demister. The results show that the effectiveness of the WFGD system for removal of fine particles is related to the SO{sub 2} absorbent employed. When using CaCO{sub 3} and NH{sub 3} {center_dot} H{sub 2}O to remove SO{sub 2} from flue gas, the fine particle removal efficiencies are lower than those for Na2CO{sub 3} and water, and the morphology and elemental composition of fine particles are changed. This effect can be attributed to the formation of aerosol particles in the limestone and ammonia-based FGD processes. The performance of the WFGD system for removal of fine particles can be significantly improved for both steam addition cases, for which the removal efficiency increases with increasing amount of added steam. A high liquid to gas ratio is beneficial for efficient removal of fine particles by heterogeneous condensation of water vapor.

  16. Coupling fine particle and bedload transport in gravel-bedded streams

    Science.gov (United States)

    Park, Jungsu; Hunt, James R.

    2017-09-01

    Fine particles in the silt- and clay-size range are important determinants of surface water quality. Since fine particle loading rates are not unique functions of stream discharge this limits the utility of the available models for water quality assessment. Data from 38 minimally developed watersheds within the United States Geological Survey stream gauging network in California, USA reveal three lines of evidence that fine particle release is coupled with bedload transport. First, there is a transition in fine particle loading rate as a function of discharge for gravel-bedded sediments that does not appear when the sediment bed is composed of sand, cobbles, boulders, or bedrock. Second, the discharge at the transition in the loading rate is correlated with the initiation of gravel mobilization. Third, high frequency particle concentration and discharge data are dominated by clockwise hysteresis where rising limb discharges generally have higher concentrations than falling limb discharges. These three observations across multiple watersheds lead to a conceptual model that fine particles accumulate within the sediment bed at discharges less than the transition and then the gravel bed fluidizes with fine particle release at discharges above the transition discharge. While these observations were individually recognized in the literature, this analysis provides a consistent conceptual model based on the coupling of fine particle dynamics with filtration at low discharges and gravel bed fluidization at higher discharges.

  17. Regulatory T Cells Protect Fine Particulate Matter-Induced Inflammatory Responses in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wen-cai Zhang

    2014-01-01

    Full Text Available Objective. To investigate the role of CD4+CD25+ T cells (Tregs in protecting fine particulate matter (PM- induced inflammatory responses, and its potential mechanisms. Methods. Human umbilical vein endothelial cells (HUVECs were treated with graded concentrations (2, 5, 10, 20, and 40 µg/cm2 of suspension of fine particles for 24h. For coculture experiment, HUVECs were incubated alone, with CD4+CD25− T cells (Teff, or with Tregs in the presence of anti-CD3 monoclonal antibodies for 48 hours, and then were stimulated with or without suspension of fine particles for 24 hours. The expression of adhesion molecules and inflammatory cytokines was examined. Results. Adhesion molecules, including vascular cell adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1, and inflammatory cytokines, such as interleukin (IL- 6 and IL-8, were increased in a concentration-dependent manner. Moreover, the adhesion of human acute monocytic leukemia cells (THP-1 to endothelial cells was increased and NF-κB activity was upregulated in HUVECs after treatment with fine particles. However, after Tregs treatment, fine particles-induced inflammatory responses and NF-κB activation were significantly alleviated. Transwell experiments showed that Treg-mediated suppression of HUVECs inflammatory responses impaired by fine particles required cell contact and soluble factors. Conclusions. Tregs could attenuate fine particles-induced inflammatory responses and NF-κB activation in HUVECs.

  18. Improved process for contacting finely divided solid particles with gases

    Energy Technology Data Exchange (ETDEWEB)

    1952-07-30

    A process of contacting solids and gases of the type in which finely divided solids are maintained in a dense fluidized state in a treating zone by means of an upflowing gaseous fluidizing medium wherein solid packing in the form of a body static contiguous elements is maintained in the treating zone. The size, shape, and arrangement of the elements constituting the packing being such as to define a labyrinth of passageways in which the finely divided solids are maintained in a fluidized state, and the finely divided solids are adapted to flow freely downwardly through the passageways in the absence of a gaseous fluidizing medium.

  19. A comparison of four gravimetric fine particle sampling methods.

    Science.gov (United States)

    Yanosky, J D; MacIntosh, D L

    2001-06-01

    A study was conducted to compare four gravimetric methods of measuring fine particle (PM2.5) concentrations in air: the BGI, Inc. PQ200 Federal Reference Method PM2.5 (FRM) sampler; the Harvard-Marple Impactor (HI); the BGI, Inc. GK2.05 KTL Respirable/Thoracic Cyclone (KTL); and the AirMetrics MiniVol (MiniVol). Pairs of FRM, HI, and KTL samplers and one MiniVol sampler were collocated and 24-hr integrated PM2.5 samples were collected on 21 days from January 6 through April 9, 2000. The mean and standard deviation of PM2.5 levels from the FRM samplers were 13.6 and 6.8 microg/m3, respectively. Significant systematic bias was found between mean concentrations from the FRM and the MiniVol (1.14 microg/m3, p = 0.0007), the HI and the MiniVol (0.85 microg/m3, p = 0.0048), and the KTL and the MiniVol (1.23 microg/m3, p = 0.0078) according to paired t test analyses. Linear regression on all pairwise combinations of the sampler types was used to evaluate measurements made by the samplers. None of the regression intercepts was significantly different from 0, and only two of the regression slopes were significantly different from 1, that for the FRM and the MiniVol [beta1 = 0.91, 95% CI (0.83-0.99)] and that for the KTL and the MiniVol [beta1 = 0.88, 95% CI (0.78-0.98)]. Regression R2 terms were 0.96 or greater between all pairs of samplers, and regression root mean square error terms (RMSE) were 1.65 microg/m3 or less. These results suggest that the MiniVol will underestimate measurements made by the FRM, the HI, and the KTL by an amount proportional to PM2.5 concentration. Nonetheless, these results indicate that all of the sampler types are comparable if approximately 10% variation on the mean levels and on individual measurement levels is considered acceptable and the actual concentration is within the range of this study (5-35 microg/m3).

  20. Source Term Model for Fine Particle Resuspension from Indoor Surfaces

    National Research Council Canada - National Science Library

    Kim, Yoojeong; Gidwani, Ashok; Sippola, Mark; Sohn, Chang W

    2008-01-01

    This Phase I effort developed a source term model for particle resuspension from indoor surfaces to be used as a source term boundary condition for CFD simulation of particle transport and dispersion in a building...

  1. Coupling Solute and Fine Particle Transport with Sand Bed Morphodynamics within a Field Experiment

    Science.gov (United States)

    Phillips, C. B.; Ortiz, C. P.; Schumer, R.; Jerolmack, D. J.; Packman, A. I.

    2017-12-01

    Fine suspended particles are typically considered to pass through streams and rivers as wash load without interacting with the bed, however experiments have demonstrated that hyporheic flow causes advective exchange of fine particles with the stream bed, yielding accumulation of fine particle deposits within the bed. Ultimately, understanding river morphodynamics and ecosystem dynamics requires coupling both fine particle and solute transport with bed morphodynamics. To better understand the coupling between these processes we analyze a novel dataset from a controlled field experiment conducted on Clear Run, a 2nd order sand bed stream located within the North Carolina coastal plain. Data include concentrations of continuously injected conservative solutes and fine particulate tracers measured at various depths within the stream bed, overhead time lapse images of bed forms, stream discharge, and geomorphological surveys of the stream. We use image analysis of bed morphodynamics to assess exchange, retention, and remobilization of solutes and fine particles during constant discharge and a short duration experimental flood. From the images, we extract a time series of bedform elevations and scour depths for the duration of the experiment. The high-resolution timeseries of bed elevation enables us to assess coupling of bed morphodynamics with both the solute and fine particle flux during steady state mobile bedforms prior to the flood and to changing bedforms during the flood. These data allow the application of a stochastic modeling framework relating bed elevation fluctuations to fine particle residence times. This combined experimental and modeling approach ultimately informs our ability to predict not only the fate of fine particulate matter but also associated nutrient and carbon dynamics within streams and rivers.

  2. Retention and Migration of Fine Organic Particles within an Agricultural Stream: Toenepi, Waikato, New Zealand

    Science.gov (United States)

    Drummond, J. D.; Davies-Colley, R.; Stott, R.; Sukias, J.; Nagels, J.; Sharp, A.; Packman, A. I.

    2013-12-01

    Fine organic particle dynamics are important to stream biogeochemistry, ecology, and transport of contaminant microbes. These particles migrate downstream through a series of deposition and resuspension events, which results in a wide range of residence times. This retention influences biogeochemical processing and in-stream stores of contaminant microbes that may mobilize during flood events and present a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into organic particle dynamics in streams, with a campaign of experiments and modeling. The results should improve understanding of nutrient (C, N, P) spiraling and fine sediment movement in streams, and have particular application to microbial hazards. We directly measure microbial transport by including the indicator organism, E. coli, as a tracer, which is compared to a fluorescent inert particle tracer and conservative solute to gain insight on both microbial ecology and waterborne disease transmission. We developed a stochastic model to describe the transport and retention of fine suspended particles in rivers, including advective delivery of particles to the streambed, transport through porewaters, and reversible filtration within the streambed. Because fine particles are only episodically transported in streams, with intervening periods at rest in the bed, this transport process violates conventional advection-dispersion assumptions. Instead we adopt a stochastic mobile-immobile model formulation to describe fine particle transport. We apply this model to measurements of particle transport from multiple tracer experiments in an agricultural stream in the Waikato dairy region of New Zealand, and use the model to improve interpretation of baseflow particle dynamics. Our results show the importance of the benthic and hyporheic regions and in-stream vegetation as a reservoir for fine organic particles in streams.

  3. Asthma-Related Outcomes in Patients Initiating Extrafine Ciclesonide or Fine-Particle Inhaled Corticosteroids

    Science.gov (United States)

    Postma, Dirkje S.; Dekhuijzen, Richard; van der Molen, Thys; Martin, Richard J.; van Aalderen, Wim; Roche, Nicolas; Guilbert, Theresa W.; Israel, Elliot; van Eickels, Daniela; Khalid, Javaria Mona; Herings, Ron M.C.; Overbeek, Jetty A.; Miglio, Cristiana; Thomas, Victoria; Hutton, Catherine; Hillyer, Elizabeth V.

    2017-01-01

    Purpose Extrafine-particle inhaled corticosteroids (ICS) have greater small airway deposition than standard fine-particle ICS. We sought to compare asthma-related outcomes after patients initiated extrafine-particle ciclesonide or fine-particle ICS (fluticasone propionate or non-extrafine beclomethasone). Methods This historical, matched cohort study included patients aged 12-60 years prescribed their first ICS as ciclesonide or fine-particle ICS. The 2 cohorts were matched 1:1 for key demographic and clinical characteristics over the baseline year. Co-primary endpoints were 1-year severe exacerbation rates, risk-domain asthma control, and overall asthma control; secondary endpoints included therapy change. Results Each cohort included 1,244 patients (median age 45 years; 65% women). Patients in the ciclesonide cohort were comparable to those in the fine-particle ICS cohort apart from higher baseline prevalence of hospitalization, gastroesophageal reflux disease, and rhinitis. Median (interquartile range) prescribed doses of ciclesonide and fine-particle ICS were 160 (160-160) µg/day and 500 (250-500) µg/day, respectively (P<0.001). During the outcome year, patients prescribed ciclesonide experienced lower severe exacerbation rates (adjusted rate ratio [95% CI], 0.69 [0.53-0.89]), and higher odds of risk-domain asthma control (adjusted odds ratio [95% CI], 1.62 [1.27-2.06]) and of overall asthma control (2.08 [1.68-2.57]) than those prescribed fine-particle ICS. The odds of therapy change were 0.70 (0.59-0.83) with ciclesonide. Conclusions In this matched cohort analysis, we observed that initiation of ICS with ciclesonide was associated with better 1-year asthma outcomes and fewer changes to therapy, despite data suggesting more difficult-to-control asthma. The median prescribed dose of ciclesonide was one-third that of fine-particle ICS. PMID:28102056

  4. Microbial and Organic Fine Particle Transport Dynamics in Streams - a Combined Experimental and Stochastic Modeling Approach

    Science.gov (United States)

    Drummond, Jen; Davies-Colley, Rob; Stott, Rebecca; Sukias, James; Nagels, John; Sharp, Alice; Packman, Aaron

    2014-05-01

    Transport dynamics of microbial cells and organic fine particles are important to stream ecology and biogeochemistry. Cells and particles continuously deposit and resuspend during downstream transport owing to a variety of processes including gravitational settling, interactions with in-stream structures or biofilms at the sediment-water interface, and hyporheic exchange and filtration within underlying sediments. Deposited cells and particles are also resuspended following increases in streamflow. Fine particle retention influences biogeochemical processing of substrates and nutrients (C, N, P), while remobilization of pathogenic microbes during flood events presents a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into the dynamics of fine particles and microbes in streams, with a campaign of experiments and modeling. The results improve understanding of fine sediment transport, carbon cycling, nutrient spiraling, and microbial hazards in streams. We developed a stochastic model to describe the transport and retention of fine particles and microbes in rivers that accounts for hyporheic exchange and transport through porewaters, reversible filtration within the streambed, and microbial inactivation in the water column and subsurface. This model framework is an advance over previous work in that it incorporates detailed transport and retention processes that are amenable to measurement. Solute, particle, and microbial transport were observed both locally within sediment and at the whole-stream scale. A multi-tracer whole-stream injection experiment compared the transport and retention of a conservative solute, fluorescent fine particles, and the fecal indicator bacterium Escherichia coli. Retention occurred within both the underlying sediment bed and stands of submerged macrophytes. The results demonstrate that the combination of local measurements, whole-stream tracer experiments, and advanced modeling

  5. Particle size distribution and property of bacteria attached to carbon fines in drinking water treatment

    Directory of Open Access Journals (Sweden)

    Wang Leilei

    2008-06-01

    Full Text Available The quantitative change and size distribution of particles in the effluents from a sand filter and a granular activated carbon (GAC filter in a drinking water treatment plant were investigated. The average total concentration of particles in the sand filter effluent during a filter cycle was 148 particles/mL, 27 of which were larger than 2 µm in size. The concentration in the GAC effluent (561 particles/mL was significantly greater than that in the sand filter effluent. The concentration of particles larger than 2 µm in the GAC filter effluent reached 201 particles/mL, with the amount of particles with sizes between 2 µm and 15 µm increasing. The most probable number (MPN of carbon fines reached 43 unit/L after six hours and fines between 0.45 µm and 8.0 µm accounted for more than 50%. The total concentration of outflowing bacteria in the GAC filter effluent, 350 CFU (colony-forming units/mL, was greater than that in the sand filter effluent, 210 CFU/mL. The desorbed bacteria concentration reached an average of 310 CFU/mg fines. The disinfection efficiency of desorbed bacteria was lower than 40% with 1.5 mg/L of chlorine. The disinfection effect showed that the inactivation rate with 2.0 mg/L of chloramine (90% was higher than that with chlorine (70%. Experimental results indicated that the high particle concentration in raw water and sedimentation effluent led to high levels of outflowing particles in the sand filter effluent. The activated carbon fines in the effluent accounted for a small proportion of the total particle amount, but the existing bacteria attached to carbon fines may influence the drinking water safety. The disinfection efficiency of desorbed bacteria was lower than that of free bacteria with chlorine, and the disinfection effect on bacteria attached to carbon fines with chloramine was better than that with only chlorine.

  6. The coercive force of fine particles of monoclinic pyrrhotite (Fe7S8 ...

    African Journals Online (AJOL)

    The temperature dependence of coercive force (Hc) between 77 K and 600 K has been investigated for fine particles of monoclinic pyrrhotite (Fe7S8) of < 1 mm and 1- 30 mm particle sizes. The study has shown that Hc is strongly dependent on temperature, as temperature rises above room temperature (293 K) to near the ...

  7. A New Type of Non-Mechanical Valves for Recirculation of Fine Particles

    DEFF Research Database (Denmark)

    Azizaddini, Seyednezamaddin

    of the thesis is to design a new version of a non-mechanical valve for transportation of the particles and closing the loop in circulating or interconnected fluidized bed systems. As the primary proposal, combination of three assistive methods (tapered fluidized bed, mixture of coarse and fine particles...

  8. The Effect Of Fine Particle Migration On Void Ratio Of Gap Graded Soil

    Directory of Open Access Journals (Sweden)

    Mayssa Salem Flayh

    2017-12-01

    Full Text Available Soil is exposed to the migration of fine particles in some cases because of some conditions including excavation and the presence of a level of groundwater which is equal to the level of soil in this case and because of the existence of this water leakage which would work on the migration of fine particles in the soil. This migration of fine particles will change the structure of the soil and change its properties. In this study we will know the change in the properties of the fouling soil due to the migration of fine particles and four types of soil. The first type does not contain fine particles and the second type the third and the fourth contains 10 20 30 granules respectively and tests were carried out for these soils Atterberg limits sieve analysis specific gravity shear resistance permeability modified Procter consolidation. A model was created to simulate the reality of soil exposed to excavations. Three levels were selected in the model to compare the results of each of the four soils under study. The total number of models 24 model through laboratory work obtained the initial and final voids ratio before and after aft the initial and final voids ratio er the particles migration. After these tests it was found that the migration of granules clearly affects the increase in the voids ratio.

  9. On the Accelerated Settling of Fine Particles in a Bidisperse Slurry

    Directory of Open Access Journals (Sweden)

    Leonid L. Minkov

    2015-01-01

    Full Text Available An estimation of increasing the volume average sedimentation velocity of fine particles in bidisperse suspension due to their capturing in the circulation zone formed in the laminar flow of incompressible viscous fluid around the spherical coarse particle is proposed. The estimation is important for an explanation of the nonmonotonic shape of the separation curve observed for hydrocyclones. The volume average sedimentation velocity is evaluated on the basis of a cellular model. The characteristic dimensions of the circulation zone are obtained on the basis of a numerical solution of Navier-Stokes equations. Furthermore, these calculations are used for modelling the fast sedimentation of fine particles during their cosedimentation in bidisperse suspension. It was found that the acceleration of sedimentation of fine particles is determined by the concentration of coarse particles in bidisperse suspension, and the sedimentation velocity of fine fraction is proportional to the square of the coarse and fine particle diameter ratio. The limitations of the proposed model are ascertained.

  10. A Modelling Approach on Fine Particle Spatial Distribution for Street Canyons in Asian Residential Community

    Science.gov (United States)

    Ling, Hong; Lung, Shih-Chun Candice; Uhrner, Ulrich

    2016-04-01

    Rapidly increasing urban pollution poses severe health risks.Especially fine particles pollution is considered to be closely related to respiratory and cardiovascular disease. In this work, ambient fine particles are studied in street canyons of a typical Asian residential community using a computational fluid dynamics (CFD) dispersion modelling approach. The community is characterised by an artery road with a busy traffic flow of about 4000 light vehicles (mainly cars and motorcycles) per hour at rush hours, three streets with hundreds light vehicles per hour at rush hours and several small lanes with less traffic. The objective is to study the spatial distribution of the ambient fine particle concentrations within micro-environments, in order to assess fine particle exposure of the people living in the community. The GRAL modelling system is used to simulate and assess the emission and dispersion of the traffic-related fine particles within the community. Traffic emission factors and traffic situation is assigned using both field observation and local emissions inventory data. High resolution digital elevation data (DEM) and building height data are used to resolve the topographical features. Air quality monitoring and mobile monitoring within the community is used to validate the simulation results. By using this modelling approach, the dispersion of fine particles in street canyons is simulated; the impact of wind condition and street orientation are investigated; the contributions of car and motorcycle emissions are quantified respectively; the residents' exposure level of fine particles is assessed. The study is funded by "Taiwan Megacity Environmental Research (II)-chemistry and environmental impacts of boundary layer aerosols (Year 2-3) (103-2111-M-001-001-); Spatial variability and organic markers of aerosols (Year 3)(104-2111-M-001 -005 -)"

  11. Construction of Fine Particles Source Spectrum Bank in Typical Region and Empirical Research of Matching Diagnosis

    Science.gov (United States)

    Wang, Xing; Sun, Wenliang; Guo, Min; Li, Minjiao; Li, Wan

    2018-01-01

    The research object of this paper is fine particles in typical region. The construction of component spectrum bank is based on the technology of online source apportionment, then the result of the apportionment is utilized to verify the effectiveness of fine particles component spectrum bank and which also act as the matching basis of online source apportionment receptor sample. On the next, the particle source of air pollution is carried through the matching diagnosis empirical research by utilizing online source apportionment technology, to provide technical support for the cause analysis and treatment of heavy pollution weather.

  12. Associations between fine particle, coarse particle, black carbon and hospital visits in a Chinese city.

    Science.gov (United States)

    Wang, Xi; Chen, Renjie; Meng, Xia; Geng, Fuhai; Wang, Cuicui; Kan, Haidong

    2013-08-01

    China is one of the countries with the highest ambient particle levels in the world; however, there have been no epidemiologic studies examining the effects of fine particle (PM2.5), coarse particle (PM10-2.5) and black carbon (BC) simultaneously on morbidity outcomes. In this study, we conducted a time-series analysis to evaluate the acute effects of PM2.5, PM10-2.5, and BC on daily hospital visits in Shanghai, China. During our study period, the mean daily concentrations of PM2.5, PM10-2.5 and BC were 53.9 μg/m(3), 38.4 μg/m(3) and 3.9 μg/m(3), respectively. We found significant associations of PM2.5, PM 10-2.5, and BC with daily hospital visits. An inter-quartile range increase of the average concentrations of the current and previous days in PM2.5, PM10-2.5 and BC was associated with a 1.88% (95% CI: 0.69% to 3.06%), a 1.30% (95% CI: 0.25% to 2.34%) and a 1.33% (95% CI: 0.34% to 2.32%) increase in emergency-room visits, respectively. For outpatient visits, the corresponding estimated changes were -2.44% (95% CI: -6.62% to 1.74%), 1.09% (95% CI: -2.72% to 4.90%) and 3.34% (95% CI: 0.10% to 6.57%) respectively. The effects of BC were more robust than the effects of PM2.5 and PM10-2.5 in two-pollutant models. To our knowledge, this is the first study in China, or even in Asian developing countries, to report the effect of PM2.5, PM10-2.5, and BC simultaneously on morbidity. Our findings also suggest that BC could serve as a valuable air quality indicator that reflects the health risks of airborne particles. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Durability of Mortar Made with Fine Glass Powdered Particles

    Directory of Open Access Journals (Sweden)

    Rosemary Bom Conselho Sales

    2017-01-01

    Full Text Available Different studies investigate the use of waste glass in Portland cement compounds, either as aggregates or as supplementary cementitious materials. Nevertheless, it seems that there is no consensus about the influence of particle color and size on the behavior of the compounds. This study addresses the influence of cement replacement by 10 and 20% of the colorless and amber soda-lime glass particles sized around 9.5 μm on the performance of Portland cement mortars. Results revealed that the partial replacement of cement could contribute to the production of durable mortars in relation to the inhibition of the alkali-aggregate reaction. This effect was more marked with 20% replacement using amber glass. Samples containing glass microparticles were more resistant to corrosion, in particular those made of colorless glass. The use of colorless and amber glass microparticles promoted a reduction in wear resistance.

  14. Source Term Model for Fine Particle Resuspension from Indoor Surfaces

    Science.gov (United States)

    2008-02-01

    spreading airborne radioactivity from nuclear weapon test sites or from possible accidental release from the nuclear industry. Other studies in...agents, to design countermeasure devices, and to plan decontamination schemes, it is important to under- stand how CB agents migrate through a building...Particle Stainless steel (SS) spheres, glass spheres, Lycopodium spores Silica spheres dp (μm) SS: 70, glass: 72, 32, Lyco- podium: 30 4.1, 9.6

  15. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    Science.gov (United States)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  16. Role of hydrotreating products in deposition of fine particles in reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Chung, K.; Gray, M.R. [University of Alberta, Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2001-06-11

    Hydrotreating reactions may affect the deposition of fine particles, which can eventually lead to reactor plugging. The deposition of fine particles from gas oil was measured in an internally recirculating reactor at 375{degree}C under hydrogen. H{sub 2}S from hydrodesulfurization would convert corrosion products to metal sulfides. Iron sulfide deposited rapidly in the packed bed because the mineral surface did not retain a stabilizing layer of asphaltenic material. Addition of water, to test the role of hydrodeoxygenation, doubled the deposition of clay particles by reducing the surface coating of organic material. Neither ammonia or quinoline had any effect on particle deposition, therefore, hydrodenitrogenation did not affect particle behavior. 16 refs., 4 figs., 3 tabs.

  17. The ozonolysis of primary aliphatic amines in fine particles

    Science.gov (United States)

    Zahardis, J.; Geddes, S.; Petrucci, G. A.

    2008-02-01

    The oxidative processing by ozone of the particulate amines octadecylamine (ODA) and hexadecylamine (HDA) is reported. Ozonolysis of these amines resulted in strong NO2- and NO3- ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitroalkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3- (HNO3). For ozonized mixed particles containing ODA or HDA + oleic acid (OL), with pO3≥3×10-7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines) and stabilized Criegee intermediates (SCI) or secondary ozonides (for amides) from the fatty acid. The routes to amides via SCI and/or secondary ozonides were shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10-3 atm for 17 s). This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g.~NO2, NO3), formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  18. The ozonolysis of primary aliphatic amines in fine particles

    Directory of Open Access Journals (Sweden)

    J. Zahardis

    2008-02-01

    Full Text Available The oxidative processing by ozone of the particulate amines octadecylamine (ODA and hexadecylamine (HDA is reported. Ozonolysis of these amines resulted in strong NO2 and NO3 ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitroalkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3 (HNO3. For ozonized mixed particles containing ODA or HDA + oleic acid (OL, with pO3≥3×10–7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines and stabilized Criegee intermediates (SCI or secondary ozonides (for amides from the fatty acid. The routes to amides via SCI and/or secondary ozonides were shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10−3 atm for 17 s. This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g.~NO2, NO3, formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  19. Micromagnetic simulation of thermally activated switching in fine particles

    International Nuclear Information System (INIS)

    Scholz, Werner; Schrefl, Thomas; Fidler, J.

    2001-01-01

    Effects of thermal activation are included in micromagnetic simulations by adding a random thermal field to the effective magnetic field. As a result, the Landau-Lifshitz equation is converted into a stochastic differential equation of Langevin type with multiplicative noise. The Stratonovich interpretation of the stochastic Landau-Lifshitz equation leads to the correct thermal equilibrium properties. The proper generalization of Taylor expansions to stochastic calculus gives suitable time integration schemes. For a single rigid magnetic moment the thermal equilibrium properties are investigated. It is found, that the Heun scheme is a good compromise between numerical stability and computational complexity. Small cubic and spherical ferromagnetic particles are studied

  20. Characterization of fine particle components in Mexico City

    International Nuclear Information System (INIS)

    Saitoh, K.; Sera, K.; Perales, J.G.; Garcia, F.A.; Suzuki, H.

    1999-01-01

    Particulate matter (PM-3.9 and PM-15.8) samples were collected in the three zones at the Northeast, Southwest and Southeast suburbs of Mexico City, from July to August 1998, for one week for each sampling site. The concentrations of several elements in the PM-3.9 and PM-15.8 samples were determined by Particle Induced X-ray Emission (PIXE). In the PM-3.9 samples, 21 elements were determined for each zone, and Na, Mg, Al, Si, S, K, Ca, Ti, Fe, Cu, Zn and Pb are found to be the major elemental components. On the other hand, 22 elements including P were determined on the PM-15.8 samples, and the dominant elements were the same as in the PM-3.9. Factor analysis is applied to the 28 variables (14 elements for each PM-3.9 and PM-15.8 groups) and for 21 samples (seven days for three zones) in order to identify possible sources of the particles. The result of factor analysis allows to identify five major sources, being soil the major contributor. (author)

  1. Characterization of fine particle components in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, K. [Akita Prefectural Institute of Environmental Science, Yabase-Shimoyabase, Akita (Japan); Sera, K. [Iwate Medical Univ., Cyclotron Research Center, Takizawa, Iwate (Japan); Perales, J.G.; Garcia, F.A. [Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA), Av. Michoacan y la Purisima Col. Vicentina C.P. 09340 Mexico (Mexico); Suzuki, H. [Environmental Data Analysis Laboratory, System Design, Inc., Shinagawa, Tokyo (Japan)

    1999-07-01

    Particulate matter (PM-3.9 and PM-15.8) samples were collected in the three zones at the Northeast, Southwest and Southeast suburbs of Mexico City, from July to August 1998, for one week for each sampling site. The concentrations of several elements in the PM-3.9 and PM-15.8 samples were determined by Particle Induced X-ray Emission (PIXE). In the PM-3.9 samples, 21 elements were determined for each zone, and Na, Mg, Al, Si, S, K, Ca, Ti, Fe, Cu, Zn and Pb are found to be the major elemental components. On the other hand, 22 elements including P were determined on the PM-15.8 samples, and the dominant elements were the same as in the PM-3.9. Factor analysis is applied to the 28 variables (14 elements for each PM-3.9 and PM-15.8 groups) and for 21 samples (seven days for three zones) in order to identify possible sources of the particles. The result of factor analysis allows to identify five major sources, being soil the major contributor. (author)

  2. Elemental analysis of airborne fine particles collected at the roadside of an arterial road

    International Nuclear Information System (INIS)

    Hirabayashi, M.

    2008-01-01

    Airborne particulate matter was collected at the intersection of Industrial Road in Kawasaki-city, Kanagawa, Japan using a 12-stage low-pressure impactor. High concentrations of airborne particulate matter have been observed in this area. The collected samples were analyzed for 34 elements by instrumental neutron activation analysis (INAA), and data on the elemental concentrations were obtained. High concentrations of fine particles of As, Br, Sb, V, and Zn were observed. It was further observed that these fine particles were originated predominantly from the wear of tires and brakes, and not from automobile exhaust emissions. (author)

  3. Study of reduction permeability for deposit of fine particles and bacteria in porous media

    International Nuclear Information System (INIS)

    Restrepo Restrepo, Dora Patricia; Cardona Bernal, Felipe Andres; Usta Diaz, Martha Lucia

    2004-01-01

    This work shows a theoretical and practical description of the main variables and physical principles that lead to the obstruction by fine particles and therefore a reduction in permeability for unconsolidated porous media with almost a length foot. The results were also adjusted to theoretical model for the obstruction by fine particles in the entrance face. A first study about bacteria plugging was also carried out in order to try to understand it when these bacteria are in the water of injection of a normal process of water flooding

  4. The mechanisms of fine particle generation and electrification during Mount St. Helens volcanic eruption

    Science.gov (United States)

    Cheng, R. J.

    1982-01-01

    Microscopical investigation of volcanic ash collected from ground stations during Mount St. Helens eruptions reveal a distinctive bimodel size distribution with high concentrations of particle ranges at (1) 200-100 microns and (2) 20-0.1 microns. Close examination of individual particles shows that most larger ones are solidified magma particles of porous pumice with numerous gas bubbles in the interior and the smaller ones are all glassy fragments without any detectable gas bubbles. Elemental analysis demonstrates that the fine fragments all have a composition similar to that of the larger pumice particles. Laboratory experiments suggest that the formation of the fine fragments is by bursting of glassy bubbles from a partially solidified surface of a crystallizing molten magma particle. The production of gas bubbles is due to the release of absorbed gases in molten magma particles when solubility decreases during phase transition. Diffusion cloud chamber experiments strongly indicate that sub-micron volcanic fragments are highly hygroscopic and extremely active as cloud condensation nuclei. Ice crystals also are evidently formed on those fragments in a supercooled (-20 C) cloud chamber. It has been reported that charge generation from ocean volcanic eruptions is due to contact of molten lava with sea water. This seems to be insufficient to explain the observed rapid and intense lightning activities over Mount St. Helens eruptions. Therefore, a hypothesis is presented here that highly electrically charged fine solid fragments are ejected by bursting of gas bubbles from the surface of a crystallizing molten magma particles.

  5. [Emission characteristics of fine particles from grate firing boilers].

    Science.gov (United States)

    Wang, Shu-Xiao; Zhao, Xiu-Juan; Li, Xing-Hua; Wei, Wei; Hao, Ji-Ming

    2009-04-15

    Grate firing boilers are the main type of Chinese industrial boilers, which accounts for 85% of the industrial boilers and is one of the most important emission sources of primary air pollutants in China. In this study, five boilers in three cities were selected and tested to measure the emission characteristics of PM2.5, and gaseous pollutants were applied by a compact dilution sampling system, which was developed for this field study. Results showed that particles mass size distributions for the five industrial boilers presented single peak or double peak, former peaks near 0.14 microm and the later peaks after 1.0 microm; the cyclone dust remover and wet scrubber dust remover had effective removal efficiencies not only to PM2.5, but also to PM1.0; and under the condition of same control techniques, grate firing boiler with high capacity has less PM2.5 emission than the boiler with low capacity. In the PM2.5 collected from flue gases, SO4(2-) was the most abundant ion, accounted for 20%-40% of the PM2.5; and C was the most abundant element (7.5%-31.8%), followed by S (8.4%-18.7%). Carbon balance method was applied to calculate the emission factors of these pollutants. The emission factors of PM2.5, NO, and SO2 were in the range of 0.046-0.486 g x kg(-1), 1.63-2.47 g x kg(-1), 1.35-9.95 g x kg(-1) respectively. The results are useful for the emission inventory development of industrial boilers and the source analysis of PM2.5 in atmospheric environment.

  6. Risk of pneumonia in obstructive lung disease: A real-life study comparing extra-fine and fine-particle inhaled corticosteroids.

    Science.gov (United States)

    Sonnappa, Samatha; Martin, Richard; Israel, Elliot; Postma, Dirkje; van Aalderen, Wim; Burden, Annie; Usmani, Omar S; Price, David B

    2017-01-01

    Regular use of inhaled corticosteroids (ICS) in patients with obstructive lung diseases has been associated with a higher risk of pneumonia, particularly in COPD. The risk of pneumonia has not been previously evaluated in relation to ICS particle size and dose used. Historical cohort, UK database study of 23,013 patients with obstructive lung disease aged 12-80 years prescribed extra-fine or fine-particle ICS. The endpoints assessed during the outcome year were diagnosis of pneumonia, acute exacerbations and acute respiratory events in relation to ICS dose. To determine the association between ICS particle size, dose and risk of pneumonia in unmatched and matched treatment groups, logistic and conditional logistic regression models were used. 14788 patients were stepped-up to fine-particle ICS and 8225 to extra-fine ICS. On unmatched analysis, patients stepping-up to extra-fine ICS were significantly less likely to be coded for pneumonia (adjusted odds ratio [aOR] 0.60; 95% CI 0.37, 0.97]); experience acute exacerbations (adjusted risk ratio [aRR] 0.91; 95%CI 0.85, 0.97); and acute respiratory events (aRR 0.90; 95%CI 0.86, 0.94) compared with patients stepping-up to fine-particle ICS. Patients prescribed daily ICS doses in excess of 700 mcg (fluticasone propionate equivalent) had a significantly higher risk of pneumonia (OR [95%CI] 2.38 [1.17, 4.83]) compared with patients prescribed lower doses, irrespective of particle size. These findings suggest that patients with obstructive lung disease on extra-fine particle ICS have a lower risk of pneumonia than those on fine-particle ICS, with those receiving higher ICS doses being at a greater risk.

  7. Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles

    Science.gov (United States)

    Teixeira, Elba Calesso; Garcia, Karine Oliveira; Meincke, Larissa; Leal, Karen Alam

    2011-08-01

    The purpose of the present study was to evaluate six nitro-polycyclic aromatic hydrocarbons (NPAHs) in fine (MAPA), RS, Brazil. The method used was of NPAHs isolation and derivatization, and subsequent gas chromatography by electron capture detection (CG/ECD). Results revealed a higher concentration of NPAHs, especially 3-nitrofluoranthene and 1-nitropyrene, in fine particles in the sampling sites studied within the MAPA. The diagnostic ratios calculated for PAHs and NPAHs identified the influence of heavy traffic, mainly of diesel emissions. The correlation of NPAHs with other pollutants (NO x, NO 2, NO and O 3) evidence the influence of vehicular emissions in the MAPA. The seasonal variation evidenced higher NPAHs concentrations in the fine particles during winter for most compounds studied.

  8. Association of fine particles with respiratory disease mortality: a meta-analysis.

    Science.gov (United States)

    Chang, Xuhong; Zhou, Liangjia; Tang, Meng; Wang, Bei

    2015-01-01

    Short-time exposure to high levels of fine particles (particulate matter with an aerodynamic diameter≤2.5 μm; PM2.5) may trigger respiratory disease, but this association has not been determined. The objective of this study was to evaluate and quantify the short-time exposure to fine particles on respiratory disease mortality. Published articles were obtained from electronic databases and a validity assessment was used. The meta-analysis was conducted with the incorporation of good-quality studies. After applying the inclusion criteria, 9 articles were included in the study. The methodological qualities of the published studies were good, and every study achieved a score of 3. Fine particles were significantly associated with an increase in respiratory mortality risk (for every 10 μg/m3 increment, rate difference [RD]=1.32%, 95% confidence interval [CI]: 0.95%-1.68%; p=.000). These findings indicate that short-time exposure to fine particles could increase the risk of respiratory disease mortality.

  9. Characteristics of Fine Particles in an Urban Atmosphere—Relationships with Meteorological Parameters and Trace Gases

    Science.gov (United States)

    Zhang, Tianhao; Zhu, Zhongmin; Gong, Wei; Xiang, Hao; Fang, Ruimin

    2016-01-01

    Atmospheric fine particles (diameter industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm–661 nm), meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm–30 nm), Aitken mode (30 nm–100 nm), and accumulation mode (100 nm–661 nm) reached 4923 cm−3, 12193 cm−3 and 4801 cm−3, respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of “repeated, short-lived” nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in industrial cities of developing countries. PMID:27517948

  10. Identifying sources of atmospheric fine particles in Havana City using Positive Matrix Factorization technique

    International Nuclear Information System (INIS)

    Pinnera, I.; Perez, G.; Ramos, M.; Guibert, R.; Aldape, F.; Flores M, J.; Martinez, M.; Molina, E.; Fernandez, A.

    2011-01-01

    In previous study a set of samples of fine and coarse airborne particulate matter collected in a urban area of Havana City were analyzed by Particle-Induced X-ray Emission (PIXE) technique. The concentrations of 14 elements (S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br and Pb) were consistently determined in both particle sizes. The analytical database provided by PIXE was statistically analyzed in order to determine the local pollution sources. The Positive Matrix Factorization (PMF) technique was applied to fine particle data in order to identify possible pollution sources. These sources were further verified by enrichment factor (EF) calculation. A general discussion about these results is presented in this work. (Author)

  11. Rotational particle separator: A new method for separating fine particles and mist from gases

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    1996-01-01

    An account is given of the patented technique of the rotational particle separator for separating solid and liquid particles of diameter 0.1 µm and larger from gases. Attention is focused on the working principle, fluid mechanical constraints, particle design, separation performance, power

  12. Urban cyclist exposure to fine particle pollution in a rapidly growing city

    Science.gov (United States)

    Luce, B. W.; Barrett, T. E.; Ponette-González, A.

    2017-12-01

    Urban cyclists are exposed to elevated atmospheric concentrations of fine particulate matter (particles vehicle exhaust, which is emitted directly into cyclists' "breathing zone." In cities, human exposure to PM2.5 is a concern because its small size allows it to be inhaled deeper into the lungs than most particles. The aim of this research is to determine "hotspots" (locations with high PM2.5 concentrations) within the Dallas-Fort Worth Metroplex, Texas, where urban cyclists are most exposed to fine particle pollution. Recent research indicates that common exposure hotspots include traffic signals, junctions, bus stations, parking lots, and inclined streets. To identify these and other hotspots, a bicycle equipped with a low-cost, portable, battery-powered particle counter (Dylos 1700) coupled with a Trimble Geo 5T handheld Global Positioning System (GPS; ≤1 m ± resolution) will be used to map and measure particle mass concentrations along predetermined routes. Measurements will be conducted during a consecutive four-month period (Sep-Dec) during morning and evening rush hours when PM2.5 levels are generally highest, as well as during non-rush hour times to determine background concentrations. PM2.5 concentrations will be calculated from particle counts using an equation developed by Steinle et al. (2015). In addition, traffic counts will be conducted along the routes coinciding with the mobile monitoring times. We will present results on identified "hotspots" of high fine particle concentrations and PM2.5 exposure in the City of Denton, where particle pollution puts urban commuters most at risk, as well as average traffic counts from monitoring times. These data can be used to determine pollution mitigation strategies in rapidly growing urban areas.

  13. Health impacts due to personal exposure to fine particles caused by insulation of residential buildings in Europe

    Science.gov (United States)

    Gens, Alexandra; Hurley, J. Fintan; Tuomisto, Jouni T.; Friedrich, Rainer

    2014-02-01

    The insulation of residential buildings affects human exposure to fine particles. According to current EU guidelines, insulation is regulated for energy saving reasons. As buildings become tighter, the air exchange rate is reduced and, thus, the indoor concentration of pollutants is increased if there are significant indoor sources. While usually the effects of heat insulation and increase of the air-tightness of buildings on greenhouse gas emissions are highlighted, the negative impacts on human health due to higher indoor concentrations are not addressed. Thus, we investigated these impacts using scenarios in three European countries, i. e. Czech Republic, Switzerland and Greece. The assessment was based on modelling the human exposure to fine particles originating from sources of particles within outdoor and indoor air, including environmental tobacco smoke. Exposure response relationships were derived to link (adverse) health effects to the exposure. Furthermore, probable values for the parameters influencing the infiltration of fine particles into residential buildings were modelled. Results show that the insulation and increase of the air-tightness of residential buildings leads to an overall increase of the mean population exposure - and consequently adverse health effects - in all considered countries (ranging for health effects from 0.4% in Czech Republic to 11.8% in Greece for 100% insulated buildings) due to an accumulation of particles indoors, especially from environmental tobacco smoke. Considering only the emission reductions in outdoor air (omitting changes in infiltration parameters) leads to a decrease of adverse health effects. This study highlights the importance of ensuring a sufficient air exchange rate when insulating buildings, e. g. by prescribing heat ventilation and air conditioning systems in new buildings and information campaigns on good airing practice in renovated buildings. It also shows that assessing policy measures based on the

  14. Design of sustained release fine particles using two-step mechanical powder processing: particle shape modification of drug crystals and dry particle coating with polymer nanoparticle agglomerate.

    Science.gov (United States)

    Kondo, Keita; Ito, Natsuki; Niwa, Toshiyuki; Danjo, Kazumi

    2013-09-10

    We attempted to prepare sustained release fine particles using a two-step mechanical powder processing method; particle-shape modification and dry particle coating. First, particle shape of bulk drug was modified by mechanical treatment to yield drug crystals suitable for the coating process. Drug crystals became more rounded with increasing rotation speed, which demonstrates that powerful mechanical stress yields spherical drug crystals with narrow size distribution. This process is the result of destruction, granulation and refinement of drug crystals. Second, the modified drug particles and polymer coating powder were mechanically treated to prepare composite particles. Polymer nanoparticle agglomerate obtained by drying poly(meth)acrylate aqueous dispersion was used as a coating powder. The porous nanoparticle agglomerate has superior coating performance, because it is completely deagglomerated under mechanical stress to form fine fragments that act as guest particles. As a result, spherical drug crystals treated with porous agglomerate were effectively coated by poly(meth)acrylate powder, showing sustained release after curing. From these findings, particle-shape modification of drug crystals and dry particle coating with nanoparticle agglomerate using a mechanical powder processor is expected as an innovative technique for preparing controlled-release coated particles having high drug content and size smaller than 100 μm. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A novel permanently magnetised high gradient magnetic filter using assisted capture for fine particles

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.H.P. [Univ. of Southampton (United Kingdom)

    1995-02-01

    This paper describes the structure and properties of a novel permanently magnetised magnetic filter for fine friable radioactive material. Previously a filter was described and tested. This filter was designed so that the holes in the filter are left open as capture proceeds which means the pressure drop builds up only slowly. This filter is not suitable for friable composite particles which can be broken by mechanical forces. The structure of magnetic part of the second filter has been changed so as to strongly capture particles composed of fine particles weakly bound together which tend to break when captured. This uses a principle of assisted-capture in which coarse particles aid the capture of the fine fragments. The technique has the unfortunate consequence that the pressure drop across the filter rises faster as capture capture proceeds than the filter described previously. These filters have the following characteristics: (1) No external magnet is required. (2) No external power is required. (3) Small is size and portable. (4) Easily interchangeable. (5) Can be cleaned without demagnetising.

  16. Mercury speciation and fine particle size distribution on combustion of Chinese coals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Wang, Shuxiao; Hao, Jiming [Tsinghua Univ., Beijing (China). Dept. of Environmental Science and Engineering and State Key Joint Lab. of Environment Simulation and Pollution Control; Daukoru, Michael; Torkamani, Sarah; Biswas, Pratim [Washington Univ., St. Louis, MO (United States). Aerosol and Air Quality Research Lab.

    2013-07-01

    Coal combustion is the dominant anthropogenic mercury emission source of the world. Electrostatic precipitator (ESP) can remove almost all the particulate mercury (Hg{sub p}), and wet flue gas desulfurization (WFGD) can retain a large part of the gaseous oxidized mercury (Hg{sup 2+}). Only a small percentage of gaseous elemental mercury (Hg{sup 0}) can be abated by the air pollution control devices (APCDs). Therefore, the mercury behavior across APCDs largely depends on the mercury speciation in the flue gas exhausting from the coal combustor. To better understand the formation process of three mercury species, i.e. Hg{sup 0}, Hg{sup 2+} and Hg{sub p}, in gaseous phase and fine particles, bench-scale measurements for the flue gas exhausting from combustion of different types of coal in a drop-tube furnace set-up, were carried out. It was observed that with the limitation of reaction kinetics, higher mercury concentration in flue gas will lead to lower Hg{sup 2+} proportion. The concentration of chlorine has the opposite effect, not as significantly as that of mercury though. With the chlorine concentration increasing, the proportion of Hg{sup 2+} increases. Combusting the finer coal powder results in the formation of more Hg{sup 2+}. Mineral composition of coal and coal particle size has a great impact on fine particle formation. Al in coal is in favor of finer particle formation, while Fe in coal can benefit the formation of larger particles. The coexistence of Al and Si can strengthen the particle coagulation process. This process can also be improved by the feeding of more or finer coal powder. The oxy-coal condition can make for both the mercury oxidation process and the metal oxidation in the fine particle formation process.

  17. Restraint of fatigue crack growth by wedge effects of fine particles

    CERN Document Server

    Takahashi, I; Kotani, N

    2000-01-01

    Presents some experimental results which demonstrate restraint of fatigue crack growth in an Al-Mg alloy by wedge effects of fine particles. Fatigue test specimens were machined from a JIS A5083P-O Al-Mg alloy plate of 5 mm thickness and an EDM starter notch was introduced to each specimen. Three kinds of fine particles were prepared as the materials to be wedged into the fatigue cracks, i.e. magnetic particles and two kinds of alumina particles having different mean particle sizes of 47.3 mu m and 15.2 mu m. Particles of each kind were suspended in an oil to form a paste, which was applied on the specimen surface covering the notch zone prior to the fatigue tests. In order to make some fracture mechanics approaches, in situ observations of fatigue cracks were performed for the two cases using a CCD microscope, with a magnification of *1000. The crack length and the crack opening displacement (COD) at the notch root, delta , were measured. The crack retardation effect continues almost through the entire lifet...

  18. Translocation and potential neurological effects of fine and ultrafine particles a critical update.

    Science.gov (United States)

    Peters, Annette; Veronesi, Bellina; Calderón-Garcidueñas, Lilian; Gehr, Peter; Chen, Lung Chi; Geiser, Marianne; Reed, William; Rothen-Rutishauser, Barbara; Schürch, Samuel; Schulz, Holger

    2006-09-08

    Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects. Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be

  19. Rotational particle separator: A new method for separating fine particles and mists from gases

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    1996-01-01

    An account is given of the patented technique of the rotational particle separator for separating solid and liquid particles of diameter 0.1 µm and larger from gases. Attention is focussed on the working principle, fluid mechanical constraints, practical designs, separation performance, power

  20. Particle identification by means of fine sampling dE/dX measurements

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, A; Ishii, T; Ohshima, T; Okuno, H; Shiino, K [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study; Naito, F [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology; Matsuda, T [Osaka Univ., Toyonaka (Japan). Faculty of Engineering Science

    1983-04-01

    Identification of relativistic charged particles by means of fine sampling d E/d X measurements with a longitudinal drift chamber has been studied. Using a fast-sampling ADC (25 MHz), dE/dX was measured in a 1.4 mm gas thickness over an electron drift space of 51 mm. For the simulated 1 m long tracks of pions and electrons of 500 MeV/c, a particle separation of 10sigma - 12sigma has been obtained, where sigma is the r.m.s. resolution of the dE/dX measurement. This result with fine sampling is better by a factor of 1.7 compared to the dE/dX measurement, with 21 mm sampling thickness. Further improvement achievable by reducing the correlation between neighbouring samples and simplification of electronics by use of the delta-ray clipping method are also discussed.

  1. Indoor fine particles: the role of terpene emissions from consumer products.

    Science.gov (United States)

    Sarwar, Golam; Olson, David A; Corsi, Richard L; Weschler, Charles J

    2004-03-01

    Consumer products can emit significant quantities of terpenes, which can react with ozone (O3). Resulting byproducts include compounds with low vapor pressures that contribute to the growth of secondary organic aerosols (SOAs). The focus of this study was to evaluate the potential for SOA growth, in the presence of O3, following the use of a lime-scented liquid air freshener, a pine-scented solid air freshener, a lemon-scented general-purpose cleaner, a wood floor cleaner, and a perfume. Two chamber experiments were performed for each of these five terpene-containing agents, one at an elevated O3 concentration and-the other at a lower O3 concentration. Particle number and mass concentrations increased and O3 concentrations decreased during each experiment. Experiments with terpene-based air fresheners produced the highest increases in particle number and mass concentrations. The results of this study clearly demonstrate that homogeneous reactions between O3 and terpenes from various consumer products can lead to increases in fine particle mass concentrations when these products are used indoors. Particle increases can occur during periods of elevated outdoor O3 concentrations or indoor O3 generation, coupled with elevated terpene releases. Human exposure to fine particles can be reduced by minimizing indoor terpene concentrations or O3 concentrations.

  2. Elutriation characteristics of fine particles from bubbling fluidized bed incineration for sludge cake treatment.

    Science.gov (United States)

    Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung

    2005-01-01

    In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.

  3. The PM2.5 Fine Particle Background Network of the German Meteorological Service-First Results

    Directory of Open Access Journals (Sweden)

    Uwe Kaminski

    2013-04-01

    Full Text Available Since 2009, the measurement of the background concentration of the fine particle fraction has been a part of the climate-monitoring program of the German Meteorological Service (DWD. These particles are of high health relevance as a critical air pollutant affecting processes like the scattering and absorption of solar radiation and influencing cloud formation and visibility. At 12 weather stations, the coarse (2.5 to 10 l m and the fine particle fractions (PM2.5 are measured by means of passive and active samplers. First results are presented for the mass concentrations of coarse and fine particles as well as for the black carbon (BC content and the concentration of certain inorganic ions of fine particles. There is not only a seasonal correlation between the fraction of fine and coarse particles, but also a correlation with the location (urban background or rural background. With the help of light microscopy, coarse particles can be differentiated for a geogenic (predominantly wind blown mineral and sea salt particles of natural origin and road abrasion and for an anthropogenic opaque component (combustion residues, e.g. fly ash and non-exhaust vehicle emissions, e.g. abrasion particles of brakes and tires. Measuring the fine fraction and the coarse fraction separately instead of PM10 allows for a better source allocation and thus is a more appropriate method for the improvement of the air quality in, e.g. low emission zones.

  4. Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations

    Science.gov (United States)

    Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    1996-08-01

    An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that

  5. Rapid removal of fine particles from mine water using sequential processes of coagulation and flocculation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, M.; Lee, H.J.; Shim, Y. [Korean Mine Reclamation Corporation MIRECO, Seoul (Republic of Korea)

    2010-07-01

    The processes of coagulation and flocculation using high molecular weight long-chain polymers were applied to treat mine water having fine flocs of which about 93% of the total mass was less than 3.02 {mu} m, representing the size distribution of fine particles. Six different combinations of acryl-type anionic flocculants and polyamine-type cationic coagulants were selected to conduct kinetic tests on turbidity removal in mine water. Optimization studies on the types and concentrations of the coagulant and flocculant showed that the highest rate of turbidity removal was obtained with 10 mg L{sup -1} FL-2949 (coagulant) and 12 mg L{sup -1} A333E (flocculant), which was about 14.4 and 866.7 times higher than that obtained with A333E alone and that obtained through natural precipitation by gravity, respectively. With this optimized condition, the turbidity of mine water was reduced to 0 NTU within 20 min. Zeta potential measurements were conducted to elucidate the removal mechanism of the fine particles, and they revealed that there was a strong linear relationship between the removal rate of each pair of coagulant and flocculant application and the zeta potential differences that were obtained by subtracting the zeta potential of flocculant-treated mine water from the zeta potential of coagulant-treated mine water. Accordingly, through an optimization process, coagulation-flocculation by use of polymers could be advantageous to mine water treatment, because the process rapidly removes fine particles in mine water and only requires a small-scale plant for set-up purposes owing to the short retention time in the process.

  6. Rapid removal of fine particles from mine water using sequential processes of coagulation and flocculation.

    Science.gov (United States)

    Jang, Min; Lee, Hyun-Ju; Shim, Yonsik

    2010-04-01

    The processes of coagulation and flocculation using high molecular weight long-chain polymers were applied to treat mine water having fine flocs of which about 93% of the total mass was less than 3.02 microm, representing the size distribution of fine particles. Six different combinations of acryl-type anionic flocculants and polyamine-type cationic coagulants were selected to conduct kinetic tests on turbidity removal in mine water. Optimization studies on the types and concentrations of the coagulant and flocculant showed that the highest rate of turbidity removal was obtained with 10 mg L(-1) FL-2949 (coagulant) and 12 mg L(-1) A333E (flocculant), which was about 14.4 and 866.7 times higher than that obtained with A333E alone and that obtained through natural precipitation by gravity, respectively. With this optimized condition, the turbidity of mine water was reduced to 0 NTU within 20 min. Zeta potential measurements were conducted to elucidate the removal mechanism of the fine particles, and they revealed that there was a strong linear relationship between the removal rate of each pair of coagulant and flocculant application and the zeta potential differences that were obtained by subtracting the zeta potential of flocculant-treated mine water from the zeta potential of coagulant-treated mine water. Accordingly, through an optimization process, coagulation-flocculation by use of polymers could be advantageous to mine water treatment, because the process rapidly removes fine particles in mine water and only requires a small-scale plant for set-up purposes owing to the short retention time in the process.

  7. Briquetting of coal fines and sawdust - effect of particle-size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Patil, D.P.; Taulbee, D.; Parekh, B.K.; Honaker, R. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2009-07-01

    The coal industry usually discards fine-size (-150 microns) coal because of its high-moisture content and handling problems. One avenue for utilization is to either pelletize or briquette this material. However, industry has not adopted this route due in large part to significant drying and binder costs. In an effort to reduce these costs, compacting and briquetting studies were conducted to determine the effect of combining a coarse (1.18x0.15mm) spiral separator product with a fine coal flotation product (-150microns), with and without adding sawdust. Maximizing the packing density of the coal and wood waste mixture could potentially reduce the binder requirement by minimizing the void space as well as reducing shipping costs. Accordingly, work reported here focused on evaluating the impact of the particle-size distribution of different blends of fine and coarse coal, with and without sawdust and/or binder. The modified Proctor density of compacted blends along with the porosity and compressive strengths of briquettes made from each blend were determined. For the coal-only blends, the packing density was maximized by a relatively high (70% to 80%) coarse coal content. However, the packing density did not correlate with the compressive strength of the briquette that instead maximized with 100% fine flotation coal and continuously decreased as higher proportions of coarse coal were added. Similar compaction and compressive-strength results were obtained with mixtures of sawdust and varying proportions of coarse and fine coal. With the addition of a binder, the highest strengths were no longer obtained with 100% fine coal but instead maximized between 20% and 50% coarse coal addition depending on how long the briquettes were cured.

  8. Joint Effect of Particle Charge and Adsorbable Foreign Gases on Vapor Condensation on Fine Aerosol Particles

    Czech Academy of Sciences Publication Activity Database

    Levdansky, V.V.; Smolík, Jiří; Moravec, Pavel

    2008-01-01

    Roč. 35, č. 10 (2008), s. 1246-1248 ISSN 0735-1933 R&D Projects: GA AV ČR(CZ) IAA400720804 Institutional research plan: CEZ:AV0Z40720504 Keywords : charged particle * adsorption * condensation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.332, year: 2008

  9. Tribological Properties of Aluminum Alloy treated by Fine Particle Peening/DLC Hybrid Surface Modification

    Directory of Open Access Journals (Sweden)

    Nanbu H.

    2010-06-01

    Full Text Available In order to improve the adhesiveness of the DLC coating, Fine Particle Peening (FPP treatment was employed as pre-treatment of the DLC coating process. FPP treatment was performed using SiC shot particles, and then AA6061-T6 aluminum alloy was DLC-coated. A SiC-rich layer was formed around the surface of the aluminum alloy by the FPP treatment because small chips of shot particles were embedded into the substrate surface. Reciprocating sliding tests were conducted to measure the friction coefficients. While the DLC coated specimen without FPP treatment showed a sudden increase in friction coefficient at the early stage of the wear cycles, the FPP/DLC hybrid treated specimen maintained a low friction coefficient value during the test period. Further investigation revealed that the tribological properties of the substrate after the DLC coating were improved with an increase in the amount of Si at the surface.

  10. Programming of mouse obesity by maternal exposure to concentrated ambient fine particles.

    Science.gov (United States)

    Chen, Minjie; Wang, Xiaoke; Hu, Ziying; Zhou, Huifen; Xu, Yanyi; Qiu, Lianglin; Qin, Xiaobo; Zhang, Yuhao; Ying, Zhekang

    2017-06-23

    Many diseases including obesity may originate through alterations in the early-life environment that interrupts fetal development. Increasing evidence has shown that exposure to ambient fine particles (PM 2.5 ) is associated with abnormal fetal development. However, its long-term metabolic effects on offspring have not been systematically investigated. To determine if maternal exposure to PM 2.5 programs offspring obesity, female C57Bl/6j mice were exposed to filtered air (FA) or concentrated ambient PM 2.5 (CAP) during pre-conception, pregnancy, and lactation, and the developmental and metabolic responses of offspring were assessed. The growth trajectory of offspring revealed that maternal exposure to CAP significantly decreased offspring birth weight but increased body weight of adult male but not female offspring, and the latter was expressed as increased adiposity. These adult male offspring had increased food intake, but were sensitive to exogenous leptin. Their hypothalamic expression of Socs3 and Pomc, two target genes of leptin, was not changed, and the hypothalamic expression of NPY, an orexigenic peptide that is inhibited by leptin, was significantly increased. These decreases in central anorexigenic signaling were accompanied by reduced plasma leptin and its expression in adipose tissues, the primary source of circulating leptin. In contrast, maternal exposure did not significantly change any of these indexes in adult female offspring. Pyrosequencing demonstrated that the leptin promoter methylation of adipocytes was significantly increased in CAP-exposed male but not female offspring. Our data indicate that maternal exposure to ambient PM 2.5 programs obesity in male offspring probably through alterations in the methylation of the promoter region of the leptin gene.

  11. Comparison of fine particle colemanite and boron frit in concrete for time-strength relationship

    International Nuclear Information System (INIS)

    Volkman, D.E.; Bussolini, P.L.

    1992-01-01

    This paper reports that the element boron, when added to concrete, has proved effective in shielding neutron particles by absorbing the neutron and emitting a low-energy gamma ray. The various boron additives used with concrete can severely retard the set time and strength gain. An advantage to using small particle size boron is that the smaller grain size provides better boron disbursement within the concrete matrix to absorb neutrons. However, boron additives of powder consistency are usually not used due to the greater potential of forming chemical solutions that act as a retarder in the concrete. Research has shown that the amount of boron additives in concrete can be reduced significantly if fine grain particles can be successfully incorporated into the concrete matrix. The purpose of this study is to compare strength gain characteristics of concrete mixes containing various quantities of fine grain boron additive. The boron additive colemanite, a natural mineral, is compared with two brands of manufactured aggregate, boron frit. Concrete test cylinders are molded for testing the compressive strength of the mix after 4, 7, 28, and 56 days. Tested are five different quantities of colemanite as well as five comparable amounts of boron frit for each brand of the material. The test values are compared with a control concrete specimen containing no boron additive. Results of this study can be used to optimize the cost and effectiveness of boron additives in radiation shielding concrete

  12. Contribution of road traffic to ambient fine particle concentrations (PM{sub 10}) in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Hueglin, Ch.; Devos, W.; Gehrig, R.; Hofer, P.; Kobler, J. [Swiss Federal Laboratoires for Materials Testing and Research, EMPA, Dubendorf (Switzerland); Stahel, W.A. [Seminar for Statistics, ETH Zurich (Switzerland); Baltensperger, U. [Paul Scherrer Institute, Villigen PSI (Switzerland); Monn, Ch. [Institute for Hygiene and Applied Physiology, ETH Zurich (Switzerland)

    2000-07-01

    A multivariate receptor model was applied to estimate the contribution of road traffic to ambient levels of fine particles (PM{sub 10}) at different locations in Switzerland. At two roadside sites with heavy local traffic, the road traffic was found to account for 46% and 64% of PM{sub 10}. At an urban background site, the estimated average road traffic contribution was 34%, whereas a slightly higher value was obtained at a suburban site (36%). This results are in good agreement with the findings of a recent study, where a conceptually different approach (dispersion modelling) was applied. (authors)

  13. [Evaluation of Cellular Effects Caused by Lunar Regolith Simulant Including Fine Particles].

    Science.gov (United States)

    Horie, Masanori; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2015-06-01

    The National Aeronautics and Space Administration has announced a plan to establish a manned colony on the surface of the moon, and our country, Japan, has declared its participation. The surface of the moon is covered with soil called lunar regolith, which includes fine particles. It is possible that humans will inhale lunar regolith if it is brought into the spaceship. Therefore, an evaluation of the pulmonary effects caused by lunar regolith is important for exploration of the moon. In the present study, we examine the cellular effects of lunar regolith simulant, whose components are similar to those of lunar regolith. We focused on the chemical component and particle size in particular. The regolith simulant was fractionated to lunar regolith simulant such as cell membrane damage, induction of oxidative stress and proinflammatory effect.

  14. Concentrations and size distributions of fine aerosol particles measured at roof level in urban zone

    Science.gov (United States)

    Despiau, S.; Croci, D.

    2007-05-01

    During the experimental Field Experiments to Constrain Models of Atmospheric Pollution and Transport of Emissions (ESCOMPTE) campaign in June-July 2001, concentrations and size distributions of fine particles (14-722 nm) were measured at roof level in downtown Marseille (France). Part of the campaign was dedicated to the study of aerosol behavior in relation to strong photochemical events (which were identified as "IOP" days) and their regional modeling. The analysis of the concentration variations and the evolution of average diurnal size distribution showed that an "IOP day" is not characterized by a specific concentration or its variation, nor by a specific evolution of the average size distribution. The morning traffic rush is detected at roof level by a net increase in particle concentration over the whole size range measured, indicating a production of ultrafine particles by the traffic but also the raising to roof level of particles of the accumulation mode. The increase is observed about 1 hour after the traffic peak at street level, which is characterized by strong increases in NOx and CO concentrations. The corresponding flux of particles at roof level has been estimated around 3 × 104 cm-2 s-1. A specific signature characterized by a strong and rapid burst of concentration (factor 2 to 4 in 15 min) of particles between 25 and 50 nm, independent of the traffic source, has been detected on six occasions during the campaign. These events occur systematically around noon, in cases of strong radiation, low relative humidity, and common wind direction. Despite the high-diameter value of these particles, it is suggested that they could result from a specific "secondary aerosol process" event involving ozone, biogenic, and/or anthropogenic gas precursors like iodine and VOCs.

  15. NANODERM. Quality of skin as a barrier to ultra-fine particles

    International Nuclear Information System (INIS)

    Kiss, A.Z.; Kertesz, Zs.; Szikszai, Z.; Biro, T.; Czifra, G.; Toth, B.I.; Juhasz, I.; Kiss, B.; Hunyadi, J.

    2007-01-01

    Complete text of publication follows. The EU5 project carried out by a consortium of 12 European universities and research institutes under the leadership of the Faculty of Physics and Geosciences, University of Leipzig started in 2003 and ended with the publication of its final report in 2007. The main goal of the project was to get quantitative information on the penetration of ultra-fine particles in all strata of skin, on their penetration pathways as well as on their impact on human health. Details of the project can be found on the following website: http://www.uni-leipzig.de/"~nanoderm. The Hungarian team was lead by the Department of Dermatology, University of Debrecen, who provided human skin grafted on SCID (Severe Combined Immune Deficiency) mice as a suitable model for studying particle penetration. In the Institute of Physiology, University of Debrecen, the cellular effects of the nanoparticles were assessed. The ATOMKI group performed ion beam analytical investigations using proton induced x-ray emission and scanning transmission ion microscopy techniques to determine the particle distribution on porcine, SCID graft and human skin samples on which various nanoparticle (TiO 2 ) formulations including commercially available sunscreens were applied. Several pre-treatments of the skin were tested, too. The skin samples were cryofixed native specimens, reducing considerably the possibility of creating artefacts. Results Titanium was only detected in the stratum corneum for healthy skin. Penetration to layers consisting of living cells was not observed. No diffusion profile was present therefore we conclude that the penetration takes place through mechanical action. Deep penetration into hair follicles was also observed, but not into vital tissue. Clearance is expected via desquamation and sebum excretion respectively for corneocyte layers and hair follicles. In conclusion, the NANODERM group does not expect any harmful effects of sunscreens containing

  16. Study on fine particles influence on sodium sulfite and oxygen gas-liquid reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Shuchang; Zhao, Bo; Wang, Shujuan; Zhuo, Yuqun; Chen, Changhe [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    Wet limestone scrubbing is the most common flue gas desulfurization process for control of sulfur dioxide emissions from the combustion of fossil fuels, and forced oxidation is a key part of the reaction. During the reaction which controlled by gas-liquid mass transfer, the fine particles' characteristic, size, solid loading and temperature has a great influence on gas-liquid mass transfer. In the present work is to explain how these factors influence the reaction between Na{sub 2}SO{sub 3} and O{sub 2} and find the best react conditions through experiment. The oxidation rate was experimentally studied by contacting pure oxygen with a sodium sulfite solution with active carbon particle in a stirred tank, and the system pressure drop was record by the pressure sensor. At the beginning the pressure is about 215 kPa and Na{sub 2}SO{sub 3} is about 0.5mol/L. The temperature is 40, 50, 60, 70, 80 C. Compare the results of no particles included, we can conclude that high temperature, proper loadings and smaller particles resulting in higher mass transfer coefficients k{sub L}.

  17. Fine hematite particles of Martian interest: absorption spectra and optical constants

    International Nuclear Information System (INIS)

    Marra, A C; Blanco, A; Fonti, S; Jurewicz, A; Orofino, V

    2005-01-01

    Hematite is an iron oxide very important for the study of climatic evolution of Mars. It can occur in two forms: red and grey, mainly depending on the granulometry of the samples. Spectra of bright regions of Mars suggest the presence of red hematite particles. Moreover the Thermal Emission Spectrometer (TES), on board the Mars Global Surveyor mission, has discovered a deposit of crystalline grey hematite in Sinus Meridiani. TES spectra of that Martian region exhibit features at about 18, 23 and 33 μm that are consistent with hematite. Coarse grey hematite is considered strong evidence for longstanding water, while it is unknown whether the formation of fine-grained red hematite requires abundant water. Studies are needed in order to further characterize the spectral properties of the two kinds of hematite. For this reason we have analyzed a sample of submicron hematite particles in the 6.25-50 μm range in order to study the influence of particles size and shape on the infrared spectra. The optical constants of a particulate sample have been derived and compared with published data concerning bulk samples of hematite. Our results seem to indicate that particle shape is an important factor to take into account for optical constants derivation

  18. Insights into metals in individual fine particles from municipal solid waste using synchrotron radiation-based micro-analytical techniques

    Institute of Scientific and Technical Information of China (English)

    Yumin Zhu; Hua Zhang; Liming Shao; Pinjing He

    2015-01-01

    Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW).In this study,we investigated fine particles of <2 mm,which are small fractions in MSW but constitute a significant component of the total heavy metal content,using bulk detection techniques.A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction.We also discussed the association,speciation and source apportionment of heavy metals.Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of <10 μm within the fine particles.Zn-Cu,Pb-Fe and Fe-Mn-Cr had significant correlations in terms of spatial distribution.The overlapped enrichment,spatial association,and the mineral phases of metals revealed the potential sources of fine particles from size-reduced waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles.The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products.

  19. Coarse and fine particles but nout ultrafine particles in urban air trigger hospital admission for asthma in children

    DEFF Research Database (Denmark)

    Iskander, A.; Andersen, Z.J.; Bønnelykke, K.

    2012-01-01

    .AimTo study whether short-term exposure to air pollution is associated with hospital admissions for asthma in children. It is hypothesised that (1) the association between asthma admissions and air pollution is stronger with UFPs than with coarse (PM(10)) and fine (PM(2.5)) particles, nitrogen oxides (NO...... association was found between hospital admissions for asthma in children aged 0-18 years and NO(x) (OR 1.11; 95% CI 1.05 to 1.17), NO(2) (1.10; 95% CI 1.04 to 1.16), PM(10) (1.07; 95% CI 1.03 to 1.12) and PM(2.5) (1.09; 95% CI 1.04 to 1.13); there was no association with UFPs. The association was stronger...

  20. Comparison of fine particle measurements from a direct-reading instrument and a gravimetric sampling method.

    Science.gov (United States)

    Kim, Jee Young; Magari, Shannon R; Herrick, Robert F; Smith, Thomas J; Christiani, David C

    2004-11-01

    Particulate air pollution, specifically the fine particle fraction (PM2.5), has been associated with increased cardiopulmonary morbidity and mortality in general population studies. Occupational exposure to fine particulate matter can exceed ambient levels by a large factor. Due to increased interest in the health effects of particulate matter, many particle sampling methods have been developed In this study, two such measurement methods were used simultaneously and compared. PM2.5 was sampled using a filter-based gravimetric sampling method and a direct-reading instrument, the TSI Inc. model 8520 DUSTTRAK aerosol monitor. Both sampling methods were used to determine the PM2.5 exposure in a group of boilermakers exposed to welding fumes and residual fuel oil ash. The geometric mean PM2.5 concentration was 0.30 mg/m3 (GSD 3.25) and 0.31 mg/m3 (GSD 2.90)from the DUSTTRAK and gravimetric method, respectively. The Spearman rank correlation coefficient for the gravimetric and DUSTTRAK PM2.5 concentrations was 0.68. Linear regression models indicated that log, DUSTTRAK PM2.5 concentrations significantly predicted loge gravimetric PM2.5 concentrations (p gravimetric PM2.5 concentrations was found to be modified by surrogate measures for seasonal variation and type of aerosol. PM2.5 measurements from the DUSTTRAK are well correlated and highly predictive of measurements from the gravimetric sampling method for the aerosols in these work environments. However, results from this study suggest that aerosol particle characteristics may affect the relationship between the gravimetric and DUSTTRAK PM2.5 measurements. Recalibration of the DUSTTRAK for the specific aerosol, as recommended by the manufacturer, may be necessary to produce valid measures of airborne particulate matter.

  1. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion

    Science.gov (United States)

    Tissari, Jarkko; Hytönen, Kati; Lyyränen, Jussi; Jokiniemi, Jorma

    Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg -1 (of dry wood burned)), carbon monoxide (CO) (120 g kg -1) and fine particle mass (PM 1) (2.7 g kg -1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9-9 g kg -1 TVOC, 28-68 g kg -1 CO and 0.6-1.6 g kg -1 PM 1. The emission of 12 PAHs (PAH 12) from the sauna stove was 164 mg kg -1 and consisted mainly of PAHs with four benzene rings in their structure. PAH 12 emission from other appliances was, on average, 21 mg kg -1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.

  2. Fine particles in homes of predominantly low-income families with children and smokers: Key physical and behavioral determinants to inform indoor-air-quality interventions.

    Science.gov (United States)

    Klepeis, Neil E; Bellettiere, John; Hughes, Suzanne C; Nguyen, Benjamin; Berardi, Vincent; Liles, Sandy; Obayashi, Saori; Hofstetter, C Richard; Blumberg, Elaine; Hovell, Melbourne F

    2017-01-01

    Children are at risk for adverse health outcomes from occupant-controllable indoor airborne contaminants in their homes. Data are needed to design residential interventions for reducing low-income children's pollutant exposure. Using customized air quality monitors, we continuously measured fine particle counts (0.5 to 2.5 microns) over a week in living areas of predominantly low-income households in San Diego, California, with at least one child (under age 14) and at least one cigarette smoker. We performed retrospective interviews on home characteristics, and particle source and ventilation activities occurring during the week of monitoring. We explored the relationship between weekly mean particle counts and interview responses using graphical visualization and multivariable linear regression (base sample n = 262; complete cases n = 193). We found associations of higher weekly mean particle counts with reports of indoor smoking of cigarettes or marijuana, as well as with frying food, using candles or incense, and house cleaning. Lower particle levels were associated with larger homes. We did not observe an association between lower mean particle counts and reports of opening windows, using kitchen exhaust fans, or other ventilation activities. Our findings about sources of fine airborne particles and their mitigation can inform future studies that investigate more effective feedback on residential indoor-air-quality and better strategies for reducing occupant exposures.

  3. Fine particles in homes of predominantly low-income families with children and smokers: Key physical and behavioral determinants to inform indoor-air-quality interventions.

    Directory of Open Access Journals (Sweden)

    Neil E Klepeis

    Full Text Available Children are at risk for adverse health outcomes from occupant-controllable indoor airborne contaminants in their homes. Data are needed to design residential interventions for reducing low-income children's pollutant exposure. Using customized air quality monitors, we continuously measured fine particle counts (0.5 to 2.5 microns over a week in living areas of predominantly low-income households in San Diego, California, with at least one child (under age 14 and at least one cigarette smoker. We performed retrospective interviews on home characteristics, and particle source and ventilation activities occurring during the week of monitoring. We explored the relationship between weekly mean particle counts and interview responses using graphical visualization and multivariable linear regression (base sample n = 262; complete cases n = 193. We found associations of higher weekly mean particle counts with reports of indoor smoking of cigarettes or marijuana, as well as with frying food, using candles or incense, and house cleaning. Lower particle levels were associated with larger homes. We did not observe an association between lower mean particle counts and reports of opening windows, using kitchen exhaust fans, or other ventilation activities. Our findings about sources of fine airborne particles and their mitigation can inform future studies that investigate more effective feedback on residential indoor-air-quality and better strategies for reducing occupant exposures.

  4. Environmental and health impacts of fine and ultrafine metallic particles: Assessment of threat scores

    Energy Technology Data Exchange (ETDEWEB)

    Goix, Sylvaine [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); Lévêque, Thibaut [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); ADEME (French Agency for Environment and Energy Management), 20 Avenue du Grésillé, BP 90406, 49004 Angers Cedex 01 (France); Xiong, Tian-Tian [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); Schreck, Eva [Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse (France); and others

    2014-08-15

    This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO{sub 4}, Sb{sub 2}O{sub 3}, and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}. Both cadmium compounds exhibited the highest threat score due to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb{sub 2}O{sub 3} threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management. - Highlights: • Seven micro- and nano- monometallic characterized particles were studied as references. • Bioaccessibility, eco and cytotoxicity, and oxidative potential assays were performed. • According to calculated threat scores: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}.

  5. Fine particle number and mass concentration measurements in urban Indian households.

    Science.gov (United States)

    Mönkkönen, P; Pai, P; Maynard, A; Lehtinen, K E J; Hämeri, K; Rechkemmer, P; Ramachandran, G; Prasad, B; Kulmala, M

    2005-07-15

    Fine particle number concentration (D(p)>10 nm, cm(-3)), mass concentrations (approximation of PM(2.5), microg m(-3)) and indoor/outdoor number concentration ratio (I/O) measurements have been conducted for the first time in 11 urban households in India, 2002. The results indicate remarkable high indoor number and mass concentrations and I/O number concentration ratios caused by cooking. Besides cooking stoves that used liquefied petroleum gas (LPG) or kerosene as the main fuel, high indoor concentrations can be explained by poor ventilation systems. Particle number concentrations of more than 300,000 cm(-3) and mass concentrations of more than 1000 microg m(-3) were detected in some cases. When the number and mass concentrations during cooking times were statistically compared, a correlation coefficient r>0.50 was observed in 63% of the households. Some households used other fuels like wood and dung cakes along with the main fuel, but also other living activities influenced the concentrations. In some areas, outdoor combustion processes had a negative impact on indoor air quality. The maximum concentrations observed in most cases were due to indoor combustion sources. Reduction of exposure risk and health effects caused by poor indoor air in urban Indian households is possible by improving indoor ventilation and reducing penetration of outdoor particles.

  6. Formation of fine solid particles from aqueous solutions of sodium chloropalladate by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Fujita, Iwao; Korekawa, Kei-ichi.

    1994-10-01

    Studies have been carried out on the radiation chemical formation of palladium fine particles in argon saturated aqueous solutions of sodium chloropalladate without organic stabilizer. The solutions were irradiated with gamma-rays from a cobalt gamma-ray source and the irradiated solutions were subjected to the dynamic light scattering analysis for the particle diameter measurements, and to the UV-visible optical absorption spectroscopy for the measurements of turbidity (absorption at 700 nm) and remaining chloropalladate ion concentrations in the solution. In the solution of pH = 1.95 by HCl, the turbidity increased after the irradiation and then decreased with time. The concentration of remaining palladate ion in the solution decreased by the irradiation, but it gradually increased with time after the irradiation. These phenomena were qualitatively explained by the reaction scheme in that a precursor to the solid particles still exists in the solution after the irradiation was terminated, and that intermediates including the precursor reacted with chloride ion to re-form chloropalladate ions. The average diameter of the particles after the irradiation was ca. 20 nm and it increased with time to 40 nm at 2.75 kGy, and to 80 nm at 8.25 kGy absorption of radiation. The solution of pH = 0.65 by HCl was found to give lower yields of particles than those observed for the solution of pH = 1.95, and to give the particles of diameters about 150-200 nm. In the solution containing HClO 4 instead of HCl, palladium particles were also formed by the irradiation, whereas no backward reaction after the irradiation was observed due to the low concentration of chloride ion in the solution. The average diameter of the particles after the irradiation was about 300 nm and increased with time after the irradiation to a final values which was found to depend on pH of the solution and dose. (author)

  7. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m{sup 3} or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 {mu}g/cm{sup 2} of material which corresponds to about 10{mu}g/m{sup 3} of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5{mu}m. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs.

  8. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m{sup 3} or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 {mu}g/cm{sup 2} of material which corresponds to about 10{mu}g/m{sup 3} of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5{mu}m. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs.

  9. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    International Nuclear Information System (INIS)

    Cohen, D.

    1996-01-01

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m 3 or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 μg/cm 2 of material which corresponds to about 10μg/m 3 of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5μm. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs

  10. Principles, techniques and recent advances in fine particle aggregation for solid-liquid separation

    International Nuclear Information System (INIS)

    Somasundaran, P.; Vasudevan, T.V.

    1993-01-01

    Waste water discharged from various chemical and nuclear processing operations contains dissolved metal species that are highly toxic and, in some cases, radioactive. When the waste is acidic in nature, neutralization using reagents such as lime is commonly practiced to reduce both the acidity and the amount of waste (Kuyucak et al.). The sludge that results from the neutralization process contains metal oxide or hydroxide precipitates that are colloidal in nature and is highly stable. Destabilization of colloidal suspensions can be achieved by aggregation of fines into larger sized agglomerates. Aggregation of fines is a complex phenomenon involving a multitude of forces that control the interparticle interaction. In order to understand the colloidal behavior of suspensions a fundamental knowledge of physicochemical properties that determine the various forces is essential. In this review, a discussion of basic principles governing the aggregation of colloidal fines, various ways in which interparticle forces can be manipulated to achieve the desired aggregation response and recent advances in experimental techniques to probe the interfacial characteristics that control the flocculation behavior are discussed

  11. Creative and Aesthetic Responses to Picturebooks and Fine Art

    Science.gov (United States)

    Evans, Janet

    2009-01-01

    It has long been accepted that one can respond to fine art in a variety of different ways. However, it is only in the last decade or so that picturebooks have been attracting the kind of recognition that they have long deserved as art forms to be considered and responded to both creatively and aesthetically. There is a growing body of research…

  12. Parameter and model uncertainty in a life-table model for fine particles (PM2.5): a statistical modeling study.

    Science.gov (United States)

    Tainio, Marko; Tuomisto, Jouni T; Hänninen, Otto; Ruuskanen, Juhani; Jantunen, Matti J; Pekkanen, Juha

    2007-08-23

    The estimation of health impacts involves often uncertain input variables and assumptions which have to be incorporated into the model structure. These uncertainties may have significant effects on the results obtained with model, and, thus, on decision making. Fine particles (PM2.5) are believed to cause major health impacts, and, consequently, uncertainties in their health impact assessment have clear relevance to policy-making. We studied the effects of various uncertain input variables by building a life-table model for fine particles. Life-expectancy of the Helsinki metropolitan area population and the change in life-expectancy due to fine particle exposures were predicted using a life-table model. A number of parameter and model uncertainties were estimated. Sensitivity analysis for input variables was performed by calculating rank-order correlations between input and output variables. The studied model uncertainties were (i) plausibility of mortality outcomes and (ii) lag, and parameter uncertainties (iii) exposure-response coefficients for different mortality outcomes, and (iv) exposure estimates for different age groups. The monetary value of the years-of-life-lost and the relative importance of the uncertainties related to monetary valuation were predicted to compare the relative importance of the monetary valuation on the health effect uncertainties. The magnitude of the health effects costs depended mostly on discount rate, exposure-response coefficient, and plausibility of the cardiopulmonary mortality. Other mortality outcomes (lung cancer, other non-accidental and infant mortality) and lag had only minor impact on the output. The results highlight the importance of the uncertainties associated with cardiopulmonary mortality in the fine particle impact assessment when compared with other uncertainties. When estimating life-expectancy, the estimates used for cardiopulmonary exposure-response coefficient, discount rate, and plausibility require careful

  13. Parameter and model uncertainty in a life-table model for fine particles (PM2.5: a statistical modeling study

    Directory of Open Access Journals (Sweden)

    Jantunen Matti J

    2007-08-01

    Full Text Available Abstract Background The estimation of health impacts involves often uncertain input variables and assumptions which have to be incorporated into the model structure. These uncertainties may have significant effects on the results obtained with model, and, thus, on decision making. Fine particles (PM2.5 are believed to cause major health impacts, and, consequently, uncertainties in their health impact assessment have clear relevance to policy-making. We studied the effects of various uncertain input variables by building a life-table model for fine particles. Methods Life-expectancy of the Helsinki metropolitan area population and the change in life-expectancy due to fine particle exposures were predicted using a life-table model. A number of parameter and model uncertainties were estimated. Sensitivity analysis for input variables was performed by calculating rank-order correlations between input and output variables. The studied model uncertainties were (i plausibility of mortality outcomes and (ii lag, and parameter uncertainties (iii exposure-response coefficients for different mortality outcomes, and (iv exposure estimates for different age groups. The monetary value of the years-of-life-lost and the relative importance of the uncertainties related to monetary valuation were predicted to compare the relative importance of the monetary valuation on the health effect uncertainties. Results The magnitude of the health effects costs depended mostly on discount rate, exposure-response coefficient, and plausibility of the cardiopulmonary mortality. Other mortality outcomes (lung cancer, other non-accidental and infant mortality and lag had only minor impact on the output. The results highlight the importance of the uncertainties associated with cardiopulmonary mortality in the fine particle impact assessment when compared with other uncertainties. Conclusion When estimating life-expectancy, the estimates used for cardiopulmonary exposure-response

  14. Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow.

    Science.gov (United States)

    Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi

    2013-01-01

    We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system.

  15. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere.

    Science.gov (United States)

    Lü, Senlin; Zhang, Rui; Yao, Zhenkun; Yi, Fei; Ren, Jingjing; Wu, Minghong; Feng, Man; Wang, Qingyue

    2012-01-01

    Ambient coarse particles (diameter 1.8-10 microm), fine particles (diameter 0.1-1.8 microm), and ultrafine particles (diameter Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 +/- 2.18, 8.82 +/- 3.52, and 2.02 +/- 0.41 microg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.

  16. A comparative study of the number and mass of fine particles emitted with diesel fuel and marine gas oil (MGO)

    Science.gov (United States)

    Nabi, Md. Nurun; Brown, Richard J.; Ristovski, Zoran; Hustad, Johan Einar

    2012-09-01

    The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.

  17. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides x trichocarpa 'Beaupre', Pinus nigra and x Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment

    International Nuclear Information System (INIS)

    Freer-Smith, P.H.; Beckett, K.P.; Taylor, Gail

    2005-01-01

    Trees are effective in the capture of particles from urban air to the extent that they can significantly improve urban air quality. As a result of their aerodynamic properties conifers, with their smaller leaves and more complex shoot structures, have been shown to capture larger amounts of particle matter than broadleaved trees. This study focuses on the effects of particle size on the deposition velocity of particles (Vg) to five urban tree species (coniferous and broadleaved) measured at two field sites, one urban and polluted and a second more rural. The larger uptake to conifers is confirmed, and for broadleaves and conifers Vg values are shown to be greater for ultra-fine particles (Dp<1.0 μm) than for fine and coarse particles. This is important since finer particles are more likely to be deposited deep in the alveoli of the human lung causing adverse health effects. The finer particle fraction is also shown to be transported further from the emission source; in this study a busy urban road. In further sets of data the aqueous soluble and insoluble fractions of the ultra-fines were separated, indicating that aqueous insoluble particles made up only a small proportion of the ultra-fines. Much of the ultra-fine fraction is present as aerosol. Chemical analysis of the aqueous soluble fractions of coarse, fine and ultra-fine particles showed the importance of nitrates, chloride and phosphates in all three size categories at the polluted and more rural location

  18. The green synthesis of fine particles of gold using an aqueous extract of Monotheca buxifolia (Flac.)

    Science.gov (United States)

    Anwar, Natasha; Khan, Abbas; Shah, Mohib; Azam, Andaleeb; Zaman, Khair; Parven, Zahida

    2016-12-01

    This study deals with the synthesis and physicochemical investigation of gold nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of tetrachloroauric acid with the plant extract, gold nanoparticles were rapidly fabricated. The synthesized particles were characterized by UV-Vis spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AuNPs was confirmed by noting the change in color through visual observations as well as via UV-Vis spectroscopy. UV‒Vis spectrum of the aqueous medium containing gold nanoparticles showed an absorption peak at around 540 nm. FTIR was used to identify the chemical composition of gold nanoparticles and Au-capped plant extract. The presence of elemental gold was also confirmed through EDX analysis. SEM analysis of the gold nanoparticles showed that they have a uniform spherical shape with an average size in the range of 70-78 nm. This green system showed to be better capping and stabilizing agent for the fine particles. Further, the antioxidant activity of Monotheca buxifolia (Flac.) extract and Au-capped with the plant extract was also evaluated using FeCl3/K3[Fe(CN)]6 in vitro assay.

  19. Assessing and reducing fine and ultrafine particles inside Los Angeles taxis

    Science.gov (United States)

    Yu, Nu; Shu, Shi; Lin, Yan; Zhu, Yifang

    2018-05-01

    Taxi drivers and passengers are exposed to high levels of traffic-related air pollutants, but their exposures to fine (PM2.5) and ultrafine particles (UFPs) and related mitigation strategies are rarely explored. In this study, UFP and PM2.5 concentrations were monitored concurrently inside and outside of 22 taxis under different ventilation and mitigation conditions. Under realistic working conditions (no mitigation; NM), the average UFP and PM2.5 levels inside taxis were 1.46 × 104 particles/cm3 and 26 μg/m3, respectively. When the taxi ventilation was set to outside air mode and the windows kept closed, in-cabin UFP and PM2.5 concentrations are significantly associated with on-road concentrations, driving speed, and cabin air filter usage. The average in-cabin to on-roadway (I/O) ratios for UFP and PM2.5 were reduced from 0.60 to 0.75 under NM, to 0.47 and 0.52 under the most stringent mitigation strategy of keeping the windows closed and operating a high efficiency cabin air filter (WC + HECA). Among all tested taxi models, Toyota Prius exhibited the lowest UFP and PM2.5 I/O ratios under WC + HECA. Switching cabin air filters from the originally equipped manufacturer filter (OEM) to a HECA filter reduced the UFP and PM2.5 I/O ratios most effectively in Toyota Prius taxis as well.

  20. Effects of oral administration of titanium dioxide fine-sized particles on plasma glucose in mice.

    Science.gov (United States)

    Gu, Ning; Hu, Hailong; Guo, Qian; Jin, Sanli; Wang, Changlin; Oh, Yuri; Feng, Yujie; Wu, Qiong

    2015-12-01

    Titanium dioxide (TiO2) is an authorized additive used as a food colorant, is composed of nano-sized particles (NP) and fine-sized particles (FP). Previous study reported that oral administration of TiO2 NPs triggers an increase in plasma glucose of mice. However, no previous studies have focused on toxic effects of TiO2 FPs on plasma glucose homeostasis following oral administration. In the current study, mice were orally administered TiO2 FPs greater than 100 nm in size (64 mg/kg body weight per day), and effects on plasma glucose levels examined. Our results showed that titanium levels was not changed in mouse blood, livers and pancreases after mice were orally administered TiO2 FPs. Biochemical analyzes showed that plasma glucose and ROS levels were not affected by TiO2 FPs. Histopathological results showed that TiO2 FPs did not induce pathology changes in organs, especially plasma glucose homeostasis regulation organs, such as pancreas and liver. Western blotting showed that oral administration of TiO2 FPs did not induce insulin resistance (IR) in mouse liver. These results showed that, TiO2 FPs cannot be absorbed via oral administration and affect plasma glucose levels in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Cooling of an internal-heated debris bed with fine particles

    International Nuclear Information System (INIS)

    Yang, Z.L.; Sehgal, B.R.

    2001-01-01

    In this paper, an analytical model on dryout heat flux of ex-vessel debris beds with fines particles under top flooding conditions has been developed. The parametric study is performed on the effect of the stratification of the debris beds on the dryout heat flux. The calculated results show that the stratification configuration of the debris beds with smaller particles and lower porosity layer resting on the top of another layer of the beds has profound effect on the dryout heat flux for the debris beds both with and without a downcomer. The enhancement of the dryout heat flux by the downcomer is significant. The efficiency of the single downcomer on the enhancement of the dryout heat flux is also analyzed. This, in general, agrees well with experimental data. The model is also employed to perform the assessment on the coolability of the ex-vessel debris bed under representative accidental conditions. One conservative case is chosen, and it is found that the downcomer could be efficient measure to cool the debris bed and hence terminate the severe accident. (authors)

  2. Chemical characteristics of fine particles emitted from different gas cooking methods

    Science.gov (United States)

    See, Siao Wei; Balasubramanian, Rajasekhar

    Gas cooking is an important indoor source of fine particles (PM 2.5). The chemical characteristics of PM 2.5 emitted from different cooking methods, namely, steaming, boiling, stir-frying, pan-frying and deep-frying were investigated in a domestic kitchen. Controlled experiments were conducted to measure the mass concentration of PM 2.5 and its chemical constituents (elemental carbon (EC), organic carbon (OC), polycyclic aromatic hydrocarbons (PAHs), metals and ions) arising from these five cooking methods. To investigate the difference in particle properties of different cooking emissions, the amount and type of food, and the heat setting on the gas stove were kept constant during the entire course of the experiments. Results showed that deep-frying gave rise to the largest amount of PM 2.5 and most chemical components, followed by pan-frying, stir-frying, boiling, and steaming. Oil-based cooking methods released more organic pollutants (OC, PAHs, and organic ions) and metals, while water-based cooking methods accounted for more water-soluble (WS) ions. Their source profiles are also presented and discussed.

  3. Insights into metals in individual fine particles from municipal solid waste using synchrotron radiation-based micro-analytical techniques.

    Science.gov (United States)

    Zhu, Yumin; Zhang, Hua; Shao, Liming; He, Pinjing

    2015-01-01

    Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW). In this study, we investigated fine particles of heavy metal content, using bulk detection techniques. A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction. We also discussed the association, speciation and source apportionment of heavy metals. Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of metals revealed the potential sources of fine particles from size-reduced waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles. The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products. Copyright © 2014. Published by Elsevier B.V.

  4. Mathematical Model of Transfer and Deposition of Finely Dispersed Particles in a Turbulent Flow of Emulsions and Suspensions

    Science.gov (United States)

    Laptev, A. G.; Basharov, M. M.

    2018-05-01

    The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.

  5. Handbook on simultaneous x-ray and γ-ray ion beam methods for fine particle analysis

    International Nuclear Information System (INIS)

    Cohen, D.D.

    2000-01-01

    Sampling, measurement, characterisation and source appointment of fine atmospheric particles has become increasingly important in recent times. This is due in part to the realisation that the fine particle pollution caused by anthropogenic activities plays a key role in certain aspects of human health, pollution transport and global climate change. This publication discusses accelerator based ion beam analysis (IBA) methods of particle induced X-ray emission (PIXE) and particle induced γ-ray emission (PIGE) as applied to aerosol analysis. These techniques are sensitive, multielemental, mainly non-destructive, require no sample preparation, have short analysis times and can be used to analyse hundreds of filter samples a day in batch processing with minimum operator interaction. The aspects discussed in the publication include: the basics of the techniques; spectrum analysis; system calibration and blank subtraction; quantification; sensitivity; measurement errors

  6. Ultrafine and fine particle formation in a naturally ventilated office as a result of reactions between ozone and scented products

    DEFF Research Database (Denmark)

    Toftum, Jørn; Dijken, F. v.

    2003-01-01

    Ultrafine and fine particle formation as a result of chemical reactions between ozone and four different air fresheners and a typical lemon-scented domestic cleaner was studied in a fully furnished, naturally ventilated office. The study showed that under conditions representative of those...

  7. The influence of fine char particles burnout on bed agglomeration during the fluidized bed combustion of a biomass fuel

    Energy Technology Data Exchange (ETDEWEB)

    Scala, Fabrizio; Chirone, Riccardo [Istituto di Ricerche sulla Combustione, CNR, P.le V. Tecchio, 80-80125 Naples (Italy); Salatino, Piero [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, P.le V. Tecchio, 80-80125 Naples (Italy)

    2003-11-15

    The combustion of biomass char in a bubbling fluidized bed is hereby addressed, with specific reference to the influence that the combustion of fine char particles may exert on ash deposition and bed agglomeration phenomena. Experiments of steady fluidized bed combustion (FBC) of powdered biomass were carried out with the aim of mimicking the postcombustion of attrited char fines generated in the fluidized bed combustion of coarse char. Experimental results showed that the char elutriation rate is much smaller than expected on the basis of the average size of the biomass powder and of the carbon loading in the combustor. Samples of bed material collected after prolonged operation of the combustor were characterized by scanning electron microscopy (SEM)-EDX analysis and revealed the formation of relatively coarse sand-ash-carbon aggregates. The phenomenology is consistent with the establishment of a char phase attached to the bed material as a consequence of adhesion of char fines onto the sand particles. Combustion under sound-assisted fluidization conditions was also tested. As expected, enhancement of fines adhesion on bed material and further reduction of the elutriation rate were observed. Experimental results are interpreted in the light of a simple model which accounts for elutriation of free fines, adhesion of free fines onto bed material and detachment of attached fines by attrition of char-sand aggregates. Combustion of both free and attached char fines is considered. The parameters of the model are assessed on the basis of the measured carbon loadings and elutriation rates. Model computations are directed to estimate the effective size and the peak temperature of char-sand aggregates. The theoretical estimates of the effective aggregate size match fairly well those observed in the experiments.

  8. Fireplace and woodstove fine particle emissions from combustion of western Mediterranean wood types

    Science.gov (United States)

    Alves, Célia; Gonçalves, Cátia; Fernandes, Ana Patrícia; Tarelho, Luís; Pio, Casimiro

    2011-08-01

    Wood from seven species of trees grown in the Portuguese forest ( Pinus pinaster, Eucalyptus globulus, Quercus suber, Acacia longifolia, Quercus faginea, Olea europea and Quercus ilex rotundifolia), and briquettes produced from forest biomass waste were burned in a fireplace and in a woodstove to determine the chemical composition of fine particle (PM 2.5) emissions. Samples were analysed for organic and elemental carbon (OC/EC), water soluble ions (Na +, NH 4+, K +, Mg 2+, Ca 2+, Cl -, NO 3- and SO 42-) and 67 elements. The PM 2.5 emission factors (g kg - 1 fuel burned, dry basis) were in the ranges 9.9-20.2 and 4.2-16.3, respectively, for the fireplace and the woodstove. Organic carbon contributed to about 50% of the fine particle mass in the emissions from every wood species studied in both burning appliances. The carbonaceous component of PM 2.5 was dominated by organic carbon, accounting for more than 85% of the total carbon (TC): OC/TC ranged from 0.85 to 0.96 (avg. 0.92) for the fireplace and from 0.86 to 0.97 (avg. 0.93) for the woodstove. The water-soluble ions accounted for 0.64 to 11.3% of the PM 2.5 mass emitted from the fireplace, whereas mass fractions between 0.53 and 13.6% were obtained for the woodstove. The golden wattle wood smoke showed a much higher ionic content than the emissions from the other wood types. Trace elements represented 0.4 to 2.5% and 0.2 to 2.2% of the PM 2.5 mass emitted, respectively, from the fireplace and the woodstove, which corresponded to average total emissions of 132 ± 77.3 mg kg - 1 and 93.4 ± 60.8 mg kg - 1 of wood burned. Among these, K, Pb, Al, Mn and Sr were present in all samples. From the emission profiles of the individual experiments, composite wood combustion profiles are suggested with the aid of a cluster analysis.

  9. Validity of a traffic air pollutant dispersion model to assess exposure to fine particles.

    Science.gov (United States)

    Kostrzewa, Aude; Reungoat, Patrice; Raherison, Chantal

    2009-08-01

    Fine particles (PM(2.5)) are an important component of air pollution. Epidemiological studies have shown health effects due to ambient air particles, particularly allergies in children. Since the main difficulty is to determine exposure to such pollution, traffic air pollutant (TAP) dispersions models have been developed to improve the estimation of individual exposure levels. One such model, the ExTra index, has been validated for nitrogen oxide concentrations but not for other pollutants. The purpose of this study was to assess the validity of the ExTra index to assess PM(2.5) exposure. We compared PM(2.5) concentrations calculated by the ExTra index to reference measures (passive samplers situated under the covered part of the playground), in 15 schools in Bordeaux, in 2000. First, we collected the input data required by the ExTra index: background and local pollution depending on traffic, meteorology and topography. Second, the ExTra index was calculated for each school. Statistical analysis consisted of a graphic description; then, we calculated an intraclass correlation coefficient. Concentrations calculated with the ExTra index and the reference method were similar. The ExTra index underestimated exposure by 2.2 microg m(-3) on average compared to the reference method. The intraclass correlation coefficient was 0.85 and its 95% confidence interval was [0.62; 0.95]. The results suggest that the ExTra index provides an assessment of PM(2.5) exposure similar to that of the reference method. Although caution is required in interpreting these results owing to the small number of sites, the ExTra index could be a useful epidemiological tool for reconstructing individual exposure, an important challenge in epidemiology.

  10. Thermal insulator made of ultra fine particles of silica. Chobiryushi silica kei dannetsuzai

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, T.

    1991-05-30

    An overview was presented of properties and applications of thermal insulator made of ultra fine powder of silica, MICROTHERM. The thermal conductivity of MICROTHERM is as low as (1/3) - (1/4) of that of conventional thermal insulator, because it is mainly composed of fumed silica or aero gel and formed into porous structure. In addition, metal oxide of special particle size is added to it in order to reject the radiative heat. The thermal insulation property and the mechanical strength of MICROTHERM is not affected by a sudden change in temperature and moisture. The standard type of MICROTHERM can be used at a temperature up to 950 {degree}C, while the high temperature type MICROTHERM can stand a high temperature up to 1025 {degree}C for long period of time. The thickness of insulator can be reduced markedly by using MICROTHERM as compared with the use of conventional insulating materials. Many new products in which MICROTHERM is used came into market. New type kilt, Semi-cylindrical block, Super high temperature MICROTHERM are just a few examples. Variety of application and energy saving effect are attracting public attention. 11 figs.

  11. Characterization of Fine Metal Particles Derived from Shredded WEEE Using a Hyperspectral Image System: Preliminary Results

    Science.gov (United States)

    Candiani, Gabriele; Picone, Nicoletta; Pompilio, Loredana; Pepe, Monica; Colledani, Marcello

    2017-01-01

    Waste of electric and electronic equipment (WEEE) is the fastest-growing waste stream in Europe. The large amount of electric and electronic products introduced every year in the market makes WEEE disposal a relevant problem. On the other hand, the high abundance of key metals included in WEEE has increased the industrial interest in WEEE recycling. However, the high variability of materials used to produce electric and electronic equipment makes key metals’ recovery a complex task: the separation process requires flexible systems, which are not currently implemented in recycling plants. In this context, hyperspectral sensors and imaging systems represent a suitable technology to improve WEEE recycling rates and the quality of the output products. This work introduces the preliminary tests using a hyperspectral system, integrated in an automatic WEEE recycling pilot plant, for the characterization of mixtures of fine particles derived from WEEE shredding. Several combinations of classification algorithms and techniques for signal enhancement of reflectance spectra were implemented and compared. The methodology introduced in this study has shown characterization accuracies greater than 95%. PMID:28505070

  12. Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks.

    Science.gov (United States)

    Muddle, Joanna; Kirton, Stewart B; Parisini, Irene; Muddle, Andrew; Murnane, Darragh; Ali, Jogoth; Brown, Marc; Page, Clive; Forbes, Ben

    2017-01-01

    Dry powder inhalers are increasingly popular for delivering drugs to the lungs for the treatment of respiratory diseases, but are complex products with multivariate performance determinants. Heuristic product development guided by in vitro aerosol performance testing is a costly and time-consuming process. This study investigated the feasibility of using artificial neural networks (ANNs) to predict fine particle fraction (FPF) based on formulation device variables. Thirty-one ANN architectures were evaluated for their ability to predict experimentally determined FPF for a self-consistent dataset containing salmeterol xinafoate and salbutamol sulfate dry powder inhalers (237 experimental observations). Principal component analysis was used to identify inputs that significantly affected FPF. Orthogonal arrays (OAs) were used to design ANN architectures, optimized using the Taguchi method. The primary OA ANN r 2 values ranged between 0.46 and 0.90 and the secondary OA increased the r 2  values (0.53-0.93). The optimum ANN (9-4-1 architecture, average r 2 0.92 ± 0.02) included active pharmaceutical ingredient, formulation, and device inputs identified by principal component analysis, which reflected the recognized importance and interdependency of these factors for orally inhaled product performance. The Taguchi method was effective at identifying successful architecture with the potential for development as a useful generic inhaler ANN model, although this would require much larger datasets and more variable inputs. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Impact of superplasticizer concentration and of ultra-fine particles on the rheological behaviour of dense mortar suspensions

    International Nuclear Information System (INIS)

    Artelt, C.; Garcia, E.

    2008-01-01

    This work aims at investigating the impact of the addition of superplasticizer and of ultra-fine particles, namely of silica fume and of precipitated titania, on the rheological behaviour of water-lean mortar pastes. The pastes are characterised in terms of their spread, their flowing behaviour and by means of performing a shear test, giving access to viscosity/shear gradient correlations. Adding superplasticizer is shown to shift the onset of shear thickening of the referring pastes to higher shear rates and to attenuate its otherwise rapid evolution, possibly by means of favouring steric particle-particle interactions. The workability of these mortars, which is characterised in terms of spread values and draining, is also improved. For the case of fly ash based mortars, adding ultra-fine particles is another way of (slightly) 'retarding' shear thickening and of attenuating its evolution, possibly because of resulting in - on the average - lower hydrodynamic forces and reduced attractive Van der Waals interactions between particles. However, at the same time these mortars are characterised by a worsening in workability which is attributed to the huge amount of surface area provided by the ultra-fines

  14. PREFACE: 8th International Conference on Fine Particle Magnetism (ICFPM2013)

    Science.gov (United States)

    2014-06-01

    The 8th International Conference on Fine Particle Magnetism (ICFPM) was held in Perpignan from 24 to 27 June 2013, and was the continuation of the previous meetings held in Bangor (1996), Rome (1991), Barcelona (1999), Pittsburg (2002), London (2004), Rome (2007) and Uppsala (2010). The next meeting will be organized by Profs. Robert D. Shull, George Hadjipanayis and Cindi Dennis, in 2016 at NIST, Gaithersburg (USA). ICFPM is a small-sized conference focused on the magnetism of nanoparticles. It provides an international forum for discussing the state-of-the-art understanding of physics of these systems, of their properties and the underlying phenomena, as approached from a variety of directions: theory and modelling, experiments on well characterized or model systems (both fabricated and synthetised), as well as experiments on technologically-relevant non-ideal systems. This meeting brought together about 120 participants working on experimental, theoretical and applied topics of the multidisciplinary research areas covered by magnetic nanoparticles, with focused interest on either single-particle or collective phenomena. The technical program of the conference was based on keynote conferences, invited talks, oral contributions and poster sessions, covering the following aspects: . Fabrication, synthesis, characterization . Single particle, surface and finite-size effects on magnetic properties . Magnetization dynamics, micro-wave assisted switching, dynamical coupling . Assemblies, collective effects, self-assembling and nanostructuring . Applications : hyperthermia, drug delivery, magneto-caloric, magneto-resistance, magneto-plasmonics, magnetic particle imaging This ICFPM edition was organized by the group Nanoscale Spin Systems of the laboratory PROMES of the CNRS (UPR8521), and Université de Perpignan Via Domitia. The meeting took place at the Congress Center of the city of Perpignan providing high-quality facilities for the technical program as well for the

  15. Correlation of light transmittance with asthma attack: fine water particles as a possible inducing factor of asthma.

    Science.gov (United States)

    Kanaya, Kazuo; Okamoto, Koji; Shimbo, Shinichiro; Ikeda, Masayuki

    2011-01-01

    It has been postulated that air-borne fine water particles (or mist) can induce asthma attacks in asthmatic children. To date, no attempt has been made to quantify the density of air-borne fine water particles with the aim of relating particle density to the etiology of asthma among children. The aim of this study was to investigate the relation of asthma attack frequency and the particle density evaluated in terms of light transmittance. The density of fine water particles was quantified by measuring reductions in light transmittance at 250, 365 and 580 nm at an outdoor location when the surroundings were in darkness. The measurements were made at distances varying from 1 to 3 m from the light sources and performed every morning and evening for 1 year. Each day was separated into two half-day units [i.e., morning (from midnight to noon) and afternoon (from noon to midnight)]. The number of asthma attacks among 121 enrolled asthmatic children was counted for each unit. A possible correlation between the transmittance reduction and frequency of asthma attacks was assessed. A significant difference was observed in the extent of reduction in light transmittance at 365 nm between the units with asthma attacks and those without attacks. Furthermore, the reduction in the transmittance was more evident when more asthma attacks were recorded among the patients. No difference was detected in the reduction in light transmittance at 250 or 580 nm. These results support the hypothesis that air-borne fine water particles are among the etiological factors that induce asthma attacks in asthmatic children.

  16. SWeRF--A method for estimating the relevant fine particle fraction in bulk materials for classification and labelling purposes.

    Science.gov (United States)

    Pensis, Ingeborg; Luetzenkirchen, Frank; Friede, Bernd

    2014-05-01

    In accordance with the European regulation for classification, labelling and packaging of substances and mixtures (CLP) as well as the criteria as set out in the Globally Harmonized System (GHS), fine fraction of crystalline silica (CS) has been classified as a specific target organ toxicity, the specific organ in this case being the lung. Generic cut-off values for products containing a fine fraction of CS trigger the need for a method for the quantification of the fine fraction of CS in bulk materials. This article describes the so-called SWeRF method, the size-weighted relevant fine fraction. The SWeRF method combines the particle size distribution of a powder with probability factors from the EN 481 standard and allows the relevant fine fraction of a material to be calculated. The SWeRF method has been validated with a number of industrial minerals. This will enable manufacturers and blenders to apply the CLP and GHS criteria for the classification of mineral products containing RCS a fine fraction of CS.

  17. Pulsed EM Field Response of a Thin, High-Contrast, Finely Layered Structure With Dielectric and Conductive Properties

    NARCIS (Netherlands)

    De Hoop, A.T.; Jiang, L.

    2009-01-01

    The response of a thin, high-contrast, finely layered structure with dielectric and conductive properties to an incident, pulsed, electromagnetic field is investigated theoretically. The fine layering causes the standard spatial discretization techniques to solve Maxwell's equations numerically to

  18. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    International Nuclear Information System (INIS)

    Totsuji, Hiroo

    2008-01-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  19. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    Science.gov (United States)

    Totsuji, Hiroo

    2008-07-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  20. Measurement of fine particles and smoking activity in a statewide survey of 36 California Indian casinos

    Science.gov (United States)

    Jiang, Ru O-Ting; Cheng, Ka I-Chung; Acevedo-Bolton, Viviana; Klepeis, Neil E; Repace, James L; Ott, Wayne R; Hildemann, Lynn M

    2011-01-01

    Despite California's 1994 statewide smoking ban, exposure to secondhand smoke (SHS) continues in California's Indian casinos. Few data are available on exposure to airborne fine particles (PM2.5) in casinos, especially on a statewide basis. We sought to measure PM2.5 concentrations in Indian casinos widely distributed across California, exploring differences due to casino size, separation of smoking and non-smoking areas, and area smoker density. A selection of 36 out of the 58 Indian casinos throughout California were each visited for 1–3 h on weekend or holiday evenings, using two or more concealed monitors to measure PM2.5 concentrations every 10 s. For each casino, the physical dimensions and the number of patrons and smokers were estimated. As a preliminary assessment of representativeness, we also measured eight casinos in Reno, NV. The average PM2.5 concentration for the smoking slot machine areas (63 μg/m3) was nine times as high as outdoors (7 μg/m3), whereas casino non-smoking restaurants (29 μg/m3) were four times as high. Levels in non-smoking slot machine areas varied: complete physical separation reduced concentrations almost to outdoor levels, but two other separation types had mean levels that were 13 and 29 μg/m3, respectively, higher than outdoors. Elevated PM2.5 concentrations in casinos can be attributed primarily to SHS. Average PM2.5 concentrations during 0.5–1 h visits to smoking areas exceeded 35 μg/m3 for 90% of the casino visits. PMID:20160761

  1. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    Science.gov (United States)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  2. Modeling of meteorology, chemistry and aerosol for the 2017 Utah Winter Fine Particle Study

    Science.gov (United States)

    McKeen, S. A.; Angevine, W. M.; McDonald, B.; Ahmadov, R.; Franchin, A.; Middlebrook, A. M.; Fibiger, D. L.; McDuffie, E. E.; Womack, C.; Brown, S. S.; Moravek, A.; Murphy, J. G.; Trainer, M.

    2017-12-01

    The Utah Winter Fine Particle Study (UWFPS-17) field project took place during January and February of 2017 within the populated region of the Great Salt Lake, Utah. The study focused on understanding the meteorology and chemistry associated with high particulate matter (PM) levels often observed near Salt Lake City during stable wintertime conditions. Detailed composition and meteorological observations were taken from the NOAA Twin-Otter aircraft and several surface sites during the study period, and extremely high aerosol conditions were encountered for two cold-pool episodes occurring in the last 2 weeks of January. A clear understanding of the photochemical and aerosol processes leading to these high PM events is still lacking. Here we present high spatiotemporal resolution simulations of meteorology, PM and chemistry over Utah from January 13 to February 1, 2017 using the WRF/Chem photochemical model. Correctly characterizing the meteorology is difficult due to the complex terrain and shallow inversion layers. We discuss the approach and limitations of the simulated meteorology, and evaluate low-level pollutant mixing using vertical profiles from missed airport approaches by the NOAA Twin-Otter performed routinely during each flight. Full photochemical simulations are calculated using NOx, ammonia and VOC emissions from the U.S. EPA NEI-2011 emissions inventory. Comparisons of the observed vertical column amounts of NOx, ammonia, aerosol nitrate and ammonium with model results shows the inventory estimates for ammonia emissions are low by a factor of four and NOx emissions are low by nearly a factor of two. The partitioning of both nitrate and NH3 between gas and particle phase depends strongly on the NH3 and NOx emissions to the model and calculated NOx to nitrate conversion rates. These rates are underestimated by gas-phase chemistry alone, even though surface snow albedo increases photolysis rates by nearly a factor of two. Several additional conversion

  3. Emissions and measure analysis of fine particles 2000-2020; Emissionen und Massnahmenanalyse Feinstaub 2000-2020

    Energy Technology Data Exchange (ETDEWEB)

    Joerss, Wolfram; Handke, Volker [Institut fuer Zukunftsstudien und Technologiebewertung gGmbH (IZT), Berlin (Germany)

    2007-08-15

    With this study, the Federal Environmental Agency's emission inventory on total suspended particles and the fine fractions PM{sub 1}0 and PM{sub 2}.5 was updated. On that basis, a reference scenario was developed for anthropogenic emissions of particulate matter up to the years 2010, 2015 and 2020. In addition, potential additional emission reduction measures were systematically collected and quantified. At the source groups which contribute most strongly to the emissions there are clear differences between the fine fractions and in the course of time. In particular, with the total fine the emission freight is very broadly distributed over many source groups. With PM{sub 2}.5, the emissions are more strongly concentrated on a limited number of source groups. The decrease of the emissions in the years between 2000 and 2020 in the reference scenario takes place in source groups with high portions of PM{sub 2}.5 of the emissions of total fine particles.

  4. Emissions and measure analysis of fine particles 2000-2020; Emissionen und Massnahmenanalyse Feinstaub 2000-2020

    Energy Technology Data Exchange (ETDEWEB)

    Joerss, Wolfram; Handke, Volker [Institut fuer Zukunftsstudien und Technologiebewertung gGmbH (IZT), Berlin (Germany)

    2007-08-15

    With this study, the Federal Environmental Agency's emission inventory on total suspended particles and the fine fractions PM{sub 1}0 and PM{sub 2}.5 was updated. On that basis, a reference scenario was developed for anthropogenic emissions of particulate matter up to the years 2010, 2015 and 2020. In addition, potential additional emission reduction measures were systematically collected and quantified. At the source groups which contribute most strongly to the emissions there are clear differences between the fine fractions and in the course of time. In particular, with the total fine the emission freight is very broadly distributed over many source groups. With PM{sub 2}.5, the emissions are more strongly concentrated on a limited number of source groups. The decrease of the emissions in the years between 2000 and 2020 in the reference scenario takes place in source groups with high portions of PM{sub 2}.5 of the emissions of total fine particles.

  5. Fine-particle sodium tracer for long-range transport of the Kuwaiti oil-fire smoke

    Energy Technology Data Exchange (ETDEWEB)

    Lowenthal, D.H.; Borys, R.D.; Rogers, C.F.; Chow, J.C.; Stevens, R.K.

    1993-04-23

    Evidence for long-range transport of the Kuwaiti oil-fire smoke during the months following the Persian Gulf War has been more or less indirect. However, more-recent data on the aerosol chemistry of Kuwaiti oil-fire plumes provides a direct link between those fires and aerosols collected at the Mauna Loa Observatory (MLO) during the late spring and summer of 1991. By itself, temporal covariation of fine-particle concentrations of elemental carbon, sulfur, and the noncrustal V/Zn ratio in MLO aerosols suggested a link to large-scale oil-combustion sources, but not necessarily to Kuwait. However, high concentrations of fine-particle (0.1-1.0 microm diameter) NaCl were observed in the 'white' oil-fire plumes over Kuwait during the summer of 1991. In the absence of other demonstratable sources of fine-particle Na, these relationships provide a direct link between the Kuwaiti oil-fires and aerosol composition observed at MLO. (Copyright (c) 1993 American Geophysical Union.)

  6. Determining contributions of biomass burning and other sources to fine particle contemporary carbon in the western United States

    Science.gov (United States)

    Holden, Amanda S.; Sullivan, Amy P.; Munchak, Leigh A.; Kreidenweis, Sonia M.; Schichtel, Bret A.; Malm, William C.; Collett, Jeffrey L., Jr.

    2011-02-01

    Six-day integrated fine particle samples were collected at urban and rural sampling sites using Hi-Volume samplers during winter and summer 2004-2005 as part of the IMPROVE (Interagency Monitoring of PROtected Visual Environments) Radiocarbon Study. Filter samples from six sites (Grand Canyon, Mount Rainier, Phoenix, Puget Sound, Rocky Mountain National Park, and Tonto National Monument) were analyzed for levoglucosan, a tracer for biomass combustion, and other species by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD). Contemporary carbon concentrations were available from previous carbon isotope measurements at Lawrence Livermore National Laboratory. Primary contributions of biomass burning to measured fine particle contemporary carbon were estimated for residential wood burning (winter) and wild/prescribed fires (summer). Calculated contributions ranged from below detection limit to more than 100% and were typically higher at rural sites and during winter. Mannitol, a sugar alcohol emitted by fungal spores, was analyzed and used to determine contributions of fungal spores to fine particle contemporary carbon. Contributions reached up to 13% in summer samples, with higher contributions at rural sites. Concentrations of methyltetrols, oxidation products of isoprene, were also measured by HPAEC-PAD. Secondary organic aerosol (SOA) from isoprene oxidation was estimated to contribute up to 22% of measured contemporary carbon. For each sampling site, a substantial portion of the contemporary carbon was unexplained by primary biomass combustion, fungal spores, or SOA from isoprene oxidation. This unexplained fraction likely contains contributions from other SOA sources, including oxidation products of primary smoke emissions and plant emissions other than isoprene, as well as other primary particle emissions from meat cooking, plant debris, other biological aerosol particles, bio-diesel combustion, and other sources. Loss

  7. Viscous properties of ferrofluids containing both micrometer-size magnetic particles and fine needle-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Ido, Yasushi, E-mail: ido.yasushi@nitech.ac.jp [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Nishida, Hitoshi [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, 13 Hongo-cho, Toyama (Japan); Iwamoto, Yuhiro [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Yokoyama, Hiroki [KYB Corporation, 2-4-1 Hamamatsu-cho, Minato-ku, Tokyo (Japan)

    2017-06-01

    Ferrofluids containing both micrometer-size spherical magnetic particles and nanometer-size needle-like nonmagnetic hematite particles were newly produced. Average length of long axis of the needle-like nonmagnetic particles was 194 nm and the aspect ratio was 8.3. Shear stress and viscosity were measured using the rheometer with the additional equipment for viscosity measurements in the presence of magnetic field. When the total volume fraction of particles in the fluid is constant (0.30), there is the specific mixing ratio of the particles to increase viscosity of the fluid drastically in the absence of magnetic field due to the percolation phenomenon. The fluid of the specific mixing ratio shows solid-like behavior even in the absence of magnetic field. Mixing the needle-like nonmagnetic particles causes strong yield stress and strong viscous force in the presence of magnetic field. - Highlights: • Viscous properties of new magnetic functional fluids were studied experimentally. • The new fluids contain spherical magnetic particles and needle-like particles. • Percolation occurs in the fluid of specific mixing ratio of particles without field. • The fluid of the specific mixing ratio behaves like solid without field. • Mixing needle-like particles causes strong yield stress of the fluid in the field.

  8. Identification of metals into fine particles (PM2.5) during the dry cold season in the Toluca City

    International Nuclear Information System (INIS)

    Martinez P, A. A.; Aldape U, F.

    2008-01-01

    To know the elemental content of fine particles PM 2.5 that can affect people in the Toluca City, such as metals and another, it was made a campaign collection of fine particles during dry-cold ( November 2006-March 2007). The aerosol samples were collected on Teflon filters with an equipment BGI model PQ200 mark authorized by the Environment Protection Agency (EPA), every other day with a time resolution of 24 h. The determination of the elemental composition of the samples was performed by means of the technique Particle Induced X-Ray Emission (PIXE). The results of the analysis showed consistently 13 elements S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, as, throughout the collection period. We calculated the enrich factor that separates the elements of the natural component of the anthropogenic component. The correlation matrix shows the pairs of elements that are contained in the same air mass as Vanadium and Nickel. From the results it is concluded that the sources that gave rise to these particles are the burning of fossil fuels in motor vehicles, lubricants, additives and burning tires wear of automotive vehicles, besides the products used in agricultural activities. (Author)

  9. Evaluation of methods for the physical characterization of the fine particle emissions from two residential wood combustion appliances

    Science.gov (United States)

    Kinsey, John S.; Kariher, Peter H.; Dong, Yuanji

    The fine particle emissions from a U. S. certified non-catalytic wood stove and a zero-clearance fireplace burning Quercus rubra L. (northern red oak) and Pseudotsuga menziesii (Douglas fir) cordwood each at two different moisture levels were determined. Emission testing was performed using both time-integrated and continuous instrumentation for total particle mass, particle number, particle size distribution, and fixed combustion gases using an atmospheric wind tunnel, full-flow laboratory dilution tunnel, and dilution stack sampler with a comparison made between the three dilution systems and two sampling filter types. The total mass emission factors (EFs) for all dilution systems and filter media are extremely variable ranging from fireplace emissions burning wet oak averaged 11 g kg -1. A substantial number of ultrafine particles in the accumulation size range were also observed during all tests as determined by an Electrical Low Pressure Impactor (ELPI) and Scanning Mobility Particle Sizer. The PM-2.5 (particles ≤2.5 μm in aerodynamic diameter) fractions determined from the ELPI electrometer data ranged from 93 to 98% (mass) depending on appliance type as reported previously by Hays et al. (Aerosol Science, 34, 1061, 2003).

  10. Effects of Temperature and Residence Time on the Emissions of PIC and Fine Particles during Fixed Bed Combustion of Conifer Stemwood Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Christoffer; Lindmark, Fredrik; Oehman, Marcus; Nordin, Anders [Umeaa Univ. (Sweden). Energy Technology and Thermal Process Chemistry; Pettersson, Esbjoern [Energy Technology Centre, Piteaa (Sweden); Westerholm, Roger [Stockholm Univ., Arrhenius Laboratory (Sweden). Dept. of Analytical Chemistry

    2006-07-15

    The use of wood fuel Pellets has proved to be well suited for the small-scale market enabling controlled and efficient combustion with low emission of products of incomplete combustion (PIC). Still a potential for further emission reduction exists and a thorough understanding of the influence of combustion conditions on the emission characteristics of air pollutants like PAH and particulate matter (PM) is important. The objective was to determine the effects of temperature and residence time on the emission performance and characteristics with focus on hydrocarbons and PM during combustion of conifer stemwood Pellets in a laboratory fixed bed reactor (<5 kW). Temperature and residence time after the bed section were varied according to statistical experimental designs (650-970 deg C and 0.5-3.5 s) with the emission responses; CO, organic gaseous carbon, NO, 20 VOC compounds, 43 PAH compounds, PM{sub tot}, fine particle mass/count median diameter (MMD and CMD) and number concentration. Temperature was negatively correlated with the emissions of all studied PIC with limited effects of residence time. The PM{sub tot} emissions of 15-20 mg/MJ was in all cases dominated by fine (<1 {mu}m) particles of K, Na, S, Cl, C, O and Zn. Increased residence time resulted in increased fine particle sizes (i.e. MMD and CMD) and decreased number concentrations. The importance of high temperature (>850 deg C) in the bed zone with intensive, air rich and well mixed isothermal conditions for 0.5-1.0 s in the post combustion zone was illustrated for wood Pellets combustion with almost a total depletion of all studied PIC. The results emphasize the need for further verification studies and technology development work.

  11. Seasonal variation and volatility of ultra-fine particles in coastal Antarctic troposphere

    Directory of Open Access Journals (Sweden)

    Keiichiro Hara

    2010-12-01

    Full Text Available The Size distribution and volatility of ultrafine aerosol particles were measured at Syowa Station during the 46-47 Japanese Antarctic Research Expeditions. During the summer, most of the ultrafine particles were volatile particles, which were composed of H_2SO_4, CH_3SO_3H and sulfates bi-sulfates. The abundance of non-volatile particles was ~ 20% during the summer, increasing to>90% in winter-spring. Non-volatile particles in winter were dominantly sea-salt particles. Some ultrafine sea-salt particles might be released from sea-ice. When air mass was transported from the free troposphere over the Antarctic continent, the abundance of non-volatile particles dropped to<30% even in winter.

  12. Determination of air exchange rates of rooms and deposition factors for fine particles by means of photoelectric aerosol sensors

    International Nuclear Information System (INIS)

    Skillas, G.; Siegmann, H.C.; Hueglin, Ch.

    1999-01-01

    Indoor and outdoor concentrations or airborne fine particles from internal combustion engines have been measured over periods of 24 h with a time resolution of 10 s. With this time series, the ventilation air exchange rate of different rooms has been computed using a novel approach to the solution of the mass balance equation. A 'mixing time' parameter has been introduced in order to account for the initial non-homogeneous distribution of the pollutants in the rooms. It is demonstrated that this method can be used to determine the impact of health relevant outdoor particles on the indoor particle concentration. This yields information on the protection a building offers against pollutants entering from outdoors. (author)

  13. Number size distribution of fine and ultrafine fume particles from various welding processes.

    Science.gov (United States)

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  14. Explaining the spatiotemporal variation of fine particle number concentrations over Beijing and surrounding areas in an air quality model with aerosol microphysics

    International Nuclear Information System (INIS)

    Chen, Xueshun; Wang, Zifa; Li, Jie; Chen, Huansheng; Hu, Min; Yang, Wenyi; Wang, Zhe; Ge, Baozhu; Wang, Dawei

    2017-01-01

    In this study, a three-dimensional air quality model with detailed aerosol microphysics (NAQPMS + APM) was applied to simulate the fine particle number size distribution and to explain the spatiotemporal variation of fine particle number concentrations in different size ranges over Beijing and surrounding areas in the haze season (Jan 15 to Feb 13 in 2006). Comparison between observations and the simulation indicates that the model is able to reproduce the main features of the particle number size distribution. The high number concentration of total particles, up to 26600 cm −3 in observations and 39800 cm −3 in the simulation, indicates the severity of pollution in Beijing. We find that primary particles with secondary species coating and secondary particles together control the particle number size distribution. Secondary particles dominate particle number concentration in the nucleation mode. Primary and secondary particles together determine the temporal evolution and spatial pattern of particle number concentration in the Aitken mode. Primary particles dominate particle number concentration in the accumulation mode. Over Beijing and surrounding areas, secondary particles contribute at least 80% of particle number concentration in the nucleation mode but only 10–20% in the accumulation mode. Nucleation mode particles and accumulation mode particles are anti-phased with each other. Nucleation or primary emissions alone could not explain the formation of the particle number size distribution in Beijing. Nucleation has larger effects on ultrafine particles while primary particles emissions are efficient in producing large particles in the accumulation mode. Reduction in primary particle emissions does not always lead to a decrease in the number concentration of ultrafine particles. Measures to reduce fine particle pollution in terms of particle number concentration may be different from those addressing particle mass concentration. - Highlights:

  15. Impact of meteorological conditions on airborne fine particle composition and secondary pollutant characteristics in urban area during winter-time

    Directory of Open Access Journals (Sweden)

    Klaus Schäfer

    2016-06-01

    Full Text Available The assessment of airborne fine particle composition and secondary pollutant characteristics in the case of Augsburg, Germany, during winter (31 January–12 March 2010 is studied on the basis of aerosol mass spectrometry (3 non-refractory components and organic matter, 3 positive matrix factorizations (PMF factors, particle size distributions (PSD, 5 size modes, 5 PMF factors, further air pollutant mass concentrations (7 gases and VOC, black carbon, PM10, PM2.5 and meteorological measurements, including mixing layer height (MLH, with one-hourly temporal resolution. Data were subjectively assigned to 10 temporal phases which are characterised by different meteorological influences and air pollutant concentrations. In each phase hierarchical clustering analysis with the Ward method was applied to the correlations of air pollutants, PM components, PM source contributions and PSD modes and correlations of these data with all meteorological parameters. This analysis resulted in different degrees of sensitivities of these air pollutant data to single meteorological parameters. It is generally found that wind speed (negatively, MLH (negatively, relative humidity (positively and wind direction influence primary pollutant and accumulation mode particle (size range 100–500 nm concentrations. Temperature (negatively, absolute humidity (negatively and also relative humidity (positively are relevant for secondary compounds of PM and particle (PM2.5, PM10 mass concentrations. NO, nucleation and Aitken mode particle and the fresh traffic aerosol concentrations are only weakly dependent on meteorological parameters and thus are driven by emissions. These daily variation data analyses provide new, detailed meteorological influences on air pollutant data with the focus on fine particle composition and secondary pollutant characteristics and can explain major parts of certain PM component and gaseous pollutant exposure.

  16. Table - Impacts of the Proposed Transport Rule on Counties with Monitors Projected to have Ozone and/or Fine Particle Air Quality Problems

    Science.gov (United States)

    This table shows the impacts of the proposed Transport Rule on Counties with Monitors Projected to have Ozone and/or Fine Particle Air Quality Problems, both with and without the Cross-State Air Pollution Rule.

  17. Using monosaccharide anhydrides to estimate the impact of wood combustion on fine particles in the Helsinki Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Saarnio, K.; Saarikoski, S. [Finnish Meteorological Institute, Helsinki (Finland); Niemi, J.V. [HSY Helsinki Region Environmental Services Authority, Helsinki (Finland)

    2012-11-01

    The spatiotemporal variation of ambient particles under the influence of biomass burning emissions was studied in the Helsinki Metropolitan Area (HMA) in selected periods during 2005-2009. Monosaccharide anhydrides (MAs; levoglucosan, mannosan and galactosan), commonly known biomass burning tracers, were used to estimate the wood combustion contribution to local particulate matter (PM) concentration levels at three urban background sites close to the city centre, and at three suburban sites influenced by local small-scale wood combustion. In the cold season (October-March), the mean MAs concentrations were 115-225 ng m{sup -3} and 83-98 ng m{sup -} {sup 3}at the suburban and urban sites, respectively. In the warm season, the mean MAs concentrations were low (19-78 ng m{sup -3}), excluding open land fire smoke episodes (222-378 ng m{sup -}3{sup )}. Regionally distributed wood combustion particles raised the levels over the whole HMA while particles from local wood combustion sources raised the level at suburban sites only. The estimated average contribution of wood combustion to fine particles (PM{sub 2.5}) ranged from 18% to 29% at the urban sites and from 31% to 66% at the suburban sites in the cold season. The PM measurements from ambient air and combustion experiments showed that the proportions of the three MAs can be utilised to separate the wildfire particles from residential wood combustion particles. (orig.)

  18. Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds.

    Science.gov (United States)

    Luna, Carlos; Chávez, V H G; Barriga-Castro, Enrique Díaz; Núñez, Nuria O; Mendoza-Reséndez, Raquel

    2015-04-15

    Given the upsurge of new technologies based on nanomaterials, the development of sustainable methods to obtain functional nanostructures has become an imperative task. In this matter, several recent researches have shown that the biodegradable natural antioxidants of several plant extracts can be used simultaneously as reducing and stabilizing agents in the wet chemical synthesis of metallic nanoparticles, opening new opportunities to design greener synthesis. However, the challenge of these new techniques is to produce stable colloidal nanoparticles with controlled particle uniformity, size, shape and aggregation state, in similar manner than the well-established synthetic methods. In the present work, colloidal metallic silver nanoparticles have been synthesized using silver nitrate and extracts of Illicium verum (star anise) seeds at room temperature in a facile one-step procedure. The resulting products were colloidal suspensions of two populations of silver nanoparticles, one of them with particle sizes of few nanometers and the other with particles of tens of nm. Strikingly, the variation of the AgNO3/extract weight ratio in the reaction medium yielded to the variation of the spatial distribution of the nanoparticles: high AgNO3/extract concentration ratios yielded to randomly dispersed particles, whereas for lower AgNO3/extract ratios, the biggest particles appeared coated with the finest nanoparticles. This biosynthesized colloidal system, with controlled particle aggregation states, presents plasmonic and SERS properties with potential applications in molecular sensors and nanophotonic devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Adding stimuli-responsive extensions to antifouling hairy particles

    NARCIS (Netherlands)

    Munoz Bonilla, Sandra; Herk, van A.M.; Heuts, J.P.A.

    2010-01-01

    The use of living block copolymers as stabilisers in emulsion polymerisation allowed preparation of multilayer functional hairy particles via surface-initiated ATRP. Polymer films prepared from the obtained particles present antifouling properties along with stimuli-responsive behaviour.

  20. The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes

    NARCIS (Netherlands)

    de Boer, B.; de Boer, B.; Gonzalez, M.; Gonzalez Cuenca, M.M.; Bouwmeester, Henricus J.M.; Verweij, H.

    2000-01-01

    The electrochemical performance of a porous nickel electrode with its surface modified by deposition with fine yttria-stabilised zirconia (YSZ) powder is compared with that of the ‘bare’ electrode. Image analysis of the electrode microstructure yields values for the triple phase boundary (TPB)

  1. Heavy metal pollution in sediment from Sisimiut, Greenland. Adsorption to organic matter and fine particles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Villumsen, Arne

    2006-01-01

    . The pollution could be linked to human activities in Sisimiut, a link that have not been investigated previously in Greenland. Except from the most polluted samples there was good correlation between heavy metal concentration and organic matter. Also some relation between fine fraction and heavy metal...

  2. Evaluation of fine ceramics raw powders with particle size analyzers having different measuring principle and its problem

    International Nuclear Information System (INIS)

    Hayakawa, Osamu; Nakahira, Kenji; Tsubaki, Junichiro.

    1995-01-01

    Many kinds of analyzers based on various principles have been developed for measuring particle size distribution of fine ceramics powders. But the reproducibility of the results, interchangeability of the models, reliability of the ends of the measured distribution have not been investigated for each principle. In this paper, these important points for particle size analysis were clarified by measuring raw material powders of fine ceramics. (1) in the case of laser diffraction and scattering method, the reproducibility in the same model is good, however, interchangeability of the different models is not so good, especially at the ends of the distribution. Submicron powders having high refractive index show such a tendency remarkably. (2) the photo sedimentation method has some problems to be conquered, especially in measuring submicron powders having high refractive index or flaky shape particles. The reproducibility of X-ray sedimentation method is much better than that of photo sedimentation. (3) the light obscuration and electrical sensing zone methods, show good reproducibility, however, sometime bad interchangeability is affected by calibration and so on. (author)

  3. Effect of shot peening using ultra-fine particles on fatigue properties of 5056 aluminum alloy under rotating bending

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Shoichi, E-mail: kikuchi@mech.kobe-u.ac.jp [Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo 657-8501 (Japan); Nakamura, Yuki [Department of Mechanical Engineering, National Institute of Technology, Toyota College, 2-1 Eisei-cho, Toyota-shi, Aichi 471-8525 (Japan); Nambu, Koichiro [Department of Mechanical Engineering, National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka-shi, Mie 510-0294 (Japan); Ando, Masafumi [Innovation Team, IKK SHOT Co. Ltd., 412-4, Nunowari, Minami-Shibata-machi, Tokai-shi, Aichi 476-0001 (Japan)

    2016-01-15

    Shot peening using particles 10 μm in diameter (ultra-fine particle peening: Ultra-FPP) was introduced to improve the fatigue properties of 5056 aluminum alloy. The surface microstructures of the Ultra-FPP treated specimens were characterized using a micro-Vickers hardness tester, scanning electron microscopy (SEM), X-ray diffraction (XRD), non-contact scanning white light interferometry, and electron backscatter diffraction (EBSD). The Ultra-FPP treated specimen had higher hardness than the conventional FPP treated specimen with a short nozzle distance due to the high velocity of the ultra-fine particles. Furthermore, the surface hardness of the Ultra-FPP treated specimen tended to increase as the peening time decreased. Fatigue tests were performed in air at room temperature using a cantilever-type rotating bending fatigue testing machine. It was found that the fatigue life of the Ultra-FPP treated specimen tended to increase with decreasing peening time. Mainly, the Ultra-FPP improved the fatigue properties of 5056 aluminum alloy in the very high cycle regime of more than 10{sup 7} cycles compared with the un-peened specimens. This is because the release of the compressive residual stress is small during fatigue tests at low stress amplitudes.

  4. DMC-grafted cellulose as green-based flocculants for agglomerating fine kaolin particles

    Directory of Open Access Journals (Sweden)

    Meng Li

    2018-04-01

    Full Text Available Novel cellulose based flocculants C-g-P (DMC with various chain architectures are synthesized through a situ graft copolymerization. The cationic ammonium chloride group (DMC is grafted onto cellulose by two separate inverse emulsion polymerization with γ-methacryloxypropyl trimethoxy silane (KH-570 and double bond addition reactions, which is a new and simple method to employ KH-570 as a bridge for the connection of cellulose matrix and DMC group. The effects of pH, flocculant dose, standing time on turbidity of kaolin suspensions and particle sizes have been studied systematically. In addition, the response surface methodology (RSM study confirms that PAC and C-g-P (DMC have synergy in turbidity removal with a higher removal efficiency of 98.32%. Moreover, C-g-P (DMC 1 has higher removal efficiency with 96.5% at a low dosage of 0.6 mg L−1 and better floc properties than C-g-P (DMC 2 and C-g-P (DMC 3, suggesting that the length and quantity of cationic branch chains play a crucial role in Kaolin flocculation due to their dramatically enhanced bridging effects. Keywords: Cellulose, Cationic flocculant, Inverse emulsion polymerization, Kaolin suspension

  5. Ionospheric response to particle precipitation within aurora

    International Nuclear Information System (INIS)

    Wahlund, J.E.

    1992-03-01

    The aurora is just the visible signature of a large number of processes occurring in a planetary ionosphere as a response to energetic charged particles falling in from the near-empty space far above the planetary atmosphere. This thesis, based on measurements using the EISCAT incoherent scatter radar system in northern Scandinavia, discusses ionospheric response processes and especially a mechanism leading to atmospheric gas escape from a planet. One of the most spectacular events in the high latitude atmosphere on earth are the 'auroral arcs' - dynamic rayed sheets of light. An investigation of the conditions of the ionosphere surrounding auroral arcs shows that strong field-aligned bulk ion outflows appear in the topside ionosphere which account for a large fraction of the escape of atmospheric oxygen from earth. Four different additional ionospheric responses are closely related to this ion outflow; 1. enhanced electron temperatures of several thousand Kelvin above an altitude of about 250 km, 2. enhanced ionization around an altitude of 200 km corresponding to electron precipitation with energies of a few hundred eV, 3. the occurrence of naturally enhanced ion acoustic fluctuations seen in the radar spectrum, most likely produced by an ion-ion two-stream instability, and 4. upward directed field-aligned currents partly carried by the outflowing ions. From these observations, it is suggested that the energy dissipation into the background plasma through Joule heating, the production of a few hundred eV energetic run-away electrons, and strong ion outflows are partly produced by the simultaneous presence of ion acoustic turbulence and field-aligned currents above auroral arcs. (20 refs.) (au)

  6. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models

    Directory of Open Access Journals (Sweden)

    S. Song

    2018-05-01

    Full Text Available pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in northern China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic to as high as 7 (neutral. In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol-phase composition as inputs (i.e., reverse mode are sensitive to the measurement errors of ionic species, and inferred pH values exhibit a bimodal distribution, with peaks between −2 and 2 and between 7 and 10, depending on whether anions or cations are in excess. Calculations using total (gas plus aerosol phase measurements as inputs (i.e., forward mode are affected much less by these measurement errors. In future studies, the reverse mode should be avoided whereas the forward mode should be used. Forward-mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5 for fine particles in northern China winter haze, indicating further that ammonia plays an important role in determining this property. The assumed particle phase state, either stable (solid plus liquid or metastable (only liquid, does not significantly impact pH predictions. The unrealistic pH values of about 7 in a few previous studies (using the standard ISORROPIA model and stable state assumption resulted from coding errors in the model, which have been identified and fixed in this study.

  7. Formation and emission of fine particles from two coal-fired power plants

    DEFF Research Database (Denmark)

    Nielsen, M.T.; Livbjerg, H.; Fogh, C.L.

    2002-01-01

    , before the desulfurisation plant, and in the stack. The following sampling techniques are used: scanning mobility particle sizer, low pressure cascade impactor, dichotomous PM2.5 sampler, and total particle filter. The so-called multi-platform method used in this work Proves useful for gaining insight...

  8. Detecting charging state of ultra-fine particles: instrumental development and ambient measurements

    Directory of Open Access Journals (Sweden)

    L. Laakso

    2007-01-01

    Full Text Available The importance of ion-induced nucleation in the lower atmosphere has been discussed for a long time. In this article we describe a new instrumental setup – Ion-DMPS – which can be used to detect contribution of ion-induced nucleation on atmospheric new particle formation events. The device measures positively and negatively charged particles with and without a bipolar charger. The ratio between "charger off" to "charger on" describes the charging state of aerosol particle population with respect to equilibrium. Values above one represent more charges than in an equilibrium (overcharged state, and values below unity stand for undercharged situation, when there is less charges in the particles than in the equilibrium. We performed several laboratory experiments to test the operation of the instrument. After the laboratory tests, we used the device to observe particle size distributions during atmospheric new particle formation in a boreal forest. We found that some of the events were clearly dominated by neutral nucleation but in some cases also ion-induced nucleation contributed to the new particle formation. We also found that negative and positive ions (charged particles behaved in a different manner, days with negative overcharging were more frequent than days with positive overcharging.

  9. Short-term Associations between Fine and Coarse Particulate Matter and Hospitalizations in Southern Europe: Results from the MED-PARTICLES Project

    Science.gov (United States)

    Samoli, Evangelia; Alessandrini, Ester; Cadum, Ennio; Ostro, Bart; Berti, Giovanna; Faustini, Annunziata; Jacquemin, Benedicte; Linares, Cristina; Pascal, Mathilde; Randi, Giorgia; Ranzi, Andrea; Stivanello, Elisa; Forastiere, Francesco

    2013-01-01

    Background: Evidence on the short-term effects of fine and coarse particles on morbidity in Europe is scarce and inconsistent. Objectives: We aimed to estimate the association between daily concentrations of fine and coarse particles with hospitalizations for cardiovascular and respiratory conditions in eight Southern European cities, within the MED-PARTICLES project. Methods: City-specific Poisson models were fitted to estimate associations of daily concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), ≤ 10 μm (PM10), and their difference (PM2.5–10) with daily counts of emergency hospitalizations for cardiovascular and respiratory diseases. We derived pooled estimates from random-effects meta-analysis and evaluated the robustness of results to co-pollutant exposure adjustment and model specification. Pooled concentration–response curves were estimated using a meta-smoothing approach. Results: We found significant associations between all PM fractions and cardiovascular admissions. Increases of 10 μg/m3 in PM2.5, 6.3 μg/m3 in PM2.5–10, and 14.4 μg/m3 in PM10 (lag 0–1 days) were associated with increases in cardiovascular admissions of 0.51% (95% CI: 0.12, 0.90%), 0.46% (95% CI: 0.10, 0.82%), and 0.53% (95% CI: 0.06, 1.00%), respectively. Stronger associations were estimated for respiratory hospitalizations, ranging from 1.15% (95% CI: 0.21, 2.11%) for PM10 to 1.36% (95% CI: 0.23, 2.49) for PM2.5 (lag 0–5 days). Conclusions: PM2.5 and PM2.5–10 were positively associated with cardiovascular and respiratory admissions in eight Mediterranean cities. Information on the short-term effects of different PM fractions on morbidity in Southern Europe will be useful to inform European policies on air quality standards. Citation: Stafoggia M, Samoli E, Alessandrini E, Cadum E, Ostro B, Berti G, Faustini A, Jacquemin B, Linares C, Pascal M, Randi G, Ranzi A, Stivanello E, Forastiere F, the MED-PARTICLES Study Group. 2013. Short

  10. Physical properties and structure of fine core-shell particles used as packing materials for chromatography Relationships between particle characteristics and column performance.

    Science.gov (United States)

    Gritti, Fabrice; Leonardis, Irene; Abia, Jude; Guiochon, Georges

    2010-06-11

    The recent development of new brands of packing materials made of fine porous-shell particles, e.g., Halo and Kinetex, has brought great improvements in potential column efficiency, demanding considerable progress in the design of chromatographic instruments. Columns packed with Halo and Kinetex particles provide minimum values of their reduced plate heights of nearly 1.5 and 1.2, respectively. These packing materials have physical properties that set them apart from conventional porous particles. The kinetic performance of 4.6mm I.D. columns packed with these two new materials is analyzed based on the results of a series of nine independent and complementary experiments: low-temperature nitrogen adsorption (LTNA), scanning electron microscopy (SEM), inverse size-exclusion chromatography (ISEC), Coulter counter particle size distributions, pycnometry, height equivalent to a theoretical plate (HETP), peak parking method (PP), total pore blocking method (TPB), and local electrochemical detection across the column exit section (LED). The results of this work establish links between the physical properties of these superficially porous particles and the excellent kinetic performance of columns packed with them. It clarifies the fundamental origin of the difference in the chromatographic performances of the Halo and the Kinetex columns. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1-3

    Science.gov (United States)

    Kinsey, John S.; Dong, Yuanji; Williams, D. Craig; Logan, Russell

    2010-06-01

    The fine particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine for PM mass and number concentration, particle size distribution, and total volatile matter using both time-integrated and continuous sampling techniques. The experimental results showed a PM mass emission index (EI) ranging from 10 to 550 mg kg -1 fuel depending on engine type and test parameters as well as a characteristic U-shaped curve of the mass EI with increasing fuel flow for the turbofan engines tested. Also, the Teflon filter sampling indicated that ˜40-80% of the total PM mass on a test-average basis was comprised of volatile matter (sulfur and organics) for most engines sampled. The number EIs, on the other hand, varied from ˜10 15 to 10 17 particles kg -1 fuel with the turbofan engines exhibiting a logarithmic decay with increasing fuel flow. Finally, the particle size distributions of the emissions exhibited a single primary mode that were lognormally distributed with a minor accumulation mode also observed at higher powers for all engines tested. The geometric (number) mean particle diameter ranged from 9.4 to 37 nm and the geometric standard deviation ranged from 1.3 to 2.3 depending on engine type, fuel flow, and test conditions.

  12. Single-particle effects in fine structure of super-asymmetric fission

    International Nuclear Information System (INIS)

    Mirea, M.

    1999-01-01

    Energy spectrum measurements concerning the 14 C decay from 223 Ra revealed a fine structure with an intense branch on the excited state of the daughter 209 Pb. Apart the great number of microscopic--macroscopic attempts of different authors in describing this behavior (compiled recently), this phenomenon was explained quantitatively using the Landau--Zener effect, i.e., the promotion mechanism of a unpaired nucleon between two levels characterised by the same quantum numbers connected to some symmetries of the nuclear system in the region where an avoided level crossing is exhibited. The adiabatic levels during the super-asymmetric fission process were determined with a new version of the two--centre shell model especially constructed for very large mass--asymmetries. The half--lives are obtained in the framework of the Wentzel--Kramers--Brillouin approximation. The amount of the variation of the barrier height in the excited channels was estimated accounting the specialization energy which can be interpreted as the excess of the energy of a nucleon with a given spin over the energy for the same spin nucleon state of lowest energy. It is evidenced that the fine structure of cluster decay is due to two competitive effects: the Landau--Zener effect which enhances the probability to have an excited daughter in the final channel and the specialization energy which increases the potential barrier and therefore leads to a diminution of the penetrability. This formalism was used for predictions of the fine structure in the case of 14 C decay of 225 Ac and to explain the fine structure of alpha decay. (author)

  13. Numerical Study of Particle Interaction in Gas-Particle and Liquid-Particle Flows: Part II Particle Response

    Directory of Open Access Journals (Sweden)

    K. Mohanarangam

    2009-09-01

    Full Text Available In this paper the numerical model, which was presented in the first paper (Mohanarangam & Tu; 2009 of this series of study, is employed to study the different particle responses under the influence of two carrier phases namely the gas and the liquid. The numerical model takes into consideration the turbulent behaviour of both the carrier and the dispersed phases, with additional equations to take into account the combined fluid particle behaviour, thereby effecting a two-way coupling. The first paper in this series showed the distinct difference in particulate response both at the mean as well as at the turbulent level for two varied carrier phases. In this paper further investigation has been carried out over a broad range of particle Stokes number to further understand their behaviour in turbulent environments. In order to carry out this prognostic study, the backward facing step geometry of Fessler and Eaton (1999 has been adopted, while the inlet conditions for the carrier as well as the particle phases correspond to that of the experiments of Founti and Klipfel (1998. It is observed that at the mean velocity level the particulate velocities increased with a subsequent increase in the Stokes number for both the GP (Gas-Particle as well as the LP (Liquid-Particle flow. It was also observed that across the Stokes number there was a steady increase in the particulate turbulence for the GP flows with successive increase in Stokes number. However, for the LP flows, the magnitude of the increase in the particulate turbulence across the increasing of Stokes number is not as characteristic as the GP flow. Across the same sections for LP flows the majority of the trend shows a decrease after which they remain more or less a constant.

  14. Exposure to carbon monoxide, fine particle mass, and ultrafine particle number in Jakarta, Indonesia: effect of commute mode.

    Science.gov (United States)

    Both, Adam F; Westerdahl, Dane; Fruin, Scott; Haryanto, Budi; Marshall, Julian D

    2013-01-15

    We measured real-time exposure to PM(2.5), ultrafine PM (particle number) and carbon monoxide (CO) for commuting workers school children, and traffic police, in Jakarta, Indonesia. In total, we measured exposures for 36 individuals covering 93 days. Commuters in private cars experienced mean (st dev) exposures of 22 (9.4) ppm CO, 91 (38) μg/m(3)PM(2.5), and 290 (150)×10(3) particles cm(-3). Mean concentrations were higher in public transport than in private cars for PM(2.5) (difference in means: 22%) and particle counts (54%), but not CO, likely reflecting in-vehicle particle losses in private cars owing to air-conditioning. However, average commute times were longer for private car commuters than public transport commuters (in our sample, 24% longer: 3.0 vs. 2.3 h per day). Commute and traffic-related exposures experienced by Jakarta residents are among the highest in the world, owing to high on-road concentrations and multi-hour commutes. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Preparation of nickel-based amorphous alloys with finely dispersed lead and lead-bismuth particles and their superconducting properties

    International Nuclear Information System (INIS)

    Inoue, A.; Oguchi, M.; Harakawa, Y.; Masumoto, T.; Matsuzaki, K.

    1986-01-01

    The application of the melt-quenching technique to Ni-Si-B-Pb, Ni-P-B-Pb, Ni-Si-B-Pb-Bi and Ni-P-B-Pb-Bi alloys containing immiscible elements such as lead and bismuth has been tried and it has been found to result in the formation of a new type of material consisting of fine fcc Pb or hcp epsilon(Pb-Bi) + bct X(Pb-Bi) particles dispersed uniformly in the nickel-based amorphous matrix. The particle size and interparticle distance were 1 to 3 and 1 to 4 μm, respectively, for the lead phase, and less than 0.2 to 0.5 μm and 0.2 to 1.0 μm for the Pb-Bi phase. The uniform dispersion of such fine particles into the amorphous matrix was achieved in the composition range below about 6 at% Pb and 7 at% (Pb+Bi). Additionally, these amorphous alloys have been found to exhibit a superconductivity by the proximity effect of fcc Pb or epsilon(Pb-Bi) superconducting particles. The transition temperature Tsub(c) was in the range 6.8 to 7.5 K for the Ni-Si (or P)-B-Pb alloys and 8.6 to 8.8 K for the Ni-Si (or P)-B-Pb-Bi alloys. The upper critical field Hsub(c2) and the critical current density Jsub(c) for (Nisub(0.8)Psub(0.1)Bsub(0.1)) 95 Pb 3 Bi 2 at 4.2 K were, respectively, about 1.6 T and of the order of 7 x 10 7 Am -2 at zero applied field. (author)

  16. Chemical compositions and sources of organic matter in fine particles of soils and sands from the vicinity of Kuwait city.

    Science.gov (United States)

    Rushdi, Ahmed I; Al-Zarban, Sheikha; Simoneit, Bernd R T

    2006-09-01

    Fine particles in the atmosphere from soil and sand resuspension contain a variety of organic compounds from natural biogenic and anthropogenic matter. Soil and sand samples from various sites near Kuwait city were collected, sieved to retain the fine particles, and extracted with a mixture of dichloromethane and methanol. The extracts were derivatized and analyzed by gas chromatography-mass spectrometry in order to characterize the chemical compositions and sources of the organic components. The major inputs of organic compounds were from both natural biogenic and anthropogenic sources in these samples. Vegetation was the major natural source of organic compounds and included n-alkanols, n-alkanoic acids, n-alkanes, sterols and triterpenoids. Saccharides had high concentrations (31-43%) in the sand dune and seafront samples, indicating sources from decomposed vegation materials and/or the presence of viable microbiota such as bacteria and fungi. Vehicular emission products, leakage of lubricating oils, discarded plastics and emissions from cooking operations were the major anthropogenic inputs in the samples from the urban areas. This input was mainly UCM, n-alkanes, hopanes, plasticizers and cholesterol, respectively.

  17. Evaluation of correlating factors between 238U concentration measured in fine and course atmospheric particles

    International Nuclear Information System (INIS)

    Peixoto, Claudia Marques; Jacomino, Vanusa Maria Feliciano; Barreto, Alberto Avelar; Dias, Vagner Silva; Dias, Fabiana Ferrari

    2009-01-01

    Air quality is ever more important in function of the enormous proportion of human actions that have affected the environment over the last two centuries. Particulate material is one among many pollutants that can cause great risk to human health and the environment. It can be classified as: Total Suspended Particles (TSP), defined simply as particles with less than 50 μm aerodynamic diameter (one group of these particles can be inhaled and may cause health problems, while others may unfavorably affect the population's quality of life, interfering in environmental conditions and impairing normal community activities); and Inhalable Particles (PM 10 ), defined as those particles with less than 10 μm aerodynamic diameter. These particles penetrate the respiratory system and can reach pulmonary alveoli due to their small size, causing serious health damage. The Nuclear Technology Development Center (CDTN) has monitored air quality around its installations since 2000. CDTN's Environmental Monitoring Program (EMP) includes monitoring radioactivity levels contained in atmospheric TSP. In order to optimize its program, CDTN is carrying out a study to estimate the correlation between concentrations of particulate material measured in TSP and those measured in PM 10 , PI 2.5 and PI 1 , as well as determination of activity concentration for each controlled radionuclide in all parts. The objective of this study is to present preliminary results and report 238 U activity concentration results. (author)

  18. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt

    2002-08-15

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  19. Chemical characterzation of fine particle emissions from the fireplace combustion of woods grown in the Southern United States.

    Science.gov (United States)

    Fine, Philip M; Cass, Glen R; Simoneit, Bernd R T

    2002-04-01

    The fireplace combustion of wood is a significant and largely unregulated source of fine particle pollution in the United States. Source apportionment techniques that use particulate organic compounds as tracers have been successful in determining the contribution of wood smoke to ambient fine particle levels in specific areas in California. To apply these techniques to the rest of the United States, the differences in emissions profiles between different wood smoke sources and fuel types should be resolved. To this end, a series of fireplace source tests was conducted on six fuel wood species found in the Southern United States to determine fine particulate emission factors for total mass, ionic and elemental species, elemental and organic carbon, and over 250 individual organic compounds. The wood species tested, chosen for their high abundance and availability in the Southern U.S. region, were yellow poplar, white ash, sweetgum, mockernut hickory, loblolly pine, and slash pine. The differences in the emissions of compounds such as substituted phenols and resin acids help to distinguish between the smoke from hardwood and softwood combustion. Levoglucosan, a cellulose pyrolysis product which may serve as a tracer for wood smoke in general, was quantified in the emissions from all the wood species burned. The furofuran lignan, yangambin, which was emitted in significant quantities from yellow poplar combustion and not detected in any of the other North American wood smokes, is a potential species-specific molecular tracer which may be useful in qualitatively identifying particulate emissions from a specific geographical area where yellow poplar is being burned.

  20. A two-stage treatment for Municipal Solid Waste Incineration (MSWI) bottom ash to remove agglomerated fine particles and leachable contaminants.

    Science.gov (United States)

    Alam, Qadeer; Florea, M V A; Schollbach, K; Brouwers, H J H

    2017-09-01

    In this lab study, a two-stage treatment was investigated to achieve the valorization of a municipal solid waste incineration (MSWI) bottom ash fraction below 4mm. This fraction of MSWI bottom ash (BA) is the most contaminated one, containing potentially toxic elements (Cu, Cr, Mo and Sb), chlorides and sulfates. The BA was treated for recycling by separating agglomerated fine particles (≤125µm) and soluble contaminants by using a sequence of sieving and washing. Initially, dry sieving was performed to obtain BA-S (≤125µm), BA-M (0.125-1mm) and BA-L (1-4mm) fractions from the original sample. The complete separation of fine particles cannot be achieved by conventional sieving, because they are bound in a cementitious matrix around larger BA grains. Subsequently, a washing treatment was performed to enhance the liberation of the agglomerated fine particles from the BA-M and BA-L fractions. These fine particles were found to be similar to the particles of BA-S fraction in term of chemical composition. Furthermore, the leaching behavior of Cr, Mo Sb, chlorides and sulfates was investigated using various washing parameters. The proposed treatment for the separation of agglomerated fine particles with dry sieving and washing (L/S 3, 60min) was successful in bringing the leaching of contaminants under the legal limit established by the Dutch environmental norms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Pollution characteristics and source of the atmospheric fine particles and secondary inorganic compounds at Mount Dinghu in autumn season].

    Science.gov (United States)

    Liu, Zi-Rui; Wang, Yue-Si; Liu, Quan; Liu, Lu-Ning; Zhang, De-Qiang

    2011-11-01

    Real-time measurements of PM2.5, secondary inorganic compounds in PM2.5 (SO4(2-), NH4(+), and NO3(-)) and related gaseous pollutants were conducted at Mount Dinghu, a regional background station of the Pearl River Delta (PRD), in October and November 2008 by using a conventional R&P TEOM and a system of rapid collection of fine particles and ion chromatography (RCFP-IC). Sources and transportation of atmospheric particles during the experiment were discussed with principal component analysis and backward trajectories calculated using HYSPLIT model. The average daily mass concentrations of PM2.5 were 76.9 microg x m(-3) during sampling period, and average daily mass concentrations of SO4(2-), NH4(+), and NO3(-) were 20.0 microg x m(-3), 6.8 microg x m(-3) and 2.6 microg x m(-3), respectively. The sum of these three secondary inorganic compounds accounted for more than one third of the PM2.5 mass concentration, which had become the major source of atmospheric fine particles at Mount Dinghu. The diurnal variation of PM2.5, SO4(2-), and NH4(+) all showed a "bimodal" distribution with two peaks appeared at 10:00 am and at 16:00 pm, respectively, whereas NO3(-s) howed "single peak" distribution peaked at 10:00 am. The mass concentrations of SO4(2-) in PM2.5 had the similar diurnal variation with that of SO2, SO4(2-) in PM2.5 was mainly transformed from SO2, whereas NO3(-) showed difference diurnal variation with that of NO2, and the second conversion rate of NO2 was far lower than that of SO2. NH4(+) in PM2.5 existed mainly in the form of sulfate, nitrate and chloride. Both of principal component analysis and back trajectory analysis showed that the variations of PM2.5 and secondary inorganic compounds at Mount Dinghu were mainly affected by the long-range transport air mass passed over Guangzhou, Huizhou and other highly industrialized areas which carried air pollutants to the observation site, at the same time local sulfate originated from secondary formation also

  2. Performance analysis of a new positron camera geometry for high speed, fine particle tracking

    Science.gov (United States)

    Sovechles, J. M.; Boucher, D.; Pax, R.; Leadbeater, T.; Sasmito, A. P.; Waters, K. E.

    2017-09-01

    A new positron camera arrangement was assembled using 16 ECAT951 modular detector blocks. A closely packed, cross pattern arrangement was selected to produce a highly sensitive cylindrical region for tracking particles with low activities and high speeds. To determine the capabilities of this system a comprehensive analysis of the tracking performance was conducted to determine the 3D location error and location frequency as a function of tracer activity and speed. The 3D error was found to range from 0.54 mm for a stationary particle, consistent for all tracer activities, up to 4.33 mm for a tracer with an activity of 3 MBq and a speed of 4 m · s-1. For lower activity tracers (mineral particles inside a two-inch hydrocyclone and a 142 mm diameter flotation cell. A detailed trajectory, inside the hydrocyclone, of a  -212  +  106 µm (10-1 MBq) quartz particle displayed the expected spiralling motion towards the apex. This was the first time a mineral particle of this size had been successfully traced within a hydrocyclone, however more work is required to develop detailed velocity fields.

  3. Capture Efficiency of Cooking-Related Fine and Ultrafine Particles by Residential Exhaust Hoods

    Energy Technology Data Exchange (ETDEWEB)

    Lunden, Melissa M.; Delp, William W.

    2014-06-05

    Effective exhaust hoods can mitigate the indoor air quality impacts of pollutant emissions from residential cooking. This study reports capture efficiencies (CE) measured for cooking generated particles for scripted cooking procedures in a 121-m3 chamber with kitchenette. CEs also were measured for burner produced CO2 during cooking and separately for pots and pans containing water. The study used four exhaust hoods previously tested by Delp and Singer (Environ. Sci. Technol., 2012, 46, 6167-6173). For pan-frying a hamburger over medium heat on the back burner, CEs for particles were similar to those for burner produced CO2 and mostly above 80percent. For stir-frying green beans in a wok (high heat, front burner), CEs for burner CO2 during cooking varied by hood and airflow: CEs were 34-38percent for low (51?68 L s-1) and 54?72percent for high (109?138 L s-1) settings. CEs for 0.3?2.0 ?m particles during front burner stir-frying were 3?11percent on low and 16?70percent on high settings. Results indicate that CEs measured for burner CO2 are not predictive of CEs of cooking-generated particles under all conditions, but they may be suitable to identify devices with CEs above 80percent both for burner combustion products and for cooking-related particles.

  4. Melt Adsorption as a Manufacturing Method for Fine Particles of Wax Matrices without Any Agglomerates.

    Science.gov (United States)

    Shiino, Kai; Fujinami, Yukari; Kimura, Shin-Ichiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2017-01-01

    We have focused on melt adsorption as manufacture method of wax matrices to control particles size of granules more easily than melt granulation. The purpose of present study was to investigate the possibility of identifying a hydrophobic material with a low melting point, currently used as a meltable binder of melt granulation, to apply as a novel carrier in melt adsorption. Glyceryl monostearate (GM) and stearic acid (SA) were selected as candidate hydrophobic materials with low melting points. Neusilin US2 (US2), with a particle diameter of around 100 µm was selected as a surface adsorbent, while dibasic calcium phosphate dihydrate (DCPD), was used as a non-adsorbent control to prepare melting granules as a standard for comparison. We prepared granules containing ibuprofen (IBU) by melt adsorption or melt granulation and evaluated the particle size, physical properties and crystallinity of granules. Compared with melt granulation using DCPD, melt adsorption can be performed over a wide range of 14 to 70% for the ratio of molten components. Moreover, the particle size; d50 of obtained granules was 100-200 µm, and these physical properties showed good flowability and roundness. The process of melt adsorption did not affect the crystalline form of IBU. Therefore, the present study has demonstrated for the first time that melt adsorption using a hydrophobic material, GM or SA, has the potential capability to control the particle size of granules and offers the possibility of application as a novel controlled release technique.

  5. Capture efficiency of cooking-related fine and ultrafine particles by residential exhaust hoods.

    Science.gov (United States)

    Lunden, M M; Delp, W W; Singer, B C

    2015-02-01

    Effective exhaust hoods can mitigate the indoor air quality impacts of pollutant emissions from residential cooking. This study reports capture efficiencies (CE) measured for cooking-generated particles for scripted cooking procedures in a 121-m3 chamber with kitchenette. CEs also were measured for burner produced CO2 during cooking and separately for pots and pans containing water. The study used four exhaust hoods previously tested by Delp and Singer (Environ. Sci. Technol., 2012, 46, 6167-6173). For pan-frying a hamburger over medium heat on the back burner, CEs for particles were similar to those for burner produced CO2 and mostly above 80%. For stir-frying green beans in a wok (high heat, front burner), CEs for burner CO2 during cooking varied by hood and airflow: CEs were 34-38% for low (51-68 l/s) and 54-72% for high (109-138 l/s) settings. CEs for 0.3-2.0 μm particles during front burner stir-frying were 3-11% on low and 16-70% on high settings. Results indicate that CEs measured for burner CO2 are not predictive of CEs of cooking-generated particles under all conditions, but they may be suitable to identify devices with CEs above 80% both for burner combustion products and for cooking-related particles. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  6. Replacement of fine particle purification filter of the PHT purification system - 15083

    International Nuclear Information System (INIS)

    Lee, D.S.

    2015-01-01

    The increase of chalk river unidentified deposit (CRUD), a particulate corrosion product in PHT (primary heat transport) system with increased operating years of a nuclear power plant causes: -) the problems of increased heavy water decomposition and deuterium formation reaction due to catalytic reaction with CRUD, -) damage to PHT pump seal due to a corrosion product, -) damage to fuel channel closure seal, and increased radiation exposure of workers due to elevated dose rate in steam generator water chamber. Wolsung unit 3 and 4 have replaced fine filter media in PHT purification system in phases reducing the pore size of the filter media (5 μm → 2 μm → 1 μm → 0.45 μm) to solve this problem. The phased replacement of fine filter media by the one with a smaller pore size reduced CRUD in PHT system significantly and also radiation dose rate in steam generator water chamber. Accordingly, many problems related to the aging of a plant (including increased radiation exposure of workers during outage, damage to mechanical seal of PHT pump) have been solved. (author)

  7. Effect of silica particle size on macrophage inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Toshimasa Kusaka

    Full Text Available Amorphous silica particles, such as nanoparticles (<100 nm diameter particles, are used in a wide variety of products, including pharmaceuticals, paints, cosmetics, and food. Nevertheless, the immunotoxicity of these particles and the relationship between silica particle size and pro-inflammatory activity are not fully understood. In this study, we addressed the relationship between the size of amorphous silica (particle dose, diameter, number, and surface area and the inflammatory activity (macrophage phagocytosis, inflammasome activation, IL-1β secretion, cell death and lung inflammation. Irrespective of diameter size, silica particles were efficiently internalized by mouse bone marrow-derived macrophages via an actin cytoskeleton-dependent pathway, and induced caspase-1, but not caspase-11, activation. Of note, 30 nm-1000 nm diameter silica particles induced lysosomal destabilization, cell death, and IL-1β secretion at markedly higher levels than did 3000 nm-10000 nm silica particles. Consistent with in vitro results, intra-tracheal administration of 30 nm silica particles into mice caused more severe lung inflammation than that of 3000 nm silica particles, as assessed by measurement of pro-inflammatory cytokines and neutrophil infiltration in bronchoalveolar lavage fluid of mice, and by the micro-computed tomography analysis. Taken together, these results suggest that silica particle size impacts immune responses, with submicron amorphous silica particles inducing higher inflammatory responses than silica particles over 1000 nm in size, which is ascribed not only to their ability to induce caspase-1 activation but also to their cytotoxicity.

  8. The influence of wind speed on airflow and fine particle transport within different building layouts of an industrial city.

    Science.gov (United States)

    Mei, Dan; Wen, Meng; Xu, Xuemei; Zhu, Yuzheng; Xing, Futang

    2018-04-20

    In atmospheric environment, the layout difference of urban buildings has a powerful influence on accelerating or inhibiting the dispersion of particle matters (PM). In industrial cities, buildings of variable heights can obstruct the diffusion of PM from industrial stacks. In this study, PM dispersed within building groups was simulated by Reynolds-averaged Navier-Stokes equations coupled Lagrangian approach. Four typical street building arrangements were used: (a) a low-rise building block with Height/base H/b = 1 (b = 20 m); (b) step-up building layout (H/b = 1, 2, 3, 4); (c) step-down building layout (H/b = 4, 3, 2, 1); (d) high-rise building block (H/b = 5). Profiles of stream functions and turbulence intensity were used to examine the effect of various building layouts on atmospheric airflow. Here, concepts of particle suspension fraction and concentration distribution were used to evaluate the effect of wind speed on fine particle transport. These parameters showed that step-up building layouts accelerated top airflow and diffused more particles into street canyons, likely having adverse effects on resident health. In renewal old industry areas, the step-down building arrangement which can hinder PM dispersion from high-level stacks should be constructed preferentially. High turbulent intensity results in formation of a strong vortex that hinders particles into the street canyons. It is found that an increase in wind speed enhanced particle transport and reduced local particle concentrations, however, it did not affect the relative location of high particle concentration zones, which are related to building height and layout. This study has demonstrated the height variation and layout of urban architecture affect the local concentration distribution of particulate matter (PM) in the atmosphere and for the first time that wind velocity has particular effects on PM transport in various building groups. The findings may have general implications in optimization

  9. Cement waste form development for ion-exchange resins and fine particles ILW of AREVA La Hague Reprocessing Plant

    International Nuclear Information System (INIS)

    Chartier, D.; Sanchez-Canet, J.; Avril, D.; Roussel, C.; Pineau, J.N.

    2015-01-01

    Wastes have been temporarily stored in dedicated silos in La Hague reprocessing plant. These wastes are to be retrieved in the near future and to be conditioned for final disposal. Some of these wastes are supposed to be encapsulated in cement matrix and, depending on the chemical composition of the waste streams, several projects are presently ongoing. The present article aims to focus on one amongst these cement encapsulation relevant projects, namely the conditioning of a mix of spent ion-exchange resins (from filtration of pool) and fine particles (insoluble fission products from spent fuel dissolution and Zircaloy and stainless steel fines from cladding shearing). The project, aims to retrieve these wastes from a silo, separate the resins and fine particles from the other waste (hulls and end pieces), in order to encapsulate the intermediate-level fines and resins in a cement matrix. The waste forms will be produced in AREVA's La Hague reprocessing plant, prior to being sent as intermediate-level waste to a long-term repository. The cement formulation developments were initially carried out at a small scale at C.E.A. Marcoule on surrogate wastes. One of the main issues that were considered was the chemical compatibility between waste and cement matrix. Indeed, swelling phenomena are sometimes reported when ion exchange resins are embedded in cement matrixes such as Portland cement. This kind of destructive phenomenon has been prevented by the use of cement containing a high amount of ground granulated blast furnace slag. The impact of the variability of ionic charge of the resins on the waste form's properties has also been addressed in order to comfort the results obtained on the reference ionic charge of resins NaNO 3 . Once the results obtained were satisfactory, intermediate scale and full scale tests were performed by AREVA. These tests have focused on adjusting the mixing process and controlling the thermal properties of the mix during setting

  10. Fine particle mass from the Diskus inhaler and Turbuhaler inhaler in children with asthma

    DEFF Research Database (Denmark)

    Bisgaard, H; Klug, B; Sumby, B S

    1998-01-01

    (1) from the 8 yr old children, respectively. Similar particle fractions from the Budesonide Turbuhaler were 35 (9), 21 (10) and 7 (5) from 4 yr old children and 30 (7), 32 (9) and 12 (6) from 8 yr old children. In conclusion, the Diskus inhaler provides an improved dose consistency through...

  11. Experimental investigation of acoustic agglomeration systems for fine particle control. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, D.T.; Lee, P.; Wegrzyn, J.; Chou, K.H.; Cheng, M.T.; Patel, S.

    1979-10-01

    The feasibility of using an acoustic agglomerator (AA) as a preconditioner in the upstream of conventional devices such as an electrostatic precipitator, a scrubber, a filter, or a cyclone are investigated. The objective is to agglomerate all finer particles into coarser ones in an acoustic agglomerator and then remove them more effectively by one of the conventional devices. Laboratory-scale experiments were performed using NH/sub 4/Cl and fly ash redispersed aerosols. Turbulence caused by intensive sound fields under standing-wave condition has been found to be extremely effective for aerosol agglomeration. The nature and the energy dissipation rate of the acoustic turbulence are determined by using hot-film (or hot-wire) anemometry and Fast Fourier Transform (FFT) data processing equipment. The root-mean-square turbulent velocity, which is directly proportional to acoustic agglomeration rate, is experimentally found to have a I/sup 1/2/(I: acoustic intensity) dependence, but is relatively independent of the acoustic frequency. The results obtained from this program show that acoustic agglomeration is effective as a particle pre-conditioner which can increase approximately one order of magnitude in mean particle diameter (2..mu..m ..-->.. 20..mu..m). As a flow-through standing wave device, it can be used to facilitate the removal of dust particles in a subsequent inertia base separation device.

  12. Ultrafine and Fine Particles and Hospital Admissions in Central Europe Results from the UFIREG Study

    Czech Academy of Sciences Publication Activity Database

    Lanzinger, S.; Schneider, A.; Breitner, S.; Stafoggia, M.; Erzen, I.; Dostál, Miroslav; Pastorková, Anna; Bastian, S.; Cyrys, J.; Zscheppang, A.; Kolodnitská, T.; Peters, A.

    2016-01-01

    Roč. 194, č. 10 (2016), s. 1233-1241 ISSN 1073-449X Institutional support: RVO:68378041 Keywords : ultrafine particles * particulate matter * hospital admissions * respiratory Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 13.204, year: 2016

  13. Detection of fine magnetic particles coated on a thread using an HTS-SQUID

    International Nuclear Information System (INIS)

    Kawagishi, K.; Itozaki, H.; Kondo, T.; Komori, K.; Koetitz, R.

    2004-01-01

    Polymer-coated magnetic particles, which contain superparamagnetic ferrite nanoparticles, were attached to a nylon thread of 0.35 mm in diameter and were detected by an HTS-SQUID. The length of the sample attached into the thread was within 3 mm and its interval was 30 mm. The particles were magnetized by a coil applied dc field or by a magnet of 1.4 T. The thread ran 2 mm under the SQUID with 20-100 mm/s of the rate. Signals of magnetic beads were detected and the peak-to-peak amplitude of the signals was directly proportional to the applied field and the weight of the magnetic particles. Obtained peak-to-peak amplitude for 20 ng of magnetite particles was 350 pT at 0.25 mT of applied dc field with noise of 18 pT, and estimated detection limit was 10 ng. S/N ratio was improved by the remanence measurement using the magnet and 5.8 ng of detection limit was obtained. This measurement has been proved to be promising for the continuous analysis of ultra dilute DNA solution

  14. Wastewater diffusive dilution and sedimentation of the fine contaminated particles for nonuniform flow in open channels

    Directory of Open Access Journals (Sweden)

    Lyapin Anton

    2018-01-01

    Full Text Available The influence of non-uniformity on mass transfer processes in open channels have been investigated under the action of urbanization factors. The study is related to the urgent problem of environmental degradation of water objects in urbanized areas. It is known that the water quality in the water objects depends on the manner in which the contaminants spread how they mix with the river water and diluted by it. The main results of the study consist of recommendations to incorporate non-uniformity factor to the calculation of diffusion dilution of wastewater and prediction of river processes. So the effect of the flow non-uniformity on the diffusion model of pollutants dilution and diffusion coefficient have been investigated. Formulas for the concentration profiles calculating and the average concentration of fine particulate matter in nonuniform gradually varied flow were presented. The deposition length of suspended contaminants were received, based on the hydraulic resistance laws of nonuniform gradually varied flow.

  15. Logarithmic contributions in the particle-mass ratio to the fine shift of S energy levels of hydrogen-like atoms in the fifth order in the fine-structure constant

    International Nuclear Information System (INIS)

    Boikova, N.A.; Kleshchevskaya, S.V.; Tyukhtyaev, Yu.N.; Faustov, R.N.

    2004-01-01

    A high-precision investigation of a logarithmic contribution in the particle-mass ratio to the fine shift of the S energy levels of hydrogen-like atoms from the exchange of a Coulomb photon is performed. It is shown that diagrams describing the exchange of one transverse photon and two Coulomb photons do not make such contributions

  16. Synthesis of AlN fine particles by surface corona discharge-CVD; Enmen corona hoden CVD ni yoru AlN biryushi no gosei

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y.; Chiba, S. [Hokkaido National Industrial Research Institute, Sapporo (Japan); Harima, K> ; Kondo, K.; Shinohara, K. [Hokkaido University, Sapporo (Japan)

    1994-09-15

    With an objective to improve insulating and heat dissipating substrates substituting for the conventional alumina substrates, discussions been given on synthesis of AlN fine particles by means of gaseous phase reaction between AlCl3 and NH3 using surface corona discharge as a reaction exciting source. AIN particles should be highly pure to acquire high-heat conductivity, and fine and uniform particles to obtain dense sinters at low temperatures. The particles obtained by using the present method were amorphous particles having nearly spherical form and smooth surface. The particle diameter depends on the initial concentration of AlCl3, and is proportional to 0.4 square of the concentration. Within the range in the present experiment, the diameters ranged from 208 nm to 431 nm. The particle diameter increased in proportion to 0.2 square of an average gas stagnating time within the plasma generating region. The particle size distribution consisted of highly uniform fine particles having the standard deviation at about the same degree as that in the conventional thermal CVD process. The alumina-based oxygen was removed completely by reduction due to graphite powder, but the re-oxidation during removal of the remaining graphite using combustion had oxygen remained at 7.4% by weight. 16 refs., 7 figs.

  17. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust

    International Nuclear Information System (INIS)

    Zhang, Haibo; Luo, Yongming; Makino, Tomoyuki; Wu, Longhua; Nanzyo, Masami

    2013-01-01

    Highlights: ► A continuous flow ultra-centrifugation method has been developed to obtain fine particles from polluted agricultural soil. ► Pollution source affected the heavy metal fractionation in size-fractions by changing soil particle properties. ► The iron oxides affected the distribution of lead species more than other metals in the smelter dust polluted particles. -- Abstract: The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (<1 μm, <0.6 μm and <0.2 μm) of the submicron particles from the soil polluted by wastewater and smelter dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of <1 μm or less were observed in the soil contaminated by wastewater than by smelter dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessblity of the metals as well as the mobility of the fine particles in soil

  18. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibo, E-mail: hbzhang@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Makino, Tomoyuki [National Institute for Agro-Environmental Sciences, Tsukuba 3058604 (Japan); Wu, Longhua [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Nanzyo, Masami [Tohoku University, Sendai 9808576 (Japan)

    2013-03-15

    Highlights: ► A continuous flow ultra-centrifugation method has been developed to obtain fine particles from polluted agricultural soil. ► Pollution source affected the heavy metal fractionation in size-fractions by changing soil particle properties. ► The iron oxides affected the distribution of lead species more than other metals in the smelter dust polluted particles. -- Abstract: The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (<1 μm, <0.6 μm and <0.2 μm) of the submicron particles from the soil polluted by wastewater and smelter dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of <1 μm or less were observed in the soil contaminated by wastewater than by smelter dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessblity of the metals as well as the mobility of the fine particles in soil.

  19. Sources of organic compounds in fine soil and sand particles during winter in the metropolitan area of Riyadh, Saudi Arabia.

    Science.gov (United States)

    Rushdi, Ahmed I; Al-Mutlaq, Khalid; Simoneit, Bernd R T

    2005-11-01

    Major advances have been made in molecular marker analysis to distinguish between natural and anthropogenic organic matter inputs to the atmosphere. Resuspension of soil and sand by wind is one of the major mechanisms that produces particle dusts in the atmosphere. Soil and sand samples from the Riyadh area were collected in winter 2002, sieved to remove coarse particles and extracted with a mixture of dichloromethane and methanol (3:1, v:v). The total extracts were analyzed by gas chromatography-mass spectrometry in order to characterize the contents and identify the potential sources of the organic components. The major organic compounds of these extracts were derived from natural biogenic and anthropogenic sources. Organic compounds from natural sources, mainly vegetation, were major in samples from outside the city of Riyadh and included n-alkanes, n-alkanoic acids, n- alkanols, methyl alkanoates, and sterols. Anthropogenic inputs were significant in the fine particles of soil and sand samples collected from populated areas of the city. They consisted mainly of n-alkanes, hopanes, UCM (from vehicular emissions), and plasticizers (from discarded plastics, e.g., shopping bags). Carbohydrates had high concentrations in all samples and indicate sources from decomposed cellulose fibers and/or the presence of viable microbiota such as bacteria and fungi.

  20. Estimation of Fine and Oversize Particle Ratio in a Heterogeneous Compound with Acoustic Emissions

    Directory of Open Access Journals (Sweden)

    Ejay Nsugbe

    2018-03-01

    Full Text Available The final phase of powder production typically involves a mixing process where all of the particles are combined and agglomerated with a binder to form a single compound. The traditional means of inspecting the physical properties of the final product involves an inspection of the particle sizes using an offline sieving and weighing process. The main downside of this technique, in addition to being an offline-only measurement procedure, is its inability to characterise large agglomerates of powders due to sieve blockage. This work assesses the feasibility of a real-time monitoring approach using a benchtop test rig and a prototype acoustic-based measurement approach to provide information that can be correlated to product quality and provide the opportunity for future process optimisation. Acoustic emission (AE was chosen as the sensing method due to its low cost, simple setup process, and ease of implementation. The performance of the proposed method was assessed in a series of experiments where the offline quality check results were compared to the AE-based real-time estimations using data acquired from a benchtop powder free flow rig. A designed time domain based signal processing method was used to extract particle size information from the acquired AE signal and the results show that this technique is capable of estimating the required ratio in the washing powder compound with an average absolute error of 6%.

  1. Separation and chemical characterization of finely-sized fly-ash particles

    International Nuclear Information System (INIS)

    Campbell, J.A.; Laul, J.C.; Nielson, K.K.; Smith, R.D.

    1978-01-01

    The concentrations of 43 major, minor, and trace elements were measured by x-ray fluorescence, atomic absorption, and instrumental neutron activation for nine well-defined size fractions, with mass median diameters of 0.5 μ to 50 μm, of fly ash from a western coal-fired steam plant. There was generally good agreement in concentrations of elements analyzed by more than one technique. Concentration profiles as a function of mean particle size were established for various elements. Based on the concentration profiles, the elements can be divided into three distinct groups. One group consists primarily of the volatile elements or elements partially volatilized during coal combustion (examples include As, Se, Zn, Ga, etc.), and their concentrations decrease with increasing particle size. A second group, which shows a minor or direct dependence on particle size, as in the case of Si, is apparently associated primarily with the fly-ash matrix. The last group of elements, which includes Ca, Sr, Y, and the rare earths, shows small changes in their concentration profiles with a maximum in concentration at approximately 5 μm. 6 tables, 6 figures

  2. Study of fine particles (PM2.5) during the dry-hot time in the Toluca city

    International Nuclear Information System (INIS)

    Rosendo G, V.; Aldape U, F.

    2007-01-01

    The first obtained results of the analysis of the fine fraction particulate material (PM 2.5 ) samples collected in the Toluca City are presented. The samples analyzed are part of a more extensive campaign that contemplates the low project the one which one carries out this work and that it integrates three climatic times (dry-hot, of rains and dry-cold time) with the purpose of investigating the events of contamination in one complete year. The obtained results correspond to the dry-hot time and its include mainly the database starting from which the temporal variation graphs were obtained, the correlations among elements and the enrichment factor, as well as a multiple correlation analysis. Additionally the gravimetry was measured. Its are not observed significant episodes, however, it was found an element of the traces order, little common in other atmospheric studies as it is arsenic. From the gravimetry it was deduced that the air quality standard of fine particle, it does not violate. (Author)

  3. The ozonolysis of primary aliphatic amines in single and multicomponent fine particles

    Science.gov (United States)

    Zahardis, J.; Geddes, S.; Petrucci, G. A.

    2007-10-01

    The oxidative processing by ozone of the particulate amines octadecylamine (ODA) and hexadecylamine (HDA) is reported. Ozonolysis of these amines resulted in strong NO2- and NO3- ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitro alkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3-(HNO3). For ozonized mixed particles containing ODA or HDA + oleic acid (OL), with pO3≥3×10-7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines) and stabilized Criegee intermediates (SCI) or secondary ozonides (for amides) from the fatty acid. The routes to amides via SCI and/or secondary ozonides was shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10-3 atm for 17 s). This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g. NO2, NO3), formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  4. Rock Magnetic Characterization of fine Particles from car Engines, Break pads and Tobacco: An Environmental Pilot Study

    Science.gov (United States)

    Herrero-Bervera, E.; Lopez, V. A.; Gerstnecker, K.; Swilley, B.

    2017-12-01

    Today, it is very well known that small magnetic particles are very harmful to the health of humans. For the first time we have conducted an environmental pilot study of fine magnetic particles on the island of Oahu, Hawaii, of particulate matter (pm) 60, pm=10, and pm= 2.5. In order to do a rock magnetic characterization we have preformed low field susceptibility versus temperature (k-T) experiments to determine the Curie points of small particles collected from exhaust pipes, as well as from brake pads of 4 different types of car engines using octane ratings of 85, 87 and 92. The Curie point determinations are very well defined and range from 292 °C through 393 °C to 660 °C. In addition, we have conducted magnetic granulometry experiments on raw tobacco, burnt ashes as well as on car engines and brake pads in question. The results of the experiments show ferro- and ferrimagnetic hysteresis loops with magnetic grain sizes ranging from superparamagnetic-multidomain (SP_MD), multi-domain (MD) and pseudo-single domain (PSD) shown on the modified Day et al. diagram of Dunlop (2002). Thus far, the results we have obtained from this pilot study are in agreement with other studies conducted from cigarette ashes from Bulgaria (Jordanova et al., 2005). Our results could be correlated to the traffic-related PM in Rome, Italy where the SP fraction mainly occurs as coating of MD particles that originated by localized stress in the oxidized outer shell surrounding the unoxidized core of magnetite like grains as published by Sagnotti and Winkler (2012).

  5. HONO and Inorganic Fine Particle Composition in Typical Monsoon Region with Intensive Anthropogenic Emission: In-situ Observations and Source Identification.

    Science.gov (United States)

    Xie, Y.; Nie, W.; Ding, A.; Huang, X.

    2015-12-01

    Yangtze River Delta (YRD) is one of the most typical monsoon area with probably the most largest population intensity in the world. With sharply economic development and the large anthropogenic emissions, fine particle pollution have been one of the major air quality problem and may further have impact on the climate system. Though a lot of control policy (sulfur emission have been decreasing from 2007) have been conducted in the region, studies showed the sulfate in fine particles still take major fraction as the nitrate from nitrogen oxides increased significantly. In this study, the role of inorganic chemical compositions in fine particles was investigated with two years in-situ observation. Sulfate and Nitrate contribute to fine particle mass equally in general, but sulfate contributes more during summer and nitrate played more important role in winter. Using lagrangian dispersion backward modeling and source contribution clustering method, the impact of airmass coming from different source region (industrial, dust, biogenic emissions, etc) on fine particle inorganic compositions were discussed. Furthermore, we found two unique cases showing in-situ implications for sulfate formation by nitrogen dioxide oxidation mechanisms. It was showed that the mixing of anthropogenic pollutants with long-range transported mineral dust and biomass burning plume would enhance the sulfate formation by different chemistry mechanisms. This study focus on the complex aspects of fine particle formation in airmasses from different source regions: . It highlights the effect of NOx in enhancing the atmospheric oxidization capacity and indicates a potentially very important impact of increasing NOx on air pollution formation and regional climate change in East Asia.

  6. Fine particles from Independence Day fireworks events: chemical characterization and source apportionment

    Science.gov (United States)

    Zhang, J.; Lance, S.; Freedman, J. M.; Yele, S.; Crandall, B.; Wei, X.; Schwab, J. J.

    2017-12-01

    To study the impact of fireworks (FW) events on air quality, aerosol particles from FW displays were measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and collocated instruments during the Independence Day holiday 2017 in Albany, NY. Three FW events were identified through potassium ion (K+) signals in the mass spectra. The largest FW event signal measured at two different locations was the Independence Day celebration in Albany, with maximum aerosol concentrations of about 55 ug/m3 at the downtown site and 35 ug/m3 at the uptown site. The aerosol concentration peaked at the uptown site about 2 hours later than at the downtown site. FW events resulted in significant increases in both organic and inorganic (K+, sulfate, chloride) compounds. Among the organics, Positive Matrix Factorization (PMF) identified one special FW organic aerosol factor (FW-OA), which was highly oxidized. The intense emission of FW particles from the Independence Day celebration contributed 76% of total PM1 at the uptown site. The aerosol and wind LiDAR measurements showed two distinct pollution sources, one from the Independence Day FW event in Albany, and another aerosol source transported from other areas, potentially associated with other town's FW events.

  7. Theoretical modeling of fine-particle deposition in 3-dimensional bronchial bifurcations

    International Nuclear Information System (INIS)

    Shaw, D.T.; Rajendran, N.; Liao, N.S.

    1978-01-01

    A theoretical model is developed for the prediction of the peak to average particle deposition flux in the human bronchial airways. The model involves the determination of the peak flux by a round-nose 2-dimensional bifurcation channel and the average deposition flux by a curved-tube model. The ''hot-spot'' effect for all generations in the human respiratory system is estimated. Hot spots are usually associated with the sites of bronchoconstriction or even chronic bronchitis and lung cancer. Recent studies indicate that lung cancer in smokers may be caused by the deposition of radioactive particles produced by the burning of tobacco leaves. High local concentrations of Po-210 have been measured in epithelium from bronchial bifurcations of smokes. This Po-210 is the radioactive daughter of Pb-210 which is produced from a long chain of radioactive decay starting from uranium in the fertilizer-enriched soil. It is found that the peak deposition flux is higher than the average deposition flux by a factor ranging between 5 and 30, depending on the generation number. The importance of this peak to average deposition flux ratio on consideration of environmental safety studies is discussed

  8. Association of Ambient Fine Particles With Out-of-Hospital Cardiac Arrests in New York City

    Science.gov (United States)

    Silverman, Robert A.; Ito, Kazuhiko; Freese, John; Kaufman, Brad J.; De Claro, Danilynn; Braun, James; Prezant, David J.

    2010-01-01

    Cardiovascular morbidity has been associated with particulate matter (PM) air pollution, although the relation between pollutants and sudden death from cardiac arrest has not been established. This study examined associations between out-of-hospital cardiac arrests and fine PM (of aerodynamic diameter ≤2.5 μm, or PM2.5), ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide in New York City. The authors analyzed 8,216 out-of-hospital cardiac arrests of primary cardiac etiology during the years 2002–2006. Time-series and case-crossover analyses were conducted, controlling for season, day-of-week, same-day, and delayed/apparent temperature. An increased risk of cardiac arrest in time-series (relative risk (RR) = 1.06, 95% confidence interval (CI): 1.02, 1.10) and case-crossover (RR = 1.04, 95% CI: 0.99, 1.08) analysis for a PM2.5 increase of 10 μg/m3 in the average of 0- and 1-day lags was found. The association was significant in the warm season (RR = 1.09, 95% CI: 1.03, 1.15) but not the cold season (RR = 1.01, 95% CI: 0.95, 1.07). Associations of cardiac arrest with other pollutants were weaker. These findings, consistent with studies implicating acute cardiovascular effects of PM, support a link between PM2.5 and out-of-hospital cardiac arrests. Since few individuals survive an arrest, air pollution control may help prevent future cardiovascular mortality. PMID:20729350

  9. Response of fine particulate matter concentrations to changes of emissions and temperature in Europe

    Directory of Open Access Journals (Sweden)

    A. G. Megaritis

    2013-03-01

    Full Text Available PMCAMx-2008, a three dimensional chemical transport model (CTM, was applied in Europe to quantify the changes in fine particle (PM2.5 concentration in response to different emission reductions as well as to temperature increase. A summer and a winter simulation period were used, to investigate the seasonal dependence of the PM2.5 response to 50% reductions of sulfur dioxide (SO2, ammonia (NH3, nitrogen oxides (NOx, anthropogenic volatile organic compounds (VOCs and anthropogenic primary organic aerosol (POA emissions and also to temperature increases of 2.5 and 5 K. Reduction of NH3 emissions seems to be the most effective control strategy for reducing PM2.5, in both periods, resulting in a decrease of PM2.5 up to 5.1 μg m−3 and 1.8 μg m−3 (5.5% and 4% on average during summer and winter respectively, mainly due to reduction of ammonium nitrate (NH4NO3 (20% on average in both periods. The reduction of SO2 emissions decreases PM2.5 in both periods having a significant effect over the Balkans (up to 1.6 μg m−3 during the modeled summer period, mainly due to decrease of sulfate (34% on average over the Balkans. The anthropogenic POA control strategy reduces total OA by 15% during the modeled winter period and 8% in the summer period. The reduction of total OA is higher in urban areas close to its emissions sources. A slight decrease of OA (8% in the modeled summer period and 4% in the modeled winter period is also predicted after a 50% reduction of VOCs emissions due to the decrease of anthropogenic SOA. The reduction of NOx emissions reduces PM2.5 (up to 3.4 μg m−3 during the summer period, due to a decrease of NH4NO3, causing although an increase of ozone concentration in major urban areas and over Western Europe. Additionally, the NOx control strategy actually increases PM2.5 levels during the winter period, due to more oxidants becoming available to react with SO2 and VOCs. The increase of temperature results in a decrease of PM2

  10. Changes in the surface electronic states of semiconductor fine particles induced by high energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Tetsuya; Asai, Keisuke; Ishigure, Kenkichi [Tokyo Univ. (Japan); Shibata, Hiromi

    1997-03-01

    The changes in the surface electronic states of Q-sized semiconductor particles in Langmuir-Blodgett (LB) films, induced by high energy ion irradiation, were examined by observation of ion induced emission and photoluminescence (PL). Various emission bands attributed to different defect sites in the band gap were observed at the initial irradiation stage. As the dose increased, the emissions via the trapping sites decreased in intensity while the band-edge emission developed. This suggests that the ion irradiation would remove almost all the trapping sites in the band gap. The low energy emissions, which show a multiexponential decay, were due to a donor-acceptor recombination between the deeply trapped carriers. It was found that the processes of formation, reaction, and stabilization of the trapping sites would predominantly occur under the photooxidizing conditions. (author)

  11. Respiratory disease and particulate air pollution in Santiago Chile: contribution of erosion particles from fine sediments.

    Science.gov (United States)

    Garcia-Chevesich, Pablo A; Alvarado, Sergio; Neary, Daniel G; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-04-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. African Anthropogenic Combustion Emissions: Estimate of Regional Mortality Attributable to Fine Particle Concentrations in 2030

    Science.gov (United States)

    Liousse, C.; Roblou, L.; Assamoi, E.; Criqui, P.; Galy-Lacaux, C.; Rosset, R.

    2014-12-01

    Fossil fuel (traffic, industries) and biofuel (domestic fires) emissions of gases and particles in Africa are expected to significantly increase in the near future, particularly due to rapid growth of African cities and megacities. In this study, we will present the most recent developments of African combustion emission inventories, including African specificities. Indeed, a regional fossil fuel and biofuel inventory for gases and particulates described in Liousse et al. (2014) has been developed for Africa at a resolution of 0.25° x 0.25° for the years 2005 and 2030. For 2005, the original database of Junker and Liousse (2008) was used after modification for updated regional fuel consumption and emission factors. Two prospective inventories for 2030 are derived based on Prospective Outlook on Long-term Energy Systems (POLES) model (Criqui, 2001). The first is a reference scenario (2030ref) with no emission controls and the second is for a "clean" scenario (2030ccc*) including Kyoto policy and African specific emission control. This inventory predicts very large increases of pollutant emissions in 2030 (e.g. contributing to 50% of global anthropogenic organic particles), if no emission regulations are implemented. These inventories have been introduced in RegCM4 model. In this paper we will focus on aerosol modelled concentrations in 2005, 2030ref and 2030ccc*. Spatial distribution of aerosol concentrations will be presented with a zoom at a few urban and rural sites. Finally mortality rates (respiratory, cardiovascular) caused by anthropogenic PM2.5 increase from 2005 to 2030, calculated following Lelieveld et al. (2013), will be shown for each scenarios. To conclude, this paper will discuss the effectiveness of scenarios to reduce emissions, aerosol concentrations and mortality rates, underlining the need for further measurements scheduled in the frame of the new DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions) program.

  13. Influences of fireworks on chemical characteristics of atmospheric fine and coarse particles during Taiwan's Lantern Festival

    Science.gov (United States)

    Tsai, Hsieh-Hung; Chien, Li-Hsing; Yuan, Chung-Shin; Lin, Yuan-Chung; Jen, Yi-Hsiu; Ie, Iau-Ren

    2012-12-01

    In recent years, the celebration activities of various folk-custom festivals have been getting more and more attention from the citizens in Taiwan. Festivities throughout the whole island are traditionally accompanied by loud and brightly colored firework displays. Among these activities, the firework displays during Taiwan's Lantern Festival in Kaohsiung harbor is one of the largest festivals in Taiwan each year. Therefore, it is of importance to investigate the influence of fireworks displays on the ambient air quality during the Taiwan's Lantern Festival. Field measurements of atmospheric particulate matter (PM) were conducted on February 9th-11th, 2009 during Taiwan's Lantern Festival in Kaohsiung City. Moreover, three kinds of fireworks powders obtained from the same manufacturing factory producing Kaohsiung Lantern Festival fireworks were burned in a self-designed combustion chamber to determine the physicochemical properties of the fireworks' particles and to establish the source profile of firework burning. Several metallic elements of PM during the firework display periods were notably higher than those during the non-firework periods. The concentrations of Mg, K, Pb, and Sr in PM2.5 during the firework periods were 10 times higher than those during the non-firework periods. Additionally, the Cl-/Na+ ratio was approximately 3 during the firework display periods as Cl- came from the chlorine content of the firework powder. Moreover, the OC/EC ratio increased up to 2.8. Results obtained from PCA and CMB receptor modeling showed that major sources of atmospheric particles during the firework display periods in Kaohsiung harbor were fireworks, vehicular exhausts, soil dusts and marine sprays. Particularly, on February 10th, the firework displays contributed approximately 25.2% and 16.6% of PM10 at two downwind sampling sites, respectively.

  14. Important sources and chemical species of ambient fine particles related to adverse health effects

    Science.gov (United States)

    Heo, J.

    2017-12-01

    Although many epidemiological studies have reported that exposure to ambient fine particulate matter (PM2.5) has been linked to increases in mortality and mobidity health outcomes, the key question of which chemical species and sources of PM2.5 are most harmful to public health remains unanswered in the air pollution research area. This study was designed to address the key question with evaluating the risks of exposure to chemical species and source-specific PM2.5 mass on morbidity. Hourly measurements of PM2.5 mass and its major chemical species, including organic carbon, elemental carbon, ions, and trace elements, were observed from January 1 to December 31, 2013 at four of the PM2.5 supersites in urban environments in Korea and the reuslts were used in a positive matrix factorization to estimate source contributions to PM2.5 mass. Nine sources, including secondary sulfate, secondary nitrate, mobile, biomass burning, roadway emission, industry, oil combustion, soil, and aged sea salt, were identified and secondary inorganic aerosol factors (i.e. secondary sulfalte, and secondary nitrate) were the dominant sources contributing to 40% of the total PM2.5 mass in the study region. In order to evaluate the risks of exposure to chemical species and sources of PM2.5 on morbidity, emergency room visits for cardivascular disease and respiratory disease were considered. Hourly health outcomes were compared with hourly measurments of the PM2.5 chemical species and sources using a poission generalized linear model incorporating natural splines, as well as time-stratified case-crossover design. The PM2.5 mass and speveral chemical components, such as organic carbon, elemetal carbon, zinc, and potassium, were strongly associated with morbidity. Source-apporitionmened PM2.5 mass derived from biomass burning, and mobile sources, was significantly associated with cardiovascular and respiratory diseases. The findings represent that local combustion may be particularly important

  15. Sources and Chemical Composition of Atmospheric Fine Particles in Rabigh, Saudi Arabia

    Science.gov (United States)

    Nayebare, S. R.; Aburizaiza, O. S.; Siddique, A.; Hussain, M. M.; Zeb, J.; Khwaja, H. A.

    2014-12-01

    Air pollution research in Saudi Arabia and the whole of Middle East is at its inception, making air pollution in the region a significant problem. This study presents the first detailed data on fine particulate matter (PM2.5) concentrations of Black Carbon (BC), ions, and trace metals at Rabigh, Saudi Arabia, and assesses their sources. Results showed several characteristic aspects of air pollution at Rabigh. Daily levels of PM2.5 and BC showed significant temporal variability ranging from 12.2 - 75.9 µg/m3 and 0.39 - 1.31 µg/m3, respectively. More than 90% of the time, the daily PM2.5 exceeded the 24 h WHO guideline of 20 µg/m3. Sulfate, NO3-, and NH4+ dominated the identifiable components. Trace metals with significantly higher concentrations included Si, S, Ca, Al, Fe, Na, Cl, Mg, K, and Ti, with average concentrations of 3.1, 2.2, 1.6, 1.2, 1.1, 0.7, 0.7, 0.5, 0.4 and 0.1 µg/m3, respectively. Based on the Air Quality Index (AQI), there were 44% days of moderate air quality, 33% days of unhealthy air quality for sensitive groups, and 23% days of unhealthy air quality throughout the study period. Two categories of aerosol trace metal sources were defined: anthropogenic (S, V, Cr, Ni, Cu, Zn, Br, Cd, Sb, and Pb) and naturally derived elements (Si, Al, and Fe). The extent of anthropogenic contribution was estimated by the degree of enrichment of these elements compared to the crustal composition. Soil resuspension and/or mobilization is an important source of "natural" elements, while "anthropogenic" elements originate primarily from fossil fuel combustion and industries. Ni and V correlated strongly pointing to combustion of heavy fuel oil as the likely source. A positive matrix factorization (PMF) was used to obtain information about possible sources. Our study highlights the need for stringent laws on PM2.5 emission control to protect human health and the environment.

  16. Alpha-particle response characteristics of CR-39

    International Nuclear Information System (INIS)

    Abou El-Khier, A.A.; Gaber, M.; El-Khatib, A.M.; Fawzy, M.A.

    1987-01-01

    The form of the response curve of the polycarbonate CR-39 for α-particles at relatively low energies has been established. The investigation included measurements of both bulk- and track-etch rates. The latter was measured as a function of α-particle energies. (author)

  17. Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign

    Science.gov (United States)

    Guo, Hongyu; Liu, Jiumeng; Froyd, Karl D.; Roberts, James M.; Veres, Patrick R.; Hayes, Patrick L.; Jimenez, Jose L.; Nenes, Athanasios; Weber, Rodney J.

    2017-05-01

    pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2. 5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (CalNex) study from 15 May to 15 June 2010 in Pasadena, CA. Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to measured gas-particle partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard deviation PM1 pH was 1.9 ± 0.5 for the SO42--NO3--NH4+-HNO3-NH3 system. For PM2. 5, internal mixing of sea salt components (SO42--NO3--NH4+-Na+-Cl--K+-HNO3-NH3-HCl system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with PM2. 5 components. The results show little effect of sea salt on PM1 pH, but significant effects on PM2. 5 pH. A mean PM1 pH of 1.9 at Pasadena was approximately one unit higher than what we have reported in the southeastern US, despite similar temperature, relative humidity, and sulfate ranges, and is due to higher total nitrate concentrations (nitric acid plus nitrate) relative to sulfate, a situation where particle water is affected by semi-volatile nitrate concentrations. Under these conditions nitric acid partitioning can further promote nitrate formation by increasing aerosol water, which raises pH by dilution, further increasing nitric acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This study provides insights into the complex interactions between particle pH and nitrate in a summertime coastal environment and a contrast to recently reported pH in the eastern US in summer and winter and the eastern Mediterranean. All studies have consistently found highly acidic PM1 with pH generally below 3.

  18. Reduction of atmospheric fine particle level by restricting the idling vehicles around a sensitive area.

    Science.gov (United States)

    Lee, Yen-Yi; Lin, Sheng-Lun; Yuan, Chung-Shin; Lin, Ming-Yeng; Chen, Kang-Shin

    2018-07-01

    Atmospheric particles are a major problem that could lead to harmful effects on human health, especially in densely populated urban areas. Chiayi is a typical city with very high population and traffic density, as well as being located at the downwind side of several pollution sources. Multiple contributors for PM 2.5 (particulate matter with an aerodynamic diameter ≥2.5 μm) and ultrafine particles cause complicated air quality problems. This study focused on the inhibition of local emission sources by restricting the idling vehicles around a school area and evaluating the changes in surrounding atmospheric PM conditions. Two stationary sites were monitored, including a background site on the upwind side of the school and a campus site inside the school, to monitor the exposure level, before and after the idling prohibition. In the base condition, the PM 2.5  mass concentrations were found to increase 15% from the background, whereas the nitrate (NO 3 - ) content had a significant increase at the campus site. The anthropogenic metal contents in PM 2.5 were higher at the campus site than the background site. Mobile emissions were found to be the most likely contributor to the school hot spot area by chemical mass balance modeling (CMB8.2). On the other hand, the PM 2.5 in the school campus fell to only 2% after idling vehicle control, when the mobile source contribution reduced from 42.8% to 36.7%. The mobile monitoring also showed significant reductions in atmospheric PM 2.5 , PM 0.1 , polycyclic aromatic hydrocarbons (PAHs), and black carbon (BC) levels by 16.5%, 33.3%, 48.0%, and 11.5%, respectively. Consequently, the restriction of local idling emission was proven to significantly reduce PM and harmful pollutants in the hot spots around the school environment. The emission of idling vehicles strongly affects the levels of particles and relative pollutants in near-ground air around a school area. The PM 2.5 mass concentration at a campus site increased from

  19. PIXE identification of fine and coarse particles of aerosol samples and their distribution across Beirut

    Energy Technology Data Exchange (ETDEWEB)

    Roumie, M., E-mail: mroumie@cnrs.edu.lb [Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut (Lebanon); Saliba, N., E-mail: ns30@aub.edu.lb [Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut (Lebanon); Nsouli, B., E-mail: bnsouli@cnrs.edu.lb [Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut (Lebanon); Younes, M., E-mail: myriam_younis@hotmail.com [Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut (Lebanon); Noun, M., E-mail: manale_noun@hotmail.com [Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut (Lebanon); Massoud, R., E-mail: rm84@aub.edu.lb [Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut (Lebanon)

    2011-12-15

    This study is the first national attempt to assess the levels of PMs in Beirut city and consequently understand air pollution distribution. Aerosol sampling was carried out using three PM{sub 10} and three PM{sub 2.5} samplers which were installed at three locations lying along the SE-NW direction over Beirut. The sampling of PM{sub 10} and PM{sub 2.5} was done during a period extending from May till December 2009. The random collection of the particles (1 in 6 days) was carried out on Teflon filters, for a period of 24-h. The elemental analysis of particulate matter was performed using proton induced X-ray emission technique PIXE at the Lebanese 1.7 MV Tandem-Pelletron accelerator of Beirut. Na, Mg, Al, Si, P, S and Cl were quantified using 1 MeV proton beam, while K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb were determined using 3 MeV-energy of proton beam.

  20. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments

    International Nuclear Information System (INIS)

    Garcia-Chevesich, Pablo A.; Alvarado, Sergio; Neary, Daniel G.; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-01-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. - We emphasize the urgent need to implement erosion and sediment control politics in Santiago, to decrease PM10 concentrations in the city's air, based on the US experience

  1. Assessment of Psychophysiological Response and Specific Fine Motor Skills in Combat Units.

    Science.gov (United States)

    Sánchez-Molina, Joaquín; Robles-Pérez, José J; Clemente-Suárez, Vicente J

    2018-03-02

    Soldiers´ training and experience can influence the outcome of the missions, as well as their own physical integrity. The objective of this research was to analyze the psycho-physiological response and specific motor skills in an urban combat simulation with two units of infantry with different training and experience. psychophysiological parameters -Heart Rate, blood oxygen saturation, glucose and blood lactate, cortical activation, anxiety and heart rate variability-, as well as fine motor skills were analyzed in 31 male soldiers of the Spanish Army, 19 belonging to the Light Infantry Brigade, and 12 to the Heavy Forces Infantry Brigade, before and after an urban combat simulation. A combat simulation provokes an alteration of the psycho-physiological basal state in soldiers and a great unbalance in the sympathetic-vagal interaction. The specific training of Light Infantry unit involves lower metabolic, cardiovascular, and anxiogenic response not only previous, but mainly after a combat maneuver, than Heavy Infantry unit's. No differences were found in relation with fine motor skills, improving in both cases after the maneuver. This fact should be taken into account for betterment units´ deployment preparation in current theaters of operations.

  2. Chronic Exposure to Fine Particles and Mortality: An Extended Follow-up of the Harvard Six Cities Study from 1974 to 2009

    Science.gov (United States)

    Laden, Francine; Dockery, Douglas; Schwartz, Joel

    2012-01-01

    Background: Epidemiologic studies have reported associations between fine particles (aerodynamic diameter ≤ 2.5 µm; PM2.5) and mortality. However, concerns have been raised regarding the sensitivity of the results to model specifications, lower exposures, and averaging time. Objective: We addressed these issues using 11 additional years of follow-up of the Harvard Six Cities study, incorporating recent lower exposures. Methods: We replicated the previously applied Cox regression, and examined different time lags, the shape of the concentration–response relationship using penalized splines, and changes in the slope of the relation over time. We then conducted Poisson survival analysis with time-varying effects for smoking, sex, and education. Results: Since 2001, average PM2.5 levels, for all six cities, were < 18 µg/m3. Each increase in PM2.5 (10 µg/m3) was associated with an adjusted increased risk of all-cause mortality (PM2.5 average on previous year) of 14% [95% confidence interval (CI): 7, 22], and with 26% (95% CI: 14, 40) and 37% (95% CI: 7, 75) increases in cardiovascular and lung-cancer mortality (PM2.5 average of three previous years), respectively. The concentration–response relationship was linear down to PM2.5 concentrations of 8 µg/m3. Mortality rate ratios for PM2.5 fluctuated over time, but without clear trends despite a substantial drop in the sulfate fraction. Poisson models produced similar results. Conclusions: These results suggest that further public policy efforts that reduce fine particulate matter air pollution are likely to have continuing public health benefits. PMID:22456598

  3. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues.

    Science.gov (United States)

    Warheit, David B; Donner, E Maria

    2015-11-01

    The basic tenets for assessing health risks posed by nanoparticles (NP) requires documentation of hazards and the corresponding exposures that may occur. Accordingly, this review describes the range and types of potential human exposures that may result from interactions with titanium dioxide (TiO2) particles or NP - either in the occupational/workplace environment, or in consumer products, including food materials and cosmetics. Each of those applications has a predominant route of exposure. Very little is known about the human impact potential from environmental exposures to NP - thus this particular issue will not be discussed further. In the workplace or occupational setting inhalation exposure predominates. Experimental toxicity studies demonstrate low hazards in particle-exposed rats. Only at chronic overload exposures do rats develop forms of lung pathology. These findings are not supported by multiple epidemiology studies in heavily-exposed TiO2 workers which demonstrate a lack of correlation between chronic particle exposures and adverse health outcomes including lung cancer and noncancerous chronic respiratory effects. Cosmetics and sunscreens represent the major application of dermal exposures to TiO2 particles. Experimental dermal studies indicate a lack of penetration of particles beyond the epidermis with no consequent health risks. Oral exposures to ingested TiO2 particles in food occur via passage through the gastrointestinal tract (GIT), with studies indicating negligible uptake of particles into the bloodstream of humans or rats with subsequent excretion through the feces. In addition, standardized guideline-mandated subchronic oral toxicity studies in rats demonstrate very low toxicity effects with NOAELs of >1000 mg/kg bw/day. Additional issues which are summarized in detail in this review are: 1) Methodologies for implementing the Nano Risk Framework - a process for ensuring the responsible development of products containing nanoscale

  4. Re-evaluation of the Pressure Effect for Nucleation in Laminar Flow Diffusion Chamber Experiments with Fluent and the Fine Particle Model

    Czech Academy of Sciences Publication Activity Database

    Herrmann, E.; Hyvärinen, A.-P.; Brus, David; Lihavainen, H.; Kulmala, M.

    2009-01-01

    Roč. 113, č. 8 (2009), s. 1434-1439 ISSN 1089-5639 Institutional research plan: CEZ:AV0Z40720504 Keywords : laminar flow diffusion chamber * experimental data * fine particle model Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.899, year: 2009

  5. FREE AND COMBINED AMINO COMPOUNDS IN ATMOSPHERIC FINE PARTICLES (PM2.5) AND FOG WATERS FROM NORTHERN CALIFORNIA. (R825433)

    Science.gov (United States)

    Atmospheric fine particles (PM2.5) collected during August 1997–July 1998 and wintertime fog waters collected during 1997–1999 at Davis, California were analyzed for free and combined amino compounds. In both PM2.5 and fog waters, the averag...

  6. Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway

    Directory of Open Access Journals (Sweden)

    Castranova Vincent

    2009-04-01

    Full Text Available Abstract Background Carcinogenicity of nickel compounds has been well documented. However, the carcinogenic effect of metallic nickel is still unclear. The present study investigates metallic nickel nano- and fine particle-induced apoptosis and the signal pathways involved in this process in JB6 cells. The data obtained from this study will be of benefit for elucidating the pathological and carcinogenic potential of metallic nickel particles. Results Using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, we found that metallic nickel nanoparticles exhibited higher cytotoxicity than fine particles. Both metallic nickel nano- and fine particles induced JB6 cell apoptosis. Metallic nickel nanoparticles produced higher apoptotic induction than fine particles. Western-blot analysis showed an activation of proapoptotic factors including Fas (CD95, Fas-associated protein with death domain (FADD, caspase-8, death receptor 3 (DR3 and BID in apoptotic cells induced by metallic nickel particles. Immunoprecipitation (IP western blot analysis demonstrated the formation of the Fas-related death-inducing signaling complex (DISC in the apoptotic process. Furthermore, lamin A and beta-actin were cleaved. Moreover, we found that apoptosis-inducing factor (AIF was up-regulated and released from mitochondria to cytoplasm. Interestingly, although an up-regulation of cytochrome c was detected in the mitochondria of metallic nickel particle-treated cells, no cytochrome c release from mitochondria to cytoplasm was found. In addition, activation of antiapoptotic factors including phospho-Akt (protein kinase B and Bcl-2 was detected. Further studies demonstrated that metallic nickel particles caused no significant changes in the mitochondrial membrane permeability after 24 h treatment. Conclusion In this study, metallic nickel nanoparticles caused higher cytotoxicity and apoptotic induction than fine particles in JB6 cells. Apoptotic cell death

  7. A quantitative analysis of fine scale distribution of intertidal meiofauna in response to food resources

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Gauns, M.

    Fine scale vertical and spatial distribution of meiofauna in relation to food abundance was studied in the intertidal sediment at Dias Beach. The major abiotic factors showed significant changes and progressive fine scale decrease in vertical...

  8. Growth and sedimentation of fine particles produced in aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Jonah, C.D.

    1994-10-01

    It is known that palladium and palladium-silver fine particles were formed from deaerated aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation. Changes in particle size and with amount of particles in the solution with time during and after irradiation were studied using dynamic light scattering technique and UV spectrophotometer. The particles formed from palladium sulfate solution are found to be water-filled bulky particles of diameter of 200 nm, which grow by mutual coagulation even after irradiation was terminated. Average density depends on concentration of palladium ion in the solution and dose, and the lowest density was about 2 g/cm 3 for particles of 200 nm obtained from 0.06 mM solution by 2.4 kGy irradiation. The average density of the particles obtained from palladium sulfate-silver sulfate solutions was smaller than those obtained for the corresponding palladium sulfate solutions. Supersonic agitation destroyed coagulated precipitates to form fine particles, but did not form clusters of a few atoms. (author)

  9. Levels, chemical composition and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin

    International Nuclear Information System (INIS)

    Caggiano, Rosa; Macchiato, Maria; Trippetta, Serena

    2010-01-01

    Daily samples of fine aerosol particles (i.e., PM1, aerosol particles with an aerodynamic diameter less than 1.0 μm) were collected in Tito Scalo - Southern Italy - from April 2006 to March 2007. Measurements were performed by means of a low-volume gravimetric sampler, and each PM1 sample was analyzed by means of Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Atomic Absorption Spectrometry (GFAAS and FAAS) techniques in order to determine its content in fourteen trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Ti and Zn). During the period examined, PM1 daily concentrations ranged between 0.3 μg m -3 and 55 μg m -3 with a mean value of 8 μg m -3 , a standard deviation of 7 μg m -3 and a median value of 6 μg m -3 . As far as PM1 chemical composition is concerned, the mean values of the trace element concentrations decreased in the following order: Ca > Fe > Al > Na > K > Cr > Mg > Pb > Ni ∼ Ti ∼ Zn > Cd ∼ Cu > Mn. Principal Component Analysis (PCA) allowed the identification of three probable PM1 sources: industrial emissions, traffic and re-suspension of soil dust. Moreover, the results of a procedure applied to study the potential long-range transport contribution to PM1 chemical composition, showed that trace element concentrations do not seem to be affected by air mass origin and path. This was probably due to the strong impact of the local emission sources and the lack of the concentration measurements of some important elements and compounds that could better reveal the long-range transport influence on PM1 measurements at ground level.

  10. Levels, chemical composition and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin.

    Science.gov (United States)

    Caggiano, Rosa; Macchiato, Maria; Trippetta, Serena

    2010-01-15

    Daily samples of fine aerosol particles (i.e., PM1, aerosol particles with an aerodynamic diameter less than 1.0mum) were collected in Tito Scalo - Southern Italy - from April 2006 to March 2007. Measurements were performed by means of a low-volume gravimetric sampler, and each PM1 sample was analyzed by means of Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Atomic Absorption Spectrometry (GFAAS and FAAS) techniques in order to determine its content in fourteen trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Ti and Zn). During the period examined, PM1 daily concentrations ranged between 0.3microgm(-3) and 55microgm(-3) with a mean value of 8 microg m(-3), a standard deviation of 7microgm(-3) and a median value of 6microgm(-3). As far as PM1 chemical composition is concerned, the mean values of the trace element concentrations decreased in the following order: Ca>Fe>Al>Na>K>Cr>Mg>Pb>Ni approximately Ti approximately Zn>Cd approximately Cu>Mn. Principal Component Analysis (PCA) allowed the identification of three probable PM1 sources: industrial emissions, traffic and re-suspension of soil dust. Moreover, the results of a procedure applied to study the potential long-range transport contribution to PM1 chemical composition, showed that trace element concentrations do not seem to be affected by air mass origin and path. This was probably due to the strong impact of the local emission sources and the lack of the concentration measurements of some important elements and compounds that could better reveal the long-range transport influence on PM1 measurements at ground level. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Effects of Exposion to Fine Particles of Pb and Cd on Early Growth of Rice and Potatoes

    Directory of Open Access Journals (Sweden)

    YANG Fan

    2017-08-01

    Full Text Available Heavy metal-containing particles in the atmosphere have negative impacts on the seedling growth and early stage growth of terrestrial plants. Exposure scenarios were established to simulate the ambient conditions with different pollution levels of airborne heavy metals. Under these scenarios, hazardous impacts of fine particles containing lead(Pb and cadmium(Cd on the emergence, seedling growth, and fresh weight(including both above ground stem leaf of rice and underground stem tuber of potato were evaluated. The results showed that, for exposure treatment groups, the concentrations of Pb and Cd in the artificial soil increased at the end of the test. Compared with the background value in soil, the Cd level elevated about 8.8 times while no significant increase was observed for Pb concentration. The accumulation values of Pb and Cd were 0.002 0, 0.054 mg·kg-1 in the stem leaf of rice and 0.185 0, 0.074 mg·kg-1 in the stem tuber of potato. The exposure had no significant inhibition effect on all the biomass endpoints of rice, but had an inhibition rate of 27% on the fresh weight of potato underground stem tuber. Thus, under the simulation exposure, larger impact was projected to the Cd concentration in the artificial soil, and the Cd accumulative effect was more obvious in the underground stem tuber of potatoes. Compared with the control groups, the combined pollution of Pb and Cd in the exposure treatment groups indicated remarkable inhibition and stress effects. Moreover, aboveground stem leaf of rice showed better adaption and low sensitivity when exposed to pollutants at certain concentrations.

  12. Socioeconomic disparities and sexual dimorphism in neurotoxic effects of ambient fine particles on youth IQ: A longitudinal analysis.

    Directory of Open Access Journals (Sweden)

    Pan Wang

    Full Text Available Mounting evidence indicates that early-life exposure to particulate air pollutants pose threats to children's cognitive development, but studies about the neurotoxic effects associated with exposures during adolescence remain unclear. We examined whether exposure to ambient fine particles (PM2.5 at residential locations affects intelligence quotient (IQ during pre-/early- adolescence (ages 9-11 and emerging adulthood (ages 18-20 in a demographically-diverse population (N = 1,360 residing in Southern California. Increased ambient PM2.5 levels were associated with decreased IQ scores. This association was more evident for Performance IQ (PIQ, but less for Verbal IQ, assessed by the Wechsler Abbreviated Scale of Intelligence. For each inter-quartile (7.73 μg/m3 increase in one-year PM2.5 preceding each assessment, the average PIQ score decreased by 3.08 points (95% confidence interval = [-6.04, -0.12] accounting for within-family/within-individual correlations, demographic characteristics, family socioeconomic status (SES, parents' cognitive abilities, neighborhood characteristics, and other spatial confounders. The adverse effect was 150% greater in low SES families and 89% stronger in males, compared to their counterparts. Better understanding of the social disparities and sexual dimorphism in the adverse PM2.5-IQ effects may help elucidate the underlying mechanisms and shed light on prevention strategies.

  13. The Physical and Chemical Properties of Fine Carbon Particles-Pinewood Resin Blends and Their Possible Utilization

    Directory of Open Access Journals (Sweden)

    Aviwe Melapi

    2015-01-01

    Full Text Available The application of biomass gasification technology is very important in the sense that it helps to relieve the dwindling supply of natural gas from fossil fuels, and the desired product of its gasification process is syngas. This syngas is a mixture of CO and H2; however, by-products such as char, tar, soot, ash, and condensates are also produced. This study, therefore, investigated selected by-products recovered from the gasification process of pinewood chips with specific reference to their potential application in other areas when used as blends. Three samples of the gasification by-products were obtained from a downdraft biomass gasifier system and were characterized in terms of chemical and physical properties. FTIR analysis confirmed similar spectra in all char-resin blends. For fine carbon particles- (soot- resin blends, almost the same functional groups as observed in char-resin blends appeared. In bomb calorimeter measurements, 70% resin/30% char blends gave highest calorific value, followed by 50% resin/50% soot blends with values of 35.23 MJ/kg and 34.75 MJ/kg consecutively. Provided these by-products meet certain criteria, they could be used in other areas such as varnishes, water purification, and wind turbine blades.

  14. Element determination of fine particles in environmental aerosols using PIXE; Determinacion elemental de paticulas finas en aerosoles ambientales usando PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Garcia O, B. [ITT, 50000 Toluca (Mexico); Aldape U, F. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: gaolivab@gmail.com

    2007-07-01

    The Mexico city is classified as one of the more populated cities of the world which presents a decrease in the air quality and that gives place to a severe problematic in atmospheric pollution. To cooperate in the solution of this problem it is necessary to carry out studies that allow a better knowledge of the atmosphere of the city. This study presents the results of a monitoring campaign of fine particle carried out from September 21 to December 12, 2001 in three sites of the Mexico City center area. The samples were collected every third day with a collector type unit of heaped filters (Gent). The analysis of these samples was carried out in the 2 MV accelerator of the National Institute of Nuclear Research (ININ) applying the PIXE technique and with this analysis its were identified in the samples approximately 15 elements in each one of the 3 sites and was calculated the concentration in that its were present. With these results a database was created and by means of it mathematical treatment the Enrichment factor (FE), the time series of each element and the multiple correlation matrix were evaluated. The obtained results showed that the Civil Registration site (Salto del Agua) it was the more polluted coinciding that to a bigger concentration of activities a bigger increase in the pollution is generated. (Author)

  15. Characterization of SiC based composite materials by the infiltration of ultra-fine SiC particles

    International Nuclear Information System (INIS)

    Lee, J.K.; Lee, S.P.; Byun, J.H.

    2010-01-01

    The fabrication route of SiC materials by the complex compound of ultra-fine SiC particles and oxide additive materials has been investigated. Especially, the effect of additive composition ratio on the characterization of SiC materials has been examined. The characterization of C/SiC composites reinforced with plain woven carbon fabrics was also investigated. The fiber preform for C/SiC composites was prepared by the infiltration of complex mixture into the carbon fabric structure. SiC based composite materials were fabricated by a pressure assisted liquid phase sintering process. SiC materials possessed a good density higher than about 3.0 Mg/m 3 , accompanying the creation of secondary phase by the chemical reaction of additive materials. C/SiC composites also represented a dense morphology in the intra-fiber bundle region, even if this material had a sintered density lower than that of monolithic SiC materials. The flexural strength of SiC materials was greatly affected by the composition ratio of additive materials.

  16. A twelve month study of PM2.5 and PM10 fine particle aerosol composition in the Sydney region using ion beam analysis techniques. Appendix 2

    International Nuclear Information System (INIS)

    Cohen, David D.; Bailey, G.M.; Kondepudi, Ramesh

    1995-01-01

    The accelerator based ion beam (IBA) analysis techniques of PIXE, PIGME, PESA, and RBS have been used to characterise fine particles at selected sites in the Sydney region. The four techniques operating simultaneously provide elemental concentrations on 24 chemical species, including H, Q N, 0, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Ni, Zn, Br and Pb. The total mass and the elemental carbon by laser integrated plate techniques were also measured. A stacked filter system, built by the University of Gent, Belgium and supplied by the IAEA was used to provide fine particle data on PM2.5 and PM10 particles. While a cyclone sampler, built at ANSTO, Lucas Heights, was used to provide data on PM2.5 particles only. The two different types of units were operated along side each other for the whole of 1994 and the results compared. The use of the multi-elemental IBA techniques also allowed for some fine particle source fingerprinting to be performed. (author)

  17. Molecular characterization of primary humic-like substances in fine smoke particles by thermochemolysis-gas chromatography-mass spectrometry

    Science.gov (United States)

    Fan, Xingjun; Wei, Siye; Zhu, Mengbo; Song, Jianzhong; Peng, Ping'an

    2018-05-01

    In this study, the molecular structures of primary humic-like substances (HULIS) in fine smoke particles emitted from the combustion of biomass materials (including rice straw, corn straw, and pine branches) and coal, and atmospheric HULIS were determined by off-line tetramethylammonium hydroxide thermochemolysis coupled with gas chromatography and mass spectrometry (TMAH-GC/MS). A total of 89 pyrolysates were identified by the thermochemolysis of primary and atmospheric HULIS. The main groups were polysaccharide derivatives, N-containing compounds, lignin derivatives, aromatic acid methyl ester, aliphatic acid methyl ester, and diterpenoid derivatives. Both the type and distribution of pyrolysates among primary HULIS were comparable to those in atmospheric HULIS. This indicates that primary HULIS from combustion processes are important contributors to atmospheric HULIS. Some distinct differences were also observed. The aromatic compounds, including lignin derivatives and aromatic acid methyl ester, were the major pyrolysates (53.0%-84.9%) in all HULIS fractions, suggesting that primary HULIS significantly contributed aromatic structures to atmospheric HULIS. In addition, primary HULIS from biomass burning (BB) contained a relatively high abundance of lignin and polysaccharide derivatives, which is consistent with the large amounts of lignin and cellulose structures contained in biomass materials. Aliphatic acid methyl ester and benzyl methyl ether were prominent pyrolysates in atmospheric HULIS. Moreover, some molecular markers of specific sources were obtained from the thermochemolysis of primary and atmospheric HULIS. For example, polysaccharide derivatives, pyridine and pyrrole derivatives, and lignin derivatives can be used as tracers of fresh HULIS emitted from BB. Diterpenoid derivatives are important markers of HULIS from pine wood combustion sources. Finally, the differences in pyrolysate types and the distributions between primary and atmospheric HULIS

  18. Fine particles in homes of predominantly low-income families with children and smokers: Key physical and behavioral determinants to inform indoor-air-quality interventions

    OpenAIRE

    Klepeis, Neil E.; Bellettiere, John; Hughes, Suzanne C.; Nguyen, Benjamin; Berardi, Vincent; Liles, Sandy; Obayashi, Saori; Hofstetter, C. Richard; Blumberg, Elaine; Hovell, Melbourne F.

    2017-01-01

    Children are at risk for adverse health outcomes from occupant-controllable indoor airborne contaminants in their homes. Data are needed to design residential interventions for reducing low-income children's pollutant exposure. Using customized air quality monitors, we continuously measured fine particle counts (0.5 to 2.5 microns) over a week in living areas of predominantly low-income households in San Diego, California, with at least one child (under age 14) and at least one cigarette smok...

  19. A new approach to the combination of IBA techniques and wind back trajectory data to determine source contributions to long range transport of fine particle air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, David D., E-mail: dcz@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Crawford, Jagoda; Stelcer, Eduard; Atanacio, Armand [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2012-02-15

    A new approach to link HYSPLIT back trajectories to the source of fine particle pollution as characterised by standard IBA techniques is discussed. The example of the long range transport of desert dust from inland Australia across the eastern coast is used to show that over a 10-year period extreme soil events originated from major agricultural regions some 30% of the time and that dust from known deserts are not always the problem.

  20. Unexpected spatial impact of treatment plant discharges induced by episodic hydrodynamic events: Modelling Lagrangian transport of fine particles by Northern Current intrusions in the bays of Marseille (France).

    Science.gov (United States)

    Millet, Bertrand; Pinazo, Christel; Banaru, Daniela; Pagès, Rémi; Guiart, Pierre; Pairaud, Ivane

    2018-01-01

    Our study highlights the Lagrangian transport of solid particles discharged at the Marseille Wastewater Treatment Plant (WWTP), located at Cortiou on the southern coastline. We focused on episodic situations characterized by a coastal circulation pattern induced by intrusion events of the Northern Current (NC) on the continental shelf, associated with SE wind regimes. We computed, using MARS3D-RHOMA and ICHTHYOP models, the particle trajectories from a patch of 5.104 passive and conservative fine particles released at the WWTP outlet, during 2 chosen representative periods of intrusion of the NC in June 2008 and in October 2011, associated with S-SE and E-SE winds, respectively. Unexpected results highlighted that the amount of particles reaching the vulnerable shorelines of both northern and southern bays accounted for 21.2% and 46.3% of the WWTP initial patch, in June 2008 and October 2011, respectively. Finally, a conceptual diagram is proposed to highlight the mechanisms of dispersion within the bays of Marseille of the fine particles released at the WWTP outlet that have long been underestimated.

  1. Do soil tests help forecast nitrogen response in first-year corn following alfalfa on fine-textured soils?

    Science.gov (United States)

    Improved methods of predicting grain yield response to fertilizer N for first-year corn (Zea mays L.) following alfalfa (Medicago sativa L.) on fine-textured soils are needed. Data from 21 site-years in the North Central Region were used to (i) determine how Illinois soil nitrogen test (ISNT) and pr...

  2. Fine particle water and pH in the Eastern Mediterranean: Sources, variability and implications for nutrients availability

    Science.gov (United States)

    Bougiatioti, Aikaterini; Nikolaou, Panayiota; Stavroulas, Iasonas; Kouvarakis, Giorgos; Nenes, Athanasios; Weber, Rodney; Kanakidou, Maria; Mihalopoulos, Nikolaos

    2016-04-01

    Atmospheric particles have the ability to absorb significant amounts of water, which greatly impacts on their physical and chemical properties. Direclty linked to aerosol pH and LWC is the bioavailability of nutrients contained within mineral dust, involving pH-dependent catalyzed redox-reaction pathways. Liquid water content (LWC) and pH, even though are important constituents of the aerosol phase, are rarely monitored. Direct measurements of aerosol pH "in situ" are scarce and require considerations owing to the non-conserved nature of the hydronium ion and partial dissociation of inorganic and organic electrolytes in the aerosol. To overcome these challenges, indirect alternatives such as measuring the semi-volatile partitioning of key species sensitive to pH, combined with comprehensive models are used to provide a reasonably accurate estimate of pH that can be carried out with routine measurements. Using concurrent measurements of aerosol chemical composition, tandem light scattering coefficients and the thermodynamic model ISORROPIA-II, LWC mass concentrations associated with the aerosol inorganic and organic components are determined for the remote background site of Finokalia, Crete. The predicted water was subsequently compared to the one measured by the ambient versus dry light scattering coefficients. The sum of Winorg and Worg was highly correlated and in close agreement with the measured LWC (on average within 10%), with slope 0.92 (R2=0.8) for the whole measurement period between August and November 2012 (n=5201 points). As expected, the highest fine aerosol water values are observed during night-time, when RH is at its maximum, resulting in important water uptake. The average concentration of total aerosol water was found to be 2.19±1.75 μg m-3, which according to the dry mass measurements, can contribute on average up to 33% to the total aerosol submicron mass. The average Worg was found to be 0.56±0.37 μg m-3, which constitutes about 28% of the

  3. Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than in coarse particles: an incubation study with temperate grassland and forest soils in northern China.

    Science.gov (United States)

    Ding, Fan; Huang, Yao; Sun, Wenjuan; Jiang, Guangfu; Chen, Yue

    2014-01-01

    It is widely recognized that global warming promotes soil organic carbon (SOC) decomposition, and soils thus emit more CO2 into the atmosphere because of the warming; however, the response of SOC decomposition to this warming in different soil textures is unclear. This lack of knowledge limits our projection of SOC turnover and CO2 emission from soils after future warming. To investigate the CO2 emission from soils with different textures, we conducted a 107-day incubation experiment. The soils were sampled from temperate forest and grassland in northern China. The incubation was conducted over three short-term cycles of changing temperature from 5°C to 30°C, with an interval of 5°C. Our results indicated that CO2 emissions from sand (>50 µm), silt (2-50 µm), and clay (soils. The temperature sensitivity of the CO2 emission from soil particles, which is expressed as Q10, decreased in the order clay>silt>sand. Our study also found that nitrogen availability in the soil facilitated the temperature dependence of SOC decomposition. A further analysis of the incubation data indicated a power-law decrease of Q10 with increasing temperature. Our results suggested that the decomposition of organic carbon in fine-textured soils that are rich in clay or silt could be more sensitive to warming than those in coarse sandy soils and that SOC might be more vulnerable in boreal and temperate regions than in subtropical and tropical regions under future warming.

  4. Exhaust Fine Particle and Nitrogen Oxide Emissions from Individual Heavy-Duty Trucks at the Port of Oakland

    Science.gov (United States)

    Dallmann, T. R.; Harley, R. A.; Kirchstetter, T.

    2010-12-01

    Heavy-duty (HD) diesel trucks are a source of nitrogen oxide (NOx) emissions as well as primary fine particulate matter (PM2.5) that includes black carbon (BC) as a major component. Heavy-duty trucks contribute significantly to elevated levels of diesel particulate matter found near highways and in communities surrounding major freight-handling facilities. To reduce the air quality impact of diesel engine emissions, the California Air Resources Board has adopted new rules requiring the retrofit or replacement of in-use HD trucks. These rules take effect during 2010 at ports and railyards, and apply to all trucks operating in California by 2014. This study involves on-road measurements of PM2.5, BC, and NOx emission factor distributions from individual HD trucks driving into the Port of Oakland in the San Francisco Bay area. Measurements of exhaust plumes from individual trucks were made using a mobile laboratory equipped with fast time response (1 Hz) PM2.5, BC, NOx, and carbon dioxide (CO2) sensors. The mobile laboratory was stationed on an overpass above an arterial roadway that connects the Port to a nearby highway (I-880). The air sampling inlet was thereby located above the vertical exhaust pipes of HD diesel trucks passing by on the arterial roadway below. Fuel-specific PM2.5, BC, and NOx emission factors for individual trucks were calculated using a carbon balance method in which concentrations of these species in an exhaust plume are normalized to CO2 concentrations. Initial field sampling was conducted in November, 2009 prior to the implementation of new emission rules. Additional emission measurements were made at the same location during June 2010 and emission factor distributions and averages will be compared.

  5. Water-soluble ions in nano/ultrafine/fine/coarse particles collected near a busy road and at a rural site

    International Nuclear Information System (INIS)

    Lin, C.-C.; Chen, S.-J.; Huang, K.-L.; Lee, W.-J.; Lin, W.-Y.; Liao, C.-J.; Chaung, H.-C.; Chiu, C.-H.

    2007-01-01

    This study investigated water-soluble ions in the sized particles (particularly nano (PM 0.01-0.056 )/ultrafine (PM 0.01-0.1 )) collected using MOUDI and Nano-MOUDI samplers near a busy road site and at a rural site. The analytical results demonstrate that nano and coarse particles exhibited the highest (16.3%) and lowest (8.37%) nitrate mass ratios, respectively. The mass ratio of NO 3 - was higher than that of SO 4 2- in all the sized particles at the traffic site. The secondary aerosols all displayed trimodal distributions. The aerosols in ultrafine particles collected at the roadside site exhibited Aitken mode distributions indicating they were of local origin. This finding was not observed for those ultrafine particles collected at the rural site. The mass median diameters (MMDs) of the nano, ultrafine, and fine particles were smaller at the traffic site than at the rural site, possibly related to the contribution of mobile engine emissions. - NO 3 - > SO 4 2- in mass ratio, different from common observations in rural areas, was found in (particularly the nano) traffic-associated particles

  6. Fines Classification Based on Sensitivity to Pore-Fluid Chemistry

    KAUST Repository

    Jang, Junbong; Santamarina, Carlos

    2015-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing

  7. Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model

    Directory of Open Access Journals (Sweden)

    A. Vara-Vela

    2016-01-01

    Full Text Available The objective of this work is to evaluate the impact of vehicular emissions on the formation of fine particles (PM2.5;  ≤  2.5 µm in diameter in the Sao Paulo Metropolitan Area (SPMA in Brazil, where ethanol is used intensively as a fuel in road vehicles. The Weather Research and Forecasting with Chemistry (WRF-Chem model, which simulates feedbacks between meteorological variables and chemical species, is used as a photochemical modelling tool to describe the physico-chemical processes leading to the evolution of number and mass size distribution of particles through gas-to-particle conversion. A vehicular emission model based on statistical information of vehicular activity is applied to simulate vehicular emissions over the studied area. The simulation has been performed for a 1-month period (7 August–6 September 2012 to cover the availability of experimental data from the NUANCE-SPS (Narrowing the Uncertainties on Aerosol and Climate Changes in Sao Paulo State project that aims to characterize emissions of atmospheric aerosols in the SPMA. The availability of experimental measurements of atmospheric aerosols and the application of the WRF-Chem model made it possible to represent some of the most important properties of fine particles in the SPMA such as the mass size distribution and chemical composition, besides allowing us to evaluate its formation potential through the gas-to-particle conversion processes. Results show that the emission of primary gases, mostly from vehicles, led to a production of secondary particles between 20 and 30 % in relation to the total mass concentration of PM2.5 in the downtown SPMA. Each of PM2.5 and primary natural aerosol (dust and sea salt contributed with 40–50 % of the total PM10 (i.e. those  ≤  10 µm in diameter concentration. Over 40 % of the formation of fine particles, by mass, was due to the emission of hydrocarbons, mainly aromatics. Furthermore, an increase in the

  8. Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model

    Science.gov (United States)

    Vara-Vela, A.; Andrade, M. F.; Kumar, P.; Ynoue, R. Y.; Muñoz, A. G.

    2016-01-01

    The objective of this work is to evaluate the impact of vehicular emissions on the formation of fine particles (PM2.5; ≤ 2.5 µm in diameter) in the Sao Paulo Metropolitan Area (SPMA) in Brazil, where ethanol is used intensively as a fuel in road vehicles. The Weather Research and Forecasting with Chemistry (WRF-Chem) model, which simulates feedbacks between meteorological variables and chemical species, is used as a photochemical modelling tool to describe the physico-chemical processes leading to the evolution of number and mass size distribution of particles through gas-to-particle conversion. A vehicular emission model based on statistical information of vehicular activity is applied to simulate vehicular emissions over the studied area. The simulation has been performed for a 1-month period (7 August-6 September 2012) to cover the availability of experimental data from the NUANCE-SPS (Narrowing the Uncertainties on Aerosol and Climate Changes in Sao Paulo State) project that aims to characterize emissions of atmospheric aerosols in the SPMA. The availability of experimental measurements of atmospheric aerosols and the application of the WRF-Chem model made it possible to represent some of the most important properties of fine particles in the SPMA such as the mass size distribution and chemical composition, besides allowing us to evaluate its formation potential through the gas-to-particle conversion processes. Results show that the emission of primary gases, mostly from vehicles, led to a production of secondary particles between 20 and 30 % in relation to the total mass concentration of PM2.5 in the downtown SPMA. Each of PM2.5 and primary natural aerosol (dust and sea salt) contributed with 40-50 % of the total PM10 (i.e. those ≤ 10 µm in diameter) concentration. Over 40 % of the formation of fine particles, by mass, was due to the emission of hydrocarbons, mainly aromatics. Furthermore, an increase in the number of small particles impaired the

  9. Impact of electron irradiation on particle track etching response in ...

    Indian Academy of Sciences (India)

    In the present work, attempts have been made to investigate the modification in particle track etching response of polyallyl diglycol carbonate (PADC) due to impact of 2 MeV electrons. PADC samples pre-irradiated to 1, 10, 20, 40, 60, 80 and 100 Mrad doses of 2 MeV electrons were further exposed to 140 MeV 28Si beam ...

  10. The study of anthropogenic fine particles transported from urban areas to rural and non-urban environments using nuclear related techniques

    International Nuclear Information System (INIS)

    Cohen, D.D.; Bailey, G.M.; Martin, J.W.; Crisp, P.T.

    1994-01-01

    Aerosol particles in the size range less than 2.5 μm play an important role in pollution studies. They are small enough to lodge in lungs and cause health problems, they impair visibility and the public's perception of pollution and they are capable of being transported over large distances as they do not settle out readily. In this report we will describe the large area fine particle network consisting of 25 cyclone sampling units covering 80,000 square kilometre of the state of New South Wales in Australia. The network called ASP-Air Sampling Program - collects particles on 25 mm stretched Teflon filter papers which are ideal targets for accelerator based Ion Beam Analysis (IBA). We will discuss the four IBA techniques, PIXE, PIGME, PESA and RBS used simultaneously on the accelerator at ANSTO and present some of the early results of the Co-operative Research Programme. (author). 7 refs, 8 figs, 1 tab

  11. Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees

    International Nuclear Information System (INIS)

    Räsänen, Janne V.; Holopainen, Toini; Joutsensaari, Jorma; Ndam, Collins; Pasanen, Pertti; Rinnan, Åsmund; Kivimäenpää, Minna

    2013-01-01

    Trees can improve air quality by capturing particles in their foliage. We determined the particle capture efficiencies of coniferous Pinus sylvestris and three broadleaved species: Betula pendula, Betula pubescens and Tilia vulgaris in a wind tunnel using NaCl particles. The importance of leaf surface structure, physiology and moderate soil drought on the particle capture efficiencies of the trees were determined. The results confirm earlier findings of more efficient particle capture by conifers compared to broadleaved plants. The particle capture efficiency of P. sylvestris (0.21%) was significantly higher than those of B. pubescens, T. vulgaris and B. pendula (0.083%, 0.047%, 0.043%, respectively). The small leaf size of P. sylvestris was the major characteristic that increased particle capture. Among the broadleaved species, low leaf wettability, low stomatal density and leaf hairiness increased particle capture. Moderate soil drought tended to increase particle capture efficiency of P. sylvestris. -- Highlights: • Coniferous Scots pine was the most efficient particle collector. • Decreasing single leaf size increases particle deposition of the total leaf area. • Hairiness of the leaf increases particle deposition. -- Trees can improve air quality by removing PM 2.5 pollutants carried on the wind at a velocity of 3 m s −1 , the efficiency of which depends on species leaf characteristics and physical factors

  12. Differences in Preferential Sorting of Fine Particles in the Panama Basin Over the Past 25 kyr: Effects on 230Th-derived Focusing Factors

    Science.gov (United States)

    Loveley, M. R.; Marcantonio, F.; Lyle, M. W.; Wang, J. K.

    2013-12-01

    In this study, we attempt to understand how preferential sorting of fine particles during redistribution processes in the Panama Basin affects the 230Th constant-flux proxy. Fine particles likely contain greater amounts of 230Th, so that preferential sorting of fine particles may bias sediment mass accumulation rates (MARs). We examined sediments that span the past 25 kyr from two new sediment cores retrieved within about 56 km of each other in the northern part of the basin (MV1013-01-'4JC', 5° 44.699'N 85° 45.498' W, 1730 m depth; MV1014-01-'8JC', 6° 14.038'N 86° 2.613' W, 1993 m depth). Core 4JC, closer to the ridge top that bounds the basin (Cocos Ridge), has a thin sediment drape, while the deeper core 8JC, has a thicker sediment drape and lies further from the ridge top. 230Th-derived focusing factors from 4JC are similar and suggest winnowing with average values of about 0.5 and 0.6 during the Holocene and the last glacial, respectively. For 8JC, calculated average focusing factors are significantly different and suggest focusing with values of about 2 during the Holocene and 4 during the last glacial. Since the two sites are close to each other, one would expect similar rain rates and, therefore, similar 230Th-derived MARs within similar windows of time, i.e., the rain rate should not vary significantly at each site temporally. In addition, the radiocarbon-derived sand (>63μm) MARs should behave similarly since coarser particles are likely not transported by bottom currents. Sand MARs are, indeed, similar during the Holocene and the last glacial at each site. During the last glacial, however, sand MARs are about a factor of 3 higher than those during the Holocene. On the other hand, there is little variability in the 230Th-derived MARs both spatially and temporally. We interpret the discrepancies between the radiocarbon-derived sand and 230Th-derived MARs as being due to preferential sorting of fine particles during the redistribution of sediments by

  13. Electrode geometry effects on the collection efficiency of submicron and ultra-fine dust particles in spike-plate electrostatic precipitators

    International Nuclear Information System (INIS)

    Brocilo, D; Podlinski, J; Chang, J S; Mizeraczyk, J; Findlay, R D

    2008-01-01

    The collection efficiency of electrostatic precipitators for the submicron particles ranging from 0.1 to 1 μm and ultrafine particles smaller than 0. lμm is below the requirements of new PM2.5 emission regulations. In this work, numerical and experimental studies were conducted to examine the effect of discharge and collecting electrode geometries on the ion density and electric field profiles and consequently their effect on the particle surface charge and collection efficiency. The collection efficiency prediction was based on a modified Deutsche's equation after calculation of three dimensional electric field and ion density profiles. Whereas, the particle surface charge was obtained from diffusion and field charging models. Results show that the collection efficiency of fine particles for the spike-type discharge electrode when compared to the conventional wire-type was improved. Experimental validations were conducted on a bench scale electrostatic precipitator for total and partial collection efficiency of particles ranging in size from 0.01 to 20 μm and the results indicated that the model can be effectively applied for prototype design, modification, and scale-up of collecting and discharge electrodes.

  14. Co-formation of hydroperoxides and ultra-fine particles during the reactions of ozone with a complex VOC mixture under simulated indoor conditions

    DEFF Research Database (Denmark)

    Fan, Z.H.; Weschler, Charles J.; Han, IK

    2005-01-01

    In this study we examined the co-formation of hydrogen peroxide and other hydroperoxides (collectively presented as H2O2*) as well as submicron particles, including ultra-fine particles (UFP), resulting from the reactions of ozone (O-3) with a complex mixture of volatile organic compounds (VOCs...... higher than typical indoor levels. When O-3 was added to a 25-m(3) controlled environmental facility (CEF) containing the 23 VOC mixture, both H2O2* and submicron particles were formed. The 2-h average concentration of H2O2* was 1.89 +/- 0.30ppb, and the average total particle number concentration was 46...... to achieve saturated concentrations of the condensable organics. When the 2 terpenes were removed from the O-3/23 VOCs mixture, no H2O2* or particles were formed, indicating that the reactions of O-3 With the two terpenes were the key processes contributing to the formation of H2O2* and submicron particles...

  15. Impacts of Roadway Emissions on Urban Fine Particle Exposures: the Nairobi Area Traffic Contribution to Air Pollution (NATCAP) Study

    Science.gov (United States)

    Gatari, Michael; Ngo, Nicole; Ndiba, Peter; Kinney, Patrick

    2010-05-01

    Air quality is a serious and worsening problem in the rapidly growing cities of sub-Saharan Africa (SSA), due to rapid urbanization, growing vehicle fleets, changing life styles, limited road infrastructure and land use planning, and high per-vehicle emissions. However, the absence of ambient monitoring data, and particularly urban roadside concentrations of particulate matter in SSA cities, severely limits our ability to assess the real extent of air quality problems. Emitted fine particles by on-road vehicles may be particularly important in SSA cities because large concentrations of poorly maintained vehicles operate in close proximity to commercial and other activities of low-income urban residents. This scenario provokes major air quality concerns and its investigation should be of priority interest to policy makers, city planners and managers, and the affected population. As part of collaboration between Columbia University and the University of Nairobi, a PM2.5 air monitoring study was carried out over two weeks in July 2009. The objectives of the study were 1) to assess average daytime PM2.5 concentrations on a range of Nairobi streets that represent important hot-spots in terms of the joint distribution of traffic, commercial, and resident pedestrian activities, 2) to relate those concentrations to motor vehicle counts, 3) to compare urban street concentrations to urban and rural background levels, and 4) to assess vertical and horizontal dispersion of PM2.5 near roadways. Portable, battery-operated PM2.5 samplers were carried by field teams at each of the five sites (three urban, one commuter highway, and one rural site), each of which operated from 7 AM to 7 PM during 10 weekdays in July 2009. Urban background monitoring took place on a rooftop at the University of Nairobi. Preliminary findings suggest highly elevated PM2.5 concentrations at the urban sites where the greatest pedestrian traffic was observed. These findings underscore the need for air

  16. Pulse-based electron spin transient nutation measurement of BaTiO3 fine particle: Identification of controversial signal around g = 2.00

    Science.gov (United States)

    Sawai, Takatoshi; Yamaguchi, Yoji; Kitamura, Noriko; Date, Tomotsugu; Konishi, Shinya; Taga, Kazuya; Tanaka, Katsuhisa

    2018-05-01

    Two dimensional pulse-based electron spin transient nutation (2D-ESTN) spectroscopy is a powerful tool for determining the spin quantum number and has been applied to BaTiO3 fine powder in order to identify the origin of the continuous wave electron spin resonance (CW-ESR) signal around g = 2.00. The signal is frequently observed in BaTiO3 ceramics, and the correlation between the signal intensity and positive temperature coefficient of resistivity (PTCR) properties has been reported to date. The CW-ESR spectrum of BaTiO3 fine particles synthesized by the sol-gel method shows a typical asymmetric signal at g = 2.004. The 2D-ESTN measurements of the sample clearly reveal that the signal belongs to the S = 5/2 high spin state, indicating that the signal is not due to a point defect as suggested by a number of researchers but rather to a transition metal ion. Our elemental analysis, as well as previous studies, indicates that the origin of the g = 2.004 signal is due to the presence of an Fe3+ impurity. The D value (second-order fine structure parameter) reveals that the origin of the signal is an Fe3+ center with distant charge compensation. In addition, we show a peculiar temperature dependence of the CW-ESR spectrum, suggesting that the phase transition behavior of a BaTiO3 fine particle is quite different from that of a bulk single crystal. Our identification does not contradict a vacancy-mediated mechanism for PTCR. However, it is incorrect to use the signal at g = 2.00 as evidence to support the vacancy-mediated mechanism.

  17. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: Further mechanistic studies

    International Nuclear Information System (INIS)

    Becker, Susanne; Mundandhara, Sailaja; Devlin, Robert B.; Madden, Michael

    2005-01-01

    In order to better understand how ambient air particulate matter (PM) affect lung health, the two main airway cell types likely to interact with inhaled particles, alveolar macrophages (AM) and airway epithelial cells have been exposed to particles in vitro and followed for endpoints of inflammation, and oxidant stress. Separation of Chapel Hill PM 10 into fine and coarse size particles revealed that the main proinflammatory response (TNF, IL-6, COX-2) in AM was driven by material present in the coarse PM, containing 90-95% of the stimulatory material in PM10. The particles did not affect expression of hemoxygenase-1 (HO-1), a sensitive marker of oxidant stress. Primary cultures of normal human bronchial epithelial cells (NHBE) also responded to the coarse fraction with higher levels of IL-8 and COX-2, than induced by fine or ultrafine PM. All size PM induced oxidant stress in NHBE, while fine PM induced the highest levels of HO-1 expression. The production of cytokines in AM by both coarse and fine particles was blocked by the toll like receptor 4 (TLR4) antagonist E5531 involved in the recognition of LPS and Gram negative bacteria. The NHBE were found to recognize coarse and fine PM through TLR2, a receptor with preference for recognition of Gram positive bacteria. Compared to ambient PM, diesel PM induced only a minimal cytokine response in both AM and NHBE. Instead, diesel suppressed LPS-induced TNF and IL-8 release in AM. Both coarse and fine ambient air PM were also found to inhibit LPS-induced TNF release while silica, volcanic ash or carbon black had no inhibitory effect. Diesel particles did not affect cytokine mRNA induction nor protein accumulation but interfered with the release of cytokine from the cells. Ambient coarse and fine PM, on the other hand, inhibited both mRNA induction and protein production. Exposure to coarse and fine PM decreased the expression of TLR4 in the macrophages. Particle-induced decrease in TLR4 and hyporesponsiveness to LPS

  18. Evaluation of Methods for Physical Characterization of the Fine Particle Emissions from Two Residential Wood Combustion Appliances

    Science.gov (United States)

    The fine particulate matter (PM) emissions from a U. S. certified non-catalytic wood stove and a zero clearance fireplace burning Quercus rubra L. (northern red oak) and Pseudotsuga menziesii (Douglas fir) cordwood each at two different moisture levels were determined. Emission t...

  19. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    Science.gov (United States)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  20. Multi-criteria ranking and receptor modelling of airborne fine particles at three sites in the Pearl River Delta region of China.

    Science.gov (United States)

    Friend, Adrian J; Ayoko, Godwin A; Guo, Hai

    2011-01-15

    The multi-criteria decision making methods, Preference Ranking Organization METHods for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA), and the two-way Positive Matrix Factorization (PMF) receptor model were applied to airborne fine particle compositional data collected at three sites in Hong Kong during two monitoring campaigns held from November 2000 to October 2001 and November 2004 to October 2005. PROMETHEE/GAIA indicated that the three sites were worse during the later monitoring campaign, and that the order of the air quality at the sites during each campaign was: rural site>urban site>roadside site. The PMF analysis on the other hand, identified 6 common sources at all of the sites (diesel vehicle, fresh sea salt, secondary sulphate, soil, aged sea salt and oil combustion) which accounted for approximately 68.8±8.7% of the fine particle mass at the sites. In addition, road dust, gasoline vehicle, biomass burning, secondary nitrate, and metal processing were identified at some of the sites. Secondary sulphate was found to be the highest contributor to the fine particle mass at the rural and urban sites with vehicle emission as a high contributor to the roadside site. The PMF results are broadly similar to those obtained in a previous analysis by PCA/APCS. However, the PMF analysis resolved more factors at each site than the PCA/APCS. In addition, the study demonstrated that combined results from multi-criteria decision making analysis and receptor modelling can provide more detailed information that can be used to formulate the scientific basis for mitigating air pollution in the region. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease

    DEFF Research Database (Denmark)

    Saber, Anne T.; Jacobsen, Nicklas R.; Jackson, Petra

    2014-01-01

    Inhalation of ambient and workplace particulate air pollution is associated with increased risk of cardiovascular disease. One proposed mechanism for this association is that pulmonary inflammation induces a hepatic acute phase response, which increases risk of cardiovascular disease. Induction...... epidemiological studies. In this review, we present and review emerging evidence that inhalation of particles (e.g., air diesel exhaust particles and nanoparticles) induces a pulmonary acute phase response, and propose that this induction constitutes the causal link between particle inhalation and risk...

  2. Smelting reduction rate of fine Wustite particles in a CO gas-conveyed bed; CO gas yuso sonai Wustite biryushi no yoyu kangen sokudo

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S; Iguchi, Y [Nagoya Institute of Technology, Nagoya (Japan)

    1999-06-01

    Using a laboratory scale fine particles-gas conveyed bed, the reduction rates of liquid wustite with CO gas were measured. CO-CO{sub 2} mixtures having various flow rates and compositions were flowed downward through a cylindrical reactor maintained at a constant temperature of 1,723 to 1,823K. A batch of pure spherical wustite particles (mean dia.: 48.5 {mu}m) was concurrently fed into the reactor at a small constant rate and reduced in a hot zone. The reduction process was found to proceed in such a manner that metallic iron particles were enclosed inside a wustite droplet. Rate analysis was made of one dimensional mass balance equations for particles and gas in a steady moving bed under an isothermal condition using the reaction rate for a single particle taking the shrinkage into consideration. Under relatively small reducing potentials, it was concluded that the major fraction of overall reaction resistance is attributable to chemical reaction. However, under higher reducing potentials, the reduction process was estimated to include some mass transfer resistances within the liquid oxide phase. From the temperature dependence of forward chemical reaction rate constants, the activation energy was evaluated to be 90.6 kJ/mol. (author)

  3. The formation of ultra-fine particles during ozone-initiated oxidations with terpenes emitted from natural paint

    International Nuclear Information System (INIS)

    Lamorena, Rheo B.; Jung, Sang-Guen; Bae, Gwi-Nam; Lee, Woojin

    2007-01-01

    The formation of secondary products during the ozone-initiated oxidations with biogenic VOCs emitted from natural paint was investigated in this study. Mass spectrometry and infrared spectroscopy measurements have shown that the major components of gas-phase chemicals emitted from natural paint are monoterpenes including α- and β-pinenes, camphene, p-cymene, and limonene. A significant formation of gaseous carbonyl products and nano-sized particles (4.4-168 nm) was observed in the presence of ozone. Carboxylic acids were also observed to form during the reactions (i.e. formic acid at 0.170 ppm and acetic acid at 0.260 ppm). The formation of particles increased as the volume of paint introduced into a reaction chamber increased. A secondary increase in the particle number concentration was observed after 440 min, which suggests further partitioning of oxidation products (i.e. carboxylic acids) into the particles previously existing in the reaction chamber. The growth of particles increased as the mean particle diameter and particle mass concentrations increased during the reaction. The experimental results obtained in this study may provide insight into the potential exposure of occupants to irritating chemical compounds formed during the oxidations of biogenic VOCs emitted from natural paint in indoor environments

  4. Reprint of: A numerical investigation of fine sediment resuspension in the wave boundary layer-Uncertainties in particle inertia and hindered settling

    Science.gov (United States)

    Cheng, Zhen; Yu, Xiao; Hsu, Tian-Jian; Balachandar, S.

    2016-05-01

    The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to continental margins. Hence, studying fine sediment resuspensions in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycles. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with sediment availabilities. As the sediment availability and hence the sediment-induced stable stratification increases, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to hindered settling and particle inertia effects. Present numerical simulations including the particle inertia suggest that for a typical wave condition in continental shelves, the effect of particle inertia is negligible. Through additional numerical experiments, we also confirm that the particle inertia tends (up to the Stokes number St = 0.2) to attenuate flow turbulence. On the other hand, for flocs with lower gelling concentrations, the hindered settling can play a key role in sustaining a large amount of suspended sediments and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A sufficient condition for the occurrence of gelling ignition is hypothesized for a range of wave intensities as a function of sediment/floc properties and erodibility parameters.

  5. Two-Step Single Particle Mass Spectrometry for On-Line Monitoring of Polycyclic Aromatic Hydrocarbons Bound to Ambient Fine Particulate Matter

    Science.gov (United States)

    Zimmermann, R.; Bente, M.; Sklorz, M.

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAH) are formed as trace products in combustion processes and are emitted to the atmosphere. Larger PAH have low vapour pressure and are predominantly bound to the ambient fine particulate matter (PM). Upon inhalation, PAH show both, chronic human toxicity (i.e. many PAH are potent carcinogens) as well as acute human toxicity (i.e. inflammatory effects due to oxi-dative stress) and are discussed to be relevant for the observed health effect of ambient PM. Therefore a better understanding of the occurrence, dynamics and particle size dependence of particle bound-PAH is of great interest. On-line aerosol mass spectrometry in principle is the method of choice to investigate the size resolved changes in the chemical speciation of particles as well the status of internal vs. external mixing of chemical constituents. However the present available aerosol mass spectrometers (ATOFMS and AMS) do not allow detection of PAH from ambient air PM. In order to allow a single particle based monitoring of PAH from ambient PM a new single particle laser ionisation mass spectrometer was built and applied. The system is based on ATOFMS principle but uses a two- step photo-ionization. A tracked and sized particle firstly is laser desorbed (LD) by a IR-laser pulse (CO2-laser, λ=10.2 μm) and subsequently the released PAH are selectively ionized by an intense UV-laser pulse (ArF excimer, λ=248 nm) in a resonance enhanced multiphoton ionisation process (REMPI). The PAH-ions are detected in a time of flight mass spectrometer (TOFMS). A virtual impactor enrichment unit is used to increase the detection frequency of the ambient particles. With the current inlet system particles from about 400 nm to 10 μm are accessible. Single particle based temporal profiles of PAH containing particles ion (size distribution and PAH speciation) have been recorded in Oberschleissheim, Germany from ambient air. Furthermore profiles of relevant emission sources (e

  6. Effect of particle size on the thermoluminescent response of hydroxyapatite

    International Nuclear Information System (INIS)

    Barrera V, A.; Zarate M, J.; Contreras, M. E.; Rivera M, T.

    2016-10-01

    We present the study of the structural characterization and the thermoluminescent response of the hydroxyapatite as a function of the calcination temperature and the effect of the particle size. For precipitation synthesis, calcium nitrate (Ca(NO_3)_2 and dibasic ammonium phosphate ((NH_4)_2HPO_4) were used as precursors and ammonium hydroxide (NH_4OH) as a ph controlling agent. The characterization of the samples was carried out by the techniques of X-ray diffraction, scanning electron microscopy and infrared spectroscopy. The powders obtained are composed of hydroxyapatite, with a different degree of dehydroxylation. The thermoluminescent characterization indicates that at higher calcination temperature there is a higher thermoluminescent response, the calcined powders at 1300 degrees Celsius show a very well defined brightness curve with a higher intensity, with its maximum intensity located at a temperature of 210 degrees Celsius, which indicates that this material can be used as a dosimeter. (Author)

  7. An evaluation of the impact of flooring types on exposures to fine and coarse particles within the residential micro-environment using CONTAM.

    Science.gov (United States)

    Bramwell, Lisa; Qian, Jing; Howard-Reed, Cynthia; Mondal, Sumona; Ferro, Andrea R

    2016-01-01

    Typical resuspension activities within the home, such as walking, have been estimated to contribute up to 25% of personal exposures to PM10. Chamber studies have shown that for moderate walking intensities, flooring type can impact the rate at which particles are re-entrained into the air. For this study, the impact of residential flooring type on incremental average daily (24 h) time-averaged exposure was investigated. Distributions of incremental time-averaged daily exposures to fine and coarse PM while walking within the residential micro-environment were predicted using CONTAM, the multizone airflow and contaminant transport program of the National Institute of Standards and Technology. Knowledge of when and where a person was walking was determined by randomly selecting 490 daily diaries from the EPA's consolidated human activity database (CHAD). On the basis of the results of this study, residential flooring type can significantly impact incremental time-averaged daily exposures to coarse and fine particles (α=0.05, P<0.05, N=490, Kruskal-Wallis test) with high-density cut pile carpeting resulting in the highest exposures. From this study, resuspension from walking within the residential micro-environment contributed 6-72% of time-averaged daily exposures to PM10.

  8. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies.

    Science.gov (United States)

    Wang, Peng; Shu, Meng; Mou, Pu; Weiner, Jacob

    2018-03-01

    There is little direct evidence for effects of soil heterogeneity and root plasticity on the competitive interactions among plants. In this study, we experimentally examined the impacts of temporal nutrient heterogeneity on root growth and interactions between two plant species with very different rooting strategies: Liquidambar styraciflua (sweet gum), which shows high root plasticity in response to soil nutrient heterogeneity, and Pinus taeda (loblolly pine), a species with less plastic roots. Seedlings of the two species were grown in sandboxes in inter- and intraspecific combinations. Nutrients were applied in a patch either in a stable (slow-release) or in a variable (pulse) manner. Plant aboveground biomass, fine root mass, root allocation between nutrient patch and outside the patch, and root vertical distribution were measured. L. styraciflua grew more aboveground (40% and 27% in stable and variable nutrient treatment, respectively) and fine roots (41% and 8% in stable and variable nutrient treatment, respectively) when competing with P. taeda than when competing with a conspecific individual, but the growth of P. taeda was not changed by competition from L. styraciflua . Temporal variation in patch nutrient level had little effect on the species' competitive interactions. The more flexible L. styraciflua changed its vertical distribution of fine roots in response to competition from P. taeda , growing more roots in deeper soil layers compared to its roots in conspecific competition, leading to niche differentiation between the species, while the fine root distribution of P. taeda remained unchanged across all treatments. Synthesis . L. styraciflua showed greater flexibility in root growth by changing its root vertical distribution and occupying space of not occupied by P. taeda . This flexibility gave L. styraciflua an advantage in interspecific competition.

  9. Mechanical particle coating using polymethacrylate nanoparticle agglomerates for the preparation of controlled release fine particles: The relationship between coating performance and the characteristics of various polymethacrylates.

    Science.gov (United States)

    Kondo, Keita; Kato, Shinsuke; Niwa, Toshiyuki

    2017-10-30

    We aimed to understand the factors controlling mechanical particle coating using polymethacrylate. The relationship between coating performance and the characteristics of polymethacrylate powders was investigated. First, theophylline crystals were treated using a mechanical powder processor to obtain theophylline spheres (grindability of the agglomerates were attributed to differences in particle structure, resulting from consolidation between colloidal particles. High-grindability agglomerates exhibited higher pulverization as their glass transition temperature (T g ) increased and the further pulverization promoted coating. We therefore conclude that the minimization of polymethacrylate powder by pulverization is an important factor in mechanical particle coating using polymethacrylate with low deformability. Meanwhile, when product temperature during coating approaches T g of polymer, polymethacrylate was soften to show high coating performance by plastic deformation. The effective coating by this mechanism may be accomplished by adjusting the temperature in the processor to the T g . Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  11. Short-term exposure to fine and coarse particles and mortality: A multicity time-series study in East Asia

    International Nuclear Information System (INIS)

    Lee, Hyewon; Honda, Yasushi; Hashizume, Masahiro; Guo, Yue Leon; Wu, Chang-Fu; Kan, Haidong; Jung, Kweon; Lim, Youn-Hee; Yi, Seungmuk; Kim, Ho

    2015-01-01

    Few studies on size-specific health effects of particulate matter have been conducted in Asia. We examined the association between both fine and coarse particles (PM_2_._5 and PM_1_0_−_2_._5) and mortality across 11 East Asian cities from 4 countries (Korea, Japan, Taiwan, and China). We performed a two-stage analysis: we generated city-specific estimates using a time-series analysis with a generalized additive model (Quasi-Poisson distribution), and estimated the overall effects by conducting a meta-analysis. Each 10−μg/m"3 increase in PM_2_._5 (lag01) was associated with an increase of 0.38% (95% confidence interval = 0.21%–0.55%) in all causes mortality, 0.96% (0.46%–1.46%) in cardiovascular mortality, and 1% (0.23%–1.78%) in respiratory mortality. Each 10−μg/m"3 increase in PM_1_0_−_2_._5 (lag01) was associated with cardiovascular mortality (0.69%, [0.05%–1.33%]), although this association attenuated after controlling for other pollutants, especially PM_2_._5. Increased mortality was associated with increasing PM_2_._5 and PM_1_0_−_2_._5 concentrations over 11 East Asian cities. - Highlights: • Few studies on size-specific health effects of PM have been conducted in East Asia. • We estimated size-specific PM effects on mortality over 11 East Asian cities. • Both fine and coarse particles were associated with mortality in East Asian cites. • Effect estimates for fine particles were higher than those for coarse particles. - Short-term exposure to PM_2_._5 and PM_1_0_−_2_._5 was associated with an increased risk of mortality in East Asian cities, and PM_2_._5 effect estimates were higher than PM_1_0_−_2_._5.

  12. Comparative study of the performance of columns packed with several new fine silica particles. Would the external roughness of the particles affect column properties?

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2007-09-28

    We measured and compared the characteristics and performance of columns packed with particles of five different C(18)-bonded silica, 3 and 5 microm Luna, 3 microm Atlantis, 3.5 microm Zorbax, and 2.7 microm Halo. The average particle size of each material was derived from the SEM pictures of 200 individual particles. These pictures contrast the irregular morphology of the external surface of the Zorbax and Halo particles and the smooth surface of the Luna and Atlantis particles. In a wide range of mobile phase velocities (from 0.010 to 3 mL/min) and at ambient temperature, we measured the first and second central moments of the peaks of naphthalene, insulin, and bovine serum albumin (BSA). These moments were corrected for the contributions of the extra-column volumes to calculate the reduced HETPs. The C-terms of naphthalene and insulin are largest for the Halo and Zorbax materials and the A-term smallest for the Halo-packed column. The Halo column performs the best for the low molecular weight compound naphthalene (minimum reduced HETP, 1.4) but is not as good as the Atlantis or Luna columns for the large molecular weight compound insulin. The Zorbax column is the least efficient column because of its large C-term. The lowest sample diffusivity through these particles, alone, does not account for the results. It is most likely that the roughness of the external surface of the Halo and Zorbax particles limit the performance of these columns at high flow rates generating an unusually high film mass transfer resistance.

  13. Real-world emission factors of fine and ultrafine aerosol particles for different traffic situations in Switzerland.

    Science.gov (United States)

    Imhof, David; Weingartner, Ernest; Ordónez, Carlos; Gehrig, Robert; Hill, Matz; Buchmann, Brigitte; Baltensperger, Urs

    2005-11-01

    Extended field measurements of particle number (size distribution of particle diameters, D, in the range between 18 nm and 10 microm), surface area concentrations, and PM1 and PM10 mass concentrations were performed in Switzerland to determine traffic emissions using a comprehensive set of instruments. Measurements took place at roads with representative traffic regimes: at the kerbside of a motorway (120 km h(-1)), a highway (80-100 km h(-1)), and in an urban area with stop-and-go traffic (0-50 km h(-1)) regulated by light signals. Mean diurnal variations showed that the highest pollutant concentrations were during the morning rush hours, especially of the number density in the nanoparticle size range (D real-life" emission factors were derived using NOx concentrations to calculate dilution factors. Particle number and volume emission factors of different size ranges (18-50 nm, 18-100 nm, and 18-300 nm) were derived for the total vehicle fleet and separated into a light-duty (LDV) and a heavy-duty vehicle (HDV) contribution. The total particle number emissions per vehicle were found to be about 11.7-13.5 x 10(14) particles km(-1) for constant speed (80-120 km h(-1) and 3.9 x 10(14) particles km(-1) for urban driving conditions. LDVs showed higher emission factors at constant high speed than under urban disturbed traffic flow. In contrast, HDVs emitted more air pollutants during deceleration and acceleration processes in stop-and-go traffic than with constant speed of about 80 km h(-1). On average, one HDV emits a 10-30 times higher amount of particulate air pollutants (in terms of both number and volume) than one LDV.

  14. Determination of time- and size-dependent fine particle emission with varied oil heating in an experimental kitchen.

    Science.gov (United States)

    Li, Shuangde; Gao, Jiajia; He, Yiqing; Cao, Liuxu; Li, Ang; Mo, Shengpeng; Chen, Yunfa; Cao, Yaqun

    2017-01-01

    Particulate matter (PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health. It is urged to get deep knowledge of their spatial-temporal distribution of source emission characteristics, especially ultrafine particles (UFP<100nm) and accumulation mode particles (AMP 100-665nm). Four commercial cooking oils are auto dipped water to simulate cooking fume under heating to 265°C to investigate PM emission and decay features between 0.03 and 10μm size dimension by electrical low pressure impactor (ELPI) without ventilation. Rapeseed and sunflower produced high PM 2.5 around 6.1mg/m 3 , in comparison with those of soybean and corn (5.87 and 4.65mg/m 3 , respectively) at peak emission time between 340 and 460sec since heating oil, but with the same level of particle numbers 6-9×10 5 /cm 3 . Mean values of PM 1.0 /PM 2.5 and PM 2.5 /PM 10 at peak emission time are around 0.51-0.66 and 0.23-0.29. After 15min naturally deposition, decay rates of PM 1.0 , PM 2.5 and PM 10 are 13.3%-29.8%, 20.1%-33.9% and 41.2%-54.7%, which manifest that PM 1.0 is quite hard to decay than larger particles, PM 2.5 and PM 10 . The majority of the particle emission locates at 43nm with the largest decay rate at 75%, and shifts to a larger size between 137 and 655nm after 15min decay. The decay rates of the particles are sensitive to the oil type. Copyright © 2016. Published by Elsevier B.V.

  15. Genotoxicity, inflammation and physico-chemical properties of fine particle samples from an incineration energy plant and urban air

    DEFF Research Database (Denmark)

    Sharma, Anoop Kumar; Jensen, Keld Alstrup; Rank, Jette

    2007-01-01

    in the receiving hall may be due to vehicle emissions and suspended waste particles. The inorganic content in the street and background air may have been influenced by break wear, road emissions and long-range transport. The results from a partial least-square regression analysis predicted that both PAHs...... in particle size distribution, chemical composition and the resulting biological effects when A549 cells were incubated with the PM. These characteristics and observations in the oven hall indicated that the PM source was oven exhaust, which was well combusted. (c) 2007 Elsevier B.V. All rights reserved....

  16. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Berk, H.L.; Ye Huanchun; Breizman, B.N.

    1992-01-01

    The linear response of energetic particles of the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width; when the banana width Δ b is much larger than the mode thickness Δ m , we obtain a new compact expression for the linear power transfer. When Δ m /Δ b m /Δ b from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balanced-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances (vertical strokev parallel vertical stroke=v A ) is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands (vertical strokev parallel vertical stroke=v A /(2l-1) with l≥2) is substantially reduced. (orig.)

  17. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Berk, H.L.; Ye, Huanchun; Breizman, B.N.

    1991-07-01

    The linear response of energetic particles to the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width: when the banana width triangle b is much larger than the mode thickness triangle m , we obtain a new compact expression for the linear power transfer. When triangle m /triangle b much-lt 1, the banana orbit effect reduces the power transfer by a factor of triangle m /triangle b from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balance-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances (|υ parallel | = υ A is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands (|υ parallel |) = υ A /(2 ell - 1) with ell ≥ 2) is substantially reduced. 10 refs

  18. Measurement of fine breathable particles (PM(2.5)) as a marker of environmental smoke in catering establishments in Zaragoza.

    Science.gov (United States)

    Nerín, Isabel; Alayeto, Carmen; Córdoba, Rodrigo; López, María José; Nebot, Manel

    2011-04-01

    To estimate the levels of small breathable suspended particles (PM(2.5)) as atmospheric markers of environmental tobacco smoke in catering establishments in Zaragoza, Spain. An observational study was conducted between October 2006 and April 2008 in various catering establishments in Zaragoza. A SidePack Aerosol Monitor (AM510 model) was used to sample and record the levels of breathable suspended particles (PM(2.5)) indoors and outdoors, and the following variables were collected: smoking policy (smoking allowed, completely banned, or partially banned with non-smoking sections, physically separated or not); percentage of smokers and presence of cigarette ends, ashtrays or smokers in non-smoking sections. A total of 111 venues were sampled. The level of PM(2.5) was eight times higher in smoking venues than in non-smoking ones and also higher than outdoors. The correlation between the level of particles and percentage of smokers was 0.61 (P<.01). In the non-smoking sections without physical separation the level of particles was twice as much as outdoors and similar to physically separated smokers sections. Only a complete ban on smoking in all workplaces, including leisure venues, has been shown to have a positive effect on workers and customers health. The measurement of PM(2.5) can be a simple method to assess the presence of environmental tobacco smoke. Copyright © 2010 SEPAR. Published by Elsevier Espana. All rights reserved.

  19. Response of the Fine Root Production, Phenology, and Turnover Rate of Six Shrub Species from a Subtropical Forest to a Soil Moisture Gradient and Shading

    Science.gov (United States)

    Fu, X.; Dai, X.; Wang, H.

    2015-12-01

    Knowledge of the fine root dynamics of different life forms in forest ecosystems is critical to understanding how the overall belowground carbon cycling is affected by climate change. However, our current knowledge regarding how endogenous or exogenous factors regulate the root dynamics of understory vegetation is limited. We selected a suite of study sites representing different habitats with gradients of soil moisture and solar radiation (shading or no shading). We assessed the fine root production phenology, the total fine root production, and the turnover among six understory shrub species in a subtropical climate, and examined the responses of the fine root dynamics to gradients in the soil moisture and solar radiation. The shrubs included three evergreen species, Loropetalum chinense, Vaccinium bracteatum, and Adinandra millettii, and three deciduous species, Serissa serissoides, Rubus corchorifolius, and Lespedeza davidii. We observed that variations in the annual fine root production and turnover among species were significant in the deciduous group but not in the evergreen group. Notably, V. bracteatum and S. serissoides presented the greatest responses in terms of root phenology to gradients in the soil moisture and shading: high-moisture habitat led to a decrease and shade led to an increase in fine root production during spring. Species with smaller fine roots of the 1st+2nd-order diameter presented more sensitive responses in terms of fine root phenology to a soil moisture gradient. Species with a higher fine root nitrogen-to -carbon ratio exhibited more sensitive responses in terms of fine root annual production to shading. Soil moisture and shading did not change the annual fine root production as much as the turnover rate. The fine root dynamics of some understory shrubs varied significantly with soil moisture and solar radiation status and may be different from tree species. Our results emphasize the need to study the understory fine root dynamics

  20. Vertical profiles of fine and coarse aerosol particles over Cyprus: Comparison between in-situ drone measurements and remote sensing observations

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Pikridas, Michael; Kottas, Michael; Binietoglou, Ioannis; Kokkalis, Panagiotis; Tsekeri, Aleksandra; Amiridis, Vasilis; Sciare, Jean; Keleshis, Christos; Engelmann, Ronny; Ansmann, Albert; Russchenberg, Herman W. J.; Biskos, George

    2017-04-01

    Vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) measurements were compared to airborne dried optical particle counter (OPC MetOne; Model 212) measurements during the INUIT-BACCHUS-ACTRIS campaign. The campaign took place in April 2016 and its main focus was the study of aerosol dust particles. During the campaign the NOA Polly-XT Raman lidar located at Nicosia (35.08° N, 33.22° E) was providing round-the-clock vertical profiles of aerosol optical properties. In addition, an unmanned aerial vehicle (UAV) carrying an OPC flew on 7 days during the first morning hours. The flights were performed at Orounda (35.1018° N, 33.0944° E) reaching altitudes of 2.5 km a.s.l, which allows comparison with a good fraction of the recorded lidar data. The polarization lidar photometer networking method (POLIPHON) was used for the estimation of the fine (non-dust) and coarse (dust) mode aerosol mass concentration profiles. This method uses as input the particle backscatter coefficient and the particle depolarization profiles of the lidar at 532 nm wavelength and derives the aerosol mass concentration. The first step in this approach makes use of the lidar observations to separate the backscatter and extinction contributions of the weakly depolarizing non-dust aerosol components from the contributions of the strongly depolarizing dust particles, under the assumption of an externally mixed two-component aerosol. In the second step, sun photometer retrievals of the fine and the coarse modes aerosol optical thickness (AOT) and volume concentration are used to calculate the associated concentrations from the extinction coefficients retrieved from the lidar. The estimated aerosol volume concentrations were converted into mass concentration with an assumption for the bulk aerosol density, and compared with the OPC measurements. The first results show agreement within the experimental uncertainty. This project received funding from the

  1. Outdoor fine and ultrafine particle measurements at six bus stops with smoking on two California arterial highways--results of a pilot study.

    Science.gov (United States)

    Ott, Wayne R; Acevedo-Bolton, Viviana; Cheng, Kai-Chung; Jiang, Ruo-Ting; Klepeis, Neil E; Hildemann, Lynn M

    2014-01-01

    As indoor smoking bans have become widely adopted, some U.S. communities are considering restricting smoking outdoors, creating a need for measurements of air pollution near smokers outdoors. Personal exposure experiments were conducted with four to five participants at six sidewalk bus stops located 1.5-3.3 m from the curb of two heavily traveled California arterial highways with 3300-5100 vehicles per hour. At each bus stop, a smoker in the group smoked a cigarette. Gravimetrically calibrated continuous monitors were used to measure fine particle concentrations (aerodynamic diameter bus stop, ultrafine particles (UFP), wind speed, temperature, relative humidity, and traffic counts were also measured. For 13 cigarette experiments, the mean PM2.5 personal exposure of the nonsmoker seated 0.5 m from the smoker during a 5-min cigarette ranged from 15 to 153 microg/m3. Of four persons seated on the bench, the smoker received the highest PM2.5 breathing-zone exposure of 192 microg/m3. There was a strong proximity effect: nonsmokers at distances 0.5, 1.0, and 1.5 m from the smoker received mean PM2.5 personal exposures of 59, 40, and 28 microg/m3, respectively, compared with a background level of 1.7 microg/m3. Like the PM2.5 concentrations, UFP concentrations measured 0.5 m from the smoker increased abruptly when a cigarette started and decreased when the cigarette ended, averaging 44,500 particles/cm3 compared with the background level of 7200 particles/cm3. During nonsmoking periods, the UFP background concentrations showed occasional peaks due to traffic, whereas PM2.5 background concentrations were extremely low. The results indicate that a single cigarette smoked outdoors at a bus stop can cause PM2.5 and UFP concentrations near the smoker that are 16-35 and 6.2 times, respectively, higher than the background concentrations due to cars and trucks on an adjacent arterial highway. Rules banning smoking indoors have been widely adopted in the United States and in

  2. Light extinction by fine atmospheric particles in the White Mountains region of New Hampshire and its relationship to air mass transport.

    Science.gov (United States)

    Slater, John F; Dibb, Jack E; Keim, Barry D; Talbot, Robert W

    2002-03-27

    Chemical, optical, and physical measurements of fine aerosols (aerodynamic diameter mass origin. Filter-based, 24-h integrated samples were collected and analyzed for major inorganic ions, as well as organic (OC), elemental (EC), and total carbon. Light scattering and light absorption coefficients were measured at 5-min intervals using an integrating nephelometer and a light absorption photometer. Fine particle number density was measured with a condensation particle counter. Air mass origins and transport patterns were investigated through the use of 3-day backward trajectories and a synoptic climate classification system. Two distinct transport regimes were observed: (1) flow from the north/northeast (N/NE) occurred during 9 out of 18 sample-days; and (2) flow from the west/southwest (W/SW) occurred 8 out of 18 sample-days. All measured and derived aerosol and meteorological parameters were separated into two categories based on these different flow scenarios. During W/SW flow, higher values of aerosol chemical concentration, absorption and scattering coefficients, number density, and haziness were observed compared to N/NE flow. The highest level of haziness was associated with the climate classification Frontal Atlantic Return, which brought polluted air into the region from the mid-Atlantic corridor. Fine particle mass scattering efficiencies of (NH4)2SO4 and OC were 5.35 +/- 0.42 m2 g(-1) and 1.56 +/- 0.40 m2 g(-1), respectively, when transport was out of the N/NE. When transport was from the W/SW the values were 4.94 +/- 0.68 m2 g(-1) for (NH4)2SO4 and 2.18 +/- 0.91 m2 g(-1) for OC. EC mass absorption efficiency when transport was from the N/NE was 9.66 +/- 1.06 m2 g(-1) and 10.80 +/- 1.76 m2 g(-1) when transport was from the W/SW. Results from this work can be used to predict visual air quality in the White Mountain National Forest based on a forecasted synoptic climate classification and its associated visibility.

  3. Ice nucleation properties of fine ash particles from the Eyjafjallajökull eruption in April 2010

    Directory of Open Access Journals (Sweden)

    I. Steinke

    2011-12-01

    Full Text Available During the eruption of the Eyjafjallajökull volcano in the south of Iceland in April/May 2010, about 40 Tg of ash mass were emitted into the atmosphere. It was unclear whether volcanic ash particles with d < 10 μm facilitate the glaciation of clouds. Thus, ice nucleation properties of volcanic ash particles were investigated in AIDA (Aerosol Interaction and Dynamics in the Atmosphere cloud chamber experiments simulating atmospherically relevant conditions. The ash sample that was used for our experiments had been collected at a distance of 58 km from the Eyjafjallajökull during the eruption period in April 2010. The temperature range covered by our ice nucleation experiments extended from 219 to 264 K, and both ice nucleation via immersion freezing and deposition nucleation could be observed. Immersion freezing was first observed at 252 K, whereas the deposition nucleation onset lay at 242 K and RHice =126%. About 0.1% of the volcanic ash particles were active as immersion freezing nuclei at a temperature of 249 K. For deposition nucleation, an ice fraction of 0.1% was observed at around 233 K and RHice =116%. Taking ice-active surface site densities as a measure for the ice nucleation efficiency, volcanic ash particles are similarly efficient ice nuclei in immersion freezing mode (ns,imm ~ 109 m−2 at 247 K compared to certain mineral dusts. For deposition nucleation, the observed ice-active surface site densities ns,dep were found to be 1011 m−2 at 224 K and RHice =116%. Thus, volcanic ash particles initiate deposition nucleation more efficiently than Asian and Saharan dust but appear to be poorer ice nuclei than ATD particles. Based on the experimental data, we have derived ice-active surface site densities as a function of temperature for immersion freezing and of relative humidity over ice and temperature for

  4. Aerosol-phase Activity of Iodine Captured from a Triiodide Resin Filter on Fine Particles Containing an Infectious Virus

    Science.gov (United States)

    2015-01-01

    filtration pro cess must be expected to experience attenuation at the point of aerosol contact with the mucosal surface. The effect of environmental...nebulizer were con nected using 79 mm ID, 127 mm OD conductive electrical tubing (TSI) to minimize particle attraction. Downstream of the filter holder...Na2CO3 (Gooch and Valker 1905; OSHA 1994). The negative control was bags filled with clean air and processed similarly immedi ately after filling. Iodine

  5. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Delp, William W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Black, Douglas R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-12-01

    This study evaluated nine ventilation and filtration systems in an unoccupied 2006 house located 250m downwind of the I-80 freeway in Sacramento, California. Systems were evaluated for reducing indoor concentrations of outdoor particles in summer and fall/winter, ozone in summer, and particles from stir-fry cooking. Air exchange rate was measured continuously. Energy use was estimated for year-round operation in California. Exhaust ventilation without enhanced filtration produced indoor PM2.5 that was 70% lower than outdoors. Supply ventilation with MERV13 filtration provided slightly less protection whereas supply MERV16 filtration reduced PM2.55 by 97-98% relative to outdoors. Supply filtration systems used little energy but provided no benefits for indoor-generated particles. Systems with MERV13-16 filters in the recirculating heating and cooling unit (FAU) operating continuously or 20 min/h reduced PM2.5 by 93-98%. Across all systems, removal percentages were higher for ultrafine particles and lower for black carbon, relative to PM2.5. Indoor ozone was 3-4% of outdoors for all systems except an electronic air cleaner that produced ozone. Filtration via the FAU or portable filtration units lowered PM2.5 by 25-75% when operated over the hour following cooking. The energy for year-round operation of FAU filtration with an efficient blower motor was estimated at 600 kWh/year.

  6. Fine-tuning by strigolactones of root response to low phosphate.

    Science.gov (United States)

    Kapulnik, Yoram; Koltai, Hinanit

    2016-03-01

    Strigolactones are plant hormones that regulate the development of different plant parts. In the shoot, they regulate axillary bud outgrowth and in the root, root architecture and root-hair length and density. Strigolactones are also involved with communication in the rhizosphere, including enhancement of hyphal branching of arbuscular mycorrhizal fungi. Here we present the role and activity of strigolactones under conditions of phosphate deprivation. Under these conditions, their levels of biosynthesis and exudation increase, leading to changes in shoot and root development. At least for the latter, these changes are likely to be associated with alterations in auxin transport and sensitivity. On the other hand, strigolactones may positively affect plant-mycorrhiza interactions and thereby promote phosphate acquisition by the plant. Strigolactones may be a way for plants to fine-tune their growth pattern under phosphate deprivation. © 2015 Institute of Botany, Chinese Academy of Sciences.

  7. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    Science.gov (United States)

    Ghose-Hajra, M.; McCorquodale, A.; Mattson, G.; Jerolleman, D.; Filostrat, J.

    2015-03-01

    Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana's coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana's disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  8. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    Directory of Open Access Journals (Sweden)

    M. Ghose-Hajra

    2015-03-01

    Full Text Available Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana’s coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana’s disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  9. Distribution of the solvent-extractable organic compounds in fine (PM1) and coarse (PM1-10) particles in urban, industrial and forest atmospheres of Northern Algeria.

    Science.gov (United States)

    Ladji, Riad; Yassaa, Noureddine; Balducci, Catia; Cecinato, Angelo; Meklati, Brahim Youcef

    2009-12-20

    The distribution of the solvent-extractable organic components in the fine (PM(1)) and coarse (PM(1-10)) fractions of airborne particulate was studied for the first time in Algeria. That was done during October 2006 concurrently in a big industrial district, a busy urban area, and a forest national park located in Algiers, Boumerdes, Blida, respectively, which are the three biggest provinces of Northern Algeria. Most of the organic matter identified in both particle size ranges consisted of n-alkanes and n-alkanoic acids, with minor contributions coming from polycyclic aromatic hydrocarbons (PAHs), nitrated polycyclic aromatic hydrocarbons (NPAHs), oxygenated PAHs, and other polar compounds (e.g., caffeine and nicotine). The potential emission sources of airborne contaminants were reconciled by combining the values of n-alkane carbon preference index (CPI) and selected diagnostic ratios of PAHs, calculated in both size ranges. The mean cumulative concentrations of PAHs reached 3.032 ng m(-3) at the Boumerdes site, urban, 80% of which (i.e. 2.246 ng m(-3)) in the PM(1) fraction, 6.462 ng m(-3) at Rouiba-Réghaia, industrial district, (5.135 ng m(-3) or 80% in PM(1)), and 0.512 ng m(-3) at Chréa, forested mountains (0.370 ng m(-3) or 72% in PM(1)). Similar patterns were shown by all organic groups, which resulted overall enriched in the fine particles at the three sites. Carcinogenic and mutagenic potencies associated to PAHs were evaluated by multiplying the concentrations of "toxic" compounds times the corresponding potency factors normalized vs. benzo(a)pyrene (BaP), and were found to be both acceptable.

  10. Modeling the migration of fallout radionuclides to quantify the contemporary transfer of fine particles in Luvisol profiles under different land uses and farming practices

    International Nuclear Information System (INIS)

    Jagercikova, M.; Balesdent, J.; Cornu, S.; Evrard, O.; Lefevre, I.

    2014-01-01

    Soil mixing and the downward movement of solid matter in soils are dynamic pedological processes that strongly affect the vertical distribution of all soil properties across the soil profile. These processes are affected by land use and the implementation of various farming practices, but their kinetics have rarely been quantified. Our objective was to investigate the vertical transfer of matter in Luvisols at long-term experimental sites under different land uses (cropland, grassland and forest) and different farming practices (conventional tillage, reduced tillage and no tillage). To investigate these processes, the vertical radionuclide distributions of 137 Cs and 210 Pb (xs) were analyzed in 9 soil profiles. The mass balance calculations showed that as much as 91± 9% of the 137 Cs was linked to the fine particles (2 mm). To assess the kinetics of radionuclide redistribution in soil, we modeled their depth profiles using a convection-diffusion equation. The diffusion coefficient represented the rate of bioturbation, and the convection velocity provided a proxy for fine particle leaching. Both parameters were modeled as either constant or variable with depth. The tillage was simulated using an empirical formula that considered the tillage depth and a variable mixing ratio depending on the type of tillage used. A loss of isotopes due to soil erosion was introduced into the model to account for the total radionuclide inventory. All of these parameters were optimized based on the 137 Cs data and were then subsequently applied to the 210 Pb (xs) data. Our results show that the 137 Cs isotopes migrate deeper under grasslands than under forests or croplands. Additionally, our results suggest that the diffusion coefficient decreased with depth and that it remained negligible below the tillage depth at the cropland sites, below 20 cm in the forest sites, and below 80 cm in the grassland sites. (authors)

  11. Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS, Brazil

    Science.gov (United States)

    Teixeira, Elba Calesso; Agudelo-Castañeda, Dayana M.; Fachel, Jandyra Maria Guimarães; Leal, Karen Alam; Garcia, Karine de Oliveira; Wiegand, Flavio

    2012-11-01

    The purpose of the present study was to evaluate the polycyclic aromatic hydrocarbons (PAHs) in fine (PM2.5) and coarse particles (PM2.5-10) in an urban and industrial area in the Metropolitan Area of Porto Alegre (MAPA), Brazil. Sixteen U.S. Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) were measured. Filters containing ambient air particulate were extracted with dichloromethane using Soxhlet. Extracts were later analyzed, for determining PAH concentrations, using a gaseous chromatograph coupled with a mass spectrometer (GC-MS). The polycyclic aromatic hydrocarbons (PAHs) were more concentrated in PM2.5 with an average of 70% of total PAHs in the MAPA. The target PAH apportionment among the main emission sources was carried out by diagnostic PAH concentration ratios, and principal component analysis (PCA). PAHs with higher molecular weight showed higher percentages in the fine particles in the MAPA. Based on the diagnostic ratios and PCA analysis, it may be concluded that the major contribution of PAHs was from vehicular sources (diesel and gasoline), especially in the PM2.5 fraction, as well as coal and wood burning. The winter/summer ratio in the PM2.5 and PM2.5-10 fractions in the MAPA was 3.1 and 1.8, respectively, revealing the seasonal variation of PAHs in the two fractions. The estimated toxicity equivalent factor (TEF), used to assess the contribution of the carcinogenic potency, confirms a significant presence of the moderately active carcinogenic PAHs BaP and DahA in the samples collected in the MAPA.

  12. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  13. Long range transport of fine particle windblown soils and coal fired power station emissions into Hanoi between 2001 to 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Crawford, J.; Stelcer, E.; Vuong, T.B. [Australian Nuclear Science & Technology Organisation, Kirrawee DC, NSW (Australia)

    2010-10-15

    Fine particulate matter (PM2.5), source fingerprints and their contributions have been measured and reported previously at Hanoi, Vietnam, from 25 April 2001 to 31 December 2008. In this study back trajectories are used to identify long range transport into Hanoi for two of these sources, namely, windblown dust (Soil) from 12 major deserts in China and emissions from 33 coal fired power plants (Coal) in Vietnam and China. There were 28 days of extreme Soil events with concentrations greater than 6 {mu} g m{sup -3} and 25 days of extreme Coal with concentrations greater than 30 {mu} g m{sup -3} from a total of 748 sampling days during the study period. Through the use of back trajectories it was found that long range transport of soil from the Taklamakan and Gobi desert regions (more than 3000 km to the north west) accounted for 76% of the extreme events for Soil. The three local Vietnamese power stations contributed to 15% of the extreme Coal events, while four Chinese power stations between 300 km and 1700 km to the north-east of Hanoi contributed 50% of the total extreme Coal events measured at the Hanoi sampling site.

  14. Contribution of fine filler particles to energy dissipation during wet sliding of elastomer compounds on a rough surface

    International Nuclear Information System (INIS)

    Pan Xiaodong

    2007-01-01

    Elastomer compounds reinforced with precipitated silica can exhibit elevated wet sliding friction on a rough surface in comparison with corresponding compounds filled with carbon black particles. The underlying mechanism is currently not well understood. To unravel this puzzling observation, the variation of wet sliding friction with filler volume fraction is examined at the sliding speed of the order of 1 m s -1 under different lubrication conditions. Depending on the lubrication liquid-water or ethanol-a compound that shows both higher bulk hysteretic loss and lower modulus does not always exhibit a higher wet sliding friction. A thorough characterization of the bulk rheology of the compounds investigated fails to provide the rationale for such behaviour, thus constituting an apparent violation of the conventional viscoelastic understanding of rubber friction on a rough surface. On the other hand, the detected lowering of friction when the lubrication liquid is changed from water to ethanol resembles the effect of liquid medium on interfacial adhesion reported in the literature. Hence, it is suggested that a stronger interfacial attractive interaction should exist in water between the road surface and silica particles on the compound surface immediately next to the road surface. This should be related to the elevated wet sliding friction detected for silica-filled compounds under water lubrication

  15. Using multiple continuous fine particle monitors to characterize tobacco, incense, candle, cooking, wood burning, and vehicular sources in indoor, outdoor, and in-transit settings

    Science.gov (United States)

    Ott, Wayne R.; Siegmann, Hans C.

    This study employed two continuous particle monitors operating on different measurement principles to measure concentrations simultaneously from common combustion sources in indoor, outdoor, and in-transit settings. The pair of instruments use (a) photo-charging (PC) operating on the principle ionization of fine particles that responds to surface particulate polycyclic aromatic hydrocarbons (PPAHs), and (b) diffusion charging (DC) calibrated to measure the active surface area of fine particles. The sources studied included: (1) secondhand smoke (cigarettes, cigars, and pipes), (2) incense (stick and cone), (3) candles used as food warmers, (4) cooking (toasting bread and frying meat), (5) fireplaces and ambient wood smoke, and (6) in-vehicle exposures traveling on California arterials and interstate highways. The ratio of the PC to the DC readings, or the PC/DC ratio, was found to be different for major categories of sources. Cooking, burning toast, and using a "canned heat" food warmer gave PC/DC ratios close to zero. Controlled experiments with 10 cigarettes averaged 0.15 ng mm -2 (ranging from 0.11 to 0.19 ng mm -2), which was similar to the PC/DC ratio for a cigar, although a pipe was slightly lower (0.09 ng mm -2). Large incense sticks had PC/DC ratios similar to those of cigarettes and cigars. The PC/DC ratios for ambient wood smoke averaged 0.29 ng mm -2 on 6 dates, or about twice those of cigarettes and cigars, reflecting a higher ratio of PAH to active surface area. The smoke from two artificial logs in a residential fireplace had a PC/DC ratio of 0.33-0.35 ng mm -2. The emissions from candles were found to vary, depending on how the candles were burned. If the candle flickered and generated soot, a higher PC/DC ratio resulted than if the candle burned uniformly in still air. Inserting piece of metal into the candle's flame caused high PPAH emissions with a record PC/DC reading of 1.8 ng mm -2. In-vehicle exposures measured on 43- and 50-min drives on a

  16. Water Soluble Organic Nitrogen (WSON) in Ambient Fine Particles Over a Megacity in South China: Spatiotemporal Variations and Source Apportionment

    Science.gov (United States)

    Yu, Xu; Yu, Qingqing; Zhu, Ming; Tang, Mingjin; Li, Sheng; Yang, Weiqiang; Zhang, Yanli; Deng, Wei; Li, Guanghui; Yu, Yuegang; Huang, Zhonghui; Song, Wei; Ding, Xiang; Hu, Qihou; Li, Jun; Bi, Xinhui; Wang, Xinming

    2017-12-01

    Organic nitrogen aerosols are complex mixtures and important compositions in ambient fine particulate matters (PM2.5), yet their sources and spatiotemporal patterns are not well understood particularly in regions influenced by intensive human activities. In this study, filter-based ambient PM2.5 samples at four stations (one urban, two rural, plus one urban roadside) and PM samples from combustion sources (vehicle exhaust, ship emission, and biomass burning) were collected in the coastal megacity Guangzhou, south China, for determining water soluble organic nitrogen (WSON) along with other organic and inorganic species. The annual average WSON concentrations, as well as the ratios of WSON to water soluble total nitrogen, were all significantly higher at rural sites than urban sites. Average WSON concentrations at the four sites during the wet season were quite near each other, ranging from 0.41 to 0.49 μg/m3; however, they became 2 times higher at the rural sites than at the urban sites during the dry season. Five major sources for WSON were identified through positive matrix factorization analysis. Vehicle emission (29.3%), biomass burning (22.8%), and secondary formation (20.2%) were three dominant sources of WSON at the urban station, while vehicle emission (45.4%) and dust (28.6%) were two dominant sources at the urban roadside station. At the two rural sites biomass burning (51.1% and 34.1%, respectively) and secondary formation (17.8% and 30.5%, respectively) were dominant sources of WSON. Ship emission contributed 8-12% of WSON at the four sites. Natural vegetation seemed to have very minor contribution to WSON.

  17. The relationship between airborne fine particle matter and emergency ambulance dispatches in a southwestern city in Chengdu, China

    International Nuclear Information System (INIS)

    Liu, Ruicong; Zeng, Jie; Jiang, Xianyan; Chen, Jianyu; Gao, Xufang; Zhang, Li; Li, Tiantian

    2017-01-01

    High levels of fine particulate matter (PM 2.5 ) are known to cause adverse effects to human health. The goal of this study was to estimate the acute health effects of short-term exposure to ambient PM 2.5 by analyzing cause-specific emergency ambulance dispatches as the endpoint in Chengdu, a city in Sichuan Province in southwest China. The ambient PM 2.5 concentration of Chengdu reached 63 μg/m 3 in 2015. Data related to the causes of specific emergency ambulance dispatches, air pollution, and meteorological conditions were collected from 2013 to 2015 (1095 days). A generalized additive model (GAM) was constructed to control the confounding conditions and to estimate the effects of PM 2.5 on human health conditions. Emergency ambulance dispatches for all causes with (RR for lag0 = 1.0010, 95%CI: 1.0002, 1.0019) or without injuries (RR for lag0 = 1.0012, 95%CI: 1.0002, 1.0022), respiratory diseases (RR for lag0 = 1.0051, 95%CI: 1.0012, 1.0089), and cardiovascular diseases (RR for lag0 = 1.0041, 95%CI: 1.0009, 1.0074) were associated with ambient PM 2.5 concentrations in Chengdu. In addition, the effects of PM 2.5 were not confounded by ozone. - Highlights: • Short-term exposure to PM 2.5 was associated to emergency ambulance dispatches. • PM 2.5 strongly affected ambulance dispatches for respiratory and cardiovascular diseases. • High PM 2.5 levels induced acute health effects in Chengdu and other east China cities. - PM 2.5 strongly affected emergency ambulance dispatches for respiratory and cardiovascular diseases in Chengdu, a southwestern city in China.

  18. Ozone and fine particle in the western Yangtze River Delta: an overview of 1 yr data at the SORPES station

    Directory of Open Access Journals (Sweden)

    A. J. Ding

    2013-06-01

    Full Text Available This work presents an overview of 1 yr measurements of ozone (O3 and fine particular matter (PM2.5 and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES, in the western part of the Yangtze River Delta (YRD in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. Case studies for typical O3 and PM2.5 episodes demonstrated that these episodes were generally associated with an air mass transport pathway over the mid-YRD, i.e., along the Nanjing–Shanghai axis with its city clusters, and showed that synoptic weather played an important role in air pollution, especially for O3. Agricultural burning activities caused high PM2.5 and O3 pollution during harvest seasons, especially in June. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5 pollution in this region. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions.

  19. Enhanced photoconductivity and fine response tuning in nanostructured porous silicon microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Urteaga, R; MarIn, O; Acquaroli, L N; Schmidt, J A; Koropecki, R R [INTEC-UNL-CONICET, Guemes 3450 - 3000 Santa Fe (Argentina); Comedi, D, E-mail: rkoro@intec.ceride.gov.a [CONICET y LAFISO, Departamento de Fisica, FACET, Universidad Nacional de Tucuman (Argentina)

    2009-05-01

    We used light confinement in optical microcavities to achieve a strong enhancement and a precise wavelength tunability of the electrical photoconductance of nanostructured porous silicon (PS). The devices consist of a periodic array of alternating PS layers, electrochemically etched to have high and low porosities - and therefore distinct dielectric functions. A central layer having a doubled thickness breaks up the symmetry of the one-dimensional photonic structure, producing a resonance in the photonic band gap that is clearly observed in the reflectance spectrum. The devices were transferred to a glass coated with a transparent SnO{sub 2} electrode, while an Al contact was evaporated on its back side. The electrical conductance was measured as a function of the photon energy. A strong enhancement of the conductance is obtained in a narrow (17nm FWHM) band peaking at the resonance. We present experimental results of the angular dependence of this photoconductance peak energy, and propose an explanation of the conductivity behaviour supported by calculations of the internal electromagnetic field. These devices are promising candidates for finely tuned photoresistors with potential application as chemical sensors and biosensors.

  20. Seasonal variations of ultra-fine and submicron aerosols in Taipei, Taiwan: implications for particle formation processes in a subtropical urban area

    Directory of Open Access Journals (Sweden)

    H. C. Cheung

    2016-02-01

    Full Text Available The aim of this study is to investigate the seasonal variations in the physicochemical properties of atmospheric ultra-fine particles (UFPs, d ≤ 100 nm and submicron particles (PM1, d ≤ 1 µm in an east Asian urban area, which are hypothesized to be affected by the interchange of summer and winter monsoons. An observation experiment was conducted at TARO (Taipei Aerosol and Radiation Observatory, an urban aerosol station in Taipei, Taiwan, from October 2012 to August 2013. The measurements included the mass concentration and chemical composition of UFPs and PM1, as well as the particle number concentration (PNC and the particle number size distribution (PSD with size range of 4–736 nm. The results indicated that the mass concentration of PM1 was elevated during cold seasons with a peak level of 18.5 µg m−3 in spring, whereas the highest concentration of UFPs was measured in summertime with a mean of 1.64 µg m−3. Moreover, chemical analysis revealed that the UFPs and PM1 were characterized by distinct composition; UFPs were composed mostly of organics, whereas ammonium and sulfate were the major constituents of PM1. The seasonal median of total PNCs ranged from 13.9  ×  103 cm−3 in autumn to 19.4  ×  103 cm−3 in spring. Median concentrations for respective size distribution modes peaked in different seasons. The nucleation-mode PNC (N4 − 25 peaked at 11.6  ×  103 cm−3 in winter, whereas the Aitken-mode (N25 − 100 and accumulation-mode (N100 − 736 PNC exhibited summer maxima at 6.0  ×  103 and 3.1  ×  103 cm−3, respectively. The change in PSD during summertime was attributed to the enhancement in the photochemical production of condensable organic matter that, in turn, contributed to the growth of aerosol particles in the atmosphere. In addition, clear photochemical production of particles was observed, mostly in the summer season

  1. Toxicogenomic analysis of the particle dose- and size-response relationship of silica particles-induced toxicity in mice

    International Nuclear Information System (INIS)

    Lu Xiaoyan; Jin Tingting; Jin Yachao; Wu Leihong; Hu Bin; Tian Yu; Fan Xiaohui

    2013-01-01

    This study investigated the relationship between particle size and toxicity of silica particles (SP) with diameters of 30, 70, and 300 nm, which is essential to the safe design and application of SP. Data obtained from histopathological examinations suggested that SP of these sizes can all induce acute inflammation in the liver. In vivo imaging showed that intravenously administrated SP are mainly present in the liver, spleen and intestinal tract. Interestingly, in gene expression analysis, the cellular response pathways activated in the liver are predominantly conserved independently of particle dose when the same size SP are administered or are conserved independently of particle size, surface area and particle number when nano- or submicro-sized SP are administered at their toxic doses. Meanwhile, integrated analysis of transcriptomics, previous metabonomics and conventional toxicological results support the view that SP can result in inflammatory and oxidative stress, generate mitochondrial dysfunction, and eventually cause hepatocyte necrosis by neutrophil-mediated liver injury. (paper)

  2. [Oxidative Stress Derived from Airborne Fine and Ultrafine Particles and the Effects on Brain-Nervous System: Part 2].

    Science.gov (United States)

    Sagai, Masaru; Tin Win-Shwe, Tin

    2015-01-01

    Traffic-related air pollution is a major contributor to urban air pollution. Diesel exhaust (DE) is its most important component of near-road and urban air pollutions and is commonly used as a surrogate model of air pollution in health effects studies. In particular, diesel exhaust particles (DEPs) and nanoparticles in DEPs are the components considered hazardous for health. It is widely known that exposure to DEPs is associated with mortality caused by respiratory and cardiovascular diseases. Recently, evidence has been accumulating showing that DEPs and nanoparticles may cause neurodegenerative disorders. Here, we introduce evidence suggesting their association with these disorders. The chemical components and the translocation of DEPs and nanoparticles to the brain are described in part 1. In part 2, we introduce the mechanism of development of neurodegenerative diseases such as stroke, Alzheimer's disease, and Parkinson's disease via oxidative stress and inflammatory events. Furthermore, there are many lines of epidemiological evidence showing that the particulates impair cognitive function and ability of memory through oxidative and inflammatory events in the brain. These lines of evidences are supported by many animal experiments on neurological disorders.

  3. [Oxidative stress derived from airborne fine and ultrafine particles and the effects on brain-nervous system: part 1].

    Science.gov (United States)

    Sagai, Masaru; Win-Shwe, Tin Tin

    2015-01-01

    Traffic-related air pollution is a major contributor to urban air pollution. Diesel exhaust (DE) is the most important component of near-road and urban air pollution and is commonly used as a surrogate model of air pollution in health effects studies. In particular, diesel exhaust particles (DEP) and the nanoparticles in DEP are considered hazardous components on health effects. It is widely known that exposure to DEP is associated with mortality due to respiratory and cardiovascular diseases. Recently, there has been accumulating evidence that DEP and the nanoparticles in DEP may be causes of neurodegenerative disorders. Here, we introduce the evidence suggesting their association with such disorders. First, we describe the chemical components and the translocation of DEP and nanoparticles to the brain, and then introduce the evidence and a mechanism by which reactive oxygen species (ROS) and any inflammatory mediators can be produced by DEP phagocytosis of macrophages, microglia and astrocyte cells in the brain. There are many lines of evidence showing that the neurodegenerative disorders are profoundly associated with enhanced oxidative and inflammatory events. Second, we describe a mechanism by which neurodegenerative diseases, such as stroke, Alzheimer's disease and Parkinson's disease, are induced via oxidative stress and inflammatory events.

  4. Aerosol-phase activity of iodine captured from a triiodide resin filter on fine particles containing an infectious virus.

    Science.gov (United States)

    Heimbuch, B K; Harnish, D A; Balzli, C; Lumley, A; Kinney, K; Wander, J D

    2015-06-01

    To avoid interference by water-iodine disinfection chemistry and measure directly the effect of iodine, captured from a triiodide complex bound to a filter medium, on viability of penetrating viral particles. Aerosols of MS2 coli phage were passed through control P100 or iodinated High-Efficiency Particulate Air media, collected in plastic bags, incubated for 0-10 min, collected in an impinger containing thiosulphate to consume all unreacted iodine, plated and enumerated. Comparison of viable counts demonstrated antimicrobial activity with an apparent half-life for devitalization in tens of seconds; rate of kill decreased at low humidity and free iodine was captured by the bags. The results support the mechanism of near-contact capture earlier proposed; however, the disinfection chemistry in the aerosol phase is very slow on the time scale of inhalation. This study shows that disinfection by filter-bound iodine in the aerosol phase is too slow to be clinically significant in individual respiratory protection, but that it might be of benefit to limit airborne transmission of infections in enclosed areas. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  5. Fine-scale spatial response of CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Brunett, B.A.; Van Scyoc, J.M.; Hilton, N.R.; Lund, J.C.; James, R.B.; Schlesinger, T.E.

    1998-01-01

    Several studies have suggested that the uniformity of Cadmium Zinc Telluride (CZT) detectors play an important role in their performance when operated as gamma-ray spectrometers. However the detailed gamma response of simple planar detectors as a function of position over the device area is largely unknown. To address this issue the authors have built a system capable of measuring the detector response with a resolution of ∼250 (micro)m. The system consists of a highly collimated (∼200 (micro)m) photon source (<150 kev) scanned over the detector using a computer controlled two-axis translation stage. Fifteen samples configured as planar detectors were examined with the new apparatus. The material grade of the detectors examined varied from counter to select discriminator. Two classes of spatial response variation were observed and are presented here. Infrared (IR) transmission images were also acquired for each sample and correlation between features in the pulse height spectrum and crystalline defects were observed

  6. A Fine Risk To Be Run? The Ambiguity of Eros and Teacher Responsibility.

    Science.gov (United States)

    Todd, Sharon

    2003-01-01

    Describes teachers as often being in a place of tension between responding to students as persons and responding to students in their institutional-defined roles. Studies the significance of communicative ambiguity for responsibility, and explores what is ethically at stake for teachers in erotic form of communication. Contains 14 references. (JS)

  7. Response of winter fine particulate matter concentrations to emission and meteorology changes in North China

    Directory of Open Access Journals (Sweden)

    M. Gao

    2016-09-01

    Full Text Available The winter haze is a growing problem in North China, but the causes are not well understood. The chemistry version of the Weather Research and Forecasting model (WRF-Chem was applied in North China to examine how PM2.5 concentrations change in response to changes in emissions (sulfur dioxide (SO2, black carbon (BC, organic carbon (OC, ammonia (NH3, and nitrogen oxides (NOx, as well as meteorology (temperature, relative humidity (RH, and wind speeds changes in winter. From 1960 to 2010, the dramatic changes in emissions lead to +260 % increases in sulfate, +320 % increases in nitrate, +300 % increases in ammonium, +160 % increases in BC, and +50 % increases in OC. The responses of PM2.5 to individual emission species indicate that the simultaneous increases in SO2, NH3, and NOx emissions dominated the increases in PM2.5 concentrations. PM2.5 shows more notable increases in response to changes in SO2 and NH3 as compared to increases in response to changes in NOx emissions. In addition, OC also accounts for a large fraction in PM2.5 changes. These results provide some implications for haze pollution control. The responses of PM2.5 concentrations to temperature increases are dominated by changes in wind fields and mixing heights. PM2.5 shows relatively smaller changes in response to temperature increases and RH decreases compared to changes in response to changes in wind speed and aerosol feedbacks. From 1960 to 2010, aerosol feedbacks have been significantly enhanced due to higher aerosol loadings. The discussions in this study indicate that dramatic changes in emissions are the main cause of increasing haze events in North China, and long-term trends in atmospheric circulations may be another important cause since PM2.5 is shown to be substantially affected by wind speed and aerosol feedbacks. More studies are necessary to get a better understanding of the aerosol–circulation interactions.

  8. Interplay of single particle and collective response in molecular dynamics simulation of dusty plasma system

    Science.gov (United States)

    Maity, Srimanta; Das, Amita; Kumar, Sandeep; Tiwari, Sanat Kumar

    2018-04-01

    The collective response of the plasma medium is well known and has been explored extensively in the context of dusty plasma medium. On the other hand, the individual particle response associated with the collisional character giving rise to the dissipative phenomena has not been explored adequately. In this paper, two-dimensional molecular dynamics simulation of dust particles interacting via Yukawa potential has been considered. It has been shown that disturbances induced in a dust crystal elicit both collective and single particle responses. Generation of a few particles moving at speeds considerably higher than acoustic and/or shock speed (excited by the external disturbance) is observed. This is an indication of a single particle response. Furthermore, as these individual energetic particles propagate, the dust crystal is observed to crack along their path. Initially when the energy is high, these particles generate secondary energetic particles by the collisional scattering process. However, ultimately as these particles slow down they excite a collective response in the dust medium at secondary locations in a region which is undisturbed by the primary external disturbance. The condition when the cracking of the crystal stops and collective excitations get initiated has been identified quantitatively. The trailing collective primary disturbances would thus often encounter a disturbed medium with secondary and tertiary collective perturbations, thereby suffering significant modification in its propagation. It is thus clear that there is an interesting interplay (other than mere dissipation) between the single particle and collective response which governs the dynamics of any disturbance introduced in the medium.

  9. Fines Classification Based on Sensitivity to Pore-Fluid Chemistry

    KAUST Repository

    Jang, Junbong

    2015-12-28

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil "electrical sensitivity." Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems. © ASCE.

  10. Fines classification based on sensitivity to pore-fluid chemistry

    Science.gov (United States)

    Jang, Junbong; Santamarina, J. Carlos

    2016-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil “electrical sensitivity.” Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems.

  11. Preferential Redistribution of Fine-Grained Particles in the Panama Basin and Potential Errors in 230Th-Derived Focusing Factors

    Science.gov (United States)

    Marcantonio, F.; Lyle, M. W.; Ibrahim, R.

    2013-12-01

    The 230Th constant-flux proxy technique, commonly used in paleoceanography to estimate sediment fluxes, is thought to differentiate lateral from vertical fluxes of sediment at sites that have undergone sediment redistribution. However, redistribution processes (focusing or winnowing) are expected to fractionate fine particles from those that are coarse. Since fine particles with greater surface area are known to contain greater concentrations of 230Th, one might expect that sediment redistribution would bias 230Th-derived sediment mass accumulation rates (MARs). We investigate this possibility in two regions of the Panama Basin where significant sediment focusing has been hypothesized to occur. We examine multicore sediments from paired sites at two locations, one close to the equator at the southern limit of the Panama Basin (Carnegie Ridge) where upwelling and primary productivity are high, and one at 6°N at the northern boundary of the Panama Basin (Cocos Ridge), where primary productivity is lower. The multicores, which are constrained by radiocarbon ages that span the latest Holocene at each paired site, represent regions that have undergone potential winnowing and focusing (thin vs thick sediment drapes identified using seismic reflection) at each Panama Basin location. Since the distance separating the paired sites at each location is no more than about 50 km, one would expect the 230Th-derived MARs to be similar, i.e., the rain rate should not be significantly different at each of the paired sites. The radiocarbon-derived sand fraction (>63-μm) MARs, which likely represent the vertical rain of particles not transported by bottom currents, are identical at each of the paired sites, with fluxes at the Carnegie Ridge about 3.5 times greater than those at the Cocos Ridge over the past several thousand years. Over the same time period, the 230Th-normalized MARs are relatively similar at both the Carnegie and Cocos sites, but are different by about 60% at each

  12. The history of magnetization process influence on FMR response of particle systems

    International Nuclear Information System (INIS)

    Dumitru, Ioan; Stancu, Alexandru

    2007-01-01

    In order to express the history of magnetization process dependence on ferromagnetic resonance (FMR) for a particle system we use a statistical model based on the Preisach model. The precedent magnetization processes define in Preisach plane a configuration of particle magnetization orientations. The particles are considered single domain and saturated and are modeled as Stoner-Wohlfarth particles. The FMR response of the system is computed by summarizing the individual dynamic susceptibility of the particles, keeping account of the initial directions of the particle magnetizations. The FMR spectra of the particle system is determined considering three initial magnetization states: the demagnetized state, the positive saturated state in which all the particles have the magnetization in the static field direction and the negative saturated state when all the particles have the magnetization in the opposite field direction. The static field dependence of the resonance frequency and linewidth are determined as functions of the initial magnetization states

  13. Fine Root Growth and Vertical Distribution in Response to Elevated CO2, Warming and Drought in a Mixed Heathland–Grassland

    DEFF Research Database (Denmark)

    Arndal, Marie Frost; Tolver, Anders; Larsen, Klaus Steenberg

    2018-01-01

    in single-factor experiments. In a Danish heathland ecosystem, we investigated both individual and combined effects of elevated CO2, warming and drought on fine root length, net production and standing biomass by the use of minirhizotrons, ingrowth cores and soil coring. Warming increased the net root...... production from ingrowth cores, but decreased fine root number and length in minirhizotrons, whereas there were no significant main effects of drought. Across all treatments and soil depths, CO2 stimulated both the total fine root length (+44%) and the number of roots observed (+39%), with highest relative......Belowground plant responses have received much less attention in climate change experiments than aboveground plant responses, thus hampering a holistic understanding of climate change effects on plants and ecosystems. In addition, responses of plant roots to climate change have mostly been studied...

  14. New insights into the oleate flotation response of feldspar particles of different sizes: Anisotropic adsorption model.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Deng, Wei; Yang, Yaohui; Sun, Wei; Gao, Zhiyong; Hu, Yuehua

    2017-11-01

    The anisotropic adsorption of sodium oleate (NaOL) on feldspar surfaces was investigated to elucidate the different flotation properties of feldspar particles of four different size ranges. Microflotation experiments showed that the feldspar flotation recovery of particles with sizes spanning different ranges decreased in the order 0-19>19-38>45-75>38-45μm. Zeta potential and FTIR measurements showed that NaOL was chemically adsorbed on the Al sites of the feldspar surface. The anisotropic surface energies and broken bond densities estimated by density functional theory calculations showed that, although feldspar mostly exposed (010) and (001) surfaces, only the (001) surfaces contained the Al sites needed for NaOL adsorption. The interaction energies calculated by molecular dynamics simulations confirmed the more favorable NaOL adsorption on (001) than (010) surfaces, which may represent the main cause for the anisotropic NaOL adsorption on feldspar particles of different sizes. SEM measurements showed that the main exposed surfaces on coarse and fine feldspar particles were the side (010) and basal (001) ones, respectively. A higher fraction of Al-rich (001) surfaces is exposed on fine feldspar particles, resulting in better floatability compared with coarse particles. XPS and adsorption measurements confirmed that the Al content on the feldspar surface varied with the particle size, explaining the different NaOL flotation of feldspar particles of different sizes. Therefore, the present results suggest that coarsely ground ore should be used for the separation of feldspar gangue minerals. Further improvements in the flotation separation of feldspar from associated valuable minerals can be achieved through selective comminution or grinding processes favoring the exposure of (010) surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB-responsive

  16. Impact of electron irradiation on particle track etching response in ...

    Indian Academy of Sciences (India)

    energy by an ionizing particle traversing a material medium. When the ... Their amorphous nature and radiation sensitivity further ... The samples were washed thoroughly in lukewarm soap solution to avoid non-uniformity in etching due to ...

  17. Response of trapped particles to a collapsing dipole moment.

    Science.gov (United States)

    Heckman, H. H.; Lindstrom, P. J.

    1972-01-01

    Particle motion in the secularly varying geomagnetic field is investigated in terms of a dipolar magnetic field with decreasing magnetic moment M. For dM/dt equal to the rate of decay of the earth's dipole component, we find there is drift in B-L space, resulting in an inward drift of particles accompanied with increased energy and unidirectional intensity. Secular variation of the geomagnetic field appears to be a dominant mechanism for radial drift in the inner radiation belt.

  18. Field characterization of the PM2.5 Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China

    Science.gov (United States)

    Zhang, Yunjiang; Tang, Lili; Croteau, Philip L.; Favez, Olivier; Sun, Yele; Canagaratna, Manjula R.; Wang, Zhuang; Couvidat, Florian; Albinet, Alexandre; Zhang, Hongliang; Sciare, Jean; Prévôt, André S. H.; Jayne, John T.; Worsnop, Douglas R.

    2017-12-01

    A PM2.5-capable aerosol chemical speciation monitor (Q-ACSM) was deployed in urban Nanjing, China, for the first time to measure in situ non-refractory fine particle (NR-PM2.5) composition from 20 October to 19 November 2015, along with parallel measurements of submicron aerosol (PM1) species by a standard Q-ACSM. Our results show that the NR-PM2.5 species (organics, sulfate, nitrate, and ammonium) measured by the PM2.5-Q-ACSM are highly correlated (r2 > 0.9) with those measured by a Sunset Lab OC  /  EC analyzer and a Monitor for AeRosols and GAses (MARGA). The comparisons between the two Q-ACSMs illustrated similar temporal variations in all NR species between PM1 and PM2.5, yet substantial mass fractions of aerosol species were observed in the size range of 1-2.5 µm. On average, NR-PM1-2.5 contributed 53 % of the total NR-PM2.5, with sulfate and secondary organic aerosols (SOAs) being the two largest contributors (26 and 27 %, respectively). Positive matrix factorization of organic aerosol showed similar temporal variations in both primary and secondary OAs between PM1 and PM2.5, although the mass spectra were slightly different due to more thermal decomposition on the capture vaporizer of the PM2.5-Q-ACSM. We observed an enhancement of SOA under high relative humidity conditions, which is associated with simultaneous increases in aerosol pH, gas-phase species (NO2, SO2, and NH3) concentrations and aerosol water content driven by secondary inorganic aerosols. These results likely indicate an enhanced reactive uptake of SOA precursors upon aqueous particles. Therefore, reducing anthropogenic NOx, SO2, and NH3 emissions might not only reduce secondary inorganic aerosols but also the SOA burden during haze episodes in China.

  19. Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil-plant field exposure

    International Nuclear Information System (INIS)

    Schreck, Eva; Laplanche, Christophe; Le Guédard, Marina; Bessoule, Jean-Jacques; Austruy, Annabelle; Xiong, Tiantian; Foucault, Yann; Dumat, Camille

    2013-01-01

    We investigate the effect of both foliar and root uptake of a mixture of metal(loid)s on the fatty acid composition of plant leaves. Our objectives are to determine whether both contamination pathways have a similar effect and whether they interact. Lactuca sativa L. were exposed to fine process particles enriched with metal(loid)s in an industrial area. Data from a first experiment were used to conduct an exploratory statistical analysis which findings were successfully cross-validated by using the data from a second one. Both foliar and root pathways impact plant leaf fatty acid composition and do not interact. Z index (dimensionless quantity), weighted product of fatty acid concentration ratios was built up from the statistical analyses. It provides new insights on the mechanisms involved in metal uptake and phytotoxicity. Plant leaf fatty acid composition is a robust and fruitful approach to detect and understand the effects of metal(loid) contamination on plants. -- Highlights: •The study compares foliar and root transfers of metal(loid)s and their effects on plants. •Field experiments are performed combining ecotoxicological and statistical analyses. •The use of leaf fatty acid composition is a relevant indicator of exposure pathway. •The uptake pathways are independent, with an additive effect in terms of phytotoxicity. -- Metal uptake via both foliar and root pathways alters in a distinctive manner the fatty acid composition of lettuce leaves

  20. Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil-plant field exposure.

    Science.gov (United States)

    Schreck, Eva; Laplanche, Christophe; Le Guédard, Marina; Bessoule, Jean-Jacques; Austruy, Annabelle; Xiong, Tiantian; Foucault, Yann; Dumat, Camille

    2013-08-01

    We investigate the effect of both foliar and root uptake of a mixture of metal(loid)s on the fatty acid composition of plant leaves. Our objectives are to determine whether both contamination pathways have a similar effect and whether they interact. Lactuca sativa L. were exposed to fine process particles enriched with metal(loid)s in an industrial area. Data from a first experiment were used to conduct an exploratory statistical analysis which findings were successfully cross-validated by using the data from a second one. Both foliar and root pathways impact plant leaf fatty acid composition and do not interact. Z index (dimensionless quantity), weighted product of fatty acid concentration ratios was built up from the statistical analyses. It provides new insights on the mechanisms involved in metal uptake and phytotoxicity. Plant leaf fatty acid composition is a robust and fruitful approach to detect and understand the effects of metal(loid) contamination on plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Hierarchical interactions between Fnr orthologs allows fine-tuning of transcription in response to oxygen in Herbaspirillum seropedicae.

    Science.gov (United States)

    Batista, Marcelo Bueno; Chandra, Govind; Monteiro, Rose Adele; de Souza, Emanuel Maltempi; Dixon, Ray

    2018-05-04

    Bacteria adjust the composition of their electron transport chain (ETC) to efficiently adapt to oxygen gradients. This involves differential expression of various ETC components to optimize energy generation. In Herbaspirillum seropedicae, reprogramming of gene expression in response to oxygen availability is controlled at the transcriptional level by three Fnr orthologs. Here, we characterised Fnr regulons using a combination of RNA-Seq and ChIP-Seq analysis. We found that Fnr1 and Fnr3 directly regulate discrete groups of promoters (Groups I and II, respectively), and that a third group (Group III) is co-regulated by both transcription factors. Comparison of DNA binding motifs between the three promoter groups suggests Group III promoters are potentially co-activated by Fnr3-Fnr1 heterodimers. Specific interaction between Fnr1 and Fnr3, detected in two-hybrid assays, was dependent on conserved residues in their dimerization interfaces, indicative of heterodimer formation in vivo. The requirements for co-activation of the fnr1 promoter, belonging to Group III, suggest either sequential activation by Fnr3 and Fnr1 homodimers or the involvement of Fnr3-Fnr1 heterodimers. Analysis of Fnr proteins with swapped activation domains provides evidence that co-activation by Fnr1 and Fnr3 at Group III promoters optimises interactions with RNA polymerase to fine-tune transcription in response to prevailing oxygen concentrations.

  2. Kinetic model for the mechanical response of suspensions of sponge-like particles.

    Science.gov (United States)

    Hütter, Markus; Faber, Timo J; Wyss, Hans M

    2012-01-01

    A dynamic two-scale model is developed that describes the stationary and transient mechanical behavior of concentrated suspensions made of highly porous particles. Particularly, we are interested in particles that not only deform elastically, but also can swell or shrink by taking up or expelling the viscous solvent from their interior, leading to rate-dependent deformability of the particles. The fine level of the model describes the evolution of particle centers and their current sizes, while the shapes are at present not taken into account. The versatility of the model permits inclusion of density- and temperature-dependent particle interactions, and hydrodynamic interactions, as well as to implement insight into the mechanism of swelling and shrinking. The coarse level of the model is given in terms of macroscopic hydrodynamics. The two levels are mutually coupled, since the flow changes the particle configuration, while in turn the configuration gives rise to stress contributions, that eventually determine the macroscopic mechanical properties of the suspension. Using a thermodynamic procedure for the model development, it is demonstrated that the driving forces for position change and for size change are derived from the same potential energy. The model is translated into a form that is suitable for particle-based Brownian dynamics simulations for performing rheological tests. Various possibilities for connection with experiments, e.g. rheological and structural, are discussed.

  3. A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies.

    Science.gov (United States)

    Lazzaro, Martina; Feldman, Mario F; García Véscovi, Eleonora

    2017-08-22

    The ability to detect and measure danger from an environmental signal is paramount for bacteria to respond accordingly, deploying strategies that halt or counteract potential cellular injury and maximize survival chances. Type VI secretion systems (T6SSs) are complex bacterial contractile nanomachines able to target toxic effectors into neighboring bacteria competing for the same colonization niche. Previous studies support the concept that either T6SSs are constitutively active or they fire effectors in response to various stimuli, such as high bacterial density, cell-cell contact, nutrient depletion, or components from dead sibling cells. For Serratia marcescens , it has been proposed that its T6SS is stochastically expressed, with no distinction between harmless or aggressive competitors. In contrast, we demonstrate that the Rcs regulatory system is responsible for finely tuning Serratia T6SS expression levels, behaving as a transcriptional rheostat. When confronted with harmless bacteria, basal T6SS expression levels suffice for Serratia to eliminate the competitor. A moderate T6SS upregulation is triggered when, according to the aggressor-prey ratio, an unbalanced interplay between homologous and heterologous effectors and immunity proteins takes place. Higher T6SS expression levels are achieved when Serratia is challenged by a contender like Acinetobacter , which indiscriminately fires heterologous effectors able to exert lethal cellular harm, threatening the survival of the Serratia population. We also demonstrate that Serratia 's RcsB-dependent T6SS regulatory mechanism responds not to general stress signals but to the action of specific effectors from competitors, displaying an exquisite strategy to weigh risks and keep the balance between energy expenditure and fitness costs. IMPORTANCE Serratia marcescens is among the health-threatening pathogens categorized by the WHO as research priorities to develop alternative antimicrobial strategies, and it was

  4. Land use regression modeling of oxidative potential of fine particles, NO2, PM2.5 mass and association to type two diabetes mellitus

    Science.gov (United States)

    Hellack, Bryan; Sugiri, Dorothea; Schins, Roel P. F.; Schikowski, Tamara; Krämer, Ursula; Kuhlbusch, Thomas A. J.; Hoffmann, Barbara

    2017-12-01

    While land use regression models (LUR) are commonly used, e.g. for the prediction of spatially variable air pollutant mass concentrations, they are scarcely used for predicting the oxidative potential (OP), a suggested unifying predictor of health effects. Therefore a LUR model was developed to examine if long-term OP of fine particulate exposure can be reasonably predicted by LUR modeling and whether it is related to health effects in a study region comprised of urban and rural areas. Four 14-day sampling periods over 1 year at 40 sites in the western Ruhr Area and adjacent northern rural area, Germany, in 2002/2003 were conducted and annual Nitrogen Dioxide (NO2), fine particles (PM2.5), and OP were calculated. LUR models were developed to estimate spatially-resolved annual OP, NO2 and PM2.5 concentrations. The model performance was checked by leave-one-out cross validation (LOOCV) and cox regression was used to analyze the association of modeled residential OP and NO2 with incident type 2 diabetes mellitus (T2DM) in 1784 elderly women during a mean follow-up of 16 years (baseline 1985-1994). The measured OP and NO2 concentrations were moderately correlated (rSpearman 0.57). The LUR models explained 62% and 92% of the OP and NO2 variance (adjusted LOOCV R2 57% and 90%). PM10 emission from combustion in a 5000 m buffer was the most important predictor for OP and NO2. Modeled pollutants were highly correlated (rSpearman 0.87). Model quality for OP was sensitive to the inclusion of a single influential measurement site. For PM2.5 mass only an insufficient model with a low explained variance of 22% (adjusted R2) was developed so no health effects analyses were conducted with estimated PM2.5. Increases in OP and NO2 were associated with an increase in risk of T2DM by a hazard ratio of 1.38 (95% CI 1.06-1.80) and 1.39 (95% CI 1.07-1.81) per interquartile range of OP and NO2, respectively. We conclude that spatially-resolved OP can be predicted by LUR modeling, but

  5. Fine mapping of a QTL on chromosome 13 for submaximal exercise capacity training response: the HERITAGE Family Study.

    Science.gov (United States)

    Rice, Treva K; Sarzynski, Mark A; Sung, Yun Ju; Argyropoulos, George; Stütz, Adrian M; Teran-Garcia, Margarita; Rao, D C; Bouchard, Claude; Rankinen, Tuomo

    2012-08-01

    Although regular exercise improves submaximal aerobic capacity, there is large variability in its response to exercise training. While this variation is thought to be partly due to genetic differences, relatively little is known about the causal genes. Submaximal aerobic capacity traits in the current report include the responses of oxygen consumption (ΔVO(2)60), power output (ΔWORK60), and cardiac output (ΔQ60) at 60% of VO2max to a standardized 20-week endurance exercise training program. Genome-wide linkage analysis in 475 HERITAGE Family Study Caucasians identified a locus on chromosome 13q for ΔVO(2)60 (LOD = 3.11). Follow-up fine mapping involved a dense marker panel of over 1,800 single-nucleotide polymorphisms (SNPs) in a 7.9-Mb region (21.1-29.1 Mb from p-terminus). Single-SNP analyses found 14 SNPs moderately associated with both ΔVO(2)60 at P ≤ 0.005 and the correlated traits of ΔWORK60 and ΔQ60 at P < 0.05. Haplotype analyses provided several strong signals (P < 1.0 × 10(-5)) for ΔVO(2)60. Overall, association analyses narrowed the target region and included potential biological candidate genes (MIPEP and SGCG). Consistent with maximal heritability estimates of 23%, up to 20% of the phenotypic variance in ΔVO(2)60 was accounted for by these SNPs. These results implicate candidate genes on chromosome 13q12 for the ability to improve submaximal exercise capacity in response to regular exercise. Submaximal exercise at 60% of maximal capacity is an exercise intensity that falls well within the range recommended in the Physical Activity Guidelines for Americans and thus has potential public health relevance.

  6. pH-Responsive Particle-Liquid Aggregates—Electrostatic Formation Kinetics

    Directory of Open Access Journals (Sweden)

    Peter M. Ireland

    2018-06-01

    Full Text Available Liquid-particle aggregates were formed electrostatically using pH-responsive poly[2-(diethylaminoethyl methacrylate] (PDEA-coated polystyrene particles. This novel non-contact electrostatic method has been used to assess the particle stimulus-responsive wettability in detail. Video footage and fractal analysis were used in conjunction with a two-stage model to characterize the kinetics of transfer of particles to a water droplet surface, and internalization of particles by the droplet. While no stable liquid marbles were formed, metastable marbles were manufactured, whose duration of stability depended strongly on drop pH. Both transfer and internalization were markedly faster for droplets at low pH, where the particles were expected to be hydrophilic, than at high pH where they were expected to be hydrophobic. Increasing the driving electrical potential produced greater transfer and internalization times. Possible reasons for this are discussed.

  7. The Biologic Response to Polyetheretherketone (PEEK) Wear Particles in Total Joint Replacement: A Systematic Review.

    Science.gov (United States)

    Stratton-Powell, Ashley A; Pasko, Kinga M; Brockett, Claire L; Tipper, Joanne L

    2016-11-01

    Polyetheretherketone (PEEK) and its composites are polymers resistant to fatigue strain, radiologically transparent, and have mechanical properties suitable for a range of orthopaedic applications. In bulk form, PEEK composites are generally accepted as biocompatible. In particulate form, however, the biologic response relevant to joint replacement devices remains unclear. The biologic response to wear particles affects the longevity of total joint arthroplasties. Particles in the phagocytozable size range of 0.1 µm to 10 µm are considered the most biologically reactive, particularly particles with a mean size of PEEK-based wear debris from total joint arthroplasties. (1) What are the quantitative characteristics of PEEK-based wear particles produced by total joint arthroplasties? (2) Do PEEK wear particles cause an adverse biologic response when compared with UHMWPE or a similar negative control biomaterial? (3) Is the biologic response affected by particle characteristics? Embase and Ovid Medline databases were searched for studies that quantified PEEK-based particle characteristics and/or investigated the biologic response to PEEK-based particles relevant to total joint arthroplasties. The keyword search included brands of PEEK (eg, MITCH, MOTIS) or variations of PEEK types and nomenclature (eg, PAEK, CFR-PEEK) in combination with types of joint (eg, hip, knee) and synonyms for wear debris or immunologic response (eg, particles, cytotoxicity). Peer-reviewed studies, published in English, investigating total joint arthroplasty devices and cytotoxic effects of PEEK particulates were included. Studies investigating devices without articulating bearings (eg, spinal instrumentation devices) and bulk material or contact cytotoxicity were excluded. Of 129 studies, 15 were selected for analysis and interpretation. No studies were found that isolated and characterized PEEK wear particles from retrieved periprosthetic human tissue samples. In the four studies that

  8. Knock Resistance and Fine Particle Emissions for Several Biomass-Derived Oxygenates in a Direct-Injection Spark-Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A.; Burton, Jonathan; Sindler, Petr; Christensen, Earl; Fouts, Lisa; Chupka, Gina M.; McCormick, Robert L.

    2016-04-01

    Several high octane number oxygenates that could be derived from biomass were blended with gasoline and examined for performance properties and their impact on knock resistance and fine particle emissions in a single cylinder direct-injection spark-ignition engine. The oxygenates included ethanol, isobutanol, anisole, 4-methylanisole, 2-phenylethanol, 2,5-dimethyl furan, and 2,4-xylenol. These were blended into a summertime blendstock for oxygenate blending at levels ranging from 10 to 50 percent by volume. The base gasoline, its blends with p-xylene and p-cymene, and high-octane racing gasoline were tested as controls. Relevant gasoline properties including research octane number (RON), motor octane number, distillation curve, and vapor pressure were measured. Detailed hydrocarbon analysis was used to estimate heat of vaporization and particulate matter index (PMI). Experiments were conducted to measure knock-limited spark advance and particulate matter (PM) emissions. The results show a range of knock resistances that correlate well with RON. Molecules with relatively low boiling point and high vapor pressure had little effect on PM emissions. In contrast, the aromatic oxygenates caused significant increases in PM emissions (factors of 2 to 5) relative to the base gasoline. Thus, any effect of their oxygen atom on increasing local air-fuel ratio was outweighed by their low vapor pressure and high double-bond equivalent values. For most fuels and oxygenate blend components, PMI was a good predictor of PM emissions. However, the high boiling point, low vapor pressure oxygenates 2-phenylethanol and 2,4-xylenol produced lower PM emissions than predicted by PMI. This was likely because they did not fully evaporate and combust, and instead were swept into the lube oil.

  9. Field characterization of the PM2.5 Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2017-12-01

    Full Text Available A PM2.5-capable aerosol chemical speciation monitor (Q-ACSM was deployed in urban Nanjing, China, for the first time to measure in situ non-refractory fine particle (NR-PM2.5 composition from 20 October to 19 November 2015, along with parallel measurements of submicron aerosol (PM1 species by a standard Q-ACSM. Our results show that the NR-PM2.5 species (organics, sulfate, nitrate, and ammonium measured by the PM2.5-Q-ACSM are highly correlated (r2 > 0.9 with those measured by a Sunset Lab OC  /  EC analyzer and a Monitor for AeRosols and GAses (MARGA. The comparisons between the two Q-ACSMs illustrated similar temporal variations in all NR species between PM1 and PM2.5, yet substantial mass fractions of aerosol species were observed in the size range of 1–2.5 µm. On average, NR-PM1−2.5 contributed 53 % of the total NR-PM2.5, with sulfate and secondary organic aerosols (SOAs being the two largest contributors (26 and 27 %, respectively. Positive matrix factorization of organic aerosol showed similar temporal variations in both primary and secondary OAs between PM1 and PM2.5, although the mass spectra were slightly different due to more thermal decomposition on the capture vaporizer of the PM2.5-Q-ACSM. We observed an enhancement of SOA under high relative humidity conditions, which is associated with simultaneous increases in aerosol pH, gas-phase species (NO2, SO2, and NH3 concentrations and aerosol water content driven by secondary inorganic aerosols. These results likely indicate an enhanced reactive uptake of SOA precursors upon aqueous particles. Therefore, reducing anthropogenic NOx, SO2, and NH3 emissions might not only reduce secondary inorganic aerosols but also the SOA burden during haze episodes in China.

  10. The response of macrophages to titanium particles is determined by macrophage polarization.

    Science.gov (United States)

    Pajarinen, Jukka; Kouri, Vesa-Petteri; Jämsen, Eemeli; Li, Tian-Fang; Mandelin, Jami; Konttinen, Yrjö T

    2013-11-01

    Aseptic loosening of total joint replacements is driven by the reaction of macrophages to foreign body particles released from the implant. It was hypothesized that the macrophages' response to these particles is dependent, in addition to particle characteristics and contaminating biomolecules, on the state of macrophage polarization as determined by the local cytokine microenvironment. To test this hypothesis we differentiated M1 and M2 macrophages from human peripheral blood monocytes and compared their responses to titanium particles using genome-wide microarray analysis and a multiplex cytokine assay. In comparison to non-activated M0 macrophages, the overall chemotactic and inflammatory responses to titanium particles were greatly enhanced in M1 macrophages and effectively suppressed in M2 macrophages. In addition, the genome-wide approach revealed several novel, potentially osteolytic, particle-induced mediators, and signaling pathway analysis suggested the involvement of toll-like and nod-like receptor signaling in particle recognition. It is concluded that the magnitude of foreign body reaction caused by titanium particles is dependent on the state of macrophage polarization. Thus, by limiting the action of M1 polarizing factors, e.g. bacterial biofilm formation, in peri-implant tissues and promoting M2 macrophage polarization by biomaterial solutions or pharmacologically, it might be possible to restrict wear-particle-induced inflammation and osteolysis. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Oral Administration of N-Acetyl-D Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    National Research Council Canada - National Science Library

    Shibata, Yoshimi

    2006-01-01

    ... (IL-12, IL-18 and TNFo) that down-regulate allergic immune responses. We also found that administration of chitin particles resulted in less likely induce the production of IL-10 and prostaglandin E2 (PGE2...

  12. Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees.

    Science.gov (United States)

    Artacho, Pamela; Bonomelli, Claudia

    2016-05-01

    Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha(-1)), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110-180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70-80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source-sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Modification of the quantum-mechanical equations for the system of charged Dirac particles by including additional tensor terms of the Pauli type. Pt. 1. [Amplified Bethe-Salpeter, radiative corrections, fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Janyszek, H [Uniwersytet Mikolaja Kopernika, Torun (Poland). Instytut Fizyki

    1974-01-01

    A new modified quasirelativistic equation (different from that of Breit) for N charged Dirac particles in the external stationary electromagnetic field is proposed. This equation is an amplified quantum-mechanical Bethe-Salpeter equation obtained by adding (in a semi-phenomenological manner) terms which take into account radiative corrections. The application of this approximate equations is limited to third order terms in the fine structure constant ..cap alpha...

  14. Trajectory calculation of a trapped particle in electro-dynamic balance for study of chemical reaction of aerosol particles

    International Nuclear Information System (INIS)

    Okuma, Miho; Itou, Takahiro; Harano, Azuchi; Takarada, Takayuki; James, Davis E

    2013-01-01

    Electrodynamic balance (EDB) is a powerful tool for investigating the chemical reactions between a fine particle and gaseous species. But the EDB device alone is inadequate to match the rapid weight change of a fine particle caused by chemical reactions, because it takes a few seconds to set a fine particle at null point. The particle trajectory calculation for the trapped particle added to the EDB is thus a very useful tool for the measurement of the transient response of a particle weight change with no need to adjust the applied DC voltage to set the null point. The purpose of this study is to develop the trajectory calculation method to track the particle oscillation pattern in the EDB and examine the possibility for kinetic studies on the reaction of a single aerosol particle with gaseous species. The results demonstrated the feasibility of applying particle trajectory calculation to realize the research purpose.

  15. Coating of Si3N4 fine particles with AlN by fluidized bed-CVD; Ryudoso CVD ho ni yoru Si3N4 biryushi no AlN hifuku

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, S.; Oyama, Y. [Hokkaido National Industrial Research Institute, Sapporo (Japan); Harima, K.; Kondo, K.; Shinohara, K. [Hokkaido University, Sapporo (Japan)

    1996-03-10

    Agglomerates of 100-250 {mu}m consisting of Si3N4 primary particles of 0.76 {mu}m were made with a rotary vibrating sieve. Si3N4 fine particles were coated with AlN by gas phase reaction with AlCl3 and NH3 in some fluidized beds of the agglomerates. The cross sectional distribution of AlN in the agglomerate was measured by EPMA analysis. As a result, uniform deposition of AlN was obtained at a relatively low reaction temperature and low gas velocity. 4 refs., 3 figs.

  16. Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Anne Juul; Glarborg, Peter

    2011-01-01

    showed an ultrafine mode centered at approximately 0.1 μm. Compared with coal combustion, co-combustion of coal and SRF increased the formation of submicron particles, especially ultrafine particles below 0.2 μm. The morphology of the particles indicated that supermicron particles were primarily formed...... by the melting of minerals. The ultrafine particles were generated through nucleation and coagulation of vaporized inorganic species, while for the particles in between supermicron and ultrafine particles, condensation of vaporized species or aggregation of nucleates on the existing spherical submicron particles...... appear to be an important formation mechanism. The elemental composition of the particles from coal combustion showed that S and Ca were significantly enriched in ultrafine particles and P was also enriched considerably. However, compared with supermicron particles, the contents of Al, Si and K were...

  17. Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions.

    Science.gov (United States)

    Hogrefe, Christian; Isukapalli, Sastry S; Tang, Xiaogang; Georgopoulos, Panos G; He, Shan; Zalewsky, Eric E; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.

  18. Linear response approach to active Brownian particles in time-varying activity fields

    Science.gov (United States)

    Merlitz, Holger; Vuijk, Hidde D.; Brader, Joseph; Sharma, Abhinav; Sommer, Jens-Uwe

    2018-05-01

    In a theoretical and simulation study, active Brownian particles (ABPs) in three-dimensional bulk systems are exposed to time-varying sinusoidal activity waves that are running through the system. A linear response (Green-Kubo) formalism is applied to derive fully analytical expressions for the torque-free polarization profiles of non-interacting particles. The activity waves induce fluxes that strongly depend on the particle size and may be employed to de-mix mixtures of ABPs or to drive the particles into selected areas of the system. Three-dimensional Langevin dynamics simulations are carried out to verify the accuracy of the linear response formalism, which is shown to work best when the particles are small (i.e., highly Brownian) or operating at low activity levels.

  19. Preparation and characterization of temperature-responsive magnetic composite particles for multi-modal cancer therapy.

    Science.gov (United States)

    Yao, Aihua; Chen, Qi; Ai, Fanrong; Wang, Deping; Huang, Wenhai

    2011-10-01

    The temperature-responsive magnetic composite particles were synthesized by emulsion-free polymerization of N-isopropylacrylamide (NIPAAm) and acrylamide (Am) in the presence of oleic acid-modified Fe(3)O(4) nanoparticles. The magnetic properties and heat generation ability of the composite particles were characterized. Furthermore, temperature and alternating magnetic field (AMF) triggered drug release behaviors of vitamin B(12)-loaded composite particles were also examined. It was found that composite particles enabled drug release to be controlled through temperature changes in the neighborhood of lower critical solution temperature. Continuous application of AMF resulted in an accelerated release of the loaded drug. On the other hand, intermittent AMF application to the composite particles resulted in an "on-off", stepwise release pattern. Longer release duration and larger overall release could be achieved by intermittent application of AMF as compared to continuous magnetic field. Such composite particles may be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release.

  20. Use of Unprocessed Coal Bottom Ash as Partial Fine Aggregate ...

    African Journals Online (AJOL)

    2012r

    transportation applications such as structural fill, road base material, and as snow ... normal fine particles resulting in weak porous paste, modulus of elasticity is ..... with the porous structure and high absorptivity of fine particles of bottom ash.

  1. Responses of fine roots and soil N availability to short-term nitrogen fertilization in a broad-leaved Korean pine mixed forest in northeastern China.

    Directory of Open Access Journals (Sweden)

    Cunguo Wang

    Full Text Available Knowledge of the responses of soil nitrogen (N availability, fine root mass, production and turnover rates to atmospheric N deposition is crucial for understanding fine root dynamics and functioning in forest ecosystems. Fine root biomass and necromass, production and turnover rates, and soil nitrate-N and ammonium-N in relation to N fertilization (50 kg N ha(-1 year(-1 were investigated in a temperate forest over the growing season of 2010, using sequential soil cores and ingrowth cores methods. N fertilization increased soil nitrate-N by 16% (P<0.001 and ammonium-N by 6% (P<0.01 compared to control plots. Fine root biomass and necromass in 0-20 cm soil were 13% (4.61 vs. 5.23 Mg ha(-1, P<0.001 and 34% (1.39 vs. 1.86 Mg ha(-1, P<0.001 less in N fertilization plots than those in control plots. The fine root mass was significantly negatively correlated with soil N availability and nitrate-N contents, especially in 0-10 cm soil layer. Both fine root production and turnover rates increased with N fertilization, indicating a rapid underground carbon cycling in environment with high nitrogen levels. Although high N supply has been widely recognized to promote aboveground growth rates, the present study suggests that high levels of nitrogen supply may reduce the pool size of the underground carbon. Hence, we conclude that high levels of atmospheric N deposition will stimulate the belowground carbon cycling, leading to changes in the carbon balance between aboveground and underground storage. The implications of the present study suggest that carbon model and prediction need to take the effects of nitrogen deposition on underground system into account.

  2. Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae.

    Science.gov (United States)

    Veneman, Wouter J; Spaink, Herman P; Brun, Nadja R; Bosker, Thijs; Vijver, Martina G

    2017-09-01

    Microplastics are a contaminant of emergent concern in the environment, however, to date there is a limited understanding on their movement within organisms and the response of organisms. In the current study zebrafish embryos at different development stages were exposed to 700nm fluorescent polystyrene (PS) particles and the response pathway after exposure was investigated using imaging and transcriptomics. Our results show limited spreading of particles within the larvae after injection during the blastula stage. This is in contrast to injection of PS particles in the yolk of 2-day old embryos, which resulted in redistribution of the PS particles throughout the bloodstream, and accumulation in the heart region. Although injection was local, the transcriptome profiling showed strong responses of zebrafish embryos exposed to PS particle, indicating a systemic response. We found several biological pathways activated which are related to an immune response in the PS exposed zebrafish larvae. Most notably the complement system was enriched as indicated by upregulation of genes in the alternative complement pathway (e.g. cfhl3, cfhl4, cfb and c9). The fact that complement pathway is activated indicates that plastic microparticles are integrated in immunological recognition processes. This was supported by fluorescence microscopy results, in which we observed co-localisation of neutrophils and macrophages around the PS particles. Identifying these key events can be a first building block to the development of an adverse outcome pathway (AOP). These data subsequently can be used within ecological and human risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Regulating Drug Release Behavior and Kinetics from Matrix Tablets Based on Fine Particle-Sized Ethyl Cellulose Ether Derivatives: An In Vitro and In Vivo Evaluation

    Directory of Open Access Journals (Sweden)

    Kifayat Ullah Shah

    2012-01-01

    Full Text Available The design and fabrication of sustained/controlled release dosage forms, employing new excipients capable of extending/controlling the release of drugs from the dosage forms over prolonged periods, has worked well in achieving optimally enhanced therapeutic levels of the drugs. In this sense, the objective of this study was to investigate the suitability of selected cellulose ether derivatives for use in direct compression (DC and as efficient drug release controlling agents. Controlled release matrix tablets of ciprofloxacin were prepared at different drug-to-polymer (D : P ratios by direct compression using a fine particle sized ethylcellulose ether derivative (ETHOCEL Standard Premium 7FP as rate controlling polymer. The tablets obtained were evaluated for various physico-chemical characteristics and in-vitro drug release studies were conducted in phosphate buffer (pH 7.4 using PharmaTest dissolution apparatus at constant temperature of 37∘C±0.1. Similarity factor 2 was employed to the release profiles of test formulations and were compared with marketed ciprofloxacin conventional tablets. Drug release mechanism and the kinetics involved were investigated by fitting the release profile data to various kinetic models. It was found that with increasing the proportion of ethylcellulose ether derivative in the matrix, the drug release was significantly extended up to 24 hours. The tablets exhibited zero order or nearly zero order drug transport mechanism. In vivo drug release performance of the developed controlled release tablets and reference conventional tablets containing ciprofloxacin were determined in rabbit serum according to randomized two-way crossover study design using High Performance Liquid Chromatography. Several bioavailability parameters of both the test tablets and conventional tablets including max, max and AUC0- were compared which showed an optimized max and max (<0.05. A good correlation was obtained between in vitro

  4. Response comparative study of Rn-222 alpha particles track monitors

    International Nuclear Information System (INIS)

    Pereira, Osvaldo Luiz dos Santos

    2010-01-01

    This work was a comparative study between the responses of three monitors, the NRPB, an acrylic monitor (in thin film geometry) and the aluminum monitor (also thin film geometry) in controlled and mixed environment. The experiments consisted on placing the monitors in a plastic tube, with a radio-226 source internal. Only internal CR-39 plastic detectors were analyzed in this work. It was found that the monitors in thin film geometry had activities response of approximately 15% less than the NRPB monitors. All monitors responded the same way when in controlled environment. Related to the type of material, conductive plastic or dielectric (insulator) plastic, the NRPB, in environments without ventilation, responded in the same way. (author)

  5. Analysis of the Murine Immune Response to Pulmonary Delivery of Precisely Fabricated Nano- and Microscale Particles

    Science.gov (United States)

    Roberts, Reid A.; Shen, Tammy; Allen, Irving C.; Hasan, Warefta; DeSimone, Joseph M.; Ting, Jenny P. Y.

    2013-01-01

    Nanomedicine has the potential to transform clinical care in the 21st century. However, a precise understanding of how nanomaterial design parameters such as size, shape and composition affect the mammalian immune system is a prerequisite for the realization of nanomedicine's translational promise. Herein, we make use of the recently developed Particle Replication in Non-wetting Template (PRINT) fabrication process to precisely fabricate particles across and the nano- and micro-scale with defined shapes and compositions to address the role of particle design parameters on the murine innate immune response in both in vitro and in vivo settings. We find that particles composed of either the biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) or the biocompatible polymer polyethylene glycol (PEG) do not cause release of pro-inflammatory cytokines nor inflammasome activation in bone marrow-derived macrophages. When instilled into the lungs of mice, particle composition and size can augment the number and type of innate immune cells recruited to the lungs without triggering inflammatory responses as assayed by cytokine release and histopathology. Smaller particles (80×320 nm) are more readily taken up in vivo by monocytes and macrophages than larger particles (6 µm diameter), yet particles of all tested sizes remained in the lungs for up to 7 days without clearance or triggering of host immunity. These results suggest rational design of nanoparticle physical parameters can be used for sustained and localized delivery of therapeutics to the lungs. PMID:23593509

  6. Application of Response Surface Methodology for Optimization of Paracetamol Particles Formation by RESS Method

    International Nuclear Information System (INIS)

    Sabet, J.K.; Ghotbi, C.; Dorkoosh, F.

    2012-01-01

    Ultrafine particles of paracetamol were produced by Rapid Expansion of Supercritical Solution (RESS). The experiments were conducted to investigate the effects of extraction temperature (313-353 K), extraction pressure (10-18 MPa), pre expansion temperature (363-403 K), and post expansion temperature (273-323 K) on particles size and morphology of paracetamol particles. The characterization of the particles was determined by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Liquid Chromatography/Mass Spectrometry (LC-MS) analysis. The average particle size of the original paracetamol was 20.8 μm, while the average particle size of paracetamol after nan onization via the RESS process was 0.46 μm depending on the experimental conditions used. Moreover, the morphology of the processed particles changed to spherical and regular while the virgin particles of paracetamol were needle-shape and irregular. Response surface methodology (RSM) was used to optimize the process parameters. The extraction temperature, 347 K; extraction pressure, 12 MPa; pre expansion temperature, 403?K; and post expansion temperature, 322 K was found to be the optimum conditions to achieve the minimum average particle size of paracetamol.

  7. Inflammatory cell response to calcium phosphate biomaterial particles: an overview.

    Science.gov (United States)

    Velard, Frédéric; Braux, Julien; Amedee, Joëlle; Laquerriere, Patrice

    2013-02-01

    Bone is a metabolically active and highly organized tissue consisting of a mineral phase of hydroxyapatite (HA) and amorphous calcium phosphate (CaP) crystals deposited in an organic matrix. One objective of bone tissue engineering is to mimic the chemical and structural properties of this complex tissue. CaP ceramics, such as sintered HA and beta-tricalcium phosphate, are widely used as bone substitutes or prosthesis coatings because of their osteoconductive properties. These ceramic interactions with tissues induce a cell response that can be different according to the composition of the material. In this review, we discuss inflammatory cell responses to CaP materials to provide a comprehensive overview of mechanisms governing the integration or loosening of implants, which remains a major concern in tissue engineering. A focus on the effects of the functionalization of CaP biomaterials highlights potential ways to increase tissue integration and limit rejection processes. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Stimuli-responsive magnetic particles for biomedical applications.

    Science.gov (United States)

    Medeiros, S F; Santos, A M; Fessi, H; Elaissari, A

    2011-01-17

    In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on "smart" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride

    Directory of Open Access Journals (Sweden)

    H. Kouyoumdjian

    2006-01-01

    Full Text Available Levels of coarse (PM10-2.5 and fine (PM2.5 particles were determined between February 2004 and January 2005 in the city of Beirut, Lebanon. While low PM mass concentrations were measured in the rainy season, elevated levels were detected during sand storms originating from Arabian desert and/or Africa. Using ATR-FTIR and IC, it was shown that nitrate, sulfate, carbonate and chloride were the main anionic constituents of the coarse particles, whereas sulfate was mostly predominant in the fine particles in the form of (NH42SO4. Ammonium nitrate was not expected to be important because the medium was defined as ammonium poor. In parallel, the cations Ca2+ and Na+ dominated in the coarse, and NH4+, Ca2+ and Na+ in the fine particles. Coarse nitrate and sulfate ions resulted from the respective reactions of nitric and sulfuric acid with a relatively high amount of calcium carbonate. Both CaCO3 and Ca(NO32 crystals identified by ATR-FTIR in the coarse particles were found to be resistant to soaking in water for 24 h but became water soluble when they were formed in the fine particles suggesting, thereby, different growth and adsorption phenomena. The seasonal variational study showed that nitrate and sulfate ion concentrations increased in the summer due to the enhancement of photochemical reactions which facilitated the conversion of NO2 and SO2 gases into NO3- and SO42-, respectively. While nitrate was mainly due to local heavy traffic, sulfates were due to local and long-range transport phenomena. Using the air mass trajectory HYSPLIT model, it was found that the increase in the sulfate concentration correlated with wind vectors coming from Eastern and Central Europe. Chloride levels, on the other hand, were high when wind originated from the sea and low during sand storms. In addition to sea salt, elevated levels of chloride were also attributed to waste mass burning in proximity to the site. In comparison to other neighboring Mediterranean

  10. Evaluating Attenuation of Vibration Response using Particle Impact Damping for a Range of Equipment Assemblies

    Science.gov (United States)

    Knight, Brent; Parsons, David; Smith, Andrew; Hunt, Ron; LaVerde, Bruce; Towner, Robert; Craigmyle, Ben

    2013-01-01

    Particle dampers provide a mechanism for diverting energy away from resonant structural vibrations. This experimental study provides data from a series of acoustically excited tests to determine the effectiveness of these dampers for equipment mounted to a curved orthogrid panel for a launch vehicle application. Vibration attenuation trends are examined for variations in particle damper fill level, component mass, and excitation energy. A significant response reduction at the component level was achieved, suggesting that comparatively small, strategically placed, particle damper devices might be advantageously used in launch vehicle design. These test results were compared to baseline acoustic response tests without particle damping devices, over a range of isolation and damping parameters. Instrumentation consisting of accelerometers, microphones, and still photography data will be collected to correlate with the analytical results.

  11. FY 1998 annual report on the researches on creation of inorganic thin films and fine particles of new functions; 1998 nendo shinkino muki usumaku biryushi no sosei kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Creation of inorganic thin films and fine particles under a microgravity atmosphere is studied, for which Japan Microgravity Center's drop test facilities are used. The Cu anodic dissolution tests are conducted using a quasi-two-dimensional electrolytic cell, as part of the basic researches on micromachining for controlling high aspect ratio and shape anisotropy. It is difficult to control natural convection on the ground, even when the electrode thickness is decreased to 100 {mu}m or less. Concentration of the electrolytic solution over the anode surface is more supersaturated under a microgravity than on the ground. For production of fine glass particles, the liquid phase is involved between evaporation and solidification of glass. The Pb-X and Pb-Zn-X systems are molten, and dropped and, at the same time, solidified by quenching. The X component (including Zn) is uniformly dispersed under a microgravity in spheres of several to 20 {mu}m in diameter, although it is separated on the ground. The spherical droplets of GaSb can grow into a single crystal even in the absence of the seed, when supercooled and directed at high speed onto silica glass. A SiGe film with fine voids can be prepared and fast adhered to the base by flash lamp annealing, when it is deposited on the base with a SiN film as the buffer and then made into the film. (NEDO)

  12. Anne Fine

    Directory of Open Access Journals (Sweden)

    Philip Gaydon

    2015-04-01

    Full Text Available An interview with Anne Fine with an introduction and aside on the role of children’s literature in our lives and development, and our adult perceptions of the suitability of childhood reading material. Since graduating from Warwick in 1968 with a BA in Politics and History, Anne Fine has written over fifty books for children and eight for adults, won the Carnegie Medal twice (for Goggle-Eyes in 1989 and Flour Babies in 1992, been a highly commended runner-up three times (for Bill’s New Frock in 1989, The Tulip Touch in 1996, and Up on Cloud Nine in 2002, been shortlisted for the Hans Christian Andersen Award (the highest recognition available to a writer or illustrator of children’s books, 1998, undertaken the positon of Children’s Laureate (2001-2003, and been awarded an OBE for her services to literature (2003. Warwick presented Fine with an Honorary Doctorate in 2005. Philip Gaydon’s interview with Anne Fine was recorded as part of the ‘Voices of the University’ oral history project, co-ordinated by Warwick’s Institute of Advanced Study.

  13. Magnetic response from a composite of metal-dielectric particles in the visible range: T-matrix simulation

    Directory of Open Access Journals (Sweden)

    O. Zhuromskyy

    2011-09-01

    Full Text Available The optical response of a particle composed of a dielectric core surrounded by a densely packed shell of small metal spheres is simulated with the superposition Tmatrix method for realistic material parameters. In order to compute the electric and magnetic particle polarizabilities a single expansion T-matrix is derived from a particle centered T-matrix. Finally the permeability of a medium comprising such particles is found to deviate considerable from unity resulting in a noticeable optical response.

  14. Muted response of fine-grained sediment to a wildfire in British Columbia: the role of landscape disturbances and driving forces

    Science.gov (United States)

    Owens, P. N.; Giles, T. R.; Blake, W. H.; Petticrew, E. L.; Bol, R.

    2012-04-01

    In August 2003 a severe wildfire burnt the majority of Fishtrap Creek, a 170 km2 watershed near the city of Kamloops in central British Columbia. The objective of this study was to determine the influence of the wildfire on the amount and composition of fine sediment delivery and transport in the system and to see if the wildfire altered the main sources of sediment. In addition, the findings are compared with that of a nearby watershed, Jamieson Creek, with similar characteristics that was unburnt. In both watersheds, suspended sediment concentrations and fluxes were determined using ISCO automatic water samplers. Changes in sediment sources were determined by collecting bulk sediment and source material samples, and by analysing these samples for a range of properties, including environmental radionuclides and C and N isotopes. Results suggest that following the wildfire there was no major response in fine sediment delivery and transport in Fishtrap Creek, when compared to Jamieson Creek, although there were noticeable differences in the composition of the fine sediment transported and stored in the channel bed. This muted response may be due to the fairly low rainfall amounts in the period immediately following the wildfire. Environmental fallout radionuclides (caesium-137 and unsupported lead-210) showed that there was limited increase (bank) sources of sediment. Recent changes in sediment fluxes and sediment sources relate more to bank erosion processes, probably due to loss of root strength and cohesion. The results suggest that in some situations wildfire may not produce the dramatic increases in hillslope erosion and sediment transport often documented in other watersheds. In Fishtrap Creek, channel bank erosion appears to be important in supplying fine material to the channel and this suggests that attention should be directed at managing the riparian zone in watersheds affected by wildfires.

  15. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells

    Science.gov (United States)

    Tada-Oikawa, Saeko; Ichihara, Gaku; Fukatsu, Hitomi; Shimanuki, Yuka; Tanaka, Natsuki; Watanabe, Eri; Suzuki, Yuka; Murakami, Masahiko; Izuoka, Kiyora; Chang, Jie; Wu, Wenting; Yamada, Yoshiji; Ichihara, Sahoko

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO2 particles increased interleukin (IL)-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles. PMID:27092499

  16. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Saeko Tada-Oikawa

    2016-04-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2 cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm and rutile (50 nm TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL of anatase (100 nm, rutile (50 nm, and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm TiO2 particles increased interleukin (IL-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles.

  17. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells.

    Science.gov (United States)

    Tada-Oikawa, Saeko; Ichihara, Gaku; Fukatsu, Hitomi; Shimanuki, Yuka; Tanaka, Natsuki; Watanabe, Eri; Suzuki, Yuka; Murakami, Masahiko; Izuoka, Kiyora; Chang, Jie; Wu, Wenting; Yamada, Yoshiji; Ichihara, Sahoko

    2016-04-16

    Titanium dioxide (TiO₂) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO₂ nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO₂ nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO₂ particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO₂ particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO₂ particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO₂ particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO₂ particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO₂ particles increased interleukin (IL)-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO₂ particles also increased IL-8 expression. The results indicated that anatase TiO₂ nanoparticles induced inflammatory responses compared with other TiO₂ particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles.

  18. Highly temperature responsive core-shell magnetic particles: synthesis, characterization and colloidal properties.

    Science.gov (United States)

    Rahman, Md Mahbubor; Chehimi, Mohamed M; Fessi, Hatem; Elaissari, Abdelhamid

    2011-08-15

    Temperature responsive magnetic polymer submicron particles were prepared by two step seed emulsion polymerization process. First, magnetic seed polymer particles were obtained by emulsion polymerization of styrene using potassium persulfate (KPS) as an initiator and divinylbenzne (DVB) as a cross-linker in the presence of oil-in-water magnetic emulsion (organic ferrofluid droplets). Thereafter, DVB cross-linked magnetic polymer particles were used as seed in the precipitation polymerization of N-isopropylacrylamide (NIPAM) to induce thermosensitive PNIPAM shell onto the hydrophobic polymer surface of the cross-linked magnetic polymer particles. To impart cationic functional groups in the thermosensitive PNIPAM backbone, the functional monomer aminoethylmethacrylate hydrochloride (AEMH) was used to polymerize with NIPAM while N,N'-methylenebisacrylamide (MBA) and 2, 2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) were used as a cross-linker and as an initiator respectively. The effect of seed to monomer (w/w) ratio along with seed nature on the final particle morphology was investigated. Dynamic light scattering (DLS) results demonstrated particles swelling at below volume phase transition temperature (VPTT) and deswelling above the VPTT. The perfect core (magnetic) shell (polymer) structure of the particles prepared was confirmed by Transmission Electron Microscopy (TEM). The chemical composition of the particles were determined by thermogravimetric analysis (TGA). The effect of temperature, pH, ionic strength on the colloidal properties such as size and zeta potential of the micron sized thermo-sensitive magnetic particles were also studied. In addition, a short mechanistic discussion on the formation of core-shell morphology of magnetic polymer particles has also been discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Field dependent response of magnetorheological elastomers utilizing spherical Fe particles versus Fe nanowires

    International Nuclear Information System (INIS)

    Song, H J; Wereley, N M; Bell, R C; Planinsek, J L; II, J A Filer

    2009-01-01

    This study compares the dynamic response of nanowire-based magnetorheological elastomers (MREs), to those containing conventional spherical particles. MRE samples were fabricated by curing the iron particle laden elastomeric material in a magnetic field. Material characteristics of the MRE samples were evaluated using a material test machine that was modified to measure static and frequency dependent characteristics of these samples under different magnetic fields. The MRE samples consisted of a silicone rubber matrix containing various weight fractions of iron particles of differing morphology. Nanowires were used to enhance the interaction forces and contact area between particles. The static and dynamic properties of the MREs were evaluated under a compressive load for the various compositions and weight fractions. The stress vs. strain characteristics were measured for each sample. The equivalent damping coefficient of the MRE samples was measured and characterized under magnetic fields of differing intensities. The dynamic characteristic (dynamic stiffness) was measured under sinusoidal excitation in the frequency domain.

  20. Effects of fuel components and combustion particle physicochemical properties on toxicological responses of lung cells.

    Science.gov (United States)

    Jaramillo, Isabel C; Sturrock, Anne; Ghiassi, Hossein; Woller, Diana J; Deering-Rice, Cassandra E; Lighty, JoAnn S; Paine, Robert; Reilly, Christopher; Kelly, Kerry E

    2018-03-21

    The physicochemical properties of combustion particles that promote lung toxicity are not fully understood, hindered by the fact that combustion particles vary based on the fuel and combustion conditions. Real-world combustion-particle properties also continually change as new fuels are implemented, engines age, and engine technologies evolve. This work used laboratory-generated particles produced under controlled combustion conditions in an effort to understand the relationship between different particle properties and the activation of established toxicological outcomes in human lung cells (H441 and THP-1). Particles were generated from controlled combustion of two simple biofuel/diesel surrogates (methyl decanoate and dodecane/biofuel-blended diesel (BD), and butanol and dodecane/alcohol-blended diesel (AD)) and compared to a widely studied reference diesel (RD) particle (NIST SRM2975/RD). BD, AD, and RD particles exhibited differences in size, surface area, extractable chemical mass, and the content of individual polycyclic aromatic hydrocarbons (PAHs). Some of these differences were directly associated with different effects on biological responses. BD particles had the greatest surface area, amount of extractable material, and oxidizing potential. These particles and extracts induced cytochrome P450 1A1 and 1B1 enzyme mRNA in lung cells. AD particles and extracts had the greatest total PAH content and also caused CYP1A1 and 1B1 mRNA induction. The RD extract contained the highest relative concentration of 2-ring PAHs and stimulated the greatest level of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNFα) cytokine secretion. Finally, AD and RD were more potent activators of TRPA1 than BD, and while neither the TRPA1 antagonist HC-030031 nor the antioxidant N-acetylcysteine (NAC) affected CYP1A1 or 1B1 mRNA induction, both inhibitors reduced IL-8 secretion and mRNA induction. These results highlight that differences in fuel and combustion conditions

  1. Quality of skin as a barrier to ultra-fine particles. Contribution of the IBA group to the NANODERM EU-5 project in 2003-2004

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Szikszai, Z.; Kiss, A.Z.

    2004-01-01

    Complete text of publication follows. Micronised titanium-, zinc- or silicon-oxide is a widely used physical photoprotective agent as a component of various cosmetic products. Due to the small particle size (down to 15 nm) it is supposed, that the particles may pass through the uppermost horny skin layer, and penetrate into deeper vital skin layers. However, only a few experiments have been carried out on its penetration through the human epidermal barrier and its possible biological effects in vivo and in vitro, using the tape stripping method which has no lateral and limited depth resolution. A consortium consisting of 12 European universities and scientific institutes has been established under the leadership of the Fakultat fuer Physik und Geowissenchaft Universitat Leipzig, whose goal is to get quantitative information on the penetration of ultrafine particles in all strata of skin, on their penetration pathways as well as on their impact on human health [1]. The IBA group of the Atomki takes part in this project as a subcontractor of the Department of Dermatology, University of Debrecen, Hungary. Ion microscopy, electron microscopy and autoradiography are used to trace the penetration of the nanoparticles into the skin layers, molecular and cell-biological methods are applied to assess the skin response and activation of dermal cells. The IBA group of the Atomki takes part in WP3: Ion Microscopy Work Package together with five other nuclear microprobe laboratories. The participants provide quantitative elemental composition in all strata of skin with detection limits of about 1 μg/g and lateral resolution of 1-2 μm by applying various ion beam analytical techniques. Samples investigated by ion microscopy are 14-16 μm thick cryo-fixed freeze-dried sections of porcine and human skin. Since the sample preparation requires completely different treatment for ion microscopy than for conventional microscopy, the members of the IBA group, who already have

  2. EFFECT OF CENTRAL FANS AND IN-DUCT FILTERS ON DEPOSITION RATES OF ULTRAFINE AND FINE PARTICLES IN AN OCCUPIED TOWNHOUSE

    Science.gov (United States)

    Airborne particles are implicated in morbidity and mortality of certain high-risk subpopulations. Exposure to particles occurs mostly indoors, where a main removal mechanism is deposition to surfaces. Deposition can be affected by the use of forced- air circulation through duct...

  3. Nonlocality and particle-clustering effects on the optical response of composite materials with metallic nanoparticles

    Science.gov (United States)

    Chen, C. W.; Chung, H. Y.; Chiang, H.-P.; Lu, J. Y.; Chang, R.; Tsai, D. P.; Leung, P. T.

    2010-10-01

    The optical properties of composites with metallic nanoparticles are studied, taking into account the effects due to the nonlocal dielectric response of the metal and the coalescing of the particles to form clusters. An approach based on various effective medium theories is followed, and the modeling results are compared with those from the cases with local response and particles randomly distributed through the host medium. Possible observations of our modeling results are illustrated via a calculation of the transmission of light through a thin film made of these materials. It is found that the nonlocal effects are particularly significant when the particles coalesce, leading to blue-shifted resonances and slightly lower values in the dielectric functions. The dependence of these effects on the volume fraction and fractal dimension of the metal clusters is studied in detail.

  4. Studies of relative gain and timing response of fine-mesh photomultiplier tubes in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Sulkosky, V.; Allison, L.; Barber, C.; Cao, T.; Ilieva, Y.; Jin, K.; Kalicy, G.; Park, K.; Ton, N.; Zheng, X.

    2016-08-01

    We investigated the use of Hamamatsu fine-mesh photomultiplier tube assemblies H6152-70 and H6614-70 with regards to their gain and timing resolution in magnetic fields up to 1.9 T. Our results show that the H6614-70 assembly can operate reliably in magnetic fields exceeding 1.5 T, while preserving a reasonable timing resolution even with a gain reduction of a factor of ~100. The reduction of the relative gain of the H6152-70 is similar to the H6614-70's near 1.5 T, but its timing resolution worsens considerably at this high field.

  5. Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice

    DEFF Research Database (Denmark)

    Brennan, F.R.; Bellaby, T.; Helliwell, S.M.

    1999-01-01

    The humoral immune responses to the D2 peptide of fibronectin-binding protein B (FnBP) of Staphylococcus aureus, expressed on the plant virus cowpea mosaic virus (CPMV), were evaluated after mucosal delivery to mice. Intranasal immunization of these chimeric virus particles (CVPs), either alone...

  6. Time-response relationship of nano and micro particle induced lung inflammation. Quartz as reference compound

    DEFF Research Database (Denmark)

    Roursgaard, Martin; Poulsen, Steen Seier; Poulsen, Lars K.

    2010-01-01

    -response profiles of nano- and micro-sized particles. The potency of the two samples cannot be compared; during the milling process, a substantial part of the quartz was converted to amorphous silica and contaminated with corundum. For screening, BALF PMN, either TNF-a or IL-1ß at 16 hours post instillation may...

  7. Particle-stabilized oscillating diver: a self-assembled responsive capsule

    DEFF Research Database (Denmark)

    Tavacoli, Joe; Thijssen, Job H. J.; Clegg, Paul S.

    2011-01-01

    We report the experimental discovery of a self-assembled capsule, with density set by interfacial glass beads and an internal bubble, that automatically performs regular oscillations up and down a vial in response to a temperature gradient. Similar composites featuring interfacial particles...

  8. High time-resolved elemental components in fine and coarse particles in the Pearl River Delta region of Southern China: Dynamic variations and effects of meteorology.

    Science.gov (United States)

    Zhou, Shengzhen; Davy, Perry K; Wang, Xuemei; Cohen, Jason Blake; Liang, Jiaquan; Huang, Minjuan; Fan, Qi; Chen, Weihua; Chang, Ming; Ancelet, Travis; Trompetter, William J

    2016-12-01

    Hourly-resolved PM 2.5 and PM 10-2.5 samples were collected in the industrial city Foshan in the Pearl River Delta region, China. The samples were subsequently analyzed for elemental components and black carbon (BC). A key purpose of the study was to understand the composition of particulate matter (PM) at high-time resolution in a polluted urban atmosphere to identify key components contributing to extreme PM concentration events and examine the diurnal chemical concentration patterns for air quality management purposes. It was found that BC and S concentrations dominated in the fine mode, while elements with mostly crustal and oceanic origins such as Si, Ca, Al and Cl were found in the coarse size fraction. Most of the elements showed strong diurnal variations. S did not show clear diurnal variations, suggesting regional rather than local origin. Based on empirical orthogonal functions (EOF) method, 3 forcing factors were identified contributing to the extreme events of PM 2.5 and selected elements, i.e., urban direct emissions, wet deposition and a combination of coarse mode sources. Conditional probability functions (CPF) were performed using wind profiles and elemental concentrations. The CPF results showed that BC and elemental Cl, K, Fe, Cu and Zn in the fine mode were mostly from the northwest, indicating that industrial emissions and combustion were the main sources. For elements in the coarse mode, Si, Al, K, Ca, Fe and Ti showed similar patterns, suggesting same sources such as local soil dust/construction activities. Coarse elemental Cl was mostly from the south and southeast, implying the influence of marine aerosol sources. For other trace elements, we found vanadium (V) in fine PM was mainly from the sources located to the southeast of the measuring site. Combined with CPF results of S and V in fine PM, we concluded shipping emissions were likely an important elemental emission source. Copyright © 2016. Published by Elsevier B.V.

  9. Enhancement of proinflammatory and procoagulant responses to silica particles by monocyte-endothelial cell interactions

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2012-09-01

    Full Text Available Abstract Background Inorganic particles, such as drug carriers or contrast agents, are often introduced into the vascular system. Many key components of the in vivo vascular environment include monocyte-endothelial cell interactions, which are important in the initiation of cardiovascular disease. To better understand the effect of particles on vascular function, the present study explored the direct biological effects of particles on human umbilical vein endothelial cells (HUVECs and monocytes (THP-1 cells. In addition, the integrated effects and possible mechanism of particle-mediated monocyte-endothelial cell interactions were investigated using a coculture model of HUVECs and THP-1 cells. Fe3O4 and SiO2 particles were chosen as the test materials in the present study. Results The cell viability data from an MTS assay showed that exposure to Fe3O4 or SiO2 particles at concentrations of 200 μg/mL and above significantly decreased the cell viability of HUVECs, but no significant loss in viability was observed in the THP-1 cells. TEM images indicated that with the accumulation of SiO2 particles in the cells, the size, structure and morphology of the lysosomes significantly changed in HUVECs, whereas the lysosomes of THP-1 cells were not altered. Our results showed that reactive oxygen species (ROS generation; the production of interleukin (IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1, tumor necrosis factor (TNF-α and IL-1β; and the expression of CD106, CD62E and tissue factor in HUVECs and monocytes were significantly enhanced to a greater degree in the SiO2-particle-activated cocultures compared with the individual cell types alone. In contrast, exposure to Fe3O4 particles had no impact on the activation of monocytes or endothelial cells in monoculture or coculture. Moreover, using treatment with the supernatants of SiO2-particle-stimulated monocytes or HUVECs, we found that the enhancement of proinflammatory response by SiO2

  10. Anti-oxidative and inflammatory responses induced by fly ash particles and carbon black in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Diabate, Silvia; Plaumann, Diana; Uebel, Caroline; Weiss, Carsten [Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen (Germany); Bergfeldt, Britta [Karlsruhe Institute of Technology, Institute of Technical Chemistry, Eggenstein-Leopoldshafen (Germany)

    2011-12-15

    Combustion-derived nanoparticles as constituents of ambient particulate matter have been shown to induce adverse health effects due to inhalation. However, the components inducing these effects as well as the biological mechanisms are still not fully understood. The fine fraction of fly ash particles collected from the electrostatic precipitator of a municipal solid waste incinerator was taken as an example for real particles with complex composition released into the atmosphere to study the mechanism of early biological responses of BEAS-2B human lung epithelial cells. The studies include the effects of the water-soluble and -insoluble fractions of the fly ash and the well-studied carbon black nanoparticles were used as a reference. Fly ash induced reactive oxygen species (ROS) and increased the total cellular glutathione (tGSH) content. Carbon black also induced ROS generation; however, in contrast to the fly ash, it decreased the intracellular tGSH. The fly ash-induced oxidative stress was correlated with induction of the anti-oxidant enzyme heme oxygenase-1 and increase of the redox-sensitive transcription factor Nrf2. Carbon black was not able to induce HO-1. ROS generation, tGSH increase and HO-1 induction were only induced by the insoluble fraction of the fly ash, not by the water-soluble fraction. ROS generation and HO-1 induction were markedly inhibited by pre-incubation of the cells with the anti-oxidant N-acetyl cysteine which confirmed the involvement of oxidative stress. Both effects were also reduced by the metal chelator deferoxamine indicating a contribution of bioavailable transition metals. In summary, both fly ash and carbon black induce ROS but only fly ash induced an increase of intracellular tGSH and HO-1 production. Bioavailable transition metals in the solid water-insoluble matrix of the fly ash mostly contribute to the effects. (orig.)

  11. Targeted Drug Delivery and Treatment of Endoparasites with Biocompatible Particles of pH-Responsive Structure.

    Science.gov (United States)

    Mathews, Patrick D; Fernandes Patta, Ana C M; Gonçalves, Joao V; Gama, Gabriella Dos Santos; Garcia, Irene Teresinha Santos; Mertins, Omar

    2018-02-12

    Biomaterials conceived for vectorization of bioactives are currently considered for biomedical, biological, and environmental applications. We have produced a pH-sensitive biomaterial composed of natural source alginate and chitosan polysaccharides for application as a drug delivery system via oral administration. The composite particle preparation was in situ monitored by means of isothermal titration calorimetry. The strong interaction established between the macromolecules during particle assembly led to 0.60 alginate/chitosan effective binding sites with an intense exothermic effect and negative enthalpy variation on the order of a thousand kcal/mol. In the presence of model drugs mebendazole and ivermectin, with relatively small and large structures, respectively, mebendazole reduced the amount of chitosan monomers available to interact with alginate by 27%, which was not observed for ivermectin. Nevertheless, a state of intense negative Gibbs energy and large entropic decrease was achieved, providing evidence that formation of particles is thermodynamically driven and favored. Small-angle X-ray scattering provided further evidence of similar surface aspects independent of the presence of drug. The physical responses of the particles to pH variation comprise partial hydration, swelling, and the predominance of positive surface charge in strong acid medium, whereas ionization followed by deprotonation leads to compaction and charge reversal rather than new swelling in mild and slightly acidic mediums, respectively. In vivo performance was evaluated in the treatment of endoparasites in Corydoras fish. Systematically with a daily base oral administration, particles significantly reduced the infections over 15 days of treatment. The experiments provide evidence that utilizing particles granted and boosted the action of the antiparasitic drugs, leading to substantial reduction or elimination of infection. Hence, the pH-responsive particles represent a biomaterial

  12. Stochastic model of flow and dispersion of fine particles in a packed bed; Kakuritsu katei wo mochiita juten sonai deno funtai no ryudo to bunsan model

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, K [Kawasaki Steel Corp., Tokyo (Japan); Lockwood, F

    1996-06-01

    For the calculation of pulverized coal combustion in a blast furnace blow pipe and tuyere, a model was built for the evaluation of the movement and dispersion of particles in a packed bed by use of a stochastic approach. In the stochastic particle trajectory calculation taking into consideration the impact of fluctuations in gas turbulence, interaction distance between particles and eddies and interaction time have to be determined, in addition to fluctuations in gas flow velocity (to be determined by measuring the instantaneous flow velocity in a normal distribution generated according to random numbers). The eddy life was determined using Shuen`s formula on the premise that the particle-eddy interaction occurs within the calculated life or the transit time, whichever is shorter. As for the turbulence energy {kappa}, it was determined by the {kappa}-{epsilon} model for the free space and by the {kappa}-Lm(mixing length) model for the packed bed. From the average of a multiplicity of particles in the experiment, such time average specific values as the average density and flow velocity vectors of particles in the space, and particle trajectories, were calculated, which proved to agree with values from experiments. Once in the packed bed, the pulverized coal underwent a sudden deceleration due to its interaction with particles in the packed bed, and the pulverized coal flow near the central axis was rapidly diffused in the packed bed. This model is expected to find its use in the study of pulverized coal combustion in the blast furnace. 18 refs., 12 figs., 2 tabs.

  13. Linear response and correlation of a self-propelled particle in the presence of external fields

    Science.gov (United States)

    Caprini, Lorenzo; Marini Bettolo Marconi, Umberto; Vulpiani, Angelo

    2018-03-01

    We study the non-equilibrium properties of non interacting active Ornstein-Uhlenbeck particles (AOUP) subject to an external nonuniform field using a Fokker-Planck approach with a focus on the linear response and time-correlation functions. In particular, we compare different methods to compute these functions including the unified colored noise approximation (UCNA). The AOUP model, described by the position of the particle and the active force acting on it, is usually mapped into a Markovian process, describing the motion of a fictitious passive particle in terms of its position and velocity, where the effect of the activity is transferred into a position-dependent friction. We show that the form of the response function of the AOUP depends on whether we put the perturbation on the position and keep unperturbed the active force in the original variables or perturb the position and maintain unperturbed the velocity in the transformed variables. Indeed, as a result of the change of variables the perturbation on the position becomes a perturbation both on the position and on the fictitious velocity. We test these predictions by considering the response for three types of convex potentials: quadratic, quartic and double-well potential. Moreover, by comparing the response of the AOUP model with the corresponding response of the UCNA model we conclude that although the stationary properties are fairly well approximated by the UCNA, the non equilibrium properties are not, an effect which is not negligible when the persistence time is large.

  14. Manifestation of Particle Morphology on the Mechanical Response of a Granular Ensemble

    Science.gov (United States)

    Murthy, Tejas; Kandasami, Ramesh

    We present the effect of particle morphology (grain shape) on the mechanical response of granular materials at an ensemble level. We chose two model systems with extreme differences in morphology, i.e. spherical glass ballotini and angular sand in our experimental programme. We conducted a series of continuum elemental tests under these model materials reconstituted to the same packing. We arrive at the failure locus on the octahedral plane experimentally for these two systems. The ballotini shows increased dilation at the outset of the test, however, at large strains, the particle rearrangement in the angular sand and the increased interlocking leads to higher strength. The effect of individual particle morphology is manifested in both the increased friction angle and a larger sized failure locus in stress space with increase in angularity. The stresses developed in these two model materials are also accompanied by intriguing volume change behaviour. The glass ballotini despite a lower strength presents a predominantly dilative response while the angular sand shows showing a contractive response. Such an ensemble manifestation of individual particle morphology is useful in interpreting the extensive DEM simulations that are available in literature.

  15. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    Science.gov (United States)

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    Polyhexamethylene guanidine (PHMG) phosphate was used as a disinfectant for the prevention of microorganism growth in humidifiers, without recognizing that a change of exposure route might cause significant health effects. Epidemiological studies reported that the use of humidifier disinfectant containing PHMG-phosphate can provoke pulmonary fibrosis. However, the pulmonary toxicity of PHMG-phosphate aerosol particles is unknown yet. This study aimed to elucidate the toxicological relationship between PHMG-phosphate aerosol particles and pulmonary fibrosis. An in vivo nose-only exposure system and an in vitro air-liquid interface (ALI) co-culture model were applied to confirm whether PHMG-phosphate induces inflammatory and fibrotic responses in the respiratory tract. Seven-week-old male Sprague-Dawley rats were exposed to PHMG-phosphate aerosol particles for 3 weeks and recovered for 3 weeks in a nose-only exposure chamber. In addition, three human lung cells (Calu-3, differentiated THP-1 and HMC-1 cells) were cultured at ALI condition for 12 days and were treated with PHMG-phosphate at set concentrations and times. The reactive oxygen species (ROS) generation, airway barrier injuries and inflammatory and fibrotic responses were evaluated in vivo and in vitro. The rats exposed to PHMG-phosphate aerosol particles in nanometer size showed pulmonary inflammation and fibrosis including inflammatory cytokines and fibronectin mRNA increase, as well as histopathological changes. In addition, PHMG-phosphate triggered the ROS generation, airway barrier injuries and inflammatory responses in a bronchial ALI co-culture model. Those results demonstrated that PHMG-phosphate aerosol particles cause pulmonary inflammatory and fibrotic responses. All features of fibrogenesis by PHMG-phosphate aerosol particles closely resembled the pathology of fibrosis that was reported in epidemiological studies. Finally, we expected that PHMG-phosphate infiltrated into the lungs in the form of

  16. Indirect estimation of absorption properties for fine aerosol particles using AATSR observations: a case study of wildfires in Russia in 2010

    Science.gov (United States)

    Rodriguez, E.; Kolmonen, P.; Virtanen, T. H.; Sogacheva, L.; Sundstrom, A.-M.; de Leeuw, G.

    2015-08-01

    The Advanced Along-Track Scanning Radiometer (AATSR) on board the ENVISAT satellite is used to study aerosol properties. The retrieval of aerosol properties from satellite data is based on the optimized fit of simulated and measured reflectances at the top of the atmosphere (TOA). The simulations are made using a radiative transfer model with a variety of representative aerosol properties. The retrieval process utilizes a combination of four aerosol components, each of which is defined by their (lognormal) size distribution and a complex refractive index: a weakly and a strongly absorbing fine-mode component, coarse mode sea salt aerosol and coarse mode desert dust aerosol). These components are externally mixed to provide the aerosol model which in turn is used to calculate the aerosol optical depth (AOD). In the AATSR aerosol retrieval algorithm, the mixing of these components is decided by minimizing the error function given by the sum of the differences between measured and calculated path radiances at 3-4 wavelengths, where the path radiances are varied by varying the aerosol component mixing ratios. The continuous variation of the fine-mode components allows for the continuous variation of the fine-mode aerosol absorption. Assuming that the correct aerosol model (i.e. the correct mixing fractions of the four components) is selected during the retrieval process, also other aerosol properties could be computed such as the single scattering albedo (SSA). Implications of this assumption regarding the ratio of the weakly/strongly absorbing fine-mode fraction are investigated in this paper by evaluating the validity of the SSA thus obtained. The SSA is indirectly estimated for aerosol plumes with moderate-to-high AOD resulting from wildfires in Russia in the summer of 2010. Together with the AOD, the SSA provides the aerosol absorbing optical depth (AAOD). The results are compared with AERONET data, i.e. AOD level 2.0 and SSA and AAOD inversion products. The RMSE

  17. In situ X-ray absorption fine structure analysis of redox reactions of nickel species with variable particle sizes supported on silica

    Science.gov (United States)

    Yamamoto, Yusaku; Suzuki, Atsushi; Tsutsumi, Naoki; Katagiri, Masaki; Yamashita, Shohei; Niwa, Yasuhiro; Katayama, Misaki; Inada, Yasuhiro

    2018-02-01

    The chemical states of Ni species were systematically investigated using an in situ XAFS technique for a series of SiO2-supported Ni catalysts with different Ni particle sizes. The Ni particles were refined by varying the Ni loading in the range between 0.10 and 5 wt% and by adding citric acid into the precursor solution. An in situ observation cell for fluorescence-yield XAFS measurements was developed for the dilute Ni catalysts. The chemical state of the supported Ni species converted between Ni(0) and NiO, and no other stable species were formed during the temperature-programmed oxidation and reduction processes. Refinement of the Ni particles resulted in decreasing the oxidation temperature and increasing the reduction temperature. These shifts were explained by the affinity of NiO to SiO2, and more effective stabilization was thus anticipated for flattened small NiO particles with an increased contact area. In addition, the inhomogeneous distribution of small Ni particles observed for dilute catalysts was explained in terms of the precursor solution volume when nuclei of the precursor compound precipitated on SiO2 during the drying process.

  18. Fine chemistry

    International Nuclear Information System (INIS)

    Laszlo, P.

    1988-01-01

    The 1988 progress report of the Fine Chemistry laboratory (Polytechnic School, France) is presented. The research programs are centered on the renewal of the organic chemistry most important reactions and on the invention of new, highly efficient and highly selective reactions, by applying low cost reagents and solvents. An important research domain concerns the study and fabrication of new catalysts. They are obtained by means of the reactive sputtering of the metals and metal oxydes thin films. The Monte Carlo simulations of the long-range electrostatic interaction in a clay and the obtention of acrylamides from anhydrous or acrylic ester are summarized. Moreover, the results obtained in the field of catalysis are also given. The published papers and the congress communications are included [fr

  19. Synthesis and photocatalytic application of α-Fe2O3/ZnO fine particles prepared by two-step chemical method

    Directory of Open Access Journals (Sweden)

    Patij Shah

    2013-06-01

    Full Text Available Composite iron oxide-Zinc oxide (α-Fe2O3/ZnO was synthesized by two-step method: in the first one step uniform α-Fe2O3 particles were prepared through a hydrolysis process of ferric chloride at 80 °C. In the second step, the ZnO particles were included in the α-Fe2O3 particles by a zinc acetate [Zn(Ac2·2H2O] assisted hydrothermal method at low temperature (90°C±C. The α-Fe2O3 and ZnO phases were identified by XRD, energy dispersive X-ray analysis (EDX. The photoreactivities of α-Fe2O3/ZnO nanoparticles under UV irradiation were quantified by the degradation of formaldehyde.

  20. Approximations to the non-adiabatic particle response in toroidal geometry

    International Nuclear Information System (INIS)

    Schep, T.J.; Braams, B.J.

    1981-08-01

    The non-adiabatic part of the particle response to low-frequency electromagnetic modes with long parallel wavelengths is discussed. Analytic approximations to the kernels of the integrals that relate the amplitudes of the perturbed potentials to the non-adiabatic part of the perturbed density in an axisymmetric toroidal configuration are presented and the results are compared with numerical calculations. It is shown that both in the plane slab and in toroidal geometry the kernel contains a logarithmic singularity. This singularity is associated with particles with vanishing parallel velocity so that, in toroidal geometry, it is related with the behaviour of trapped particles near their turning points. In contrast to the plane slab, in toroidal geometry this logarithmic singularity is mainly real and associated with non-resonant particles. Apart from this logarithmic term, the kernel contains a complex regular part arising from resonant as well as from non-resonant particles. The analytic approximations that will be presented make the dispersion relation of drift-type modes in toroidal geometry amenable to analytic as well as to simpler numerical calculation of the growth rate and of the spatial mode structure

  1. The osmotic stress response of split influenza vaccine particles in an acidic environment.

    Science.gov (United States)

    Choi, Hyo-Jick; Kim, Min-Chul; Kang, Sang-Moo; Montemagno, Carlo D

    2014-12-01

    Oral influenza vaccine provides an efficient means of preventing seasonal and pandemic disease. In this work, the stability of envelope-type split influenza vaccine particles in acidic environments has been investigated. Owing to the fact that hyper-osmotic stress can significantly affect lipid assembly of vaccine, osmotic stress-induced morphological change of split vaccine particles, in conjunction with structural change of antigenic proteins, was investigated by the use of stopped-flow light scattering (SFLS), intrinsic fluorescence, transmission electron microscopy (TEM), and hemagglutination assay. Split vaccine particles were found to exhibit a step-wise morphological change in response to osmotic stress due to double-layered wall structure. The presence of hyper-osmotic stress in acidic medium (0.3 osmolarity, pH 2.0) induced a significant level of membrane perturbation as measured by SFLS and TEM, imposing more damage to antigenic proteins on vaccine envelope than can be caused by pH-induced conformational change at acidic iso-osmotic condition. Further supports were provided by the intrinsic fluorescence and hemagglutinin activity measurements. Thus, hyper-osmotic stress becomes an important factor for determining stability of split vaccine particles in acidic medium. These results are useful in better understanding the destabilizing mechanism of split influenza vaccine particles in gastric environment and in designing oral influenza vaccine formulations.

  2. Heavy particle irradiation, neurochemistry and behavior: thresholds, dose-response curves and recovery of function

    Science.gov (United States)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    2004-01-01

    Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation-induced disruption of dopaminergic function affects a variety of behaviors that are dependent upon the integrity of this system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current report reviews the data relevant to the degree to which these characteristics are common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity.

  3. Fast-ion response to energetic-particle-driven MHD activity in Heliotron J

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, S.; Yamamoto, S.; Mizuuchi, T.; Nagasaki, K.; Okada, H.; Minami, T.; Hanatani, K.; Konoshima, S.; Ohshima, S.; Toushi, K.; Sano, F. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji (Japan); Nagaoka, K.; Suzuki, Y.; Takeiri, Y.; Yokoyama, M. [National Institute for Fusion Science, Toki, Gifu (Japan); Murakami, S. [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Lee, H.Y.; Nakamura, Y.; Hosaka, K. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji (Japan)

    2010-08-15

    In Heliotron J, low magnetic shear configuration, instabilities with frequency chirping in the frequency range of Alfven eigenmodes have been observed in tangentially injected neutral beam plasmas. These modes are induced by energetic-particle driven magnetohydrodynamic (MHD) instabilities such as global Alfven eigenmode or energetic particle mode. A hybrid directional Langmuir probe system has been installed into Heliotron J to investigate the response of fast-ion fluxes to the MHD modes. A high coherent response of the ion flux to the bursting modes has been observed not only by the co-directed probe but also by the counter-directed one. A linear correlation between the response of the co-directed ion flux and the mode amplitude has been found. The radial profile of the response of the co-directed ions has decreased with the minor radius and has not been obtained significantly outside last closed flux surface. These results indicate that the fast-ion response is due to a resonant convective oscillation. The ion flux response of the counter-directed probe has appeared in the growth phase of the mode burst. Its phase relation is different from that of co-directed one and magnetic probe located at the Heliotron J vacuum vessel. Two candidates of the detected ion flux of the counter-directed probe have been discussed. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Polydopamine Particle-Filled Shape-Memory Polyurethane Composites with Fast Near-Infrared Light Responsibility.

    Science.gov (United States)

    Yang, Li; Tong, Rui; Wang, Zhanhua; Xia, Hesheng

    2018-03-25

    A new kind of fast near-infrared (NIR) light-responsive shape-memory polymer composites was prepared by introducing polydopamine particles (PDAPs) into commercial shape-memory polyurethane (SMPU). The toughness and strength of the polydopamine-particle-filled polyurethane composites (SMPU-PDAPs) were significantly enhanced with the addition of PDAPs due to the strong interface interaction between PDAPs and polyurethane segments. Owing to the outstanding photothermal effect of PDAPs, the composites exhibit a rapid light-responsive shape-memory process in 60 s with a PDAPs content of 0.01 wt%. Due to the excellent dispersion and convenient preparation method, PDAPs have great potential to be used as high-efficiency and environmentally friendly fillers to obtain novel photoactive functional polymer composites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synoptic conditions of fine-particle transport to the last interglacial Red Sea-Dead Sea from Nd-Sr compositions of sediment cores

    Science.gov (United States)

    Palchan, Daniel; Stein, Mordechai; Goldstein, Steven L.; Almogi-Labin, Ahuva; Tirosh, Ofir; Erel, Yigal

    2018-01-01

    The sediments deposited at the depocenter of the Dead Sea comprise high-resolution archive of hydrological changes in the lake's watershed and record the desert dust transport to the region. This paper reconstructs the dust transport to the region during the termination of glacial Marine Isotope Stage 6 (MIS 6; ∼135-129 ka) and the last interglacial peak period (MIS5e, ∼129-116 ka). We use chemical and Nd and Sr isotope compositions of fine detritus material recovered from sediment core drilled at the deepest floor of the Dead Sea. The data is integrated with data achieved from cores drilled at the floor of the Red Sea, thus, forming a Red Sea-Dead Sea transect extending from the desert belt to the Mediterranean climate zone. The Dead Sea accumulated flood sediments derived from three regional surface cover types: settled desert dust, mountain loess-soils and loess-soils filling valleys in the Dead Sea watershed termed here "Valley Loess". The Valley Loess shows a distinct 87Sr/86Sr ratio of 0.7081 ± 1, inherited from dissolved detrital calcites that originate from dried waterbodies in the Sahara and are transported with the dust to the entire transect. Our hydro-climate and synoptic conditions reconstruction illustrates the following history: During glacial period MIS6, Mediterranean cyclones governed the transport of Saharan dust and rains to the Dead Sea watershed, driving the development of both mountain soils and Valley Loess. Then, at Heinrich event 11, dry western winds blew Saharan dust over the entire Red Sea - Dead Sea transect marking latitudinal expansion of the desert belt. Later, when global sea-level rose, the Dead Sea watershed went through extreme aridity, the lake retreated, depositing salt and accumulating fine detritus of the Valley Loess. During peak interglacial MIS 5e, enhanced flooding activity flushed the mountain soils and fine detritus from all around the Dead Sea and Red Sea, marking a significant "contraction" of the desert belt

  6. Human cytogenetic dosimetry: a dose-response relationship for alpha particle radiation from 241Am

    International Nuclear Information System (INIS)

    DuFrain, R.J.; Littlefield, L.G.; Joiner, E.E.; Frome, E.L.

    1979-01-01

    Cytogenetic dosimetry estimates to guide treatment of persons internally contaminated with transuranic elements have not previously been possible because appropriate in vitro dose-response curves specifically for alpha particle irradiation of human lymphocytes do not exist. Using well-controlled cytogenetic methods for human lymphocyte culture, an experimentally derived dose-response curve for 241 Am alpha particle (5.49 and 5.44 MeV) radiation of G 0 lymphocytes was generated. Cells were exposed to 43.8, 87.7, 175.3 or 350.6 nCi/ml 241 Am for 1.7 hr giving doses of 0.85, 1.71, 3.42 or 6.84 rad. Based on dicentric chromosome yield, the linear dose-response equation is Y = 4.90(+-0.42) x 10 -2 X, with Y given as dicentrics per cell and X as dose in rads. The study also shows that the two-break asymmetrical exchanges in cells damaged by alpha particle radiation are overdispersed when compared to a Poisson distribution. An example is presented to show how the derived dose-response equation can be used to estimate the radiation dose for a person internally contaminated with an actinide. An experimentally derived RBE value of 118 at 0.85 rad is calculated for the efficiency of 241 Am alpha particle induction of dicentric chromosomes in human G 0 lymphocytes as compared with the efficiency of 60 Co gamma radiation. The maximum theoretical value for the RBE for cytogenetic damage from alpha irradiation was determined to be 278 at 0.1 rad or less which is in marked contrast to previously reported RBE values of approx. 20. (author)

  7. Calcination and solid state reaction of ceramic-forming components to provide single-phase superconducting materials having fine particle size

    Science.gov (United States)

    Balachandran, Uthamalingam; Poeppel, Roger B.; Emerson, James E.; Johnson, Stanley A.

    1992-01-01

    An improved method for the preparation of single phase, fine grained ceramic materials from precursor powder mixtures where at least one of the components of the mixture is an alkali earth carbonate. The process consists of heating the precursor powders in a partial vacuum under flowing oxygen and under conditions where the partial pressure of CO.sub.2 evolved during the calcination is kept to a very low level relative to the oxygen. The process has been found particularly suitable for the preparation of high temperature copper oxide superconducting materials such as YBa.sub.2 Cu.sub.3 O.sub.x "123" and YBa.sub.2 Cu.sub.4 O.sub.8 "124".

  8. Thermoluminescent response of CaSO4: Dy + PTFE to beta particles

    International Nuclear Information System (INIS)

    Aguirre C, A.; Azorin N, J.

    2000-01-01

    In this work the results of studying the thermoluminescent properties of CaSO 4 : Dy + PTFE are presented when it is irradiated with beta particles. The conclusion was the obtention of the Tl response curve in function of dose is that to desexcite the dosemeters at temperature 300 C during 30 minutes and after that were irradiated at different times in groups and to do the reading of dosemeter, it can be observed that a greater irradiation time major is the Tl response and this depends of the material has been used. (Author)

  9. Slew-rate dependence of tracer magnetization response in magnetic particle imaging

    Science.gov (United States)

    Shah, Saqlain A.; Ferguson, R. M.; Krishnan, K. M.

    2014-10-01

    Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ0 excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (Ho) and frequency (ω). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ0. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate (ωHo) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.

  10. Surface structures and dielectric response of ultrafine BaTiO3 particles

    International Nuclear Information System (INIS)

    Jiang, B.; Peng, J.L.; Bursill, L.A.

    1998-01-01

    Characteristic differences are observed for the dielectric response and microstructures of BaTiO 3 nanoscale fine powders prepared using sol gel (SG) and steric acid gel (SAG) methods. The former exhibit a critical size below which there is no paraelectric/ferroelectric phase transition whereas BaTiO 3 prepared via the SAG route remained cubic for all conditions. Atomic resolution images of both varieties showed a high density of interesting surface steps and facets. Computer simulated images of surface structure models showed that the outer (100) surface was typically a BaO layer and that at corners and ledges the steps are typically finished with Ba+2 ions; i.e. the surfaces and steps are Ba-rich. Otherwise the surfaces were typically clean and free of amorphous layers. The relationship between the observed surfaces structures and theoretical models for size effects on the dielectric properties is discussed. (authors)

  11. Response of energetic particles to local magnetic dipolarization inside geosynchronous orbit

    Science.gov (United States)

    Motoba, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.

    2017-12-01

    Magnetic field dipolarization and energetic particle injections are the most distinct phenomena observed in the inner magnetosphere during the substorm expansion phase. Compared to a wealth of knowledge about the phenomenology of magnetic dipolarizations and particle injections at/outside geosynchronous orbit (GEO), our understanding of them inside GEO remains incomplete because of a very limited number of previous studies. In the present study, we statistically examine the response of 1-1000 keV energetic particles to local magnetic dipolarization by performing a superposed epoch analysis of energetic particle fluxes with the zero epoch defined as the dipolarization onset times. Based on data from the Van Allen Probes tail seasons in 2012-2016, we identified a total of 97 magnetic dipolarization events which occurred closer to the magnetic equator (i.e., BH, which is antiparallel to the Earth's dipole axis, is the dominant component of the local magnetic field at least for 5 min before the onset). For major ion species (hydrogen, helium, and oxygen ions), the relative flux intensity to the pre-onset level increases at > 50 keV and decreases at inverse energy dispersion. For dipolarizations with strong impulsive westward electric fields, the relative electron flux intensity increases up to 5-10 times, in particular most significant at several tens of keV. This result suggests that the impulsive electric field acts as an efficient factor in the rapid energization of the tens-of-keV electrons. We also discuss how the response of energetic particles to dipolarization depends on MLT, radial distance, and pitch angle.

  12. Proceedings of the 45. annual conference of metallurgists of CIM : interfacial phenomena in fine particle technology : the 6. UBC-McGill-UA international symposium on fundamentals of mineral processing in honor of Professor Janusz S. Laskowski

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Liu, Q. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering] (eds.)

    2006-07-01

    This conference, organized by the Mineral Sciences and Engineering Section of the Metallurgical Society of CIM acknowledged that strong economic growth is the driving force behind record high productivity in the mining industry. The industry must strive to meet the higher demand for raw materials while facing the challenge of stringent environmental constraints. The continuing success of the mining industry will depend on efficient and environmentally sound mineral processing, particularly since the industry has been forced to exploit more complex forms of minerals given the gradual depletion of high-grade mineral resources. In addition to shortages in qualified personnel in mineral processing, the industry is currently facing a general reduction in basic research and training programs, resulting in deficiencies in technologies needed to process complex ores. World experts in mineral processing participated at this conference to share their novel research in fine particle processing, applications of atomic force microscopy, flotation research, particle interactions in mineral processing, flotation froths, grinding, rheology and sulphide flotation chemistry. The sessions of the conference were entitled: atomic force microscopy in flotation research particulate interactions; flotation froths, flocculation and dewatering; grinding and rheology surfactants; flotation froths, particle-bubble interactions; sulphide flotation; and, general flotation froths. The conference featured 37 presentations, of which 6 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  13. Fluidized-bed gasification of biomass: Conversion of fine carabon particles in the freeboard; Biomassevergasung in der Wirbelschicht: Umsatz von feinen Kohlenstoffpartikeln im Freeboard

    Energy Technology Data Exchange (ETDEWEB)

    Miccio, F [Ist. Ricerche sulla Combustione-CNR, Napoli (Italy); Moersch, O; Spliethoff, H; Hein, K R.G. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    1998-09-01

    The conversion of carbon particles in gasification processes was investigated in a fluidized-bed reactor of the Institute of Chemical Engineering and Steam Boiler Technology of Stuttgart University. This reactor is heated electrically to process temperature, and freeboard coal particles can be sampled using an isokinetic probe. The fuel used in the experiments consisted of beech wood chips. The temperature and air rating, i.e. the main parameters of the process, were varied in order to investigate their influence on product gas quality and carbon conversion. The conversion rate is influenced to a significant extent by grain disintegration and discharge of carbon particles. In gasification conditions, a further conversion process takes place in the freeboard. (orig.) [Deutsch] In dieser Arbeit wird die Umsetzung von Kohlenstoffpartikeln unter Vergasungsbedingungen untersucht. Die Versuche wurden an einem Wirbelschichtreaktor des Instituts fuer Verfahrenstechnik und Dampfkesselwesen der Universitaet Stuttgart durchgefuehrt. Dieser Reaktor wird elektrisch auf Prozesstemperatur beheizt. Mit Hilfe einer isokinetischen Sonde koennen Proben von Kohlenstoffpartikeln im Freeboard genommen werden. Als Brennstoff wurden zerkleinerte Buchenholz-Hackschnitzel eingesetzt. Variiert wurden als Hauptparameter des Prozesses Temperatur und Luftzahl. Untersucht wurde der Einfluss dieser Parameter auf die Qualitaet des Produktgases und die Umsetzung des Kohlenstoffes. Kornzersetzungs- und Austragsvorgaenge von Kohlenstoffpartikeln spielen eine wichtige Rolle fuer den Kohlenstoffumsatz. Unter Vergasungsbedingungen findet im Freeboard eine weitere Umsetzung der Partikel statt. (orig.)

  14. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Gómez-Cadenas, J J; Borges, F I G; Conde, C A N; Fernandes, L M P; Freitas, E D C; Cebrián, S; Dafni, T; Gómez, H; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.

  15. Evaluating a simple blending approach to prepare magnetic and stimuli-responsive composite hydrogel particles for application in biomedical field

    Directory of Open Access Journals (Sweden)

    H. Ahmad

    2016-08-01

    Full Text Available The inclusion of super paramagnetic iron oxide (Fe3O4 nanoparticles in stimuli-responsive hydrogel is expected to enhance the application potential for cellular therapy in cell labeling, separation and purification, protein immobilization, contrasting enhancement in magnetic resonance imaging (MRI, localized therapeutic hyperthermia, biosensors etc. in biomedical field. In this investigation two different magnetic and stimuli-responsive composite hydrogel particles with variable surface property were prepared by simply blending Fe3O4/SiO2 nanocomposite particles with stimuli-responsive hydrogel particles. Of the hydrogel particles prepared by free-radical precipitation polymerization poly(styrene-N-isopropylacrylamide-methyl methacrylate-polyethylene glycol methacrylate or P(S-NIPAM-MMA-PEGMA was temperature-sensitive and poly(S-NIPAM-methacrylic acid-PEGMA or P(S-NIPAM-MAA-PEGMA was both temperature- and pH-responsive. The morphological structure, size distributions and volume phase transitions of magnetic and stimuli-responsive composite hydrogel particles were analyzed. Temperature-responsive absorptions of biomolecules were observed on both magnetic and stimuli-responsive Fe3O4/SiO2/P(S-NIPAM-MMA-PEGMA and Fe3O4/SiO2/P(S-NIPAM-MAA-PEGMA composite hydrogel particles and separation of particles from the dispersion media could be achieved by applying magnetic field without time consuming centrifugation or decantation method.

  16. Cytotoxic and genotoxic responses of human lung cells to combustion smoke particles of Miscanthus straw, softwood and beech wood chips

    Science.gov (United States)

    Arif, Ali Talib; Maschowski, Christoph; Garra, Patxi; Garcia-Käufer, Manuel; Petithory, Tatiana; Trouvé, Gwenaëlle; Dieterlen, Alain; Mersch-Sundermann, Volker; Khanaqa, Polla; Nazarenko, Irina; Gminski, Richard; Gieré, Reto

    2017-08-01

    Inhalation of particulate matter (PM) from residential biomass combustion is epidemiologically associated with cardiovascular and pulmonary diseases. This study investigates PM0.4-1 emissions from combustion of commercial Miscanthus straw (MS), softwood chips (SWC) and beech wood chips (BWC) in a domestic-scale boiler (40 kW). The PM0.4-1 emitted during combustion of the MS, SWC and BWC were characterized by ICP-MS/OES, XRD, SEM, TEM, and DLS. Cytotoxicity and genotoxicity in human alveolar epithelial A549 and human bronchial epithelial BEAS-2B cells were assessed by the WST-1 assay and the DNA-Alkaline Unwinding Assay (DAUA). PM0.4-1 uptake/translocation in cells was investigated with a new method developed using a confocal reflection microscope. SWC and BWC had a inherently higher residual water content than MS. The PM0.4-1 emitted during combustion of SWC and BWC exhibited higher levels of Polycyclic Aromatic Hydrocarbons (PAHs), a greater variety of mineral species and a higher heavy metal content than PM0.4-1 from MS combustion. Exposure to PM0.4-1 from combustion of SWC and BWC induced cytotoxic and genotoxic effects in human alveolar and bronchial cells, whereby the strongest effect was observed for BWC and was comparable to that caused by diesel PM (SRM 2 975), In contrast, PM0.4-1 from MS combustion did not induce cellular responses in the studied lung cells. A high PAH content in PM emissions seems to be a reliable chemical marker of both combustion efficiency and particle toxicity. Residual biomass water content strongly affects particulate emissions and their toxic potential. Therefore, to minimize the harmful effects of fine PM on health, improvement of combustion efficiency (aiming to reduce the presence of incomplete combustion products bound to PM) and application of fly ash capture technology, as well as use of novel biomass fuels like Miscanthus straw is recommended.

  17. Response of cultured human airway epithelial cells to X-rays and energetic α-particles

    International Nuclear Information System (INIS)

    Yang, T.C.; Holley, W.R.; Curtis, S.B.; Gruenert, D.C.; California Univ., San Francisco, CA

    1990-01-01

    Radon and its progeny, which emit α-particles during decay, may play an important role in inducing human lung cancer. To gain a better understanding of the biological effects of α-particles in human lung we studied the response of cultured human airway epithelial cells to X-rays and monoenergetic helium ions. Experimental results indicated that the radiation response of primary cultures was similar to that for airway epithelial cells that were transformed with a plasmid containing an origin-defective SV40 virus. The RBE for cell inactivation determined by the ratio of D 0 for X-rays to that for 8 MeV helium ions was 1.8-2.2. The cross-section for helium ions, calculated from the D 0 value, was about 24 μm 2 for cells of the primary culture. This cross-section is significantly smaller than the average geometric nuclear area (∼ 180 μm 2 ), suggesting that an average of 7.5 α-particles (8 MeV helium ions) per cell nucleus are needed to induce a lethal lesion. (author)

  18. Fine-Needle Aspiration Biopsy of the Lymph Node: A Novel Tool for the Monitoring of Immune Responses after Skin Antigen Delivery.

    Science.gov (United States)

    Tatovic, Danijela; Young, Philippa; Kochba, Efrat; Levin, Yotam; Wong, F Susan; Dayan, Colin M

    2015-07-01

    Assessment of immune responses in lymph nodes (LNs) is routine in animals, but rarely done in humans. We have applied minimally invasive ultrasound-guided fine-needle aspiration of the LN to a before-and-after study of the immune response to intradermally delivered Ag in healthy volunteers (n = 25). By comparison with PBMCs from the same individual, LN cells (LNCs) were characterized by reduced numbers of effector memory cells, especially CD8(+) TEMRA cells (3.37 ± 1.93 in LNCs versus 22.53 ± 7.65 in PBMCs; p = 0.01) and a marked increased in CD69 expression (27.67 ± 7.49 versus 3.49 ± 2.62%, LNCs and PBMCs, respectively; p < 0.0001). At baseline, there was a striking absence of IFN-γ ELISPOT responses to recall Ags (purified protein derivative, Tetanus toxoid, or flu/EBV/CMV viral mix) in LN, despite strong responses in the peripheral blood. However, 48 h after tuberculin purified protein derivative administration in the ipsilateral forearm resulting in a positive skin reaction, a clear increase in IFN-γ ELISPOT counts was seen in the draining LN but not in PBMCs. This response was lost by 5 d. These data suggest that the low levels of effector memory cells in the LN may explain the low background of baseline ELISPOT responses in LNs as compared with PBMCs, and the appearance of a response after 48 h is likely to represent migration of effector memory cells from the skin to the LN. Hence, it appears that the combination of intradermal Ag administration and draining LN sampling can be used as a sensitive method to probe the effector memory T cell repertoire in the skin. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. Using a Fine-Grained Multiple-Choice Response Format in Educational Drill-and-Practice Video Games

    Science.gov (United States)

    Beserra, Vagner; Nussbaum, Miguel; Grass, Antonio

    2017-01-01

    When using educational video games, particularly drill-and-practice video games, there are several ways of providing an answer to a quiz. The majority of paper-based options can be classified as being either multiple-choice or constructed-response. Therefore, in the process of creating an educational drill-and-practice video game, one fundamental…

  20. Monte Carlo simulation of the spectral response of beta-particle emitters in LSC systems

    International Nuclear Information System (INIS)

    Ortiz, F.; Los Arcos, J.M.; Grau, A.; Rodriguez, L.

    1992-01-01

    This paper presents a new method to evaluate the counting efficiency and the effective spectra at the output of any dynodic stage, for any pure beta-particle emitter, measured in a liquid scintillation counting system with two photomultipliers working in sum-coincidence mode. The process is carried out by a Monte Carlo simulation procedure that gives the electron distribution, and consequently the counting efficiency, at any dynode, in response to the beta particles emitted, as a function of the figure of merit of the system and the dynodic gains. The spectral outputs for 3 H and 14 C have been computed and compared with experimental data obtained with two sets of quenched radioactive standards of these nuclides. (orig.)

  1. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Candy Yuen Ping Ng

    2017-02-01

    Full Text Available Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish (Danio rerio as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf revealed through acridine orange (AO staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy and alpha-particle (4.4 mGy exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis.

  2. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures

    International Nuclear Information System (INIS)

    Kocbach, Anette; Herseth, Jan Inge; Lag, Marit; Refsnes, Magne; Schwarze, Per E.

    2008-01-01

    The inflammatory potential of particles from wood smoke and traffic has not been well elucidated. In this study, a contact co-culture of monocytes and pneumocytes was exposed to 10-40 μg/cm 2 of particles from wood smoke and traffic for 12, 40 and 64 h to determine their influence on pro-inflammatory cytokine release (TNF-α, IL-1, IL-6, IL-8) and viability. To investigate the role of organic constituents in cytokine release the response to particles, their organic extracts and the washed particles were compared. Antagonists were used to investigate source-dependent differences in intercellular signalling (TNF-α, IL-1). The cytotoxicity was low after exposure to particles from both sources. However, wood smoke, and to a lesser degree traffic-derived particles, induced a reduction in cell number, which was associated with the organic fraction. The release of pro-inflammatory cytokines was similar for both sources after 12 h, but traffic induced a greater release than wood smoke particles with increasing exposure time. The organic fraction accounted for the majority of the cytokine release induced by wood smoke, whereas the washed traffic particles induced a stronger response than the corresponding organic extract. TNF-α and IL-1 antagonists reduced the release of IL-8 induced by particles from both sources. In contrast, the IL-6 release was only reduced by the IL-1 antagonist during exposure to traffic-derived particles. In summary, particles from wood smoke and traffic induced differential pro-inflammatory response patterns with respect to cytokine release and cell number. Moreover, the influence of the organic particle fraction and intercellular signalling on the pro-inflammatory response seemed to be source-dependent

  3. Triggering receptor expressed on myeloid cells-2 fine-tunes inflammatory responses in murine Gram-negative sepsis

    DEFF Research Database (Denmark)

    Schmidt Thøgersen, Mariane; Gawish, Riem; Martins, Rui

    2015-01-01

    During infections, TLR-mediated responses require tight regulation to allow for pathogen removal, while preventing overwhelming inflammation and immunopathology. The triggering receptor expressed on myeloid cells (TREM)-2 negatively regulates inflammation by macrophages and impacts on phagocytosis...... was followed by an accelerated resolution and ultimately improved survival, associated with the induction of the negative regulator A20. Upon infection with Escherichia coli, the otherwise beneficial effect of an exaggerated early immune response in TREM-2(-/-) animals was counteracted by a 50% reduction...... in bacterial phagocytosis. In line with this, TREM-2(-/-) peritoneal macrophages (PMs) exhibited augmented inflammation following TLR4 stimulation, demonstrating the presence and negative regulatory functionality of TREM-2 on primary PMs. Significantly, we identified a high turnover rate because TREM-2 RNA...

  4. Dose response of micronuclei induced by combination radiation of α-particles and γ-rays in human lymphoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ruiping; He, Mingyuan; Dong, Chen; Xie, Yuexia; Ye, Shuang; Yuan, Dexiao [Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032 (China); Shao, Chunlin, E-mail: clshao@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032 (China)

    2013-01-15

    Highlights: ► α-Particle induced MN had a biphasic dose–response followed by a bystander model. ► MN dose–response of α- and γ-combination IR was similar to that of α-particle. ► α-Particles followed by γ-rays yielded a synergistic effect on MN induction. ► Low dose γ-rays triggered antagonistic and adaptive responses against α-particle. - Abstract: Combination radiation is a real situation of both nuclear accident exposure and space radiation environment, but its biological dosimetry is still not established. This study investigated the dose–response of micronuclei (MN) induction in lymphocyte by irradiating HMy2.CIR lymphoblast cells with α-particles, γ-rays, and their combinations. Results showed that the dose–response of MN induced by γ-rays was well-fitted with the linear-quadratic model. But for α-particle irradiation, the MN induction had a biphasic phenomenon containing a low dose hypersensitivity characteristic and its dose response could be well-stimulated with a state vector model where radiation-induced bystander effect (RIBE) was involved. For the combination exposure, the dose response of MN was similar to that of α-irradiation. However, the yield of MN was closely related to the sequence of irradiations. When the cells were irradiated with α-particles at first and then γ-rays, a synergistic effect of MN induction was observed. But when the cells were irradiated with γ-rays followed by α-particles, an antagonistic effect of MN was observed in the low dose range although this combination radiation also yielded a synergistic effect at high doses. When the interval between two irradiations was extended to 4 h, a cross-adaptive response against the other irradiation was induced by a low dose of γ-rays but not α-particles.

  5. Fine sediment erodibility in Lake Okeechobee, Florida

    OpenAIRE

    Mehta, Ashish J.; Hwang, Kyu-Nam

    1989-01-01

    The critical need to predict the turbidity in water due to fine-grained sediment suspension under wave action over mud deposits for sedimentation and erosion studies, as well as sorbed contaminant transport, is well known. Since fall velocities of fine sediment particles are very small, they can be easily transported by hydrodynamic flows such as waves and currents. The presence of these particles in the water column affects accoustic transmission, heat absorption and depth of ...

  6. Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk

    DEFF Research Database (Denmark)

    Saber, Anne Thoustrup; Lamson, Jacob Stuart; Jacobsen, Nicklas Raun

    2013-01-01

    We analysed the mRNA expression of Serum Amyloid A (Saa3) in lung tissue from female C57BL/6J mice exposed to different particles including nanomaterials (carbon black and titanium dioxide nanoparticles, multi- and single walled carbon nanotubes), diesel exhaust particles and airborne dust collected...... at a biofuel plant. Mice were exposed to single or multiple doses of particles by inhalation or intratracheal instillation and pulmonary mRNA expression of Saa3 was determined at different time points of up to 4 weeks after exposure. Also hepatic mRNA expression of Saa3, SAA3 protein levels in broncheoalveolar...... lavage fluid and in plasma and high density lipoprotein levels in plasma were determined in mice exposed to multiwalled carbon nanotubes. Results Pulmonary exposure to particles strongly increased Saa3 mRNA levels in lung tissue and elevated SAA3 protein levels in broncheoalveolar lavage fluid and plasma...

  7. Assessment of the effect of population and diary sampling methods on estimation of school-age children exposure to fine particles.

    Science.gov (United States)

    Che, W W; Frey, H Christopher; Lau, Alexis K H

    2014-12-01

    Population and diary sampling methods are employed in exposure models to sample simulated individuals and their daily activity on each simulation day. Different sampling methods may lead to variations in estimated human exposure. In this study, two population sampling methods (stratified-random and random-random) and three diary sampling methods (random resampling, diversity and autocorrelation, and Markov-chain cluster [MCC]) are evaluated. Their impacts on estimated children's exposure to ambient fine particulate matter (PM2.5 ) are quantified via case studies for children in Wake County, NC for July 2002. The estimated mean daily average exposure is 12.9 μg/m(3) for simulated children using the stratified population sampling method, and 12.2 μg/m(3) using the random sampling method. These minor differences are caused by the random sampling among ages within census tracts. Among the three diary sampling methods, there are differences in the estimated number of individuals with multiple days of exposures exceeding a benchmark of concern of 25 μg/m(3) due to differences in how multiday longitudinal diaries are estimated. The MCC method is relatively more conservative. In case studies evaluated here, the MCC method led to 10% higher estimation of the number of individuals with repeated exposures exceeding the benchmark. The comparisons help to identify and contrast the capabilities of each method and to offer insight regarding implications of method choice. Exposure simulation results are robust to the two population sampling methods evaluated, and are sensitive to the choice of method for simulating longitudinal diaries, particularly when analyzing results for specific microenvironments or for exposures exceeding a benchmark of concern. © 2014 Society for Risk Analysis.

  8. Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response.

    Science.gov (United States)

    Liu, Ziyan; Jia, Yuxin; Ding, Yanglin; Shi, Yiting; Li, Zhen; Guo, Yan; Gong, Zhizhong; Yang, Shuhua

    2017-04-06

    In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Picobubble enhanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Y.J.; Liu, J.T.; Yu, S.; Tao, D. [University of Kentucky, Lexington, KY (United States). Dept. of Mining Engineering

    2006-07-01

    Froth flotation is widely used in the coal industry to clean -28 mesh fine coal. A successful recovery of particles by flotation depends on efficient particle-bubble collision and attachment with minimal subsequent particle detachment from bubble. Flotation is effective in a narrow size range beyond which the flotation efficiency drops drastically. It is now known that the low flotation recovery of particles in the finest size fractions is mainly due to a low probability of bubble-particle collision while the main reason for poor coarse particle flotation recovery is the high probability of detachment. A fundamental analysis has shown that use of picobubbles can significantly improve the flotation recovery of particles in a wide range of size by increasing the probability of collision and attachment and reducing the probability of detachment. A specially designed column with a picobubble generator has been developed for enhanced recovery of fine coal particles. Picobubbles were produced based on the hydrodynamic cavitation principle. They are characterized by a size distribution that is mostly below 1 {mu}m and adhere preferentially to the hydrophobic surfaces. The presence of picobubbles increases the probability of collision and attachment and decreases the probability of detachment, thus enhancing flotation recovery. Experimental results with the Coalberg seam coal in West Virginia, U.S.A. have shown that the use of picobubbles in a 2 in. column flotation increased fine coal recovery by 10-30%, depending on the feed rate, collector dosage, and other flotation conditions. Picobubbles also acted as a secondary collector and reduced the collector dosage by one third to one half.

  10. A master equation for force distributions in soft particle packings - Irreversible mechanical responses to isotropic compression and decompression

    NARCIS (Netherlands)

    Saitoh, K.; Magnanimo, Vanessa; Luding, Stefan

    2016-01-01

    Mechanical responses of soft particle packings to quasi-static deformations are determined by the microscopic restructuring of force-chain networks, where complex non-affine displacements of constituent particles cause the irreversible macroscopic behavior. Recently, we have proposed a master

  11. Vascular and lung function related to ultrafine and fine particles exposure assessed by personal and indoor monitoring: a cross-sectional study

    DEFF Research Database (Denmark)

    Olsen, Yulia; Karottki, Dorina Gabriela; Jensen, Ditte Marie

    2014-01-01

    -related effects. Methods: Associations between vascular and lung function, inflammation markers and exposure in terms of particle number concentration (PNC; d = 10-300 nm) were studied in a cross-sectional design with personal and home indoor monitoring in the Western Copenhagen Area, Denmark. During 48-h, PNC...... and PM2.5 were monitored in living rooms of 60 homes with 81 non-smoking subjects (30-75 years old), 59 of whom carried personal monitors both when at home and away from home. We measured lung function in terms of the FEV1/FVC ratio, microvascular function (MVF) and pulse amplitude by digital artery...... tonometry, blood pressure and biomarkers of inflammation including C-reactive protein, and leukocyte counts with subdivision in neutrophils, eosinophils, monocytes, and lymphocytes in blood. Results: PNC from personal and stationary home monitoring showed weak correlation (r = 0.15, p = 0.24). Personal UFP...

  12. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air.

    Science.gov (United States)

    Han, Inkyu; Symanski, Elaine; Stock, Thomas H

    2017-03-01

    Exposure to ambient particulate matter (PM) is known as a significant risk factor for mortality and morbidity due to cardiorespiratory causes. Owing to increased interest in assessing personal and community exposures to PM, we evaluated the feasibility of employing a low-cost portable direct-reading instrument for measurement of ambient air PM exposure. A Dylos DC 1700 PM sensor was collocated with a Grimm 11-R in an urban residential area of Houston Texas. The 1-min averages of particle number concentrations for sizes between 0.5 and 2.5 µm (small size) and sizes larger than 2.5 µm (large size) from a DC 1700 were compared with the 1-min averages of PM 2.5 (aerodynamic size less than 2.5 µm) and coarse PM (aerodynamic size between 2.5 and 10 µm) concentrations from a Grimm 11-R. We used a linear regression equation to convert DC 1700 number concentrations to mass concentrations, utilizing measurements from the Grimm 11-R. The estimated average DC 1700 PM 2.5 concentration (13.2 ± 13.7 µg/m 3 ) was similar to the average measured Grimm 11-R PM 2.5 concentration (11.3 ± 15.1 µg/m 3 ). The overall correlation (r 2 ) for PM 2.5 between the DC 1700 and Grimm 11-R was 0.778. The estimated average coarse PM concentration from the DC 1700 (5.6 ± 12.1 µg/m 3 ) was also similar to that measured with the Grimm 11-R (4.8 ± 16.5 µg/m 3 ) with an r 2 of 0.481. The effects of relative humidity and particle size on the association between the DC 1700 and the Grimm 11-R results were also examined. The calculated PM mass concentrations from the DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM 2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM 2.5 . The performance of a low-cost particulate matter (PM) sensor was evaluated in an urban residential area. Both PM 2.5 and coarse PM (PM 10-2.5 ) mass concentrations

  13. Analysis system of submicron particle tracks in the fine-grained nuclear emulsion by a combination of hard x-ray and optical microscopy

    International Nuclear Information System (INIS)

    Naka, T.; Asada, T.; Yoshimoto, M.; Katsuragawa, T.; Tawara, Y.; Umemoto, A.; Suzuki, Y.; Terada, Y.; Takeuchi, A.; Uesugi, K.; Kimura, M.

    2015-01-01

    Analyses of nuclear emulsion detectors that can detect and identify charged particles or radiation as tracks have typically utilized optical microscope systems because the targets have lengths from several μm to more than 1000 μm. For recent new nuclear emulsion detectors that can detect tracks of submicron length or less, the current readout systems are insufficient due to their poor resolution. In this study, we developed a new system and method using an optical microscope system for rough candidate selection and the hard X-ray microscope system at SPring-8 for high-precision analysis with a resolution of better than 70 nm resolution. Furthermore, we demonstrated the analysis of submicron-length tracks with a matching efficiency of more than 99% and position accuracy of better than 5 μm. This system is now running semi-automatically

  14. Small molecule probes finely differentiate between various ds- and ss-DNA and RNA by fluorescence, CD and NMR response

    Energy Technology Data Exchange (ETDEWEB)

    Crnolatac, Ivo; Rogan, Iva; Majić, Boris; Tomić, Sanja [Division of Organic Chemistry and Biochemistry, Division of Physical Chemistry, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb (Croatia); Deligeorgiev, Todor [Faculty of Chemistry and Pharmacy, University of Sofia (Bulgaria); Horvat, Gordan [Department of Physical Chemistry, Faculty of Science/Chemistry, Horvatovac 102A, HR-10000 Zagreb (Croatia); Makuc, Damjan; Plavec, Janez [Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana (Slovenia); EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, Ljubljana (Slovenia); Pescitelli, Gennaro [Department of Chemistry, University of Pisa, Via Moruzzi 13, Pisa (Italy); Piantanida, Ivo, E-mail: pianta@irb.hr [Division of Organic Chemistry and Biochemistry, Division of Physical Chemistry, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb (Croatia)

    2016-10-12

    Two small molecules showed intriguing properties of analytical multipurpose probes, whereby one chromophore gives different signal for many different DNA/RNA by application of several highly sensitive spectroscopic methods. Dyes revealed pronounced fluorescence ratiomeric differentiation between ds-AU-RNA, AT-DNA and GC-DNA in approximate order 10:8:1. Particularly interesting, dyes showed specific fluorimetric response for poly rA even at 10-fold excess of any other ss-RNA, and moreover such emission selectivity is preserved in multicomponent ss-RNA mixtures. The dyes also showed specific chiral recognition of poly rU in respect to the other ss-RNA by induced CD (ICD) pattern in visible range (400–500 nm), which was attributed to the dye-side-chain contribution to binding (confirmed by absence of any ICD band for reference compound lacking side-chain). Most intriguingly, minor difference in the side-chain attached to dye chromophore resulted in opposite sign of dye-ICD pattern, whereby differences in NMR NOESY contacts and proton chemical shifts between two dye/oligo rU complexes combined with MD simulations and CD calculations attributed observed bisignate ICD to the dimeric dye aggregate within oligo rU. - Highlights: • Novel dyes emit fluorescence only for poly rA even at high excess of all other ss-RNA. • Fluorescence response for AT-DNA is 8 times stronger than for GC-DNA. • Florescence induced by ds-RNA is 20% stronger that emission induced by ds-DNA. • Intrinsically non-chiral, dyes show strong and characteristic ICD response for poly rU.

  15. Coupled-cluster response theory for near-edge x-ray-absorption fine structure of atoms and molecules

    DEFF Research Database (Denmark)

    Coriani, Sonia; Christiansen, Ove; Fransson, Thomas

    2012-01-01

    triple corrected excitation energies CCSDR(3). This work is a first step toward the extension of these theoretical electronic structure methods of well-established high accuracy in UV-vis absorption spectroscopies to applications concerned with x-ray radiation. From the imaginary part of the linear...... response function, the near K-edge x-ray absorption spectra of neon, water, and carbon monoxide are determined and compared with experiment. Results at the CCSD level show relative peak intensities in good agreement with experiment with discrepancies in transition energies due to incomplete treatment...

  16. Fuzzy Adaptive Particle Swarm Optimization for Power Loss Minimisation in Distribution Systems Using Optimal Load Response

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2014-01-01

    Consumers may decide to modify the profile of their demand from high price periods to low price periods in order to reduce their electricity costs. This optimal load response to electricity prices for demand side management generates different load profiles and provides an opportunity to achieve...... power loss minimization in distribution systems. In this paper, a new method to achieve power loss minimization in distribution systems by using a price signal to guide the demand side management is proposed. A fuzzy adaptive particle swarm optimization (FAPSO) is used as a tool for the power loss...

  17. Fabrication of BaTiO3/Ni composite particles and their electro-magneto responsive properties

    International Nuclear Information System (INIS)

    Lu, Yaping; Gao, Lingxiang; Wang, Lijuan; Xie, Zunyuan; Gao, Meixiang; Zhang, Weiqiang

    2017-01-01

    Graphical abstract: The spherical BaTiO 3 /Ni particles with excellent structure were made by one-step method through fixing the metal Ni(0) reduced by a specific reducing agent (N 2 H 4 ·H 2 O) on the surface of the BaTiO 3 particles with grain diameter of ∼500 nm. BaTiO 3 /Ni particle has double responses of electric and magnetic field simultaneously. Consequentially, coating magnetic metal on BT particle is proposed an effective method to prepare novel electro-magneto responsive particles and one basis of electro-magneto responsive elastomers. - Highlights: • The BaTiO 3 /Ni composite particles were fabricated. • The content of Ni(0) in nickel sheath is 70.2%. • The BaTiO 3 /Ni particles have double responses of electric and magnetic field. - Abstract: BaTiO 3 (BT)/Ni composite particles were made by one-step method through agglomerating the metal Ni(0) nanoparticles reduced by a specific reducing agent (N 2 H 4 ·H 2 O) on the surface of BT sphere with diameter of ∼500 nm. The BT/Ni composite particles were characterized by the means of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). In BT/Ni particles, pure BT spherical particle was coated with Ni nanoparticles agglomerated on its surface. The average thickness of the Ni sheath was ∼30 nm and the content of Ni(0) and Ni (II) in the sheath were 70.2% and 29.8%, respectively. The responsive effects of BT/Ni particles filled in hydrogel elastomer were investigated by the viscoelastic properties. The results indicate that the BT/Ni particles exhibit electro and magneto coordinated responsive properties (E = 1 kV/mm, H = 0.1 T/mm), which is superior to BT particles with individual electro response.

  18. Fabrication of BaTiO{sub 3}/Ni composite particles and their electro-magneto responsive properties

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yaping [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Gao, Lingxiang, E-mail: gaolx@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Wang, Lijuan [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Xie, Zunyuan, E-mail: zyxie123@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China); Gao, Meixiang [Yulin Vocational and Technical College, Yulin 719000 (China); Zhang, Weiqiang [Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710119 (China); School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119 (China)

    2017-07-15

    Graphical abstract: The spherical BaTiO{sub 3}/Ni particles with excellent structure were made by one-step method through fixing the metal Ni(0) reduced by a specific reducing agent (N{sub 2}H{sub 4}·H{sub 2}O) on the surface of the BaTiO{sub 3} particles with grain diameter of ∼500 nm. BaTiO{sub 3}/Ni particle has double responses of electric and magnetic field simultaneously. Consequentially, coating magnetic metal on BT particle is proposed an effective method to prepare novel electro-magneto responsive particles and one basis of electro-magneto responsive elastomers. - Highlights: • The BaTiO{sub 3}/Ni composite particles were fabricated. • The content of Ni(0) in nickel sheath is 70.2%. • The BaTiO{sub 3}/Ni particles have double responses of electric and magnetic field. - Abstract: BaTiO{sub 3} (BT)/Ni composite particles were made by one-step method through agglomerating the metal Ni(0) nanoparticles reduced by a specific reducing agent (N{sub 2}H{sub 4}·H{sub 2}O) on the surface of BT sphere with diameter of ∼500 nm. The BT/Ni composite particles were characterized by the means of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). In BT/Ni particles, pure BT spherical particle was coated with Ni nanoparticles agglomerated on its surface. The average thickness of the Ni sheath was ∼30 nm and the content of Ni(0) and Ni (II) in the sheath were 70.2% and 29.8%, respectively. The responsive effects of BT/Ni particles filled in hydrogel elastomer were investigated by the viscoelastic properties. The results indicate that the BT/Ni particles exhibit electro and magneto coordinated responsive properties (E = 1 kV/mm, H = 0.1 T/mm), which is superior to BT particles with individual electro response.

  19. Cake properties in ultrafiltration of TiO2 fine particles combined with HA: in situ measurement of cake thickness by fluid dynamic gauging and CFD calculation of imposed shear stress for cake controlling.

    Science.gov (United States)

    Du, Xing; Qu, Fangshu; Liang, Heng; Li, Kai; Chang, Haiqing; Li, Guibai

    2016-05-01

    In this study, the cake buildup of TiO2 fine particles in the presence of humid acid (HA) and cake layer controlling during ultrafiltration (UF) were investigated. Specifically, we measured the cake thickness using fluid dynamic gauging (FDG) method under various solution conditions, including TiO2 concentration (0.1-0.5 g/L), HA concentration (0-5 mg/L, total organic carbon (TOC)), and pH values (e.g., 4, 6 and 10), and calculated the shear stress distribution induced by stirring using computational fluid dynamics (CFD) to analyze the cake layer controlling conditions, including the operation flux (50-200 L m(-2) h(-1)) and TiO2 concentration (0.1-0.5 g/L). It was found that lower TiO2/HA concentration ratio could lead to exceedingly severe membrane fouling because of the formation of a relatively denser cake layer by filling the voids of cake layer with HA, and pH was essential for cake layer formation owing to the net repulsion between particles. Additionally, it was observed that shear stress was rewarding for mitigating cake growth under lower operation flux as a result of sufficient back-transport forces, and exhibited an excellent performance on cake layer controlling in lower TiO2 concentrations due to slight interaction forces on the vicinity of membrane.

  20. Synoptic conditions of fine-particle transport to the last interglacial Red Sea -Dead Sea from Nd-Sr compositions of sediment cores

    Science.gov (United States)

    Stein, M.; Palchan, D.; Goldstein, S. L.; Almogi-Labin, A.; Tirosh, O.; Erel, Y.

    2017-12-01

    The last interglacial peak, Marine Isotope Stage 5e (MIS 5e), was associated with stronger northern hemisphere insolation, higher global sea levels and higher average global temperatures compared to the Holocene, and is considered as an analogue for a future warming world. In this perspective the present-day areas of the Sahara - Arabia deserts (the "desert belt") are of special interest since their margins are densely inhabited and global climate models predict enhanced aridity in these regions due to future warming. The Red Sea situated at the midst of the desert belt and the Dead Sea at the northern fringe of the desert belt comprise sensitive monitors for past hydroclimate changes in the Red Sea-Levant regions as global climate shifted from glacial to interglacial conditions. Here, we reconstruct the synoptic conditions that controlled desert dust transport to the Red Sea and the Dead Sea during MIS5e. The reconstruction is based on Nd-Sr isotopes and chemical composition of carbonate-free detritus recovered from sediment cores drilled at the deep floors of these water-bodies combined with data of contemporaneous dust storms transporting dust to the lake and sea floors. During Termination 2 ( 134-130 ka) the Sahara, Nile River desiccated and the Dead Sea watershed were under extreme dry conditions manifested by lake level drop, deposition of salt and enhanced transport of Sahara dusts to the entire studied transect. At the peak of the interglacial MIS 5e ( 130-120 ka), enhanced flooding activity mobilized local fine detritus from the surroundings of the Red Sea and the Dead Sea watershed into the water-bodies. This interval coincided with the Sapropel event S5 in the Mediterranean that responded to enhanced monsoon rains at the heads of the Blue Nile River. At the end of MIS 5e ( 120-116 ka) the effect of the regional floods faded and the Dead Sea and Red Sea areas re-entered sever arid conditions with salt deposition at the Dead Sea. Overall, the desert

  1. Source apportionment of fine particles and its chemical components over the Yangtze River Delta, China during a heavy haze pollution episode

    Science.gov (United States)

    Li, L.; An, J. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y. J.; Tao, S. K.; Qiao, L. P.; Zhu, S. H.; Chen, C. H.

    2015-12-01

    contributors to organic carbon. Results show that the Yangtze River Delta region should focus on the joint pollution control of industrial processing, combustion emissions, mobile source emissions, and fugitive dust. Regional transport of air pollution among the cities are prominent, and the implementation of regional joint prevention and control of air pollution will help to alleviate fine particulate matter concentrations under heavy pollution case significantly.

  2. Energy response of detectors to alpha/beta particles and compatibility of the equivalent factors

    International Nuclear Information System (INIS)

    Lin Bingxing; Li Guangxian; Lin Lixiong

    2011-01-01

    By measuring detect efficiency and equivalent factors of alpha/beta radiation with different energies on three types of detectors, this paper compares compatibility of their equivalent factors and discusses applicability of detectors to measuring total alpha/beta radiation. The result shows the relationship between efficiency of alpha/beta radiation and their energies on 3 types of detectors, such as scintillation and proportional and semiconductor counters, are overall identical. Alpha count efficiency display exponential relation with alpha-particle energy. While beta count efficiency display logarithm relation with beta-particle energy, but the curves appears deflection at low energy. Comparison test of energy response also shows that alpha and beta equivalent factors of scintillation and proportional counters have a good compatibility, and alpha equivalent factors of the semiconductor counters are in good agreement with those of the above two types of counters, but beta equivalent factors have obvious difference, or equivalent factors of low energy beta-particle are lower than those of other detectors. So, the semiconductor counter can not be used for measuring total radioactivity or for the measurements for the purpose of food safety. (authors)

  3. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.

    Science.gov (United States)

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2015-05-21

    Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  4. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles

    Directory of Open Access Journals (Sweden)

    Hassan Maktuff Jaber Al-Ta'ii

    2015-05-01

    Full Text Available Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0–20 min of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung’s and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung’s methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  5. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture.

    Science.gov (United States)

    Xiong, TianTian; Austruy, Annabelle; Pierart, Antoine; Shahid, Muhammad; Schreck, Eva; Mombo, Stéphane; Dumat, Camille

    2016-08-01

    At the global scale, foliar metal transfer occurs for consumed vegetables cultivated in numerous urban or industrial areas with a polluted atmosphere. However, the kinetics of metal uptake, translocation and involved phytotoxicity was never jointly studied with vegetables exposed to micronic and sub-micronic particles (PM). Different leafy vegetables (lettuces and cabbages) cultivated in RHIZOtest® devices were, therefore, exposed in a greenhouse for 5, 10 and 15days to various PbO PM doses. The kinetics of transfer and phytotoxicity was assessed in relation to lead concentration and exposure duration. A significant Pb accumulation in leaves (up to 7392mg/kg dry weight (DW) in lettuce) with translocation to roots was observed. Lead foliar exposure resulted in significant phytotoxicity, lipid composition change, a decrease of plant shoot growth (up to 68.2% in lettuce) and net photosynthesis (up to 58% in lettuce). The phytotoxicity results indicated plant adaptation to Pb and a higher sensitivity of lettuce in comparison with cabbage. Air quality needs, therefore, to be considered for the health and quality of vegetables grown in polluted areas, such as certain megacities (in China, Pakistan, Europe, etc.) and furthermore, to assess the health risks associated with their consumption. Copyright © 2016. Published by Elsevier B.V.

  6. Characterizing the spatio-temporal and energy-dependent response of riometer absorption to particle precipitation

    Science.gov (United States)

    Kellerman, Adam; Makarevich, Roman; Spanswick, Emma; Donovan, Eric; Shprits, Yuri

    2016-07-01

    Energetic electrons in the 10's of keV range precipitate to the upper D- and lower E-region ionosphere, and are responsible for enhanced ionization. The same particles are important in the inner magnetosphere, as they provide a source of energy for waves, and thus relate to relativistic electron enhancements in Earth's radiation belts.In situ observations of plasma populations and waves are usually limited to a single point, which complicates temporal and spatial analysis. Also, the lifespan of satellite missions is often limited to several years which does not allow one to infer long-term climatology of particle precipitation, important for affecting ionospheric conditions at high latitudes. Multi-point remote sensing of the ionospheric plasma conditions can provide a global view of both ionospheric and magnetospheric conditions, and the coupling between magnetospheric and ionospheric phenomena can be examined on time-scales that allow comprehensive statistical analysis. In this study we utilize multi-point riometer measurements in conjunction with in situ satellite data, and physics-based modeling to investigate the spatio-temporal and energy-dependent response of riometer absorption. Quantifying this relationship may be a key to future advancements in our understanding of the complex D-region ionosphere, and may lead to enhanced specification of auroral precipitation both during individual events and over climatological time-scales.

  7. Dynamic response of sand particles impacted by a rigid spherical object

    Directory of Open Access Journals (Sweden)

    P. Youplao

    2018-06-01

    Full Text Available A method for measuring the dynamic impact responses that acting on a spherical object while dropping and colliding with dried sand, such as the velocity, displacement, acceleration, and resultant force, is presented and discussed. In the experiment, a Michelson-type laser interferometer is employed to obtain the velocity of the spherical stainless steel object. Then the obtained time velocity profile is used to calculate the acceleration, the displacement, and the inertial force acting on the observed sand particles. Furthermore, a high-speed camera is employed to observe the behavior of the sand during the collision. From the experimental results with the sampling interval for frequencies calculation of 1 ms, the combined standard uncertainty in the instantaneous value of the impact force acts on the observed object is obtained and approximated to 0.49 N, which is related to a corresponding 4.07% of the maximum value at 12.05 N of the impact force. Keywords: Sand particle, Collision response, Dynamic force, Inertial mass, Optical interferometer

  8. In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis

    Science.gov (United States)

    Brouwer, Bastiaan; Gardeström, Per; Keech, Olivier

    2014-01-01

    Phytochrome is thought to control the induction of leaf senescence directly, however, the signalling and molecular mechanisms remain unclear. In the present study, an ecophysiological approach was used to establish a functional connection between phytochrome signalling and the physiological processes underlying the induction of leaf senescence in response to shade. With shade it is important to distinguish between complete and partial shading, during which either the whole or only a part of the plant is shaded, respectively. It is first shown here that, while PHYB is required to maintain chlorophyll content in a completely shaded plant, only PHYA is involved in maintaining the leaf chlorophyll content in response to partial plant shading. Second, it is shown that leaf yellowing associated with strong partial shading in phyA-mutant plants actually correlates to a decreased biosynthesis of chlorophyll rather than to an increase of its degradation. Third, it is shown that the physiological impact of this decreased biosynthesis of chlorophyll in strongly shaded phyA-mutant leaves is accompanied by a decreased capacity to adjust the Light Compensation Point. However, the increased leaf yellowing in phyA-mutant plants is not accompanied by an increase of senescence-specific molecular markers, which argues against a direct role of PHYA in inducing leaf senescence in response to partial shade. In conclusion, it is proposed that PHYA, but not PHYB, is essential for fine-tuning the chlorophyll biosynthetic pathway in response to partial shading. In turn, this mechanism allows the shaded leaf to adjust its photosynthetic machinery to very low irradiances, thus maintaining a positive carbon balance and repressing the induction of leaf senescence, which can occur under prolonged periods of shade. PMID:24604733

  9. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li Bo [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China); Guo Bo [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China); West China Eye Center of Huaxi Hospital, Sichuan University, Chengdu 610064 (China); Fan Hongsong [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China)], E-mail: leewave@126.com; Zhang Xingdong [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China)

    2008-11-15

    To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.

  10. Interleukin 13– and interleukin 17A–induced pulmonary hypertension phenotype due to inhalation of antigen and fine particles from air pollution

    Science.gov (United States)

    Park, Sung-Hyun; Chen, Wen-Chi; Esmaeil, Nafiseh; Lucas, Benjamin; Marsh, Leigh M.; Reibman, Joan

    2014-01-01

    Abstract Pulmonary hypertension has a marked detrimental effect on quality of life and life expectancy. In a mouse model of antigen-induced pulmonary arterial remodeling, we have recently shown that coexposure to urban ambient particulate matter (PM) significantly increased the thickening of the pulmonary arteries and also resulted in significantly increased right ventricular systolic pressures. Here we interrogate the mechanism and show that combined neutralization of interleukin 13 (IL-13) and IL-17A significantly ameliorated the increase in right ventricular systolic pressure, the circumferential muscularization of pulmonary arteries, and the molecular change in the right ventricle. Surprisingly, our data revealed a protective role of IL-17A for the antigen- and PM-induced severe thickening of pulmonary arteries. This protection was due to the inhibition of the effects of IL-13, which drove this response, and the expression of metalloelastase and resistin-like molecule α. However, the latter was redundant for the arterial thickening response