WorldWideScience

Sample records for fine particles prepared

  1. AP的安全制备%Safe Preparations of Fine Ammonium Perchlorate Particles

    Institute of Scientific and Technical Information of China (English)

    Makoto Kohga

    2006-01-01

    Fine AP particles are required to manufacture the AP-based composite propellants with a wide burning rate range for various applications,especially high burning rate propellants. However,it is difficult to prepare a fine AP safely. Some safe methods for preparing the fine AP particles are reported such as the spray-dry method and freeze-dry method. It is shown that the crystal habit modified AP particle is an effective oxidizer to enhance the burning rate.

  2. Preparation of semi-solid slurry containing fine and globular particles for wrought aluminum alloy 2024

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The semi-solid slurry of wrought aluminum alloy 2024 was prepared by a well developed rheocasting process, low superheat pouring with shearing field(LSPSF). The appreciate combination of pouring temperature and rotation speed of barrel, can give rise to a transition of the growth morphology of primary α(Al) from coarse-dendritic to coarse-particle-like and further to fine-globular. The combined effects of both localized rapid cooling and vigorous mixing during the initial stage of solidification can enhance wall nucleation and nuclei survival, which leads to the formation of fine-globular primary α(Al). By using semi-solid slurry prepared by LSPSF, direct squeeze cast cup-shaped component with improved mechanical properties such as yield strength of 198MPa, ultimate tensile strength of 306 MPa and elongation of 10.4%, can be obtained.

  3. Preparation of UO_2 Fine Particle by Hydrolysis of Uranium(IV) Alkoxide

    OpenAIRE

    Satoh, Isamu; Takahashi, Mitsuyuki; Miura, Shigeyuki

    1997-01-01

    Fine particles of uranium(IV) dioxides were obtained by hydrolysis of uranium(IV) ethoxide which was synthesized by reacting uranium tetrachloride with sodium ethoxide. The monodispersed submicrometer particles were confirmed by SEM observation.

  4. Preparation of fine silicon particles from amorphous silicon monoxide by the disproportionation reaction

    Science.gov (United States)

    Mamiya, Mikito; Takei, Humihiko; Kikuchi, Masae; Uyeda, Chiaki

    2001-07-01

    Fine Si particles have been prepared by the disproportionation reaction of silicon monoxide (SiO), that is: 2SiO→Si+SiO 2. Amorphous powders of SiO are heated between 900°C and 1400°C in a flow of Ar and the obtained specimens are analyzed by X-ray powder diffraction and high-resolution transmission electron microscopy. The treatments between 1000°C and 1300°C for more than 0.5 h result in origination of Si particles dispersed in amorphous oxide media. The particle size varies from 1-3 to 20-40 nm, depending on the heating temperature. Kinetic analyses of the reaction reveal that the activation energy is 1.1 eV (82.1 kJ mol -1). The specimens annealed above 1350°C changes into a mixture of Si and cristobalite, suggesting a solid state transformation in the surrounding oxides from the amorphous to crystalline states.

  5. X-ray diffraction and high-resolution TEM observations of biopolymer nanoskin-covered metallic copper fine particles: preparative conditions and surface oxidation states.

    Science.gov (United States)

    Yonezawa, Tetsu; Uchida, Yoshiki; Tsukamoto, Hiroki

    2015-12-28

    Metallic copper fine particles used for electro conductive pastes were prepared by the chemical reduction of cupric oxide microparticles in the presence of gelatin. After reduction, the fine particles were collected by decantation with pH control and washing, followed by drying at a moderate temperature. The surface oxidation state of the obtained copper fine particles could be considerably varied by altering the pH of the particle dispersion, as shown by X-ray diffraction and high-resolution transmission electron microscopy. Our results strongly indicate that decantation under a nitrogen atmosphere can prevent the oxidation of copper fine particles but a slight oxidation was found.

  6. 超细颗粒卤化银的制备与稳定性%PREPARATION OF ULTRA-FINE SILVER HALIDE PARTICLES AND THEIR STABILITY

    Institute of Scientific and Technical Information of China (English)

    崔兴品; 岳军

    1999-01-01

    With gelatin or gelatin+PVA as colloid protective medium and under proper reactive condition, ultra-fine silver iodobromide particles with average diameter of about 20 nm and better monodispersity were prepared by direct reaction of silver nitrate with mixture of potassium bromide and potassium iodide. According to TEM data, it was discovered that gelatin+PVA showed stronger colloid protective power for these ultra-fine particles, which restrained particles' coalescence and growth effectively during physical and chemical ripening, so that there was not observable change of particle size and monodispersity to be found. In the case of only gelatin as colloid protective medium to prepare ultra-fine silver iodobromide particles, particles'stability in the process of physical ripening depended on the ratio of gelatin amount to silver content as the preparing reaction. It appears that there exists a critical ratio of gelatin amount to silver content for particles′ stability. When experimental ratio of gelatin amount to silver content in the reaction was over this critical ratio, gelatin can protect ultra-fine particles against coalescence and growth to a considerable degree. On the contrary, the particle size beacme significantly large in the process of physical ripening due to decrease of gelatin protective power if the experimental ratio was lower than this critical ratio.

  7. Fractal aggregation and breakup of fine particles

    Directory of Open Access Journals (Sweden)

    Li Bingru

    2016-01-01

    Full Text Available Breakup may exert a controlling influence on particle size distributions and particles either are fractured or are eroded particle-by-particle through shear. The shear-induced breakage of fine particles in turbulent conditions is investigated using Taylor-expansion moment method. Their equations have been derived in continuous form in terms of the number density function with particle volume. It suitable for future implementation in computational fluid dynamics modeling.

  8. Process for preparing fine-grain metal carbide powder

    Science.gov (United States)

    Kennedy, C.R.; Jeffers, F.P.

    Fine-grain metal carbide powder suitable for use in the fabrication of heat resistant products is prepared by coating bituminous pitch on SiO/sub 2/ or Ta/sub 2/O/sub 5/ particles, heating the coated particles to convert the bituminous pitch to coke, and then heating the particles to a higher temperature to convert the particles to a carbide by reaction of said coke therewith.

  9. ELECTROSTATICALLY SUPPORTED MIXING OF FINE GRAINED PARTICLES

    Institute of Scientific and Technical Information of China (English)

    K.-E.; Wirth; M.; Linsenbühler

    2005-01-01

    The processing of fine-grained particles with diameters between 1 and 10 microns is difficult due to strong van-der-Waals attraction forces. In order to improve the handling properties, the fine-grained particles, i.e. host-particles,are coated with various nanoparticles, i.e. guest-particles. The mixing of fine-grained powders is influenced by particle-particle interactions. If these forces are distinctively used, both interactive and ordered mixtures can be produced.These particle mixtures consist of composite-particles that have new physical properties. These modified properties d epend strongly on the coating process, the diameter- and mass-relationship of the guest- and the host-particles. The properties of the composite-particles can systematically be adjusted to the requirements of industrial applications. For example, a laboratory bubbling fluidized bed can be used to describe the conveying behavior of the functionalized host-particles. Applications for the functionalized particles are in the pharmaceutical and the powder coating industries,e.g. enhanced dry powder inhalers and thin lacquer films. The present research compares three different mixing/coating processes. The composite-particles are characterized by TEM, SEM and with their fluidization characteristics. The coating process itself is monitored by the electrostatic charge of the particles.

  10. Mechanical Particle Coating Using Polymethacrylate Nanoparticle Agglomerates for the Preparation of Controlled Release Fine Particles: the Relationship between Coating Performance and the Characteristics of Various Polymethacrylates.

    Science.gov (United States)

    Kondo, Keita; Kato, Shinsuke; Niwa, Toshiyuki

    2017-09-09

    We aimed to understand the factors controlling mechanical particle coating using polymethacrylate. The relationship between coating performance and the characteristics of polymethacrylate powders was investigated. First, theophylline crystals were treated using a mechanical powder processor to obtain theophylline spheres (spray freeze drying to produce colloidal agglomerates. Finally, mechanical particle coating was performed by mixing theophylline spheres and polymethacrylate agglomerates using the processor. The agglomerates were broken under mechanical stress to coat the spheres effectively. The coating performance of polymethacrylate agglomerates tended to increase as their pulverization progressed. Differences in the grindability of the agglomerates were attributed to differences in particle structure, resulting from consolidation between colloidal particles. High-grindability agglomerates exhibited higher pulverization as their glass transition temperature (Tg) increased and the further pulverization promoted coating. We therefore conclude that the minimization of polymethacrylate powder by pulverization is an important factor in mechanical particle coating using polymethacrylate with low deformability. Meanwhile, when product temperature during coating approaches Tg of polymer, polymethacrylate was soften to show high coating performance by plastic deformation. The effective coating by this mechanism may be accomplished by adjusting the temperature in the processor to the Tg. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Charge neutrality of fine particle (dusty) plasmas and fine particle cloud under gravity

    Science.gov (United States)

    Totsuji, Hiroo

    2017-03-01

    The enhancement of the charge neutrality due to the existence of fine particles is shown to occur generally under microgravity and in one-dimensional structures under gravity. As an application of the latter, the size and position of fine particle clouds relative to surrounding plasmas are determined under gravity.

  12. Fine particle emissions from residential wood combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tissari, J.

    2008-07-01

    Residential wood combustion (RWC) appliances have the high probability of incomplete combustion, producing e.g. fine particles and hazardous organic compounds. In this thesis, the fine particle number and mass emissions, particle composition and morphology, and gas emissions were investigated from the modern (MMH) and conventional masonry heaters (CMH), sauna stoves (SS) and pellet burner. The investigation was based on laboratory and field experiments applying extensive and unique particle sampling methods. The appliance type, fuel and operational practices were found to affect clearly the fine particle emissions. In good combustion conditions (e.g. in pellet combustion), the fine particle mass (PM{sub 1}) emission factors were low, typically below 0.3 g kg-1, and over 90% of the PM{sub 1} consisted of inorganic compounds (i.e fine ash). From the CMH the typical PM{sub 1} values were 1.6-1.8 g kg-1, and from the SS 2.7-5.0 g kg-1, but were strongly dependent on operational practices. The smouldering combustion in CMH increased PM{sub 1} emission up to 10 g kg-1. The good secondary combustion in the MMH reduced the particle organic matter (POM) and gaseous emissions, but not substantially the elemental carbon (EC, i.e. soot) emission, and the typical PM{sub 1} values were 0.7-0.8 g kg-1. The particle number emissions were high, and did not correspond with the completition of combustion. The particle number distributions were mainly dominated by ultrafine (<100 nm) particles, but varied dependent on combustion conditions. The electronmicroscopy analyses showed that ultrafine particles were composed mainly of K, S and Zn. From the smouldering combustion, particles were composed mainly of carbon compounds and they had a closed sinteredlike structure, due to organic matter on the particles. Controlling the gasification rate via the primary air supply, log and batch size, as well as fuel moisture content, is important for the reduction of emissions in batch combustion

  13. Some characteristics of fine beryllium particle combustion

    Science.gov (United States)

    Davydov, D. A.; Kholopova, O. V.; Kolbasov, B. N.

    2007-08-01

    Beryllium dust will be produced under plasma interaction with beryllium armor of the first wall in ITER. Exothermal reaction of this dust with water steam or air, which can leak into the reactor vacuum chamber in some accidents, gives concern in respect to reactor safety. Results of studies devoted to combustion of fine beryllium particles are reviewed in the paper. A chemically active medium and elevated temperature are prerequisite to the combustion of beryllium particles. Their ignition is hampered by oxide films, which form a diffusion barrier on the particle surface as a result of pre-flame oxidation. The temperature to initiate combustion of particles depends on flame temperature, particle size, composition of combustible mixture, heating rate and other factors. In mixtures enriched with combustible, the flame temperature necessary to ignite individual particles approaches the beryllium boiling temperature.

  14. Synthesis and photocatalytic application of α-Fe2O3/ZnO fine particles prepared by two-step chemical method

    Directory of Open Access Journals (Sweden)

    Patij Shah

    2013-06-01

    Full Text Available Composite iron oxide-Zinc oxide (α-Fe2O3/ZnO was synthesized by two-step method: in the first one step uniform α-Fe2O3 particles were prepared through a hydrolysis process of ferric chloride at 80 °C. In the second step, the ZnO particles were included in the α-Fe2O3 particles by a zinc acetate [Zn(Ac2·2H2O] assisted hydrothermal method at low temperature (90°C±C. The α-Fe2O3 and ZnO phases were identified by XRD, energy dispersive X-ray analysis (EDX. The photoreactivities of α-Fe2O3/ZnO nanoparticles under UV irradiation were quantified by the degradation of formaldehyde.

  15. Computer Models Simulate Fine Particle Dispersion

    Science.gov (United States)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  16. FINE AND COARSE PARTICLES: CONCENTRATION RELATIONSHIPS RELEVANT TO EPIDEMIOLOGICAL STUDIES

    Science.gov (United States)

    Fine particles and coarse particles are defined in terms of the modal structure of particle size distributions typically observed in the atmosphere. Differences among the various modes are discussed. The fractions of fine and coarse particles collected in specific size ranges, ...

  17. Preparation of Ni-Cr overlay weld alloy with finely dispersed NbC particles from (Ni-Cr)/NbC composite powder. Fukugo funmatsu wo mochiita bisai NbC ryushi bunsan Ni-Cr nikumori gokin no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, T.; Takatani, Y. (Hyogo Prefectural Inst. of Industrial Research, Hyogo (Japan)); Harada, Y.; Nagai, K. (Tocalo Co. Ltd., Kobe (Japan))

    1992-11-20

    In previous studies, Ni-Cr overlay alloy containing NbC particles, formed by the plasma powder welding process, was found to exhibit excellent wear and corrosion resistances. However, any overlay alloy with dispersed NbC particles having a diameter below a few micron, has not been yet obtained. In this study, a composite powder was prepared by compounding 40 vol.% of NbC powder having an average grain diameter of 1.3 [mu]m into Ni-50 mass% Cr alloy powder, and then mixing, granulating and sintering. Plasma powder weddings were carried out on a mild steel plate using this complex powder, and the effect of plasma arc current on melting of complex powder particles and dispersion behavior of NbC particles was studied by structure observation and X-ray diffractometry. As a result, it was clarified that by selecting the proper plasma arc current and controlling the heat input, uniform dispersion of fine NbC particles having a diameter of a few micron into the matrix was possible. 18 refs., 8 figs., 3 tabs.

  18. Spatial variability of fine particles in Parisian streets

    OpenAIRE

    Duché, Sarah; Beltrando, Gérard

    2012-01-01

    International audience; To study the spatial variability of airborne particles and to evaluate the personal and tourist exposure to fine particles in Paris, measurements of fine particles (PM2.5) concentrations have been made in Parisian streets in different mode of transport (bus, bike and walking), using a portable sensor. We use also meteorological parameters sensor (temperature,humidity and wind speed), a camera to view traffic and a GPS to compare with particles levels. PM2.5 levels are ...

  19. Selective separation of fine particles by a new flotation approach

    NARCIS (Netherlands)

    Mulleneers, H.A.E.; Koopal, L.K.; Bruning, H.; Rulkens, W.H.

    2002-01-01

    Fine particles often create problems in flotation applications. In this article a new laboratory flotation system for the selective separation of small particles was designed and tested. The device contains an active counter current sedimentation that should prevent entrainment of the fine

  20. EDITORIAL: Cluster issue on fine particle magnetism

    Science.gov (United States)

    Fiorani, D.

    2008-07-01

    This Cluster issue of Journal of Physics D: Applied Physics arises from the 6th International Conference on Fine Particle Magnetism (ICFPM) held in Rome during 9-12 October 2007 at the headquarters of the National Research Council (NCR). It contains a collection of papers based on both invited and contributed presentations at the meeting. The ICFPM Conferences have previously been held in Rome, Italy (1991), Bangor, UK (1996), Barcelona, Spain (1999), Pittsburgh, USA (2002) and London, UK (2004). The aim of this series of Conferences is to bring together the experts in the field of nanoparticle magnetism at a single forum to discuss recent developments in both theoretical and experimental aspects, and technological applications. The Conference programme included sessions on: new materials, novel synthesis and processing techniques, with special emphasis on self-organized magnetic arrays; theory and modelling; surface and interface properties; transport properties; spin dynamics; magnetization reversal mechanisms; magnetic recording media and permanent magnets; biomedical applications and advanced investigation techniques. I would like to thank the European Physical Society and the Innovative Magnetic and Superconducting Materials and Devices Project of the Materials and Devices Department and the Institute of Structure of Matter (ISM) of CNR for their support. Thanks are also due to the members of the Programme Committee, to the local Organizing Committee, chaired by Elisabetta Agostinelli and to all the Conference participants. I am also indebted to the many scientists who contributed to assuring the high-quality of this Cluster by donating their time to reviewing the manuscripts contained herein. Finally, I'd like to dedicate this issue to the memories of Jean Louis Dormann, a great expert in nanoparticle magnetism, who was one of the promoters and first organizers of this series of Conferences, and of Grazia Ianni, the Conference secretary, who died before her

  1. 古叙矿区选煤厂细粒级分级入洗工艺的探讨和分析%Discussion and analysis on fine particle grading in washing process in Guxu coal preparation plant

    Institute of Scientific and Technical Information of China (English)

    杨泽伟; 王川

    2013-01-01

    针对选煤厂高度泥化煤质煤泥水处理的问题进行探讨,对古叙矿区原煤伴生矿及其夹矸高度泥化的特征进行了分析试验,同时对现有细粒级分级设备的优缺点进行了对比,并结合企业煤炭产品结构及对选煤厂生产成本进行了分析,从而选择在技术经济和经营结构上都较为合理的选煤工艺及设备选型。%In view of the problems of coal slurry water treatment of high argillization coal, the characters of raw ore in Guxu minging area and gangue with highly argillization have been tested and analyzed.Meanwhile,the advantages and disadvantages of existing fine particle gradG ing equipment have been compared,and after combined with the analyzation of coal product structure and production costs in coal preparation plant,the reasonable coal preparation process and equipment have been selection based on technical economic and business structures.

  2. A hazard to health? Fine particles arouse worldwide interest

    Energy Technology Data Exchange (ETDEWEB)

    Karas, J.; Oesch, P.

    1998-07-01

    The most recent studies show that particles contained in the air that we breathe may have harmful effects on the health of asthmatics, children and old people in particular. Particle material found in ambient air is formed by emissions resulting from traffic, industry and other use of fuels. Nature`s own sources also have a significant effect on particle concentrations. The mechanisms by which fine particles may produce negative health effects are so far unknown. At present it is therefore impossible to assess the effects of emissions of fine particles resulting, for instance, from the use of fossil fuels

  3. Dispersion characteristics of fine particles in water, ethanol and kerosene

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Dispersion behavior of hydrophilic calcium carbonate particles and hydrophobic talcum particles in water, ethanol and kerosene media has been studied by sedimentation analysis. It is found that the dispersion of fine particles complies with the principle of polarity compatibility. That is to say, the dispersion effect will be improved when surface polarity of particles is similar to that of liquid media. The adsorption models of oleic acid on the surface of particles in water and ethanol are proposed.

  4. Morphological study of Sr2CeO4 blue phosphor with fine particles

    Directory of Open Access Journals (Sweden)

    Janaína Gomes

    2004-10-01

    Full Text Available Morphological and spectroscopic studies of Sr2CeO4 blue phosphor in the form of fine particles prepared from a powdered multi-component precursor, via a combustion method, are reported. Samples were also prepared through a solid-state reaction and from a polymeric precursor for comparison. Citric acid or glycine as fuels in the combustion method lead to a mixture which is heated at 950 ºC for 4 h, resulting in spheroidal particles with a diameter between 250-550 nm. Samples from the polymeric precursor result in spheroidal particles (350-550 nm and from the solid-state reaction in irregular particles (~ 5 mum. Therefore, the combustion method is adequate for preparation of Sr2CeO4 in the form of spherical fine particles.

  5. Fine Particle Matter (PM2.5) Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Fine particulate matter or PM2.5 (total mass of particles below 2.5 micron is diameter) is known to cause adverse health effects in humans.See the following websites...

  6. Separation of Fine Particles by Using Colloidal Gas Aphrons

    Institute of Scientific and Technical Information of China (English)

    E.A.Mansur; 王运东; 戴猷元

    2004-01-01

    This paper presents a method of separation of fine particles, of the order of a few microns or less, from aqueous media by flotation using colloidal gas aphrons (CGAs) generated in aqueous solutions. More than 150 experiments were conducted to study the effects of surfactant type, surfactant concentration, CGAs flow rate, and particle concentration on the removal efficiency (fine particles of polystyrene were used as a target compound). The results indicate that CGAs, generated from cationic surfactant of hexdecyltrimethyl ammonicum bromide (HTAB) and anionic surfactant of sodium dodecylbenzne sulfonate (SDBS), are an effective method for the separation off ine particles of polystyrene from wastewater. The flotation yields are higher than 97%.

  7. Moessbauer study of Martensitic transformation and collective magnetic excitations in Fe9Ni1 fine particles

    Institute of Scientific and Technical Information of China (English)

    H.M.Widatallah; 黄润生; 等

    1996-01-01

    The austenite to martensity ransformation in fine Fe90Ni.10 particles prepared by evaporation is studied by Moessbauer technique.Unlike bulk Fe.9Ni.1 which is entirely transformed to martensite.these particles show a remarkable austenite stability upon cooling upto liquid nitrogen temperature.This stability is associated with the oxide surface layer formed on the particles and also with their small size.A hyperfine field approach is employed to analyze the martensitic transformation in the particles.It is also shown that,in contrast with large particles ,the temperature variation of the Moessbauer average hyperfine field of the fine particles can be satisfactorily explained in terms of the collective magnetic excitations model.

  8. Pressure characteristics of a hydrocyclone for fine particle separation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Li-xin; JIANG Ming-hu; SUN De-zhi; BELAIDI A; THEW M

    2006-01-01

    Solid-liquid hydrocyclones are mainly used to separate large particles, such as the particles of drilling fluid in petroleum industry, and large mineral particles. Till now the hydrocyclonic separation for fine particles is still a big problem. Basic separation principle of hydrocyclones and experimental research facility are simply introduced. The difficulty of separating fine particle is analyzed. Based on a solid-liquid hydrocyclone used for separating fine particles, relationships of dimensionless pressure characteristic parameters, i.e. Euler number and pressure drop ratio, with several main dimensionless parameters, such as split ratio, swirl number and gas-liquid ratio, were experimentally studied in detail. The research was carried out by using the hydrocyclonic separation experimental rig at the University of Bradford. It is shown that the less the size of particle, the less the value of radius of the balance orbit occupied by the particle, and then the more difficult for the particle to be separated. Experiments indicate that Euler number of the tested hydrocyclone increases with the rise of Reynolds number, split ratio, swirl number and gas-liquid ratio respectively, and the pressure drop ratio falls with the increase of Reynolds number, split ratio and swirl number respectively. It is concluded that the most effective way to decrease the unit energy dissipation of hydrocyclone is to reduce swirl number or gas-liquid ratio of the mixed media.

  9. Glassy behavior in magnetic fine particles

    CERN Document Server

    Muro, M G D; Labarta, A

    2000-01-01

    A detailed study of the static and dynamic magnetic properties of nanocrystalline barium hexaferrite powder was done. Particles of about 10 nm diameter exhibit the main features attributed to glassy behavior. Different results make evident the presence of strong interactions in the studied system. This glassy state is mostly attributed to the frustration induced by magnetic interactions between randomly distributed particles, although the surface spins contribution cannot be discarded. The effective energy barrier distribution obtained from the analysis of the time dependence of the thermoremanence in terms of the T ln (t/tau sub 0) scaling shows a maximum located at energies higher than the mean anisotropy energy barrier. When doing the relaxation experiments after field cooling at increasing fields, the obtained effective energy distribution progressively resembles the anisotropy energy distribution. Therefore, we demonstrate how the glassy state can be erased by applying a magnetic field.

  10. [Effect of mixing of fine carrier particles on dry powder inhalation property of salbutamol sulfate (SS)].

    Science.gov (United States)

    Iida, K; Leuenberger, H; Fueg, L M; Müller-Walz, R; Okamoto, H; Danjo, K

    2000-01-01

    The most commonly used formulations for dry powder inhalations are binary ordered mixes composed of micronized drugs and coarse carriers. An optimal dry powder aerosol formulation should possess an optimal inhalation property and a good flow property. These characteristics are especially important for a multidose dry powder inheler (DPI). In the present study, model powder blend were prepared consisting of synthesized sugar (different particle sized isomalt; IM-PF, IM-FS, IM-F) as a carrier and micronized salbutamol sulfate (SS). These ordered mixtures were aerosolized by the multidose JAGO DPI (SkyePharma AG) and in vitro deposition properties (fine particle fraction, FPF) were evaluated by a twin impinger (TI) at a flow rate of 60 l/min. The separation property between SS and carrier particles was investigated by the centrifuge method and air jet sieve (AJS) method. It was found that FPF decreased with increasing carrier particle size. However, a large carrier particle possesses a good flow property. Therefore, the effect of mixing of fine carrier particles (IM-PF) into the large carrier particles (IM-FS) on dry powder inhalation property was investigated. When the proportion of IM-PF (fine carrier) increase from 0% to 25% of the total carrier powder blend, the FPF also increases from 16.7% to 38.9%. It is concluded that the effect of mixing of fine carrier particles might be a suitable method for improving the dry powder inhalation properties.

  11. Transition metals in coarse, fine, very fine and ultra-fine particles from an interstate highway transect near Detroit

    Science.gov (United States)

    Cahill, Thomas A.; Barnes, David E.; Lawton, Jonathan A.; Miller, Roger; Spada, Nicholas; Willis, Robert D.; Kimbrough, Sue

    2016-11-01

    As one component of a study investigating the impact of vehicle emissions on near-road air quality, human exposures, and potential health effects, particles were measured from September 21 to October 30, 2010 on both sides of a major roadway (Interstate-96) in Detroit. Traffic moved freely on this 12 lane freeway with a mean velocity of 69 mi/hr. with little braking and acceleration. The UC Davis DELTA Group rotating drum (DRUM) impactors were used to collect particles in 8 size ranges at sites nominally 100 m south, 10 m north, 100 m north, and 300 m north of the highway. Ultra-fine particles were continuously collected at the 10 m north and 100 m north sites. Samples were analyzed every 3 h for mass (soft beta ray transmission), 42 elements (synchrotron-induced x-ray fluorescence) and optical attenuation (350-800 nm spectroscopy). A three day period of steady southerly winds along the array allowed direct measurement of freeway emission rates for coarse (10 > Dp > 1.0 μm), PM2.5, very fine (0.26 > Dp > 0.09 μm), and ultra-fine (Dp car and truck emission rates of 1973, this value would have been about 16 μg/m3, corrected down from the 19 μg/m3 PM5.0 using measured roadway dust contributions. This would have included 2.7 μg/m3 of lead, versus the 0.0033 μg/m3 measured. Very fine particles were distributed across the array with a relatively weak falloff versus distance. For the ultra-fine particles, emissions of soot and metals seen in vehicular braking studies correlated with traffic at the 10 m site, but only the soot was statistically significant at the 100 m north site. Otherwise, the 10 m north and 100 m north sites were essentially identical in mean concentration and highly correlated in time for most of the 5 week study. This result supports earlier publications showing the ability of very fine and ultra-fine particles to transport to sites well removed from the freeway sources. The concentrations of very fine and ultra-fine metals from brake wear and

  12. EFFECTS OF GAS TYPE AND TEMPERATURE ON FINE PARTICLE FLUIDIZATION

    Institute of Scientific and Technical Information of China (English)

    Chunbao Xu; J.-X. Zhu

    2006-01-01

    The influence of gas type (helium and argon) and bed temperature (77-473 K) on the fluidization behaviour of Geldart groups C and A particles was investigated. For both types of particles tested, i.e., Al2O3 (4.8 μm) and glass beads (39 μm), the fluidization quality in different gases shows the following priority sequence: Ar>He. In the same gaseous atmosphere, the particles when fluidized at an elevated temperature usually show larger bed voidages, higher bed pressure drops, and a lower umf for the group A powder, all indicating an enhancement in fluidization quality. Possible mechanisms governing the operations of gas type and temperature in influencing the fluidization behaviours of fine particles have been discussed with respect to the changes in both gas properties and interparticle forces (on the basis of the London-van der Waals theory). Gas viscosity (varying significantly with gas-type and temperature) proves to be the key parameter that influences the bed pressure drops and umf in fluidization of fine particles, while the interparticle forces (also varying with gas-type and temperature) may play an important role in fine-particle fluidization by affecting the expansion behaviour of the particle-bed.

  13. Preparation of Ultra-fine Salbutamol Sulfate Particles by Reactive Precipitation and Characterization of Dry Powder Inhalant%反应沉淀法制备超细硫酸沙丁胺醇颗粒及其粉雾剂的表征

    Institute of Scientific and Technical Information of China (English)

    续京; 刘晓林; 陈建峰

    2008-01-01

    The preparation of ultra.fine particles of salbutamol sulphate(SS)was accomplished with a reactive precipitation pathway,in Which salbutamo]and sulphuric acid were used as reactants wlth the solvents of ethanol.The effects of sulphuric acid concentration.reaction temperature,stirring rate,and reaction time on the Size of the particle were investigated.A binary mixture composed of lactose and SS was prepared to evaluate SS.The results showed that ultra-fine SS particles with controlled diameters ranging between 3 grn and 0.8 μm and with a narrow distribution could be achieyed.The morphology consisting of clubbed particles was successfully obtained.The pu-fity of the particles reached above 98%with UV detection.The dose of dry powder inhalation was obtained by blending the particles with recrystallized lactose.which acted as a carrier.The deposition quantity of the drug in breathing tract was estimated using a twin impinger apparatus.Compared wlth the Shapuer powder(purchased in the market),the results showed that SS particles had more quantines subsided in simulative lung.

  14. Deposition of fine and ultrafine particles on indoor surface materials

    DEFF Research Database (Denmark)

    Afshari, Alireza; Reinhold, Claus

    2008-01-01

    -scale test chamber. Experiments took place in a 32 m3 chamber with walls and ceiling made of glass. Prior to each experiment the chamber was flushed with outdoor air to reach an initial particle concentration typical of indoor air in buildings with natural ventilation. The decay of particle concentrations...... The aim of this study was the experimental determination of particle deposition for both different particle size fractions and different indoor surface materials. The selected surface materials were glass, gypsum board, carpet, and curtain. These materials were tested vertically in a full...... was monitored. Seven particle size fractions were studied. These comprised ultrafine and fine particles. Deposition was higher on carpet and curtain than on glass and gypsum board. Particles ranging from 0.3 to 0.5 µm had the lowest deposition. This fraction also has the highest penetration and its indoor...

  15. Design of sustained release fine particles using two-step mechanical powder processing: particle shape modification of drug crystals and dry particle coating with polymer nanoparticle agglomerate.

    Science.gov (United States)

    Kondo, Keita; Ito, Natsuki; Niwa, Toshiyuki; Danjo, Kazumi

    2013-09-10

    We attempted to prepare sustained release fine particles using a two-step mechanical powder processing method; particle-shape modification and dry particle coating. First, particle shape of bulk drug was modified by mechanical treatment to yield drug crystals suitable for the coating process. Drug crystals became more rounded with increasing rotation speed, which demonstrates that powerful mechanical stress yields spherical drug crystals with narrow size distribution. This process is the result of destruction, granulation and refinement of drug crystals. Second, the modified drug particles and polymer coating powder were mechanically treated to prepare composite particles. Polymer nanoparticle agglomerate obtained by drying poly(meth)acrylate aqueous dispersion was used as a coating powder. The porous nanoparticle agglomerate has superior coating performance, because it is completely deagglomerated under mechanical stress to form fine fragments that act as guest particles. As a result, spherical drug crystals treated with porous agglomerate were effectively coated by poly(meth)acrylate powder, showing sustained release after curing. From these findings, particle-shape modification of drug crystals and dry particle coating with nanoparticle agglomerate using a mechanical powder processor is expected as an innovative technique for preparing controlled-release coated particles having high drug content and size smaller than 100 μm.

  16. Measurements of Ultra-fine and Fine Aerosol Particles over Siberia: Large-scale Airborne Campaigns

    Science.gov (United States)

    Arshinov, Mikhail; Paris, Jean-Daniel; Stohl, Andreas; Belan, Boris; Ciais, Philippe; Nédélec, Philippe

    2010-05-01

    In this paper we discuss the results of in-situ measurements of ultra-fine and fine aerosol particles carried out in the troposphere from 500 to 7000 m in the framework of several International and Russian State Projects. Number concentrations of ultra-fine and fine aerosol particles measured during intensive airborne campaigns are presented. Measurements carried over a great part of Siberia were focused on particles with diameters from 3 to 21 nm to study new particle formation in the free/upper troposphere over middle and high latitudes of Asia, which is the most unexplored region of the Northern Hemisphere. Joint International airborne surveys were performed along the following routes: Novosibirsk-Salekhard-Khatanga-Chokurdakh-Pevek-Yakutsk-Mirny-Novosibirsk (YAK-AEROSIB/PLARCAT2008 Project) and Novosibirsk-Mirny-Yakutsk-Lensk-Bratsk-Novosibirsk (YAK-AEROSIB Project). The flights over Lake Baikal was conducted under Russian State contract. Concentrations of ultra-fine and fine particles were measured with automated diffusion battery (ADB, designed by ICKC SB RAS, Novosibirsk, Russia) modified for airborne applications. The airborne ADB coupled with CPC has an additional aspiration unit to compensate ambient pressure and changing flow rate. It enabled to classify nanoparticles in three size ranges: 3-6 nm, 6-21 nm, and 21-200 nm. To identify new particle formation events we used similar specific criteria as Young et al. (2007): (1) N3-6nm >10 cm-3, (2) R1=N3-6/N621 >1 and R2=N321/N21200 >0.5. So when one of the ratios R1 or R2 tends to decrease to the above limits the new particle formation is weakened. It is very important to notice that space scale where new particle formation was observed is rather large. All the events revealed in the FT occurred under clean air conditions (low CO mixing ratios). Measurements carried out in the atmospheric boundary layer over Baikal Lake did not reveal any event of new particle formation. Concentrations of ultra-fine

  17. Modeling of Fine-Particle Formation in Turbulent Flames

    Science.gov (United States)

    Raman, Venkat; Fox, Rodney O.

    2016-01-01

    The generation of nanostructured particles in high-temperature flames is important both for the control of emissions from combustion devices and for the synthesis of high-value chemicals for a variety of applications. The physiochemical processes that lead to the production of fine particles in turbulent flames are highly sensitive to the flow physics and, in particular, the history of thermochemical compositions and turbulent features they encounter. Consequently, it is possible to change the characteristic size, structure, composition, and yield of the fine particles by altering the flow configuration. This review describes the complex multiscale interactions among turbulent fluid flow, gas-phase chemical reactions, and solid-phase particle evolution. The focus is on modeling the generation of soot particles, an unwanted pollutant from automobile and aircraft engines, as well as metal oxides, a class of high-value chemicals sought for specialized applications, including emissions control. Issues arising due to the numerical methods used to approximate the particle number density function, the modeling of turbulence-chemistry interactions, and model validation are also discussed.

  18. Dynamics of fine particles in liquid-solid fluidized beds

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis of the Local Equilibrium Model (LEM), fine particles with large Richardson-Zaki exponent n show, under certain conditions during bed expansion and collapse, different dynamic behavior from particles with small n. For an expansion process there may be a concentration discontinuity propagating upward from the distributor, and, on the contrary, for a collapse process there may be a progressively broadening and upward-propagating continuous transition zone instead of discontinuity. The predictions of the bed height variation and the discontinuity trace have been validated experimentally.

  19. Magnetic properties of lanthanum orthoferrite fine powders prepared by different chemical routes

    Indian Academy of Sciences (India)

    Benedict Ita; P Murugavel; V Ponnambalam; A R Raju

    2003-10-01

    Fine powders of lanthanum iron oxide, LaFeO3, have been prepared by solid state reaction as well as sol-gel synthesis and nebulized spray pyrolysis. Structures, morphologies and magnetic susceptibility measurements of these powders have been examined. The powders prepared by all the three low-temperature routes contain nearly spherical particles with an average diameter of 40 nm. These samples show a lower Neel temperature than the powder prepared by solid state reaction besides showing much lower magnetic susceptibility at low temperatures.

  20. Characterization of ultrafine and fine particles from CHP Plants

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    Samples of particles collected at CHP plants in the project 'Survey of emissions from CHP Plants' have been analysed in this project to give information on the morphology and chemical composition of individual particle size classes. The objective of this project was to characterize ultrafine and fine particles emitted to the atmosphere from Danish CHP plants. Nine CHP plants were selected in the Emission Survey Project as being representative for the different types of CHP plants operating in Denmark: 1) Three Waste-to Energy (WTE) plants. 2) Three biomass fired (BM) plants (two straw fired, one wood/saw dust fired). 3) Two gas fired (GF) plants (one natural gas, one landfill gas fired). 4) One gasoil (GO) fired plant. At the WTE and BM plants, various types of emission control systems implemented. The results from these plants represent the composition and size distribution of combustion particles that are emitted from the plants emission control systems. The measured emissions of particles from the waste-to-energy plants WTE1-3 are generally very low. The number and mass concentrations of ultrafine particles (PM{sub 0.1}) were particularly low in the flue gas from WTE2 and WTE3, where bag filters are used for the reduction of particle emissions. The EDX analysis of particles from the WTE plants indicates that the PM{sub 0.1} that penetrates the ECS at WTE can contain high fractions of metals such as Fe, Mn and Cu. The SEM analysis of particles from WTE1-3 showed that the particles were generally porous and irregular in shape. The concentrations of particles in the flue gas from the biomass plants were generally higher than found for the WTE plants. The time series results showed that periodical, high concentration peaks of PM emissions occur from BM1 and BM2. The chemical composition of the particles emitted from the three biomass plants is generally dominated by C, O and S, and to some extend also Fe and Si. A high amount of Cu was found in selected

  1. High temperature oxidation event of gelatin nanoskin-coated copper fine particles observed by in situ TEM

    Directory of Open Access Journals (Sweden)

    Takashi Narushima

    2012-12-01

    Full Text Available Metallic copper fine particles were prepared using CuO slurry by hydrazine reduction in the presence of gelatin. To observe a behavior of these particles at high temperature, in situ heating TEM observations were carried out. Oxygen gas was introduced and the pressure of the TEM column was kept at 10−3 Pa, corresponding the pressure around the sample at 10−1 Pa. The gelatin, which acts as a protective nanoskin on the particle surface was gradually decomposed. Around approximately 140 °C, it was observed that Cu2O dots formed on the surface of the copper particle. This result is well consistent with the behavior of the TG-DTA curve of the copper fine particles under ambient conditions, and provides key information of oxidative behavior of copper fine particles.

  2. [The analysis for silver iodide fine particles of TLC/FTIR matrix].

    Science.gov (United States)

    Zhu, Qing; Su, Xiao; Wu, Hai-Jun; Zhai, Yan-Jun; Xia, Jin-Ming; Buhebate; Xu, Yi-Zhuang; Wu, Jin-Guang

    2012-07-01

    In situ TLC/FTIR technique has tremendous potential in the analysis of complex mixtures. However, the progress in this technique was quite slow. The reason is that conventional stationary phase has strong absorption in FTIR spectrum and thus brings about severe interference in the detection of samples. To solve the problem, the authors propose to use AgI fine particles as stationary phase of TLC plate. The reasons are as follows: Silver iodide fine particles have no absorbance in an IR region between 4 000 and 800 cm(-1), therefore, the interference caused by IR absorption of stationary phase can be removed. Moreover, silver iodide is stable and insolvable in water and organic solvents and thus it will not be destroyed by mobile phase or react with samples during the TLC separation. To improve TLC separation efficiency and quality of FTIR spectra during the TLC/FTIR analysis, the size of AgI particles should be below 500 nm. We used orthogonal design approach to optimize the experimental condition to AgI particles so that the average size of AgI particles is around 100 nm. No absorption of impurity or adsorbed water were observed in FTIR spectrum of the AgI particles the authors used "settlement volatilization method" to prepare TLC plate without using polymeric adhesive that may bring about significant interference in FTIR analysis. Preliminary TLC experiments proved that the TLC plate using AgI fine particles as stationary phase can separate mixtures of rhodamine B and bromophenol blue successfully. Applications of silver iodide fine particles as stationary phase have bright perspective in the development of in-situ TLC/FTIR analysis techniques.

  3. EPA Finalizes Initial Area Designations for the 2012 National Air Quality Standard for Fine Particles - Dec 2014

    Science.gov (United States)

    After considering state and tribal recommendations, reviewing the most recent certified fine particle air quality data, and emissions that contribute fine particle pollution, EPA has completed initial designations for the 2012 annual fine particle standard

  4. Enhancement of fine particle filtration with efficient humidification☆

    Institute of Scientific and Technical Information of China (English)

    Yumei Zhang; Weidong Zhang; Zhengyu Yang; Junteng Liu; Fushen Yang; Ning Li; Le Du⁎

    2016-01-01

    Filtration is one of the most effective methods to remove suspended fine particles from air. In filtration processes, pressure drop of compact dust cake causes problems in efficiency and economy, which has received increasing at-tention and stil remains chal enging. In this study, we developed a novel technique to intensify the filtration of fine particles with efficient humidification. Two strategies for humidification, including ultrasonic atomization and steam humidification (control ing of ambient humidity), were employed and proved to be both effective. The re-generation frequency of the filter could be reduced by 55%with ultrasonic atomization, while steam humidification could lead to a 78%reduction in regeneration frequency. The effect of operating conditions on pressure drop and the mass loading during filtration were investigated. The dust cake showed a loose and porous structure with an opti-mized droplet-to-particle ratio. With the ratio of 1.53 and 0.0282, the maximum mass loading was 552 g·m−2 upon the ultrasonic atomization and 720 g·m−2 upon the steam humidification. The results show that humidification could slow down the increase of pressure drop during filtration and improve the efficiency of process.

  5. Performance of a New Fine Particle Impact Damper

    Directory of Open Access Journals (Sweden)

    Guangqiang Han

    2008-09-01

    Full Text Available The energy dissipation mechanisms of conventional impact damper (CID are mainly momentum exchange and friction. During the impact process, a lot of vibration energy cannot be exhausted but reverberated among the vibration partners. Besides, the CID may produce the additional vibration to the system or even amplify the response in the low-frequency vibration. To overcome these shortcomings, this paper proposes a new fine particle impact damper (FPID which for the first time introduces the fine particle plastic deformation as an irreversible energy sink. Then, the experiments of the cantilevered beam with the CID and that with the FPID are, respectively, carried out to investigate the behavior of FPID. The experimental results indicate that the FPID has a better performance in vibration damping than in the CID and the FPID works well in control of the vibration with frequency lower than 50 Hz, which is absent to the non-obstructive particle damper. Thus, the FPID has a bright and significant application future because most of the mechanical vibration falls in the range of low freqency.

  6. Fullerene fine particles adhere to pollen grains and affect their autofluorescence and germination

    Directory of Open Access Journals (Sweden)

    Aoyagi H

    2011-05-01

    Full Text Available Hideki Aoyagi, Charles U UgwuLife Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, JapanAbstract: Adhesion of commercially produced fullerene fine particles to Cryptomeria japonica, Chamaecyparis obtusa and Camellia japonica pollen grains was investigated. The autofluorescence of pollen grains was affected by the adhesion of fullerene fine particles to the pollen grains. The degree of adhesion of fullerene fine particles to the pollen grains varied depending on the type of fullerene. Furthermore, germination of Camellia japonica pollen grains was inhibited by the adhesion of fullerene fine particles.Keywords: Cryptomeria japonica, Chamaecyparis obtusa, Camellia japonica, autofluorescence, pollen grains, fullerene fine particle

  7. Heterogeneous reactions on the surface of fine particles in the atmosphere

    Institute of Scientific and Technical Information of China (English)

    DING Jie; ZHU Tong

    2003-01-01

    Fine particles play an important role in the atmosphere. Research on heterogeneous reactions on the surface of fine particles is one of the frontier areas of atmospheric science. In this paper, physical and chemical characteristics of fine particles in the atmosphere and the interactions between trace gases and fine particles are described, methods used in heterogeneous reactions research are discussed in detail, progress in the study of heterogeneous reactions on the surface of fine particles in the atmosphere is summarized, existing importantquestions are pointed out and future research directions are suggested.

  8. Impact of ozonation on particle aggregation in mature fine tailings.

    Science.gov (United States)

    Liang, Jiaming; Tumpa, Fahmida; Pérez Estrada, Leonidas; Gamal El-Din, Mohamed; Liu, Yang

    2014-12-15

    The extraction of bitumen from the oil sands in Canada generates tonnes of mature fine tailings (MFT), consisting of a mineral matrix of sand, clay, and water, which without treatment requires thousands of years to fully consolidate. We assessed the performance of a novel ozonation method designed to enhance the settling of MFT and explored the mechanisms involved. The solid content of MFT obtained from oil sands tailings was adjusted to 1, 3, 5 wt % with water before applying 15, 30, and 60 min of ozonation. MFT settled after a short (15 min) ozonation treatment, resulting in a sample with clear released water on the top and condensed sludge at the bottom. The water chemistry characteristics, particles' surface charge and chemical bonding were measured. Ozonation led to the increased organic acids concentrations in MFT suspension through converting of organic matter from high to low molecular weight, and detaching organic coating on MFT particles. The pH and the concentrations of ions in the MFT suspension were changed significantly, an association of metal ions with MFT particles was promoted, and the surface charges of MFT particles were neutralized. Consequently, the MFT suspension was destabilized and MFT particle precipitation was observed.

  9. Preparation and application of streptavidin magnetic particles

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZhiFeng; ZHU HongLi; TANG YiTong; CUI Ting; GENG TingTing; CHEN Chao; CUI YaLi

    2007-01-01

    Two kinds of streptavidin magnetic particles, namely streptavidin GoldMag particles and streptavidin amino terminal particles were prepared by the methods of physical adsorption and covalent interaction respectively. The streptavidin coated on magnetic particle surface, crucial to many applications, was greatly influenced by the choice of the different buffer. Compared with Dynalbeads(r)M-270 streptavidin, the binding capacity for biotin of different streptavidin magnetic particles was determined by enzyme inhibition method, and the coupling capacity and activity of biotinylated oligonucleotide on their surface were also analyzed. The results indicated that the streptavidin GoldMag particle prepared by physical adsorption was stable in STE (NaCl-Tris-EDTA) buffer that was frequently used in nucleic acid hybridization and detection. The streptavidin amino terminal particles prepared by covalent interaction could be used both in STE buffer and PBS (phosphate buffered saline) buffer. The biotin binding capacity for 1 mg of streptavidin GoldMag particles and streptavidin amino terminal particles was 4950 and 5115 pmol respectively. The capacity of biotinylated oligonucleotide (24 bp) coupled on 1 mg of GoldMag and amino terminal magnetic particles was 2839 and 2978 pmol separately. These data were about 6-7 times higher than those of Dynabeads(r)M-270 streptavidin. The hybridization results with FITC-labeled complementary probe on magnetic particle surface demonstrated that the oligonucleotide coupled on streptavidin magnetic particles had high biological activity.

  10. Preparation and application of streptavidin magnetic particles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two kinds of streptavidin magnetic particles,namely streptavidin GoldMag particles and streptavidin amino terminal particles were prepared by the methods of physical adsorption and covalent interaction respectively.The streptavidin coated on magnetic particle surface,crucial to many applications,was greatly influenced by the choice of the different buffer.Compared with DynalbeadsM-270 streptavidin, the binding capacity for biotin of different streptavidin magnetic particles was determined by enzyme inhibition method,and the coupling capacity and activity of biotinylated oligonucleotide on their sur- face were also analyzed.The results indicated that the streptavidin GoldMag particle prepared by physical adsorption was stable in STE(NaCl-Tris-EDTA)buffer that was frequently used in nucleic acid hybridization and detection.The streptavidin amino terminal particles prepared by covalent interaction could be used both in STE buffer and PBS(phosphate buffered saline)buffer.The biotin binding ca- pacity for 1 mg of streptavidin GoldMag particles and streptavidin amino terminal particles was 4950 and 5115 pmol respectively.The capacity of biotinylated oligonucleotide(24 bp)coupled on 1 mg of GoldMag and amino terminal magnetic particles was 2839 and 2978 pmol separately.These data were about 6-7 times higher than those of DynabeadsM-270 streptavidin.The hybridization results with FITC-labeled complementary probe on magnetic particle surface demonstrated that the oligonucleotide coupled on streptavidin magnetic particles had high biological activity.

  11. Deviation from the superparamagnetic behaviour of fine-particle systems

    CERN Document Server

    Malaescu, I

    2000-01-01

    Studies concerning superparamagnetic behaviour of fine magnetic particle systems were performed using static and radiofrequency measurements, in the range 1-60 MHz. The samples were: a ferrofluid with magnetite particles dispersed in kerosene (sample A), magnetite powder (sample B) and the same magnetite powder dispersed in a polymer (sample C). Radiofrequency measurements indicated a maximum in the imaginary part of the complex magnetic susceptibility, for each of the samples, at frequencies with the magnitude order of tens of MHz, the origin of which was assigned to Neel-type relaxation processes. The static measurements showed a Langevin-type dependence of magnetisation M and of susceptibility chi, on the magnetic field for sample A. For samples B and C deviations from this type of dependence were found. These deviations were analysed qualitatively and explained in terms of the interparticle interactions, dispersion medium influence and surface effects.

  12. Restraint of fatigue crack growth by wedge effects of fine particles

    CERN Document Server

    Takahashi, I; Kotani, N

    2000-01-01

    Presents some experimental results which demonstrate restraint of fatigue crack growth in an Al-Mg alloy by wedge effects of fine particles. Fatigue test specimens were machined from a JIS A5083P-O Al-Mg alloy plate of 5 mm thickness and an EDM starter notch was introduced to each specimen. Three kinds of fine particles were prepared as the materials to be wedged into the fatigue cracks, i.e. magnetic particles and two kinds of alumina particles having different mean particle sizes of 47.3 mu m and 15.2 mu m. Particles of each kind were suspended in an oil to form a paste, which was applied on the specimen surface covering the notch zone prior to the fatigue tests. In order to make some fracture mechanics approaches, in situ observations of fatigue cracks were performed for the two cases using a CCD microscope, with a magnification of *1000. The crack length and the crack opening displacement (COD) at the notch root, delta , were measured. The crack retardation effect continues almost through the entire lifet...

  13. Preparation of Ultra-fine Aluminum Nitride in Thermal Plasma

    Institute of Scientific and Technical Information of China (English)

    漆继红; 罗义文; 印永祥; 代晓雁

    2002-01-01

    Ultra-fine aluminum nitride has been synthesized by the evaporation of aluminum powder at atmospheric-pressure nitrogen plasma in a hot-wall reactor. The average size of aluminum nitride particle is 0.11μm measured by scanning electric mirror (SEM), and the purity is at least over 90% evaluated by X-Ray diffraction (XRD). The conversion of Al powder to aluminum nitride is strongly depended on the injection of NH3. Typical experimental parameters such as the feed rate of raw material, the flow rate of ammonia and the position of injecting aluminum powder into the reactor are given.

  14. Observation of fine particle aggregating behavior induced by high intensity conditioning using high speed CCD

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The aggregating behavior between bubbles and particles induced by high intensity conditioning (HIC) was studied using high speed CCD technique. Bubble size measurement was conducted, and the attachment behavior between bubbles and particles in HIC cell and flotation cell were observed. The results show that in HIC cell, high intensity conditioning creates an advantage environment for the formation of small size bubble due to hydrodynamic cavitations, and these fine bubbles have high probability of bubble-particle collision,which will enhance fine particle flotation. The bubble-particle attachment experiments indicate that in high intensity conditioning cell, a lot of fine bubbles are produced in situ on the surface of fine particles, and most of fine particles are aggregated under the bridging action of fine bubbles. The observation of bubble-particle interaction in flotation cell illustrates that aggregates created by HIC can be loaded more easily by big air bubble in flotation cell than those created by normal conditioning.

  15. PREPARATION OF SPHERICAL URANIUM DIOXIDE PARTICLES

    Science.gov (United States)

    Levey, R.P. Jr.; Smith, A.E.

    1963-04-30

    This patent relates to the preparation of high-density, spherical UO/sub 2/ particles 80 to 150 microns in diameter. Sinterable UO/sub 2/ powder is wetted with 3 to 5 weight per cent water and tumbled for at least 48 hours. The resulting spherical particles are then sintered. The sintered particles are useful in dispersion-type fuel elements for nuclear reactors. (AEC)

  16. 钙钛矿型LaCOO3和LaMnO3超细粒子的制备%PREPARATION OF LaCoO3 AND LaMnO3 ULTRA-FINE PARTICLES WITH PEROVSKITE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    刘源

    2000-01-01

    Ultra-fine particles of LaCoOa and LaMnOa with perovskite structure were prepared by way of coprecipitation. Characteristics and size of sample particles are observed and measured by use of XRD and TEM. The influence of ethanol functioning as a dispersant on the texture and structure of samples is studied.%以共沉淀法制备出了钙钛型结构的稀土复合氧化物LaMnO3和LaCoO3超 细粒子,采用X-射线衍射和透射电镜测试了所得样品的物相和颗粒大小,考察了 制备过程中乙醇作为分散剂的影响.

  17. Optical measurement of anisotropic magnetic susceptibility for diamagnetic fine particles

    Science.gov (United States)

    Kitamura, Naoyuki; Takahashi, Kohki; Mogi, Iwao; Awaji, Satoshi; Watanabe, Kazuo

    2016-01-01

    We have developed an apparatus that allows the observation of the transient rotational motion of fine particles under a high magnetic field in order to determine anisotropic magnetic susceptibility. The anisotropic susceptibilities of spherical nanoparticles of bismuth and commercially available carbon nanofibers were determined. The estimated Δχ = 3.9 × 10-5 of spherical bismuth nanoparticles with a diameter of 370 nm was fairly consistent with the value determined previously by the magnetic field dependence of diffraction peak intensity in the X-ray diffraction (XRD) pattern, but was slightly smaller than the value for the bulk crystal. In contrast, the transient behavior of carbon nanofibers did not obey the theoretical motion of a single crystal. The wide distribution of fiber lengths, the irregularity of the structure in the fiber, and the connections between the fibers are suggested for the anomalous behavior.

  18. Simulated annealing: an application in fine particle magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Legeratos, A.; Chantrell, R.W.; Wohlfarth, E.P.

    1985-07-01

    Using a model of a system of interacting fine ferromagnetic particles, a computer simulation of the dynamical approach to local or global minima of the system is developed for two different schedules of the application of ac and dc magnetic fields. The process of optimization, i.e., the achievement of a global minimum, depends on the rate of reduction of the ac field and on the symmetry of the ac field cycles. The calculations carried out to illustrate these effects include remanence curves and the zero field remanence for both schedules under different conditions. The growth of the magnetization during these processes was studied, and the interaction energy was calculated to best illustrate the optimization.

  19. [Using barium fluoride fine particles as stationary phase for TLC/FTIR analysis].

    Science.gov (United States)

    Liu, Xi; Pan, Qing-hua; Ding, Jie; Zhu, Qing; He, An-qi; Yue, Shi-juan; Li, Xiao-pei; Hu, Li-ping; Xia, Jin-ming; Liu, Cui-ge; Wei, Yong-ju; Yu, Jiang; Yang, Zhan-lan; Zhu, Xi; Xu, Yi-zhuang; Wu, Jin-guang

    2011-07-01

    In situ TLC/FTIR technique has tremendous potential in the analysis of complex mixtures. However, the progress in this technique was quite slow. The reason is that conventional stationary phase such as silica gel etc. has strong absorption in FTIR spectrum and thus brings about severe interference in the detection of samples. To solve the problem, the authors propose to use barium fluoride fine particles as stationary phase of TLC plate. The reasons are as follows: Barium fluoride wafer has been extensively used as infrared window in FTIR experiments and it has no absorbance in an IR region between 4 000 and 800 cm'. As a matter of fact, the atomic mass of barium and fluoride is quite large, thus the normal vibration of BaF2 lattice is limited in far-IR region and low frequency part of mid-IR region. Therefore, the interference caused by IR absorption of stationary phase can be resolved if BaF2 is used as stationary phase of TLC plate. Moreover, BaF2 is quite stable and insolvable in water and most organic solvents and it will not be dissolved by mobile phase or react with samples in TLC separation. Additionally, decreasing the particle size of BaF2 is very important in TLC/FTIR analysis technique. The reason is two-fold: First, decreasing the particle size of stationary phase is helpful to improving the efficiency of separation by TLC plate; second, decreasing the size of BaFz particle can improve the quality of FTIR spectra by alleviating the problem of light scattering. By optimizing the synthetic conditions, fine particles of barium fluoride were obtained. SEM results indicate that the size of the BaF2 particles is around 500 nm. FTIR spectrum of the BaF2 particles shows that no absorption of impurity was observed. Moreover, the elevation of baseline caused by light scattering is insignificant. The authors have developed a new technique named "settlement volatilization method" to prepare TLC plate without polymeric adhesive that may bring about significant

  20. Development of an Ultra-fine Coal Dewatering Technology and an Integrated Flotation-Dewatering System for Coal Preparation Plants

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zhang; David Yang; Amar Amarnath; Iftikhar Huq; Scott O' Brien; Jim Williams

    2006-12-22

    The project proposal was approved for only the phase I period. The goal for this Phase I project was to develop an industrial model that can perform continuous and efficient dewatering of fine coal slurries of the previous flotation process to fine coal cake of {approx}15% water content from 50-70%. The feasibility of this model should be demonstrated experimentally using a lab scale setup. The Phase I project was originally for one year, from May 2005 to May 2006. With DOE approval, the project was extended to Dec. 2006 without additional cost from DOE to accomplish the work. Water has been used in mining for a number of purposes such as a carrier, washing liquid, dust-catching media, fire-retardation media, temperature-control media, and solvent. When coal is cleaned in wet-processing circuits, waste streams containing water, fine coal, and noncombustible particles (ash-forming minerals) are produced. In many coal preparation plants, the fine waste stream is fed into a series of selection processes where fine coal particles are recovered from the mixture to form diluted coal fine slurries. A dewatering process is then needed to reduce the water content to about 15%-20% so that the product is marketable. However, in the dewatering process currently used in coal preparation plants, coal fines smaller than 45 micrometers are lost, and in many other plants, coal fines up to 100 micrometers are also wasted. These not-recovered coal fines are mixed with water and mineral particles of the similar particle size range and discharged to impoundment. The wasted water from coal preparation plants containing unrecoverable coal fine and mineral particles are called tailings. With time the amount of wastewater accumulates occupying vast land space while it appears as threat to the environment. This project developed a special extruder and demonstrated its application in solid-liquid separation of coal slurry, tailings containing coal fines mostly less than 50 micron. The

  1. Optimization of calcium phosphate fine ceramic powders preparation

    Science.gov (United States)

    Sezanova, K.; Tepavitcharova, S.; Rabadjieva, D.; Gergulova, R.; Ilieva, R.

    2013-12-01

    The effect of biomimetic synthesis method, reaction medium and further precursor treatments on the chemical and phase composition, crystal size and morphology of calcium phosphates was examined. Nanosized calcium phosphate precursors were biomimetically precipitated by the method of continuous precipitation in three types of reaction media at pH 8: (i) SBF as an inorganic electrolyte system; (ii) organic (glycerine) modified SBF (volume ratio of 1:1); (iii) polymer (10 g/l xanthan gum or 10 g/l guar gum) modified SBF (volume ratio of 1:1). After maturation (24 h) the samples were lyophilized, calcinated at 300°C for 3 hours, and washed with water, followed by new gelation, lyophilization and step-wise (200, 400, 600, 800, and 1000°C, each for 3 hours) sintering. The reaction medium influenced the chemical composition and particle size but not the morphology of the calcium phosphate powders. In all studied cases bi-phase calcium phosphate fine powders with well-shaped spherical grains, consisting of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) with a Ca/P ratio of 1.3 - 1.6 were obtained. The SBF modifiers decreased the particle size of the product in the sequence guar gum ˜ xanthan gum < glycerin < SBF medium.

  2. Exposure to ultrafine and fine particles and noise during cycling and driving in 11 Dutch cities

    NARCIS (Netherlands)

    Boogaard, H.; Borgman, G.; Kamminga, J.; Hoek, H.

    2009-01-01

    Recent studies have suggested that exposures during traffic participation may be associated with adverse health effects. Traffic participation involves relatively short but high exposures. Potentially relevant exposures include ultrafine particles, fine particles (PM2.5) and noise. Simultaneously, d

  3. Characterization of silver nanoparticles synthesized on titanium dioxide fine particles

    Energy Technology Data Exchange (ETDEWEB)

    Nino-Martinez, N [Facultad de Ciencias, UASLP, Alvaro Obregon 64, CP 78000, San Luis PotosI, SLP (Mexico); Martinez-Castanon, G A [Maestria en Ciencias Odontologicas, Facultad de EstomatologIa, UASLP, Avenida Manuel Nava 2, Zona Universitaria, San Luis PotosI, SLP (Mexico); Aragon-Pina, A [Instituto de Metalurgia, Facultad de IngenierIa, UASLP, Alvaro Obregon 64, CP 78000, San Luis PotosI, SLP (Mexico); Martinez-Gutierrez, F [Facultad de Ciencias Quimicas, UASLP, Alvaro Obregon 64, CP 78000, San Luis PotosI, SLP (Mexico); Martinez-Mendoza, J R [Facultad de Ciencias, UASLP, Alvaro Obregon 64, CP 78000, San Luis PotosI, SLP (Mexico); Ruiz, Facundo [Facultad de Ciencias, UASLP, Alvaro Obregon 64, CP 78000, San Luis PotosI, SLP (Mexico)

    2008-02-13

    Silver nanoparticles with a narrow size distribution were synthesized over the surface of two different commercial TiO{sub 2} particles using a simple aqueous reduction method. The reducing agent used was NaBH{sub 4}; different molar ratios TiO{sub 2}:Ag were also used. The nanocomposites thus prepared were characterized using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), dynamic light scattering (DLS) and UV-visible (UV-vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopy studies (TEM and STEM) we observed that the silver nanoparticles are homogeneously distributed over the surface of TiO{sub 2} particles and that the TiO{sub 2}:Ag molar ratio plays an important role. We used three different TiO{sub 2}Ag molar ratios and the size of the silver nanoparticles is 10, 20 and 80 nm, respectively. It was found that the antibacterial activity of the nanocomposites increases considerably comparing with separated silver nanoparticles and TiO{sub 2} particles.

  4. Superamphiphobic nanofibrous membranes for effective filtration of fine particles.

    Science.gov (United States)

    Wang, Na; Zhu, Zhigao; Sheng, Junlu; Al-Deyab, Salem S; Yu, Jianyong; Ding, Bin

    2014-08-15

    The worldwide demands are rising for an energy-efficient and cost-effective approach that can provide advanced nanofibrous membranes with high filtration performance and superior antifouling properties. Here we report a novel synthesized fluorinated polyurethane (FPU) modified nanofibrous membrane optimized to achieve oil and non-oil aerosol particle filtration. By employing the FPU incorporation, the polyacrylonitrile/polyurethane (PAN/PU) composite membranes were endowed with superhydrophobicity with a water contact angle of 154° and superoleophobicity with an oil contact angle of 151°. Morphology, surface wettability, porous structure, and filtration performance could be manipulated by tuning the solution composition as well as the hierarchical structure. Furthermore, the as-prepared membranes can capture, for the first time, a range of different oil aerosol particles in a single-unit operation, with >99.9% filtration efficiency, by using the combined contribution of fiber diameter and surface roughness acting on the objective particles. Exemplified here by the construction of superamphiphobic nanofibrous membrane, numerous applications of this medium includes high efficiency particulate air filters, ultra-low penetration air filters, and respiratory protection equipment.

  5. Air Pressure-Assisted Centrifugal Dewatering of Concentrated Fine Sulfide Particles

    Directory of Open Access Journals (Sweden)

    R. Asmatulu

    2011-01-01

    Full Text Available An air pressure-assisted centrifugal dewatering method was developed and used for the dewatering of concentrated finesulfide particles, such as sphalerite, galena, and chalcopyrite. This filtration method was mainly designed to increase the filtration rate during the drainage cycle and, hence, produce drier filter cakes, which in turn could reduce the cost and emission problems/concerns of thermal dryers in the preparation plants. Several dewatering parameters, including applied pressure, centrifugal force (G-force, spin time, cake thickness, and surface hydrophobization, were tested to optimize the processing conditions. Test results showed that, at higher air pressure and centrifugal force, the cake moisture reduction was more than 70%, depending on the testing conditions. As a result, it can be-concluded that the novel filtration method effectively works on the dewatering of fine particles (–150 μm.

  6. Influence of milling time on fineness of Centella Asiatica particle size produced using planetary ball mill

    Science.gov (United States)

    Borhan, M. Z.; Ahmad, R.; Rusop, M.; Abdullah, S.

    2012-11-01

    Centella Asiatica (C. Asiatica)contains asiaticoside as bioactive constituent which can be potentially used in skin healing process. Unfortunately, the normal powders are difficult to be absorbed by the body effectively. In order to improve the value of use, nano C. Asiatica powder was prepared. The influence of milling time was carried out at 0.5, 2, 4, 6, 8 hours and 10 hours. The effect of ball milling at different times was characterized using particles size analysis and FTIR Spectroscopy. The fineness of ground product was evaluated by recording the z-Average (nm), undersize distribution and polydispersity index (PdI). The results show that the smallest size particles by mean is 233 nm while FTIR spectra shows that there is no changing in the major component in the C. Asiatica powders with milling time.

  7. PARTICLE MORPHOLOGY OF POLY(VINYL CHLORIDE) RESIN PREPARED BY SUSPENDED EMULSION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Yong-zhong Bao; Zhen-li Wei; Zhi-xue Weng; Zhi-ming Huang

    2003-01-01

    Suspended emulsion polymerization was used to prepare poly(vinyl chloride) (PVC) resin. Fine PVC particles were formed at low polymerization conversions. The amount of fine particles decreases as conversion increases and disappears at conversions greater than 30%. Scanning electron micrographs show that PVC grains are composed of loosely coalesced primary particles, especially for PVC resins prepared in the presence of poly(vinyl alcohol) dispersant. The size of primary particles increases and porosity decreases with the increase of conversion. In view of the particle features of PVC resin, a particle formation mechanism including the formation of primary particles and grains is proposed. The formation process of primary particles includes the formation of particle nuclei, coalescence of particle nuclei to form primary particles,and growth of primary particles. PVC grains are formed by the coagulation of primary particles. The loose coalescence of primary particles is caused by the colloidal stability of primary particles and the low swelling degree of vinyl chloride in the primary particles.

  8. Pickering Particles Prepared from Food Waste

    Science.gov (United States)

    Gould, Joanne; Garcia-Garcia, Guillermo; Wolf, Bettina

    2016-01-01

    In this paper, we demonstrate the functionality and functionalisation of waste particles as an emulsifier for oil-in-water (o/w) and water-in-oil (w/o) emulsions. Ground coffee waste was chosen as a candidate waste material due to its naturally high content of lignin, a chemical component imparting emulsifying ability. The waste coffee particles readily stabilised o/w emulsions and following hydrothermal treatment adapted from the bioenergy field they also stabilised w/o emulsions. The hydrothermal treatment relocated the lignin component of the cell walls within the coffee particles onto the particle surface thereby increasing the surface hydrophobicity of the particles as demonstrated by an emulsion assay. Emulsion droplet sizes were comparable to those found in processed foods in the case of hydrophilic waste coffee particles stabilizing o/w emulsions. These emulsions were stable against coalescence for at least 12 weeks, flocculated but stable against coalescence in shear and stable to pasteurisation conditions (10 min at 80 °C). Emulsion droplet size was also insensitive to pH of the aqueous phase during preparation (pH 3–pH 9). Stable against coalescence, the water droplets in w/o emulsions prepared with hydrothermally treated waste coffee particles were considerably larger and microscopic examination showed evidence of arrested coalescence indicative of particle jamming at the surface of the emulsion droplets. Refinement of the hydrothermal treatment and broadening out to other lignin-rich plant or plant based food waste material are promising routes to bring closer the development of commercially relevant lignin based food Pickering particles applicable to emulsion based processed foods ranging from fat continuous spreads and fillings to salad dressings. PMID:28773909

  9. Pickering Particles Prepared from Food Waste

    Directory of Open Access Journals (Sweden)

    Joanne Gould

    2016-09-01

    Full Text Available In this paper, we demonstrate the functionality and functionalisation of waste particles as an emulsifier for oil-in-water (o/w and water-in-oil (w/o emulsions. Ground coffee waste was chosen as a candidate waste material due to its naturally high content of lignin, a chemical component imparting emulsifying ability. The waste coffee particles readily stabilised o/w emulsions and following hydrothermal treatment adapted from the bioenergy field they also stabilised w/o emulsions. The hydrothermal treatment relocated the lignin component of the cell walls within the coffee particles onto the particle surface thereby increasing the surface hydrophobicity of the particles as demonstrated by an emulsion assay. Emulsion droplet sizes were comparable to those found in processed foods in the case of hydrophilic waste coffee particles stabilizing o/w emulsions. These emulsions were stable against coalescence for at least 12 weeks, flocculated but stable against coalescence in shear and stable to pasteurisation conditions (10 min at 80 °C. Emulsion droplet size was also insensitive to pH of the aqueous phase during preparation (pH 3–pH 9. Stable against coalescence, the water droplets in w/o emulsions prepared with hydrothermally treated waste coffee particles were considerably larger and microscopic examination showed evidence of arrested coalescence indicative of particle jamming at the surface of the emulsion droplets. Refinement of the hydrothermal treatment and broadening out to other lignin-rich plant or plant based food waste material are promising routes to bring closer the development of commercially relevant lignin based food Pickering particles applicable to emulsion based processed foods ranging from fat continuous spreads and fillings to salad dressings.

  10. Pickering Particles Prepared from Food Waste.

    Science.gov (United States)

    Gould, Joanne; Garcia-Garcia, Guillermo; Wolf, Bettina

    2016-09-21

    In this paper, we demonstrate the functionality and functionalisation of waste particles as an emulsifier for oil-in-water (o/w) and water-in-oil (w/o) emulsions. Ground coffee waste was chosen as a candidate waste material due to its naturally high content of lignin, a chemical component imparting emulsifying ability. The waste coffee particles readily stabilised o/w emulsions and following hydrothermal treatment adapted from the bioenergy field they also stabilised w/o emulsions. The hydrothermal treatment relocated the lignin component of the cell walls within the coffee particles onto the particle surface thereby increasing the surface hydrophobicity of the particles as demonstrated by an emulsion assay. Emulsion droplet sizes were comparable to those found in processed foods in the case of hydrophilic waste coffee particles stabilizing o/w emulsions. These emulsions were stable against coalescence for at least 12 weeks, flocculated but stable against coalescence in shear and stable to pasteurisation conditions (10 min at 80 °C). Emulsion droplet size was also insensitive to pH of the aqueous phase during preparation (pH 3-pH 9). Stable against coalescence, the water droplets in w/o emulsions prepared with hydrothermally treated waste coffee particles were considerably larger and microscopic examination showed evidence of arrested coalescence indicative of particle jamming at the surface of the emulsion droplets. Refinement of the hydrothermal treatment and broadening out to other lignin-rich plant or plant based food waste material are promising routes to bring closer the development of commercially relevant lignin based food Pickering particles applicable to emulsion based processed foods ranging from fat continuous spreads and fillings to salad dressings.

  11. The possibilities for measurement and characterization of diesel engine fine particles: A review

    Directory of Open Access Journals (Sweden)

    Petrović Velimir S.

    2011-01-01

    Full Text Available This review paper considers possible instrumentation for diesel engine fine particles exhaust emission evaluation. The modern diesel engines have extremely low particles emission almost at the level of measurement error of existing gravimetric measurement method. Since coarse particles are eliminated by new engine technologies, fine particles, with very negative effects on human health, dominate in the emission of current diesel engine. Therefore, it is necessary not only to measure mass of emitted particles but also to investigate other important particle characteristics as: particles number, particle size, particle number and mass distribution, particle active surface, particle composition etc. Therefore, existing measurement technologies used in aerosol science can be used also to study diesel engine particles properties. This most common instrumentation in aerosol technique is shortly reviewed in the paper with special attention on candidate instruments included in EU program on portable emissions measurement systems (PEMS.

  12. Coupling fine particle and bedload transport in gravel-bedded streams

    Science.gov (United States)

    Park, Jungsu; Hunt, James R.

    2017-09-01

    Fine particles in the silt- and clay-size range are important determinants of surface water quality. Since fine particle loading rates are not unique functions of stream discharge this limits the utility of the available models for water quality assessment. Data from 38 minimally developed watersheds within the United States Geological Survey stream gauging network in California, USA reveal three lines of evidence that fine particle release is coupled with bedload transport. First, there is a transition in fine particle loading rate as a function of discharge for gravel-bedded sediments that does not appear when the sediment bed is composed of sand, cobbles, boulders, or bedrock. Second, the discharge at the transition in the loading rate is correlated with the initiation of gravel mobilization. Third, high frequency particle concentration and discharge data are dominated by clockwise hysteresis where rising limb discharges generally have higher concentrations than falling limb discharges. These three observations across multiple watersheds lead to a conceptual model that fine particles accumulate within the sediment bed at discharges less than the transition and then the gravel bed fluidizes with fine particle release at discharges above the transition discharge. While these observations were individually recognized in the literature, this analysis provides a consistent conceptual model based on the coupling of fine particle dynamics with filtration at low discharges and gravel bed fluidization at higher discharges.

  13. Evaluation of particle growth systems for sampling and analysis of atmospheric fine particles

    Institute of Scientific and Technical Information of China (English)

    Dae Seong Kim; Sang Bum Hong; Jung-Taek Kwon; Kihong Park

    2011-01-01

    Three types of water-based condensational growth systems,which can enable particles to grow in size to facilitate sampling and subsequent chemical analysis,were evaluated.The first one is a mixing type growth system where aerosols are mixed with saturated water vapor,the second one is a thermal diffusive growth system where warm flow enters cold-walled tube,and the third one is a laminar flow type where cold flow enters a warm wet-wall tube.Hygroscopic sodium chloride (NaCl),ammonium sulfate ((NH4)2SO4) and ammonium nitrate (NH4NO3),and non-hygroscopic polystyrene latex (PSL) particles,in the size range of 50-400 nm,were used to determine their growth factors through the growth systems.Our data showed that the third-type growth system could enable particles to grow most efficiently regardless of their hygroscopic property.Collection efficiency of particles in the size range of 0.05-2.5 μm,in a continuous aerosol sampler after they passed through the third-type growth system was about 100%,suggesting that the third-type growth system would be the most useful among the tested growth systems for sampling and subsequent chemical analysis of fine and ultrafine particles.

  14. Protection against fine particle-induced pulmonary and systemic inflammation by omega-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Li, Xiang-Yong; Hao, Lei; Liu, Ying-Hua; Chen, Chih-Yu; Pai, Victor J; Kang, Jing X

    2017-03-01

    Exposure to fine particulate matter, such as through air pollution, has been linked to the increased incidence of chronic diseases. However, few measures have been taken to reduce the health risks associated with fine particle exposure. The identification of safe and effective methods to protect against fine particle exposure-related damage is urgently needed. We used synthetic, non-toxic, fluorescent fine particles to investigate the physical distribution of inhaled fine particles and their effects on pulmonary and systemic inflammation in mice. Tissue levels of omega-3 fatty acids were elevated via dietary supplementation or the fat-1 transgenic mouse model. Markers of pulmonary and systemic inflammation were assessed. We discovered that fine particulate matter not only accumulates in the lungs but can also penetrate the pulmonary barrier and travel into other organs, including the brain, liver, spleen, kidney, and testis. These particles induced both pulmonary and systemic inflammation and increased oxidative stress. We also show that elevating tissue levels of omega-3 fatty acids was effective in reducing fine particle-induced inflammation, whether as a preventive method (prior to exposure) or as an intervention (after exposure). These results advance our understanding of how fine particles contribute to disease development and suggest that increasing tissue omega-3 levels may be a promising nutritional means for reducing the risk of diseases induced by particle exposure. Our findings demonstrate that elevating tissue omega-3 levels can prevent and treat fine particle-induced health problems and thereby present an immediate, practical solution for reducing the disease burden of air pollution. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Helping Preschoolers Prepare for Writing: Developing Fine Motor Skills

    Science.gov (United States)

    Huffman, J. Michelle; Fortenberry, Callie

    2011-01-01

    Early childhood is the most intensive period for the development of physical skills. Writing progress depends largely on the development of fine motor skills involving small muscle movements of the hand. Young children need to participate in a variety of developmentally appropriate activities intentionally designed to promote fine motor control.…

  16. Fine particle mass from the Diskus inhaler and Turbuhaler inhaler in children with asthma

    DEFF Research Database (Denmark)

    Bisgaard, H; Klug, B; Sumby, B S

    1998-01-01

    the varying age groups and inspiratory flow performances when compared to the Turbuhaler in terms of the proportion of the dose emitted at each particle size. This improvement is at the expense of a low fine particle mass and a high proportion of coarse particles from the Diskus as compared...

  17. Characterization and mapping of very fine particles in an engine machining and assembly facility.

    Science.gov (United States)

    Heitbrink, William A; Evans, Douglas E; Peters, Thomas M; Slavin, Thomas J

    2007-05-01

    Very fine particle number and mass concentrations were mapped in an engine machining and assembly facility in the winter and summer. A condensation particle counter (CPC) was used to measure particle number concentrations in the 0.01 microm to 1 microm range, and an optical particle counter (OPC) was used to measure particle number concentrations in 15 channels between 0.3 microm and 20 microm. The OPC measurements were used to estimate the respirable mass concentration. Very fine particle number concentrations were estimated by subtracting the OPC particle number concentrations from 0.3 microm to 1 microm from the CPC number concentrations. At specific locations during the summer visit, an electrical low pressure impactor was used to measure particle size distribution from 0.07 microm to 10 microm in 12 channels. The geometric mean ratio of respirable mass concentration estimated from the OPC to the gravimetrically measured mass concentration was 0.66 with a geometric standard deviation of 1.5. Very fine particle number concentrations in winter were substantially greater where direct-fire natural gas heaters were operated (7.5 x 10(5) particles/cm(3)) than where steam was used for heat (3 x 10(5) particles/cm(3)). During summer when heaters were off, the very fine particle number concentrations were below 10(5) particles/cm(3), regardless of location. Elevated very fine particle number concentrations were associated with machining operations with poor enclosures. Whereas respirable mass concentrations did not vary noticeably with season, they were greater in areas with poorly fitting enclosures (0.12 mg/m(3)) than in areas where state-of-the-art enclosures were used (0.03 mg/m(3)). These differences were attributed to metalworking fluid mist that escaped from poorly fitting enclosures. Particles generated from direct-fire natural gas heater operation were very small, with a number size distribution modal diameter of less than 0.023 microm. Aerosols generated by

  18. Temporal change in the {sup 137}Cs concentration ratio between coarse and fine particles in Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Kitayama, K.; Ohse, K.; Kawatsu, K.; Tsukada, H. [Fukushima University, 1 Kanayagawa, Fukushima-shi, Fukushima 960-1260 (Japan)

    2014-07-01

    Many radionuclides were released into the atmosphere by the Fukushima Daiichi Nuclear Power Plant accident, which was caused by the tsunami following the Tohoku Region Pacific Coast Earthquake on March 11, 2011. A major radionuclide released into the environment was radiocesium. Radiocesium has a long lifetime, which allows it to remain in the environment for a prolonged period. Most radiocesium exists in soil particles, and a potential source of radiocesium in coarse particles was resuspended from soil particles. Therefore, the {sup 137}Cs concentration ratios between coarse and fine particles were important for the evaluation of the radiocesium source. In this study, the {sup 137}Cs atmospheric concentrations in coarse and fine particles were measured in Fukushima. Airborne particles were collected from September 2012 to July 2013 at two sites, Fukushima and Date, which are 62 and 55 km, respectively, from the Fukushima Daiichi Nuclear Power Plant. The coarse and fine particles were categorized by a 50% cutoff diameter of 1.1 μm. The sampling filters were exchanged once every half month. The radioactivity of {sup 137}Cs in the samples was measured for 10800-86400 s by the Ge detector. In Fukushima, the total {sup 137}Cs concentration in coarse and fine particles ranged from 20 to 370 μBq m{sup -3}: 7-270 μBq m{sup -3} for coarse particles and 10-170 μBq m{sup -3} for fine particles. In Date, the total concentration ranged from 100 to 310 μBq m{sup -3}: 60-220 μBq m{sup -3} for coarse particles and 10-170 μBq m{sup -3} for fine particles. The {sup 137}Cs concentrations at the two sites were found to be comparable. The average concentration at the two sites for the course and fine particles were 110 and 55 μBq m{sup -3}, respectively, and the total concentration was 166 μBq m{sup -3}. The {sup 137}Cs concentration in coarse particles accounted for 30%-90% of the total concentration, with an average of 67%. On comparing with the ratio before the study, the

  19. Process for preparing fine grain silicon carbide powder

    Science.gov (United States)

    Wei, G.C.

    Method of producing fine-grain silicon carbide powder comprises combining methyltrimethoxysilane with a solution of phenolic resin, acetone and water or sugar and water, gelling the resulting mixture, and then drying and heating the obtained gel.

  20. Colloidal interactions between Langmuir-Blodgett bitumen films and fine solid particles.

    Science.gov (United States)

    Long, Jun; Zhang, Liyan; Xu, Zhenghe; Masliyah, Jacob H

    2006-10-10

    In oil sand processing, accumulation of surface-active compounds at various interfaces imposes a significant impact on bitumen recovery and bitumen froth cleaning (i.e., froth treatment) by altering the interfacial properties and colloidal interactions among various oil sand components. In the present study, bitumen films were prepared at toluene/water interfaces using a Langmuir-Blodgett (LB) upstroke deposition technique. The surface of the prepared LB bitumen films was found to be hydrophobic, comprised of wormlike aggregates containing a relatively high content of oxygen, sulfur, and nitrogen, indicating an accumulation of surface-active compounds in the films. Using an atomic force microscope, colloidal interactions between the LB bitumen films and fine solids (model silica particles and clay particles chosen directly from an oil sand tailing stream) were measured in industrial plant process water and compared with those measured in simple electrolyte solutions of controlled pH and divalent cation concentrations. The results show a stronger long-range repulsive force and weaker adhesion force in solutions of higher pH and lower divalent cation concentration. In plant process water, a moderate long-range repulsive force and weak adhesion were measured despite its high electrolyte content. These findings provide more insight into the mechanisms of bitumen extraction and froth treatment.

  1. FINE PARTICLE EXPOSURE IS ASSOCIATED WITH ALTERED VENTRICULAR REPOLARIZATION

    Science.gov (United States)

    Exposure to fine airborne particulate matter (PM2.5) has previously been associated with cardiac events, especially in older people with cardiovascular disease and in diabetics. This study examined the cardiac effects of short-term exposures to ambient PM2.5 in a prospective pane...

  2. Fine particle deposition at Vainguinim tourist beach, Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Jayakumar, S.; SanilKumar, V.; Ilangovan, D.

    . The beach sediments consist primarily shell fragments and quartz, with heavy mineral composed of ilmenits, magnetite and manganese. The black stain of the fine-grained heavy minerals deposited on the beach face reduces the aesthetics of the beach. This paper...

  3. Confined fluidization of fines in fixed bed of coarse particles

    Directory of Open Access Journals (Sweden)

    Buczek Bronisław

    2016-12-01

    Full Text Available Experiments on a confined fluidized bed system with various shapes of particles have been presented in the paper. Its influence on hydrodynamic properties in the whole range of gas velocity has been analysed. Relations allowing calculation of the Richardson-Zaki-type equation coefficients, including description of inter-particle void and gas pressure drop in such systems have been determined. Necessary condition for confined fluidization of non-spherical coarse particles has also been determined.

  4. Retention and Migration of Fine Organic Particles within an Agricultural Stream: Toenepi, Waikato, New Zealand

    Science.gov (United States)

    Drummond, J. D.; Davies-Colley, R.; Stott, R.; Sukias, J.; Nagels, J.; Sharp, A.; Packman, A. I.

    2013-12-01

    Fine organic particle dynamics are important to stream biogeochemistry, ecology, and transport of contaminant microbes. These particles migrate downstream through a series of deposition and resuspension events, which results in a wide range of residence times. This retention influences biogeochemical processing and in-stream stores of contaminant microbes that may mobilize during flood events and present a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into organic particle dynamics in streams, with a campaign of experiments and modeling. The results should improve understanding of nutrient (C, N, P) spiraling and fine sediment movement in streams, and have particular application to microbial hazards. We directly measure microbial transport by including the indicator organism, E. coli, as a tracer, which is compared to a fluorescent inert particle tracer and conservative solute to gain insight on both microbial ecology and waterborne disease transmission. We developed a stochastic model to describe the transport and retention of fine suspended particles in rivers, including advective delivery of particles to the streambed, transport through porewaters, and reversible filtration within the streambed. Because fine particles are only episodically transported in streams, with intervening periods at rest in the bed, this transport process violates conventional advection-dispersion assumptions. Instead we adopt a stochastic mobile-immobile model formulation to describe fine particle transport. We apply this model to measurements of particle transport from multiple tracer experiments in an agricultural stream in the Waikato dairy region of New Zealand, and use the model to improve interpretation of baseflow particle dynamics. Our results show the importance of the benthic and hyporheic regions and in-stream vegetation as a reservoir for fine organic particles in streams.

  5. Microbial and Organic Fine Particle Transport Dynamics in Streams - a Combined Experimental and Stochastic Modeling Approach

    Science.gov (United States)

    Drummond, Jen; Davies-Colley, Rob; Stott, Rebecca; Sukias, James; Nagels, John; Sharp, Alice; Packman, Aaron

    2014-05-01

    Transport dynamics of microbial cells and organic fine particles are important to stream ecology and biogeochemistry. Cells and particles continuously deposit and resuspend during downstream transport owing to a variety of processes including gravitational settling, interactions with in-stream structures or biofilms at the sediment-water interface, and hyporheic exchange and filtration within underlying sediments. Deposited cells and particles are also resuspended following increases in streamflow. Fine particle retention influences biogeochemical processing of substrates and nutrients (C, N, P), while remobilization of pathogenic microbes during flood events presents a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into the dynamics of fine particles and microbes in streams, with a campaign of experiments and modeling. The results improve understanding of fine sediment transport, carbon cycling, nutrient spiraling, and microbial hazards in streams. We developed a stochastic model to describe the transport and retention of fine particles and microbes in rivers that accounts for hyporheic exchange and transport through porewaters, reversible filtration within the streambed, and microbial inactivation in the water column and subsurface. This model framework is an advance over previous work in that it incorporates detailed transport and retention processes that are amenable to measurement. Solute, particle, and microbial transport were observed both locally within sediment and at the whole-stream scale. A multi-tracer whole-stream injection experiment compared the transport and retention of a conservative solute, fluorescent fine particles, and the fecal indicator bacterium Escherichia coli. Retention occurred within both the underlying sediment bed and stands of submerged macrophytes. The results demonstrate that the combination of local measurements, whole-stream tracer experiments, and advanced modeling

  6. Desulfurization and oxidation behavior of ultra-fine CaO particles prepared from brown coal; Kattan wo mochiite choseishita CaO chobiryushi no datsuryu tokusei to sanka tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, G.; Roman, M.; Yamazaki, Y.; Abe, H.; Harano, Y.; Takarada, Y. [Gunma University, Gunma (Japan). Faculty of Engineering

    1996-10-28

    The effect of reaction temperature and oxygen concentration on the desulfurization and oxidation behavior of ion-exchanged brown coal by Ca as new desulfurizing agent was studied. In experiment, Yallourn coal was used for ion- exchange, and limestone produced in Tochigi prefecture was also used for comparative study. Ca-exchanged brown coal was prepared by agitating coal in Ca(OH)2 slurry for 24 hours. The desulfurization behavior of a desulfurizing agent was obtained by measuring H2S and sulfur compounds in outlet gas of a reactor, and the oxidation behavior by measuring SO2 emission in outlet gas after oxidation reaction. As the experimental result, CaO produced from Ca-exchanged brown coal offered the extremely high activity to desulfurization reaction in a temperature range of 850-950{degree}C as compared with limestone. Although the oxidation behavior was dependent on oxidation temperature and oxygen concentration, CaS obtained from Ca-exchanged brown coal was more rapidly converted to CaSO4 than limestone. 3 refs., 8 figs., 2 tabs.

  7. Method of separating and de-watering fine particles

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Roe-Hoan

    2016-12-13

    A process for cleaning and dewatering hydrophobic particulate materials is presented. The process is performed in two steps: 1) agglomeration of the hydrophobic particles in a first hydrophobic liquid/aqueous mixture; followed by 2) dispersion of the agglomerates in a second hydrophobic liquid to release the water trapped within the agglomerates along with the entrained hydrophilic particles.

  8. Preparation of fine nickel powders via reduction of nickel hydrazine complex precursors

    Institute of Scientific and Technical Information of China (English)

    HUANG Guo-yong; XU Sheng-ming; XU Gang; LI Lin-yan; ZHANG Li-feng

    2009-01-01

    Fine nickel(Ni) powders with controllable particle sizes were synthesized via the reduction of nickel hydrazine complex precursors of pure [Ni(N2H4)2]Cl2 and a mixture of [Ni(N2H4)2]Cl2 and [Ni(N2H4)3]Cl2 in aqueous solution. The mechanism of the formation of metallic Ni powders experiences the reduction of nickel hydroxide by hydrazine released from the ligand exchange reaction between nickel hydrazine complex and NaOH. In comparison with the method of preparing Ni powders from nickel salts, the method of making Ni powders via the reduction of nickel hydrazine complex precursors shows the advantages of using half dosage of hydrazine for complete reduction of nickel ions in solution, and the obtained Ni particles show less agglomeration and better dispersibility. Moreover, the average particle size of nickel powders can be controlled from 180 to 260 nm by adjusting the reaction molar ratio and concentration.

  9. Influence of Fine Metal Particles on Surface Discharge Characteristics of Outdoor Insulators

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2016-01-01

    Full Text Available Focusing on the influence of fine metal particles on the insulation characteristics of outdoor insulators, spherical micrometer-level iron powders were used to represent fine metal particles of different parameters on a polymer insulator specimen surface. Dynamic movement and lift-off behavior of fine particles, as well as the triggered surface discharges under AC voltage were investigated in a uniform electric field under different experimental conditions. The results reveal that the inception, propagation and intensity of surface discharges are significantly affected by the particle parameters, including particle size, amount and distributing characteristic. Based on the measurement of light emission during the flashover process using a high-speed camera, the process of surface discharge to flashover triggered by the fine metal particles were investigated to obtain a relationship between flashover voltage, discharge light intensity and particle parameters. It is suggested that particle size smaller than 28 µm and particle amount more than 40 mg in contact with the non-uniform distribution can cause a significant distortion and intensification of the electric field resulting in a higher risk of surface discharges leading to flashover. Such investigations can enhance the operating reliability of outdoor insulators subjected to these conditions.

  10. Abrasion of ultrafine WC-Co by fine abrasive particles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Abrasive wear of a series of WC-(5%-14%, mass fiaction)Co hardmetals was investigated employing coarse and fine SiC abrasive under two-body dry abrasion conditions with pin-on-disc and edge-on-disc test arrangements. Unexpectedly, it is found that submicron grades demonstrate substantially higher wear rates comparing with the coarse grades if fine abrasive is utilized in pin-on-disc tests. Such a behavior is attributed to changes in a ratio of abrasive size to size of hard phase as finer abrasive is used.The edge-on-disc test demonstrates that edge wear may be described in two stages with the highest wear rates at the beginning stage.This behavior is associated with a transition of wear mechanisms as edge is wider due to wear. Compared with the ultrafine grades of the same Co content, the coarse grades demonstrate higher wear rates at the beginning, but lower wear rates at the final stage. Wear rates and mechanisms observed at final stage correlate well to the results observed for pin-on-disc tests employing fine abrasive.

  11. A New Type of Non-Mechanical Valves for Recirculation of Fine Particles

    DEFF Research Database (Denmark)

    Azizaddini, Seyednezamaddin

    of the thesis is to design a new version of a non-mechanical valve for transportation of the particles and closing the loop in circulating or interconnected fluidized bed systems. As the primary proposal, combination of three assistive methods (tapered fluidized bed, mixture of coarse and fine particles...

  12. A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS

    Science.gov (United States)

    A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...

  13. Eddy Current Separation of Fine Non-Ferrous Particles from Bulk Streams

    NARCIS (Netherlands)

    Settimo, F.; Bevilacqua, P.; Rem, P.

    2004-01-01

    Recovery of fine non-ferrous metals from waste streams is a notoriously difficult problem in eddy current separation technology. Existing processes either have a low capacity or an incomplete recovery for particle sizes below 5 mm. In a new process, the particles are fed slightly wet to make them st

  14. Eddy Current Separation of Fine Non-Ferrous Particles from Bulk Streams

    NARCIS (Netherlands)

    Settimo, F.; Bevilacqua, P.; Rem, P.

    2004-01-01

    Recovery of fine non-ferrous metals from waste streams is a notoriously difficult problem in eddy current separation technology. Existing processes either have a low capacity or an incomplete recovery for particle sizes below 5 mm. In a new process, the particles are fed slightly wet to make them

  15. On the Accelerated Settling of Fine Particles in a Bidisperse Slurry

    Directory of Open Access Journals (Sweden)

    Leonid L. Minkov

    2015-01-01

    Full Text Available An estimation of increasing the volume average sedimentation velocity of fine particles in bidisperse suspension due to their capturing in the circulation zone formed in the laminar flow of incompressible viscous fluid around the spherical coarse particle is proposed. The estimation is important for an explanation of the nonmonotonic shape of the separation curve observed for hydrocyclones. The volume average sedimentation velocity is evaluated on the basis of a cellular model. The characteristic dimensions of the circulation zone are obtained on the basis of a numerical solution of Navier-Stokes equations. Furthermore, these calculations are used for modelling the fast sedimentation of fine particles during their cosedimentation in bidisperse suspension. It was found that the acceleration of sedimentation of fine particles is determined by the concentration of coarse particles in bidisperse suspension, and the sedimentation velocity of fine fraction is proportional to the square of the coarse and fine particle diameter ratio. The limitations of the proposed model are ascertained.

  16. A Modelling Approach on Fine Particle Spatial Distribution for Street Canyons in Asian Residential Community

    Science.gov (United States)

    Ling, Hong; Lung, Shih-Chun Candice; Uhrner, Ulrich

    2016-04-01

    Rapidly increasing urban pollution poses severe health risks.Especially fine particles pollution is considered to be closely related to respiratory and cardiovascular disease. In this work, ambient fine particles are studied in street canyons of a typical Asian residential community using a computational fluid dynamics (CFD) dispersion modelling approach. The community is characterised by an artery road with a busy traffic flow of about 4000 light vehicles (mainly cars and motorcycles) per hour at rush hours, three streets with hundreds light vehicles per hour at rush hours and several small lanes with less traffic. The objective is to study the spatial distribution of the ambient fine particle concentrations within micro-environments, in order to assess fine particle exposure of the people living in the community. The GRAL modelling system is used to simulate and assess the emission and dispersion of the traffic-related fine particles within the community. Traffic emission factors and traffic situation is assigned using both field observation and local emissions inventory data. High resolution digital elevation data (DEM) and building height data are used to resolve the topographical features. Air quality monitoring and mobile monitoring within the community is used to validate the simulation results. By using this modelling approach, the dispersion of fine particles in street canyons is simulated; the impact of wind condition and street orientation are investigated; the contributions of car and motorcycle emissions are quantified respectively; the residents' exposure level of fine particles is assessed. The study is funded by "Taiwan Megacity Environmental Research (II)-chemistry and environmental impacts of boundary layer aerosols (Year 2-3) (103-2111-M-001-001-); Spatial variability and organic markers of aerosols (Year 3)(104-2111-M-001 -005 -)"

  17. Numerical Model for Ultra-fine Particles in the Absence and Presence of Gravity

    Science.gov (United States)

    Dutt, Meenakshi; Elliott, James A.

    2009-06-01

    Length scales of particles and their surrounding medium strongly determines the nature of their interactions with one another and their responses to external fields. We are interested in systems of ultra-fine particles (0.1-1.0 micron) such as volcanic ash, soot from forest fires, solid aerosols, or fine powders for pharmaceutical inhalation applications. We have a developed a numerical model which captures the dominant physical interactions which control the behavior of these systems. The adhesive interactions between the particles use the Derjaguin-Muller-Toporov (DMT) adhesion theory along with the van der Waals attraction. The elastic restoring forces are modeled by the Hertz's contact model, and require details of material properties such as the Young's modulus and Poisson ratio. Commencing with a three dimensional gas of ultra-fine particles, the absence of gravity does not produce any noticeable clustering. The presence of gravity initially generates a large population of clusters with small number of particles, as the particles settle. The initial population of small clusters or single particles which have settled decrease with time as more particles, or clusters, agglomerate with one another. Our final results show clusters containing 10 to 100 particles, with a larger population of small clusters. We present details of the model, and some preliminary results which demonstrate the influence of the particle surface properties on the clustering dynamics of these systems, in the absence and presence of gravity (M. Dutt, J. A. Elliott, et al. in press).

  18. Fine-Tuning Two-Particle Interferometry; 2, Opacity Effects

    CERN Document Server

    Tomasik, Boris; Tomasik, Boris; Heinz, Ulrich

    1998-01-01

    We present a model study of single-particle spectra and two-particle Bose-Einstein correlations for opaque sources. We study the transverse mass dependence of the correlation radii R_\\perp, R_\\parallel and R_0 in the YKP parametrization and find a strong sensitivity of the temporal radius parameter R_0^2 to the source opacity. A simple comparison with the published data from 158 A GeV/c Pb+Pb collisions at CERN indicates that the pion source created in these collisions emits particles from the whole reaction volume and is not opaque. For opaque sources we find certain regions of inapplicability of the YKP parametrization which can be avoided by a slightly different parametrization for the correlator. The physical meaning of the modified parameters is briefly discussed.

  19. Effect of interparticle forces on the fluidization of fine particles

    Science.gov (United States)

    Baerns, M. G.; Ramaswami, D.

    1969-01-01

    Report studies elucidation and description of effect of interparticle forces on feasibility of gaseous fluidization of particles below 50 microns in diameter. Interparticle forces are determined by inclined-plane method. Study indicated that fluidizability is related to the interparticle adhesive force.

  20. Preparation and evaluation of highly drug-loaded fine globular granules using a multi-functional rotor processor.

    Science.gov (United States)

    Iwao, Yasunori; Kimura, Shin-Ichiro; Ishida, Masayuki; Mise, Ryohei; Yamada, Masaki; Namiki, Noriyuki; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    The manufacture of highly drug-loaded fine globular granules eventually applied for orally disintegrating tablets has been investigated using a unique multi-functional rotor processor with acetaminophen, which was used as a model drug substance. Experimental design and statistical analysis were used to evaluate potential relationships between three key operating parameters (i.e., the binder flow rate, atomization pressure and rotating speed) and a series of associated micromeritics (i.e., granule mean size, proportion of fine particles (106-212 µm), flowability, roundness and water content). The results of multiple linear regression analysis revealed several trends, including (1) the binder flow rate and atomization pressure had significant positive and negative effects on the granule mean size value, Carr's flowability index, granular roundness and water content, respectively; (2) the proportion of fine particles was positively affected by the product of interaction between the binder flow rate and atomization pressure; and (3) the granular roundness was negatively and positively affected by the product of interactions between the binder flow rate and the atomization pressure, and the binder flow rate and rotating speed, respectively. The results of this study led to the identification of optimal operating conditions for the preparation of granules, and could therefore be used to provide important information for the development of processes for the manufacture of highly drug-loaded fine globular granules.

  1. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    Science.gov (United States)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  2. Source Apportionment of Fine Particles in Xinzhen, Beijing

    Institute of Scientific and Technical Information of China (English)

    JIN; Xiang-chun; ZHANG; Gui-ying; XIAO; Cai-jin; WANG; Ping-sheng; WANG; Xing-hua; HUA; Long; YAO; Yong-gang; YUAN; Guo-jun; NI; Bang-fa

    2013-01-01

    As the capital city of China,Beijing often suffers from hazy weather recently.In order to improve air quality,it is of great importance to perform source apportionment and source trajectory.A total of 140airborne particulate matter samples were collected at Xinzhen from May,2007 to July,2013 and their chemical compositions were analyzed by Particle Induced X-ray Emission(PIXE)and Energy Disperse-X

  3. Attractive particle interaction forces and packing density of fine glass powders.

    Science.gov (United States)

    Parteli, Eric J R; Schmidt, Jochen; Blümel, Christina; Wirth, Karl-Ernst; Peukert, Wolfgang; Pöschel, Thorsten

    2014-09-02

    We study the packing of fine glass powders of mean particle diameter in the range (4-52) μm both experimentally and by numerical DEM simulations. We obtain quantitative agreement between the experimental and numerical results, if both types of attractive forces of particle interaction, adhesion and non-bonded van der Waals forces are taken into account. Our results suggest that considering only viscoelastic and adhesive forces in DEM simulations may lead to incorrect numerical predictions of the behavior of fine powders. Based on the results from simulations and experiments, we propose a mathematical expression to estimate the packing fraction of fine polydisperse powders as a function of the average particle size.

  4. Heterogeneous Nucleation of Trichloroethylene Ozonation Products in the Formation of New Fine Particles

    Science.gov (United States)

    Wang, Ning; Sun, Xiaomin; Chen, Jianmin; Li, Xiang

    2017-01-01

    Free radicals in atmosphere have played an important role in the atmospheric chemistry. The chloro-Criegee free radicals are produced easily in the decomposition of primary ozonide (POZ) of the trichloroethylene, and can react with O2, NO, NO2, SO2 and H2O subsequently. Then the inorganic salts, polar organic nitrogen and organic sulfur compounds, oxygen-containing heterocyclic intermediates and polyhydroxy compounds can be obtained. The heterogeneous nucleation of oxidation intermediates in the formation of fine particles is investigated using molecular dynamics simulation. The detailed nucleation processes are reported. According to molecular dynamics simulation, the nucleation with a diameter of 2 nm is formed in the Organic Compounds-(NH4)2SO4-H2O system. The spontaneous nucleation is an important process in the formation of fine particles in atmosphere. The model study gives a good example from volatile organic compounds to new fine particles. PMID:28198438

  5. Heterogeneous Nucleation of Trichloroethylene Ozonation Products in the Formation of New Fine Particles

    Science.gov (United States)

    Wang, Ning; Sun, Xiaomin; Chen, Jianmin; Li, Xiang

    2017-02-01

    Free radicals in atmosphere have played an important role in the atmospheric chemistry. The chloro-Criegee free radicals are produced easily in the decomposition of primary ozonide (POZ) of the trichloroethylene, and can react with O2, NO, NO2, SO2 and H2O subsequently. Then the inorganic salts, polar organic nitrogen and organic sulfur compounds, oxygen-containing heterocyclic intermediates and polyhydroxy compounds can be obtained. The heterogeneous nucleation of oxidation intermediates in the formation of fine particles is investigated using molecular dynamics simulation. The detailed nucleation processes are reported. According to molecular dynamics simulation, the nucleation with a diameter of 2 nm is formed in the Organic Compounds-(NH4)2SO4-H2O system. The spontaneous nucleation is an important process in the formation of fine particles in atmosphere. The model study gives a good example from volatile organic compounds to new fine particles.

  6. The ozonolysis of primary aliphatic amines in fine particles

    Directory of Open Access Journals (Sweden)

    J. Zahardis

    2008-02-01

    Full Text Available The oxidative processing by ozone of the particulate amines octadecylamine (ODA and hexadecylamine (HDA is reported. Ozonolysis of these amines resulted in strong NO2 and NO3 ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitroalkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3 (HNO3. For ozonized mixed particles containing ODA or HDA + oleic acid (OL, with pO3≥3×10–7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines and stabilized Criegee intermediates (SCI or secondary ozonides (for amides from the fatty acid. The routes to amides via SCI and/or secondary ozonides were shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10−3 atm for 17 s. This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g.~NO2, NO3, formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  7. The triggering of myocardial infarction by fine particles is enhanced when particles are enriched in secondary species

    Science.gov (United States)

    Previous studies have reported an increased risk of myocardial infarction (MI) associated with acute increases in PM concentration. Recently, we reported that MI/fine particle (PM2.5) associations may be limited to transmural infarctions. We used PM2.5 speci...

  8. The triggering of myocardial infarction by fine particles is enhanced when particles are enriched in secondary species

    Science.gov (United States)

    Previous studies have reported an increased risk of myocardial infarction (MI) associated with acute increases in PM concentration. Recently, we reported that MI/fine particle (PM2.5) associations may be limited to transmural infarctions. We used PM2.5 speci...

  9. Characterization of fine particle components in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, K. [Akita Prefectural Institute of Environmental Science, Yabase-Shimoyabase, Akita (Japan); Sera, K. [Iwate Medical Univ., Cyclotron Research Center, Takizawa, Iwate (Japan); Perales, J.G.; Garcia, F.A. [Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA), Av. Michoacan y la Purisima Col. Vicentina C.P. 09340 Mexico (Mexico); Suzuki, H. [Environmental Data Analysis Laboratory, System Design, Inc., Shinagawa, Tokyo (Japan)

    1999-07-01

    Particulate matter (PM-3.9 and PM-15.8) samples were collected in the three zones at the Northeast, Southwest and Southeast suburbs of Mexico City, from July to August 1998, for one week for each sampling site. The concentrations of several elements in the PM-3.9 and PM-15.8 samples were determined by Particle Induced X-ray Emission (PIXE). In the PM-3.9 samples, 21 elements were determined for each zone, and Na, Mg, Al, Si, S, K, Ca, Ti, Fe, Cu, Zn and Pb are found to be the major elemental components. On the other hand, 22 elements including P were determined on the PM-15.8 samples, and the dominant elements were the same as in the PM-3.9. Factor analysis is applied to the 28 variables (14 elements for each PM-3.9 and PM-15.8 groups) and for 21 samples (seven days for three zones) in order to identify possible sources of the particles. The result of factor analysis allows to identify five major sources, being soil the major contributor. (author)

  10. NUMBER CONCENTRATION, SIZE DISTRIBUTION AND FINE PARTICLE FRACTION OF TROPOSPHERIC AND STRATOSPHERIC AEROSOLS

    Institute of Scientific and Technical Information of China (English)

    Li Xu; Guangyu Shi; Li Zhang; Jun Zhou; Yasunobu Iwasaka

    2003-01-01

    Aerosol observations were carried out at Xianghe Scientific Balloon Base (39.45°N, 117°E) using a stratospheric balloon. The particle number concentrations of the tropospheric and stratospheric aerosols were directly explored.The vertical distributions of the number concentration, number-size (that is, particle number versus particle size)distribution, and the fraction of fine particles (0.5 μm>r>0.15 μm/r>0.15 μm) are reported in this paper. The profiles of particle concentration present multi-peak phenomenon. The pattern of size distribution for atmospheric aerosol indicates a tri-modal (r=~0.2 μm, ~0.88 μm and ~7.0 μm) and a bi-modal (r=~0.13 μm and 2.0 μm). The number-size distribution almost fits the Junge distribution for particles with r<0.5 μm in the stratosphere of 1993 and the troposphere of 1994. But the distributions of coarse particles (r>0.5 μm) are not uniform. The number-size distribution exhibits also a wide size range in the troposphere of 1993. The results demonstrate that fine particles represent the major portion in the troposphere during the measurement period, reaching as high as 95% in 1994. Certain coarse particle peaks in the troposphere were attributed to clouds and other causes, and in the stratosphere to volcanic eruption. The stratospheric aerosol layer consists of unique fractions of fine or coarse particles depending on their sources. In summary, the process of gas-to-particles conversion was active and the coarse particles were rich over the Xianghe area. The measurements also demonstrate that the spatial and temporal atmospheric aerosol distributions are nonuniform and changeful.

  11. Microwave non-resonant absorption in fine cobalt ferrite particles

    Energy Technology Data Exchange (ETDEWEB)

    Mata-Zamora, M.E. [Depto. Investigacion Aplicada, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, 04510 (Mexico)]. E-mail: memzamora@yahoo.com.mx; Montiel, H. [Depto. Investigacion Aplicada, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, 04510 (Mexico); Alvarez, G. [Depto. Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, 04510 (Mexico); Saniger, J.M. [Depto. Investigacion Aplicada, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, 04510 (Mexico); Zamorano, R. [Escuela Superior de Fisica y Matematicas, IPN, 07738 (Mexico); Valenzuela, R. [Depto. Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, 04510 (Mexico)

    2007-09-15

    Cobalt ferrite particles of average crystallite size of 11 nm were obtained by a sol-gel process at 400 deg. C . The powders were annealed at temperatures of 500, 600, 700 and 800 deg. C in air. Derivative microwave power absorption (dP/dH) measurements were carried out as a function of magnetic field (H {sub DC}) at X band (9.4 GHz), in the field range -80-796 kA/m for all annealed temperatures. In order to compare the response of saturation magnetization measurements with high frequency measurements, we calculated the areas inside both the magnetization (A {sub M}) and the absorption hysteresis loops (A {sub LFS}). The dependence of these areas as a function of crystallite size is remarkably similar in both experiments.

  12. Improvement in SOFC anode performance by finely-structured Ni/YSZ cermet prepared via heterocoagulation.

    Science.gov (United States)

    Sunagawa, Yoji; Yamamoto, Katsutoshi; Muramatsu, Atsushi

    2006-03-30

    A novel preparation technique for a nanostructured anode for a solid oxide fuel cell is investigated. By mixing nanometer-sized NiO and YSZ powders in a pH-controlled aqueous media, a fine mixture of nanoparticles is successfully obtained through heterocoagulation. The anode prepared from thus prepared mixture has a large triple phase boundary and shows a great improvement in the anode performance by increasing the electric conductivity and effective surface area.

  13. Preparation of NiO-CuO-MgO fine powders by ultrasonic spray pyrolysis for carbon nanofibers synthesis

    Science.gov (United States)

    Krasnikova, Irina V.; Mishakov, Ilya V.; Bauman, Yury I.; Karnaukhov, Timofey M.; Vedyagin, Aleksey A.

    2017-09-01

    Carbon nanofibers with uniform diameter distribution are of great importance to be applied in composite materials production. Characteristics of the final carbon product obtained via catalytic chemical vapour deposition are known to be determined by the catalyst characteristics and the process conditions. In this work, ultrasonic spray pyrolysis was used for the preparation of uniform-sized NiO-CuO-MgO fine powders. Spherical particles of 170-340 nm in diameter were obtained in a temperature range of 400-600 °C. Synthesized powders exhibited high catalytic activity in CCVD of ethylene with the formation of CNF with relatively narrow diameter distribution (60 ± 20 nm).

  14. Preparation and photocatalytic activity of composite films containing clustered TiO2 particles and mineral tourmaline powders

    Institute of Scientific and Technical Information of China (English)

    LIANG Jin-sheng; MENG Jun-ping; LIANG Guang-chuan; FENG Yan-wen; DING Yan

    2006-01-01

    The novel composite films containing clustered TiO2 particles and fine tourmaline particles on the surface of copper webs were prepared by the sol-gel method. The microstructures of the composite films were investigated by scanning electron microscopy (SEM),and the photocatalytic activity of the films was evaluated by photocatalytic degradation of methyl orange,respectively. The results indicate that tourmaline particles can obviously influence the microstructures of TiO2 films and enhance the photocatalytic activity due to their spontaneous permanent polarity and high radiotechnology of far infrared. During preparing the composite films,the clustered TiO2 particles with lots of nano-sized ladder layers can grow on the surface of fine tourmaline particles,the thickness of ladder layer is 10 nm,and the average diameter of nano-sized TiO2 particles is 15 nm.

  15. Dust-cloud structures behind a shock wave moving over a deposited layer of fine particles

    Institute of Scientific and Technical Information of China (English)

    WANG Boyi; XIONG Yi; CHEN Qian; A.N. OSIPTSOV

    2005-01-01

    The present paper investigates dispersed-phase flow structures of a dust cloud induced by a normal shock wave moving at a constant speed over a flat surface deposited with fine particles. In the shock-fitted coordinates, the general equations of dusty-gas boundary layer flows are formulated within the framework of a multi-fluid model and parametric numerical studies of the carrier- and dispersedphase flow fields are performed. The problem associated with crossing particle trajectories and the formation of local particle accumulation regions are solved by using the full Lagrangian method for the dispersed phase. The basic features of the near-wall two-phase flow under consideration including the role of Saffman force in the particle entrainment and the development of discontinuities or singularities in the particle density profiles are discussed. The effects associated with account of the non-uniformity of particle size and the finiteness of the particle Knudsen numbers are studied in detail.

  16. Filler effect of fine particle sand on the compressive strength of mortar

    Science.gov (United States)

    Jaturapitakkul, Chai; Tangpagasit, Jatuphon; Songmue, Sawang; Kiattikomol, Kraiwood

    2011-04-01

    The river sand, which is a non-pozzolanic material, was ground into 3 different particle sizes. Portland cement type I was replaced by the ground river sands at 10wt%-40wt% of binder to cast mortar. Compressive strengths of mortar were investigated and the filler effect of different fine particles of sand on the compressive strength of mortar was evaluated. The results show that the compressive strength of mortar contributed from the filler effect of smaller particles is higher than that of the coarser ones. The difference in compressive strength of mortar tends to be greater as the difference in ground river sand fineness increases. The results also suggest that ASTM C618 specification is not practically suitable for specifying pozzolan in concrete since the strength activity index of mortar containing ground river sand (high crystalline phase) with 33.8wt% of particles retained on a 45-μm sieve can pass the strength requirement.

  17. NUMERICAL SIMULATION OF FINE PARTICLE SEPARATION IN A ROTATIONAL TUBE SEPARATOR

    Institute of Scientific and Technical Information of China (English)

    Jinyu Jiao; Ying Zheng; Guogang Sun

    2005-01-01

    This paper presents a numerical analysis of gas-solid separation in a rotational tube separator. This separator which collects fine particles from gas in laminar flow is effective for fine particle separation. The separation efficiency and critical particle diameter of the separator were simulated using CFD package (FLUENT 6.0). The simulation showed that separation efficiency can be significantly decreased due to the presence of turbulence. The simulation also showed that the Saffman lift force has little effect on the efficiency of this separator. The critical particle diameter of this tube separator was also calculated theoretically. Some experimental data were provided to validate the simulation results. Comparison between experimental results and simulation predictions on separation efficiency showed satisfactory agreement.

  18. Particle size distribution and property of bacteria attached to carbon fines in drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    Wang Leilei; Chen Wei; Lin Tao

    2008-01-01

    The quantitative change and size distribution of particles in the effluents from a sand filter and a granular activated carbon (GAC) filter in a drinking water treatment plant were investigated. The average total concentration of particles in the sand filter effluent during a filter cycle was 148 particles/mL, 27 of which were larger than 2 μm in size. The concentration in the GAC effluent (561 particles/mL) was significantly greater than that in the sand filter effluent. The concentration of particles larger than 2 μm in the GAC filter effluent reached 201 particles/mL, with the amount of particles with sizes between 2 μm and 15 μm increasing. The most probable number (MPN) of carbon fines reached 43 unit/L after six hours and fines between 0.45 μm and 8.0 μm accounted for more than 50%. The total concentration of outflowing bacteria in the GAC filter effluent, 350 CFU (colony-forming units) /mL, was greater than that in the sand filter effluent, 210 CFU/mL. The desorbed bacteria concentration reached an average of 310 CFU/mg fines. The disinfection efficiency of desorbed bacteria was lower than 40% with 1.5 mg/L of chlorine. The disinfection effect showed that the inactivation rate with 2.0 mg/L of chloramine (90%) was higher than that with chlorine (70%). Experimental results indicated that the high particle concentration in raw water and sedimentation effluent led to high levels of outflowing particles in the sand filter effluent. The activated carbon fines in the effluent accounted for a small proportion of the total particle amount, but the existing bacteria attached to carbon fines may influence the drinking water safety. The disinfection efficiency of desorbed bacteria was lower than that of free bacteria with chlorine, and the disinfection effect on bacteria attached to carbon fines with chloramine was better than that with only chlorine.

  19. Hydrogeomorphology of the hyporheic zone: stream solute and fine particle interactions with a dynamic streambed

    Science.gov (United States)

    Harvey, J.W.; Drummond, J.D.; Martin, R.L.; McPhillips, L.E.; Packman, A.I.; Jerolmack, D.J.; Stonedahl, S.H.; Aubeneau, A.F.; Sawyer, A.H.; Larsen, L.G.; Tobias, C.R.

    2012-01-01

    Hyporheic flow in streams has typically been studied separately from geomorphic processes. We investigated interactions between bed mobility and dynamic hyporheic storage of solutes and fine particles in a sand-bed stream before, during, and after a flood. A conservatively transported solute tracer (bromide) and a fine particles tracer (5 μm latex particles), a surrogate for fine particulate organic matter, were co-injected during base flow. The tracers were differentially stored, with fine particles penetrating more shallowly in hyporheic flow and retained more efficiently due to the high rate of particle filtration in bed sediment compared to solute. Tracer injections lasted 3.5 h after which we released a small flood from an upstream dam one hour later. Due to shallower storage in the bed, fine particles were rapidly entrained during the rising limb of the flood hydrograph. Rather than being flushed by the flood, we observed that solutes were stored longer due to expansion of hyporheic flow paths beneath the temporarily enlarged bedforms. Three important timescales determined the fate of solutes and fine particles: (1) flood duration, (2) relaxation time of flood-enlarged bedforms back to base flow dimensions, and (3) resulting adjustments and lag times of hyporheic flow. Recurrent transitions between these timescales explain why we observed a peak accumulation of natural particulate organic matter between 2 and 4 cm deep in the bed, i.e., below the scour layer of mobile bedforms but above the maximum depth of particle filtration in hyporheic flow paths. Thus, physical interactions between bed mobility and hyporheic transport influence how organic matter is stored in the bed and how long it is retained, which affects decomposition rate and metabolism of this southeastern Coastal Plain stream. In summary we found that dynamic interactions between hyporheic flow, bed mobility, and flow variation had strong but differential influences on base flow retention and

  20. Speciated Fine Particle Deposition to a Forest Canopy Measured by Eddy-Correlation Mass Spectrometry

    Science.gov (United States)

    Allen, J. O.; Gonzales, D. A.; Delia, A. E.; Jimenez, J. L.; Smith, K. A.; Canagaratna, M.; Jayne, J. T.; Worsnop, D. R.

    2002-12-01

    Dry deposition serves as an important mechanism for the removal particles from the atmosphere and for the addition of material to ecosystems. Here we report on measurements of aerosol particle deposition using eddy-correlation mass spectrometry data collected during the PROPHET 2001 study which was conducted at the University of Michigan Biological Station in a north Michigan forest. Aerosol composition was measured with fast time response using the recently-developed Aerodyne Aerosol Mass Spectrometer (AMS) (Jayne et~al.,~2000). In the AMS, particles were focused using an aerodynamic lens. The aerosol was then expanded into a vacuum where aerodynamic particle size is determined by particle time-of-flight. The particles were then directed to an oven where semi-volatile components were flash vaporized. Vaporized components were ionized by electron impaction and detected using a quadrupole mass spectrometer. Thus the response of characteristic ions from fine aerosol particles (particle diameter, Dp, = 0.04-1.5 μm) were measured with a frequency of 10 Hz. A sonic anemometer was also deployed to measure wind velocity with a frequency of 10 Hz. Fluxes of aerosol species were then calculated using the well-known eddy-correlation method as the covariance of the vertical wind speed and the species concentration. These results demonstrate the new eddy-correlation mass spectrometry technique for measuring directly speciated fine particle deposition rates.

  1. Development of measuring apparatus for monitoring the preparation of fines

    Energy Technology Data Exchange (ETDEWEB)

    Bechmann, C.; Fauth, G.; Luedke, H.; Schieder, T.

    1984-01-01

    Monitoring or controlling a preparation process requires a sufficiently precise knowledge of the raw material characteristics and also high-speed automatic analysis by measuring apparatus of the quantities and properties of bulk materials and pulpflows. Such apparatus includes devices to measure ash content of pulps, concentration of solids, grain size or grain size distribution and pulp flow. For monitoring flotation, radiometric analysis of the ash content of pulps using the transmission method was tested in a semi-industrial plant. The radioactive sources used were Americium 241 and Caesium 137. The residual standard deviation compared with manual sampling was about 1 g/l for the solids concentration and around 0.4% for ash content. As regards the measurement of grain size and grain size distribution, optical methods have proved to be unsuitable for operational use in coal preparation plants. The ultrasonic absorption method requires further basic research. For short time-interval measurement of pulp flows using devices requiring no conversion, the devices based on the ultrasonic Doppler effect did not yield satisfactory results during operational testing in spite of the accuracy achieved on the test rig. For monitoring washery water thickeners, measuring by means of photometric devices has proved to be suitable for operational use.

  2. Hydrophobic aggregation of fine particles in high muddied coal slurry water.

    Science.gov (United States)

    Chen, Jun; Min, Fanfei; Liu, Lingyun; Peng, Chenliang; Lu, Fangqin

    2016-01-01

    The hydrophobic aggregation of fine particles in high muddied coal slurry water in the presence of four quaternary ammonium salts of 1231(dodecyl trimethyl ammonium chloride), 1431(tetradecyl trimethyl ammonium chloride), 1631(cetyl trimethyl ammonium chloride) and 1831(octadecyl trimethyl ammonium chloride) was investigated through the measurement of contact angles, zeta potentials, aggregation observation, adsorption and sedimentation. The results show that quaternary ammonium salts can enhance the hydrophobicity and reduce the electronegativity of particle surface, and thus induce a strong hydrophobic aggregation of slurry fine particles which promotes the settlement of coal slurry water. The adsorption of quaternary ammonium salts on slurry particles increases with the increase of alkyl chain length and reagent dosage, and will reach equilibrium when the dosage reaches a certain value. Weak alkaline conditions also can promote quaternary ammonium salts to be adsorbed on the coal slurry fine particles. In addition, reasonable energy input and a chemical environment of weak alkaline solution are conducive to hydrophobic aggregation settlement of high muddied coal slurry water with quaternary ammonium salts. The main mechanism of hydrophobic aggregation of coal slurry particles with quaternary ammonium salts is 'adsorption charge neutralization' and hydrophobic interaction.

  3. Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles

    Science.gov (United States)

    Teixeira, Elba Calesso; Garcia, Karine Oliveira; Meincke, Larissa; Leal, Karen Alam

    2011-08-01

    The purpose of the present study was to evaluate six nitro-polycyclic aromatic hydrocarbons (NPAHs) in fine (MAPA), RS, Brazil. The method used was of NPAHs isolation and derivatization, and subsequent gas chromatography by electron capture detection (CG/ECD). Results revealed a higher concentration of NPAHs, especially 3-nitrofluoranthene and 1-nitropyrene, in fine particles in the sampling sites studied within the MAPA. The diagnostic ratios calculated for PAHs and NPAHs identified the influence of heavy traffic, mainly of diesel emissions. The correlation of NPAHs with other pollutants (NO x, NO 2, NO and O 3) evidence the influence of vehicular emissions in the MAPA. The seasonal variation evidenced higher NPAHs concentrations in the fine particles during winter for most compounds studied.

  4. Turbidimetric method for evaluation of photocatalytic activities of suspended fine particles

    Directory of Open Access Journals (Sweden)

    Hideki Aoyagi

    2010-10-01

    Full Text Available Hideki Aoyagi1, Katsumi Yabusaki21Life Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; 2Electronics and Optics Research Laboratory, Kowa Ltd, Chofugaoka, Chofu City, Tokyo, JapanAbstract: A spectrophotometer with special cuvette was developed for evaluating the photocatalytic activities of suspended fine particles. The spectrophotometer can continuously irradiate UV light using LED to the sample solution, and changes in the absorbance at 664 nm during photocatalytic degradation of methylene blue (MB were monitored continuously. From the onset of MB degradation, the absorbance decreased and reached a steady value at the end of the reaction. This process was expressed by first order kinetics and the photocatalytic activities of various fine particles could be evaluated quantitatively based on the reaction rate constant (k. The effect of photocatalysis using various TiO2 fine particles on the physiological activities of Euglena gracilis was related with k value.Keywords: photocatalyst, fine nano sized particles, specialized spectrophotometer, Euglena gracilis, rate constant

  5. Nasal Contribution to Breathing and Fine Particle Deposition in Children Versus Adults

    Science.gov (United States)

    Both the route of breathing, nasal versus oral, and the effectiveness of the nose to filter inhaled, fine particles may differ between children and adults. This study compared (1) the nasal contribution to breathing at rest and during mild to moderate exercise in children (age 6–...

  6. Measuring the Variations of the Apparent Settling Velocity for Fine Particles

    DEFF Research Database (Denmark)

    Larsen, Torben

    2000-01-01

    This note establishes the fact that the settling velocity for fine flocculent particles in flowing aquatic systems vary considerably and the settling velocity should therefore be understood as a variable which varies temporally and spatially in the flow field. In the mathematical formulation...

  7. Preparation of spherical hollow alumina particles by thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonkyung [Department of Chemical Engineering, INHA University, 253 Yonghyun-dong, Nam-gu, Incheon 402‐751 (Korea, Republic of); Regional Innovation Center for Environmental Technology of Thermal Plasma (RIC-ETTP), INHA University, 253 Yonghyun-dong, Nam-gu, Incheon 402‐751 (Korea, Republic of); Choi, Sooseok [Center for Advance Research in Fusion Reactor Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151‐742 (Korea, Republic of); Oh, Seung-Min [Daejoo Electronic Materials Co., 1236‐10 Jeongwang-dong, Siheung-si, Kyunggi-do 429‐848 (Korea, Republic of); Park, Dong-Wha, E-mail: dwpark@inha.ac.kr [Department of Chemical Engineering, INHA University, 253 Yonghyun-dong, Nam-gu, Incheon 402‐751 (Korea, Republic of); Regional Innovation Center for Environmental Technology of Thermal Plasma (RIC-ETTP), INHA University, 253 Yonghyun-dong, Nam-gu, Incheon 402‐751 (Korea, Republic of)

    2013-02-01

    Spherical hollow particles were prepared from solid alumina powders using DC arc thermal plasma, and then spray coating was performed with the as-prepared particles. Operating variables for the hollow particle preparation process were additional plasma gas, input power, and carrier gas flow rate. The spherical hollow alumina particles were produced in the case of using additive gas of H{sub 2} or N{sub 2}, while alumina surface was hardly molten in the pure argon thermal plasma. In addition, the hollow particles were well produced in high power and low carrier gas conditions due to high melting point of alumina. Hollow structure was confirmed by focused ion beam-scanning electron microscopy analysis. Morphology and size distribution of the prepared particles that were examined by field emission-scanning electron microscopy and phase composition of the particles was characterized by X-ray diffraction. In the spray coating process, the as-prepared hollow particles showed higher deposition rate. - Highlights: ► Spherical hollow alumina powder was prepared by non-transferred DC arc plasma. ► Diatomic gasses were added in Ar plasma for high power. ► Prepared hollow alumina powder was efficient for the plasma spray coating.

  8. Characteristics of Fine Particles in an Urban Atmosphere—Relationships with Meteorological Parameters and Trace Gases

    Directory of Open Access Journals (Sweden)

    Tianhao Zhang

    2016-08-01

    Full Text Available Atmospheric fine particles (diameter < 1 μm attract a growing global health concern and have increased in urban areas that have a strong link to nucleation, traffic emissions, and industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm–661 nm, meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm–30 nm, Aitken mode (30 nm–100 nm, and accumulation mode (100 nm–661 nm reached 4923 cm−3, 12193 cm−3 and 4801 cm−3, respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of “repeated, short-lived” nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in

  9. An investigation into the effect of fine lactose particles on the fluidization behaviour and aerosolization performance of carrier-based dry powder inhaler formulations.

    Science.gov (United States)

    Kinnunen, Hanne; Hebbink, Gerald; Peters, Harry; Shur, Jagdeep; Price, Robert

    2014-08-01

    The effect of milled and micronized lactose fines on the fluidization and in vitro aerosolization properties of dry powder inhaler (DPI) formulations was investigated, and the suitability of static and dynamic methods for characterizing general powder flow properties of these blends was assessed. Lactose carrier pre-blends were prepared by adding different lactose fines (Lactohale® (LH) 300, 230 and 210) with coarse carrier lactose (Lactohale100) at 2.5, 5, 10 and 20 wt% concentrations. Powder flow properties of lactose pre-blends were characterized using the Freeman Technology FT4 and Schulze RST-XS ring shear tester. A strong correlation was found between the basic flow energy (BFENorm) measured using the Freeman FT4 Rheometer and the flowability number (ffc) measured on Schulze RST-XS. These data indicate that both static and dynamic methods are suitable for characterizing general powder flow properties of lactose carriers. Increasing concentration of fines corresponded with an increase in the normalized fluidization energy (FENorm). The inclusion of fine particles of lactose resulted in a significant (p lactose containing up to 10 wt% LH300. A similar trend was found for the milled lactose grades LH230 and LH210. However, the increase in FENorm upon addition of milled fines only corresponded to a very slight improvement in the performance. These data suggest that whilst the fluidization energy correlated with fine particle delivery, this relationship is specific to lactose grades of similar particle size.

  10. DYNAMIC RHEOLOGICAL BEHAVIOR OF POLYPROPYLENE FILLED WITH ULTRA-FINE POWDERED RUBBER PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Qiang Zheng; Yan-xia Cao; Miao Du

    2004-01-01

    Dynamic rheological characteristics of polypropylene (PP) filled with ultra-fine full-vulcanized powdered rubber (UFPR) composed of styrene-butadiene copolymer were studied through dynamic rheological measurements on an Advanced Rheometric Expansion System (ARES). A specific viscoelastic phenomenon, i.e. "the second plateau", appeared at low frequencies, and exhibits a certain dependence on the amount of rubber particles and the dispersion state in the matrix. This phenomenon is attributed to the formation of aggregation structure of rubber particles. The analyses of Cole-Cole diagrams of the dynamic viscoelastic functions suggest that the heterogeneity of the composites is enhanced on increasing both particle content and temperature.

  11. Rotational particle separator: a new method for separating fine particles and mists from gases

    NARCIS (Netherlands)

    Brouwers, Bert

    1996-01-01

    An account is given of the patented technique of the rotational particle separator for separating solid and liquid particles of diameter 0.1 µm and larger from gases. Attention is focused on the working principle, fluid mechanical constraints, particle design, separation performance, power consumpti

  12. Drinking water biotic safety of particles and bacteria attached to fines in activated carbon process

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; LIN Tao; WANG Leilei

    2007-01-01

    In this paper,the drinking water biotic safety of particles and bacteria attached to fines in activated carbon process was investigated by actual treatment process and advanced treatment pilot trial with granular activated carbon.In the experiment,the particles were detected by IBR particle calculating instrument,the activated carbon fines were counted on the basis of the most probable number (MPN) with a microscope,the total number of bacteria was analyzed between the conventional agar culture medium and the one with R2A,and the bacteria attached to activated carbon fines was resolved by the homogenization technique.The experimental results showed that the average total number of particles was 205 CNT/mL in the activated carbon effluent during a filter cycle,of which the number of particles with sizes>2μm was 77 CNT/mL more than the present particle control criterion of the American drinking water product standard (50 CNT/mL).The backwash of low density and long duration lowered particle number in the effluent.The MPN of activated carbon frees in the effluent was between 400 and 600 CNT/L,which accounted for less than 5‰ of the total particles from activated carbon filtration for a poor relative level (R2= 0.34).The microorganisms in activated carbon effluent consisted mostly of heterotrophic bacillus and the total bacteria number was five times as high as that of the inflow,i.e.the effluent from sand filter.The actual bacteria number may be truly indicated by the detection technique with R2A culture medium compared with the traditional agar cultivation.The inactivation efficiency of bacteria attached to activated carbon fines was less than 40% under 1.1 mg/L of chlorine contacting for 40 min.Results showed that the particles and bacteria attached to activated carbon fines may influence drinking water biotic safety,and that the effective control measures need to be further investigated.

  13. Fine and Ultrafine Particles from Combustion Sources - Investigations with in-situ techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pagels, Joakim

    2005-04-01

    Fine airborne particles are associated with adverse health effects in the human population. The aim of this research was to develop and evaluate methods for in-situ characterisation of fine and ultrafine particles and to determine their deposition in the human airways. The aim was also to increase knowledge about health and environmentally relevant properties of aerosols from biomass combustion and selected indoor sources. The methods include instrumental techniques such as Scanning Mobility Particle Sizer (SMPS), Electrical Low-Pressure Impactor (ELPI), Aerodynamic Particle Sizer (APS) and Tandem Differential Mobility Analysers (TDMA) based on volatility and hygroscopic growth. Filter samplers and impactors were used for collecting particles on substrates for subsequent chemical analysis. Emissions from local district heating plants (0.5-12 MW), based on moving grate combustion of woody fuels, were sampled with a dilution system and characterised. Particles from the indoor sources of cigarettes, incense and candles were examined in the laboratory by using an airtight 22 m{sup 3} stainless steel chamber. A set-up to determine respiratory deposition in humans was constructed. It was automatised and uses an electrical mobility spectrometer with an improved inversion algorithm to perform fast measurements of particles of different sizes in the inhaled and exhaled air. It was evaluated on human test-persons. The investigated biomass combustion sources emit high concentrations of fine and ultrafine particles. The chemical composition is dominated by KCl and K{sub 2}SO{sub 4}; Zn, Cd and Pb were also quantified. Elemental carbon was identified in particles larger than 150 nm during periods of incomplete combustion. The particle concentration depends on the fuel ash content and the combustion efficiency. The aerosol is essentially internally mixed with hygroscopic growth factors significantly higher than reported for diesel exhaust and environmental tobacco smoke. The

  14. Formation of Splats from Suspension Particles with Solid Inclusions Finely Dispersed in a Melted Metal Matrix

    Science.gov (United States)

    Solonenko, O. P.

    2012-12-01

    A theoretical model has been developed to describe the splats formation from composite particles of several tens of micrometers in size whose liquid metal binder contains a high volume concentration of ultra-fine refractory solid inclusions uniformly distributed in the binder. A theoretical solution was derived, enabling evaluation of splat thickness and diameter, and also the contact temperature at the particle-substrate interface, under complete control of key physical parameters (KPPs) of the spray process (impact velocity, temperature, and size of the particle, and substrate temperature) versus the concentration of solid inclusions suspended in the metal-binder melt. Using the solution obtained, the calculations performed demonstrate the possibility of formulating adequate requirements on the KPPs of particle-substrate interaction providing a deposition of ceramic-metal coatings with predictable splat thickness and degree of particle flattening on the substrate, and also with desired contact temperature during the formation of the first coating monolayer.

  15. Low-velocity pneumatic conveying in horizontal pipe for coarse particles and fine powders

    Institute of Scientific and Technical Information of China (English)

    Yuji Tomita; Vijay Kumar Agarwal; Hiroyuki Asou; Katsuya Funatsu

    2008-01-01

    First,the characteristics of low-velocity conveying of particles having different hardness are experimentally investigated in a horizontal pipeline in terms of flow pattern and pressure drop to show that the slug flow can be classified into two types depending on the settling of particles along the pipeline,and the period is small for slug flow without the settled layer,which is called solitary slug flow.The pressure drop for soft particles is shown to be larger than that for hard particles.Then,experimental results are presented on horizontal fluidized-bed conveying of fine powders to show that air release from the top surface of the conveying channel is an important factor for high mass flow rate of particles.

  16. A novel permanently magnetised high gradient magnetic filter using assisted capture for fine particles

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.H.P. [Univ. of Southampton (United Kingdom)

    1995-02-01

    This paper describes the structure and properties of a novel permanently magnetised magnetic filter for fine friable radioactive material. Previously a filter was described and tested. This filter was designed so that the holes in the filter are left open as capture proceeds which means the pressure drop builds up only slowly. This filter is not suitable for friable composite particles which can be broken by mechanical forces. The structure of magnetic part of the second filter has been changed so as to strongly capture particles composed of fine particles weakly bound together which tend to break when captured. This uses a principle of assisted-capture in which coarse particles aid the capture of the fine fragments. The technique has the unfortunate consequence that the pressure drop across the filter rises faster as capture capture proceeds than the filter described previously. These filters have the following characteristics: (1) No external magnet is required. (2) No external power is required. (3) Small is size and portable. (4) Easily interchangeable. (5) Can be cleaned without demagnetising.

  17. The cumulative effects of using fine particles and cyanobacteria for rehabilitation of disturbed active sand dunes

    Science.gov (United States)

    Zaady, Eli; Katra, Itzhak; Barkai, Daniel; Knoll, Yaakov; Sarig, Shlomo

    2016-04-01

    One of the main problems in desertified lands worldwide is active wind-borne sand dunes, which lead to covering of fertile soils and agricultural fields. In regions with more than 100 mm of annual rainfall, sand dunes may be naturally stabilized by biocrusts (biological soil crusts). One of the main restraints of biocrust development is the typical lack of fine particles in sand dunes. Our study investigated the combined application of fine particles [coal fly-ash <100 micrometer] and bio-inoculant of filamentous cyanobacteria, isolated from nearby natural stabilized sand dunes, on the soil surface of active sands for increasing resistance to wind erosion. Boundary-layer wind tunnel experiments were conducted in experimental plots within a greenhouse for examining the effects of adding coal fly-ash and bio-inoculant to active sands. The biocrust development was evaluated via several physical and bio-physiological variables. In all the physical measurements and the bio-physiological variables, the treatment of "sand+inoculum+coal fly-ash" showed significant differences from the "sand-control". The combination led to the best results of surface stabilization in boundary-layer wind tunnel experiments, with the lowest sand fluxes. The filamentous cyanobacteria use the fine particles of the coal fly-ash as bridges for growing toward and adhering to the large sand particles. The cumulative effects of biocrusts and coal fly-ash enhance soil surface stabilization and may allow long-term sustainability.

  18. Influence of rain on the abundance of bioaerosols in fine and coarse particles

    Science.gov (United States)

    Rathnayake, Chathurika M.; Metwali, Nervana; Jayarathne, Thilina; Kettler, Josh; Huang, Yuefan; Thorne, Peter S.; O'Shaughnessy, Patrick T.; Stone, Elizabeth A.

    2017-02-01

    Assessing the environmental, health, and climate impacts of bioaerosols requires knowledge of their size and abundance. These two properties were assessed through daily measurements of chemical tracers for pollens (sucrose, fructose, and glucose), fungal spores (mannitol and glucans), and Gram-negative bacterial endotoxins in two particulate matter (PM) size modes: fine particles ( 75 %), as expected for particles greater than 2.5 µm. Rainfall on 2 May corresponded to maximum atmospheric pollen tracer levels and a redistribution of pollen tracers to the fine PM fraction (> 80 %). Both changes were attributed to the osmotic rupture of pollen grains that led to the suspension of fine-sized pollen fragments. Fungal spore tracers peaked in concentration following spring rain events and decreased in particle size, but to a lesser extent than pollens. A short, heavy thunderstorm in late summer corresponded to an increase in endotoxin and glucose levels, with a simultaneous shift to smaller particle sizes. Simultaneous increase in bioaerosol levels and decrease in their size have significant implications for population exposures to bioaerosols, particularly during rain events. Chemical mass balance (CMB) source apportionment modeling and regionally specific pollen profiles were used to apportion PM mass to pollens and fungal spores. Springtime pollen contributions to the mass of particles < 10 µm (PM10) ranged from 0.04 to 0.8 µg m-3 (0.2-38 %, averaging 4 %), with maxima occurring on rainy days. Fungal spore contributions to PM10 mass ranged from 0.1 to 1.5 µg m-3 (0.8-17 %, averaging 5 %), with maxima occurring after rain. Overall, this study defines changes to the fine- and coarse-mode distribution of PM, pollens, fungal spores, and endotoxins in response to rain in the Midwestern United States and advances the ability to apportion PM mass to pollens.

  19. Mercury speciation and fine particle size distribution on combustion of Chinese coals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Wang, Shuxiao; Hao, Jiming [Tsinghua Univ., Beijing (China). Dept. of Environmental Science and Engineering and State Key Joint Lab. of Environment Simulation and Pollution Control; Daukoru, Michael; Torkamani, Sarah; Biswas, Pratim [Washington Univ., St. Louis, MO (United States). Aerosol and Air Quality Research Lab.

    2013-07-01

    Coal combustion is the dominant anthropogenic mercury emission source of the world. Electrostatic precipitator (ESP) can remove almost all the particulate mercury (Hg{sub p}), and wet flue gas desulfurization (WFGD) can retain a large part of the gaseous oxidized mercury (Hg{sup 2+}). Only a small percentage of gaseous elemental mercury (Hg{sup 0}) can be abated by the air pollution control devices (APCDs). Therefore, the mercury behavior across APCDs largely depends on the mercury speciation in the flue gas exhausting from the coal combustor. To better understand the formation process of three mercury species, i.e. Hg{sup 0}, Hg{sup 2+} and Hg{sub p}, in gaseous phase and fine particles, bench-scale measurements for the flue gas exhausting from combustion of different types of coal in a drop-tube furnace set-up, were carried out. It was observed that with the limitation of reaction kinetics, higher mercury concentration in flue gas will lead to lower Hg{sup 2+} proportion. The concentration of chlorine has the opposite effect, not as significantly as that of mercury though. With the chlorine concentration increasing, the proportion of Hg{sup 2+} increases. Combusting the finer coal powder results in the formation of more Hg{sup 2+}. Mineral composition of coal and coal particle size has a great impact on fine particle formation. Al in coal is in favor of finer particle formation, while Fe in coal can benefit the formation of larger particles. The coexistence of Al and Si can strengthen the particle coagulation process. This process can also be improved by the feeding of more or finer coal powder. The oxy-coal condition can make for both the mercury oxidation process and the metal oxidation in the fine particle formation process.

  20. Preparation of ultrafine chitosan particles by reverse microemulsion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ultrafine chitosan particles were prepared by reverse microemulsion consisting of water, Triton X-100, octanol and cyclohexane. Two methods of preparing ultrafine chitosan particles were adopted and compared using TEM and IR, and possible mechanisms for the formation of ultrafine chitosan particles were proposed. Experimental results show that the method which combined ionic gelation and cross-linking gave uniformly sized chitosan nanoparticles with an average diameter of 92 nm, while the cross-linking without ionic gelation produced spindly chitosan particles with an average length of 943 nm and width of 188 nm.

  1. Variations of fine particle physiochemical properties during a heavy haze episode in the winter of Beijing.

    Science.gov (United States)

    Niu, Hongya; Hu, Wei; Zhang, Daizhou; Wu, Zhijun; Guo, Song; Pian, Wei; Cheng, Wenjing; Hu, Min

    2016-11-15

    Chemical composition, morphology, size and mixture of fine particles were measured in a heavy haze and the post-haze air in Beijing in January 2012. With the occurrence of haze, the concentrations of gaseous and particulate pollutants including organics, sulfate, nitrate, and ammonium grew gradually. The hourly averaged PM2.5 concentration increased from 118μgm(-3) to 402μgm(-3) within 12h. In contrast, it was less than 10μgm(-3) in the post-haze air. Occupying approximately 46% in mass, organics were the major component of PM1 in both the haze and post-haze air. Analysis of individual particles in the size range of 0.2-1.1μm revealed that secondary-like particles and soot particles were always the majority, and most soot particles had a core-shell structure. The number ratio of secondary-like particles to soot particles in accumulation mode in the haze air was about 2:1, and that in the post-haze air was 8:1. These results indicate both secondary particle formation and primary emission contributed substantially to the haze. The mode size of the haze particles was about 0.7μm, and the mode size of the post-haze particles was 0.4μm, indicating the remarkable growth of particles in haze. However, the ratios of the core size to shell size of core-shell structure soot particles in the haze were similar to those in the post-haze air, suggesting a quick aging of soot particles in either the haze air or the post-haze air.

  2. Association between the concentration of fine particles in the atmosphere and acute respiratory diseases in children

    Directory of Open Access Journals (Sweden)

    Antônio Paula Nascimento

    Full Text Available ABSTRACT OBJECTIVE To analyze the association between fine particulate matter concentration in the atmosphere and hospital care by acute respiratory diseases in children. METHODS Ecological study, carried out in the region of Grande Vitória, Espírito Santo, in the winter (June 21 to September 21, 2013 and summer (December 21, 2013 to March 19, 2014. We assessed data of daily count for outpatient care and hospitalization by respiratory diseases (ICD-10 in children from zero to 12 years in three hospitals in the Region of Grande Vitória. For collecting fine particulate matter, we used portable samplers of particles installed in six locations in the studied region. The Generalized Additive Model with Poisson distribution, fitted for the effects of predictor covariates, was used to evaluate the relationship between respiratory outcomes and concentration of fine particulate matter. RESULTS The increase of 4.2 µg/m3 (interquartile range in the concentration of fine particulate matter increased in 3.8% and 5.6% the risk of medical care or hospitalization, respectively, on the same day and with six-day lag from the exposure. CONCLUSIONS We identified positive association between outpatient care and hospitalizations of children under 12 years due to acute respiratory diseases and the concentration of fine particulate matter in the atmosphere.

  3. Properties of CuCr contact materials with low chromium content and fine particles

    Institute of Scientific and Technical Information of China (English)

    曹辉; 王亚平; 郑志; 冼爱平

    2003-01-01

    The voltage withstanding capability and electric conductivity of CuCr contact materials with low chromium content and fine Cr particles were studied. The results show that the withstanding voltage has little relation with the Cr content for the melted-casting CuCr alloy within 15%-29% Cr content, and that the electric conductivity of the alloy increases with the decreasing of Cr content.

  4. Fine particle mass from the Diskus inhaler and Turbuhaler inhaler in children with asthma

    DEFF Research Database (Denmark)

    Bisgaard, H; Klug, B; Sumby, B S;

    1998-01-01

    The study aimed to investigate dose consistency and particle distribution from the dry powder inhalers Diskus and Turbuhaler. Full profiles of inhalation pressure versus time were recorded in 18 4 yr old and 18 8 yr old asthmatic children through Diskus and Turbuhaler inhalers. These data were used...... is a determinant of the quality of the aerosol. The mean (SD) amount of drug in large particles (>4.7 microm), fine particles (children and 71 (3), 18 (2) and 2...... (1) from the 8 yr old children, respectively. Similar particle fractions from the Budesonide Turbuhaler were 35 (9), 21 (10) and 7 (5) from 4 yr old children and 30 (7), 32 (9) and 12 (6) from 8 yr old children. In conclusion, the Diskus inhaler provides an improved dose consistency through...

  5. The PM2.5 Fine Particle Background Network of the German Meteorological Service-First Results

    Directory of Open Access Journals (Sweden)

    Uwe Kaminski

    2013-04-01

    Full Text Available Since 2009, the measurement of the background concentration of the fine particle fraction has been a part of the climate-monitoring program of the German Meteorological Service (DWD. These particles are of high health relevance as a critical air pollutant affecting processes like the scattering and absorption of solar radiation and influencing cloud formation and visibility. At 12 weather stations, the coarse (2.5 to 10 l m and the fine particle fractions (PM2.5 are measured by means of passive and active samplers. First results are presented for the mass concentrations of coarse and fine particles as well as for the black carbon (BC content and the concentration of certain inorganic ions of fine particles. There is not only a seasonal correlation between the fraction of fine and coarse particles, but also a correlation with the location (urban background or rural background. With the help of light microscopy, coarse particles can be differentiated for a geogenic (predominantly wind blown mineral and sea salt particles of natural origin and road abrasion and for an anthropogenic opaque component (combustion residues, e.g. fly ash and non-exhaust vehicle emissions, e.g. abrasion particles of brakes and tires. Measuring the fine fraction and the coarse fraction separately instead of PM10 allows for a better source allocation and thus is a more appropriate method for the improvement of the air quality in, e.g. low emission zones.

  6. The PM{sub 2.5} fine particle background network of the German Meteorological Service. First results

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Uwe; Fricker, Mathieu; Dietze, Volker [German Meteorological Service (DWD), Freiburg im Breisgau (Germany). Air Quality Dept.

    2013-04-15

    Since 2009, the measurement of the background concentration of the fine particle fraction has been a part of the climate-monitoring program of the German Meteorological Service (DWD). These particles are of high health relevance as a critical air pollutant affecting processes like the scattering and absorption of solar radiation and influencing cloud formation and visibility. At 12 weather stations, the coarse (2.5 to 10 l m) and the fine particle fractions (PM{sub 2.5}) are measured by means of passive and active samplers. First results are presented for the mass concentrations of coarse and fine particles as well as for the black carbon (BC) content and the concentration of certain inorganic ions of fine particles. There is not only a seasonal correlation between the fraction of fine and coarse particles, but also a correlation with the location (urban background or rural background). With the help of light microscopy, coarse particles can be differentiated for a geogenic (predominantly wind blown mineral and sea salt particles of natural origin and road abrasion) and for an anthropogenic opaque component (combustion residues, e.g. fly ash and non-exhaust vehicle emissions, e.g. abrasion particles of brakes and tires). Measuring the fine fraction and the coarse fraction separately instead of PM{sub 10} allows for a better source allocation and thus is a more appropriate method for the improvement of the air quality in, e.g. low emission zones. (orig.)

  7. Optimize Operating Conditions on Fine Particle Grinding Process with Vertically Stirred Media Mill

    Science.gov (United States)

    Yang, Yang; Rowson, Neil; Ingram, Andy

    2016-11-01

    Stirred media mill recently is commonly utilized among mining process due to its high stressing intensity and efficiency. However, the relationship between size reduction and flow pattern within the mixing pot is still not fully understand. Thus, this work investigates fine particle grinding process within vertically stirred media mills by altering stirrer geometry, tip speed and solids loading. Positron Emitting Particle Tracking (PEPT) technology is utilized to plot routine of particles velocity map. By tacking trajectory of a single particle movement within the mixing vessel, the overall flow pattern is possible to be plotted. Ground calcium carbonate, a main product of Imerys, is chosen as feeding material (feed size D80 30um) mixed with water to form high viscous suspension. To obtain fine size product (normally D80 approximately 2um), large amount of energy is drawn by grinding mill to break particles through impact, shear attrition or compression or a combination of them. The results indicate higher energy efficient is obtained with more dilute suspension. The optimized stirrer proves more energy-saving performance by altering the slurry circulate. Imerys Minerals Limited.

  8. Surface area, porosity and water adsorption properties of fine volcanic ash particles

    Science.gov (United States)

    Delmelle, Pierre; Villiéras, Frédéric; Pelletier, Manuel

    2005-02-01

    Our understanding on how ash particles in volcanic plumes react with coexisting gases and aerosols is still rudimentary, despite the importance of these reactions in influencing the chemistry and dynamics of a plume. In this study, six samples of fine ash (500 Å. All the specimens had similar pore size distributions, with a small peak centered around 50 Å. These findings suggest that fine ash particles have relatively undifferentiated surface textures, irrespective of the chemical composition and eruption type. Adsorption isotherms for water vapour revealed that the capacity of the ash samples for water adsorption is systematically larger than predicted from the nitrogen adsorption as values. Enhanced reactivity of the ash surface towards water may result from (i) hydration of bulk ash constituents; (ii) hydration of surface compounds; and/or (iii) hydroxylation of the surface of the ash. The later mechanism may lead to irreversible retention of water. Based on these experiments, we predict that volcanic ash is covered by a complete monolayer of water under ambient atmospheric conditions. In addition, capillary condensation within ash pores should allow for deposition of condensed water on to ash particles before water reaches saturation in the plume. The total mass of water vapour retained by 1 g of fine ash at 0.95 relative water vapour pressure is calculated to be ~10-2 g. Some volcanic implications of this study are discussed.

  9. Method of preparing cross-linked enzyme particles

    NARCIS (Netherlands)

    Mateo, C.; Van Langen, L.M.; Van Rantwijk, F.

    2004-01-01

    The invention relates to a method of preparing cross-linked enzyme particles using a cross-linking agent. According to the invention, the enzyme particles are formed and subsequently cross-linked using a cross-linking agent having at least n reactive groups where N>=3 and a molecular weight of

  10. Preparation and Characterization of Colloidal Silica Particles under Mild Conditions

    Science.gov (United States)

    Neville, Frances; Zin, Azrinawati Mohd.; Jameson, Graeme J.; Wanless, Erica J.

    2012-01-01

    A microscale laboratory experiment for the preparation and characterization of silica particles at neutral pH and ambient temperature conditions is described. Students first employ experimental fabrication methods to make spherical submicrometer silica particles via the condensation of an alkoxysilane and polyethyleneimine, which act to catalyze…

  11. Method of preparing cross-linked enzyme particles

    NARCIS (Netherlands)

    Mateo, C.; Van Langen, L.M.; Van Rantwijk, F.

    2004-01-01

    The invention relates to a method of preparing cross-linked enzyme particles using a cross-linking agent. According to the invention, the enzyme particles are formed and subsequently cross-linked using a cross-linking agent having at least n reactive groups where N>=3 and a molecular weight of >2,00

  12. Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer.

    Science.gov (United States)

    Fu, Huaiyu; Zheng, Mei; Yan, Caiqing; Li, Xiaoying; Gao, Huiwang; Yao, Xiaohong; Guo, Zhigang; Zhang, Yuanhang

    2015-03-01

    Marine aerosols over the East China Seas are heavily polluted by continental sources. During the Chinese Comprehensive Ocean Experiment in November 2012, size and mass spectra of individual atmospheric particles in the size range from 0.2 to 2.0 μm were measured on board by a single particle aerosol mass spectrometer (SPAMS). The average hourly particle number (PN) was around 4560±3240 in the South Yellow Sea (SYS), 2900±3970 in the North Yellow Sea (NYS), and 1700±2220 in the Bohai Sea (BS). PN in NYS and BS varied greatly over 3 orders of magnitude, while that in SYS varied slightly. The size distributions were fitted with two log-normal modes. Accumulation mode dominated in NYS and BS, especially during episodic periods. Coarse mode particles played an important role in SYS. Particles were classified using an adaptive resonance theory based neural network algorithm (ART-2a). Six particle types were identified with secondary-containing, aged sea-salt, soot-like, biomass burning, fresh sea-salt, and lead-containing particles accounting for 32%, 21%, 18%, 16%, 4%, and 3% of total PN, respectively. Aerosols in BS were relatively enriched in particles from anthropogenic sources compared to SYS, probably due to emissions from more developed upwind regions and indicating stronger influence of continental outflow on marine environment. Variation of source types depended mainly on origins of transported air masses. This study examined rapid changes in PN, size distribution and source types of fine particles in marine atmospheres. It also demonstrated the effectiveness of high-time-resolution source apportionment by ART-2a.

  13. Optimal conditions to prepare fine globular granules with a multi-functional rotor processor.

    Science.gov (United States)

    Kimura, Shin-ichiro; Iwao, Yasunori; Ishida, Masayuki; Uchimoto, Takeaki; Miyagishima, Atsuo; Sonobe, Takashi; Itai, Shigeru

    2010-05-31

    The optimal manufacturing conditions to obtain fine globular granules with a narrow size of particle distribution were investigated for a multi-functional rotor processor. A fractional factorial design analysis was undertaken to find out the significant operational conditions influencing the following physical characteristics of the obtained granules: size distribution, roundness and water content. Operational conditions tested were binder flow rate, atomization pressure, slit air flow rate, rotating speed and temperature of inlet air. It was observed that: the proportion of fine particles (106-212 microm) was positively affected by the atomization pressure, while negatively affected by the slit air flow rate; and roundness and water content were positively affected by the binder flow rate. Furthermore, the multiple regression analysis enabled the identification of an optimal operating window for production of fine globular granules. Therefore, the present study demonstrated that the combination of experimental design and multiple regression analysis allows a better understanding of complicated granulating process of multi-functional rotor processor to obtain fine globular granules. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations

    Science.gov (United States)

    Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    1996-08-01

    An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that

  15. Temporal variation of fine particle mass at two sites in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, P.; Allen, G. [Harvard School of Public Health, Boston, MA (United States); Castillejos, M. [Univ. Autonoma Metropolitana, Xochimilco (Mexico); Gold, D.; Speizer, F. [Brigham and Women`s Hospital, Boston, MA (United States); Hernandez, M. [Inst. Nacional de Salud Publica, Cuernavaca (Mexico); Hayes, C.; McDonnell, W. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1994-12-31

    Simultaneous sampling of fine mass (PM{sub 2.5}, using an integrated 24 hour gravimetric method) and the particle scattering extinction coefficient (b{sub sp}, using a heated integrating nephelometer) were used to estimate continuous fine particle concentration at two sites in Mexico City. Linear regression analysis of the 24 h averages of b{sub sp} and the PM{sub 2.5} integrated samples was done on a seasonal basis. The coefficients of determination (R{sup 2}) between these methods ranged from 0.84 to 0.90 for the different sampling periods. These data are the first attempt to describe the diurnal variation of fine mass in Mexico City. Distinct and different diurnal patterns were observed for both sites. For the site located near an industrialized area, a sharp peak occurred between 0700 and 0900 hours and a second smaller but broader peak occurred late at night. This site is characterized by the presence of primary pollutants, with PM{sub 10} annual mean concentrations exceeding 150 {micro}g {center_dot} m{sup {minus}3}. The second bite is located in a residential area down wind of the industrialized area, and is characterized by the presence of secondary pollutants with much lower PM{sub 10} concentrations (annual mean of under 50 {micro}g {center_dot} m{sup {minus}3}). The diurnal fine mass pattern at this site had a broad peak between 0900 and 1200 hours. On individual days, fine mass was sometimes highly correlated with ozone.

  16. Physicochemical characterization of fine particles from small-scale wood combustion

    Science.gov (United States)

    Lamberg, Heikki; Nuutinen, Kati; Tissari, Jarkko; Ruusunen, Jarno; Yli-Pirilä, Pasi; Sippula, Olli; Tapanainen, Maija; Jalava, Pasi; Makkonen, Ulla; Teinilä, Kimmo; Saarnio, Karri; Hillamo, Risto; Hirvonen, Maija-Riitta; Jokiniemi, Jorma

    2011-12-01

    Emissions from small-scale wood combustion appliances are of special interest since fine particles have been consistently associated with adverse health effects. It has been reported that the physicochemical characteristics of the emitted particles affect also their toxic properties but the mechanisms behind these phenomena and the causative role of particles from wood combustion sources are still mostly unknown. Combustion situations vary significantly in small-scale appliances, especially in batch combustion. Combustion behaviour is affected by fuel properties, appliance type and operational practice. Particle samples were collected from six appliances representing different combustion situations in small-scale combustion. These appliances were five wood log fuelled stoves, including one stove equipped with modern combustion technology, three different conventional combustion appliances and one sauna stove. In addition, a modern small-scale pellet boiler represented advanced continuous combustion technology. The aim of the study was to analyze gas composition and fine particle properties over different combustion situations. Fine particle (PM 1) emissions and their chemical constituents emerging from different combustion situations were compared and this physicochemical data was combined with the toxicological data on cellular responses induced by the same particles (see Tapanainen et al., 2011). There were significant differences in the particle emissions from different combustion situations. Overall, the efficient combustion in the pellet boiler produced the smallest emissions whereas inefficient batch combustion in a sauna stove created the largest emissions. Improved batch combustion with air-staging produced about 2.5-fold PM 1 emissions compared to the modern pellet boiler (50.7 mg MJ -1 and 19.7 mg MJ -1, respectively), but the difference in the total particulate PAH content was 750-fold (90 μg MJ -1 and 0.12 μg MJ -1, respectively). Improved batch

  17. Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission

    Science.gov (United States)

    Uk Lee, Byung; Yermakov, Mikhail; Grinshpun, Sergey A.

    2004-09-01

    The continuous emission of unipolar ions was evaluated in order to determine its ability to remove fine and ultrafine particles from indoor air environments. The evolution of the indoor aerosol concentration and particle size distribution was measured in real time with the ELPI in a room-size (24.3 m3) test chamber where the ion emitter was operating. After the results were compared with the natural decay, the air cleaning factor was determined. The particle aerodynamic size range of ∼0.04-2 μm was targeted because it represents many bioaerosol agents that cause emerging diseases, as well as those that can be used for biological warfare or in the event of bioterrorism. The particle electric charge distribution (also measured in the test chamber with the ELPI) was rapidly affected by the ion emission. It was concluded that the corona discharge ion emitters (either positive or negative), which are capable of creating an ion density of 105-106 e± cm-3, can be efficient in controlling fine and ultrafine aerosol pollutants in indoor air environments, such as a typical office or residential room. At a high ion emission rate, the particle mobility becomes sufficient so that the particle migration results in their deposition on the walls and other indoor surfaces. Within the tested ranges of the particle size and ion density, the particles were charged primarily due to the diffusion charging mechanism. The particle removal efficiency was not significantly affected by the particle size, while it increased with increasing ion emission rate and the time of emission. The performance characteristics of three commercially available ionic air purifiers, which produce unipolar ions by corona discharge at relatively high emission rates, were evaluated. A 30-minute operation of the most powerful device among those tested resulted in the removal of about 97% of 0.1 μm particles and about 95% of 1 μm particles from the air in addition to the natural decay effect.

  18. Preparation of Metallic Aluminum Compound Particles by Submerged Arc Discharge Method in Aqueous Media

    Science.gov (United States)

    Liao, Chih-Yu; Tseng, Kuo-Hsiung; Lin, Hong-Shiou

    2013-02-01

    Fine metal particles are produced by chemical methods, which add surfactants to control particle size and concentration. This study used the submerged arc discharge method (SADM) to prepare metal fluid containing nanoparticles and submicron particles in pure dielectric fluid (deionized water or alcohol). The process is fast and simple, and it does not require the addition of chemical agents. The SADM uses electrical discharge machining (EDM) equipment, and the key parameters of the production process include discharge voltage, current, and pulse discharge on-off duration. This study added a capacitive component between the electrodes and the electrode Z-axis regulation in the control parameters to render the aluminum fluid process smooth, which is the main difference of this article from the literature. The experimental results showed that SADM can produce aluminum particles from nanometer to submicron grade, and it can obtain different compounds from different dielectric fluids. The dielectric fluids used in this study were deionized water and ethanol, and aluminum hydroxide Al(OH)3 particles with suspending power and precipitated aluminum particles were obtained, respectively. The preparations of metal colloid and particles by the SADM process have the characteristics of low cost, high efficiency, high speed, and mass production. Thus, the process has high research value and developmental opportunities.

  19. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology.

    Science.gov (United States)

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-09-10

    In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Rapid removal of fine particles from mine water using sequential processes of coagulation and flocculation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, M.; Lee, H.J.; Shim, Y. [Korean Mine Reclamation Corporation MIRECO, Seoul (Republic of Korea)

    2010-07-01

    The processes of coagulation and flocculation using high molecular weight long-chain polymers were applied to treat mine water having fine flocs of which about 93% of the total mass was less than 3.02 {mu} m, representing the size distribution of fine particles. Six different combinations of acryl-type anionic flocculants and polyamine-type cationic coagulants were selected to conduct kinetic tests on turbidity removal in mine water. Optimization studies on the types and concentrations of the coagulant and flocculant showed that the highest rate of turbidity removal was obtained with 10 mg L{sup -1} FL-2949 (coagulant) and 12 mg L{sup -1} A333E (flocculant), which was about 14.4 and 866.7 times higher than that obtained with A333E alone and that obtained through natural precipitation by gravity, respectively. With this optimized condition, the turbidity of mine water was reduced to 0 NTU within 20 min. Zeta potential measurements were conducted to elucidate the removal mechanism of the fine particles, and they revealed that there was a strong linear relationship between the removal rate of each pair of coagulant and flocculant application and the zeta potential differences that were obtained by subtracting the zeta potential of flocculant-treated mine water from the zeta potential of coagulant-treated mine water. Accordingly, through an optimization process, coagulation-flocculation by use of polymers could be advantageous to mine water treatment, because the process rapidly removes fine particles in mine water and only requires a small-scale plant for set-up purposes owing to the short retention time in the process.

  1. Preparation, microstructure and degradation performance of biomedical magnesium alloy fine wires

    Directory of Open Access Journals (Sweden)

    Jing Bai

    2014-10-01

    Full Text Available With the development of new biodegradable Mg alloy implant devices, the potential applications of biomedical Mg alloy fine wires are realized and explored gradually. In this study, we prepared three kinds of Mg alloy fine wires containing 4 wt% RE(Gd/Y/Nd and 0.4 wt% Zn with the diameter less than 0.4 μm through casting, hot extruding and multi-pass cold drawing combined with intermediated annealing process. Their microstructures, mechanical and degradation properties were investigated. In comparison with the corresponding as-extruded alloy, the final fine wire has significantly refined grain with an average size of 3–4 μm, and meanwhile shows higher yield strength but lower ductility at room temperature. The degradation tests results and surface morphologies observations indicate that Mg–4Gd–0.4Zn and Mg–4Nd–0.4Zn fine wires have similar good corrosion resistance and the uniform corrosion behavior in SBF solution. By contrast, Mg–4Y–0.4Zn fine wire shows a poor corrosion resistance and the pitting corrosion behavior.

  2. Preparation, microstructure and degradation performance of biomedical magnesium alloy fine wires

    Institute of Scientific and Technical Information of China (English)

    Jing Bai; Zhejun Tang; Lingling Yin; Ye Lu; Yiwei Gan; Feng Xue; Chenglin Chu; Jingli Yan; Kai Yan; Xiaofeng Wan

    2014-01-01

    With the development of new biodegradable Mg alloy implant devices, the potential applications of biomedical Mg alloy fine wires are realized and explored gradually. In this study, we prepared three kinds of Mg alloy fine wires containing 4 wt%RE(Gd/Y/Nd) and 0.4 wt%Zn with the diameter less than 0.4μm through casting, hot extruding and multi-pass cold drawing combined with intermediated annealing process. Their microstructures, mechanical and degradation properties were investigated. In comparison with the corresponding as-extruded alloy, the final fine wire has significantly refined grain with an average size of 3–4μm, and meanwhile shows higher yield strength but lower ductility at room temperature. The degradation tests results and surface morphologies observations indicate that Mg–4Gd–0.4Zn and Mg–4Nd–0.4Zn fine wires have similar good corrosion resistance and the uniform corrosion behavior in SBF solution. By contrast, Mg–4Y–0.4Zn fine wire shows a poor corrosion resistance and the pitting corrosion behavior.

  3. Mineralogical properties and internal structures of individual fine particles of Saharan dust

    Science.gov (United States)

    Jeong, Gi Young; Park, Mi Yeon; Kandler, Konrad; Nousiainen, Timo; Kemppinen, Osku

    2016-10-01

    Mineral dust interacts with incoming/outgoing radiation, gases, other aerosols, and clouds. The assessment of its optical and chemical impacts requires knowledge of the physical and chemical properties of bulk dust and single particles. Despite the existence of a large body of data from field measurements and laboratory analyses, the internal properties of single dust particles have not been defined precisely. Here, we report on the mineralogical organization and internal structures of individual fine ( common particle type was clay-rich agglomerate, dominated by illite-smectite series clay minerals with subordinate kaolinite. Submicron grains of iron (hydr)oxides (goethite and hematite) were commonly dispersed through the clay-rich particles. The median total volume of the iron (hydr)oxide grains included in the dust particles was estimated to be about 1.5 % vol. The average iron content of clay minerals, assuming 14 wt % H2O, was determined to be 5.0 wt %. Coarse mineral cores, several micrometers in size, were coated with thin layers of clay-rich agglomerate. Overall, the dust particles were roughly ellipsoidal, with an average axial ratio of 1.4 : 1.0 : 0.5. The mineralogical and structural properties of single Saharan dust particles provide a basis for the modeling of dust radiative properties. Major iron-bearing minerals, such as illite-smectite series clay minerals and iron (hydr)oxides, were commonly submicron- to nano-sized, possibly enhancing their biogeochemical availability to remote marine ecosystems lacking micronutrients.

  4. PREPARATION OF HOLLOW LATEX PARTICLES BY ALKALI-ACID TREATMENT

    Institute of Scientific and Technical Information of China (English)

    郝冬梅; 王新灵; 朱卫华; 唐小真; 刘成岑; 施凯

    2001-01-01

    Hollow polymer latex particles were prepared by seeded emulsion polymerization. A seed latex consisting of styrene (St), butyl acrylate(BA) copolymer was first prepared, and seeded terpolymerization of St-BA-MA(methacrylic acid) were then carried out in the absence of surfactant. Final latex was treated by a two-step treatment under alkaline and acidic conditions, thus, the particles with hollow structure were obtained. We discussed the effects of pH value, temperature and time in alkali and acid treatment processes on hollow structure within the polymer latex particles and amount of carboxylic group on particle surface. The results show that the hollow polymer latex particles with the largest hollow size can be obtained under a certain condition (pH12.5, 90°C, 3 h in alkali treatment stage and pH2.5, 85°C, 3 h in acid treatment stage).

  5. Benthic biofilm structure controls the deposition-resuspension dynamics of fine clay particles

    Science.gov (United States)

    Hunter, W. R.; Roche, K. R.; Drummond, J. D.; Boano, F.; Packman, A. I.; Battin, T. J.

    2015-12-01

    In fluvial ecosystems the alternation of deposition and resuspension of particles represents an important pathway for the downstream translocation of microbes and organic matter. Such particles can originate from algae and microbes, the spontaneous auto-aggregation of organic macromolecules (e.g., "river sown"), terrestrial detritus (traditionally classified as "particulate organic matter"), and erosive mineral and organo-mineral particles. The transport and retention of particles in headwater streams is associated with biofilms, which are surface-attached microbial communities. Whilst biofilm-particle interactions have been studied in bulk, a mechanistic understanding of these processes is lacking. Parallel macroscale/microscale observations are required to unravel the complex feedbacks between biofilm structure, coverage and the dynamics of deposition and resuspension. We used recirculating flume mesocosms to test how changes in biofilm structure affected the deposition and resuspension of clay-sized (< 10 μm) particles. Biofilms were grown in replicate 3-m-long recirculating flumes over variable lengths of time (0, 14, 21, 28, and 35) days. Fixed doses of fluorescent clay-sized particles were introduced to each flume and their deposition was traced over 30 minutes. A flood event was then simulated via a step increase in flowrate to quantify particle resuspension. 3D Optical Coherence Tomography was used to determine roughness, areal coverage and height of biofilms in each flume. From these measurements we characterised particle deposition and resuspension rates, using continuous time random walk modelling techniques, which we then tested as responses to changes in biofilm coverage and structure under both base-flow and flood-flow scenarios. Our results suggest that biofilm structural complexity is a primary control upon the retention and downstream transport of fine particles in stream mesocosms.

  6. Tribological Properties of Aluminum Alloy treated by Fine Particle Peening/DLC Hybrid Surface Modification

    Directory of Open Access Journals (Sweden)

    Nanbu H.

    2010-06-01

    Full Text Available In order to improve the adhesiveness of the DLC coating, Fine Particle Peening (FPP treatment was employed as pre-treatment of the DLC coating process. FPP treatment was performed using SiC shot particles, and then AA6061-T6 aluminum alloy was DLC-coated. A SiC-rich layer was formed around the surface of the aluminum alloy by the FPP treatment because small chips of shot particles were embedded into the substrate surface. Reciprocating sliding tests were conducted to measure the friction coefficients. While the DLC coated specimen without FPP treatment showed a sudden increase in friction coefficient at the early stage of the wear cycles, the FPP/DLC hybrid treated specimen maintained a low friction coefficient value during the test period. Further investigation revealed that the tribological properties of the substrate after the DLC coating were improved with an increase in the amount of Si at the surface.

  7. MAIN FACTORS IN PREPARATION OF ANTIBACTERIAL PARTICLES/PVC COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    Xuehua Chen; Chunzhong Li; Ling Zhang; Shoufang Xu; Qiuling Zhou; Yihua Zhu; Xianzhang Qu

    2004-01-01

    Zirconium phosphate containing silver was chosen as antibacterial particles in preparing antibacterial particles/PVC composite. The effect of surface property of the antibacterial particles and of their filler content on the properties of antibacterial particles/PVC composite was studied. The effect of the interfacial compatibility on mechanical properties of the composite was also discussed. Experimental results showed that the antibacterial PVC composite had good antibacterial property, reaching almost 100% bacteriostatic level at an antibacterial powder filler content of 1.5 phr.

  8. Preparation and Application as the Filler for Elastomers of Flake-Shaped Cellulose Particles and Nanofibers

    Science.gov (United States)

    Nagatani, Asahiro; Lee, Seung-Hwan; Endo, Takashi; Tanaka, Tatsuya

    Fibrous cellulose made from wood pulp was mechanically milled into flake-shaped cellulose particles(FS-CPs) using a planetary ball mill with additives under several conditions. The average particle diameter of the FS-CPs was ca. 15μm, and the particles were available in a variety of thicknesses by changing the kind of the additives used in the milling process. FS-CPs-reinforced olefinic thermoplastic elastomer composites were prepared under melt mixing and passed through an open roll to orient the particles. The tensile modulus of the composites with a compatibilizer increased with increasing the particle content. The damping properties of the composites improved, compared to the neat elastomer. On the other hand, the fibrous cellulose was suspended in water, followed by wet disk-milled to prepare cellulose nanofibers(CNFs). The wet ground products showed nanoscopic fine morphology. CNFs-reinforced natural rubber(NR) composites were prepared by mixing the water suspension of CNFs with NR latex using a homogenizer. Then, it was dried in an oven and mixed again with vulcanizing ingredients of rubber using an open roll. The tensile properties of the composites improved remarkably by the addition of small amount of CNFs.

  9. Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo

    Directory of Open Access Journals (Sweden)

    X.-F. Huang

    2012-06-01

    Full Text Available Shanghai, with a population of over 20 million, is the largest mega-city in China. Rapidly increasing industrial and metropolitan emissions have deteriorated its air quality in the past decades, with fine particle pollution as one of the major issues. However, systematic characterization of atmospheric fine particles with advanced measurement techniques has been very scarce in Shanghai. During 2010 Shanghai World Expo, we deployed a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS and a single particle soot photometer (SP2 in urban Shanghai between 15 May and 10 June 2010 to measure fine particles with a high time resolution. The 4-min resolution PM1 mass concentration ranged from 5.5 to 155 μg m−3, with an average of 29.2 μg m−3. On average, sulfate and organic matter (OM were the most abundant PM1 components, accounting for 33.3 and 28.7% of the total mass, respectively, while the fraction of nitrate showed an increasing trend with the increasing PM1 loading, indicating the photochemical nature of high fine particle pollution in Shanghai. Taking advantage of HR-ToF-AMS and SP2, OM was found to have an average OM/OC ratio (organic matter mass/organic carbon mass of 1.55 and black carbon (BC had an average number fraction of internally mixed BC of 41.2%. Positive matrix factorization (PMF analysis on the high resolution organic mass spectral dataset identified a hydrocarbon-like (HOA, a semi-volatile oxygenated (SV-OOA, and a low-volatility oxygenated (LV-OOA organic aerosol component, which on average accounted for 24.0, 46.8, and 29.2% of the total organic mass, respectively. The diurnal patterns of them with interesting time delay possibly implied a photochemical oxidizing process from HOA (and/or its concurrently emitted gaseous organic pollutants to SV-OOA to LV-OOA. Back trajectory analysis indicated that the northwesterly continental air mass represented the

  10. Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo

    Directory of Open Access Journals (Sweden)

    X.-F. Huang

    2012-01-01

    Full Text Available Shanghai, with a population of over 20 million, is the largest mega-city in China. Rapidly increasing industrial and metropolitan emissions have deteriorated its air quality in the past decades, with fine particle pollution as one of the major issues. However, systematic characterization of atmospheric fine particles with advanced measurement techniques has been very scarce in Shanghai. During 2010 Shanghai World Expo, we deployed a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS and a single particle soot photometer (SP2 in urban Shanghai between 15 May and 10 June 2010 to measure fine particles with a high time resolution. The 4-min resolution PM1 mass concentration ranged from 5.5 to 155 μg m−3, with an average of 29.2 μg m−3. On average, sulfate and organic matter (OM were the most abundant PM1 components, accounting for 33.3 and 28.7% of the total mass, respectively, while the fraction of nitrate showed an increasing trend with the increasing PM1 loading, indicating the photochemical nature of high fine particle pollution in Shanghai. Taking advantage of HR-ToF-AMS and SP2, OM was found to have an average OM/OC ratio (organic matter mass/organic carbon mass of 1.55 and black carbon (BC had an average number fraction of internally mixed BC of 41.2%. Positive matrix factorization (PMF analysis on the high resolution organic mass spectral dataset identified a hydrocarbon-like (HOA, a semi-volatile oxygenated (SV-OOA, and a low-volatility oxygenated (LV-OOA organic aerosol component, which on average accounted for 24.0, 46.8, and 29.2% of the total organic mass, respectively. The diurnal patterns of them with interesting time delay possibly implied a photochemical oxidizing process from HOA (and/or its concurrently emitted gaseous organic pollutants to SV-OOA to LV-OOA. Back trajectory analysis indicated that the northwesterly continental air mass represented the

  11. Ambient exposure to coarse and fine particle emissions from building demolition

    Science.gov (United States)

    Azarmi, Farhad; Kumar, Prashant

    2016-07-01

    Demolition of buildings produce large quantities of particulate matter (PM) that could be inhaled by on-site workers and people living in the neighbourhood, but studies assessing ambient exposure at the real-world demolition sites are limited. We measured concentrations of PM10 (≤10 μm), PM2.5 (≤2.5 μm) and PM1 (≤1 μm) along with local meteorology for 54 working hours over the demolition period. The measurements were carried out at (i) a fixed-site in the downwind of demolished building, (ii) around the site during demolition operation through mobile monitoring, (iii) different distances away from the demolition site through sequential monitoring, and (iv) inside an excavator vehicle cabin and on-site temporary office for engineers. Position of the PM instrument was continuously recorded using a Global Positioning System on a second basis during mobile measurements. Fraction of coarse particles (PM2.5-10) contributed 89 (with mean particle mass concentration, PMC ≈ 133 ± 17 μg m-3), 83 (100 ± 29 μg m-3), and 70% (59 ± 12 μg m-3) of total PMC during the fixed-site, mobile monitoring and sequential measurements, respectively, compared with only 50% (mean 12 ± 6 μg m-3) during the background measurements. The corresponding values for fine particles (PM2.5) were 11, 17 and 30% compared with 50% during background, showing a much greater release of coarse particles during demolition. The openair package in R and map source software (ArcGIS) were used to assess spatial variation of PMCs in downwind and upwind of the demolition site. A modified box model was developed to determine the emission factors, which were 210, 73 and 24 μg m-2 s-1 for PM10, PM2.5 and PM1, respectively. The average respiratory deposited doses to coarse (and fine) particles inside the excavator cabin and on-site temporary office increased by 57- (and 5-) and 13- (and 2-) times compared with the local background level, respectively. The monitoring stations in downwind direction

  12. Metal-bearing fine particle sources in a coastal industrialized environment

    Science.gov (United States)

    Mbengue, Saliou; Alleman, Laurent Y.; Flament, Pascal

    2017-01-01

    Fine (primary or secondary submicron particles and mechanical procedures in open air, or local traffic, which lead to the emission of coarser particles (> 1 μm). The trace elements As, Cd, Ni, Pb, Sb, V and Zn, characteristics of the local industrial activities display 60% to 85% of their mass in the submicron and ultrafine fractions and appear highly enriched, by reference to the crustal source. High atmospheric pressure periods, corresponding to northeasterly winds, induce the highest contributions of metalworking emissions and the highest PM2.5 concentrations (32.5 ± 11.9 μg·m- 3). A Principal Component Analysis of the dataset produces 7 factors associated to metallurgy-, steelworks-, oil processing-, coal combustion-, neighboring traffic-, dust resuspension- and sea salt-sources, that explain the obtained concentrations. A Multiple Linear Regression Analysis confirms that Fe-Mn alloy refining, iron- and steel-making are the main sources (> 40%) controlling metal concentrations in PM2.5. Less predictably, resuspended dust and fresh/aged sea salts are also significant contributors (≈ 20%). Considering the related health hazards, authorities should pay more attention to the exposure of people living in this area and the possible impact of fine particles in terms of public health.

  13. Profiling of fine- and coarse-mode particles with LIRIC (LIdar/Radiometer Inversion Code

    Directory of Open Access Journals (Sweden)

    M. R. Perrone

    2014-08-01

    Full Text Available The paper investigates numerical procedures that allow determining the dependence on altitude of aerosol properties from multi wavelength elastic lidar signals. In particular, the potential of the LIdar/Radiometer Inversion Code (LIRIC to retrieve the vertical profiles of fine and coarse-mode particles by combining 3-wavelength lidar measurements and collocated AERONET (AErosol RObotic NETwork sun/sky photometer measurements is investigated. The used lidar signals are at 355, 532 and 1064 nm. Aerosol extinction coefficient (αL, lidar ratio (LRL, and Ångstrom exponent (ÅL profiles from LIRIC are compared with the corresponding profiles (α, LR, and Å retrieved from a Constrained Iterative Inversion (CII procedure to investigate the LIRIC retrieval ability. Then, an aerosol classification framework which relies on the use of a graphical framework and on the combined analysis of the Ångstrom exponent (at the 355 and 1064 nm wavelength pair, Å(355, 1064 and its spectral curvature (ΔÅ = Å(355, 532–Å(532, 1064 is used to investigate the ability of LIRIC to retrieve vertical profiles of fine and coarse-mode particles. The Å-ΔÅ aerosol classification framework allows estimating the dependence on altitude of the aerosol fine modal radius and of the fine mode contribution to the whole aerosol optical thickness, as discussed in Perrone et al. (2014. The application of LIRIC to three different aerosol scenarios dealing with aerosol properties dependent on altitude has revealed that the differences between αL and α vary with the altitude and on average increase with the decrease of the lidar signal wavelength. It has also been found that the differences between ÅL and corresponding Å values vary with the altitude and the wavelength pair. The sensitivity of Ångstrom exponents to the aerosol size distribution which vary with the wavelength pair was responsible for these last results. The aerosol classification framework has revealed that

  14. Solution of population balance equations in applications with fine particles: Mathematical modeling and numerical schemes

    Science.gov (United States)

    Nguyen, T. T.; Laurent, F.; Fox, R. O.; Massot, M.

    2016-11-01

    The accurate description and robust simulation, at relatively low cost, of global quantities (e.g. number density or volume fraction) as well as the size distribution of a population of fine particles in a carrier fluid is still a major challenge for many applications. For this purpose, two types of methods are investigated for solving the population balance equation with aggregation, continuous particle size change (growth and size reduction), and nucleation: the extended quadrature method of moments (EQMOM) based on the work of Yuan et al. [52] and a hybrid method (TSM) between the sectional and moment methods, considering two moments per section based on the work of Laurent et al. [30]. For both methods, the closure employs a continuous reconstruction of the number density function of the particles from its moments, thus allowing evaluation of all the unclosed terms in the moment equations, including the negative flux due to the disappearance of particles. Here, new robust and efficient algorithms are developed for this reconstruction step and two kinds of reconstruction are tested for each method. Moreover, robust and accurate numerical methods are developed, ensuring the realizability of the moments. The robustness is ensured with efficient and tractable algorithms despite the numerous couplings and various algebraic constraints thanks to a tailored overall strategy. EQMOM and TSM are compared to a sectional method for various simple but relevant test cases, showing their ability to describe accurately the fine-particle population with a much lower number of variables. These results demonstrate the efficiency of the modeling and numerical choices, and their potential for the simulation of real-world applications.

  15. Modeling the injection of gas-liquid jets into fluidized bed of fine particles

    Energy Technology Data Exchange (ETDEWEB)

    Aryiapadi, S.; Berutti, F.; Briens, C.; Hulet, C. [Western Ontario University, Dept. of Chemical and Biochemical Engineeering, London, ON (Canada); Griffith, P. [Massachussetts Institute of Technology, Dept. of Mechanical Engineering, Cambridge, MA (United States)

    2003-08-01

    A simplified momentum-based approach to calculate the solid entrainment rate into a gas-liquid jet injected into a fluidized bed is described. The model is verified by a recently developed experimental technique. The paper also addresses correction factors to the initial momentum calculated from the homogenous model. The solids entrainment rates predicted by the model were found to be very close to experimentally obtained values. It is suggested that the model can be usefully employed in characterizing the behaviour of gas-liquid jets injected into fluidized beds of fine particles. 21 refs., 8 figs.

  16. Novel budesonide particles for dry powder inhalation (DPI) prepared using a microfluidic reactor coupled with ultrasonic spray freeze drying.

    Science.gov (United States)

    Saboti, Denis; Maver, Uroš; Chan, Hak-Kim; Planinšek, Odon

    2017-03-09

    Budesonide is a potent active pharmaceutical ingredient, often administered using respiratory devices such as metered dose inhalers (MDI), nebulizers and dry powder inhalers (DPI). Inhalable drug particles are conventionally produced by crystallization followed by milling. This approach tends to generate partially amorphous materials that require post-processing to improve the formulations' stability. Other methods involve homogenization or precipitation and often require the use of stabilizers, mostly surfactants. The purpose of this study was therefore to develop a novel method for preparation of fine budesonide particles using a microfluidic reactor coupled with ultrasonic spray freeze drying, and hence avoiding the need of additional homogenization or stabilizer use. A T-junction microfluidic reactor was employed to produce particle suspension (using an ethanol-water, methanol-water and an acetone-water system), which was directly fed into an ultrasonic atomization probe, followed by direct feeding to liquid nitrogen. Freeze drying was the final preparation step. The result were fine crystalline budesonide powders which, when blended with lactose and dispersed in an Aerolizer at 100 L/min, generated fine particle fraction in the range 47.6±2.8% to 54.9±1.8%, thus exhibiting a good aerosol performance. Subsequent sample analysis confirmed the suitability of the developed method to produce inhalable drug particles without additional homogenization or stabilizers. The developed method provides a viable solution for particle isolation in microfluidics in general.

  17. Source appointment of fine particle number and volume concentration during severe haze pollution in Beijing in January 2013.

    Science.gov (United States)

    Liu, Zirui; Wang, Yuesi; Hu, Bo; Ji, Dongsheng; Zhang, Junke; Wu, Fangkun; Wan, Xin; Wang, Yonghong

    2016-04-01

    Extreme haze episodes repeatedly shrouded Beijing during the winter of 2012-2013, causing major environmental and health problems. To better understand these extreme events, particle number size distribution (PNSD) and particle chemical composition (PCC) data collected in an intensive winter campaign in an urban site of Beijing were used to investigate the sources of ambient fine particles. Positive matrix factorization (PMF) analysis resolved a total of eight factors: two traffic factors, combustion factors, secondary aerosol, two accumulation mode aerosol factors, road dust, and long-range transported (LRT) dust. Traffic emissions (54%) and combustion aerosol (27%) were found to be the most important sources for particle number concentration, whereas combustion aerosol (33%) and accumulation mode aerosol (37%) dominated particle volume concentrations. Chemical compositions and sources of fine particles changed dynamically in the haze episodes. An enhanced role of secondary inorganic species was observed in the formation of haze pollution. Regional transport played an important role for high particles, contribution of which was on average up to 24-49% during the haze episodes. Secondary aerosols from urban background presented the largest contributions (45%) for the rapid increase of fine particles in the severest haze episode. In addition, the invasion of LRT dust aerosols further elevated the fine particles during the extreme haze episode. Our results showed a clear impact of regional transport on the local air pollution, suggesting the importance of regional-scale emission control measures in the local air quality management of Beijing.

  18. Decreases in elemental carbon and fine particle mass in the United States

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2011-01-01

    Full Text Available Observations at national parks and other remote sites show that average elemental carbon and fine particle mass concentrations in the United States both decreased by over 25% between 1990 and 2004. Percentage decreases in elemental carbon were much larger in winter than in summer. These data suggest that emissions controls have been effective in reducing particulate concentrations not only in polluted areas but also across the United States. Despite the reduction in elemental carbon, the simultaneous decrease in non-absorbing particles implies that the overall radiative forcing from these changes was toward warming. The use of a 2005 instead of 1990 as a baseline for climate-relevant emissions from the United States would imply a significantly lower baseline for aerosol emissions. The use of older data will overestimate the possibility for future reductions in warming due to black carbon controls.

  19. Decreases in elemental carbon and fine particle mass in the United States

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2011-05-01

    Full Text Available Observations at national parks and other remote sites show that average elemental carbon and fine particle mass concentrations in the United States both decreased by over 25 % between 1990 and 2004. Percentage decreases in elemental carbon were much larger in winter than in summer. These data suggest that emissions controls have been effective in reducing particulate concentrations not only in polluted areas but also across the United States. Despite the reduction in elemental carbon, the simultaneous decrease in non-absorbing particles implies that the overall radiative forcing from these changes was toward warming. The use of a 2005 instead of 1990 as a baseline for climate-relevant emissions from the United States would imply a significantly lower baseline for aerosol emissions. The use of older data will overestimate the possibility for future reductions in warming due to black carbon controls.

  20. The Influence of an Acoustic Field on the Bed Expansion of Fine Particles

    Institute of Scientific and Technical Information of China (English)

    Akash M. Langde; R.L.Sonolikar

    2011-01-01

    Fine particles are difficult to fluidize due to strong interparticle attraction.An attempt has been made to study the bed expansion of silica gel(dp=25μm) powder in presence of an acoustic field.A 135 mm diameter fluidized bed activated by an acoustic field with sound intensity up to 145 dB and frequency from 90 Hz to 170 Hz was studied.The effects of sound pressure level,sound frequency and particle loading on the bed expansion were investigated.Experimental results showed that,bed expansion was good in presence of acoustic field of particular frequency.In addition,it was observed that in presence of acoustic field the bed collapses slowly.

  1. Reduction of fine particle emissions from wood combustion with optimized condensing heat exchangers.

    Science.gov (United States)

    Gröhn, Arto; Suonmaa, Valtteri; Auvinen, Ari; Lehtinen, Kari E J; Jokiniemi, Jorma

    2009-08-15

    In this study, we designed and built a condensing heat exchanger capable of simultaneous fine particle emission reduction and waste heat recovery. The deposition mechanisms inside the heat exchanger prototype were maximized using a computer model which was later compared to actual measurements. The main deposition mechanisms were diffusio- and thermophoresis which have previously been examined in similar conditions only separately. The obtained removal efficiency in the experiments was measured in the total number concentration and ranged between 26 and 40% for the given pellet stove and the heat exchanger. Size distributions and number concentrations were measured with a TSI Fast mobility particle sizer (FMPS). The computer model predicts that there exists a specific upper limit for thermo- and diffusiophoretic deposition for each temperature and water vapor concentration in the flue gas.

  2. Preparation and Characterization of Carbon Foam Derived from Fine Coal and Phenolic Resin

    Directory of Open Access Journals (Sweden)

    Dodi Irwandi

    2016-12-01

    Full Text Available Carbon foam from fine coal and phenolic resin mixture had been prepared by heating in nitrogen atmosphere. The composition of fine coal in a mixture was 30, 35, 40, 45 and 50%. Physical and mechanical characters of carbon foam that were determined from each of these compositions were density, porosity, compressive strength, and oxidation resistance and thermal insulation. Microstructure was observed by scanning electron microscope (SEM. Thermal insulation was tested using an insulation index approach with Styrofoam for comparison. The result showed that the density and compressive strength were proportional to the composition, otherwise, the porosity. Oxidation resistance that was up to 45% composition still showed proportional value. Microstructure observations showed an irregular distribution of pore and uninform diameter. Insulation index of 34 to 50 °C showed almost the same values of all compositions and greater than styrofoam up to 50-150% which mean carbon foam had a better thermal insulation properties than styrofoam.

  3. Preparation of ferromagnetic metal fine fibers by organic gel-thermal reduction process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The organic gel-thermal reduction process was used for the preparation of ferromagnetic metal Ni, Co and Fe fine fibers from the raw materials of citric acid, lactic acid and metal salts. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of these gel precursors were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermo-gravimetric/differential scanning calorimetry and scanning electron microscopy. The results show that spinnability of gel largely depends on molecular structure of metal-carboxylate complex that is a linear-type structure formed in the gel. As a result, the gels exhibit a good spinnability. Metal Ni, Co and Fe fine fibers are featured with diameters of around 1 urn and a high aspect ratio up to 1×106.

  4. Characterization of Source Signatures of Fine Roadway Particles by Pyrolysis-GC-MS

    Science.gov (United States)

    van Bergen, S. K.; Holmén, B. A.

    2001-12-01

    Fine particulate matter, defined as particles with an aerodynamic diameter less than 2.5 μ m (PM2.5), is of growing concern due to its detrimental effects on human health and the environment. Roadway traffic generates a significant fraction of PM2.5 in urban areas. Since exposure to fine particles derived from mobile sources commonly occurs, understanding the physicochemical processes that contribute to the generation, transport and atmospheric reactivity of roadway PM is important. Factors that influence the properties of roadway PM include: the mass, number and size distribution of the particles as well as their chemical composition. These factors are partially determined by the sources of the roadway particles. The focus of this effort is to identify unique organic chemical profiles of known roadway sources of PM using a new rapid characterization technique. A pyrolysis GC-MS analytical method is being developed to uniquely characterize the sources of roadway PM2.5 such as brake dust, tire wear, and direct emissions from diesel and gasoline engines. The source profiles will be used in conjunction with measurements of the composition of ambient roadway PM to determine the importance of the various roadway sources. The advantages of this technique over conventional solvent extractions include: smaller (mg) sample mass requirements, short extraction times and minimal sample handing. Preliminary two-step pyrolysis results will be presented for PM samples from individual sources and an ambient roadway. Specific analytical issues that will be discussed include: modifications of commercial pyrolysis hardware to improve reproducibility; desorption versus pyrolysis; developing appropriate pyrolysis programs for heterogenous sample materials; and method detection limits.

  5. Fluorescent-magnetic Janus particles prepared via seed emulsion polymerization.

    Science.gov (United States)

    Kaewsaneha, Chariya; Bitar, Ahmad; Tangboriboonrat, Pramuan; Polpanich, Duangporn; Elaissari, Abdelhamid

    2014-06-15

    Anisotropic polymeric colloidal or Janus particles possessing simultaneous magnetic and fluorescent properties were successfully prepared via the swelling-diffusion or the in situ emulsion polymerization method. In the swelling-diffusion process, magnetic emulsions (an organic ferrofluid dispersed in aqueous medium) were synthesized and used for seeds of submicron magnetic Janus particles. After swelling the anisotropic particles obtained by 1-pyrene-carboxaldehyde fluorescent dye dissolved in tetrahydrofuran, well-defined fluorescent-magnetic Janus particles were produced. In the in situ emulsion polymerization, styrene monomer mixed with fluorescent dye monomers, i.e., 1-pyrenylmethyl methacrylate (PyMMA) or fluorescein dimethacrylate (FDMA), and an oil-soluble initiator (2,2'-azobis(2-isobutyronitrile)) were emulsified in the presence of magnetic seed emulsions. The confocal microscopic images showed the fluorescent-magnetic Janus particles with high fluorescent intensity when a fluorescent crosslinker monomer FDMA was employed.

  6. An investigation into the effects of particle texture, water content and parallel plates' diameters on rheological behavior of fine sediment

    Institute of Scientific and Technical Information of China (English)

    Masoumeh Moayeri Kashani; Lai Sai Hin; Shaliza Binti Ibrahim; Nik Meriam Binti Nik Sulaiman; Fang Yenn Teo

    2016-01-01

    Siltation, a phenomenon resulted from the presence of fine particles in an aqueous environment, dominated by silt and clay, is a known and common environmental issue worldwide. The accumulation of fine sediments engenders murky water with low oxygen levels, which leads to the death of aquatic life. Thus, investigating the physical and mechanical properties of fine sediment by rheological methods has expanded. Rheology is the science of deformation and flow of matter in stress. This survey investigates the rheological behavior of six samples of soil as the fine particles structure (D<63μm) from different regions of Malaysia by using a rotational rheometer with a parallel-plate measuring (using two sizes:25 mm and 50 mm) device to explore the flow and viscoelastic properties of fine particles. The samples were examined in two rheological curve and amplitude sweep test methods to investigate the effect of water content ratio, texture, and structure of particles on rheological properties. It was found that the content of fine sand, clay, and silt had an effect on the stiffness, structural stability, and shear behavior. Thus, the pseudoplastic and viscoelastic behavior are respectively shown. Moreover, the amount of fine sediments present in water i.e. the concentration of these particles, has a direct effect on the rheological curve. A reduction in viscosity of samples with higher concentrations of water has been observed. As a consequence, a considerable quantity of fine sediments are distributed within the water body and remain suspended over the time. As a result, the sedimentation rate slows down. It needs to be asserted that the storage modulus G’ , loss modulus G″, and yield point can vary depending on particle type. The G’ and G″were instigated for samples (70%and 45%concentrations) that demonstrated viscoelastic characteristics using the same rotational rheometer with a parallel-plate measuring device.

  7. Extra-fine particle inhaled corticosteroids, pharma-cokinetics and systemic activity in children with asthma.

    Science.gov (United States)

    Wolthers, Ole D

    2016-02-01

    During recent years, extra-fine particle inhaled corticosteroids with a median aerodynamic diameter ≤2 μm have been introduced in the treatment of asthma. The aim of this paper was to review pharmacokinetics and systemic activity of extra-fine particle hydroalkane pressurized metered dose inhaled (pMDI) ciclesonide and beclomethasone dipropionate in children. A literature review was performed. Systemic bioavailability of oral and pulmonary deposition of extra-fine ciclesonide and beclomethasone dipropionate was 52% and 82%, the half-life in serum 3.2 and 1.5 h and first-pass hepatic metabolism >99% and 60%, respectively. Secondary analyses of urine cortisol/creatinine excretion found no effects of ciclesonide pMDI between 40 and 320 μg/day or of beclomethasone dipropionate pMDI between 80 and 400 μg/day. Ciclesonide pMDI 40, 80 and 160 μg/day caused no effects on short-term lower leg growth rate as assessed by knemometry. Ciclesonide 320 μg/day was associated with a numerically short-term growth suppression equivalent to 30% which was similar to 25% and 36% suppression caused by beclomethasone dipropionate HFA and CFC 200 μg/day, respectively. Consistent with the differences in key pharmacokinetic features, beclomethasone dipropionate is associated with a systemic activity detected by knemometry at a lower dose than ciclesonide. Whether that correlates with a clinically important difference remains to be explored. Assessments of systemic activity of beclomethasone dipropionate 180 μg/day as well as head-to-head comparisons are warranted. Preferably, such studies should apply the sensitive method of knemometry. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Insights into metals in individual fine particles from municipal solid waste using synchrotron radiation-based micro-analytical techniques

    Institute of Scientific and Technical Information of China (English)

    Yumin Zhu; Hua Zhang; Liming Shao; Pinjing He

    2015-01-01

    Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW).In this study,we investigated fine particles of <2 mm,which are small fractions in MSW but constitute a significant component of the total heavy metal content,using bulk detection techniques.A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction.We also discussed the association,speciation and source apportionment of heavy metals.Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of <10 μm within the fine particles.Zn-Cu,Pb-Fe and Fe-Mn-Cr had significant correlations in terms of spatial distribution.The overlapped enrichment,spatial association,and the mineral phases of metals revealed the potential sources of fine particles from size-reduced waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles.The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products.

  9. Study on fine particles influence on sodium sulfite and oxygen gas-liquid reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Shuchang; Zhao, Bo; Wang, Shujuan; Zhuo, Yuqun; Chen, Changhe [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    Wet limestone scrubbing is the most common flue gas desulfurization process for control of sulfur dioxide emissions from the combustion of fossil fuels, and forced oxidation is a key part of the reaction. During the reaction which controlled by gas-liquid mass transfer, the fine particles' characteristic, size, solid loading and temperature has a great influence on gas-liquid mass transfer. In the present work is to explain how these factors influence the reaction between Na{sub 2}SO{sub 3} and O{sub 2} and find the best react conditions through experiment. The oxidation rate was experimentally studied by contacting pure oxygen with a sodium sulfite solution with active carbon particle in a stirred tank, and the system pressure drop was record by the pressure sensor. At the beginning the pressure is about 215 kPa and Na{sub 2}SO{sub 3} is about 0.5mol/L. The temperature is 40, 50, 60, 70, 80 C. Compare the results of no particles included, we can conclude that high temperature, proper loadings and smaller particles resulting in higher mass transfer coefficients k{sub L}.

  10. Ultrasmall iron particles prepared by use of sodium amalgam

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1990-01-01

    Ultrasmall magnetic particles containing iron have been prepared by reduction of iron ions by the use of sodium in mercury. Mössbauer studies at 12 K show that the magnetic hyperfine field is significantly larger than in bulk alpha-Fe, suggesting that an iron mercury alloy rather than alpha-Fe ha...

  11. Melt Adsorption as a Manufacturing Method for Fine Particles of Wax Matrices without Any Agglomerates.

    Science.gov (United States)

    Shiino, Kai; Fujinami, Yukari; Kimura, Shin-Ichiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2017-01-01

    We have focused on melt adsorption as manufacture method of wax matrices to control particles size of granules more easily than melt granulation. The purpose of present study was to investigate the possibility of identifying a hydrophobic material with a low melting point, currently used as a meltable binder of melt granulation, to apply as a novel carrier in melt adsorption. Glyceryl monostearate (GM) and stearic acid (SA) were selected as candidate hydrophobic materials with low melting points. Neusilin US2 (US2), with a particle diameter of around 100 µm was selected as a surface adsorbent, while dibasic calcium phosphate dihydrate (DCPD), was used as a non-adsorbent control to prepare melting granules as a standard for comparison. We prepared granules containing ibuprofen (IBU) by melt adsorption or melt granulation and evaluated the particle size, physical properties and crystallinity of granules. Compared with melt granulation using DCPD, melt adsorption can be performed over a wide range of 14 to 70% for the ratio of molten components. Moreover, the particle size; d50 of obtained granules was 100-200 µm, and these physical properties showed good flowability and roundness. The process of melt adsorption did not affect the crystalline form of IBU. Therefore, the present study has demonstrated for the first time that melt adsorption using a hydrophobic material, GM or SA, has the potential capability to control the particle size of granules and offers the possibility of application as a novel controlled release technique.

  12. The PM2.5 Fine Particle Background Network of the German Meteorological Service-First Results

    OpenAIRE

    Uwe Kaminski; Mathieu Fricker; Volker Dietze

    2013-01-01

    Since 2009, the measurement of the background concentration of the fine particle fraction has been a part of the climate-monitoring program of the German Meteorological Service (DWD). These particles are of high health relevance as a critical air pollutant affecting processes like the scattering and absorption of solar radiation and influencing cloud formation and visibility. At 12 weather stations, the coarse (2.5 to 10 l m) and the fine particle fractions (PM2.5) are measured by means of pa...

  13. Energy-Saving Vibration Impulse Coal Degradation at Finely Dispersed Coal-Water Slurry Preparation

    Directory of Open Access Journals (Sweden)

    Moiseev V.A.

    2015-01-01

    Full Text Available Theoretical and experimental research results of processes of finely dispersed coal-water slurry preparation for further generation of energetic gas in direct flow and vortex gas generator plants have been presented. It has been stated that frequency parameters of parabolic vibration impulse mill influence degradation degree. Pressure influence on coal parameters in grinding cavity has been proven. Experimental researches have proven efficiency of vibration impulse mill with unbalanced mass vibrator generator development. Conditions of development on intergranular walls of coal cracks have been defined.

  14. [Evaluation of Cellular Effects Caused by Lunar Regolith Simulant Including Fine Particles].

    Science.gov (United States)

    Horie, Masanori; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2015-06-01

    The National Aeronautics and Space Administration has announced a plan to establish a manned colony on the surface of the moon, and our country, Japan, has declared its participation. The surface of the moon is covered with soil called lunar regolith, which includes fine particles. It is possible that humans will inhale lunar regolith if it is brought into the spaceship. Therefore, an evaluation of the pulmonary effects caused by lunar regolith is important for exploration of the moon. In the present study, we examine the cellular effects of lunar regolith simulant, whose components are similar to those of lunar regolith. We focused on the chemical component and particle size in particular. The regolith simulant was fractionated to effects of fine regolith simulant whose primary particle size is 5.10 μm. These regolith simulants were applied to human lung carcinoma A549 cells at concentrations of 0.1 and 1.0 mg/ml. Cytotoxicity, oxidative stress and immune response were examined after 24 h exposure. Cell membrane damage, mitochondrial dysfunction and induction of Interleukin-8 (IL-8) were observed at the concentration of 1.0 mg/ml. The cellular effects of the regolith simulant at the concentration of 0.1 mg/ml were small, as compared with crystalline silica as a positive control. Secretion of IL-1β and tumor necrosis factor-α (TNF-α) was observed at the concentration of 1.0 mg/ml, but induction of gene expression was not observed at 24 h after exposure. Induction of cellular oxidative stress was small. Although the cellular effects tended to be stronger in the effects of lunar regolith simulant such as cell membrane damage, induction of oxidative stress and proinflammatory effect.

  15. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion

    Science.gov (United States)

    Tissari, Jarkko; Hytönen, Kati; Lyyränen, Jussi; Jokiniemi, Jorma

    Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg -1 (of dry wood burned)), carbon monoxide (CO) (120 g kg -1) and fine particle mass (PM 1) (2.7 g kg -1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9-9 g kg -1 TVOC, 28-68 g kg -1 CO and 0.6-1.6 g kg -1 PM 1. The emission of 12 PAHs (PAH 12) from the sauna stove was 164 mg kg -1 and consisted mainly of PAHs with four benzene rings in their structure. PAH 12 emission from other appliances was, on average, 21 mg kg -1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.

  16. The chemical composition of fine ambient aerosol particles in the Beijing area

    Science.gov (United States)

    Nekat, Bettina; van Pinxteren, Dominik; Iinuma, Yoshiteru; Gnauk, Thomas; Müller, Konrad; Herrmann, Hartmut

    2010-05-01

    The strong economical growth in China during the last few decades led to heavy air pollution caused by significantly increased particle emissions. The aerosol particles affect not only the regional air quality and visibility, but can also influence cloud formation processes and the radiative balance of the atmosphere by their optical and microphysical properties. The ability to act as Cloud Condensation Nuclei (CCN) is related to microphysical properties like the hygroscopic growth or the cloud droplet activation. The chemical composition of CCN plays an important role on these properties and varies strongly with the particle size and the time of day. Hygroscopic or surface active substances can increase the hygroscopicity and lower the surface tension of the particle liquid phase, respectively. The presence of such compounds may result in faster cloud droplet activation by faster water uptake. The DFG project HaChi (Haze in China) aimed at studying physical and chemical parameters of urban aerosol particles in the Beijing area in order to associate the chemical composition of aerosol particles with their ability to act as CCN. To this end, two measurement campaigns were performed at the Wuqing National Ordinary Meteorological Observing Station, which is a background site near Beijing. The winter campaign was realized in March 2009 and the summer campaign took place from mid July 2009 to mid August 2009. Fine particles with an aerodynamic diameter smaller than or equal 1 μm were continuously sampled for 24h over the two campaigns using a DIGITEL high volume sampler (DHA-80). The present contribution presents and discusses the results of the chemical characterization of the DIGITEL filters samples. The filters were analyzed for the mass concentration, inorganic ions and carbon sum parameters like elemental (EC), organic (OC) and water soluble organic carbon (WSOC). The WSOC fraction was further characterized for hygroscopic substances like low molecular

  17. [Investigation on the characteristics and space-time distribution of fine particles in the atmosphere of residential area in Shanghai City].

    Science.gov (United States)

    Zhao, Jinzhuo; Li, Li; Qian, Chunyan; Jiang, Rongfang; Song, Weimin

    2012-01-01

    To observe the ambient fine particle pollution and the trend of its space-time distribution in residential areas in Shanghai, and to explore the effects of vehicle exhaust emission on the ambient fine particle pollution. Two residential areas A and B were selected for monitoring the pollution of fine particles. Area A is a normal residential area and area B is closed to a main road with heavy traffic. Four monitoring sites were set in the distance of 0 m, 50 m, 100 m and 200 m to the roadside and on a place 1.5 - 1.8 m above the ground. The concentration of fine particles in the air were measured in April, July, October 2010 and Jan 2011 for 1l0 days in each month in both areas using SIDEPAK AM510 (TSI, USA) fine particle monitors. The pollution of fine particle was varied in different seasons (spring > winter > autumn > summer) and at different time (with two peaks at 8:00 AM and 19:00 PM, corresponding to the rush hours). The pollution of fine particles is higher in residential area B than that in area A. The concentration of fine particles was reduced with the increase of the distance to the roadside. The level of fine particles in residential areas is comparatively high in Shanghai, and the vehicle exhaust emissions have significant effects on the concentration of fine particles in the atmosphere of residential area.

  18. Environmental and health impacts of fine and ultrafine metallic particles: Assessment of threat scores

    Energy Technology Data Exchange (ETDEWEB)

    Goix, Sylvaine [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); Lévêque, Thibaut [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); ADEME (French Agency for Environment and Energy Management), 20 Avenue du Grésillé, BP 90406, 49004 Angers Cedex 01 (France); Xiong, Tian-Tian [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); Schreck, Eva [Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse (France); and others

    2014-08-15

    This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO{sub 4}, Sb{sub 2}O{sub 3}, and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}. Both cadmium compounds exhibited the highest threat score due to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb{sub 2}O{sub 3} threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management. - Highlights: • Seven micro- and nano- monometallic characterized particles were studied as references. • Bioaccessibility, eco and cytotoxicity, and oxidative potential assays were performed. • According to calculated threat scores: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}.

  19. Preparation of fine copper powders and their application in BME-MLCC

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The preparation of fine copper powders by chemical reduction method was investigated. The reaction of [Cu(NH3)4] 2+complex with hydrazine hydrate gives spherical monodispersed fine copper powders. The spherical copper powder with a uniform size of 3.5 ± 0.5 μm was processed to obtain flake copper powder having a uniform size of 8-10 μm, excellent dispersibility and uniform shape. The spherical copper powder of 2.5 ± 0.3 μm in size, flake copper, glass frit and vehicle were mixed to prepare copper paste,which was fired in 910-920℃ to obtain BME-MLCC (base metal multilayer ceramic capacitor) with a dense surface of end termination,high adhesion and qualified electrical behavior. Polarized light photo and SEM were employed to observe the copper end termination of BME-MLCC. The rough interface from the interfacial reaction between glass and chip gives high adhesion.

  20. Generation of hydroxyl radicals from ambient fine particles in a surrogate lung fluid solution.

    Science.gov (United States)

    Vidrio, Edgar; Phuah, Chin H; Dillner, Ann M; Anastasio, Cort

    2009-02-01

    While it has been hypothesized that the adverse health effects associated with ambient particulate matter (PM) are due to production of hydroxyl radical (*OH), few studies have quantified *OH production from PM. Here we report the amounts of *OH produced from ambient fine particles (PM2.5) collected in northern California and extracted in a cell-free surrogate lung fluid (SLF). On average, the extracted particles produced 470 nmol *OH mg(-1)-PM2.5 during our 15-month collection period. There was a clear seasonal pattern in the efficiency with which particles generated *OH, with highest production during spring and summer and lowest during winter. In addition, nighttime PM was typically more efficient than daytime PM at generating *OH. Transition metals played the dominant role in *OH production: on average (+/-sigma), the addition of desferoxamine (a chelator that prevents metals from forming *OH) to the SLF removed (90 +/- 5) % of *OH generation. Furthermore, based on the concentrations of Fe in the PM2.5 SLF extracts, and the measured yield of *OH as a function of Fe concentration, dissolved iron can account for the majority of *OH produced in most of our PM2.5 extracts.

  1. The rural carbonaceous aerosols in coarse, fine, and ultrafine particles during haze pollution in northwestern China.

    Science.gov (United States)

    Zhu, Chong-Shu; Cao, Jun-Ji; Tsai, Chuen-Jinn; Shen, Zhen-Xing; Liu, Sui-Xin; Huang, Ru-Jin; Zhang, Ning-ning; Wang, Ping

    2016-03-01

    The carbonaceous aerosol concentrations in coarse particle (PM10: Dp ≤ 10 μm, particulate matter with an aerodynamic diameter less than 10 μm), fine particle (PM2.5: Dp ≤ 2.5 μm), and ultrafine particle (PM0.133: Dp ≤ 0.133 μm) carbon fractions in a rural area were investigated during haze events in northwestern China. The results indicated that PM2.5 contributed a large fraction in PM10. OC (organic carbon) accounted for 33, 41, and 62 % of PM10, PM2.5, and PM0.133, and those were 2, 2.4, and 0.4 % for EC (elemental carbon) in a rural area, respectively. OC3 was more abundant than other organic carbon fractions in three PMs, and char dominated EC in PM10 and PM2.5 while soot dominated EC in PM0.133. The present study inferred that K(+), OP, and OC3 are good biomass burning tracers for rural PM10 and PM2.5, but not for PM0.133 during haze pollution. Our results suggest that biomass burning is likely to be an important contributor to rural PMs in northwestern China. It is necessary to establish biomass burning control policies for the mitigation of severe haze pollution in a rural area.

  2. Reconciling satellite aerosol optical thickness and surface fine particle mass through aerosol liquid water

    Science.gov (United States)

    Nguyen, Thien Khoi V.; Ghate, Virendra P.; Carlton, Annmarie G.

    2016-11-01

    Summertime aerosol optical thickness (AOT) over the southeast U.S. is sharply enhanced over wintertime values. This seasonal pattern is unique and of particular interest because temperatures there have not warmed over the past 100 years. Patterns in surface fine particle mass are inconsistent with satellite reported AOT. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with particle mass measurements at the surface by examining trends in aerosol liquid water (ALW), a particle constituent that scatters radiation and affects satellite AOT but is removed in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIAv2.1 to estimate ALW mass concentrations at Interagency Monitoring of PROtected Visual Environments sites using measured ion mass concentrations and North American Regional Reanalysis meteorological data. Excellent agreement between Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations AOT and estimated ALW provides a plausible explanation for the discrepancies in the geographical patterns of AOT and aerosol mass measurements.

  3. Production of De-asphalted Oil and Fine Asphalt Particles by Supercritical Extraction

    Institute of Scientific and Technical Information of China (English)

    赵锁奇; 许志明; 王仁安

    2003-01-01

    A continuous three-stage supercritical fluid extraction (SFE) process with a capacity of 1.0kg.h-1 was setup to extract petroleum residue by pentane to obtain more oil for further upgrading. A discharging system integrated to the bottom of the extractor was used to recover solvent as gas while asphalt was obtained as fine particles. The influence of operating conditions on the yield and quality of extracts, i.e., deasphalted oil (DAO) and resin, was studied in the range of temperature 150-220℃, pressure of 4.0-6.0 MPa and the mass ratio of solvent to oil feed (S/O) 2.5-5.0. The particle size distribution, apparent forms and the packing density, which vary with operating pressure, were measured. The particle structures were observed by SEM as well. With the modification to conventional processes, furnace can be eliminated for solvent recovery from asphalt phase, so as to reduce energy consumption.

  4. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m{sup 3} or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 {mu}g/cm{sup 2} of material which corresponds to about 10{mu}g/m{sup 3} of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5{mu}m. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs.

  5. Preparation and Characterization of Titania-silica Composite Particles by Pechini Sol-gel Method

    Directory of Open Access Journals (Sweden)

    Wu Yuanting

    2016-01-01

    Full Text Available Two Pechini sol-gel processes were used to prepare titania-silica composite particles. The dynamic oxidation behavior of the TiO2-SiO2 powders has been characterized by thermogravimetry-differential scanning calorimetry (TG-DTG-DSC. The crystal phase and microstructure of the composite particles were investigated by X-ray diffraction (XRD and field emission scanning electron microscope (FE-SEM. The effects of Si:Ti molar ratio and sol-gel process on the TiO2-SiO2 powders were studied. The preparation of the polymeric precursors can influence the morphology of obtained TiO2-SiO2 composite particles. The spherical TiO2-SiO2 composite particles which are 20 nm~400 nm in diameter appear in gel-1 system. However, the TiO2-SiO2 powders obtained by gel-2 system are irregular in shape and 2~15 μm in diameter which show a loose porous structure consisted of very fine granules.

  6. Surface nanostructure formation mechanism of 45 steel induced by supersonic fine particles pombarding

    Institute of Scientific and Technical Information of China (English)

    Dema Ba; Shining Ma; Changqing Li; Fanjun Meng

    2008-01-01

    By means of supersonic fine particles bombarding (SFPB), a nanostruetured surface layer up to 15 μm was fabricated on a 45 steel plate with ferrite and pearlite phases. To reveal the grain refinement mechanism of SFPB-treated 45 steel, microstructure features of various sections in the treated surface were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Grain size increases with an increase of depth from the treated surface. Plastic deformation and grain refinement processes are accompanied by an increase in strain. Plastic deformation in the proeuteetoid ferrite phases has precedence over the pearlite phases. Grain refinement in the ferrite phases involves: the onset of dis-location lines (Dls), dislocation tangles (DTs) and dense dislocation walls (DDWs) in the original grains; the formation of fine la-mellar and roughly equiaxed cells separated by DDWs; by dislocation annihilation and rearrangement, the transformation of DDWS into subboundaries and boundaries and the formation of submicron grains or subgrains; the successive subdivision of grains to finer and finer scale, resulting in the formation of highly misoriented nano-grains. By contrast, eutectoid cementite phase accommodated swain in a sequence as follows: onset of elongated, bended and shear deformation under deformation stress of ferrites, short and thin cementites with a width of about 20-50 nm and discontinuous length were formed. Shorter and thinner cementites were developed into ultra-fine pieces under the action of high density dislocation and strains. At the top surface, some cementites were decomposed under severe plastic deformation. Experimental evidences and analysis indicate that surface nanocrystallization of 45 steel results from dislocation activities, high swains and high strain rate are necessary for the formation of nanocrystallites.

  7. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere.

    Science.gov (United States)

    Lü, Senlin; Zhang, Rui; Yao, Zhenkun; Yi, Fei; Ren, Jingjing; Wu, Minghong; Feng, Man; Wang, Qingyue

    2012-01-01

    Ambient coarse particles (diameter 1.8-10 microm), fine particles (diameter 0.1-1.8 microm), and ultrafine particles (diameter chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 +/- 2.18, 8.82 +/- 3.52, and 2.02 +/- 0.41 microg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.

  8. Fine particle coal as a source of energy in small-user applications

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S.

    1990-11-01

    The use of fine particle micronized coal as a source of energy for home heating applications has been explored in previous years under this program in a 150,000 Btu/hr pulse combustor. Experimental studies have been conducted on the combustion characteristics of micronized coal and combustion efficiencies have been measured. Emission levels of NO{sub x} and SO{sub 2} have been measured. In this final year of the program, the combustion and emissions characteristics of micronized coal were further explored in terms of the influence of stoichiometric ratio and frequency effects. Also, a model has been proposed which has potential for incorporating the unsteady mixing occurring in pulse combustors. 31 refs., 21 figs., 3 tabs.

  9. Trace element concentrations on fine particles in the Ohio River Valley

    Energy Technology Data Exchange (ETDEWEB)

    Tuncel, S.G.; Gordon, G.E.; Olmez, I.; Parrington, J.R.; Shaw, R.W. Jr.; Paur, R.J.

    1986-04-01

    Trace element compositions of airborne particles are important for determining sources and behavior of regional aerosol, as emissions from major sources are characterized by their elemental composition patterns. The authors investigated airborne trace elements in a complex regional environment through application of receptor models. A subset (200) of fine fraction samples in the Ohio River Valley (ORV) and analyzed by X-ray fluorescence (XRF) were reanalyzed by instrumental neutron activation analysis (INAA). The combined data set, XRF plus INAA, was subjected to receptor-model interpretations, including chemical mass balances (CMBs) and factor analysis (FA). Back trajectories of air masses were calculated for each sampling period and used with XRF data to select samples to be analyzed by INAA.

  10. A comparative study of the number and mass of fine particles emitted with diesel fuel and marine gas oil (MGO)

    Science.gov (United States)

    Nabi, Md. Nurun; Brown, Richard J.; Ristovski, Zoran; Hustad, Johan Einar

    2012-09-01

    The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.

  11. Preparation and optimization of calcium fluoride particles for dental applications.

    Science.gov (United States)

    Koeser, Joachim; Carvalho, Thiago Saads; Pieles, Uwe; Lussi, Adrian

    2014-07-01

    Fluorides are used in dental care due to their beneficial effect in tooth enamel de-/remineralization cycles. To achieve a desired constant supply of soluble fluorides in the oral cavity, different approaches have been followed. Here we present results on the preparation of CaF2 particles and their characterization with respect to a potential application as enamel associated fluoride releasing reservoirs. CaF2 particles were synthesized by precipitation from soluble NaF and CaCl2 salt solutions of defined concentrations and their morphology analyzed by scanning electron microscopy. CaF2 particles with defined sizes and shapes could be synthesized by adjusting the concentrations of the precursor salt solutions. Such particles interacted with enamel surfaces when applied at fluoride concentrations correlating to typical dental care products. Fluoride release from the synthesized CaF2 particles was observed to be largely influenced by the concentration of phosphate in the solution. Physiological solutions with phosphate concentration similar to saliva (3.5 mM) reduced the fluoride release from pure CaF2 particles by a factor of 10-20 × as compared to phosphate free buffer solutions. Fluoride release was even lower in human saliva. The fluoride release could be increased by the addition of phosphate in substoichiometric amounts during CaF2 particle synthesis. The presented results demonstrate that the morphology and fluoride release characteristics of CaF2 particles can be tuned and provide evidence of the suitability of synthetic CaF2 particles as enamel associated fluoride reservoirs.

  12. Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India

    Science.gov (United States)

    Apte, Joshua, S.; Kirchstetter, Thomas W.; Reich, Alexander, H.; Deshpande, Shyam J.; Kaushik, Geetanjali; Chel, Arvind; Marshall, Julian D.; Nazaroff, William W.

    2011-08-01

    Concentrations of air pollutants from vehicles are elevated along roadways, indicating that human exposure in transportation microenvironments may not be adequately characterized by centrally located monitors. We report results from ˜180 h of real-time measurements of fine particle and black carbon mass concentration (PM 2.5, BC) and ultrafine particle number concentration (PN) inside a common vehicle, the auto-rickshaw, in New Delhi, India. Measured exposure concentrations are much higher in this study (geometric mean for ˜60 trip-averaged concentrations: 190 μg m -3 PM 2.5, 42 μg m -3 BC, 280 × 10 3 particles cm -3; GSD ˜1.3 for all three pollutants) than reported for transportation microenvironments in other megacities. In-vehicle concentrations exceeded simultaneously measured ambient levels by 1.5× for PM 2.5, 3.6× for BC, and 8.4× for PN. Short-duration peak concentrations (averaging time: 10 s), attributable to exhaust plumes of nearby vehicles, were greater than 300 μg m -3 for PM 2.5, 85 μg m -3 for BC, and 650 × 10 3 particles cm -3 for PN. The incremental increase of within-vehicle concentration above ambient levels—which we attribute to in- and near-roadway emission sources—accounted for 30%, 68% and 86% of time-averaged in-vehicle PM 2.5, BC and PN concentrations, respectively. Based on these results, we estimate that one's exposure during a daily commute by auto-rickshaw in Delhi is as least as large as full-day exposures experienced by urban residents of many high-income countries. This study illuminates an environmental health concern that may be common in many populous, low-income cities.

  13. NEXAFS microscopy studies of the association of hydrocarbon thin films with fine clay particles

    Energy Technology Data Exchange (ETDEWEB)

    Covelli, Danielle [Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N 5C9 (Canada); Hernandez-Cruz, Daniel [Brockhouse Institute for Material Research, McMaster University, Hamilton, ON, L8S 4M1 (Canada); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Haines, Brian M. [Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N 5C9 (Canada); Munoz, Vincente; Omotoso, Oladipo; Mikula, Randy [CANMET Energy Technology Centre Natural Resources Canada, Devon, AB, T9G 1A8 (Canada); Urquhart, Stephen [Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N 5C9 (Canada)], E-mail: stephen.urquhart@usask.ca

    2009-06-15

    The nature of organic species associated with clay minerals plays a significant role in several processes, from hydrocarbon recovery in oil sands to contaminated soil remediation and water treatment. In this work, we address the use of scanning transmission X-ray microscopy (STXM) in conjunction with near edge X-ray absorption fine structure (NEXAFS) spectroscopy to study the microstructure and chemistry of organic-clay associations in situ. A model system based on methylene blue and illite is used to explore the sensitivity of NEXAFS microscopy to these interactions, and to identify and resolve experimental challenges in these measurements. We find that sample contamination from X-ray induced photodeposition is a significant problem in STXM microscopy, but also that this problem can be substantially reduced with a liquid nitrogen cooled anticontaminator. With appropriate sample preparation and experimental procedures, we find that STXM microscopy is sensitive to thin carbon adsorbates on clay surfaces.

  14. Preparation of Entangled States of Three Particles by Adiabatic Passage

    Institute of Scientific and Technical Information of China (English)

    郭建友

    2002-01-01

    We propose a novel technique for the creation of entangled states of three particles, based upon an adiabatic passage induced by a suitably crafted time-dependent external field. We derive the corresponding adiabatic and bare conditions for the preparation of entangled states. We obtain the time evolutions of the energy of the system and the populations involving the initial state and target entangled state.

  15. Preparation of Panel and Charged Particles for Electrophoretic Display

    Science.gov (United States)

    Choi, Hyung Suk; Park, Jin Woo; Park, Lee Soon; Lee, Jung Kyung; Han, Yoon Soo; Kwon, Younghwan

    Studies on the formulation of photosensitive paste for transparent soft mold press (TSMP) method have been performed. With the optimum formulation of the photosensitive paste the box-type barrier rib with good flexibility and high solvent resistance was fabricated, suitable for the panel material of the electrophoretic display. Cationically-charged white particles were prepared by using TiO2 nanoparticles, silane coupling agent with amino groups, dispersant and acetic acid. The cationically charged TiO2 particles exhibited 74.09 mV of zeta potential and 3.11 × 10-5 cm2/Vs of mobility. Electrophoretic display fabricated with the charged TiO2 particles exhibited 10 V of low driving voltage and maximum contrast ratio (5.3/1) at 30 V.

  16. Preparation and Characterization of Nano-particle Substituted Barium Hexaferrite

    CERN Document Server

    Atassi, Yomen; Tally, Mohammad

    2014-01-01

    High density magnetic recording requires high coercivity magnetic media and small particle size. Barium hexaferrite has been considered as a leading candidate material because of its chemical stability, fairly large crystal anisotropy and suitable magnetic characteristics. In this work, we present the preparation of the hexagonal ferrite BaFe12O19 and one of its derivative; the Zn-Sn substituted hexaferrite by the chemical co-precipitation method. The main advantage of this method on the conventional glass-ceramic one, resides in providing a small enough particle size for magnetic recording. We demonstrate using the X-ray diffraction patterns that the particle size decreases when substituting the hexaferrite by the Zn-Sn combination. This may improve the magnetic properties of the hexaferrite as a medium for HD magnetic recording

  17. Fine granules showing sustained drug release prepared by high-shear melt granulation using triglycerin full behenate and milled microcrystalline cellulose.

    Science.gov (United States)

    Aoki, Hajime; Iwao, Yasunori; Uchimoto, Takeaki; Noguchi, Shuji; Kajihara, Ryusuke; Takahashi, Kana; Ishida, Masayuki; Terada, Yasuko; Suzuki, Yoshio; Itai, Shigeru

    2015-01-30

    This study aimed to prepare fine granules with a diameter less than 200μm and sustained drug release properties by melt granulation. Triglycerin full behenate (TR-FB) was examined as a new meltable binder (MB) by comparison of its properties with those of glycerin monostearate (GM), widely used as MB. The effect of milling microcrystalline cellulose (MCC), an excipient for melt granulation, on the granule properties was also investigated. TR-FB was more stable during heating and storage than GM, and produced smaller granules with narrower particle size distribution, larger yield in the 106-200μm range, uniform roundness and better sustained drug release profile than those prepared with GM. Granules prepared with milled MCC had almost the same physicochemical properties as those produced with intact MCC. However, milled MCC produced granules with a more rigid structure and smaller void space than intact MCC. Consequently, the granules produced with milled MCC showed better sustained drug release behavior than those prepared with intact MCC. We successfully prepared fine granules with sustained drug release properties and diameter of less than 200μm using TR-FB and milled MCC. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The green synthesis of fine particles of gold using an aqueous extract of Monotheca buxifolia (Flac.)

    Science.gov (United States)

    Anwar, Natasha; Khan, Abbas; Shah, Mohib; Azam, Andaleeb; Zaman, Khair; Parven, Zahida

    2016-12-01

    This study deals with the synthesis and physicochemical investigation of gold nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of tetrachloroauric acid with the plant extract, gold nanoparticles were rapidly fabricated. The synthesized particles were characterized by UV-Vis spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AuNPs was confirmed by noting the change in color through visual observations as well as via UV-Vis spectroscopy. UV‒Vis spectrum of the aqueous medium containing gold nanoparticles showed an absorption peak at around 540 nm. FTIR was used to identify the chemical composition of gold nanoparticles and Au-capped plant extract. The presence of elemental gold was also confirmed through EDX analysis. SEM analysis of the gold nanoparticles showed that they have a uniform spherical shape with an average size in the range of 70-78 nm. This green system showed to be better capping and stabilizing agent for the fine particles. Further, the antioxidant activity of Monotheca buxifolia (Flac.) extract and Au-capped with the plant extract was also evaluated using FeCl3/K3[Fe(CN)]6 in vitro assay.

  19. Multi-scale comparison of the fine particle removal capacity of urban forests and wetlands

    Science.gov (United States)

    Zhang, Zhenming; Liu, Jiakai; Wu, Yanan; Yan, Guoxin; Zhu, Lijuan; Yu, Xinxiao

    2017-04-01

    As fine particle (FP) pollution is harmful to humans, previous studies have focused on the mechanisms of FP removal by forests. The current study aims to compare the FP removal capacities of urban forests and wetlands on the leaf, canopy, and landscape scales. Water washing and scanning electron microscopy are used to calculate particle accumulation on leaves, and models are used to estimate vegetation collection, sedimentation, and dry deposition. Results showed that, on the leaf scale, forest species are able to accumulate more FP on their leaf surface than aquatic species in wetlands. On the canopy scale, horizontal vegetation collection is the major process involved in FP removal, and the contribution of vertical sedimentation/emission can be ignored. Coniferous tree species also showed stronger FP collection ability than broadleaf species. In the landscape scale, deposition on the forest occurs to a greater extent than that on wetlands, and dry deposition is the major process of FP removal on rain-free days. In conclusion, when planning an urban green system, planting an urban forest should be the first option for FP mitigation.

  20. Cooling of an internal-heated debris bed with fine particles

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.L.; Sehgal, B.R. [Royal Institute of Technology, Div. of Nuclear Power Safety, Stockholm (Sweden)

    2001-07-01

    In this paper, an analytical model on dryout heat flux of ex-vessel debris beds with fines particles under top flooding conditions has been developed. The parametric study is performed on the effect of the stratification of the debris beds on the dryout heat flux. The calculated results show that the stratification configuration of the debris beds with smaller particles and lower porosity layer resting on the top of another layer of the beds has profound effect on the dryout heat flux for the debris beds both with and without a downcomer. The enhancement of the dryout heat flux by the downcomer is significant. The efficiency of the single downcomer on the enhancement of the dryout heat flux is also analyzed. This, in general, agrees well with experimental data. The model is also employed to perform the assessment on the coolability of the ex-vessel debris bed under representative accidental conditions. One conservative case is chosen, and it is found that the downcomer could be efficient measure to cool the debris bed and hence terminate the severe accident. (authors)

  1. Effects of oral administration of titanium dioxide fine-sized particles on plasma glucose in mice.

    Science.gov (United States)

    Gu, Ning; Hu, Hailong; Guo, Qian; Jin, Sanli; Wang, Changlin; Oh, Yuri; Feng, Yujie; Wu, Qiong

    2015-12-01

    Titanium dioxide (TiO2) is an authorized additive used as a food colorant, is composed of nano-sized particles (NP) and fine-sized particles (FP). Previous study reported that oral administration of TiO2 NPs triggers an increase in plasma glucose of mice. However, no previous studies have focused on toxic effects of TiO2 FPs on plasma glucose homeostasis following oral administration. In the current study, mice were orally administered TiO2 FPs greater than 100 nm in size (64 mg/kg body weight per day), and effects on plasma glucose levels examined. Our results showed that titanium levels was not changed in mouse blood, livers and pancreases after mice were orally administered TiO2 FPs. Biochemical analyzes showed that plasma glucose and ROS levels were not affected by TiO2 FPs. Histopathological results showed that TiO2 FPs did not induce pathology changes in organs, especially plasma glucose homeostasis regulation organs, such as pancreas and liver. Western blotting showed that oral administration of TiO2 FPs did not induce insulin resistance (IR) in mouse liver. These results showed that, TiO2 FPs cannot be absorbed via oral administration and affect plasma glucose levels in mice.

  2. Method for the removal of smut, fine dust and exhaust gas particles, particle catch arrangement for use in this method and use of the particle catch arrangement to generate a static electric field

    NARCIS (Netherlands)

    Ursem, W.N.J.; Marijnissen, J.C.; Roos, R.A.

    2007-01-01

    This inventions provides a method for the removal of smut, fine dust and exhaust gas particles from polluted air comprising providing a particle catch arrangement with a charged surface, the particle catch arrangement being arranged to generate a static electric field, wherein the electric field is

  3. Preparation of Strontium Bismuth Tantalum (SBT) Fine Powder by Sol-Gel Process Using Bismuth Subnitrate as Bismuth Source

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Strontium bismuth tantalum (SBT) fine power was prepared by Sol-Gel method. Pentaethoxy tantalum, strontium acetate and bismuth subnitrate were used as raw materials, and were dissolved in proper order in ethylene glycol to form transparent sol. The mixed precursor was dried at 80°C and annealed at 800°C for 1 h. Crystallized nanometer sized SBT fine powder was obtained and characterized by XRD.

  4. Preparation of ferromagnetic binary alloy fine fibers byorganic gel-thermal reduction process

    Institute of Scientific and Technical Information of China (English)

    SHEN Xiang-qian; CAO Kai; ZHOU Jian-xin

    2006-01-01

    Ferromagnetic metal fibers with a high aspect ratio (length/diameter) are attractive for use as high performance electromagnetic interference shielding materials. Ferromagnetic binary alloy fine fibers of iron-nickel, iron-cobalt and cobalt-nickel were prepared by the organic gel-thermal reduction process from the raw materials of critic acid and metal salts. These alloy fibers synthesized were featured with a diameter of about 1 μm and a length as long as 1 m. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of the gel precursors were characterized by FTIR, XRD, TG/DSC and SEM. The gel spinnability largely depends on the molecular structure of metal- carboxylates formed during the gel formation. The gel consisting of linear-type structural molecules shows good spinnability.

  5. Preparation and Photocatalytic Activity of TiO2/Fine Char for Removal of Rhodamine B

    Directory of Open Access Journals (Sweden)

    Mingjie Ma

    2015-01-01

    Full Text Available TiO2/fine char (FC photocatalyst was prepared via sol-gel method with tetrabutyl titanate as the precursor and FC as the carrier. The structural property of TiO2/FC photocatalyst was investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM, and the photocatalytic activity of TiO2/FC was evaluated by photocatalytic degradation of rhodamine B (RhB aqueous solution under UV light irradiation. The results showed that TiO2 was successfully coated on the surface of FC, and the TiO2/FC photocatalyst had better photocatalytic efficiency and stability for degradation of RhB under UV light illumination as compared to that of the pure TiO2 and FC. The study provided a novel way for the application of FC to the photocatalytic degradation of organic wastes.

  6. Differential effects of fine and coarse particles on daily emergency cardiovascular hospitalizations in Hong Kong

    Science.gov (United States)

    Qiu, Hong; Yu, Ignatius Tak-sun; Wang, Xiaorong; Tian, Linwei; Tse, Lap Ah; Wong, Tze Wai

    2013-01-01

    Few studies have investigated the relationship of hospital admissions for cardiovascular diseases with fine (PM2.5: particles with an aerodynamic diameter less than 2.5 μm) and coarse particles (PMc: particles with an aerodynamic diameter between 2.5 and 10 μm) simultaneously. We aimed to estimate the differential effects of PM2.5 and PMc on emergency hospital admissions for cardiovascular diseases, after controlling for the gaseous pollutants. We conducted a time series analysis in Hong Kong using daily emergency hospital admissions for cardiovascular diseases, PM2.5 and PMc concentrations from January 2000 to December 2005. PMc concentrations were estimated by subtracting PM2.5 from PM10 measurements. Generalized additive Poisson models allowing overdispersion and autocorrelation were used to examine the effects of PM2.5 and PMc simultaneously, adjusting for time trends, weather conditions, influenza outbreaks, and gaseous pollutants. In two-pollutant model, an interquartile range (IQR) increase in the 2-day moving average (lag01) concentration of PM2.5 and PMc corresponded to 1.86% (95% CI: 0.85%, 2.88%) and -0.16% (95% CI: -1.07%, 0.76%) change of emergency hospital admissions for total circulatory diseases respectively. Results were sensitive to further inclusion of nitrogen dioxide but not of ozone and sulfur dioxide. We did not find any effects of PMc on circulatory hospitalizations independent of PM2.5. In conclusion, we confirmed the stronger and significant adverse effects of PM2.5, but no independent effect of PMc on emergency cardiovascular hospitalizations. The biological mechanisms underlying the differential effects of PM2.5 and PMc on cardiovascular diseases were discussed.

  7. Methanol oxidation at platinized copper particles prepared by galvanic replacement

    Directory of Open Access Journals (Sweden)

    Ioanna Mintsouli

    2016-04-01

    Full Text Available Bimetallic Pt-Cu particles have been prepared by galvanic replacement of Cu precursor nanoparticles, upon the treatment of the latter with a chloro-platinate acidic solution. The resulting particles, typically a few tens of nm large, were supported on high surface area carbon (Vulcan® XC–72R, Cabot and tested as electrodes. Surface electrochemistry in deaerated acid solutions was similar to that of pure Pt, indicating the existence of a Pt shell (hence the particles are denoted as Pt(Cu. Pt(Cu/C supported catalysts exhibit superior carbon monoxide and methanol oxidation activity with respect to their Pt/C analogues when compared on a per electroactive surface area basis, due to the modification of Pt activity by Cu residing in the particle core. However, as a result of large particle size and agglomeration phenomena, Pt(Cu/C are still inferior to Pt/C when compared on a mass specific activity basis.

  8. Infrared reflectance spectra: Effects of particle size, provenance and preparation

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, James E.; Johnson, Timothy J.

    2014-09-22

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  9. Thermal relaxation of interacting fine magnetic particles - field-cooled and zero-field-cooled magnetization variation

    Energy Technology Data Exchange (ETDEWEB)

    Jing Ju Lu; Hong Yuan Deng; Huei Li Huang E-mail: hlhuang@phys.ntu.edu.tw

    2000-02-01

    Dipole interaction makes average energy barrier of magnetic fine particles for thermal relaxation reduced while the corresponding blocking temperature distribution is a function of both dipolar interaction strength and particle size distribution of the system. Flatness and fast drop-off of the {lambda}-shape behavior of the field-cooled and zero-field-cooled magnetization varies with both dipolar intereaction strength and field level applied.

  10. Relationship between the composition of fine dust particles in the air and lung function in school children

    NARCIS (Netherlands)

    van Schayck, C.P.; Hogervorst, J.G.F.; de Kok, T.M.C.M.; Briede, J.J.; Wesseling, G.J.; Kleinjans, J.C.S.

    2006-01-01

    OBJECTIVE: To determine whether or not there is a relationship between the lung function of school children and the ability of fine dust particles in the air to generate radicals. DESIGN: Descriptive. METHOD: Six primary schools in locations with different traffic volumes were selected in

  11. Relationship between the composition of fine dust particles in the air and lung function in school children

    NARCIS (Netherlands)

    van Schayck, C.P.; Hogervorst, J.G.F.; de Kok, T.M.C.M.; Briede, J.J.; Wesseling, G.J.; Kleinjans, J.C.S.

    2006-01-01

    OBJECTIVE: To determine whether or not there is a relationship between the lung function of school children and the ability of fine dust particles in the air to generate radicals. DESIGN: Descriptive. METHOD: Six primary schools in locations with different traffic volumes were selected in Maastricht

  12. First phase monitoring studies of simulated benthic disturbance delineating movement of fine particles in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    . The travel effects of INDEX plume appears to be localized and confined within and around the disturbed zone (DZ) as resettlement of fine particles from the benthic plume was traced up to 2 km south and 12 to 18 km north of the DZ. The evidence does...

  13. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    Science.gov (United States)

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  14. The influence of fine char particles burnout on bed agglomeration during the fluidized bed combustion of a biomass fuel

    Energy Technology Data Exchange (ETDEWEB)

    Scala, Fabrizio; Chirone, Riccardo [Istituto di Ricerche sulla Combustione, CNR, P.le V. Tecchio, 80-80125 Naples (Italy); Salatino, Piero [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, P.le V. Tecchio, 80-80125 Naples (Italy)

    2003-11-15

    The combustion of biomass char in a bubbling fluidized bed is hereby addressed, with specific reference to the influence that the combustion of fine char particles may exert on ash deposition and bed agglomeration phenomena. Experiments of steady fluidized bed combustion (FBC) of powdered biomass were carried out with the aim of mimicking the postcombustion of attrited char fines generated in the fluidized bed combustion of coarse char. Experimental results showed that the char elutriation rate is much smaller than expected on the basis of the average size of the biomass powder and of the carbon loading in the combustor. Samples of bed material collected after prolonged operation of the combustor were characterized by scanning electron microscopy (SEM)-EDX analysis and revealed the formation of relatively coarse sand-ash-carbon aggregates. The phenomenology is consistent with the establishment of a char phase attached to the bed material as a consequence of adhesion of char fines onto the sand particles. Combustion under sound-assisted fluidization conditions was also tested. As expected, enhancement of fines adhesion on bed material and further reduction of the elutriation rate were observed. Experimental results are interpreted in the light of a simple model which accounts for elutriation of free fines, adhesion of free fines onto bed material and detachment of attached fines by attrition of char-sand aggregates. Combustion of both free and attached char fines is considered. The parameters of the model are assessed on the basis of the measured carbon loadings and elutriation rates. Model computations are directed to estimate the effective size and the peak temperature of char-sand aggregates. The theoretical estimates of the effective aggregate size match fairly well those observed in the experiments.

  15. Fireplace and woodstove fine particle emissions from combustion of western Mediterranean wood types

    Science.gov (United States)

    Alves, Célia; Gonçalves, Cátia; Fernandes, Ana Patrícia; Tarelho, Luís; Pio, Casimiro

    2011-08-01

    Wood from seven species of trees grown in the Portuguese forest ( Pinus pinaster, Eucalyptus globulus, Quercus suber, Acacia longifolia, Quercus faginea, Olea europea and Quercus ilex rotundifolia), and briquettes produced from forest biomass waste were burned in a fireplace and in a woodstove to determine the chemical composition of fine particle (PM 2.5) emissions. Samples were analysed for organic and elemental carbon (OC/EC), water soluble ions (Na +, NH 4+, K +, Mg 2+, Ca 2+, Cl -, NO 3- and SO 42-) and 67 elements. The PM 2.5 emission factors (g kg - 1 fuel burned, dry basis) were in the ranges 9.9-20.2 and 4.2-16.3, respectively, for the fireplace and the woodstove. Organic carbon contributed to about 50% of the fine particle mass in the emissions from every wood species studied in both burning appliances. The carbonaceous component of PM 2.5 was dominated by organic carbon, accounting for more than 85% of the total carbon (TC): OC/TC ranged from 0.85 to 0.96 (avg. 0.92) for the fireplace and from 0.86 to 0.97 (avg. 0.93) for the woodstove. The water-soluble ions accounted for 0.64 to 11.3% of the PM 2.5 mass emitted from the fireplace, whereas mass fractions between 0.53 and 13.6% were obtained for the woodstove. The golden wattle wood smoke showed a much higher ionic content than the emissions from the other wood types. Trace elements represented 0.4 to 2.5% and 0.2 to 2.2% of the PM 2.5 mass emitted, respectively, from the fireplace and the woodstove, which corresponded to average total emissions of 132 ± 77.3 mg kg - 1 and 93.4 ± 60.8 mg kg - 1 of wood burned. Among these, K, Pb, Al, Mn and Sr were present in all samples. From the emission profiles of the individual experiments, composite wood combustion profiles are suggested with the aid of a cluster analysis.

  16. Asymmetric Bidirectional Controlled Remote State Preparation by Using a Seven-Particle Entangled State

    Science.gov (United States)

    Sang, Zhi-wen

    2017-07-01

    We demonstrate that a seven-particle entangled state can be used to realize the deterministic asymmetric bidirectional controlled remote state preparation. That is to say Alice can remotely prepare an arbitrary known single-particle state for Bob and at the same time Bob can remotely prepare an arbitrary known two-particle state for Alice with the help of the supervisor Charlie. In our scheme, only single-particle projective measurements and two-particle projective measurement are needed.

  17. Preparation of porous carbon particle with shell/core structure

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available Porous carbon particles with a shell/core structure have been prepared successfully by controlled precipitation of the polymer from droplets of oil-in-water emulsion, followed by curing and carbonization. The droplets of the oil phase are composed of phenolic resin (PFR, a good solvent (ethyl acetate and porogen (Poly(methyl methacrylate, PMMA. The microstructure was characterized in detail by scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, and thermo gravimetric analysis (TGA. The obtained carbon particles have a capsular structure with a microporous carbon shell and a mesoporous carbon core. The BET surface area and porous volume are calculated to be 499 m2g-1 and 0.56 cm3g-1, respectively. The effects of the amount of porogen (PMMA, co-solvent (acetone and surfactant on the resultant structure were studied in detail.

  18. STUDY ON PREPARATION OF UNIFORM POLYSTYRENE HOLLOW PARTICLES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    IntmductionHOllow Particles have many attractivecharacteristiCS, for example, low dewi and thermalinsulation due to itS small air void, and Ope opacitywhich is used for paint formulation, resin comPOrts,and face foundation. They can be used in variousfields such as Paint, ink, and paper industrics. Hollowparticles have been Prepared by utilizing Phaseseparation in the Presence Of a cyDSS-linking agent byseeded POlymerization. Okubo et al.lll used their"dynamic swelling teChaique" followed by seededPOlymeriz...

  19. Preparation of Silver-Coated Polystyrene Composite Particles

    Institute of Scientific and Technical Information of China (English)

    陈卓; 詹鹏; 章建辉; 王振林; 章维益; 闵乃本

    2003-01-01

    We report a feasible approach to the preparation of monodispersed metal-shell composite microspheres based on a combination of surface reaction and surface seeding techniques. The method was implemented for coating polystyrene (PS) spheres with silver shell having a variable thickness by controlling the amount of reagents in the reaction procedure. These composite spherical particles in dimensions of the submicrometer range may become attractive building blocks for the creation of metallo-dielectric photonic band gap materials when they are organized into crystals.

  20. Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks.

    Science.gov (United States)

    Muddle, Joanna; Kirton, Stewart B; Parisini, Irene; Muddle, Andrew; Murnane, Darragh; Ali, Jogoth; Brown, Marc; Page, Clive; Forbes, Ben

    2017-01-01

    Dry powder inhalers are increasingly popular for delivering drugs to the lungs for the treatment of respiratory diseases, but are complex products with multivariate performance determinants. Heuristic product development guided by in vitro aerosol performance testing is a costly and time-consuming process. This study investigated the feasibility of using artificial neural networks (ANNs) to predict fine particle fraction (FPF) based on formulation device variables. Thirty-one ANN architectures were evaluated for their ability to predict experimentally determined FPF for a self-consistent dataset containing salmeterol xinafoate and salbutamol sulfate dry powder inhalers (237 experimental observations). Principal component analysis was used to identify inputs that significantly affected FPF. Orthogonal arrays (OAs) were used to design ANN architectures, optimized using the Taguchi method. The primary OA ANN r(2) values ranged between 0.46 and 0.90 and the secondary OA increased the r(2) values (0.53-0.93). The optimum ANN (9-4-1 architecture, average r(2) 0.92 ± 0.02) included active pharmaceutical ingredient, formulation, and device inputs identified by principal component analysis, which reflected the recognized importance and interdependency of these factors for orally inhaled product performance. The Taguchi method was effective at identifying successful architecture with the potential for development as a useful generic inhaler ANN model, although this would require much larger datasets and more variable inputs.

  1. Effects of supersonic fine particle bombarding on thermal cyclic failure lifetime of thermal barrier coating

    Institute of Scientific and Technical Information of China (English)

    CHEN Ya-jun; LIN Xiao-ping; WANG Zhi-ping; WANG Li-jun; JI Zhao-hui; DONG Yun

    2010-01-01

    Thermal barrier coating(TBC)consisting of a NiCoCrAlY bond coat(BC)and a ZrO2-8 wt.%Y2O3 topcoat(TC)was fabricated on the nickel-base supcralloy by air plasma spray(APS).The BC was trea-ted by supersonic fine particle bombarding(SFPB).Thermal cyclic failure and residual stress in thermally grown oxide(TGO)scale were studied by SEM with EDS and ruby fluorescence spectroscopy(RFS).As shown in the results,after treated by SFPB,thickening of TGO was relatively slow,which reduced the level of growth stress.The TBC with SFPB treatment was still remained well undergoing 350 times of thermal cycle.However,after thermal cycle with the same times,the separation of TC was observed in TBC without SFPB treatment.The residual stress analysis by RFS showed that the residual stress of SFPB-treated TBC increased with the increasing number of thermal cycle.The residual stress of conventional TBC reached a value of 650MPa at 350 times of cycle and that of SFPB-treated TBC only reached 532 MPa at 400 times of cycle.The BC with SFPB treatment after 400 times of cycle was analyzed by RFS,the high stress value was not observed in local thickened region of TGO.Thermal cycling resistance of TBC can be improved by the SFPB technology.

  2. Fine particles and oxidant pollution: developing an agenda for cooperative research.

    Science.gov (United States)

    Hidy, G M; Hales, J M; Roth, P M; Scheffe, R

    2000-04-01

    This paper describes a background for the North American Research Strategy for Tropospheric Ozone (NARSTO) cooperative program integrating studies of O3 and PM2.5. It discusses several important aspects for rationalizing NARSTO's trinational investigative approach, including (1) an outlook on the state of knowledge about fine particles in the troposphere and their origins in Canada, Mexico, and the United States; (2) the need for enhancement and strengthening of key field measurements in relation to tropospheric chemistry and a health effects component; and (3) the use of a central theme for advancing air quality modeling using evolving techniques to integrate and guide key process-oriented field campaigns. The importance of organizing a scientific program to acquire "policy-relevant" information is stressed, noting cooperative research directions that address combined PM2.5 and O3 issues, illustrated through exploration of hypothetical pathways of PM2.5 response to choices of O3 and PM precursor emission reductions. The information needed for PM2.5 research is noted to intersect in many cases with those of O3, but diverge in other cases. Accounting for these distinctions is important for developing NARSTO's strategy over the next decade.

  3. Probing the nature of the contact between fine particles by using ultrasound propagation

    Institute of Scientific and Technical Information of China (English)

    Antonio Castellanos; Xiaoping Jia; Carlos Soria-Hoyo; Jose Manuel Valverde

    2011-01-01

    The propagation velocity (vs) of an ultrasonic signal through a granular material depends on the type of interparticle contact.For noncohesive glass beads,a power law behavior vs ασc1/6 for consolidation stresses applied (ρc) above 1 MPa has been measured in previous work.This equation is compatible with Hertz's interaction law between elastic solids.In the present work,we have tested the propagation velocity of ultrasound signals through a sample of fine powder.The tensile strength and compactivity of the powder were previously measured by means of the Seville powder tester (SPT),indicating plastic deformation of the surface asperities in contact for small to moderate consolidation stresses.However,the measurements of ultrasound propagation at high consolidations presented here are compatible with Hertz's law.This finding suggests that for high consolidation stresses,surface asperities are flattened,and it is therefore the elastic deformation of the bulk of the particles that determines the transmission of ultrasonic pulses.

  4. Chemical composition and quantitative relationship between meteorological condition and fine particles in Beijing

    Institute of Scientific and Technical Information of China (English)

    WANG Jing-li; ZHANG Yuan-hang; SHAO Min; Liu Xu-lin; ZENG Li-min; CHENG Cong-lan; XU Xiao-feng

    2004-01-01

    The recent year's monitor results of Beijing indicated that the pollution level of fine particles PM2.5 showed an increasing trend. To understand pollution characteristics of PM2.5 and its relationship with the meteorological conditions in Beijing, a one-year monitoring of PM2.5 mass concentration and correspondent meteorological parameters was performed in Beijing in 2001. The PM2.5 levels in Beijing were very high, the annual average PM2.5 concentration in 2001 was 7 times of the National Ambient Air Quality Standards proposed by US EPA. The major chemical compositions were organics, sulfate, crustals and nitrate. It was found that the mass concentrations of PM2.5 were influenced by meteorological conditions. The correlation between the mass concentrations of PM2.5 and the relative humidity was found. And the correlation became closer at higher relative humidity. And the mass concentrations of PM2.5 were negtive-correlated to wind speeds, but the correlation between the mass concentration of PM2.5 and wind speed was not good at stronger wind.

  5. Many-body dissipative particle dynamics modeling of fluid flow in fine-grained nanoporous shales

    Science.gov (United States)

    Xia, Yidong; Goral, Jan; Huang, Hai; Miskovic, Ilija; Meakin, Paul; Deo, Milind

    2017-05-01

    A many-body dissipative particle dynamics model, namely, MDPD, is applied for simulation of pore-scale, multi-component, multi-phase fluid flows in fine-grained, nanoporous shales. Since this model is able to simultaneously capture the discrete features of fluid molecules in nanometer size pores and continuum fluid dynamics in larger pores, and is relatively easy to parameterize, it has been recognized as being particularly suitable for simulating complex fluid flow in multi-length-scale nanopore networks of shales. A remarkable feature of this work is the integration of a high-resolution FIB-SEM (focused ion beam scanning electron microscopy) digital imaging technique to the MDPD model for providing 3D voxel data that contain the invaluable geometrical and compositional information of shale samples. This is the first time that FIB-SEM is seamlessly linked to a Lagrangian model like MDPD for fluid flow simulation, which offers a robust approach to bridging gaps between the molecular- and continuum-scales, since the relevant spatial and temporal scales are too big for molecular dynamics, and too small for computational fluid dynamics with known constitutive models. Simulations ranging from a number of benchmark problems to a forced two-fluid flow in a Woodford shale sample are presented. Results indicate that this model can be used to deliver reasonable simulations for multi-component, multi-phase fluid flows in arbitrarily complex pore networks in shales.

  6. Photocatalytic H2 Evolution Using Different Commercial TiO2 Catalysts Deposited with Finely Size-Tailored Au Nanoparticles: Critical Dependence on Au Particle Size

    Directory of Open Access Journals (Sweden)

    Ákos Kmetykó

    2014-11-01

    Full Text Available One weight percent of differently sized Au nanoparticles were deposited on two commercially available TiO2 photocatalysts: Aeroxide P25 and Kronos Vlp7000. The primary objective was to investigate the influence of the noble metal particle size and the deposition method on the photocatalytic activity. The developed synthesis method involves a simple approach for the preparation of finely-tuned Au particles through variation of the concentration of the stabilizing agent. Au was deposited on the TiO2 surface by photo- or chemical reduction, using trisodium citrate as a size-tailoring agent. The Au-TiO2 composites were synthetized by in situ reduction or by mixing the titania suspension with a previously prepared gold sol. The H2 production activities of the samples were studied in aqueous TiO2 suspensions irradiated with near-UV light in the absence of dissolved O2, with oxalic acid or methanol as the sacrificial agent. The H2 evolution rates proved to be strongly dependent on Au particle size: the highest H2 production rate was achieved when the Au particles measured ~6 nm.

  7. Photocatalytic H2 Evolution Using Different Commercial TiO2 Catalysts Deposited with Finely Size-Tailored Au Nanoparticles: Critical Dependence on Au Particle Size

    Science.gov (United States)

    Kmetykó, Ákos; Mogyorósi, Károly; Pusztai, Péter; Radu, Teodora; Kónya, Zoltán; Dombi, András; Hernádi, Klára

    2014-01-01

    One weight percent of differently sized Au nanoparticles were deposited on two commercially available TiO2 photocatalysts: Aeroxide P25 and Kronos Vlp7000. The primary objective was to investigate the influence of the noble metal particle size and the deposition method on the photocatalytic activity. The developed synthesis method involves a simple approach for the preparation of finely-tuned Au particles through variation of the concentration of the stabilizing agent. Au was deposited on the TiO2 surface by photo- or chemical reduction, using trisodium citrate as a size-tailoring agent. The Au-TiO2 composites were synthetized by in situ reduction or by mixing the titania suspension with a previously prepared gold sol. The H2 production activities of the samples were studied in aqueous TiO2 suspensions irradiated with near-UV light in the absence of dissolved O2, with oxalic acid or methanol as the sacrificial agent. The H2 evolution rates proved to be strongly dependent on Au particle size: the highest H2 production rate was achieved when the Au particles measured ~6 nm. PMID:28788264

  8. Photocatalytic H₂ Evolution Using Different Commercial TiO₂ Catalysts Deposited with Finely Size-Tailored Au Nanoparticles: Critical Dependence on Au Particle Size.

    Science.gov (United States)

    Kmetykó, Ákos; Mogyorósi, Károly; Pusztai, Péter; Radu, Teodora; Kónya, Zoltán; Dombi, András; Hernádi, Klára

    2014-11-26

    One weight percent of differently sized Au nanoparticles were deposited on two commercially available TiO₂ photocatalysts: Aeroxide P25 and Kronos Vlp7000. The primary objective was to investigate the influence of the noble metal particle size and the deposition method on the photocatalytic activity. The developed synthesis method involves a simple approach for the preparation of finely-tuned Au particles through variation of the concentration of the stabilizing agent. Au was deposited on the TiO₂ surface by photo- or chemical reduction, using trisodium citrate as a size-tailoring agent. The Au-TiO₂ composites were synthetized by in situ reduction or by mixing the titania suspension with a previously prepared gold sol. The H₂ production activities of the samples were studied in aqueous TiO₂ suspensions irradiated with near-UV light in the absence of dissolved O₂, with oxalic acid or methanol as the sacrificial agent. The H₂ evolution rates proved to be strongly dependent on Au particle size: the highest H₂ production rate was achieved when the Au particles measured ~6 nm.

  9. Insights into metals in individual fine particles from municipal solid waste using synchrotron radiation-based micro-analytical techniques.

    Science.gov (United States)

    Zhu, Yumin; Zhang, Hua; Shao, Liming; He, Pinjing

    2015-01-01

    Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW). In this study, we investigated fine particles of radiation-based micro-X-ray fluorescence and micro-X-ray diffraction. We also discussed the association, speciation and source apportionment of heavy metals. Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles. The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products.

  10. PREFACE: 8th International Conference on Fine Particle Magnetism (ICFPM2013)

    Science.gov (United States)

    2014-06-01

    The 8th International Conference on Fine Particle Magnetism (ICFPM) was held in Perpignan from 24 to 27 June 2013, and was the continuation of the previous meetings held in Bangor (1996), Rome (1991), Barcelona (1999), Pittsburg (2002), London (2004), Rome (2007) and Uppsala (2010). The next meeting will be organized by Profs. Robert D. Shull, George Hadjipanayis and Cindi Dennis, in 2016 at NIST, Gaithersburg (USA). ICFPM is a small-sized conference focused on the magnetism of nanoparticles. It provides an international forum for discussing the state-of-the-art understanding of physics of these systems, of their properties and the underlying phenomena, as approached from a variety of directions: theory and modelling, experiments on well characterized or model systems (both fabricated and synthetised), as well as experiments on technologically-relevant non-ideal systems. This meeting brought together about 120 participants working on experimental, theoretical and applied topics of the multidisciplinary research areas covered by magnetic nanoparticles, with focused interest on either single-particle or collective phenomena. The technical program of the conference was based on keynote conferences, invited talks, oral contributions and poster sessions, covering the following aspects: . Fabrication, synthesis, characterization . Single particle, surface and finite-size effects on magnetic properties . Magnetization dynamics, micro-wave assisted switching, dynamical coupling . Assemblies, collective effects, self-assembling and nanostructuring . Applications : hyperthermia, drug delivery, magneto-caloric, magneto-resistance, magneto-plasmonics, magnetic particle imaging This ICFPM edition was organized by the group Nanoscale Spin Systems of the laboratory PROMES of the CNRS (UPR8521), and Université de Perpignan Via Domitia. The meeting took place at the Congress Center of the city of Perpignan providing high-quality facilities for the technical program as well for the

  11. Separation and Recovery of Fine Particles from Waste Circuit Boards Using an Inflatable Tapered Diameter Separation Bed

    Directory of Open Access Journals (Sweden)

    Chenlong Duan

    2014-01-01

    Full Text Available Recovering particle materials from discarded printed circuit boards can enhance resource recycling and reduce environmental pollution. Efficiently physically separating and recovering fine metal particles (−0.5 mm from the circuit boards are a key recycling challenge. To do this, a new type of separator, an inflatable tapered diameter separation bed, was developed to study particle motion and separation mechanisms in the bed’s fluid flow field. For 0.5–0.25 mm circuit board particles, metal recovery rates ranged from 87.56 to 94.17%, and separation efficiencies ranged from 87.71 to 94.20%. For 0.25–0.125 mm particles, metal recovery rates ranged from 84.76 to 91.97%, and separation efficiencies ranged from 84.74 to 91.86%. For superfine products (−0.125 mm, metal recovery rates ranged from 73.11 to 83.04%, and separation efficiencies ranged from 73.00 to 83.14%. This research showed that the inflatable tapered diameter separation bed achieved efficient particle separation and can be used to recover fine particles under a wide range of operational conditions. The bed offers a new mechanical technology to recycle valuable materials from discarded printed circuit boards, reducing environmental pollution.

  12. A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique

    Science.gov (United States)

    Dai, Hongqin; Gong, Jian; Kim, Hakyong; Lee, Doukrae

    2002-10-01

    Alumina-borate/PVA composite fibres were prepared using sol-gel processing and an electrospinning technique. After calcination of the thin fibres, ultra-fine fibres of alumina-borate oxide with a diameter of about 550 nm could be prepared. The fibres were characterized by SEM, XRD and FT-IR. The results showed that the crystalline phase and morphology of alumina-borate fibres were largely influenced by the calcination temperature.

  13. Preparation of calcium carbonate particles coated with titanium dioxide

    Institute of Scientific and Technical Information of China (English)

    Hai Lin; Ying-bo Dong; Le-yong Jiang

    2009-01-01

    The preparation of a new mineral composite material, calcium carbonate particles coated with titanium dioxide, was stud-ied. The mechanism of the preparation process was proposed. The new mineral composite material was made by the mechanochemi-eal method under the optimum condition that the mass ratio of calcium carbonate particles to titanium dioxide was 6.5:3.5. The mass ratios of two different types of titanium dioxide (anatase to rutile) and grinding media to grinded materials were 8:2 and 4:1 respec-tively, and the modified density was 60%. Under this condition, the new material was capable of forming after 120-min modification.The hiding power and oil absorption of this new material were 29.12 g/m~2 and 23.30%, respectively. The results show that the modi-fication is based on surface hydroxylation. After coating with titanium dioxide, the hiding power of calcium carbonate can be im-proved greatly. The new mineral composite materials can be used as the substitute for titanium dioxide.

  14. Indoor and outdoor concentrations of fine particles, particle-bound PAHs and volatile organic compounds in Kaunas, Lithuania.

    Science.gov (United States)

    Kliucininkas, Linas; Martuzevicius, Dainius; Krugly, Edvinas; Prasauskas, Tadas; Kauneliene, Violeta; Molnar, Peter; Strandberg, Bo

    2011-01-01

    This complex study presents indoor and outdoor levels of air-borne fine particles, particle-bound PAHs and VOCs at two urban locations in the city of Kaunas, Lithuania, and considers possible sources of pollution. Two sampling campaigns were performed in January-February and March-April 2009. The mean outdoor PM(2.5) concentration at Location 1 in winter was 34.5 ± 15.2 µg m(-3) while in spring it was 24.7 ± 12.2 µg m(-3); at Location 2 the corresponding values were 36.7 ± 21.7 and 22.4 ± 19.4 µg m(-3), respectively. In general there was little difference between the PM concentrations at Locations 1 and 2. PM(2.5) concentrations were lower during the spring sampling campaign. These PM concentrations were similar to those in many other European cities; however, the levels of most PAHs analysed were notably higher. The mean sum PAH concentrations at Locations 1 and 2 in the winter campaign were 75.1 ± 32.7 and 32.7 ± 11.8 ng m(-3), respectively. These differences are greater than expected from the difference in traffic intensity at the two sites, suggesting that there is another significant source of PAH emissions at Location 1 in addition to the traffic. The low observed indoor/outdoor (I/O) ratios indicate that PAH emissions at the locations studied arise primarily from outdoor sources. The buildings at both locations have old windows with wooden frames that are fairly permissive in terms of air circulation. VOC concentrations were mostly low and comparable to those reported from Sweden. The mean outdoor concentrations of VOC's were: 0.7 ± 0.2, 3.0 ± 0.8, 0.5 ± 0.2, 3.5 ± 0.3, and 0.2 ± 0.1 µg m(-3), for benzene, toluene, ethylbenzene, sum of m-, p-, o-xylenes, and naphthalene, respectively. Higher concentrations of VOCs were observed during the winter campaign, possibly due to slower dispersion, slower chemical transformations and/or the lengthy "cold start" period required by vehicles in the wintertime. A trajectory analysis showed that air masses

  15. Amorphous solid dispersion of cyclosporine A prepared with fine droplet drying process: Physicochemical and pharmacokinetic characterization.

    Science.gov (United States)

    Suzuki, Hiroki; Moritani, Tatsuru; Morinaga, Tadahiko; Seto, Yoshiki; Sato, Hideyuki; Onoue, Satomi

    2017-03-15

    The present study aimed to develop an amorphous solid dispersion (ASD) of cyclosporine A (CsA) by a fine droplet drying (FDD) process for improvement in oral absorption of CsA. CsA and hydroxypropyl cellulose-SSL were dissolved in 1,4-dioxane, and the solution was powdered by the FDD process to obtain the ASD formulation of CsA (ASD/CsA). The ASD/CsA was characterized in terms of morphology, particle size distribution, crystallinity, dissolution behavior, physicochemical stability, and pharmacokinetic behavior in rats. The ASD/CsA was obtained in the form of uniform spherical particles, and the span factor was calculated to be ca. 0.4. CsA in the formulation existed in an amorphous state. The ASD/CsA exhibited a higher dissolution behavior of CsA than amorphous CsA, whereas storage of the ASD/CsA under accelerated conditions led to impairment in the dissolution behavior. The constant release of CsA from non-aged ASD/CsA was observed during dissolution testing. After oral administration of CsA samples (10mg-CsA/kg) in rats, the ASD/CsA showed a high and sustained plasma concentration of CsA as evidenced by a 18-fold increase in the oral bioavailability of CsA compared with amorphous CsA. From these findings, the FDD process might be an efficacious option for the ASD formulation of CsA with enhanced biopharmaceutics properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. 利用胶质气体泡沫分离细微颗粒%Separation of Fine Particles by Using Colloidal Gas Aphrons

    Institute of Scientific and Technical Information of China (English)

    E.A.Mansur; 王运东; 戴猷元

    2004-01-01

    This paper presents a method of separation of fine particles, of the order of a few microns or less, from aqueous media by flotation using colloidal gas aphrons (CGAs) generated in aqueous solutions. More than 150experiments were conducted to study the effects of surfactant type, surfactant concentration, CGAs flow rate, and particle concentration on the removal efficiency (fine particles of polystyrene were used as a target compound). The results indicate that CGAs, generated from cationic surfactant of hexdecyltrimethyl ammonicum bromide (HTAB)and anionic surfactant of sodium dodecylbenzne sulfonate (SDBS), are an effective method for the separation of fine particles of polystyrene from wastewater. The flotation yields are higher than 97%.

  17. Poly (lactic-co-glycolic acid) particles prepared by microfluidics and conventional methods. Modulated particle size and rheology.

    Science.gov (United States)

    Perez, Aurora; Hernández, Rebeca; Velasco, Diego; Voicu, Dan; Mijangos, Carmen

    2015-03-01

    Microfluidic techniques are expected to provide narrower particle size distribution than conventional methods for the preparation of poly (lactic-co-glycolic acid) (PLGA) microparticles. Besides, it is hypothesized that the particle size distribution of poly (lactic-co-glycolic acid) microparticles influences the settling behavior and rheological properties of its aqueous dispersions. For the preparation of PLGA particles, two different methods, microfluidic and conventional oil-in-water emulsification methods were employed. The particle size and particle size distribution of PLGA particles prepared by microfluidics were studied as a function of the flow rate of the organic phase while particles prepared by conventional methods were studied as a function of stirring rate. In order to study the stability and structural organization of colloidal dispersions, settling experiments and oscillatory rheological measurements were carried out on aqueous dispersions of PLGA particles with different particle size distributions. Microfluidics technique allowed the control of size and size distribution of the droplets formed in the process of emulsification. This resulted in a narrower particle size distribution for samples prepared by MF with respect to samples prepared by conventional methods. Polydisperse samples showed a larger tendency to aggregate, thus confirming the advantages of microfluidics over conventional methods, especially if biomedical applications are envisaged. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    Science.gov (United States)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  19. Isotopic composition for source identification of mercury in atmospheric fine particles

    Science.gov (United States)

    Huang, Qiang; Chen, Jiubin; Huang, Weilin; Fu, Pingqing; Guinot, Benjamin; Feng, Xinbin; Shang, Lihai; Wang, Zhuhong; Wang, Zhongwei; Yuan, Shengliu; Cai, Hongming; Wei, Lianfang; Yu, Ben

    2016-09-01

    The usefulness of mercury (Hg) isotopes for tracing the sources and pathways of Hg (and its vectors) in atmospheric fine particles (PM2.5) is uncertain. Here, we measured Hg isotopic compositions in 30 potential source materials and 23 PM2.5 samples collected in four seasons from the megacity Beijing (China) and combined the seasonal variation in both mass-dependent fractionation (represented by the ratio 202Hg / 198Hg, δ202Hg) and mass-independent fractionation of isotopes with odd and even mass numbers (represented by Δ199Hg and Δ200Hg, respectively) with geochemical parameters and meteorological data to identify the sources of PM2.5-Hg and possible atmospheric particulate Hg transformation. All PM2.5 samples were highly enriched in Hg and other heavy metals and displayed wide ranges of both δ202Hg (-2.18 to 0.51 ‰) and Δ199Hg (-0.53 to 0.57 ‰), as well as small positive Δ200Hg (0.02 to 0.17 ‰). The results indicated that the seasonal variation in Hg isotopic composition (and elemental concentrations) was likely derived from variable contributions from anthropogenic sources, with continuous input due to industrial activities (e.g., smelting, cement production and coal combustion) in all seasons, whereas coal combustion dominated in winter and biomass burning mainly found in autumn. The more positive Δ199Hg of PM2.5-Hg in spring and early summer was likely derived from long-range-transported Hg that had undergone extensive photochemical reduction. The study demonstrated that Hg isotopes may be potentially used for tracing the sources of particulate Hg and its vectors in the atmosphere.

  20. Application of mobile sampling to investigate spatial variation in fine particle composition

    Science.gov (United States)

    Li, Hugh Z.; Dallmann, Timothy R.; Gu, Peishi; Presto, Albert A.

    2016-10-01

    Long-term exposure to particulate matter (PM) is a major contributor to air pollution related deaths. Evidence indicates that metals play an important role in harming human health due to their redox potential. We conducted a mobile sampling campaign in 2013 summer and winter in Pittsburgh, PA to characterize spatial variation in PM2.5 mass and composition. Thirty-six sites were chosen based on three stratification variables: traffic density, proximity to point sources, and elevation. We collected filters in three time sessions (morning, afternoon, and overnight) in each season. X-ray fluorescence (XRF) was used to analyze concentrations of 26 elements: Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, Cd, Sb, and Pb. Trace elements had a broad range of concentrations from 0 to 300 ng/m3. Comparison of data from mobile sampling filters with stationary monitors suggested that the mobile sampling strategy did not lead to a biased dataset. We developed Land Use Regression (LUR) models to describe spatial variation of PM2.5, Si, S, Cl, K, Ca, Ti, Cr, Fe, Cu, and Zn. Using ArcGIS-10.3 (ESRI, Redlands, CA), we extracted different independent variables related to traffic influence, land-use type, and facility emissions based on the National Emission Inventory (NEI). To validate LUR models, we used regression diagnostics such as leave-one-out cross validation (LOOCV), mean studentized prediction residual (MSPR), and root mean square of studentized residuals (RMS). The number of predictors in final LUR models ranged from 1 to 6. Models had an average R2 of 0.57 (SD = 0.16). Traffic related variables explained the most variability with an average R2 contribution of 0.20 (SD = 0.20). Overall, these results demonstrated significant intra-urban spatial variability of fine particle composition.

  1. Programming of mouse obesity by maternal exposure to concentrated ambient fine particles.

    Science.gov (United States)

    Chen, Minjie; Wang, Xiaoke; Hu, Ziying; Zhou, Huifen; Xu, Yanyi; Qiu, Lianglin; Qin, Xiaobo; Zhang, Yuhao; Ying, Zhekang

    2017-06-23

    Many diseases including obesity may originate through alterations in the early-life environment that interrupts fetal development. Increasing evidence has shown that exposure to ambient fine particles (PM2.5) is associated with abnormal fetal development. However, its long-term metabolic effects on offspring have not been systematically investigated. To determine if maternal exposure to PM2.5 programs offspring obesity, female C57Bl/6j mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CAP) during pre-conception, pregnancy, and lactation, and the developmental and metabolic responses of offspring were assessed. The growth trajectory of offspring revealed that maternal exposure to CAP significantly decreased offspring birth weight but increased body weight of adult male but not female offspring, and the latter was expressed as increased adiposity. These adult male offspring had increased food intake, but were sensitive to exogenous leptin. Their hypothalamic expression of Socs3 and Pomc, two target genes of leptin, was not changed, and the hypothalamic expression of NPY, an orexigenic peptide that is inhibited by leptin, was significantly increased. These decreases in central anorexigenic signaling were accompanied by reduced plasma leptin and its expression in adipose tissues, the primary source of circulating leptin. In contrast, maternal exposure did not significantly change any of these indexes in adult female offspring. Pyrosequencing demonstrated that the leptin promoter methylation of adipocytes was significantly increased in CAP-exposed male but not female offspring. Our data indicate that maternal exposure to ambient PM2.5 programs obesity in male offspring probably through alterations in the methylation of the promoter region of the leptin gene.

  2. Correlations between urban atmospheric light extinction coefficients and fine particle mass concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Trier, A.; Cabrini, N.; Ferrer, J. [Facultad de Ciencia, Universidad de Santiago de Chile, Santiago 2 (Chile); Olaeta, I. [SESMA, Santiago 1 (Chile)

    1997-07-01

    Total horizontal atmospheric light extinction coefficients as well as particle mass concentrations have been measured in downtown areas of Santiago de Chile, a heavily polluted city. Measurement campaigns were carried out in 1994 in 1995. Extinction measurements were made by a telephotometric technique in four wavelength bands; oscillating mass balance type instruments were used to measure PM2.5 and PM10 mass concentrations. The latter type instrument had not been available heretofore. The extensive continuous PM2.5 measurements are the first for this city. Strong and highly significant statistical correlations were found between extinction coefficients and mass concentrations, especially with the fine respirable or PM2.5 mass concentrations. Angstrom exponents and, in one case, mass extinction coefficients have been estimated. [Spanish] Se ha medido coeficientes atmosfericos totales horizontales de extincion de luz asi como concentraciones de masa de particulas atmosfericas en zonas centricas de Santiago de Chile, una ciudad altamente contaminada. Las campanas de medicion se han hecho en 1994 y en 1995. Las mediciones de extincion se han hecho por un metodo telefotometrico en cuatro bandas espectrales; las concentraciones de masa PM2.5 y PM10 se han medido con instrumentos del tipo de balanzas de masa oscilantes. Tales instrumentos no han estado disponibles durante trabajos anteriores. Las extensas mediciones continuas de concentraciones de masa PM2.5 son las primeras para Santiago de Chile. Se han encontrado fuertes correlaciones estadisticas, altamente significativas, entre coeficientes de extincion y concentraciones de masa, especialmente las concentraciones de particulas finas respirables PM2.5. Se han estimado tambien exponentes de Angstrom y, en un caso, coeficientes masicos de extincion.

  3. Emissions and measure analysis of fine particles 2000-2020; Emissionen und Massnahmenanalyse Feinstaub 2000-2020

    Energy Technology Data Exchange (ETDEWEB)

    Joerss, Wolfram; Handke, Volker [Institut fuer Zukunftsstudien und Technologiebewertung gGmbH (IZT), Berlin (Germany)

    2007-08-15

    With this study, the Federal Environmental Agency's emission inventory on total suspended particles and the fine fractions PM{sub 1}0 and PM{sub 2}.5 was updated. On that basis, a reference scenario was developed for anthropogenic emissions of particulate matter up to the years 2010, 2015 and 2020. In addition, potential additional emission reduction measures were systematically collected and quantified. At the source groups which contribute most strongly to the emissions there are clear differences between the fine fractions and in the course of time. In particular, with the total fine the emission freight is very broadly distributed over many source groups. With PM{sub 2}.5, the emissions are more strongly concentrated on a limited number of source groups. The decrease of the emissions in the years between 2000 and 2020 in the reference scenario takes place in source groups with high portions of PM{sub 2}.5 of the emissions of total fine particles.

  4. Normal and abnormal grain growth in fine-grained Nd-Fe-B sintered magnets prepared from He jet milled powders

    Science.gov (United States)

    Bittner, F.; Woodcock, T. G.; Schultz, L.; Schwöbel, C.; Gutfleisch, O.; Zickler, G. A.; Fidler, J.; Üstüner, K.; Katter, M.

    2017-03-01

    Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 μm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 μm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve.

  5. A new fluorescent particle prepared by chemical stabilized phycobilisome

    Institute of Scientific and Technical Information of China (English)

    Min Chen; Guo Ping Ma; Li Sun

    2009-01-01

    Natural phycobilisomes (PBSs) were isolated and purified from a red macroalga, Polysiphonia urceolata, by multi-step of sucrose gradient centrifugation, and were chemically stabilized by small molecule cross-linker formaldehyde. The stabilized PBSs showed similar absorption and fluorescent properties at room temperature compared to natural PBSs and kept a steady F672/F580 value during more than 3 months of storage in 0.45 mol/L phosphate buffer (pH 6.8) or at low temperature at 77 K. The stabilized PBS migrated as a single band at mild PAGE and in 14-18 h of sucrose gradient centdfiagation. All these characters indicated that the stabilized PBSs were stable, soluble, homogenous fluorescent particles with favorable spectroscopic features prepared under present conditions.

  6. Levitation and collection of diamond fine particles in the rf plasma chamber equipped with a hot filament

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, S.; Shimizu, T.; Thomas, H. M.; Morfill, G. E. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Jacob, W. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2011-11-15

    We demonstrate the levitation of diamond fine particles in a H{sub 2} rf plasma chamber equipped with a hot filament and heated electrodes. The levitation conditions should be carefully chosen to compensate the strong thermophoretic forces caused by the filament and the electrodes. This levitation technique with the existence of a hot filament can be applied, e.g., for the efficient growth of diamond layers on seed particles injected and levitated in an rf plasma with reactive gases, e.g., CH{sub 4}/H{sub 2}. Additionally, the method for direct capture of levitated particles on a planar substrate was established, which is useful if it is necessary to analyze the particles after the levitation.

  7. Novel Wire-on-Plate Electrostatic Precipitator (WOP-EP) for Controlling Fine Particle and Nanoparticle Pollution.

    Science.gov (United States)

    Li, Ziyi; Liu, Yingshu; Xing, Yi; Tran, Thi-Minh-Phuong; Le, Thi-Cuc; Tsai, Chuen-Jinn

    2015-07-21

    A new wire-on-plate electrostatic precipitator (WOP-EP), where discharge wires are attached directly on the surface of a dielectric plate, was developed to ease the installation of the wires, minimize particle deposition on the wires, and lower ozone emission while maintaining a high particle collection efficiency. For a lab-scale WOP-EP (width, 50 mm; height, 20 mm; length, 180 mm) tested at the applied voltage of 18 kV, experimental total particle collection efficiencies were found as high as 90.9-99.7 and 98.8-99.9% in the particle size range of 30-1870 nm at the average air velocities of 0.50 m/s (flow rate, 30 L/min; residence time, 0.36 s) and 0.25 m/s (flow rate, 15 L/min; residence time, 0.72 s), respectively. Particle collection efficiencies calculated by numerical models agreed well with the experimental results. The comparison to the traditional wire-in-plate EP showed that, at the same applied voltage, the current WOP-EP emitted 1-2 orders of magnitude lower ozone concentration, had cleaner discharge wires after heavy particle loading in the EP, and recovered high particle collection efficiency after the grounded collection plate was cleaned. It is expected that the current WOP-EP can be scaled up as an efficient air-cleaning device to control fine particle and nanoparticle pollution.

  8. Study on preparation and properties of molybdenum alloys reinforced by nano-sized ZrO{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Chaopeng; Gao, Yimin; Zhou, Yucheng [Xi' an Jiaotong University, State Key Laboratory for Mechanical Behavior of Materials, Xi' an, Shaanxi Province (China); Wei, Shizhong [Henan University of Science and Technology, School of Materials Science and Engineering, Luoyang (China); Henan University of Science and Technology, Engineering Research Center of Tribology and Materials Protection, Ministry of Education, Luoyang (China); Zhang, Guoshang; Zhu, Xiangwei; Guo, Songliang [Henan University of Science and Technology, School of Materials Science and Engineering, Luoyang (China)

    2016-03-15

    The nano-sized ZrO{sub 2}-reinforced Mo alloy was prepared by a hydrothermal method and a subsequent powder metallurgy process. During the hydrothermal process, the nano-sized ZrO{sub 2} particles were added into the Mo powder via the hydrothermal synthesis. The grain size of Mo powder decreases obviously with the addition of ZrO{sub 2} particles, and the fine-grain sintered structure is obtained correspondingly due to hereditation. In addition to a few of nano-sized ZrO{sub 2} particles in grain boundaries or sub-boundaries, most are dispersed in grains. The tensile strength and yield strength have been increased by 32.33 and 53.76 %. (orig.)

  9. Health impacts due to personal exposure to fine particles caused by insulation of residential buildings in Europe

    Science.gov (United States)

    Gens, Alexandra; Hurley, J. Fintan; Tuomisto, Jouni T.; Friedrich, Rainer

    2014-02-01

    The insulation of residential buildings affects human exposure to fine particles. According to current EU guidelines, insulation is regulated for energy saving reasons. As buildings become tighter, the air exchange rate is reduced and, thus, the indoor concentration of pollutants is increased if there are significant indoor sources. While usually the effects of heat insulation and increase of the air-tightness of buildings on greenhouse gas emissions are highlighted, the negative impacts on human health due to higher indoor concentrations are not addressed. Thus, we investigated these impacts using scenarios in three European countries, i. e. Czech Republic, Switzerland and Greece. The assessment was based on modelling the human exposure to fine particles originating from sources of particles within outdoor and indoor air, including environmental tobacco smoke. Exposure response relationships were derived to link (adverse) health effects to the exposure. Furthermore, probable values for the parameters influencing the infiltration of fine particles into residential buildings were modelled. Results show that the insulation and increase of the air-tightness of residential buildings leads to an overall increase of the mean population exposure - and consequently adverse health effects - in all considered countries (ranging for health effects from 0.4% in Czech Republic to 11.8% in Greece for 100% insulated buildings) due to an accumulation of particles indoors, especially from environmental tobacco smoke. Considering only the emission reductions in outdoor air (omitting changes in infiltration parameters) leads to a decrease of adverse health effects. This study highlights the importance of ensuring a sufficient air exchange rate when insulating buildings, e. g. by prescribing heat ventilation and air conditioning systems in new buildings and information campaigns on good airing practice in renovated buildings. It also shows that assessing policy measures based on the

  10. The burden of lung cancer mortality attributable to fine particles in China.

    Science.gov (United States)

    Guo, Yuming; Zeng, Hongmei; Zheng, Rongshou; Li, Shanshan; Pereira, Gavin; Liu, Qiyong; Chen, Wanqing; Huxley, Rachel

    2017-02-01

    Although studies have examined the associations between fine particles (PM2.5) and lung cancer mortality in US and European countries, the evidence is still limited for China. In addition, no study has provided estimates of spatial variation in lung cancer mortality attributable to PM2.5 in China. In this study, we quantified the associations between lung cancer mortality and PM2.5, using a spatiotemporal model with observed data of lung cancer mortality from 75 communities from the National Cancer Registration of China from 1990 to 2009 and the annual concentrations of PM2.5 at 0.5°×0.5° spatial resolution. We also estimated lung cancer mortality burden attributable to PM2.5 in China, with predicted county level lung cancer deaths in 2005. We found that the PM2.5-lung cancer mortality associations were non-linear, with thresholds of 40μg/m(3) overall, 45μg/m(3) for male, 42μg/m(3) for female, 45μg/m(3) for those aged 30-64years, 48μg/m(3) for those aged 65-74years, and 40μg/m(3) for those aged 75years and more, above which the relative risks were 1.08 (95% CI: 1.07, 1.09), 1.07 (95% CI: 1.05, 1.08), 1.12 (95% CI: 1.1, 1.14), 1.05 (95% CI: 1.04, 1.07), 1.07 (95% CI: 1.06, 1.09), and 1.14 (95% CI: 1.12, 1.16) respectively. There were 51,219 (95% CI: 45,745-56,512) lung cancer deaths attributed to PM2.5 in 2005, with attributable fractions of 13.7% (95% CI: 12.23-15.11%) overall, 10.01% (95% CI: 8.37-11.58%) for men, 18.06% (95% CI: 15.81-20.18%) for women, 8.35% (95% CI: 6.07-10.51%) for those aged 65-74years, 9.73% (95% CI: 7.6-11.75%) for those aged 65-74years, 21.7% (95% CI: 19.27-23.99%) for those aged 75years or more. In conclusion, assuming a causal relation a reduction in exposure levels of PM2.5 below thresholds would avert a substantial number of deaths from lung cancer in China.

  11. Viscous properties of ferrofluids containing both micrometer-size magnetic particles and fine needle-like particles

    Science.gov (United States)

    Ido, Yasushi; Nishida, Hitoshi; Iwamoto, Yuhiro; Yokoyama, Hiroki

    2017-06-01

    Ferrofluids containing both micrometer-size spherical magnetic particles and nanometer-size needle-like nonmagnetic hematite particles were newly produced. Average length of long axis of the needle-like nonmagnetic particles was 194 nm and the aspect ratio was 8.3. Shear stress and viscosity were measured using the rheometer with the additional equipment for viscosity measurements in the presence of magnetic field. When the total volume fraction of particles in the fluid is constant (0.30), there is the specific mixing ratio of the particles to increase viscosity of the fluid drastically in the absence of magnetic field due to the percolation phenomenon. The fluid of the specific mixing ratio shows solid-like behavior even in the absence of magnetic field. Mixing the needle-like nonmagnetic particles causes strong yield stress and strong viscous force in the presence of magnetic field.

  12. Contribution of image analysis to the definition of explosibility of fine particles resulting from waste recycling process

    Science.gov (United States)

    Gente, V.; La Marca, F.

    2007-09-01

    In waste recycling processes, the development of comminution technologies is one of the main actions to improve the quality of recycled products. This involves a rise in fine particles production, which could have some effects on explosibility properties of materials. This paper reports the results of experiments done to examine the explosibility of the fine particles resulting from waste recycling process. Tests have been conducted for the products derived from milling processes operated in different operative conditions. In particular, the comminution tests have been executed varying the milling temperature by refrigerant agents. The materials utilized in explosibility tests were different typologies of plastics coming from waste products (PET, ABS and PP), characterized by size lower than 1 mm. The results of explosibility tests, carried out by mean of a Hartmann Apparatus, have been compared with the data derived from image analysis procedure aimed to measure the morphological characteristics of particles. For each typology of material, the propensity to explode appears to be correlated not only to particle size, but also to morphological properties, linked to the operative condition of the milling process.

  13. Filtration efficiency validation of glass wool during thermal desorption-gas chromatography-mass spectrometer analysis of fine atmospheric particles.

    Science.gov (United States)

    Hao, Liang; Wu, Dapeng; Ding, Kun; Meng, Hu; Yan, Xiaohui; Guan, Yafeng

    2015-02-06

    Thermal desorption-gas chromatography-mass spectrometer (TD-GC-MS) technique has been widely used for analysis of semi-violate organic compounds on atmospheric aerosol. To prevent GC column from being damaged by fine solid particles during thermal desorption process, glass wool as filter mat is indispensible. However, the filtration efficiency has never been validated. In this paper, the most penetrating particle size and the minimum packing thickness of glass wool were calculated based on classical filtration theory. According to the calculation results, packing parameters of glass wool were optimized experimentally using silica particles. It is demonstrated that glass wool with a packing thickness of 30 mm, solidity of 0.039 can effectively block these fine solid particles from penetrating at normal thermal desorption conditions (T=300°C, u=0.4-4 cm/s). Finally, the filtration efficiency of glass wool was further confirmed with real PM2.5 samples. Under the validated filtration condition, TD-GC-MS was applied for the analysis of non-polar organic compounds on real PM2.5 samples, and very good results were obtained.

  14. On the preparation of fine V8 C7-WC and V4 C 3-WC powders

    CSIR Research Space (South Africa)

    Osborne, C

    1997-01-01

    Full Text Available The aim of this work was to produce V8 C7-WC and V4 C 3-WC powders with grain size between 1 and 2mu-m, as a first stage of the preparation of fine grained WC-VC-Co hardmetal. V8 C7-WC powder was produced via two routes: starting from preformed V8 C7...

  15. Fine-Needle Aspiration, Touch Imprint, and Crush Preparation Cytology for Diagnosing Thyroid Malignancies in Thyroid Nodules

    OpenAIRE

    Ahmadinejad, Mojtaba; Aliepour, Asghar; Anbari, Khatereh; Kaviani, Mojhgan; Ganjizadeh, Hasan; Nadri, Sedigheh; Foroutani, Niloufar; Meysami, Masoumeh; Almasi, Vahid

    2013-01-01

    Several methods are used to evaluate the thyroid nodules. The aim of this study was to determine the sensitivity, specificity, false positive and negative rates, positive predictive value (PPV), and negative predictive value (NPV) of touch imprint, crush preparation, and fine-needle aspiration (FNA) methods. This cross-sectional study was done in Shohada-ye Ashayer University Hospital in Khorramabad. All the patients who underwent thyroid surgery due to thyroid nodules in this hospital betwee...

  16. Pollution characteristics of atmospheric fine particles and their secondary components in the atmosphere of Shenzhen in summer and in winter

    Institute of Scientific and Technical Information of China (English)

    NIU; Yuwen; HE; Lingyan; HU; Min; ZHANG; Jing; ZHAO; Yunliang

    2006-01-01

    Two field measurements for atmospheric fine particles were conducted in Baoan district of Shenzhen during the summer and winter in 2004. Totally 30 sets of 24 h samples were collected, and then the mass concentrations and chemical compositions were determined. The seasonal variations and secondary pollution characteristics of fine particles during the sampling periods were discussed with meteorological factors. The results show that seasonal variations of atmospheric particles are significant in Shenzhen. The average mass concentrations of PM2.5 and PM10 in summer were 35 μg·m-3 and 57 μg·m-3, respectively, and those in winter were 99 μg·m-3 and 135 μg·m-3, respectively. The concentrations of both PM2.5 and PM10 in winter increased 184% and 137%, respectively, compared to those in summer. PM2.5 accounted for 61% and 75% of PM10 in summer and in winter, respectively, indicating severe fine particle pollution in Shenzhen. During the summer and winter sampling periods, the mean OC/EC ratios were 3.4 and 1.6, respectively. The estimated secondary organic carbon (SOC) averagely accounted for 56% and 6% of the total OC in summer and in winter, respectively, which implies a major contribution of SOC to OC in summer. During the continuous high temperature period in summer, both the concentrations and fractions of secondary aerosol components in PM2.5 were highly elevated, suggesting severe secondary pollution again. The prevailing wind was from South China Sea in summer, and the air quality was good. The prevailing wind in winter was from Mainland China to the north, and the polluted air mass led to poor air quality.

  17. Particle Formation from Pulsed Laser Irradiation of SootAggregates studied with scanning mobility particle sizer, transmissionelectron microscope and near-edge x-ray absorption fine structure.

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, Hope A.; Tivanski, Alexei V.; Gilles, Mary K.; vanPoppel, Laura H.; Dansson, Mark A.; Buseck, Peter R.; Buseck, Peter R.

    2007-02-20

    We investigated the physical and chemical changes induced in soot aggregates exposed to laser radiation using a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope to perform near-edge x-ray absorption fine structure spectroscopy. Laser-induced nanoparticle production was observed at fluences above 0.12 J/cm(2) at 532 nm and 0.22 J/cm(2) at 1064 nm. Our results indicate that new particle formation proceeds via (1) vaporization of small carbon clusters by thermal or photolytic mechanisms, followed by homogeneous nucleation, (2) heterogeneous nucleation of vaporized carbon clusters onto material ablated from primary particles, or (3) both processes.

  18. Investigation of Physicochemical Drug Properties to Prepare Fine Globular Granules Composed of Only Drug Substance in Fluidized Bed Rotor Granulation.

    Science.gov (United States)

    Mise, Ryohei; Iwao, Yasunori; Kimura, Shin-Ichiro; Osugi, Yukiko; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    The effect of some drug properties (wettability and particle size distribution) on granule properties (mean particle size, particle size distribution, sphericity, and granule strength) were investigated in a high (>97%) drug-loading formulation using fluidized bed rotor granulation. Three drugs: acetaminophen (APAP); ibuprofen (IBU); and ethenzamide (ETZ) were used as model drugs based on their differences in wettability and particle size distribution. Granules with mean particle sizes of 100-200 µm and a narrow particle size distribution (PSD) could be prepared regardless of the drug used. IBU and ETZ granules showed a higher sphericity than APAP granules, while APAP and ETZ granules exhibited higher granule strength than IBU. The relationship between drug and granule properties suggested that the wettability and the PSD of the drugs were critical parameters affecting sphericity and granule strength, respectively. Furthermore, the dissolution profiles of granules prepared with poorly water-soluble drugs (IBU and ETZ) showed a rapid release (80% release in 20 min) because of the improved wettability with granulation. The present study demonstrated for the first time that fluidized bed rotor granulation can prepare high drug-loaded (>97%) globular granules with a mean particle size of less than 200 µm and the relationship between physicochemical drug properties and the properties of the granules obtained could be readily determined, indicating the potential for further application of this methodology to various drugs.

  19. Particle morphologies and formation mechanisms of fine volcanic ash aerosol collected from the 2006 eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    Rinkleff, P. G.; Cahill, C. F.

    2010-12-01

    Fine volcanic ash aerosol (35-0.09um) erupted in 2006 by Augustine Volcano, southwest of Anchorage, Alaska was collected by a DRUM cascade impactor and analyzed by scanning electron microscopy for individual particle chemistry and morphology. Results of these analyses show ash particles occur as either individual glass shard and mineral phase (plagioclase, magnetite, ilmenite, hornblende, etc.) particles or aggregates thereof. Individual glass shard ash particles are angular, uniformly-sized, consist of calc-alkaline whole-rock elements (Si, Al, Fe, Na, and Ca) and are not collocated on the sample media with non-silicate, Cl and S bearing sea salt particles. Aggregate particles occur as two types: pure ash aggregates and sea salt-cored aggregates. Pure ash aggregates are made up of only ash particles and contain no other constituents. Sea salt-cored aggregates are ash particles commingled with sea salts. Determining the formation processes of the different ash particle types need further investigation but some possibilities are proposed here. Individual ash particles may exist when the ambient air is generally dry, little electrical charge exists on ash particles, the eruptive cloud is generally dry, or the number of individual particles exceeds the scavenging capacity of the water droplets present. Another possibility is that ash aggregates may break apart as relative humidity drops over time and causes ash-laden water droplets to evaporate and subsequently break apart. Pure ash aggregates may form when the ambient air and plume is relatively dry but the ash has a significant charge to cause ash to aggregate. Or they could form during long-range transport when turbulent or Brownian motion can cause ash particles to collide and coagulate. Pure ash aggregates could also form as a result of water droplet scavenging and subsequent evaporation of water droplets, leaving behind only ash. In this case, droplets would not have interacted with a sea salt

  20. Using monosaccharide anhydrides to estimate the impact of wood combustion on fine particles in the Helsinki Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Saarnio, K.; Saarikoski, S. [Finnish Meteorological Institute, Helsinki (Finland); Niemi, J.V. [HSY Helsinki Region Environmental Services Authority, Helsinki (Finland)

    2012-11-01

    The spatiotemporal variation of ambient particles under the influence of biomass burning emissions was studied in the Helsinki Metropolitan Area (HMA) in selected periods during 2005-2009. Monosaccharide anhydrides (MAs; levoglucosan, mannosan and galactosan), commonly known biomass burning tracers, were used to estimate the wood combustion contribution to local particulate matter (PM) concentration levels at three urban background sites close to the city centre, and at three suburban sites influenced by local small-scale wood combustion. In the cold season (October-March), the mean MAs concentrations were 115-225 ng m{sup -3} and 83-98 ng m{sup -} {sup 3}at the suburban and urban sites, respectively. In the warm season, the mean MAs concentrations were low (19-78 ng m{sup -3}), excluding open land fire smoke episodes (222-378 ng m{sup -}3{sup )}. Regionally distributed wood combustion particles raised the levels over the whole HMA while particles from local wood combustion sources raised the level at suburban sites only. The estimated average contribution of wood combustion to fine particles (PM{sub 2.5}) ranged from 18% to 29% at the urban sites and from 31% to 66% at the suburban sites in the cold season. The PM measurements from ambient air and combustion experiments showed that the proportions of the three MAs can be utilised to separate the wildfire particles from residential wood combustion particles. (orig.)

  1. A study of ambient fine particles at Tianjin International Airport, China.

    Science.gov (United States)

    Ren, Jianlin; Liu, Junjie; Li, Fei; Cao, Xiaodong; Ren, Shengxiong; Xu, Bin; Zhu, Yifang

    2016-06-15

    The total count number concentration of particles from 10 to 1000nm, particle size distribution, and PM2.5 (aerodynamic diameter≤2.5μm) mass concentration were measured on a parking apron next to the runway at Tianjin International Airport in China. The data were collected 250, 270, 300, 350, and 400m from the runway. Wind direction and wind speed played important roles in determining the characteristics of the atmospheric particles. An inverted U-shaped relationship was observed between the measured particle number concentration and wind speed, with an average peak concentration of 2.2×10(5)particles/cm(3) at wind speeds of approximately 4-5m/s. The atmospheric particle number concentration was affected mainly by aircraft takeoffs and landings, and the PM2.5 mass concentration was affected mainly by the relative humidity (RH) of the atmosphere. Ultrafine particles (UFPs, diameter<100nm), with the highest number concentration at a particle size of approximately 16nm, dominated the measured particle size distributions. The calculated particle emission index values for aircraft takeoff and landing were nearly the same, with mean values of 7.5×10(15)particles/(kg fuel) and 7.6×10(15)particles/(kg fuel), respectively. The particle emission rate for one aircraft during takeoff is two orders of magnitude higher than for all gasoline-powered passenger vehicles in Tianjin combined. The particle number concentrations remained much higher than the background concentrations even beyond 400m from the runway.

  2. The 2005 Study of Organic Aerosols at Riverside (SOAR-1: instrumental intercomparisons and fine particle composition

    Directory of Open Access Journals (Sweden)

    K. S. Docherty

    2011-12-01

    Full Text Available Multiple state-of-the-art instruments sampled ambient aerosol in Riverside, California during the 2005 Study of Organic Aerosols at Riverside (SOAR to investigate the chemical composition and potential sources of fine particles (PMf in the inland region of Southern California. In this paper, we briefly summarize the spatial, meteorological and gas-phase conditions during SOAR-1 (15 July–15 August, provide detailed intercomparisons of high-resolution aerosol mass spectrometer (HR-AMS measurements against complementary measurements, and report the average composition of PMf including the composition of the organic fraction measured by the HR-AMS. Daily meteorology and gas-phase species concentrations were highly consistent, displaying clear diurnal cycles and weekday/weekend contrast. HR-AMS measurements of non-refractory submicron (NR-PM1 mass are consistent and highly correlated with those from a filter dynamics measurement system tapered-element oscillating microbalance (TEOM, while the correlation between HR-AMS and heated TEOM measurements is lower due to loss of high volatility species including ammonium nitrate from the heated TEOM. Speciated HR-AMS measurements are also consistent with complementary measurements as well as with measurements from a collocated compact AMS while HR-AMS OC is similar to standard semi-continuous Sunset measurements within the combined uncertainties of both instruments. A correction intended to account for the loss of semi-volatile OC from the Sunset, however, yields measurements ~30% higher than either HR-AMS or standard Sunset measurements. On average, organic aerosol (OA was the single largest component of PMf. OA composition was investigated using both elemental analysis and positive matrix factorization (PMF of HR-AMS OA spectra. Oxygen is the main heteroatom during SOAR-1, with O/C exhibiting a diurnal minimum of 0.28 during the morning

  3. The 2005 Study of Organic Aerosols at Riverside (SOAR-1: instrumental intercomparisons and fine particle composition

    Directory of Open Access Journals (Sweden)

    K. S. Docherty

    2011-02-01

    Full Text Available Multiple state-of-the-art instruments sampled ambient aerosol in Riverside, California during the 2005 Study of Organic Aerosols at Riverside (SOAR to investigate sources and chemical composition of fine particles (PMf in the inland region of Southern California. This paper briefly summarizes the spatial, meteorological and gas-phase conditions during SOAR-1 (15 July–15 August and provides detailed intercomparisons of complementary measurements and average PMf composition during this period. Daily meteorology and gas-phase species concentrations were highly repetitive with meteorological and gas-phase species concentrations displaying clear diurnal cycles and weekday/weekend contrast, with organic aerosol (OA being the single largest component contributing approximately one-third of PMf mass. In contrast with historical characterizations of OA in the region, several independent source apportionment efforts attributed the vast majority (~80% of OA mass during SOAR-1 to secondary organic aerosol (SOA. Given the collocation of complementary aerosol measurements combined with a dominance of SOA during SOAR-1, this paper presents new results on intercomparisons among several complementary measurements and on PMf composition during this period. Total non-refractory submicron (NR-PM1 measurements from a high-resolution aerosol mass spectrometer (HR-AMS are compared with measurements by tapered element oscillating microbalances (TEOM including a filter dynamics measurement system (TEOMFDMS. NR-PM1 is highly correlated with PM2.5 TEOMFDMS measurements and accounts for the bulk of PM2.5 mass with the remainder contributed primarily by refractory material. In contrast, measurements from a heated TEOM show substantial losses of semi-volatile material, including ammonium nitrate and semi-volatile organic material. Speciated HR-AMS measurements are

  4. Effect of shot peening using ultra-fine particles on fatigue properties of 5056 aluminum alloy under rotating bending

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Shoichi, E-mail: kikuchi@mech.kobe-u.ac.jp [Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo 657-8501 (Japan); Nakamura, Yuki [Department of Mechanical Engineering, National Institute of Technology, Toyota College, 2-1 Eisei-cho, Toyota-shi, Aichi 471-8525 (Japan); Nambu, Koichiro [Department of Mechanical Engineering, National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka-shi, Mie 510-0294 (Japan); Ando, Masafumi [Innovation Team, IKK SHOT Co. Ltd., 412-4, Nunowari, Minami-Shibata-machi, Tokai-shi, Aichi 476-0001 (Japan)

    2016-01-15

    Shot peening using particles 10 μm in diameter (ultra-fine particle peening: Ultra-FPP) was introduced to improve the fatigue properties of 5056 aluminum alloy. The surface microstructures of the Ultra-FPP treated specimens were characterized using a micro-Vickers hardness tester, scanning electron microscopy (SEM), X-ray diffraction (XRD), non-contact scanning white light interferometry, and electron backscatter diffraction (EBSD). The Ultra-FPP treated specimen had higher hardness than the conventional FPP treated specimen with a short nozzle distance due to the high velocity of the ultra-fine particles. Furthermore, the surface hardness of the Ultra-FPP treated specimen tended to increase as the peening time decreased. Fatigue tests were performed in air at room temperature using a cantilever-type rotating bending fatigue testing machine. It was found that the fatigue life of the Ultra-FPP treated specimen tended to increase with decreasing peening time. Mainly, the Ultra-FPP improved the fatigue properties of 5056 aluminum alloy in the very high cycle regime of more than 10{sup 7} cycles compared with the un-peened specimens. This is because the release of the compressive residual stress is small during fatigue tests at low stress amplitudes.

  5. Heavy metal pollution in sediment from Sisimiut, Greenland. Adsorption to organic matter and fine particles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Villumsen, Arne

    2006-01-01

    . The pollution could be linked to human activities in Sisimiut, a link that have not been investigated previously in Greenland. Except from the most polluted samples there was good correlation between heavy metal concentration and organic matter. Also some relation between fine fraction and heavy metal...

  6. The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes

    NARCIS (Netherlands)

    Boer, de B.; Gonzalez, M.; Bouwmeester, H.J.M.; Verweij, H.

    2000-01-01

    The electrochemical performance of a porous nickel electrode with its surface modified by deposition with fine yttria-stabilised zirconia (YSZ) powder is compared with that of the ‘bare’ electrode. Image analysis of the electrode microstructure yields values for the triple phase boundary (TPB) lengt

  7. Enhancement of CO2 Absorption under Taylor Flow in the Presence of Fine Particles

    Institute of Scientific and Technical Information of China (English)

    CAI Wangfeng; ZHANG Jiao; ZHANG Xubin; WANG Yan; QI Xiangjuan

    2013-01-01

    The physical absorption of CO2 in water containing different types of particles was studied in a microchannel operated under Taylor flow.The maximum enhancement factors of 1.43-2.15 were measured for activated carbon(AcC)particles.The analysis shows that the enhancement effect can be attributed to the shuttle mechanism.Considering the separate contributions of mass transfer from bubble cap and liquid film,a heterogeneous enhancement model is developed.According to this model,the enhancement factors ECap,EFilm and Eov are mainly determined by mass transfer coefficient KL(KLCap and KL Film),adsorptive capacity of particles m,and coverage fraction of particles at gas-liquid interface ζ.With,both effects of particle-to-interface adhesion and apparent viscosity included,the model predicts the enhancement effect of AcC particles reasonably well.

  8. Study on the daytime OH radical and implication for its relationship with fine particles over megacity of Shanghai, China

    Science.gov (United States)

    Nan, Jialiang; Wang, Shanshan; Guo, Yanlin; Xiang, Yajing; Zhou, Bin

    2017-04-01

    To investigate on the daytime OH and its implication to fine particle, the long-path differential optical absorption spectroscopy (LP-DOAS) system was employed to observe the main OH precursors of O3, HCHO and HONO, as well as NO2 and NO3 radical from April to August 2013 over Shanghai, China. The main OH production paths from HONO, HCHO and O3 were estimated to be occupied around 57.6%, 30.5% and 11.9% during daytime. The daytime OH radical concentration under steady-state was averaged at 1.02 × 107 molec cm-3, which was significantly impacted by the photolytic processes. The relationship between photolysis frequency j(O1D) and OH radical suggests that heavy fine particle loads can make the photolytic reactions less efficiently and decrease the OH production and concentration. Utilizing CO as the indicator, the part of PM2.5 mass related to primary emitted sources was found less impacted by the OH levels. The contribution of secondary organic aerosol with metrics of O3 was enhanced with the increases of the OH levels, while secondary inorganic part of PM2.5 was favor of the condition that smaller OH concentrations that 5 × 105-5 × 106 molec cm-3. Meantime, a simplified multivariate model was employed to evaluate the influences of OH levels on different parts of fine particles related to different emission and sources. Normalized by solar radiation, this part of OH unrelated to radiation was found to be inversely related to the PM2.5, which indicates the self-cleansing capability of the atmosphere.

  9. Preparation and Passivation of Fine ε-CL-20%细粒度ε-CL-20的制备及钝化

    Institute of Scientific and Technical Information of China (English)

    任晓婷; 孙忠祥; 曹一林

    2011-01-01

    The fine ε-CL-20 was prepared by recrystalization with solvent-nonsolvent method. The feeding styles and categories of additives for controlling crystal growth on the crystal morphology and particle size were analyzed. The results show that they have great effect on the morphology, particle size and agglomeration in the crystallization process. Sonication process offers uniform crystalline morphology without any agglomeration and can decrease its mechanical properties. The particle size of fine CL-20 sample is around(16±l)μm,and its friction and impact sensitivity were 84% and 55. 1J,respectively,which were much more insensitive than the original products.%采用溶剂-非溶剂重结晶法制备了细粒度ε-CL-20,分析了加料方式、晶体生长控制剂种类等因素在结晶细化过程中对CL-20微晶形貌和粒度的影响.结果表明,上述几种因素对细粒度CL-20的形貌、粒径及聚集状态均有较大影响.采用超声波辅助技术可明显改善CL-20的晶体形貌和防止晶体团聚,显著降低产品的机械感度,所制备的ε-CL-20平均粒径为(16士1)μm、摩擦感度和撞击感度分别为84%和55.1J,明显优于原料.

  10. Preparation of soft magnetic composites for Fe particles coated with (NiZn)Fe{sub 2}O{sub 4} via microwave treatment

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yuandong, E-mail: pengyuandong@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); NBTM New Materials Group Co., Ltd., Ningbo 315191 (China); Nie, Junwu; Zhang, Wenjun; Bao, Chongxi; Ma, Jian; Cao, Yang [NBTM New Materials Group Co., Ltd., Ningbo 315191 (China)

    2015-12-01

    Soft magnetic composites (SMCs) of Fe particles coated with fine particle Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ferrite were prepared via microwave heat treatment, and the magnetic properties and microstructures of these composites were investigated. The results show that a well-distributed Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} coating layer was formed on the surface of the Fe particles upon microwave annealing. The SMCs sample treated by microwave heating at 800 °C for 30 min under N{sub 2} had a perfect insulation layer between the Fe particles and showed stable permeability and low core loss as well as good magnetic characteristics over a wide frequency range. - Graphical abstract: SEM imaging of the composite powder after microwave treatment at 800 °C for 30 min shows that the surface of the Fe particles adhered well to the ferrite particles to form a dense and uniform insulation coating layer. - Highlights: • Insolution coating material is ferrimagnetic ferrite particles. • Fe particles were coated with fine particle NiZn ferrite via microwave treatment. • Coating layer was uniform and dense. • SMCs annealed had stable permeability and low core loss.

  11. Effect of fine solid particles on absorption rate of gaseous CO2

    Institute of Scientific and Technical Information of China (English)

    Sumin LU; Youguang MA; Shuhua SHEN; Chunying ZHU

    2008-01-01

    The influence of the properties of solid particles in slurry on the absorption of CO2 in the slurry was inves-tigated in a stirred thermostatic reactor. The absorption experiments were carried out in three different slurries con-sisting of water, cyclohexane and soybean oil, respectively, and three kinds of solid particles (active carbon, active alu-mina and silica gel) were incorporated into each of the above mentioned slurries separately. The experimental results show that the active carbon particles could enhance the absorption rate of gaseous CO2 in the aqueous slurry, while in the cyclohexane slurry, active carbon particles indi-cated no the absorption enhancement effect. However, it was observed that the active alumina and silica gel particles could enhance the absorption rate of CO2 in the cyclohex-ane slurry. These phenomena indicate that the solid part-icles, which could enhance the gaseous CO2 absorption rate, should possess two properties simultaneously, i.e. they rejected the solvent and had higher adsorption capacity for the solute. The experimental results also show that, as for those solid particles which could enhance the gas absorption rate, the enhancement increased quickly with the increase of solid concentration in slurry at first, and then reached a constant value gradually. It was also found that the enhancement factor was related to the coverage fraction of solid particles on the gas-liquid interface, and due to the reduction of surface fraction with increasing stirred speed, the enhancement factor decreased.

  12. Formation and emission of fine particles from two coal-fired power plants

    DEFF Research Database (Denmark)

    Nielsen, M.T.; Livbjerg, H.; Fogh, C.L.

    2002-01-01

    , and Fe under reducing conditions. Several other ash-contained elements, e.g., P, Ba, Co, Cu, Mn, Ni, Ph, V, and Zn, are partly vaporized in the boiler and enrich the small particles when they condense during cooling of the flue gas. Due to the higher penetration of the small particles through the filter...

  13. High viscosity gas fluidization of fine particles: An extended window of quasihomogeneous flow.

    Science.gov (United States)

    Valverde, Jose Manuel; Castellanos, Antonio

    2006-08-01

    We explore the role of gas viscosity in the behavior of gas-fluidized beds of fine powders by means of experimental measurements using nitrogen and neon as fluidizing gases, and theoretical considerations. The existence of a nonbubbling fluidlike regime has been recently observed in beds of fine powders fluidized with nitrogen. Our experiments with neon reveal a discontinuous transition from heterogeneous fluidization to a highly expanded homogeneous fluidization state. We point out that increasing gas viscosity enhances the coherence of agglomerate swarms, which promotes a local void-splitting mechanism, thus improving the uniformity of fluidization. Our theoretical analysis predicts that further increase of gas viscosity would produce a full suppression of the bubbling regime, i.e., the uniformly fluidized bed would undergo a direct transition to a turbulent regime as seen in beds of nanoparticles fluidized by nitrogen and in liquid-fluidized beds of moderate-density beads.

  14. Modal Analysis of the EMU Car-Body in the Preparation Condition Based on Mass Fineness Distribution

    Science.gov (United States)

    Li, Ya-Na; Rao, Ben-Teng; Xie, Su-Ming; Ma, Si-Qun

    Analyzing the car-body modal of EMU is the key of assessing EMU dynamic quality at high speed. The car-body modal can be influenced to same degree by the mass fineness distribution and the rationality of coupling stiffness of suspension device. Considering all equipments layout including internal decoration, FEM of the EMU car-body under preparation based on mass fineness distribution was created and the free modal was carried out with FEA software. The vertical bend frequency 10.03Hz, that is closer to the experimental data, satisfies the relative requirement. And on this basis, different vibration frequencies were studied under different elastic hanging stiffness of suspension device. Vibration frequency change is same on three direction with vertical direction stiffness, which indicate vertical stiffness is more important than the other direction stiffness. Thus these results provide some rational references for EMU car-body structural design.

  15. Fine particle emissions, emission reduction potential and reduction costs in Finland in 2020

    OpenAIRE

    Karvosenoja, Niko; Klimont, Zbigniew; Tohka, Antti; Johansson, Matti

    2006-01-01

    Fine particulate matter (PM2.5) in the atmosphere have been associated with severe human health effects. This report explores future emissions of primary PM2.5, their reduction potential and related reduction costs in Finland. One activity pathway of 2020 of the Finnish Climate Strategy was studied with two different PM emission control utilization scenarios: (1) "Baseline" which involves PM control technology utilization complying with current legislation, and (2) "Reduction" which assumes t...

  16. Formation of Cube Texture in Nominally Pure Aluminum With Fine Particle Dispersion

    OpenAIRE

    Saimoto, S.; Li, Jian; Langelaan, G.; Diak, B. J.; Shimizu, J

    1996-01-01

    An X-ray method to observe in-situ cube grain growth during recrystallization has been devised using a hot stage to measure the growth kinetics. Complementary studies, using electron channelling contrast, electron backscattered pattern and X-ray textural analysis, revealed that specific thermal-mechanical history can precipitate out Fe solutes such that the matrix is sufficiently pure to undergo continuous recrystallization even though a fine distribution of precipitate are initially formed. ...

  17. Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state

    Institute of Scientific and Technical Information of China (English)

    Ma Peng-Cheng; Zhan You-Bang

    2008-01-01

    This paper presents a scheme for probabilistic remote preparation of a three-particle entangled GreenbergerHorne-Zeilinger (GHZ) state via three-particle orthonormal basis projective measurement,and then directly generalize the scheme to multi-particle case.It is shown that by using N pairs of bipartite non-maximally entangled states as the quantum channel and N-particle orthonormal basis projective measurement,the multi-particle remote preparation can be successfully realized with a certain probability.

  18. Dynamics of fine particles during impingement of jets on a body with a needle

    Science.gov (United States)

    Alkhimov*, A. P.; Bedarev, I. A.; Fedorov, A. V.

    2013-07-01

    Numerical simulation of the impingement of a jet of a two-phase mixture of a gas with submicron metal particles on an obstacle with a needle located in front of it is carried out. The structure of a separated flow formed on impingement of a supersonic jet on a body with a needle has been studied. A comparison of various approximations for the law of resistance of spherical particles is made. It is shown that particles whose size exceeds 5 μm practically have a rectilinear trajectory and velocity sufficient for cold gas-dynamical deposition, whereas particles of diameter less than 0.2 μm envelope the separation zone being formed near the needle, and their velocity is much smaller than the critical one.

  19. Evaluation of correlating factors between {sup 238}U concentration measured in fine and course atmospheric particles

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Claudia Marques; Jacomino, Vanusa Maria Feliciano; Barreto, Alberto Avelar; Dias, Vagner Silva, E-mail: cmp@cdtn.b, E-mail: vmfj@cdtn.b, E-mail: aab@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Dias, Fabiana Ferrari, E-mail: fdias@cnen.gov.b [Brazilian Nuclear Energy Commission (CNEN-/MG), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas (LAPOC)

    2009-07-01

    Air quality is ever more important in function of the enormous proportion of human actions that have affected the environment over the last two centuries. Particulate material is one among many pollutants that can cause great risk to human health and the environment. It can be classified as: Total Suspended Particles (TSP), defined simply as particles with less than 50 mum aerodynamic diameter (one group of these particles can be inhaled and may cause health problems, while others may unfavorably affect the population's quality of life, interfering in environmental conditions and impairing normal community activities); and Inhalable Particles (PM{sub 10}), defined as those particles with less than 10 mum aerodynamic diameter. These particles penetrate the respiratory system and can reach pulmonary alveoli due to their small size, causing serious health damage. The Nuclear Technology Development Center (CDTN) has monitored air quality around its installations since 2000. CDTN's Environmental Monitoring Program (EMP) includes monitoring radioactivity levels contained in atmospheric TSP. In order to optimize its program, CDTN is carrying out a study to estimate the correlation between concentrations of particulate material measured in TSP and those measured in PM{sub 10}, PI{sub 2.5} and PI{sub 1}, as well as determination of activity concentration for each controlled radionuclide in all parts. The objective of this study is to present preliminary results and report {sup 238}U activity concentration results. (author)

  20. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt

    2002-08-15

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  1. Development of fine-celled bio-fiber composite foams using physical blowing agents and nano-particles

    Science.gov (United States)

    Guo, Gangjian

    As one of eco-friendly bio-fibers, wood-fiber has been incorporated in plastics to make wood-fiber/plastic composites (WPC) with an increased stiffness, durability and lowered cost. However, these improvements are usually accompanied by loss in the ductility and impact strength of the composites. These shortcomings can be significantly improved by incorporating a fine-cell foam structure in the composites. This thesis presents the development of the foaming technology for the manufacture of fine-cell WPC foams with environmentally benign physical blowing agents (PBAs), and focuses on the elucidation of the fundamental foaming mechanisms and the related issues involved. One critical issue comes from the volatiles evolved from the wood-fiber during high temperature processing. The volatiles, as a blowing agent, can contribute to the foaming process. However, they lead to gross deterioration of the cell structure of WPC foams. The presence of volatiles makes foaming of WPC "a poorly understood black art". With the use of PBAs, a strategy of lowering processing temperature becomes feasible, to suppress the generation of volatiles. A series of PBA-based experiments were designed using a statistical design of experiments (DOE) technique, and were performed to establish the relationship of processing and material variables with the structure of WPC foams. Fundamental foaming behaviors for two different PBAs and two different polymer systems were identified. WPC foams with a fine-cell morphology and a desired density were successfully obtained at the optimized conditions. Another limitation for the wider application of WPC is their flammability. Innovative use of a small amount of nano-clay in WPC significantly improved the flame-retarding property of WPC, and the key issue was to achieve a high degree of exfoliation of nano-particles in the polymer matrix, to achieve a desired flammability reduction. The synergistic effects of nano-particles in foaming of WPC were

  2. Preparation of magnetic polymer particles with nanoparticles of Fe(0).

    Science.gov (United States)

    Buendía, S; Cabañas, G; Alvarez-Lucio, G; Montiel-Sánchez, H; Navarro-Clemente, M E; Corea, M

    2011-02-01

    Iron nanoparticles (Fe(0)), were encapsulated into polymethyl methacrylate (PMMA), by means of emulsion polymerization techniques in a semicontinuous process. The final average diameter of the composite particle was calculated until three times of average particle of iron particles and were stabilized with a non-ionic surfactant. They were then characterized by scanning electron microscopy and dynamic light scattering. Their magnetic properties were determined by parallel field vibrating-sample magnetometry method. The results indicated that the magnetic properties are a function of polymer concentration in the nanocomposite particle.

  3. Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model

    Directory of Open Access Journals (Sweden)

    Wolff Henrik

    2010-11-01

    Full Text Available Abstract Background Nanotechnology and engineered nanomaterials (ENM are here to stay. Recent evidence suggests that exposure to environmental particulate matter exacerbates symptoms of asthma. In the present study we investigated the modulatory effects of titanium dioxide particle exposure in an experimental allergic asthma. Methods Nonallergic (healthy and ovalbumin-sensitized (asthmatic mice were exposed via inhalation to two different sizes of titanium dioxide particles, nanosized (nTiO2 and fine (fTiO2, for 2 hours a day, three days a week, for four weeks at a concentration of 10 mg/m3. Different endpoints were analysed to evaluate the immunological status of the mice. Results Healthy mice elicited pulmonary neutrophilia accompanied by significantly increased chemokine CXCL5 expression when exposed to nTiO2. Surprisingly, allergic pulmonary inflammation was dramatically suppressed in asthmatic mice which were exposed to nTiO2 or fTiO2 particles - i.e. the levels of leucocytes, cytokines, chemokines and antibodies characteristic to allergic asthma were substantially decreased. Conclusions Our results suggest that repeated airway exposure to TiO2 particles modulates the airway inflammation depending on the immunological status of the exposed mice.

  4. Distributed Lag Analyses of Daily Hospital Admissions and Source-Apportioned Fine Particle Air Pollution

    OpenAIRE

    2010-01-01

    Background Past time-series studies of the health effects of fine particulate matter [aerodynamic diameter ≤ 2.5 μm (PM2.5)] have used chemically nonspecific PM2.5 mass. However, PM2.5 is known to vary in chemical composition with source, and health impacts may vary accordingly. Objective We tested the association between source-specific daily PM2.5 mass and hospital admissions in a time-series investigation that considered both single-lag and distributed-lag models. Methods Daily PM2.5 speci...

  5. Advection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades

    Science.gov (United States)

    Huang, Y.H.; Saiers, J.E.; Harvey, J.W.; Noe, G.B.; Mylon, S.

    2008-01-01

    The movement of particulate matter within wetland surface waters affects nutrient cycling, contaminant mobility, and the evolution of the wetland landscape. Despite the importance of particle transport in influencing wetland form and function, there are few data sets that illuminate, in a quantitative way, the transport behavior of particulate matter within surface waters containing emergent vegetation. We report observations from experiments on the transport of 1 ??m latex microspheres at a wetland field site located in Water Conservation Area 3A of the Florida Everglades. The experiments involved line source injections of particles inside two 4.8-m-long surface water flumes constructed within a transition zone between an Eleocharis slough and Cladium jamaicense ridge and within a Cladium jamaicense ridge. We compared the measurements of particle transport to calculations of two-dimensional advection-dispersion model that accounted for a linear increase in water velocities with elevation above the ground surface. The results of this analysis revealed that particle spreading by longitudinal and vertical dispersion was substantially greater in the ridge than within the transition zone and that particle capture by aquatic vegetation lowered surface water particle concentrations and, at least for the timescale of our experiments, could be represented as an irreversible, first-order kinetics process. We found generally good agreement between our field-based estimates of particle dispersion and water velocity and estimates determined from published theory, suggesting that the advective-dispersive transport of particulate matter within complex wetland environments can be approximated on the basis of measurable properties of the flow and aquatic vegetation. Copyright 2008 by the American Geophysical Union.

  6. Capture Efficiency of Cooking-Related Fine and Ultrafine Particles by Residential Exhaust Hoods

    Energy Technology Data Exchange (ETDEWEB)

    Lunden, Melissa M.; Delp, William W.

    2014-06-05

    Effective exhaust hoods can mitigate the indoor air quality impacts of pollutant emissions from residential cooking. This study reports capture efficiencies (CE) measured for cooking generated particles for scripted cooking procedures in a 121-m3 chamber with kitchenette. CEs also were measured for burner produced CO2 during cooking and separately for pots and pans containing water. The study used four exhaust hoods previously tested by Delp and Singer (Environ. Sci. Technol., 2012, 46, 6167-6173). For pan-frying a hamburger over medium heat on the back burner, CEs for particles were similar to those for burner produced CO2 and mostly above 80percent. For stir-frying green beans in a wok (high heat, front burner), CEs for burner CO2 during cooking varied by hood and airflow: CEs were 34-38percent for low (51?68 L s-1) and 54?72percent for high (109?138 L s-1) settings. CEs for 0.3?2.0 ?m particles during front burner stir-frying were 3?11percent on low and 16?70percent on high settings. Results indicate that CEs measured for burner CO2 are not predictive of CEs of cooking-generated particles under all conditions, but they may be suitable to identify devices with CEs above 80percent both for burner combustion products and for cooking-related particles.

  7. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  8. Preparation and characterization of energetic materials coated superfine aluminum particles

    Science.gov (United States)

    Liu, Songsong; Ye, Mingquan; Han, Aijun; Chen, Xin

    2014-01-01

    This work is devoted to protect the activity of aluminum in solid rocket propellants by means of solvent/non-solvent method in which nitrocellulose (NC) and Double-11 (shortened form of double-base gun propellant, model 11) have been used as coating materials. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the morphology of coated Al particles. Other characterization data of coated and uncoated Al particles, such as infrared absorption spectrum, laser particle size analysis and the active aluminum content were also studied. The thermal behavior of pure and coated aluminum samples have also been studied by simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC). The results indicated that: superfine aluminum particles could be effectively coated with nitrocellulose and Double-11 through a solvent/non-solvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 20-50 nm. The active aluminum content of different coated samples was measured by means of oxidation-reduction titration method. The results showed that after being stored in room temperature and under 50% humidity condition for about 4months the active aluminum content of coated Al particles decreased from 99.8 to 95.8% (NC coating) and 99.2% (Double-11 coating) respectively. Double-11 coating layer had a much better protective effect. The TG-DTA and DSC results showed that the energy amount and energy release rate of NC coated and Double-11 coated Al particles were larger than those of the raw Al particles. Double-11 coated Al particles have more significant catalytic effect on the thermal decomposition characters of AP than that of NC coated Al particles. These features accorded with the energy release characteristics of solid propellant.

  9. Preparation and characterization of energetic materials coated superfine aluminum particles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Songsong; Ye, Mingquan, E-mail: liusong8366@gmail.com; Han, Aijun; Chen, Xin

    2014-01-01

    This work is devoted to protect the activity of aluminum in solid rocket propellants by means of solvent/non-solvent method in which nitrocellulose (NC) and Double-11 (shortened form of double-base gun propellant, model 11) have been used as coating materials. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the morphology of coated Al particles. Other characterization data of coated and uncoated Al particles, such as infrared absorption spectrum, laser particle size analysis and the active aluminum content were also studied. The thermal behavior of pure and coated aluminum samples have also been studied by simultaneous thermogravimetry–differential thermal analysis (TG–DTA) and differential scanning calorimetry (DSC). The results indicated that: superfine aluminum particles could be effectively coated with nitrocellulose and Double-11 through a solvent/non-solvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 20–50 nm. The active aluminum content of different coated samples was measured by means of oxidation–reduction titration method. The results showed that after being stored in room temperature and under 50% humidity condition for about 4months the active aluminum content of coated Al particles decreased from 99.8 to 95.8% (NC coating) and 99.2% (Double-11 coating) respectively. Double-11 coating layer had a much better protective effect. The TG–DTA and DSC results showed that the energy amount and energy release rate of NC coated and Double-11 coated Al particles were larger than those of the raw Al particles. Double-11 coated Al particles have more significant catalytic effect on the thermal decomposition characters of AP than that of NC coated Al particles. These features accorded with the energy release characteristics of solid propellant.

  10. Preparation of PVA/PEI ultra-fine fibers and their composite membrane with PLA by electrospinning.

    Science.gov (United States)

    Dong, Cunhai; Yuan, Xiaoyan; He, Mingyu; Yao, Kangde

    2006-01-01

    Ultra-fine fibers of poly(vinyl alcohol)/polyethylenimine (PVA/PEI) were prepared by electrospinning of their blend solutions in water. Effects of PVA/PEI mass ratio and the polymer concentration on the fiber morphology were discussed by analysis of scanning electron micrographs. Results showed that uniform ultra-fine fibers could be obtained from an 8% PVA/PEI solution with 75:25 mass ratio. It was supposed that the introduction of PVA could promote electrospinning of PEI by weakening the intermolecular interaction and increasing solution viscosity. A composite membrane of PVA/PEI with poly(D,L-lactide) (PLA) was produced by co-electrospinning simultaneously from the aqueous 8% PVA/PEI (75:25) solution and a 20% PLA solution in N,N-dimethylformamide in two separated syringes. Fourier transform infrared spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy verified the existence of PVA/PEI and PLA in the fibrous membrane. We attempted to incorporate PEI with PLA as ultra-fine fibers to diminish the acidic inflammation caused by biodegradation of PLA. The fibrous composite membrane of PVA/PEI-PLA could provide better biocompatibility and would be used as drug-delivery carriers or tissue-engineering scaffolds.

  11. Fine ambient particles induce oxidative stress and metal binding genes in human alveolar machrophages

    Science.gov (United States)

    Exposure to ambient pollutant particles (APP) increased respiratory morbidity and mortality. The alveolar macrophages (AMs) are one cell type in the lung directly exposed to APP. Upon contact with APP, AMs are activated and produce reactive oxygen species, but the scope ofthis ox...

  12. Estimates of HVAC filtration efficiency for fine and ultrafine particles of outdoor origin

    Science.gov (United States)

    Azimi, Parham; Zhao, Dan; Stephens, Brent

    2014-12-01

    This work uses 194 outdoor particle size distributions (PSDs) from the literature to estimate single-pass heating, ventilating, and air-conditioning (HVAC) filter removal efficiencies for PM2.5 and ultrafine particles (UFPs: Standard 52.2 does not explicitly account for UFP or PM2.5 removal efficiency, estimates of filtration efficiency for both size fractions increased with increasing MERV. Our results also indicate that outdoor PSD characteristics and assumptions for particle density and typical size-resolved infiltration factors (in the absence of HVAC filtration) do not drastically impact estimates of HVAC filter removal efficiencies for PM2.5. The impact of these factors is greater for UFPs; however, they are also somewhat predictable. Despite these findings, our results also suggest that MERV alone cannot always be used to predict UFP or PM2.5 removal efficiency given the various size-resolved removal efficiencies of different makes and models, particularly for MERV 7 and MERV 12 filters. This information improves knowledge of how the MERV designation relates to PM2.5 and UFP removal efficiency for indoor particles of outdoor origin. Results can be used to simplify indoor air quality modeling efforts and inform standards and guidelines.

  13. Coarse and fine particles but not ultrafine particles in urban air trigger hospital admission for asthma in children

    DEFF Research Database (Denmark)

    Iskandar, Amne; Andersen, Zorana Jovanovic; Bønnelykke, Klaus;

    2012-01-01

    BackgroundShort-term exposure to air pollution can trigger hospital admissions for asthma in children, but it is not known which components of air pollution are most important. There are no available studies on the particular effect of ultrafine particles (UFPs) on paediatric admissions for asthma......(x)) or nitrogen dioxide (NO(2)); and (2) infants are more susceptible to the effects of exposure to air pollution than older children.MethodDaily counts of admissions for asthma in children aged 0-18 years to hospitals located within a 15 km radius of the central fixed background urban air pollution measurement...... station in Copenhagen between 2001 and 2008 were extracted from the Danish National Patient Registry. A time-stratified case crossover design was applied and data were analysed using conditional logistic regression to estimate the effect of air pollution on asthma admissions.ResultsA significant...

  14. Performance analysis of a new positron camera geometry for high speed, fine particle tracking

    Science.gov (United States)

    Sovechles, J. M.; Boucher, D.; Pax, R.; Leadbeater, T.; Sasmito, A. P.; Waters, K. E.

    2017-09-01

    A new positron camera arrangement was assembled using 16 ECAT951 modular detector blocks. A closely packed, cross pattern arrangement was selected to produce a highly sensitive cylindrical region for tracking particles with low activities and high speeds. To determine the capabilities of this system a comprehensive analysis of the tracking performance was conducted to determine the 3D location error and location frequency as a function of tracer activity and speed. The 3D error was found to range from 0.54 mm for a stationary particle, consistent for all tracer activities, up to 4.33 mm for a tracer with an activity of 3 MBq and a speed of 4 m · s-1. For lower activity tracers (sensitive to increases in speed, increasing to 28 mm (at 4 m · s-1), indicating that at these conditions a reliable trajectory is not possible. These results expanded on, but correlated well with, previous literature that only contained location errors for tracer speeds up to 1.5 m · s-1. The camera was also used to track directly activated mineral particles inside a two-inch hydrocyclone and a 142 mm diameter flotation cell. A detailed trajectory, inside the hydrocyclone, of a  -212  +  106 µm (10-1 MBq) quartz particle displayed the expected spiralling motion towards the apex. This was the first time a mineral particle of this size had been successfully traced within a hydrocyclone, however more work is required to develop detailed velocity fields.

  15. Classical Communication Cost and Probabilistic Remote Preparation of Four-Particle Entangled W State

    Institute of Scientific and Technical Information of China (English)

    HOU Kui; SHI Shou-Hua

    2009-01-01

    We present a scheme for probabilistic remote preparation of the four-particle entangled W state by using four partial entangled two-particle states as the quantum channel. In this scheme, if Alice (sender) performs four-particle projective measurements and Bob (receiver) adopts some appropriate unitary operation, the remote state preparation can be successfully realized with certain probability. The classical communication cost is also calculated. However, the success probability of preparation can be increased to 1 for four kinds of special states.

  16. Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Anne Juul; Glarborg, Peter

    2011-01-01

    Fine particles formed from combustion of a bituminous coal and co-combustion of coal with 7 th% (thermal percentage) solid recovered fuel (SRF) in a pulverized coal-fired power plant were sampled and characterized in this study. The particles from dedicated coal combustion and co-combustion both...... appear to be an important formation mechanism. The elemental composition of the particles from coal combustion showed that S and Ca were significantly enriched in ultrafine particles and P was also enriched considerably. However, compared with supermicron particles, the contents of Al, Si and K were...

  17. Compositions of coarse and fine particles in martian soils at gale: A window into the production of soils

    Science.gov (United States)

    Cousin, A.; Meslin, P. Y.; Wiens, R. C.; Rapin, W.; Mangold, N.; Fabre, C.; Gasnault, O.; Forni, O.; Tokar, R.; Ollila, A.; Schröder, S.; Lasue, J.; Maurice, S.; Sautter, V.; Newsom, H.; Vaniman, D.; Le Mouélic, S.; Dyar, D.; Berger, G.; Blaney, D.; Nachon, M.; Dromart, G.; Lanza, N.; Clark, B.; Clegg, S.; Goetz, W.; Berger, J.; Barraclough, B.; Delapp, D.

    2015-03-01

    The ChemCam instrument onboard the Curiosity rover provides for the first time an opportunity to study martian soils at a sub-millimeter resolution. In this work, we analyzed 24 soil targets probed by ChemCam during the first 250 sols on Mars. Using the depth profile capability of the ChemCam LIBS (Laser-Induced Breakdown Spectroscopy) technique, we found that 45% of the soils contained coarse grains (>500 μm). Three distinct clusters have been detected: Cluster 1 shows a low SiO2 content; Cluster 2 corresponds to coarse grains with a felsic composition, whereas Cluster 3 presents a typical basaltic composition. Coarse grains from Cluster 2 have been mostly observed exposed in the vicinity of the landing site, whereas coarse grains from Clusters 1 and 3 have been detected mostly buried, and were found all along the rover traverse. The possible origin of these coarse grains was investigated. Felsic (Cluster 2) coarse grains have the same origin as the felsic rocks encountered near the landing site, whereas the origin of the coarse grains from Clusters 1 and 3 seems to be more global. Fine-grained soils (particle size < laser beam diameter which is between 300 and 500 μm) show a homogeneous composition all along the traverse, different from the composition of the rocks encountered at Gale. Although they contain a certain amount of hydrated amorphous component depleted in SiO2, possibly present as a surface coating, their overall chemical homogeneity and their close-to-basaltic composition suggest limited, or isochemical alteration, and a limited interaction with liquid water. Fine particles and coarse grains from Cluster 1 have a similar composition, and the former could derive from weathering of the latter. Overall martian soils have a bulk composition between that of fine particles and coarse grains. This work shows that the ChemCam instrument provides a means to study the variability of soil composition at a scale not achievable by bulk chemical analyses.

  18. Spherical YAG:Ce3+ Phosphor Particles Prepared by Spray Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Qi Faxin; Wang Haibo; Zhu Xianzhong

    2005-01-01

    Spherical YAG:Ce3+ phosphor particles with narrow size distribution were prepared by spray pyrolysis. The effects of the concentration of solution, the flow rate of carrier gas and the annealing temperature on the phosphor morphology were studied. The productivity of precursor particles shows a trend of drop after rising with the increase of concentration. Raising the flow rate of nitrogen can improve the productivity of the precursor particles. Phosphor prepared by spray pyrolysis has obviously higher emission intensity than that synthesized by solid state reaction, spray pyrolysis makes Ce3+ ions well distributed in the crystal lattice as the luminescent centers, and phosphor particles have regular sphericity and narrow size distribution.

  19. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibo, E-mail: hbzhang@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Makino, Tomoyuki [National Institute for Agro-Environmental Sciences, Tsukuba 3058604 (Japan); Wu, Longhua [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Nanzyo, Masami [Tohoku University, Sendai 9808576 (Japan)

    2013-03-15

    Highlights: ► A continuous flow ultra-centrifugation method has been developed to obtain fine particles from polluted agricultural soil. ► Pollution source affected the heavy metal fractionation in size-fractions by changing soil particle properties. ► The iron oxides affected the distribution of lead species more than other metals in the smelter dust polluted particles. -- Abstract: The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (<1 μm, <0.6 μm and <0.2 μm) of the submicron particles from the soil polluted by wastewater and smelter dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of <1 μm or less were observed in the soil contaminated by wastewater than by smelter dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessblity of the metals as well as the mobility of the fine particles in soil.

  20. Sources of organic compounds in fine soil and sand particles during winter in the metropolitan area of Riyadh, Saudi Arabia.

    Science.gov (United States)

    Rushdi, Ahmed I; Al-Mutlaq, Khalid; Simoneit, Bernd R T

    2005-11-01

    Major advances have been made in molecular marker analysis to distinguish between natural and anthropogenic organic matter inputs to the atmosphere. Resuspension of soil and sand by wind is one of the major mechanisms that produces particle dusts in the atmosphere. Soil and sand samples from the Riyadh area were collected in winter 2002, sieved to remove coarse particles and extracted with a mixture of dichloromethane and methanol (3:1, v:v). The total extracts were analyzed by gas chromatography-mass spectrometry in order to characterize the contents and identify the potential sources of the organic components. The major organic compounds of these extracts were derived from natural biogenic and anthropogenic sources. Organic compounds from natural sources, mainly vegetation, were major in samples from outside the city of Riyadh and included n-alkanes, n-alkanoic acids, n- alkanols, methyl alkanoates, and sterols. Anthropogenic inputs were significant in the fine particles of soil and sand samples collected from populated areas of the city. They consisted mainly of n-alkanes, hopanes, UCM (from vehicular emissions), and plasticizers (from discarded plastics, e.g., shopping bags). Carbohydrates had high concentrations in all samples and indicate sources from decomposed cellulose fibers and/or the presence of viable microbiota such as bacteria and fungi.

  1. Study on Metallized Reduction and Magnetic Separation of Iron from Fine Particles of High Iron Bauxite Ore

    Science.gov (United States)

    Liu, Zheng-Gen; Chu, Man-Sheng; Wang, Zheng; Zhao, Wei; Tang, Jue

    2017-01-01

    High iron bauxite ore is a typical unmanageable polyparagenetic resource and owns high comprehensive utilization value. Separation of iron from fine particles of high iron bauxite ore by the process of metallized reduction and magnetic dressing was researched systemically. The effect of magnetic field intensity, reduction temperature, reduction time, mole ratio of fixed carbon to reducible oxygen (FC/O) and ore particles size on separation indexes was researched. The results show that, with the conditions of reduction temperature of 1,400 °C, reduction time of 180 min, FC/O of 2.0, ore particle size of -2.0 mm and magnetic field intensity of 40 KA/m, about 89.24 % of the iron could be removed from high iron bauxite ore as metallic iron. Meanwhile, 86.09 % of the aluminum is stayed in non-magnetic fraction as alumina. However, the formation of hercynite (FeAl2O4) limits the reduction rate of iron oxides to metallic iron. The lower reduction conditions and higher recovery ratio of iron could be achieved with adopting ore-coal composite agglomerates or adding catalyst.

  2. Flocculation of fine fluorite particles with Corynebacterium xerosis and commercial long chain polymers

    Directory of Open Access Journals (Sweden)

    Rigo Lisandra N.

    2002-01-01

    Full Text Available This work aimed to study, comparatively, the flocculation of fluorite particles with Corynebacterium xerosis cells and three commercial long chain polymers. Best flocculation results were obtained with cells of C. xerosis and with an anionic polyacrylamide. Both were effective in solids removal and water clarification, although flocculation with C. xerosis cells requires a higher dosage of reagent per mass unit of processed ore.

  3. Review on preparation techniques of particle reinforced metal matrix composites

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparatior techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  4. Analysis on thermophoretic deposit of fine particle on water wall of 10 MW high temperature gas-cooled reactor

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tao; YANG Rui-Chang; JIA Dou-Nan

    2005-01-01

    The water wall is an important part of the passive natural circulation residual heat removal system in a high temperature gas-cooled reactor. The maximum temperatures of the pressure shell and the water wall are calculated using annular vertical closed cavity model. Fine particles can deposit on the water wall due to the thermophore sis effect. This deposit can affect heat transfer. The thermophoretic deposit efficiency is calculated by using Batch and Shen's formula fitted for both laminar flow and turbulent flow. The calculated results indicate that natural convection is turbulent in the closed cavity. The transient thermophoretic deposit efficiency rises with the increase of the pressure shell's temperature. Its maximum value is 14%.

  5. Remote preparation of a Greenberger-Home-Zeilinger state via a two-particle entangled state

    Institute of Scientific and Technical Information of China (English)

    Li Hong-Cai; Lin Xiu-Min; Li Xing-Min Hua; Yang Rang-Can

    2007-01-01

    We present two schemes for realizing the remote preparation of a Greenberger- Home- Zeilinger (GHZ) state. The first scheme is to remotely prepare a general N-particle GHZ state with two steps. One is to prepare a qubit state by using finite classical bits from sender to receiver via a two-particle entangled state, and the other is that the receiver introduces N - 1 additional particles and performs N - 1 controlled-not (C-Not) operations. The second scheme is to remotely prepare an JV-atom GHZ state via a two-atom entangled state in cavity quantum electrodynamics (QED). The two schemes require only a two-particle entangled state used as a quantum channel, so we reduce the requirement for entanglement.

  6. Biodegradable and magnetic core-shell composite particle prepared by emulsion solvent diffusion method

    Science.gov (United States)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2016-02-01

    The present paper describes optimization of preparation conditions of a core-shell composite particle, and its heat generation by alternating magnetic fields. The composite particles are prepared with a modified emulsion solvent diffusion method, which is combined with Pickering emulsion stabilized by magnetic nanoparticles. In this method, the magnetic nanoparticles act as an emulsifier, and its amount and size are crucial to morphology of the composite particles. The magnetic nanoparticles of 8-9 nm would be strongly adsorbed at a liquid-liquid interface rather than the larger nanoparticles. At the optimized concentration of the magnetic nanoparticle’s suspension for the preparation, small and uniform composite particles are obtained since the amount of the nanoparticles is enough to prevent coalescence of droplets during the formation of the composites. The heat generation by alternating magnetic fields emerged certainly. This result suggests the composite particles have a property as a heat-generating carrier for hyperthermia treatment.

  7. Intraurban Variation of Fine Particle Elemental Concentrations in New York City.

    Science.gov (United States)

    Ito, Kazuhiko; Johnson, Sarah; Kheirbek, Iyad; Clougherty, Jane; Pezeshki, Grant; Ross, Zev; Eisl, Holger; Matte, Thomas D

    2016-07-19

    Few past studies have collected and analyzed within-city variation of fine particulate matter (PM2.5) elements. We developed land-use regression (LUR) models to characterize spatial variation of 15 PM2.5 elements collected at 150 street-level locations in New York City during December 2008-November 2009: aluminum, bromine, calcium, copper, iron, potassium, manganese, sodium, nickel, lead, sulfur, silicon, titanium, vanadium, and zinc. Summer- and winter-only data available at 99 locations in the subsequent 3 years, up to November 2012, were analyzed to examine variation of LUR results across years. Spatial variation of each element was modeled in LUR including six major emission indicators: boilers burning residual oil; traffic density; industrial structures; construction/demolition (these four indicators in buffers of 50 to 1000 m), commercial cooking based on a dispersion model; and ship traffic based on inverse distance to navigation path weighted by associated port berth volume. All the elements except sodium were associated with at least one source, with R(2) ranging from 0.2 to 0.8. Strong source-element associations, persistent across years, were found for residual oil burning (nickel, zinc), near-road traffic (copper, iron, and titanium), and ship traffic (vanadium). These emission source indicators were also significant and consistent predictors of PM2.5 concentrations across years.

  8. Cerium dioxide with large particle size prepared by continuous precipitation

    Institute of Scientific and Technical Information of China (English)

    李梅; 王觅堂; 柳召刚; 胡艳宏; 吴锦绣

    2009-01-01

    Cerium dioxide(CeO2) has attracted much attention and has wide applications such as automotive exhaust catalysts,polishing materials for optical glasses and additives for advanced glasses,as well as cosmetic materials.The particle size and its distribution are key factors to the performance of the materials in the functional applications.However,control of particle size is still a challenge in materials synthesis.Therefore,continuous precipitation of cerium oxalate(precursor of ceria) was carried out at dif...

  9. Polyion complex (PIC) particles: Preparation and biomedical applications.

    Science.gov (United States)

    Insua, Ignacio; Wilkinson, Andrew; Fernandez-Trillo, Francisco

    2016-08-01

    Oppositely charged polyions can self-assemble in solution to form colloidal polyion complex (PIC) particles. Such nanomaterials can be loaded with charged therapeutics such as DNA, drugs or probes for application as novel nanomedicines and chemical sensors to detect disease markers. A comprehensive discussion of the factors affecting PIC particle self-assembly and their response to physical and chemical stimuli in solution is described herein. Finally, a collection of key examples of polyionic nanoparticles for biomedical applications is discussed to illustrate their behaviour and demonstrate the potential of PIC nanoparticles in medicine.

  10. Preparation of Well Dispersed and Ultra-Fine Ce(Zr)O2 Mixed Oxide by Mechanochemical Processing

    Institute of Scientific and Technical Information of China (English)

    程昌明; 李永绣; 周雪珍; 陈伟凡

    2004-01-01

    Ultra-fine CeO2-ZrO2 mixed oxide was successfully synthesized by wet-solid phase mechanochemical processing, Ce2(CO3)3·8H2O, ZrOCl2·xH2O and ammonia were used as reactants. It is found that the crystalline Ce2(CO3)3·8H2O and ZrOCl2·xH2O are changed to amorphous cerium and zirconium hydroxide precursor after milling with ammonia, and Ce0.15Zr0.85O2 mixed oxide with pure tetragonal phase structure and medium particle size(D50)less than 1μm is formed by calcining precursor over 673 K. The XRD patterns indicate that the crystal unite size increases with rising calcining temperature due to crystal growth. However, the particle size and BET surface area of the Ce(Zr)O2 mixed oxide decreases with rising calcining temperature, which may be attributed to the contract of particles and the vanish of holes inside grains.

  11. The ozonolysis of primary aliphatic amines in single and multicomponent fine particles

    Directory of Open Access Journals (Sweden)

    J. Zahardis

    2007-10-01

    Full Text Available The oxidative processing by ozone of the particulate amines octadecylamine (ODA and hexadecylamine (HDA is reported. Ozonolysis of these amines resulted in strong NO2 and NO3 ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitro alkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3(HNO3. For ozonized mixed particles containing ODA or HDA + oleic acid (OL, with pO3≥3×10−7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines and stabilized Criegee intermediates (SCI or secondary ozonides (for amides from the fatty acid. The routes to amides via SCI and/or secondary ozonides was shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10−3 atm for 17 s. This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g. NO2, NO3, formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  12. Availability and bioaccessibility of metals in fine particles of some urban soils.

    Science.gov (United States)

    Madrid, F; Biasioli, M; Ajmone-Marsan, F

    2008-07-01

    Metals in urban soils might be transferred to humans via ingestion, dermal contact, or breathing, especially to children due to the "hand to mouth" activity during outdoor activities in playground and recreational areas. This involuntary soil ingestion depends on soil adherence to skin; it is known that the adhesion process tends to exclude particles greater than 50 microm, so the fraction below this diameter would be the most dangerous for health. The aim of this work was to study the "availability", estimated by the EDTA extraction, and "oral bioaccessibility", estimated by the Simple Bioaccessibility Extraction Test (SBET), of several metals in urban soils of two European cities (Sevilla and Torino), as related to the soil particle size distribution. Torino and Sevilla showed different levels of metal contents, availability, and bioaccessibility. In Torino, the finer particles showed metal enrichment of Cu, Zn, and, to a lesser extent, Pb, whereas in Sevilla, all of the studied metals showed this enrichment compared to the whole soils. The whole soil cannot be used as a good general indicator of the bioaccessibility of metals in the finest fractions of the soil. Metal availability was higher in the clay fraction (soils in both cities, and principal component analysis shows that availability is especially due to this fraction. In contrast, Cu and Pb bioaccessibility in the clay fraction seems to be slightly lower than, or comparable to, all of the other fractions and the whole soil. Bioaccessibility of Cr and Ni is clearly greater in the coarser fractions of Sevilla than those of Torino, despite the considerably greater total contents of both metals in the latter city. Adsorbed metal forms are assumed to be preferentially responsible for metals released by EDTA. A different origin is attributed to bioaccessible metal forms. Anthropic influence seems more important in determining metal availability and bioaccessibility in urban soils of both cities than the

  13. Spatial variability of fine and coarse particle composition and sources in Cyprus

    Science.gov (United States)

    Achilleos, Souzana; Wolfson, Jack M.; Ferguson, Stephen T.; Kang, Choong-Min; Hadjimitsis, Diofantos G.; Hadjicharalambous, Marios; Achilleos, Constantia; Christodoulou, Andri; Nisanzti, Argyro; Papoutsa, Christiana; Themistocleous, Kyriacos; Athanasatos, Spyros; Perdikou, Skevi; Koutrakis, Petros

    2016-03-01

    Southern and Eastern European countries exceed WHO and EU air quality standards very often, and are influenced by both local and external sources from Europe, Asia and Africa. However, there are limited data on particle composition and source profiles. We collected PM2.5 and PM10 samples (particulate matter with aerodynamic diameter less than 2.5 and 10 μm, respectively) in four cities in Cyprus using Harvard Impactors. Measurements were conducted between January 2012 and January 2013. We analyzed these samples for mass concentration and chemical composition, and conducted a source apportionment analysis using Positive Matrix Factorization (PMF). All sites complied with PM2.5 and PM10 WHO daily standards for most of the days. As in other Eastern European countries, we found higher sulfate contribution and less organic carbon than in the Western and central Europe. For PM2.5, seven source types were identified including regional sulfur, traffic emissions, biomass, re-suspended soil, oil combustion, road dust, and sea salt. In all four sites, regional sulfur was the predominant source (> 30%). High inter-site correlations were observed for both PM2.5 component concentrations and source contributions, may be because a large fraction of PM2.5 is transported. Finally, for PM10 -2.5 (coarse particles with aerodynamic diameter between 2.5 and 10 μm) three sources were identified, which include road dust, soil, and sea salt. Significant inter-site correlations were also observed for coarse particles. All dust storm samples, except one, had PM levels below the daily standard. However, mineral dust, defined as the total mass of crustal metal oxides, increased up to ten times during the dust events.

  14. HONO and Inorganic Fine Particle Composition in Typical Monsoon Region with Intensive Anthropogenic Emission: In-situ Observations and Source Identification.

    Science.gov (United States)

    Xie, Y.; Nie, W.; Ding, A.; Huang, X.

    2015-12-01

    Yangtze River Delta (YRD) is one of the most typical monsoon area with probably the most largest population intensity in the world. With sharply economic development and the large anthropogenic emissions, fine particle pollution have been one of the major air quality problem and may further have impact on the climate system. Though a lot of control policy (sulfur emission have been decreasing from 2007) have been conducted in the region, studies showed the sulfate in fine particles still take major fraction as the nitrate from nitrogen oxides increased significantly. In this study, the role of inorganic chemical compositions in fine particles was investigated with two years in-situ observation. Sulfate and Nitrate contribute to fine particle mass equally in general, but sulfate contributes more during summer and nitrate played more important role in winter. Using lagrangian dispersion backward modeling and source contribution clustering method, the impact of airmass coming from different source region (industrial, dust, biogenic emissions, etc) on fine particle inorganic compositions were discussed. Furthermore, we found two unique cases showing in-situ implications for sulfate formation by nitrogen dioxide oxidation mechanisms. It was showed that the mixing of anthropogenic pollutants with long-range transported mineral dust and biomass burning plume would enhance the sulfate formation by different chemistry mechanisms. This study focus on the complex aspects of fine particle formation in airmasses from different source regions: . It highlights the effect of NOx in enhancing the atmospheric oxidization capacity and indicates a potentially very important impact of increasing NOx on air pollution formation and regional climate change in East Asia.

  15. Electron Cryomicroscopy of Membrane Proteins: Specimen Preparation for Two-Dimensional Crystals and Single Particles

    OpenAIRE

    Schmidt-Krey, Ingeborg; Rubinstein, John L.

    2010-01-01

    Membrane protein structure and function can be studied by two powerful and highly complementary electron cryomicroscopy (cryo-EM) methods: electron crystallography of two-dimensional (2D) crystals and single particle analysis of detergent-solubilized protein complexes. To obtain the highest-possible resolution data from membrane proteins, whether prepared as 2D crystals or single particles, cryo-EM samples must be vitrified with great care. Grid preparation for cryo-EM of 2D crystals is possi...

  16. Reproducible Preparation of Silver Sols with Small Particle Size Using Borohydride Reduction: For Use as Nuclei for Preparation of Larger Particles.

    Science.gov (United States)

    Shirtcliffe; Nickel; Schneider

    1999-03-01

    Silver colloids are useful as substrates for surface enhanced Raman spectroscopy (SERS). The results are, however, seldom quantitative as the distribution of particle sizes in silver suspensions can vary from sample to sample and thus the SERS spectra can vary in intensity. Monodisperse silver sols are relatively difficult to prepare compared with gold or latex colloids as the nucleation process is difficult to control. Previous workers have used a system where small particles are formed in one process and grown in a second reaction. In this paper a simple procedure is outlined by which the small, "seed" particles (starter sols) can be prepared; this method is simpler and more reproducible than that used in the past. The process by which the sols can be grown is not discussed in detail here as it is the subject of a forthcoming publication. Copyright 1999 Academic Press.

  17. [Pollutions of indoor fine particles in four types of public places and the influencing factors].

    Science.gov (United States)

    Liu, Bo; Deng, Fu-rong; Guo, Xin-biao; Yang, Dong-mei; Teng, Xiu-quan; Zheng, Xu; Gao, Jing; Dong, Jing; Wu, Shao-wei

    2009-08-01

    To study the levels of pollutions caused by fine particulate matter (PM(2.5)) in the public places and investigate the possible influencing factors. A total of 20 public places in four types such as rest room in bath center, restaurant, karaoke bars and cyber cafe in Tongzhou district in Beijing were chosen in this study; indoor and outdoor PM(2.5) was monitored by TSI sidepak AM510. Data under varying conditions were collected and analyzed, such as doors or windows or mechanical ventilation devices being opened, rooms cramped with people and smoking. The average concentration of indoor PM(2.5) in 20 public places was (334.6 +/- 386.3) microg/m(3), ranging from 6 microg/m(3) to 1956 microg/m(3); while in bath center, restaurant, karaoke bars and cyber cafe were (116.9 +/- 100.1)microg/m(3), (317.9 +/- 235.3) microg/m(3), (750.6 +/- 521.6)microg/m(3) and (157.5 +/- 98.5) microg/m(3) respectively. The concentrations of PM(2.5) in restaurant (compared with bath center: Z = -10.785, P 1.5) points; r = 0.667, F = 14.442, P 1.556, t = 3.760, P = 0.007] when ventilation (score > 2) was relatively good. The number of smokers per cube meters (14.7 x 10(-3)) became the major influence factor when the ventilation score

  18. Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide

    Directory of Open Access Journals (Sweden)

    Sager Tina M

    2009-05-01

    Full Text Available Abstract Background Nanoparticles are characterized by having a high surface area per mass. Particulate surface area has been reported to play an important role in determining the biological activity of nanoparticles. However, recent reports have questioned this relationship. This study was conducted to determine whether mass of particles or surface area of particles is the more appropriate dose metric for pulmonary toxicity studies. In this study, rats were exposed by intratracheal instillation to various doses of ultrafine and fine carbon black. At 1, 7, or 42 days post-exposure, inflammatory and cytotoxic potential of each particle type was compared on both a mass dosage (mg/rat as well as an equal surface area dosage (cm2 of particles per cm2 of alveolar epithelium. In an additional study, the pulmonary responses to instillation of ultrafine carbon black were compared to equivalent particle surface area doses of ultrafine titanium dioxide. Results Ultrafine carbon black particles caused a dose dependent but transient inflammatory and cytotoxic response. On a mass basis, these responses were significantly (65 fold greater than those for fine sized carbon black. However, when doses were equalized based on surface area of particles given, the ultrafine carbon black particles were only slightly (non-significantly more inflammogenic and cytotoxic compared to the fine sized carbon black. At one day post-exposure, inflammatory potencies of the ultrafine carbon black and ultrafine titanium dioxide particles were similar. However, while the pulmonary reaction to ultrafine carbon black resolved with time, the inflammatory effects of ultrafine titanium dioxide were more persistent over a 42 day post-exposure period. Conclusion These results indicate that for low toxicity low solubility materials, surface area of particles administered rather than mass burden of particles may be a more appropriate dose metric for pulmonary toxicity studies. In addition

  19. PREPARATION OF WATERBORNE ULTRAFINE PARTICLES OF EPOXY RESIN BY PHASE INVERSION TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    YANG Zhengzhong; XU Yuanze; WANG Shengjie; YU Hao; CAI Weizhen

    1997-01-01

    Waterborne ultrafine particles of epoxy resin were prepared by phase inversion technique The results of SEM revealed that the particles diameter was in the range of 50 to l()am and the effects on amount of water required at phase inversion point were also dis()ed.

  20. A novel method of preparing metallic Janus silica particles using supercritical carbon dioxide

    NARCIS (Netherlands)

    Yang, Qiuyan; de Vries, Marcel H; Picchioni, Francesco; Loos, Katja

    2013-01-01

    In this study, we demonstrate a novel fabrication method to prepare metallic Janus silica particles by embedding nanosized silica particles on a spherical polystyrene (PS) substrate in supercritical carbon dioxide (sc CO2), followed by labelling with gold nanoparticles on the exposed part of the

  1. A novel method of preparing metallic Janus silica particles using supercritical carbon dioxide

    NARCIS (Netherlands)

    Yang, Qiuyan; de Vries, Marcel H; Picchioni, Francesco; Loos, Katja

    2013-01-01

    In this study, we demonstrate a novel fabrication method to prepare metallic Janus silica particles by embedding nanosized silica particles on a spherical polystyrene (PS) substrate in supercritical carbon dioxide (sc CO2), followed by labelling with gold nanoparticles on the exposed part of the sil

  2. Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor.

    Science.gov (United States)

    Wang, Hongzhi; Nakamura, Hiroyuki; Uehara, Masato; Miyazaki, Masaya; Maeda, Hideaki

    2002-07-21

    A stable interface between two insoluble currents in a microchannel reactor has been obtained by selecting the solvents and adjusting the flow rate; titania particles with a size of less than 10 nm could be prepared continuously on this interface; this new method shows great advantage for the control and measurement of particle sizes.

  3. Preparing poly (caprolactone) micro-particles through solvent-induced phase separation

    DEFF Research Database (Denmark)

    Li, Xiaoqiang; Kanjwal, Muzafar Ahmed; Stephansen, Karen

    2012-01-01

    Poly (caprolactone) (PCL) particles with the size distribution from 1 to 100 μm were prepared through solvent-induced phase separation, in which polyvinyl-alcohol (PVA) was used as the matrix-forming polymer to stabilize PCL particles. The cloud point data of PCL-acetone-water was determined...

  4. Lattice Constant Dependence on Particle Size for Ceria prepared from a Citrate Sol-Gel

    Energy Technology Data Exchange (ETDEWEB)

    Morris, V N [Analog Devices, Raheen Business Park, Raheen, Limerick (Ireland); Dimensional Solids Group, Chemistry Department, University College Cork, Cork (Ireland); Farrell, R A [Dimensional Solids Group, Chemistry Department, University College Cork, Cork (Ireland); Sexton, A M [Dimensional Solids Group, Chemistry Department, University College Cork, Cork (Ireland); Morris, M A [Dimensional Solids Group, Chemistry Department, University College Cork, Cork (Ireland); Centre for Research into Advanced Nanostructures and Nanodevices (CRANN), Trinity College, Dublin (Ireland)

    2006-02-22

    High surface area ceria nanoparticles have been prepared using a citrate solgel precipitation method. Changes to the particle size have been made by calcining the ceria powders at different temperatures, and X-ray methods used to determine their lattice parameters. The particle sizes have been assessed using transmission electron microscopy (TEM) and the lattice parameter found to fall with decreasing particle size. The results are discussed in the light of the role played by surface tension effects.

  5. Fine-Tuning Two-Particle Interferometry Effects from Opacity and Temperature Gradients in the Source

    CERN Document Server

    Tomasik, Boris; Tomasik, Boris; Heinz, Ulrich

    1998-01-01

    A comprehensive model study of Bose-Einstein correlation radii in heavy ion collisions is presented. The starting point is a longitudinally and transversally expanding fireball, represented at freeze-out by an azimuthally symmetric emission function. The freeze-out temperature is allowed to feature transverse and temporal gradients. Their effects on the correlation radii are studied. In particular, we evaluate numerically their dependence on the transverse mass of the particle pairs and check a recent suggestion, based on analytical approximations, that for certain reasonable source parameters all three correlation radii satisfy simultaneously a 1/\\sqrt{M_\\perp} scaling. We also investigate quantitatively how the correlation radii are affected if the source becomes ``opaque''. We find a strong sensitivity to opaqueness for the temporal radius parameter R_0 in the YKP parametrization. A qualitative comparison with preliminary data from 158 A GeV/c Pb+Pb collisions at CERN indicates that the source is not opaqu...

  6. Changes in the surface electronic states of semiconductor fine particles induced by high energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Tetsuya; Asai, Keisuke; Ishigure, Kenkichi [Tokyo Univ. (Japan); Shibata, Hiromi

    1997-03-01

    The changes in the surface electronic states of Q-sized semiconductor particles in Langmuir-Blodgett (LB) films, induced by high energy ion irradiation, were examined by observation of ion induced emission and photoluminescence (PL). Various emission bands attributed to different defect sites in the band gap were observed at the initial irradiation stage. As the dose increased, the emissions via the trapping sites decreased in intensity while the band-edge emission developed. This suggests that the ion irradiation would remove almost all the trapping sites in the band gap. The low energy emissions, which show a multiexponential decay, were due to a donor-acceptor recombination between the deeply trapped carriers. It was found that the processes of formation, reaction, and stabilization of the trapping sites would predominantly occur under the photooxidizing conditions. (author)

  7. Influences of fireworks on chemical characteristics of atmospheric fine and coarse particles during Taiwan's Lantern Festival

    Science.gov (United States)

    Tsai, Hsieh-Hung; Chien, Li-Hsing; Yuan, Chung-Shin; Lin, Yuan-Chung; Jen, Yi-Hsiu; Ie, Iau-Ren

    2012-12-01

    In recent years, the celebration activities of various folk-custom festivals have been getting more and more attention from the citizens in Taiwan. Festivities throughout the whole island are traditionally accompanied by loud and brightly colored firework displays. Among these activities, the firework displays during Taiwan's Lantern Festival in Kaohsiung harbor is one of the largest festivals in Taiwan each year. Therefore, it is of importance to investigate the influence of fireworks displays on the ambient air quality during the Taiwan's Lantern Festival. Field measurements of atmospheric particulate matter (PM) were conducted on February 9th-11th, 2009 during Taiwan's Lantern Festival in Kaohsiung City. Moreover, three kinds of fireworks powders obtained from the same manufacturing factory producing Kaohsiung Lantern Festival fireworks were burned in a self-designed combustion chamber to determine the physicochemical properties of the fireworks' particles and to establish the source profile of firework burning. Several metallic elements of PM during the firework display periods were notably higher than those during the non-firework periods. The concentrations of Mg, K, Pb, and Sr in PM2.5 during the firework periods were 10 times higher than those during the non-firework periods. Additionally, the Cl-/Na+ ratio was approximately 3 during the firework display periods as Cl- came from the chlorine content of the firework powder. Moreover, the OC/EC ratio increased up to 2.8. Results obtained from PCA and CMB receptor modeling showed that major sources of atmospheric particles during the firework display periods in Kaohsiung harbor were fireworks, vehicular exhausts, soil dusts and marine sprays. Particularly, on February 10th, the firework displays contributed approximately 25.2% and 16.6% of PM10 at two downwind sampling sites, respectively.

  8. Comparison of liquid-based preparation and conventional smear of fine-needle aspiration cytology of lymph node.

    Science.gov (United States)

    Singh, Priya; Rohilla, Manish; Dey, Pranab

    2016-01-01

    In this paper, we have compared the cytomorphologic characteristics of liquid-based preparation (LBP) [SurePath (SP)] cytology and conventional smear (CP) preparations on fine-needle aspiration (FNAC) material by a semi-quantitative scoring system for cases of lymphadenopathy. In this prospective study, a total of 52 consecutive cases of FNAC of lymphadenopathy were included. The first pass was used for CP followed by LBP with the help of SP technique. The smears were independently compared and assessed by two observers (PS and PD). The semiquantitative grading was compared in two groups by Wilcoxon signed-rank test. The background information, cell architecture, pleomorphism, nuclear and cytoplasmic details, and three-dimensional structures were significantly different in LBP and CP smears. Liquid-based cytology (LBC) is a relatively simple technique, which exhibits good nuclear and cytoplasmic details with the absence of obscuring background material. Even the number of slides and area per slide to be screened were less than the conventional preparation but caution must be applied to interpret the slides and secure a diagnosis, especially if LBC is the first and only method applied for diagnosis.

  9. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust.

    Science.gov (United States)

    Zhang, Haibo; Luo, Yongming; Makino, Tomoyuki; Wu, Longhua; Nanzyo, Masami

    2013-03-15

    The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessibility of the metals as well as the mobility of the fine particles in soil.

  10. Impact of aerosol-meteorology interactions on fine particle pollution during China’s severe haze episode in January 2013

    Science.gov (United States)

    Wang, Jiandong; Wang, Shuxiao; Jiang, Jingkun; Ding, Aijun; Zheng, Mei; Zhao, Bin; Wong, David C.; Zhou, Wei; Zheng, Guangjie; Wang, Long; Pleim, Jonathan E.; Hao, Jiming

    2014-09-01

    In January 2013, a severe regional haze occurred over the North China Plain. An online-coupled meteorology-chemistry model was employed to simulate the impacts of aerosol-meteorology interactions on fine particles (PM2.5) pollution during this haze episode. The response of PM2.5 to meteorology change constituted a feedback loop whereby planetary boundary layer (PBL) dynamics amplified the initial perturbation of PM2.5. High PM2.5 concentrations caused a decrease of surface solar radiation. The maximal decrease in daily average solar radiation reached 53% in Beijing, thereby leading to a more stable PBL. The peak PBL height in Beijing decreased from 690 m to 590 m when the aerosol extinction was considered. Enhanced PBL stability suppressed the dispersion of air pollutants, and resulted in higher PM2.5 concentrations. The maximal increase of PM2.5 concentrations reached 140 μg m-3 in Beijing. During most PM2.5 episodes, primary and secondary particles increased simultaneously. These results imply that the aerosol-radiation interactions played an important role in the haze episode in January 2013.

  11. Biologically induced deposition of fine suspended particles by filter-feeding bivalves in land-based industrial marine aquaculture wastewater.

    Science.gov (United States)

    Zhou, Yi; Zhang, Shaojun; Liu, Ying; Yang, Hongsheng

    2014-01-01

    Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67 ± 0.99 cm) and M. galloprovincialis (shell height: 4.43 ± 0.98 cm) was 77.84 ± 7.77 and 6.37 ± 0.67 mg ind(-1) • d(-1), respectively. The total solid suspension (TSS) deposition rates of oyster and mussel treatments were 3.73 ± 0.27 and 2.76 ± 0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P aquaculture wastewater, and simultaneously yield value-added biological products.

  12. On the role of the fine structure constant in the alpha/beta rule for calculation of particle masses

    Energy Technology Data Exchange (ETDEWEB)

    Greulich, Karl Otto [Fritz Lipmann Institut, Beutenbergstr.11, 07745 Jena (Germany)

    2016-07-01

    The masses of essentially all elementary particles are given almost exactly by the α/β rule (K.O.Greulich, Spring meeting 2014 German Phys Society T 99.4), i.e. particle masses depend on the fine structure (Sommerfeld constant α 1/137). This is somewhat surprising since alpha is rather known as a spectroscopic constant than as a mass ratio. One key to understand this is the observation that the Bohr energy is exactly the 1/α-fold of the ionization energy of the hydrogen atom (Rydberg energy, 13.6 eV). Thereby the Bohr energy is the de Broglie energy of the electron in the ground state (on the Bohr radius). A second mass or energy ratio, the ratio between the energy at rest of the electron and the Bohr energy can be derived analytically to be α{sup -2}. Both results together suggest a general dependence of rest energies or rest masses on α. Simply by the hypothesis that this observation can be extrapolated to higher values of n, the α/β rule follows immediately. Only the beta (1 or 1836.12) term has to be added empirically.

  13. The influence of nano-scale second-phase particles on deformation of fine grained calcite mylonites

    Science.gov (United States)

    Herwegh, Marco; Kunze, Karsten

    2002-09-01

    Grey and white carbonate mylonites were collected along thrust planes of the Helvetic Alps. They are characterised by very small grain sizes and non-random grain shape (SPO) and crystallographic preferred orientation (CPO). Presumably they deformed in the field of grain size sensitive flow by recrystallisation accommodated intracrystalline deformation in combination with granular flow. Both mylonites show a similar mean grain size, but in the grey mylonites the grain size range is larger, the grain shapes are more elongate and the dynamically recrystallised calcite grains are more often twinned. Grey mylonites have an oblique CPO, while the CPO in white mylonites is symmetric with respect to the shear plane. Combustion analysis and TEM investigations revealed that grey mylonites contain a higher amount of highly structured kerogens with particle sizes of a few tens of nanometers, which are finely dispersed at the grain boundaries. During deformation of the rock, nano-scale particles reduced the migration velocity of grain boundaries by Zener drag resulting in slower recrystallisation rates of the calcite aggregate. In the grey mylonites, more strain increments were accommodated by individual grains before they became refreshed by dynamic recrystallisation than in white mylonites, where grain boundary migration was less hindered and recrystallisation cycles were faster. Consequently, grey mylonites represent 'deformation' microfabrics while white mylonites are characterised by 'recrystallisation' microfabrics. Field geologists must utilise this different deformation behavior when applying the obliquity in CPO and SPO of the respective mylonites as reliable shear sense indicators.

  14. Partitioning of Black Carbon between ultrafine and fine particle modes in an urban airport vs. urban background environment

    Science.gov (United States)

    Costabile, F.; Angelini, F.; Barnaba, F.; Gobbi, G. P.

    2015-02-01

    In this work, we characterize the Black Carbon (BC) aerosol in an urban airport vs. urban background environment with the objective to evaluate when and how the ultrafine BC dominates the bulk aerosol. Aerosol optical and microphysical properties were measured in a Mediterranean urban area (Rome) at sites impacted by BC sources including fossil fuels (FF), and biomass burning (BB). Experimental BC data were interpreted through measurement-constrained simulations of BC microphysics and optical properties. A "scheme" to separate the ultrafine BC was experimented on the basis of the relation found between changes in the BC partitioning between Aitken and accumulation mode particles, and relevant changes in particle size distribution and optical properties of the bulk aerosol. This separation scheme, applied to experimental data, proved useful to reveal the impact of airport and road traffic emissions. Findings may have important atmospheric implications. The experimented scheme can help separating different BC sources (FF, BB, "aged" BC) when BC size distributions may be very difficult to obtain (satellite, columnar observations, routine monitoring). Indeed, separating the ultrafine BC from the fine BC may provide significant benefits in addressing BC impact on air quality and climate.

  15. Preparation of cast aluminum alloy-mica particle composites

    Science.gov (United States)

    Deonath, MR.; Bhat, R. T.; Rohatgi, P. K.

    1980-01-01

    A method for making aluminum-mica particle composites is presented in which mica particles are stirred in molten aluminum alloys followed by casting in permanent molds. Magnesium is added either as an alloying element or in the form of pieces to the surface of the alloy melts to disperse up to 3 wt% mica powders in the melts and to obtain high recoveries of mica in the castings. The mechanical properties of the aluminum alloy-mica composite decrease with increasing mica content; however, even at 2.2% it has a tensile strength of 14.22 kg/sq mm with 1.1% elongation, a compression strength of 42.61 kg/sq mm, and an impact strength of 0.30 kgm/sq cm. Cryogenic and self-lubricating bearing are mentioned applications.

  16. Preparation of cast aluminum alloy-mica particle composites

    Science.gov (United States)

    Deonath, MR.; Bhat, R. T.; Rohatgi, P. K.

    1980-01-01

    A method for making aluminum-mica particle composites is presented in which mica particles are stirred in molten aluminum alloys followed by casting in permanent molds. Magnesium is added either as an alloying element or in the form of pieces to the surface of the alloy melts to disperse up to 3 wt% mica powders in the melts and to obtain high recoveries of mica in the castings. The mechanical properties of the aluminum alloy-mica composite decrease with increasing mica content; however, even at 2.2% it has a tensile strength of 14.22 kg/sq mm with 1.1% elongation, a compression strength of 42.61 kg/sq mm, and an impact strength of 0.30 kgm/sq cm. Cryogenic and self-lubricating bearing are mentioned applications.

  17. Preparation of gold nanoparticles and determination of their particles size via different methods

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad; Usanase, Gisele [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar [Laboratory of Chemistry and Environmental Chemistry(LCCE), Faculty of Science, Material Science Department, University of Batna, 05000 (Algeria); Fessi, Hatem [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Zine, Nadia [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Agusti, Géraldine [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Errachid, El-Salhi [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Elaissari, Abdelhamid, E-mail: elaissari@lagep.univ-lyon1.fr [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France)

    2016-07-15

    Graphical abstract: Preparation of gold nanoparticles via NaBH{sub 4} reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH{sub 4} reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH{sub 4}) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  18. Effect of feeding fine maize particles on the reticular pH, milk yield and composition of dairy cows.

    Science.gov (United States)

    De Nardi, R; Marchesini, G; Stefani, A-L; Barberio, A; Andrighetto, I; Segato, S

    2014-06-01

    The particle size of cereal grains has been found to modulate the rate of passage from the rumen and the digestibility of starch and neutral detergent fibre (NDF), but few studies have examined its impact on reticular pH. The study aimed to evaluate the effect of feeding finely ground maize on the risk of ruminal acidosis, milk yield and composition. Twelve Holstein-Friesian cows were assigned to one of two experimental groups and fed according to a cross-over design. Diets were isoenergetic and isonitrogenous and were characterised by the same NDF and ADF, differing only in maize particle size. In the control diet (Ct), the maize meal was ground to 1.0 mm, whereas in the experimental diet, it was finely ground (Fg) to 0.5 mm. The pH and temperature of the reticulum were continuously measured in eight cows throughout the trial using indwelling sensors. Dry matter intake was higher in cows offered Fg diet than in Ct (19.0 vs. 20.3 kg/day; p = 0.067). However, milk yield (p = 0.855) and the 3.5% fat-corrected milk (FCM) (p = 0.724) did not show any differences between the diets. Casein (2.48 vs. 2.57%; p = 0.035) and crude protein (CP) (3.18 vs. 3.31%; p = 0.021) resulted higher in Fg. Similarly, starch digestibility increased in animals offered Fg diet versus Ct (0.94 vs. 0.98; p = 0.078). Among the reticular parameters, the Fg-fed cows spent a significantly higher time below the 5.5 pH threshold (15 vs. 61 min/day; p = 0.047) and had an average daily variation in reticular pH characterised by a lower nadir pH (5.95 vs. 5.72; p < 0.001) and a higher pH range (0.79 vs. 0.94; p = 0.003). In this study, grain particle size affected the risk of the onset of ruminal acidosis. Therefore, it should be carefully considered when formulating rations. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  19. Origins of n-alkanes, carbonyl compounds and molecular biomarkers in atmospheric fine and coarse particles of Athens, Greece.

    Science.gov (United States)

    Andreou, G; Rapsomanikis, S

    2009-10-15

    The abundance and origin of aliphatic hydrocarbons, carbonyl compounds and molecular biomarkers found in the aliphatic fraction of PM(10-2.5) and PM(2.5) in the centre of Athens Greece are discussed in an attempt to reveal seasonal air pollution characteristics of the conurbation. Each extract was fractionated into individual compound classes and was analyzed using gas chromatography coupled to mass spectrometry. Normal alkanes, ranging from C(14) to C(35), were abundant in PM(10-2.5) and PM(2.5) samples during both sampling campaigns. The daily concentration of total n-alkanes was up to 438 ng m(-3) for PM(10-2.5) and up to 511 ng m(-3) for PM(2.5). Additionally, gaseous concentrations of n-alkanes were calculated, revealing that the relative proportions between gaseous and particle phases of individual compounds may differ significantly between summer and late winter. Normal alkanals and alkan-2-ones were only detected in the fine fraction of particulate matter and their concentrations were much lower than the n-alkane concentrations. Several geochemical parameters were used to qualitatively reconcile the sources of organic aerosol. The carbon preference index (CPI) of the coarse particles in August had the highest value, while in March the leaf wax contribution decreased significantly and the CPI value was very close to unity for both sites. Maximum concentrations of carbonyl compounds were reported in the range of C(15)-C(20), demonstrating that they were formed from anthropogenic activity or from atmospheric oxidative processes. 6, 10, 14-trimethylpentadecan-2-one, a marker of biogenic input, was also detected in our samples. Molecular biomarker compounds confirmed that ca. 60% of the aliphatic fraction on the sampled atmospheric particles originated from petroleum and not from any contemporary biogenic sources. Pristane and phytane were detected in the fine fraction with their presence indicating sources of fossil fuel in the range of C(16)-C(20). At all

  20. Free and combined amino compounds in atmospheric fine particles (PM 2.5) and fog waters from Northern California

    Science.gov (United States)

    Zhang, Qi; Anastasio, Cort

    Atmospheric fine particles (PM 2.5) collected during August 1997-July 1998 and wintertime fog waters collected during 1997-1999 at Davis, California were analyzed for free and combined amino compounds. In both PM 2.5 and fog waters, the average concentrations of combined amino compounds (CAC, e.g., proteins and peptides) were generally 4-5 times higher than those of free amino compounds (FAC, i.e., amino acids and alkyl amines). Concentrations of total amino compounds (TAC=FAC+CAC) ranged from 1260 to 3650 pmol m -3 air in PM 2.5, and from 1620 to 5880 pmol m -3 air in fog waters. Average values (±1 σ) were 2500±879 and 3400±1430 pmol m -3 air, respectively. Concentrations of amino compounds in PM 2.5 varied seasonally, with a peak during late winter and early spring. Ornithine was a major FAC component in both PM 2.5 and fog waters (typically accounting for ˜20% of FAC), but these sample types otherwise had fairly different FAC distributions. FAC in PM 2.5 were enriched in protein-type amino species such as glycine/threonine, serine and alanine, while fog water FAC had significantly higher levels of non-protein species such as methylamine, γ-aminobutyric acid and ethanolamine. The compositions of CAC in PM 2.5 and fogs were fairly similar and were mainly protein-type. Mass concentrations of TAC in PM 2.5 and fog waters were, on average, 302 and 399 ng m -3 air, respectively. Amino compounds were an important component of the organic carbon pool for both fog and particles, with TAC accounting for an average of 13% of the dissolved organic carbon in fog waters and ˜10% of the water-soluble organic carbon in PM 2.5. At these levels amino compounds likely play important roles in the chemistry of fog drops and fine particles, for example by influencing their buffering capacity and basicity.

  1. Cardiovascular effects of sub-daily levels of ambient fine particles: a systematic review

    Directory of Open Access Journals (Sweden)

    Perron Stéphane

    2010-06-01

    Full Text Available Abstract Background While the effects of daily fine particulate exposure (PM have been well reviewed, the epidemiological and physiological evidence of cardiovascular effects associated to sub-daily exposures has not. We performed a theoretical model-driven systematic non-meta-analytical literature review to document the association between PM sub-daily exposures (≤6 hours and arrhythmia, ischemia and myocardial infarction (MI as well as the likely mechanisms by which sub-daily PM exposures might induce these acute cardiovascular effects. This review was motivated by the assessment of the risk of exposure to elevated sub-daily levels of PM during fireworks displays. Methods Medline and Elsevier's EMBase were consulted for the years 1996-2008. Search keywords covered potential cardiovascular effects, the pollutant of interest and the short duration of the exposure. Only epidemiological and experimental studies of adult humans (age > 18 yrs published in English were reviewed. Information on design, population and PM exposure characteristics, and presence of an association with selected cardiovascular effects or physiological assessments was extracted from retrieved articles. Results Of 231 articles identified, 49 were reviewed. Of these, 17 addressed the relationship between sub-daily exposures to PM and cardiovascular effects: five assessed ST-segment depression indicating ischemia, eight assessed arrhythmia or fibrillation and five considered MI. Epidemiologic studies suggest that exposure to sub-daily levels of PM is associated with MI and ischemic events in the elderly. Epidemiological studies of sub-daily exposures suggest a plausible biological mechanism involving the autonomic nervous system while experimental studies suggest that vasomotor dysfunction may also relate to the occurrence of MI and ischemic events. Conclusions Future studies should clarify associations between cardiovascular effects of sub-daily PM exposure with PM size

  2. Sources and Chemical Composition of Atmospheric Fine Particles in Rabigh, Saudi Arabia

    Science.gov (United States)

    Nayebare, S. R.; Aburizaiza, O. S.; Siddique, A.; Hussain, M. M.; Zeb, J.; Khwaja, H. A.

    2014-12-01

    Air pollution research in Saudi Arabia and the whole of Middle East is at its inception, making air pollution in the region a significant problem. This study presents the first detailed data on fine particulate matter (PM2.5) concentrations of Black Carbon (BC), ions, and trace metals at Rabigh, Saudi Arabia, and assesses their sources. Results showed several characteristic aspects of air pollution at Rabigh. Daily levels of PM2.5 and BC showed significant temporal variability ranging from 12.2 - 75.9 µg/m3 and 0.39 - 1.31 µg/m3, respectively. More than 90% of the time, the daily PM2.5 exceeded the 24 h WHO guideline of 20 µg/m3. Sulfate, NO3-, and NH4+ dominated the identifiable components. Trace metals with significantly higher concentrations included Si, S, Ca, Al, Fe, Na, Cl, Mg, K, and Ti, with average concentrations of 3.1, 2.2, 1.6, 1.2, 1.1, 0.7, 0.7, 0.5, 0.4 and 0.1 µg/m3, respectively. Based on the Air Quality Index (AQI), there were 44% days of moderate air quality, 33% days of unhealthy air quality for sensitive groups, and 23% days of unhealthy air quality throughout the study period. Two categories of aerosol trace metal sources were defined: anthropogenic (S, V, Cr, Ni, Cu, Zn, Br, Cd, Sb, and Pb) and naturally derived elements (Si, Al, and Fe). The extent of anthropogenic contribution was estimated by the degree of enrichment of these elements compared to the crustal composition. Soil resuspension and/or mobilization is an important source of "natural" elements, while "anthropogenic" elements originate primarily from fossil fuel combustion and industries. Ni and V correlated strongly pointing to combustion of heavy fuel oil as the likely source. A positive matrix factorization (PMF) was used to obtain information about possible sources. Our study highlights the need for stringent laws on PM2.5 emission control to protect human health and the environment.

  3. Fine Particle Pollution, Alanine Transaminase, and Liver Cancer: A Taiwanese Prospective Cohort Study (REVEAL-HBV).

    Science.gov (United States)

    Pan, Wen-Chi; Wu, Chih-Da; Chen, Mu-Jean; Huang, Yen-Tsung; Chen, Chien-Jen; Su, Huey-Jen; Yang, Hwai-I

    2016-03-01

    Exposure to fine particulate matter (PM2.5) may promote hepatic tumorgenesis through low-grade inflammation. Therefore, we assessed the association of long-term exposure levels of PM2.5 and subsequent risk of hepatocellular carcinoma (HCC) and investigated the mediation effect of inflammation as represented by alanine aminotransferase (ALT) on this association. Between 1991 and 1992, we recruited 23 820 participants in Taiwan with no history of HCC. Case patients of HCC were ascertained through computerized data linkage with the National Cancer Registry and death certification systems. Participants' exposures to PM2.5 were based on a four-year average retrieved from stationary monitoring sites. Cox proportional hazards models were used to assess the association between PM2.5 exposure and HCC incidence. Mediation effects of ALT on PM2.5-associated HCC incidence were estimated. A total of 464 HCC cases were newly diagnosed with a median follow-up of 16.9 years. Statistically significantly increasing trends between PM2.5 exposures and ALT were observed on the Main Island and Penghu Islets. The adjusted hazard ratio (HR) for HCC on the Penghu Islets was 1.22 (95% confidence interval [CI] = 1.02 to 1.47) per PM2.5 interquartile range (IQR) increment (0.73 µg/m(3)) exposure. We also found a positive association between PM2.5 exposure (per IQR increment, 13.1 µg/m(3)) and HCC incidence on the Main Island. Furthermore, ALT had a statistically significant mediation effect on PM2.5-associated HCC incidence (HR = 1.17, 95% CI = 1.02 to1.52 on the Main Island; HR = 1.04, 95% CI = 1.03 to 1.07 on the Penghu Islets) per PM2.5 IQR increment. Long-term PM2.5 exposure increased the risk for liver cancer, and chronic inflammation of the liver may underlie the pathogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. [Comparison of Monitoring Methods of Organic Carbon and Element Carbon in Atmospheric Fine Particles].

    Science.gov (United States)

    Pang, Bo; Ji, Dong-sheng; Liu, Zi-rui; Zhu, Bin; Wang, Yue-si

    2016-04-15

    Accurate measurement of organic carbon (OC) and elemental carbon (EC) in atmospheric fine particulate is an important scientific basis for studying the formation and source apportionment of carbonaceous aerosol. The selection of different analysis programs will lead to difference in the OC and EC concentrations, and further result in the misjudgment of the results. The OC and EC concentrations observed using three temperature protocols including RT-Quartz ( R) , NIOSH 5040 (N) and Fast-TC (F) were compared and analyzed in combination with the degree of air pollution in Beijing. The results showed that there was no significant difference in the TC (TC = OC + EC), OC and EC concentrations observed using R, N and F protocols and certain deviation was found among the TC (TC = OC + EC) , OC and EC concentrations. For TC, the results observed using R protocol were 5% lower than those using N protocol; hut 1% higher than those using F protocol. For OC, the results obtained using R were 9% lower than those using N protocol and 1% higher than those using F protocol. For EC, the results obtained using R were 20% higher than those using N protocol and 11% lower than those using F protocol. The variation coefficients for TC, OC and EC obtained based on R protocol were less than the other two temperature protocols under different air quality degrees. The slopes of regression curves of TC, OC and EC between on-line analysis using R protocol and off-line analysis were 1.21,1. 14 and 1.35, respectively. The correlation coefficients of TC, OC and EC were 0.99, 0.99 and 0.98, respectively. In contrast with the Black carbon ( BC) concentrations monitored by multi-angle absorption spectrophotometer (MAAP), the EC concentrations measured by on-line OC/EC analyzer using R protocol were obviously lower. When the BC concentrations were less than or equal to 8 gg*m3, the EC/BC ratio was 0.39. While the EC/BC ratio was 0.88, when the BC concentrations were greater than 8 ggm3. The variation

  5. Fine-needle aspiration cytology of mammary fibroadenoma: a comparison of ThinPrep® and cytospin preparations.

    Science.gov (United States)

    Ly, Thai Yen; Barnes, Penny J; Macintosh, Rebecca F

    2011-03-01

    Mammary fibroadenoma (FA) is a lesion frequently sampled and diagnosed by fine-needle aspiration (FNA). Accurate cytologic diagnosis of this common benign lesion is important as this can lead to non-surgical, conservative management when breast imaging and clinical examination are concordant. In most instances, a confident diagnosis of FA is possible because of a characteristic cytologic appearance that includes hypercellularity, large epithelial cell groups, staghorn epithelial configurations, stromal fragments, and numerous background stripped nuclei. Nevertheless, FAs can be diagnostically challenging because of shared cytomorphologic features with other benign lesions and low-grade carcinoma. As such, FA is a well-recognized source of false results on FNA cytology. Furthermore, there are reports that newer thin layer cytopreparatory techniques, including the ThinPrep® (TP) system (Hologic Corp., Bedford, MA), alter the appearance of FA on FNA compared to conventional preparations and may compromise accurate cytologic diagnosis. Copyright © 2010 Wiley-Liss, Inc.

  6. Preparation and photochromic properties of ultra-fine H3PW11MoO40/PVA fibre mats

    Science.gov (United States)

    Yang, Guo-Cheng; Gong, Jian; Pan, Yan; Cui, Xiu-Jun; Shao, Chang-Lu; Guo, Yi-Hang; Wen, Shang-Bin; Qu, Lun-Yu

    2004-07-01

    Novel photochromic materials, H3PW11MoO40/Poly (vinyl alcohol) (PVA) ultra-fine fibre mats containing different weight percentages of H3PW11MoO40, have been prepared from different H3PW11MoO40/PVA solutions by an electrospinning technique. IR spectroscopy, wide-angle x-ray diffraction, and scanning electron microscope spectroscopy are used to characterize the fibre mats. Results of viscosity and conductivity measurements of the solutions indicate that lower viscosity and higher conductivity favour the formation of thin fibres without beads. When irradiated with ultraviolet light (313.2 nm), the colour of the fibre mats changes from white to blue, and the mats show reversible photochromism. IR and ESR spectra of the irradiated fibre mats indicate a conceivable photochromic mechanism, i.e. MoVI is reduced under ultraviolet irradiation. Meanwhile, PVA is oxidized to unsaturated ketone or aldehyde.

  7. Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign

    Science.gov (United States)

    Xu, Xuezhe; Zhao, Weixiong; Zhang, Qilei; Wang, Shuo; Fang, Bo; Chen, Weidong; Venables, Dean S.; Wang, Xinfeng; Pu, Wei; Wang, Xin; Gao, Xiaoming; Zhang, Weijun

    2016-05-01

    The optical properties and chemical composition of PM1.0 particles in a suburban environment (Huairou) near the megacity of Beijing were measured during the HOPE-J3A (Haze Observation Project Especially for Jing-Jin-Ji Area) field campaign. The campaign covered the period November 2014 to January 2015 during the winter coal heating season. The average values and standard deviations of the extinction, scattering, absorption coefficients, and the aerosol single scattering albedo (SSA) at λ = 470 nm during the measurement period were 201 ± 240, 164 ± 202, 37 ± 43 Mm-1, and 0.80 ± 0.08, respectively. The average values for the real and imaginary components of the effective complex refractive index (CRI) over the campaign were 1.40 ± 0.06 and 0.03 ± 0.02, while the average mass scattering and absorption efficiencies (MSEs and MAEs) of PM1.0 were 3.6 and 0.7 m2 g-1, respectively. Highly time-resolved air pollution episodes clearly show the dramatic evolution of the PM1.0 size distribution, extensive optical properties (extinction, scattering, and absorption coefficients), and intensive optical properties (SSA and CRI) during haze formation, development, and decline. Time periods were classified into three different pollution levels (clear, slightly polluted, and polluted) for further analysis. It was found that (1) the relative contributions of organic and inorganic species to observed aerosol composition changed significantly from clear to polluted days: the organic mass fraction decreased from 50 to 43 % while the proportion of sulfates, nitrates, and ammonium increased strongly from 34 to 44 %. (2) Chemical apportionment of extinction, calculated using the IMPROVE algorithm, tended to underestimate the extinction compared to measurements. Agreement with measurements was improved by modifying the parameters to account for enhanced absorption by elemental carbon (EC). Organic mass was the largest contributor (52 %) to the total extinction of PM1.0, while EC

  8. Biologically induced deposition of fine suspended particles by filter-feeding bivalves in land-based industrial marine aquaculture wastewater.

    Directory of Open Access Journals (Sweden)

    Yi Zhou

    Full Text Available Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67 ± 0.99 cm and M. galloprovincialis (shell height: 4.43 ± 0.98 cm was 77.84 ± 7.77 and 6.37 ± 0.67 mg ind(-1 • d(-1, respectively. The total solid suspension (TSS deposition rates of oyster and mussel treatments were 3.73 ± 0.27 and 2.76 ± 0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P < 0.001. Furthermore, organic matter and C, N in the sediments of bivalve treatments were significantly lower than those in the sediments of the control (P < 0.05. It was suggested that the filter feeders C. gigas and M. galloprovincialis had considerable potential to filter and accelerate the deposition of suspended particles from industrial aquaculture wastewater, and simultaneously yield value-added biological products.

  9. Titanium dioxide (TiO2) fine particle capture and BVOC emissions of Betula pendula and Betula pubescens at different wind speeds

    Science.gov (United States)

    Räsänen, Janne V.; Leskinen, Jari T. T.; Holopainen, Toini; Joutsensaari, Jorma; Pasanen, Pertti; Kivimäenpää, Minna

    2017-03-01

    Trees are known to affect air quality by capturing a remarkable amount of particles from the atmosphere. However, the significance of trees in removing very fine particles (diameter less than 0.5 μm) is not well understood. We determined particle capture efficiency (Cp) of two birch species: Betula pendula and Betula pubescens by using inert titanium dioxide fine particles (TiO2, geometric mean diameter 0.270 μm) at three wind speeds (1, 3 and 6 ms-1) in a wind tunnel. Capture efficiencies were determined by measuring densities of TiO2 particles on leaf surfaces by scanning electron microscopy. In addition, the particle intake into an inner structure of leaves was studied by transmission electron microscopy. The effects of fine particle exposure and wind speed on emission rates of biogenic volatile organic compounds (BVOCs) were measured. Particles were captured (Cp) equally efficiently on foliage of B. pendula (0.0026 ± 0.0005) % and B. pubescens (0.0025 ± 0.0006) %. Increasing wind speed significantly decreased Cp. Increasing wind speed increased deposition velocity (Vg) on B. pendula but not on B. pubescens. Particles were deposited more efficiently on the underside of B. pendula leaves, whereas deposition was similar on the upper and under sides of B. pubescens leaves. TiO2 particles were found inside three of five B. pendula leaves exposed to particles at a wind speed of 1 ms-1 indicating that particles can penetrate into the plant structure. Emission rates of several mono-, homo- and sesquiterpenes were highest at a wind speed of 3 ms-1 in B. pendula. In B. pubescens, emission rates of a few monoterpenes and nonanal decreased linearly with wind speed, but emission rates of sesquiterpenes were lowest at 3 ms-1 and increased at 6 ms-1. Emission rates of a few green leaf volatile compounds increased with increasing wind speed in both species. The results of this study suggest that the surface structure of trees is less important for capturing particles with

  10. Amorphous TM1−xBx alloy particles prepared by chemical reduction (invited)

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1991-01-01

    Amorphous transition-metal boron (TM-B) alloy particles can be prepared by chemical reduction of TM ions by borohydride in aqueous solutions. ln the last few years systematic studies of the parameters which control the composition, and, in turn, many of the properties of the alloy particles, have...... been performed and are reviewed in the present paper. The most important preparation parameters which influence the composition are the concentration of the borohydride solution and the pH of the TM salt solution. By controlling these parameters it is possible to prepare amorphous alloy samples...

  11. Characterization of Fine Airborne Particulate Collected in Tokyo and Major Atmospheric Emission Sources by Using Single Particle Measurement of SEM-EDX

    Science.gov (United States)

    Sato, K.; Iijima, A.; Furuta, N.

    2008-12-01

    In our long-term monitoring of size-classified Airborne Particulate Matter (APM) in Tokyo since 1995, it had been demonstrated that toxic elements such as As, Se, Cd, Sb and Pb were extremely enriched in fine APM (PM2.5). However, in that study, total sampled APM on a filter was digested with acids, and thus only averaged elemental composition in fine APM could be obtained. One of the effective methods to determine the origin of APM is single particle measurement by using SEM-EDX. By using characteristic shapes observed by SEM and marker elements contained in APM measured by EDX, detailed information for source identification can be obtained. In this study, fine APM (PM2.5) was collected at various locations such as roadside, diesel vehicle exhaust, a heavy oil combustion plant and a waste incineration plant as well as ambient atmosphere in Tokyo, and characteristics of fine particles that will be utilized for identification of emission sources are elucidated. Fine particles can be classified into 3 main characteristic shape groups; edge-shaped, cotton-like and spherical. Shape of particles collected in a heavy oil combustion plant and a waste incineration plant was mostly spherical, and these particles may be associated with thermal process. Diesel exhaust particles were predominantly cotton-like which may consist of coagulated nano-sized particles. Most of brake abrasion dusts were edge-shaped, which may be associated with mechanical abrasion of brake pads. In the elemental analysis of fine particles, high concentrations of Sb, Cu, Ti and Ba were detected in brake abrasion dusts. Since these elements are major constituents of brake pads, these can be used for marker elements of brake abrasion dusts. High concentration of C was detected in diesel exhaust particles and oil combustion particles, and thus C can be used for marker elements of their origin. Furthermore, high concentrations of C, Ca and K were detected in fly ash from a waste incineration plant, which

  12. Preparation and electrical characterization of ultra-fine powder scandia-stabilized zirconia

    Institute of Scientific and Technical Information of China (English)

    周静; 张赫; 徐宏; 薛倩楠; 黄小卫; 冯宗玉; 龙志奇

    2016-01-01

    Ultrafine powders of scandia-stabilized zirconia (ScSZ) were prepared by the co-precipitation method, using ZrOCl2 and ScO2 as raw materials and NH3·H2O as a precipitant. In this paper, the optimum process parameters were investigated. The pH of the reaction solution directly impacted the precursor structure, which further affected the obtained crystal forming. Many experiment methods of thermogravimetric analysis and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy (Raman), and nitrogen adsorption were employed to characterize the ScSZ powder. The structure transition mechanism from cubic to rhombohedral was discussed. In addition, the electrical conductivity of the powders was also studied after dry-pressing and calcining. The results showed that the structure of ScSZ with complete crystal surface belonged to the cubic phase. The crystallite sizes of the powders prepared are about 60–80 nm, meet the conditions of (D90–D10)/2D50≤1, and ex-hibited the good flow properties. The electrical conductivity was more than 190 mS/cm in air measured at 850 ºC.

  13. Preparation and drug releasing property of magnetic chitosan-5-fluorouracil nano-particles

    Institute of Scientific and Technical Information of China (English)

    WANG Dong-sheng; LI Jian-guo; LI He-ping; TANG Fa-qing

    2009-01-01

    In order to synthesize the targeting drug carrier system, magnetic chitosan-5-fluorouracil nano-particles were prepared by using 5-fluorouracil (5-Fu) as model drug, Fe_3O_4 nano-particles as kernel, chitosan as enveloping material and glutaraldehyde as cross linking agent through ultrasonic technique. The morphology of the magnetic chitosan-5-Fu nano-particles was observed with a transmission electron microscope(TEM). The results showed that magnetic chitosan-5-Fu nano-particles were prepared in spherical structure with a size range of 50-60 nm. The delivering capacity and drug releasing properties of magnetic chitosan-5-Fu nano-particles were investigated by UV-vis spectrum analysis. The results showed that the loading capacity was 13.4% and the cumulative release percentage in the phosphate buffer (pH=7.2) solutions was 68% in 30 h. These data indicate that the wrapped drug of magnetic chitosan-5-Fu nano-particles was slowly-released. The magnetic response of magnetic chitosan-5-Fu nano-particles was studied by UV-vis spectrometer to detect the changes of solution absorbance. Without external magnetic field, the nano-particle deposition rate was slow. When being subjected to 8 mT magnetic field, the particle sedimentation rate was increased rapidly. The results showed that magnetic chitosan-5-Fu nano-particles have a magnetic stability and strong targeting characteristics.

  14. Ferromagnetism in co-doped zno particles prepared by vaporization condensation in a solar image furnace

    Science.gov (United States)

    Martínez, B.; Sandiumenge, F.; Balcells, Ll.; Fontcuberta, J.; Sibieude, F.; Monty, C.

    2005-04-01

    We report on the structural and magnetic properties of Co-doped ZnO particles prepared by vaporization-condensation in the solar furnace in Odeillo. X-ray diffraction data show no traces of Co segregation or any other phase different from ZnO. High-resolution electron microscopy (HREM) and transmision electron microscopy (TEM) techniques have also been used to characterize particles. Irrespective of their composition, the shape and size of the obtained particles, as well as their magnetic properties, clearly depend on the preparation conditions. The samples prepared in vacuum exhibit hysteretic behavior with low coercivity (about 100 Oe) at T = 5 K and saturation magnetization well below that expecte for Co2+ in a tetrahedral crystal field. On the other hand, samples prepared at high pressure (70-100 Torr inside the balloon) are paramagnetic.

  15. Preparation of copper-coated fine molybdenum powders with electroless technique

    Institute of Scientific and Technical Information of China (English)

    WANG Guang-jun; WANG De-zhi; ZHOU Jie; WU Zhuang-zhi

    2009-01-01

    The molybdenum powders with average particle size of 3 μm were coated with copper by electroless plating. The influence of pretreatment, solution composition and plating conditions on electroless copper plating was studied. The copper-coated molybdenum powders were examined by SEM and XRD. Results indicate that a series of optimization methods is used to add activated sites before electroless copper plating. Taking TEA and EDTA as chief and assistant complex agents respectively, 2,2'-bipyridyl and PEG as double stabilizers, the Mo powders are coated with copper successfully with little Cu2O contained, at the same time, Mo-Cu composite powders with copper content of 15 - 85 wt% can be obtained. The optimal values of pH, temperature and HCHO concentration are 12- 13, 60-65 ℃ and 22-26 mL/L, respectively.

  16. A Voxel-Based Morphometry Study Reveals Local Brain Structural Alterations associated With Ambient Fine Particles in older women

    Directory of Open Access Journals (Sweden)

    Ramon Casanova

    2016-10-01

    Full Text Available Objective: Exposure to ambient fine particulate matter (PM2.5: PM with aerodynamic diameters <2.5µm has been linked with cognitive deficits in older adults. Using fine-grained voxel-wise analyses, we examined whether PM2.5 exposure also affects brain structure.Methods: Brain MRI data were obtained from 1,365 women (aged 71-89 in the Women’s Health Initiative Memory Study and local brain volumes were estimated using RAVENS (regional analysis of volumes in normalized space. Based on geocoded residential locations and air monitoring data from the U.S. Environmental Protection Agency, we employed a spatiotemporal model to estimate long-term (3-year average exposure to ambient PM2.5 preceding MRI scans. Voxel-wise linear regression models were fit separately to gray matter (GM and white matter (WM maps to analyze associations between brain structure and PM2.5 exposure, with adjustment for potential confounders. Results: Increased PM2.5 exposure was associated with smaller volumes in both cortical GM and subcortical WM areas. For GM, associations were clustered in the bilateral superior, middle, and medial frontal gyri. For WM, the largest clusters were in the frontal lobe, with smaller clusters in the temporal, parietal, and occipital lobes. No statistically significant associations were observed between PM2.5 exposure and hippocampal volumes. Conclusions: Long-term PM2.5 exposures may accelerate loss of both GM and WM in older women. While our previous work linked WM decreased volumes to PM2.5 air pollution, this is the first neuroimaging study reporting associations between air pollution exposure and smaller volumes of cortical GM. Our data support the hypothesized synaptic neurotoxicity of airborne particles.

  17. Response of spontaneously hypertensive rats to inhalation of fine and ultrafine particles from traffic: experimental controlled study

    Directory of Open Access Journals (Sweden)

    Dormans Jan AMA

    2006-05-01

    Full Text Available Abstract Background Many epidemiological studies have shown that mass concentrations of ambient particulate matter (PM are associated with adverse health effects in the human population. Since PM is still a very crude measure, this experimental study has explored the role of two distinct size fractions: ultrafine (3 to 3613 μg/m3 for fCAP and from 269μg/m3 to 556 μg/m3 for u+fCAP. Results Ammonium, nitrate, and sulphate ions accounted for 56 ± 16% of the total fCAP mass concentrations, but only 17 ± 6% of the u+fCAP mass concentrations. Unambiguous particle uptake in alveolar macrophages was only seen after u+fCAP exposures. Neither fCAP nor u+fCAP induced significant changes of cytotoxicity or inflammation in the lung. However, markers of oxidative stress (heme oxygenase-1 and malondialdehyde were affected by both fCAP and u+fCAP exposure, although not always significantly. Additional analysis revealed heme oxygenase-1 (HO-1 levels that followed a nonmonotonic function with an optimum at around 600 μg/m3 for fCAP. As a systemic response, exposure to u+fCAP and fCAP resulted in significant decreases of the white blood cell concentrations. Conclusion Minor pulmonary and systemic effects are observed after both fine and ultrafine + fine PM exposure. These effects do not linearly correlate with the CAP mass. A greater component of traffic CAP and/or a larger proportion ultrafine PM does not strengthen the absolute effects.

  18. Preparation of modified waterworks sludge particles as adsorbent to enhance coagulation of slightly polluted source water.

    Science.gov (United States)

    Chen, Wei; Gao, Xiaohong; Xu, Hang; Wang, Kang; Chen, Taoyuan

    2017-07-04

    Without treatment, waterworks sludge is ineffective as an adsorbent. In this study, raw waterworks sludge was used as the raw material to prepare modified sludge particles through high-temperature calcination and alkali modification. The feasibility of using a combination of modified particles and polyaluminum chloride (PAC) as a coagulant for treatment of slightly polluted source water was also investigated. The composition, structure, and surface properties of the modified particles were characterized, and their capabilities for removing ammonia nitrogen and turbidity were determined. The results indicate that the optimal preparation conditions for the modified sludge particles were achieved by preparing the particles with a roasting temperature of 483.12 °C, a roasting time of 3.32 h, and a lye concentration of 3.75%. Furthermore, enhanced coagulation is strengthened with the addition of modified sludge particles, which is reflected by reduction of the required PAC dose and enhancement of the removal efficiency of ammonia nitrogen and turbidity by over 80 and 93%, respectively. Additional factors such as pH, temperature, dose, and dosing sequence were also evaluated. The optimum doses of modified particles and PAC were 40 and 15 mg/L, respectively, and adding modified particles at the same time as or prior to adding PAC improves removal efficiency.

  19. Chemical preparation and investigation of Fe-P-B ultrafine amorphous alloy particles

    Institute of Scientific and Technical Information of China (English)

    胡征; 吴勇; 范以宁; 颜其洁; 陈懿

    1997-01-01

    A series of Fe-P-B ultrafine amorphous alloy particles has been prepared by the chemical reduction method The composition and size of the particles have been effectively adjusted.Mossbauer spectroscopy in addition to sonic other techniques has been used to investigate the reaction process,the factors that influence the preparation,the crystallization of the particles,and the interactions between the components within them.The results indicate that the co-deposition of iron,phosphorus and boron atoms in the solution at room temperature forms Fe-P-B amorphous alloy particles,and a preferential bonding of Fe-P bond to Fe-B one exists in the particles.

  20. Classification mechanism of the chute, a liquid-phase remover of fines in the micrometre range from a batch of porous particles

    NARCIS (Netherlands)

    Jonker, G.H.; Hoffmann, A.C; Beenackers, A.A C M

    1997-01-01

    A simple and effective classification method, the 'chute', has been developed for the liquid-phase removal of fines from a batch of porous (catalyst) particles in the micrometre range. The chute is a continuous sedimentation fractionator, working in the gravitational field. Equations based an the se

  1. Preparation of hierarchical porous Zn-salt particles and their superhydrophobic performance

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dahai; Jia, Mengqiu, E-mail: jiamq@mail.buct.edu.cn

    2015-12-30

    Graphical abstract: - Highlights: • Hierarchical particles with high roughness were prepared by modified hydrothermal route. • The high roughness is provided by extremely low thickness of sheet crystals. • FEVE polymer derivative was used for surface treatment of hierarchical surface. • The novel particles via surface treatment were firstly used as superhydrophobic materials. • The product properties were compared with multi-scale ZnO particles via conventional route. - Abstract: Superhydrophobic surfaces arranged by hierarchical porous particles were prepared using modified hydrothermal routes under the effect of sodium citrate. Two particle samples were generated in the medium of hexamethylenetetramine (P1) and urea (P2), respectively. X-ray diffraction, scanning electron microscope, and transmission electron microscope were adopted for the investigation, and results revealed that the P1 and P2 particles are porous microspheres with crosslinked extremely thin (10–30 nm) sheet crystals composed of Zn{sub 5}(OH){sub 8}Ac{sub 2}·2H{sub 2}O and Zn{sub 5}(CO{sub 3}){sub 2}(OH){sub 6}, respectively. The prepared particles were treated with a fluoroethylene vinyl ether derivative and studied using Fourier transform infrared spectroscopy and energy-dispersive X-ray spectrometer. Results showed that the hierarchical surfaces of these particles were combined with low-wettable fluorocarbon layers. Moreover, the fabricated surface composed of the prepared hierarchical particles displayed considerably high contact angles, indicating great superhydrophobicity for the products. The wetting behavior of the particles was analyzed with a theoretical wetting model in comparison with that of chestnut-like ZnO products obtained through a conventional hydrothermal route. Correspondingly, this study provided evidence that high roughness surface plays a great role in superhydrophobic behavior.

  2. Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway

    Directory of Open Access Journals (Sweden)

    Castranova Vincent

    2009-04-01

    Full Text Available Abstract Background Carcinogenicity of nickel compounds has been well documented. However, the carcinogenic effect of metallic nickel is still unclear. The present study investigates metallic nickel nano- and fine particle-induced apoptosis and the signal pathways involved in this process in JB6 cells. The data obtained from this study will be of benefit for elucidating the pathological and carcinogenic potential of metallic nickel particles. Results Using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, we found that metallic nickel nanoparticles exhibited higher cytotoxicity than fine particles. Both metallic nickel nano- and fine particles induced JB6 cell apoptosis. Metallic nickel nanoparticles produced higher apoptotic induction than fine particles. Western-blot analysis showed an activation of proapoptotic factors including Fas (CD95, Fas-associated protein with death domain (FADD, caspase-8, death receptor 3 (DR3 and BID in apoptotic cells induced by metallic nickel particles. Immunoprecipitation (IP western blot analysis demonstrated the formation of the Fas-related death-inducing signaling complex (DISC in the apoptotic process. Furthermore, lamin A and beta-actin were cleaved. Moreover, we found that apoptosis-inducing factor (AIF was up-regulated and released from mitochondria to cytoplasm. Interestingly, although an up-regulation of cytochrome c was detected in the mitochondria of metallic nickel particle-treated cells, no cytochrome c release from mitochondria to cytoplasm was found. In addition, activation of antiapoptotic factors including phospho-Akt (protein kinase B and Bcl-2 was detected. Further studies demonstrated that metallic nickel particles caused no significant changes in the mitochondrial membrane permeability after 24 h treatment. Conclusion In this study, metallic nickel nanoparticles caused higher cytotoxicity and apoptotic induction than fine particles in JB6 cells. Apoptotic cell death

  3. Public health risks of prolonged fine particle events associated with stagnation and air quality index based on fine particle matter with a diameter <2.5 μm in the Kaoping region of Taiwan

    Science.gov (United States)

    Lai, Li-Wei

    2016-12-01

    The increasing frequency of droughts in tropical and sub-tropical areas since 1970 due to climate change requires a better understanding of the relationship between public health and long-duration fine particle events (FPE; defined as a day with an average PM2.5 ≥ 35.5 μg/m3) associated with rainfall and wind speed. In the Kaoping region of Taiwan, 94.46 % of the daily average PM2.5 in winter exceeds the limit established by 2005 World Health Organization (WHO) guidelines. This study investigated the differences in winter weather characteristics and health effects between non-FPE and FPE days, and the performance of air quality indexes on FPE days. Z-statistics for one-tailed tests, multiplicative decomposition models, logarithmic regression, and product-moment correlations were used for the analysis. The results indicate that mean wind speeds, rainfall hours, and air temperature were significantly decreased on FPE days. Daily mean PM2.5 concentrations were positively correlated to the duration of FPE days. The duration of FPE days was positively related to the length of drought ( r = 0.97, P 15 years experienced the largest average reduction in asthma admissions on lag-days. Compared to the pollutant standard index (PSI) and revised air quality index (RAQI), the PM2.5 index is more representative and sensitive to changes in PM2.5 concentrations.

  4. Optimal Conditions for Preparing Ultra-Fine CeO2 Powders in A Submerged Circulative Impinging Stream Reactor

    Institute of Scientific and Technical Information of China (English)

    Chi Ru'an; Xu Zhigao; Wu Yuanxin; Wang Cunwen

    2007-01-01

    Cerium carbonate powders were produced in a submerged circulation impinging stream reactor (SCISR) from Ce(NO3)3·6H2O. NH4HCO3 was used as a precipitant in the reaction. Cerium carbonate powders were roasted to produce ultra-fine cerium dioxide (CeO2) powders. The optimal conditions of such production process were obtained by orthogonal and one-factor experiments. The results showed that ultra-fine and narrowly distributed cerium carbonate powders were produced under the optimal flowing conditions. The concentrations of Ce(NO3)3 and NH4HCO3 solutions were 0.25 and 0.3 mol·L-1, respectively. The concentration of PEG4000 added in these two solutions was 4 g·L-1. The stirring ratio, reaction temperature, feeding time, solution pH, reaction time and digestion time were 900 r·min-1, 80 ℃, 20 min, 5~6, 5 min and 1 h, respectively. The final product, CeO2 powders, was obtained by roasting the produced cerium carbonate in air for 3 h at 500 ℃. The finally produced CeO2 powders were torispherical particles with a narrow size distribution of 0.8~2.5 μm. The crystal structure of CeO2 powders belonged to cubic crystal system and its space point group was O5H-FM3M. Under optimal conditions, powders produced by SCISR were finer and more narrowly distributed than that by Stirred Tank Reactor (STR).

  5. Endotoxin in fine (PM 2.5) and coarse (PM 2.5-10) particle mass of ambient aerosols. A temporo-spatial analysis

    Science.gov (United States)

    Heinrich, Joachim; Pitz, Mike; Bischof, Wolfgang; Krug, Norbert; Borm, Paul J. A.

    Objectives: We collected fine (PM 2.5) and coarse (PM 2.5-10) particulate matter fractions in two areas ˜80 km apart and measured soluble endotoxin concentrations in both particle fractions. Here we report on temporo-spatial variation of endotoxin content in the collected particles. Methods: Dichotomous Anderson samplers were used to collect 21 weekly samples of PM 2.5 and PM 2.5-10 in both towns from January to June 2002. Each Teflon filter was water extracted and endotoxin was measured by a chromogenic Limulus Amoebocyte Lysate method. Endotoxin concentrations were expressed per mg of fine or mg of coarse mass and per sampled air volume (m 3). Results: For both cities, the mean endotoxin content in PM 2.5 was 1.2 EU mg -1; however the endotoxin content in the coarse fraction was ˜10 times higher compared to the fine mass fractions. Although endotoxin content is highly variable over time, a good correlation was observed between the two town sites for both fine ( r=0.85) and coarse PM ( r=0.88). The fluctuations of weekly endotoxin means were high in both areas suggesting a strong temporal dependence on particle source and composition. The endotoxin content in particles collected during May and June were two to four times higher than concentrations measured during the winter and early spring weeks. Conclusions: Ambient airborne endotoxin concentrations were detected in coarse and fine particle fraction, but 10-fold higher in the coarse PM. The strong seasonality and the week to week fluctuation of endotoxin content in PM indicate different biologic PM properties which might affect results of time series studies on short-term effects as well as in vitro studies and human exposure studies.

  6. Investigating the sources and atmospheric processing of fine particles from Asia and the Northwestern United States measured during INTEX B

    Directory of Open Access Journals (Sweden)

    R. E. Peltier

    2007-11-01

    Full Text Available During the National Aeronautics and Space Administration (NASA Intercontinental Chemical Transport Experiment, Phase B (INTEX-B, in the spring of 2006, airborne measurements were made in the United States Pacific Northwest of the major inorganic ions and the water-soluble organic carbon (WSOC of submicron (PM1.0 aerosol. An atmospheric trajectory (Hysplit and a Lagrangian particle dispersion model (Flexpart quantifying source contributions for carbon monoxide (CO was used to segregate air masses into those of primarily Asian influence (>75% Asian CO or North American influence (>75% North American CO. Of the measured compounds, fine particle mass mostly consisted of water-soluble organic carbon and sulfate, with highest median WSOC and sulfate concentrations in North American air masses. The fraction of WSOC to sulfate was significantly lower than one at altitudes above 3 km, opposite to what has been observed closer to Asia and in the northeastern United States, where organic components were at higher concentrations than sulfate in the free troposphere. The observations could be explained by loss of sulfate and organic aerosol due to precipitation scavenging, with reformation of mainly sulfate during advection from Asia to North America. WSOC sources were investigated by multivariate linear regression analyses of WSOC and volatile organic compounds (VOCs. In Asian air masses, of the WSOC variability that could be explained (49%, most were related to fossil fuel combustion VOCs, compared to North American air masses, where 75% of the WSOC variability was explained through a nearly equal combination of fossil fuel combustion and biogenic VOCs. Distinct WSOC plumes encountered during the experiment were also studied. A plume observed near the California Central Valley at 0.6 km altitude was related to both fossil fuel combustion and biogenic VOCs. Another Central Valley plume observed over Nevada at 3 to 5 km, in a region of cloud

  7. Temperature- and pH-Responsive Benzoboroxole-Based Polymers for Flocculation and Enhanced Dewatering of Fine Particle Suspensions.

    Science.gov (United States)

    Lu, Han; Wang, Yinan; Li, Lin; Kotsuchibashi, Yohei; Narain, Ravin; Zeng, Hongbo

    2015-12-16

    Random copolymers based on N-isopropylacrylamide (NIPAAm) containing 2-aminoethyl methacrylamide hydrochloride (AEMA) and 5-methacrylamido-1,2-benzoboroxole (MAAmBo) were synthesized and subsequently evaluated for their performance in solid-liquid separation at various pH and temperatures. The strong interactions between benzoboroxole residues and kaolin hydroxyl groups were evaluated for the first time in the flocculation of fine particle suspensions. The lower critical solution temperatures (LCSTs) of PAMN decreases because of the hydrophobic nature of the benzoboroxole moieties, resulting in strong hydrophobic interaction at temperatures higher than the LCSTs. Temperature and pH responsive polymer, P(AEMA51-st-MAAmBo76-st-NIPAM381) (denoted as PAMN) shows the ability to induce fastest settling at a low dosage of 25 ppm and under the condition of pH 9 and 50 °C. The accelerated settling rate is considered to be due to the strong adhesion of benzoboroxole residues to the kaolin hydroxyl groups, the electrical double layer force, and the hydrophobic force. During condensation phase, increasing the pH of sediment to pH 11 could attain the most compact structure. Random copolymers containing benzoboroxole groups act as dispersants (due to pH-responsive character) rather than flocculants at pH 11, providing repulsive force that enables particles to rearrange their position and consolidate well. Through a two-step solid-liquid separation including settling phase and consolidation phase, rapid settling and compact sediment are feasible simultaneously.

  8. In vitro and in vivo evaluation of the toxicities induced by metallic nickel nano and fine particles.

    Science.gov (United States)

    Magaye, Ruth; Gu, Yuanliang; Wang, Yafei; Su, Hong; Zhou, Qi; Mao, Guochuan; Shi, Hongbo; Yue, Xia; Zou, Baobo; Xu, Jin; Zhao, Jinshun

    2016-06-01

    Nickel nanoparticles (Ni NPs) have been applied in various fields along with the rapid development of nanotechnology. However, the potential adverse health effects of the Ni NPs are unclear. To investigate the cyto- and genotoxicity and compare the differences between the Ni NPs and the nickel fine particles (Ni FPs), Sprague-Dawley (SD) rats and A549 cells were treated with different doses of Ni NPs or FPs. Intra-tracheal instillation of Ni NPs and FPs caused acute toxicity in the lungs, liver and kidneys of the SD rats. Even though the histology of the lungs showed hyperplastic changes and the protein expression of HO-1 and Nrf2 detected by western blot showed lung burden overload, no significant increase was observed to the expression level of oncoprotein C-myc. The results from cell titer-Glo assay and comet assay indicated that Ni NPs were more potent in causing cell toxicity and genotoxicity in vitro than Ni FPs. In addition, Ni NPs increased the expression of C-myc in vitro, but these increases may not have been due to oxidative stress since no significant dose-dependent changes were seen in HO-1 and Nrf2 expressions. Although Ni NPs have the potential to cause DNA damage in A549 cells in vitro, the molecular mechanisms that led to these changes and their tumorigenic potential is still debatable. In short, Ni NPs were more potent in causing cell toxicity and genotoxicity in vitro than Ni FPs, and intra-tracheal instillation of Ni NPs and FPs caused toxicity in organs of the SD rats, while it showed similar to the effects for both particle types. These results suggested that both Ni NPs and FPs have the potential to be harmful to human health, and Ni NPs may have higher cyto- and genotoxic effects than Ni FPs under the same treatment dose.

  9. Preparation of hierarchical porous Zn-salt particles and their superhydrophobic performance

    Science.gov (United States)

    Gao, Dahai; Jia, Mengqiu

    2015-12-01

    Superhydrophobic surfaces arranged by hierarchical porous particles were prepared using modified hydrothermal routes under the effect of sodium citrate. Two particle samples were generated in the medium of hexamethylenetetramine (P1) and urea (P2), respectively. X-ray diffraction, scanning electron microscope, and transmission electron microscope were adopted for the investigation, and results revealed that the P1 and P2 particles are porous microspheres with crosslinked extremely thin (10-30 nm) sheet crystals composed of Zn5(OH)8Ac2·2H2O and Zn5(CO3)2(OH)6, respectively. The prepared particles were treated with a fluoroethylene vinyl ether derivative and studied using Fourier transform infrared spectroscopy and energy-dispersive X-ray spectrometer. Results showed that the hierarchical surfaces of these particles were combined with low-wettable fluorocarbon layers. Moreover, the fabricated surface composed of the prepared hierarchical particles displayed considerably high contact angles, indicating great superhydrophobicity for the products. The wetting behavior of the particles was analyzed with a theoretical wetting model in comparison with that of chestnut-like ZnO products obtained through a conventional hydrothermal route. Correspondingly, this study provided evidence that high roughness surface plays a great role in superhydrophobic behavior.

  10. Rheological properties of magnetorheological fluid prepared by gelatin-carbonyl iron composite particles

    Institute of Scientific and Technical Information of China (English)

    PAN Hua-jin; HUANG Hong-jun; ZHANG Ling-zhen; QI Jian-ying; CAO Shao-kun

    2005-01-01

    Gelatin-carbonyl iron composite particle was prepared by micro emulsion method. The analysis of scanning electron microscope(SEM) shows that the ultrafine particles are spheroids coated by gelatin, and the average sizes of particles are 3-10 μm. The specific saturation magnetization σs is 130.9 A·m2/kg, coercivity Hc is 0.823 A/m, and residual magnetism r is 4.98 Am2/kg for the composite particles. It is shown that the particles possess properties of soft magnetic. The yield stress of magnetorheological fluid(MRF) with composite particle reaches 70 kPa at 0.5 T magnetic induction. Magnetorheological effects are superior in lower magnetic field intensity and the subsidence stability of the MRF is excellent compared with pure carbonyl iron powder.

  11. 电池级超微细磷酸铁的制备%Preparation of battery-grade ultra fine iron phosphates

    Institute of Scientific and Technical Information of China (English)

    彭爱国; 贺周初; 余长艳; 庄新娟; 闻杰; 汪永斌

    2013-01-01

    To explore a low cost synthesis process of iron phosphates,preparation of battery-grade ultra fine iron phosphates is discovered with ferrous sulfate as the raw material by ferrous sulfate oxidation reaction,basic iron phosphate precipitation reaction and basic iron phosphate conversion reaction.Influences of reaction temperature,feeding time of hydrogen peroxide and ammonium phosphate,feeding quantity of hydrogen peroxide and concentration of phosphoric acid etc.on the product quality were discussed.The optimal process conditions are that hydrogen peroxide feeding quantity is 120% and feeding time is 50 mins in oxidation reaction,reaction temperature is 40 ℃ ; ammonium phosphate feeding time is 40 mins in precipitation reaction,reaction temperature is 90 ℃ and concentration of phosphoric acid is 0.5 mol/L in conversion reaction.Battery-grade ultra fine iron phosphates with particle size less than 3.0 μm can be prepared under the optimum conditions,elemental analysis reveals that the content of metal impurities is less than 0.005%,sulphur content is less than 0.022%,and n(P)/n(Fe) is 1.01; the iron phosphates is highly pure product.X-ray diffraction test results show that the product without high-temperature treatment is amorphous ultra fine particles,and the product after being treated under high temperature of 600 ℃ has high crystallinity,and crystal is very perfect.%为了探索一种低成本的磷酸铁合成工艺,以硫酸亚铁为原料,经过硫酸亚铁氧化、碱式磷酸铁沉淀、碱式磷酸铁转化制备出电池级超微细磷酸铁.研究了硫酸亚铁氧化、碱式磷酸铁沉淀、碱式磷酸铁转化反应过程中反应温度、加料时间、磷酸浓度等因素对磷酸铁产品质量的影响.通过试验得到了合成磷酸铁的最佳工艺条件:氧化反应过氧化氢加料量为标准量的120%,加料时间50 min,沉淀反应温度40℃;磷酸铵加料时间40 min,转化反应温度90℃,磷酸浓度0.5 mol/L.

  12. The Physical and Chemical Properties of Fine Carbon Particles-Pinewood Resin Blends and Their Possible Utilization

    Directory of Open Access Journals (Sweden)

    Aviwe Melapi

    2015-01-01

    Full Text Available The application of biomass gasification technology is very important in the sense that it helps to relieve the dwindling supply of natural gas from fossil fuels, and the desired product of its gasification process is syngas. This syngas is a mixture of CO and H2; however, by-products such as char, tar, soot, ash, and condensates are also produced. This study, therefore, investigated selected by-products recovered from the gasification process of pinewood chips with specific reference to their potential application in other areas when used as blends. Three samples of the gasification by-products were obtained from a downdraft biomass gasifier system and were characterized in terms of chemical and physical properties. FTIR analysis confirmed similar spectra in all char-resin blends. For fine carbon particles- (soot- resin blends, almost the same functional groups as observed in char-resin blends appeared. In bomb calorimeter measurements, 70% resin/30% char blends gave highest calorific value, followed by 50% resin/50% soot blends with values of 35.23 MJ/kg and 34.75 MJ/kg consecutively. Provided these by-products meet certain criteria, they could be used in other areas such as varnishes, water purification, and wind turbine blades.

  13. Element determination of fine particles in environmental aerosols using PIXE; Determinacion elemental de paticulas finas en aerosoles ambientales usando PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Garcia O, B. [ITT, 50000 Toluca (Mexico); Aldape U, F. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: gaolivab@gmail.com

    2007-07-01

    The Mexico city is classified as one of the more populated cities of the world which presents a decrease in the air quality and that gives place to a severe problematic in atmospheric pollution. To cooperate in the solution of this problem it is necessary to carry out studies that allow a better knowledge of the atmosphere of the city. This study presents the results of a monitoring campaign of fine particle carried out from September 21 to December 12, 2001 in three sites of the Mexico City center area. The samples were collected every third day with a collector type unit of heaped filters (Gent). The analysis of these samples was carried out in the 2 MV accelerator of the National Institute of Nuclear Research (ININ) applying the PIXE technique and with this analysis its were identified in the samples approximately 15 elements in each one of the 3 sites and was calculated the concentration in that its were present. With these results a database was created and by means of it mathematical treatment the Enrichment factor (FE), the time series of each element and the multiple correlation matrix were evaluated. The obtained results showed that the Civil Registration site (Salto del Agua) it was the more polluted coinciding that to a bigger concentration of activities a bigger increase in the pollution is generated. (Author)

  14. Preparation and characterisation of polymeric lamellar substrate particles (PLSP)

    Energy Technology Data Exchange (ETDEWEB)

    Khairullah, Noor Hasnah Mohamed

    2002-07-01

    Polymer microparticles have tremendous potential as the next generation of adjuvant systems to replace the only adjuvant currently widely registered for human use, alum. Based on aluminium salts, alum adjuvants work as short-term depots of adsorbed protein/antigens that slowly 'leak' into the body's immune system, inducing immunity by invoking a humoral response. The main disadvantage of alum adjuvants is that they do not raise sufficient antibody levels to induce long-term immunity. Hence, booster administrations are required. This drawback presents the biggest factor in the failure of many vaccination programmes. Polymer microparticulate systems can be fashioned to deliver sub-unit and peptide antigens in a continuous or controlled rate over a desired period of time, avoiding the need for booster doses. The design of mucosal vaccines is now centred upon the use of these polymeric carriers. The mucosal route for immunisation has many advantages over the more conventional systemic route, the most important of which, is the induction of both humoral and cellular immunity. Polymer microspheres of sizes <10{mu}m are especially good candidates as oral vaccine adjuvants as they are taken up by the M cells of the Peyer's patches in the intestine. Numerous studies have been carried out on microspheres into which antigens have been encapsulated or entrapped. There are, however, problems associated with loss of antigenicity since formulation procedures involve the use of organic solvents and harsh shearing methods. Additionally, these antigens may be further degraded when the polymer material itself degrades in vivo and produces acidic species. A novel adjuvant system that avoids the above problems is currently being evaluated. Poly(l-lactide) (PLLA) polymeric lamellar substrate particles (PLSP) are promising as novel adjuvants for the controlled release of antigens. Reports have shown that the adsorption of antigens onto the surface of these particles

  15. [The preparation and characterization of fine dusts carried out in the Clinica del Lavoro di Milano in support of experimental studies].

    Science.gov (United States)

    Occella, E; Maddalon, G; Peruzzo, G F; Foà, V

    1999-01-01

    This paper aims to illustrate the conditions selected at the Clinica del Lavoro of the University of Milan to prepare and analyze a large number of fine dust samples produced over a period of about 50 years, that were initially used for studies within the Clinic performed in its own facilities, and since 1956 were sent to other Italian and overseas laboratories (Luxembourg, UK, Germany, Norway, Sweden, South Korea, USA). The total quantity of material distributed (with maximum size 7-10 microns) was about 2 kg and consisted of the following mineral and artificial compounds: quartz, HF-treated quartz, tridymite, HF-treated tridymite, cristobalite, chromite, anthracite, quartz sand for foundry moulds, sand from the Lybian desert, vitreous silica, pumice, cement, as well small quantities of metallic oxides, organic resins, chrysotile, crocidolite, fibres (vitreous, cotton and polyamidic). About half of the entire quantity of dusts produced consisted of partially HF-treated tridymite. Initially, research on the etiology of silicosis used quartz dust samples, simply sieved or ventilated (consisting of classes finer than 0.04 mm, containing a 15-20% respirable fraction). From 1956 to 1960 the dusts were produced by manual grinding in an agate mortar, below about 10 microns, starting from quartz from Quincinetto (near Ivrea, Province of Turin), containing about 99.5% quartz: particle size and composition were checked using an optical-petrographic technique, with identification of the free and total silica content. Subsequently, the dusts used for biological research were obtained by grinding coarse material with a cast iron pestle and planetary mills, agate and corundum jars. The grinding products were sized by means of centrifugal classification, using the selector developed by N. Zurlo, ensuring control of dust size both optically and by means of wet levigators and hydraulic classifiers (in cooperation with the Institute of Mines of Turin Polytechnic School). After 1990

  16. Fine particles in homes of predominantly low-income families with children and smokers: Key physical and behavioral determinants to inform indoor-air-quality interventions

    Science.gov (United States)

    Bellettiere, John; Hughes, Suzanne C.; Nguyen, Benjamin; Berardi, Vincent; Liles, Sandy; Obayashi, Saori; Hofstetter, C. Richard; Blumberg, Elaine; Hovell, Melbourne F.

    2017-01-01

    Children are at risk for adverse health outcomes from occupant-controllable indoor airborne contaminants in their homes. Data are needed to design residential interventions for reducing low-income children's pollutant exposure. Using customized air quality monitors, we continuously measured fine particle counts (0.5 to 2.5 microns) over a week in living areas of predominantly low-income households in San Diego, California, with at least one child (under age 14) and at least one cigarette smoker. We performed retrospective interviews on home characteristics, and particle source and ventilation activities occurring during the week of monitoring. We explored the relationship between weekly mean particle counts and interview responses using graphical visualization and multivariable linear regression (base sample n = 262; complete cases n = 193). We found associations of higher weekly mean particle counts with reports of indoor smoking of cigarettes or marijuana, as well as with frying food, using candles or incense, and house cleaning. Lower particle levels were associated with larger homes. We did not observe an association between lower mean particle counts and reports of opening windows, using kitchen exhaust fans, or other ventilation activities. Our findings about sources of fine airborne particles and their mitigation can inform future studies that investigate more effective feedback on residential indoor-air-quality and better strategies for reducing occupant exposures. PMID:28545099

  17. Spatially selective surface platforms for binding fibrinogen prepared by particle lithography with organosilanes

    OpenAIRE

    Englade-Franklin, Lauren E.; Saner, ChaMarra K.; Garno, Jayne C.

    2013-01-01

    We introduce an approach based on particle lithography to prepare spatially selective surface platforms of organosilanes that are suitable for nanoscale studies of protein binding. Particle lithography was applied for patterning fibrinogen, a plasma protein that has a major role in the clotting cascade for blood coagulation and wound healing. Surface nanopatterns of mercaptosilanes were designed as sites for the attachment of fibrinogen within a protein-resistant matrix of 2-[methoxy(polyethy...

  18. Fine structure of histograms of alpha-activity measurements depends on direction of alpha particles flow and the Earth rotation: experiments with collimators

    CERN Document Server

    Shnoll, S E; Berulis, I I; Udaltsova, N V; Rubinstein, I A; Shnoll, Simon E.; Zenchenko, Konstantin I.; Berulis, Iosas I.; Udaltsova, Natalia V.; Rubinstein, Ilia A.

    2004-01-01

    The fine structure of histograms of measurements of 239Pu alpha-activity varies periodically, and the period of these variations is equal to sidereal day (1436 minutes). The periodicity is not observed in the experiments with collimator that restricts the alpha particles flow to be oriented to the Polar Star. Based on this study and other independent data, such as measurements conducted by the Arctic expedition, and similarity of the histograms in processes observed at different locations at the same local time, the conclusion was made, that the fine structure of statistical distributions of the observed processes depends on the celestial sphere.

  19. Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin

    DEFF Research Database (Denmark)

    Zhang, Fang; Aaltonen, Jaakko; Tian, Fang

    2009-01-01

    molecular mobility and higher chemical degradation than CM. Therefore, the current study demonstrated that QC and CM have obvious differences in both physical and chemical properties. It was concluded that care should be taken when choosing preparation methods for making amorphous materials. Furthermore......, particle size, a factor that has often been overlooked when dealing with amorphous materials, was shown to have an influence on physical stability of amorphous simvastatin.......This study investigated the factors influencing the stability of amorphous simvastatin. Quench-cooled amorphous simvastatin in two particle size ranges, 150-180 microm (QC-big) and amorphous simvastatin (CM) were prepared, and their physical and chemical...

  20. Preparation of Metalloporphyrin-Bound Superparamagnetic Silica Particles via "Click" Reaction.

    Science.gov (United States)

    Hollingsworth, Javoris V; Bhupathiraju, N V S Dinesh K; Sun, Jirun; Lochner, Eric; Vicente, M Graça H; Russo, Paul S

    2016-01-13

    A facile approach using click chemistry is demonstrated for immobilization of metalloporphyrins onto the surface of silica-coated iron oxide particles. Oleic-acid stabilized iron oxide nanocrystals were prepared by thermal decomposition of iron(III) acetylacetonate. Their crystallinity, morphology, and superparamagnetism were determined using X-ray diffraction, transmission electron microscopy, and a superconducting quantum interference device. Monodisperse core-shell particles were produced in the silica-coating of iron oxide via microemulsion synthesis. Surface modification of these particles was performed in two steps, which included the reaction of silica-coated iron oxide particles with 3-bromopropyltrichlorosilane, followed by azido-functionalization with sodium azide. Monoalkylated porphyrins were prepared using the Williamson ether synthesis of commercially available tetra(4-hydroxyphenyl) porphyrin with propargyl bromide in the presence of a base. (1)H NMR and matrix-assisted laser desorption ionization confirmed the identity of the compounds. The prepared monoalkyne porphyrins were zinc-metalated prior to their introduction to azide-functionalized, silica-coated iron oxide particles in the click reaction. X-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the surface chemistry after each step in the reaction. In addition, particle size was determined using dynamic light scattering and microscopy. The presented methodology is versatile and can be extended to other photoreactive systems, such as phthalocyanines and boron-dipyrromethane, which may lead to new materials for optical, photonic, and biological applications.

  1. Preparation of active proteins, vaccines and pharmaceuticals as fine powders using supercritical or near-critical fluids.

    Science.gov (United States)

    Cape, Stephen P; Villa, Joseph A; Huang, Edward T S; Yang, Tzung-Horng; Carpenter, John F; Sievers, Robert E

    2008-09-01

    Supercritical or near-critical fluid processes for generating microparticles have enjoyed considerable attention in the past decade or so, with good success for substances soluble in supercritical fluids or organic solvents. In this review, we survey their application to the production of protein particles. A recently developed process known as CO2-assisted nebulization with a Bubble Dryer (CAN-BD) has been demonstrated to have broad applicability to small-molecule as well as macromolecule substances (including therapeutic proteins). The principles of CAN-BD are discussed as well as the stabilization, micronization and drying of a wide variety of materials. More detailed case studies are presented for three proteins, two of which are of therapeutic interest: anti-CD4 antibody (rheumatoid arthritis), alpha1-antitrypsin (cystic fibrosis and emphysema), and trypsinogen (a model enzyme). Dry powders were formed in which stability and activity are maintained and which are fine enough to be inhaled and reach the deep lung. Enhancement of apparent activity after CAN-BD processing was also observed in some formulation and processing conditions.

  2. Conception, preparation and properties of functional carrier particles for pulmonary drug delivery.

    Science.gov (United States)

    Odziomek, Marcin; Sosnowski, Tomasz R; Gradoń, Leon

    2012-08-20

    The effectiveness of aerosol therapy is significantly reduced by the mucus layer covering the airways of the tracheobronchial tree. According to the present concept, drug particles are delivered to the lung together with the functional carrier particle that facilitates both the drug transport into the lungs and the penetration of deposited particles through the mucus. The approach of manufacturing multi-component powders with mucoactive compounds and anti-asthmatic medicines (DSCG) bound together in a single particle is additionally considered. Powders were produced with the spray-drying technique from aqueous precursor solutions containing pure low molecular weight dextran, pure mannitol and dextran/mannitol-N-acetyl cysteine (NAC) mixtures (4:1 and 1:1). NAC has been selected for this purpose as a compound, which is known to be mucolytic. Dextran and mannitol are potentially applicable in the field of inhalation drug delivery. They have been used as stabilizers of functional carrier particles. Powders were characterized for their yield and physicochemical properties including: morphology (SEM), moisture content and thermal properties (DSC). Aerosol performance was determined with NGI impactor after standardized aerosolization of the produced powders in a commercial DPI. Particle size distributions of dextran-NAC powders were characterized by high fine particle fraction (45-62%), which assures good particle deposition in the lower airways. The thermodynamic properties of the powders based on the temperature of the glass transition T(g) (50-63 °C) suggest the required stability during storage at moderate humidity. Preliminary examination of the required properties of these particles confirms their potential as functional carriers for pulmonary drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Preparation of Silver Nanoshells on Silica Particles by a Simple Two-step Process

    Institute of Scientific and Technical Information of China (English)

    Yu ZHANG; Ming MA; Ning GU; Ling XU; Kun Ji CHEN

    2004-01-01

    A simple two-step method was developed to prepare silver nanoshells coated on silica paticles.The method involves two steps: concentration of reaction precursor (AgNO3) on particle surfaces and subsequent reduction by formaldehyde.The obtained composite particles were characterized by TEM, ED, and SEM-EDS measurements.The results show that the silver nanoshell is coated on silica particle surface in the form of a polycrystalline (cubic structure) layer with average thickness of 20 nm and weight percentage of 19%.

  4. Preparation for Spherical particles of Praseodymium doped Perovskite Red Phosphor by Hydrothermal Reaction

    Science.gov (United States)

    Kosaka, T.; Matsuda, A.; Mizunuma, M.; Tanaka, Y.

    2017-02-01

    Spherical particles of 0.5mol%Pr3+-doped CaTiO3 were prepared by hydrothermal reaction on dissolved CaCl2, Pr(NO3)3, and ammonium citratoperoxotitanate (IV) complex precursor solution with molar ratio of Ti/CA=1:2 and calcination in ambient atmosphere. The obtained particle exhibited red photoluminescence at 610nm. It is found that several particles have hollow structure. It is required that further investigation is needed to clarify the formation mechanism of these spherical hollow paricles.

  5. Preparation of hydrogel hollow particles for cell encapsulation by a method of polyester core degradation.

    Science.gov (United States)

    Rabanel, J-M; Hildgen, P

    2004-06-01

    Implantation of encapsulated cells in particles of less than 1 mm (micro-encapsulation) has been proposed as a cell synthesized bio-molecule delivery system. Encapsulation provides immuno-isolation, protecting foreign cells from host immune system while nutrients, oxygen and therapeutic products can diffuse freely across capsule walls. A new method is described for the synthesis of a new family of hollow microparticles for cell encapsulation. Unlike other micro-encapsulation methods, encapsulation in those devices will take place after capsule synthesis, by micro-injection. The microcapsules were prepared by a three-steps original procedure: first, synthesis of a core particle, followed by coating with a layer of epichlorohydrin cross-linked amylo-pectin gel and, finally, selective degradation of the core particle to create the cavity. Initial experiments make use of amylo-pectin cross-linked with trimetaphosphate as core particle material. However, selective degradation was difficult to achieve. In further essays, polyesters were used successfully for the preparation of core particles. Optimizations were carried out and the permeability and morphology of the hollow particles were investigated. The preliminary results show that the new method has the potential to become a standard procedure to obtain hydrogel hollow particles. Moreover, the permeability study seems to be in accordance with specifications for immuno-isolation.

  6. Effect of sodium citrate on preparation of nano-sized cobalt particles by organic colloidal process

    Institute of Scientific and Technical Information of China (English)

    Huaping ZHU; Hao LI; Huiyu SONG; Shijun LIAO

    2009-01-01

    Nano-sized cobalt particles with the diameter of 2 nm were prepared via an organic colloidal process with sodium formate, ethylene glycol and sodium citrate as the reducing agent, the solvent and the complexing agent, respectively. The effects of sodium citrate on the yield, crystal structure, particle size and size distribution of the prepared nano-sized cobalt particles were then investigated. The results show that the average particle diameter decreases from 200 nm to 2 nm when the molar ratio of sodium citrate to cobalt chloride changes from 0 to 6. Furthermore, sodium citrate plays a crucial role in the controlling of size distribution of the nano-sized particles. The size distribution of the particle without sodium citrate addition is in range from tens of nanometers to 300 or 400 nm, while that with sodium citrate addition is limited in the range of (2±0.25) nm. Moreover, it is found that the addition of sodium citrate as a complex agent could decrease the yield of the nano-sized cobalt particle.

  7. Preparation of raspberry-like PMMA/SiO2 nanocomposite particles

    Institute of Scientific and Technical Information of China (English)

    Chen Min; You Bo; Zhou Shuxue; Wu Limin

    2006-01-01

    Water-borne raspberry-like PMMA/SiO2 nanocom-posite particles were prepared via free radical copolymerization of methyl methacrylate (MMA) with 1-vinylimidazole (1-VID) in the presence of ultrafine aqueous silica sols.The acid-base interaction between hydroxyl groups (acidic) of silica surfaces and amino groups (basic) of 1-VID was strong enough for promoting the formation of long-standing stable PMMA/SiO2 nanocomposite particles when 10 mol% or more 1-VID as auxiliary monomer was used.The average particle sizes and the silica contents of the nanocomposite particles were in the ranges from 120-330 nm and 15%-20%,respectively.TEM and SEM observations indicated a raspberry-like morphology of the obtained nanocomposite particles.

  8. Monitoring of Pollution of Air Fine Particles (PM2.5) and Study on Their Genetic Toxicity

    Institute of Scientific and Technical Information of China (English)

    DONG-QUN XU; WEN-LI ZHANG

    2004-01-01

    To compare PM2.5 pollation level between the city of coal-fuel pollution (Taiyuan) and the city of pollution mixed with coal fuels and vehicle exhausts (Beijing), to analyze the concentration of B[a]p and Pb in the pollutants, and to study the DNA damage by PM2.5. Methods Air fine particles (PM2.5) were collected in Beijing and Taiyuan by means of the filter membrane method, the concentration of B[a]p and Pb were analyzed by high performance liquid chromatography and atomic absorption spectroscopy respectveily, and the damage of DNA by PM2.5 was detected by single cell gel-electrophoresis (SCGE) using the human lung epithelial cells (A549) as target cells. Results The concentration of PM2.5 in the winter of Beijing was 0.028-0.436 mg/m3, and that in Taiyuan was 0.132-0.681 mg/m3. The concentration of B[a]p was 0.104 and 0.156 μg/mg on PM2.5 of Beijing and Taiyuan, respectively, whereas the concentration of Pb was 1.094 and 1.137 μg/mg on PM2.5 of Beijing and Taiyuan, respectively. Exposure to PM2.5 at the concentrations of 5, 50, and 200 μg/mL for 12 h and 24 h caused DNA damage of the human alveolar epithelium, and the ratios of the tailing and length of the tail were all significantly different from those of the negative control group (P<0.05), and indicated a dose-response relationship. Conclusion PM2.5 has certain genetic toxicity.

  9. Determinants of fine particle (PM{sub 2.5}) personal exposure levels in transport microenvironments, London, UK

    Energy Technology Data Exchange (ETDEWEB)

    Adams, H.S.; Nieuwenhuijsen, M.J.; Colville, R.N. [Imperial Coll. of Science, Technology and Medicine, TH Huxley School of Environment, Earth Sciences and Engineering, London (United Kingdom)

    2001-07-01

    A series of field studies were carried out in London, UK, during 1999-2000 in which over 400 fine particle (PM{sub 2.5}) personal exposure level measurements were taken for journeys in bicycle, bus, car and underground rail transport microenvironments. This was the first comprehensive PM{sub 2.5} personal exposure study of transport users. Both a fixed-route multi-transport mode study and a study of cyclists' commuter journeys were undertaken. Subsequent to these field studies regression modelling of possible influencing factors of these exposure levels was carried out. Meteorological variables, traffic density, mode and route were considered; the relationships of personal exposure levels with fixed site monitor (FSM) concentrations, and of the FSM concentrations with the potential predictor variables, were also investigated. This analysis of the determinants of transport user exposure to PM{sub 2.5} in London, UK, showed that wind speed had a significant influence on personal exposure levels, though explained only up to 20% of the variability of road transport user exposure levels. The occurrence of higher wind speeds was strongly associated with a decrease in personal exposure levels; a 1.5-2.0 fold difference in exposure level concentrations was estimated between the 10th and 90th percentiles of wind speed. Route was a significant factor, whilst mode was not a significant factor in the street microenvironment (between bicycle, bus and car modes); models incorporating route and mode, as well as wind speed, explained approximately 35% of the variability in PM{sub 2.5} exposure levels. Personal exposure levels were reasonably correlated with urban background FSM concentrations, for fixed-route road mode (bicycle, bus and car) exposure level concentrations, r=0.27 (p<0.01) and for commuter cyclists' exposure level concentrations r=0.58 (p<0.01). (Author)

  10. A Voxel-Based Morphometry Study Reveals Local Brain Structural Alterations Associated with Ambient Fine Particles in Older Women

    Science.gov (United States)

    Casanova, Ramon; Wang, Xinhui; Reyes, Jeanette; Akita, Yasuyuki; Serre, Marc L.; Vizuete, William; Chui, Helena C.; Driscoll, Ira; Resnick, Susan M.; Espeland, Mark A.; Chen, Jiu-Chiuan; Wassertheil-Smoller, Sylvia; Goodwin, Mimi; DeNise, Richard; Lipton, Michael; Hannigan, James; Carpini, Anthony; Noble, David; Guzman, Wilton; Kotchen, Jane Morley; Goveas, Joseph; Kerwin, Diana; Ulmer, John; Censky, Steve; Flinton, Troy; Matusewic, Tracy; Prost, Robert; Stefanick, Marcia L.; Swope, Sue; Sawyer-Glover, Anne Marie; Hartley, Susan; Jackson, Rebecca; Hallarn, Rose; Kennedy, Bonnie; Bolognone, Jill; Casimir, Lindsay; Kochis, Amanda; Robbins, John; Zaragoza, Sophia; Carter, Cameron; Ryan, John; Macias, Denise; Sonico, Jerry; Nathan, Lauren; Voigt, Barbara; Villablanca, Pablo; Nyborg, Glen; Godinez, Sergio; Perrymann, Adele; Limacher, Marian; Anderson, Sheila; Toombs, Mary Ellen; Bennett, Jeffrey; Jones, Kevin; Brum, Sandy; Chatfield, Shane; Vantrees, Kevin; Robinson, Jennifer; Wilson, Candy; Koch, Kevin; Hart, Suzette; Carroll, Jennifer; Cherrico, Mary; Ockene, Judith; Churchill, Linda; Fellows, Douglas; Serio, Anthony; Jackson, Sharon; Spavich, Deidre; Margolis, Karen; Bjerk, Cindy; Truwitt, Chip; Peitso, Margaret; Camcrena, Alexa; Grim, Richard; Levin, Julie; Perron, Mary; Brunner, Robert; Golding, Ross; Pansky, Leslie; Arguello, Sandie; Hammons, Jane; Peterson, Nikki; Murphy, Carol; Morgan, Maggie; Castillo, Mauricio; Beckman, Thomas; Huang, Benjamin; Kuller, Lewis; McHugh, Pat; Meltzer, Carolyn; Davis, Denise; Davis, Joyce; Kost, Piera; Lucas, Kim; Potter, Tom; Tarr, Lee; Shumaker, Sally; Espeland, Mark; Coker, Laura; Williamson, Jeff; Felton, Debbie; Gleiser, LeeAnn; Rapp, Steve; Legault, Claudine; Dailey, Maggie; Casanova, Ramon; Robertson, Julia; Hogan, Patricia; Gaussoin, Sarah; Nance, Pam; Summerville, Cheryl; Peral, Ricardo; Tan, Josh; Bryan, Nick; Davatzikos, Christos; Desiderio, Lisa; Buckholtz, Neil; Molchan, Susan; Resnick, Susan; Rossouw, Jacques; Pottern, Linda

    2016-01-01

    Objective: Exposure to ambient fine particulate matter (PM2.5: PM with aerodynamic diameters voxel-wise analyses, we examined whether PM2.5 exposure also affects brain structure. Methods: Brain MRI data were obtained from 1365 women (aged 71–89) in the Women's Health Initiative Memory Study and local brain volumes were estimated using RAVENS (regional analysis of volumes in normalized space). Based on geocoded residential locations and air monitoring data from the U.S. Environmental Protection Agency, we employed a spatiotemporal model to estimate long-term (3-year average) exposure to ambient PM2.5 preceding MRI scans. Voxel-wise linear regression models were fit separately to gray matter (GM) and white matter (WM) maps to analyze associations between brain structure and PM2.5 exposure, with adjustment for potential confounders. Results: Increased PM2.5 exposure was associated with smaller volumes in both cortical GM and subcortical WM areas. For GM, associations were clustered in the bilateral superior, middle, and medial frontal gyri. For WM, the largest clusters were in the frontal lobe, with smaller clusters in the temporal, parietal, and occipital lobes. No statistically significant associations were observed between PM2.5 exposure and hippocampal volumes. Conclusions: Long-term PM2.5 exposures may accelerate loss of both GM and WM in older women. While our previous work linked smaller WM volumes to PM2.5, this is the first neuroimaging study reporting associations between air pollution exposure and smaller volumes of cortical GM. Our data support the hypothesized synaptic neurotoxicity of airborne particles.

  11. Investigating the sources and atmospheric processing of fine particles from Asia and the Northwestern United States measured during INTEX B

    Directory of Open Access Journals (Sweden)

    E. Apel

    2008-03-01

    Full Text Available During the National Aeronautics and Space Administration (NASA Intercontinental Chemical Transport Experiment, Phase B (INTEX-B, in the spring of 2006, airborne measurements were made in the United States Pacific Northwest of the major inorganic ions and the water-soluble organic carbon (WSOC of submicron (PM1.0 aerosol. An atmospheric trajectory (HYSPLIT and a Lagrangian particle dispersion model (Flexpart quantifying source contributions for carbon monoxide (CO were used to segregate air masses into those of primarily Asian influence (>75% Asian CO or North American influence (>75% North American CO. Of the measured compounds, fine particle mass mostly consisted of water-soluble organic carbon and sulfate, with median sulfate and WSOC concentrations in two to four times higher, respectively, in North American air masses versus transported Asian air masses. The fraction of WSOC to sulfate in transported Asian air masses was significantly lower than one at altitudes above 3 km due to depleted organic aerosol, opposite to what has been observed closer to Asia and in the northeastern United States, where organic components were at higher concentrations than sulfate in the free troposphere. The observations could be explained by loss of sulfate and organic aerosol by precipitation scavenging, with reformation of mainly sulfate during advection from Asia to North America. In contrast to free tropospheric measurements, for all air masses below approximately 2 km altitude median WSOC-sulfate ratios were consistently between one and two. WSOC sources were investigated by multivariate linear regression analyses of WSOC and volatile organic compounds (VOCs. In Asian air masses, of the WSOC variability that could be explained (49%, most was related to fossil fuel combustion VOCs, compared to North American air masses, where 75% of the WSOC variability was explained through a nearly equal combination of fossil fuel combustion and biogenic VOCs

  12. Probabilistic Preparation of N-particle Cat States via Entanglement Swapping and Entanglement Concentration

    Institute of Scientific and Technical Information of China (English)

    姚春梅; 李敏; 叶柳; 郭光灿

    2002-01-01

    We discuss two different schemes for the probabilistic preparation of N-particle cat states using pure multiparticle entangled states via entanglement swapping and entanglement concentration. At the centre of distribution A,Alice performs all of the operations required to achieve our goal.

  13. Preparation of Parium Titanates With Different Particle Size Distribution Using Modified Pechini Method

    Directory of Open Access Journals (Sweden)

    Ahmed Jaafer Abed AL-Jabar

    2017-03-01

    Full Text Available Barium titanates is one of the most important ceramics that are widely used in the electronic industry because of its high dielectric constant, its ferroelectricity, and its piezoelectric properties. In the current study, five different batches of barium titanate powders were prepared by modifiedpechini method using the barium chloride and the titanium chloride as a starting materials in order to obtain different particle size distributions.SEM, TGA, DTA, XRD, FTIR, and other techniques have been used to characterize the prepared samples.XRD results suggested that the synthesized BaTiO3has a tetragonal phase.SEM images of the prepared samples reveala polyhedron shapes, on average, also it show that there are markedinfluence of the reactant concentration on the average size of the grains,where the samples prepared from higher solution concentration tend to possess larger grain size compared to that prepared from low concentration.

  14. New therapeutic agent for radiation synovectomy - preparation of {sup 166}Ho-EDTMP-HA particle

    Energy Technology Data Exchange (ETDEWEB)

    Bai, H.; Jin, X.; Du, J.; Wang, F.; Chen, D.; Fan, H.; Cheng, Z.; Zhang, J. [China Institute of Atomic Energy, Beijing (Switzerland). Isotope Department

    1997-10-01

    In order to prepare new therapeutical agent for radiation synovectomy, Hydroxyapatite (HA) was labelled with {sup 166}Ho by EDTMP that had high affinity to HA particles. Radiolabelling of HA particles was divided into two steps, {sup 166}Ho-EDTMP was prepared first; then mixed with HA particles completely and vibrated for 15 minutes on the micromixer at room temperature, washed 3 times with deionized water. Radiolabelling particle was separated from free {sup 166}Ho via centrifugation to determine its radiolabelling efficiency. {sup 166}Ho-EDTMP-HA and {sup 166}Ho-EDTMP were injected into knee joint of normal rabbits respectively, every group was killed at different time postinjection, took out major organ and collected urine and blood, then weighted and determined their radio counts. HA particles, as a natural component of bone was known to have good compatibility with soft tissue and biodegrade into calcium and phosphate in vivo. It was readily prepared from common chemical and formed into particles of desired size range in a controlled process, it had high stability in vitro and vivo. Radiolabelling of HA particle with {sup 166}Ho by EDTMP was simple to perform and provides an excellent labelling yield that was more than 95% under the optimal labelling condition. The optimal labelling condition at room temperature was pH 6.0-8.0 and vibration time 15 minutes. The absorbed capacity of HA particle was 5 mg Ho/g HA particle and size of radiolabelling particle was at range of 2-5,{mu}m that is suitable for therapy of radiation synovectomy. {sup 166}Ho-EDTMP-HA particle demonstrated high in vitro stability in either normal saline or 1% BSA solution, but instability under extremely acidic condition (pH 1-2). The control studies performed with {sup 166}Ho-EDTMP not bound to HA particle provided information on the distribution of radioactivity that would occur upon leakage of the radiochemical compound from joint. Its short half-life, its extremely low leakage from the

  15. Approximate-analytical study on thermal preparation and combustion of a coal particle

    Energy Technology Data Exchange (ETDEWEB)

    Salomatov, V.V. [SB RAS, Novosibirsk (Russian Federation). Inst. of Thermophysics; Enkhjargal, Kh. [Mongolian Univ. of Science and Technology, Ulaanbaatar (Mongolia)

    2013-07-01

    The main amount of heat and electricity in the world is produced with application of coal. Following development of power engineering plans application of low-grade coals, including those of new deposits (Salomatov VV, Nature conservation technologies at thermal and atomic power plants, Novosibirsk, NSTU, 2006). Massive Shive-Ovoos open-cast is among such low developed deposits of Mongolia. This deposit requires a set of investigations on thermal preparation and combustion of coal, aimed at extensive and efficient energy utilization. Calculation of flame combustion of coals is based on dependences, which determine the whole combustion process of separate coal particles. For particles of natural coals these processes include complex transformations of organic and mineral parts of coal matrix, heating, devolatization, ignition and burning of coke residue. Such detailed elaboration requires complex physical and mathematical simulation. Five successive stages of thermal preparation and combustion of a coal particle with initial humidity and ash content were distinguished by experimental results: 1. Heating. The particle is heated; the temperature increases, and the mass stays constant. 2. Drying. Liquid inside a wet particle evaporates and mass reduces. 3. Devolatization. 4. Ignition of slightly dried carbon layer by fuel gases. Residual moisture is still kept in the particle. 5. Burning. Two successive conditions are considered: 1. simultaneous burning of dried carbon layer and evaporation; 2. burning of absolutely dry coke residue.

  16. Hierarchical ZnO particles grafting by fluorocarbon polymer derivative: Preparation and superhydrophobic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dahai; Jia, Mengqiu, E-mail: jiamq@mail.buct.edu.cn

    2015-07-15

    Graphical abstract: - Highlights: • The hierarchical particles were prepared by a simple, mild hydrothermal process. • The obtained “chestnut” ZnO particles show dual-scale morphology with high roughness. • FEVE derivative was creatively imported to graft onto hierarchical particles. • Superhydrophobic surfaces were obtained, on which the contact angles surpass 150°. • A special model was proposed to explain the wetting state in this work. - Abstract: Superhydrophobic surfaces on the basis of hierarchical ZnO particles grafted by fluoroethylene-vinylether (FEVE) polymer derivative were prepared using a facile, mild and low-cost method. X-ray diffraction (XRD) and scanning electron microscope (SEM) revealed that the resulting ZnO particles via hydrothermal process exhibit micro–nano dual-scale morphology with high purity under a suitable surfactant amount and alkali concentration. The grafting of FEVE derivative was confirmed by Fourier transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectrometer (EDS), suggesting that hierarchical surface of ZnO particles was an imported monomolecular layer of fluorocarbon polymer. The obtained surface fabricated by drop-casting shows considerably high contact angle and good resistance to water immersion. The wetting behavior in this work was furthermore analyzed by theoretical wetting model. This work demonstrates that the sufficient low-wettable surface and high roughness both take a vital role in the superhydrophobic behavior.

  17. Microwave absorption properties of FeSi flaky particles prepared via a ball-milling process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yuan, Yong [Precision Machinery Research Institute of Shanghai Space Flight Academy, Shanghai 201600 (China); Jiang, Jian-tang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Gong, Yuan-xun [Aerospace Research Institute of Special Material and Processing Technology, Beijing 100074 (China); Zhen, Liang, E-mail: lzhen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); MOE Key Laboratory of Micro-system and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin 150080 (China)

    2015-12-01

    Flaky FeSi alloy particles with different aspect ratio were produced via ball-milling and a subsequent annealing. The microstructure and the morphology of the particles were examined by XRD and SEM. The dc resistivity, the static magnetization properties and electromagnetic properties were measured. Particles with high aspect ratio were found possess high permittivity and permeability. On the other hand, the variation of grain size and defects density was found influence the permittivity and permeability. High specific area was believed contribute to the intense dielectric loss and the high shape magnetic anisotropy lead to high permeability in the target band. Increased electromagnetic parameters compel the absorption peak’s shift to lower frequency. Coating using flaky FeSi particles milled for 12 h as fillers presented a reflection loss of −10 dB at 2 GHz and a matching thickness of 1.88 mm. The flaky FeSi alloy particles prepared through ball-milling and annealing can be promising candidates for EMA application at 1–4 GHz band. - Highlights: • Large quantity of flakey FeSi particles were produced through a simple way. • Coatings with as-milled FeSi particles exhibit excellent EMA performance in L-S band. • Shape and size of particles can be controlled via adjusting the ball-milling time. • Shape/size along with the microstructure influence the electromagnetic properties. • Shape/size contribute more to the excellent EMA performance compared to microstructure.

  18. Preparation and characterization of Fe3O4/Au composite particles

    Institute of Scientific and Technical Information of China (English)

    CUI; Yali; HUI; Wenli; WANG; Huirong; WANG; Lijun; CHEN; Ch

    2004-01-01

    Using Fe3O4 nano-particles as seeds, a new type of Fe3O4/Au composite particles with core/shell structure and diameter of about 170 nm was prepared by reduction of Au3+ with hydroxylamine in an aqueous solution. Particle size analyzer and transmission electron microscope were used to analyze the size distribution and microstructure of the particles in different conditions. The result showed that the magnetically responsive property and suspension stability of Fe3O4 seeds as well as reduction conditions of Au3+ to Au0 are the main factors which are crucial for obtaining a colloid of the Fe3O4/Au composite particles with uniform particle dispersion,excellent stability, homogeneity in particle sizes, and effective response to an external magnet in aqueous suspension solutions. UV-Vis analysis revealed that there is a characteristic peak of Fe3O4/Au fluid. For particles with d(0.5)=168 nm, the λmax is 625 nm.

  19. A new approach to the combination of IBA techniques and wind back trajectory data to determine source contributions to long range transport of fine particle air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, David D., E-mail: dcz@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Crawford, Jagoda; Stelcer, Eduard; Atanacio, Armand [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2012-02-15

    A new approach to link HYSPLIT back trajectories to the source of fine particle pollution as characterised by standard IBA techniques is discussed. The example of the long range transport of desert dust from inland Australia across the eastern coast is used to show that over a 10-year period extreme soil events originated from major agricultural regions some 30% of the time and that dust from known deserts are not always the problem.

  20. Parameter and model uncertainty in a life-table model for fine particles (PM2.5: a statistical modeling study

    Directory of Open Access Journals (Sweden)

    Jantunen Matti J

    2007-08-01

    Full Text Available Abstract Background The estimation of health impacts involves often uncertain input variables and assumptions which have to be incorporated into the model structure. These uncertainties may have significant effects on the results obtained with model, and, thus, on decision making. Fine particles (PM2.5 are believed to cause major health impacts, and, consequently, uncertainties in their health impact assessment have clear relevance to policy-making. We studied the effects of various uncertain input variables by building a life-table model for fine particles. Methods Life-expectancy of the Helsinki metropolitan area population and the change in life-expectancy due to fine particle exposures were predicted using a life-table model. A number of parameter and model uncertainties were estimated. Sensitivity analysis for input variables was performed by calculating rank-order correlations between input and output variables. The studied model uncertainties were (i plausibility of mortality outcomes and (ii lag, and parameter uncertainties (iii exposure-response coefficients for different mortality outcomes, and (iv exposure estimates for different age groups. The monetary value of the years-of-life-lost and the relative importance of the uncertainties related to monetary valuation were predicted to compare the relative importance of the monetary valuation on the health effect uncertainties. Results The magnitude of the health effects costs depended mostly on discount rate, exposure-response coefficient, and plausibility of the cardiopulmonary mortality. Other mortality outcomes (lung cancer, other non-accidental and infant mortality and lag had only minor impact on the output. The results highlight the importance of the uncertainties associated with cardiopulmonary mortality in the fine particle impact assessment when compared with other uncertainties. Conclusion When estimating life-expectancy, the estimates used for cardiopulmonary exposure

  1. Two- and three-particle states in a nonrelativistic four-fermion model in the fine-tuning renormalization scheme: Goldstone mode versus extension theory

    CERN Document Server

    Vall, A N; Leviant, V M; Naumov, D V; Sinitskaya, A V

    2001-01-01

    In a nonrelativistic contact four-fermion model we show that simple regularization prescriptions together with a definite fine-tuning of the cut-off parameter dependence of 'bare' quantities give the exact solutions for the two-particle sector and Goldstone modes. Their correspondence with the self-adjoint extension into Pontryagin space is established leading to self-adjoint semi-bounded Hamiltonians in three-particle sectors as well. Renormalized Faddeev equations for the bound states with Fredholm properties are obtained and analyzed. (author)

  2. Preparation and bioevaluation of 166Ho labelled hydroxyapatite (HA) particles for radiosynovectomy.

    Science.gov (United States)

    Unni, P R; Chaudhari, P R; Venkatesh, Meera; Ramamoorthy, N; Pillai, M R A

    2002-02-01

    The preparation of 166Ho labeled hydroxy apatite (HA) particles for radiosynovectomy applications is described in this paper. 166Ho was prepared by the irradiation of Ho2O3 at a flux of 1.8 x 10(13) neutrons/cm2/s for about 7 days. The irradiation resulted in the production of approximately 17 GBq of 166Ho activity at the end of six hours post end of bombardment and the corresponding specific activity was approximately 3-4 GBq/mg of Ho. The irradiated target was dissolved in 0.1 N HCl solution. Radionuclidic purity was ascertained by high resolution gamma ray spectrometry. HA particles were synthesized and characterized by X-ray diffractometry. Labeling studies were carried out with and without citric acid as a transchelating agent. Radiochemical yield and purity of the 166Ho-HA particles were ascertained by paper chromatography and by paper electrophoresis techniques. Labeling yield of >98% could be achieved at pH 7, with 40 mg of HA particles and 8.6 microg of Ho. 166Ho-HA particles prepared were stable for 72 h. Bio-evaluation of the 166Ho -HA particles were carried out by injecting approximately 74 MBq dose in 200 microL (approximately 8 mg of 166Ho-HA particles) directly into the arthritis induced knee joints as well as into the healthy knee joints of white New Zealand rabbits. Images of the injected joints of the animals recorded using a gamma camera at regular intervals showed good retention. Blood samples were collected from the animals and activity assayed in a scintillation detector. Experiments were also carried out under identical conditions in normal rabbits. In both the cases, it was observed that there was no significant extra articular leakage of the injected activity over the study period of 96 h post injection.

  3. Preparation and characterization of mesoporous hybrid particle-fiber carbon monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Fuertes, A.B.; Marban, G. [Inst. Nacional del Carbon (CSIC), Oviedo (Spain); Nevskaia, D.M. [Universidad Nacional de Educacion a Distancia (UNED), Madrid (Spain). Facultad de Ciencas, Dept. de Quimica Inorganica y Tecnica

    2002-05-01

    Porous carbon materials are a subject of increasing attention in many areas of technology such as air purification, catalysis, refrigeration, gas and energy storage, and energy production. Superactivated carbons (SAC) are powdered activated carbons generally made from mesocarbon microbeads and have a very high adsorption capacity. They are highly appropriate for use in evaporative loss control devices (automobile canisters), catalytic supports, fuel-cell electrodes, and double-layer electrical capacitors. In all of these applications it is desirable that the carbon particles be immobilized in order to form rigid devices of high permeability. This communication describes a method to immobilize these fine particles in order to obtain rigid structures with a high internal porosity. (orig.)

  4. Preparation of ceria with large particle size and high appearance density

    Institute of Scientific and Technical Information of China (English)

    WANG Songling; LIU Junyun; JIA Jiangtao; LIAO Chunsheng; YAN Chunhua

    2008-01-01

    Cerium is one of the most abundant rare earth dements in both bastnasite and monazite. Ceria has been widely used in optical catalytic, electrolyte, and sensor materials, with unique performances. With the development of functional materials, great interest has been focused on the synthesis and characterization of specific fine/mesoporous ceria powder. In this study, the modified precipitation and recrystallization processes combined with a controlled calcination process for fabricating the ceria with large particle size and high appearance density was reported. During precipitation, a certain amount of mineral acid such as nitric acid served as an additive, to adjust the precipitation and crystallization processes of cerium oxalates. An appropriate acidic condition could lead the process into the Oswald ripening stage and made the particles become bigger. Thus, the appearance density of powder was increased. The optimized conditions, such as the temperature, feeding speed, type and concentration of mineral acids, and the concentration of cerium-contained stock solution, were investigated and evaluated.

  5. Arterial blood pressure responses to short-term exposure to fine and ultrafine particles from indoor sources - A randomized sham-controlled exposure study of healthy volunteers.

    Science.gov (United States)

    Soppa, Vanessa J; Schins, Roel P F; Hennig, Frauke; Nieuwenhuijsen, Mark J; Hellack, Bryan; Quass, Ulrich; Kaminski, Heinz; Sasse, Birgitta; Shinnawi, Samir; Kuhlbusch, Thomas A J; Hoffmann, Barbara

    2017-10-01

    Particulate air pollution is linked to adverse cardiovascular effects. The aim of the study was to investigate the effect of short-term exposure to indoor particles on blood pressure (BP). We analyzed the association of particle emissions from indoor sources (candle burning, toasting bread, frying sausages) with BP changes in 54 healthy volunteers in a randomized cross-over controlled exposure study. Particle mass concentration (PMC), size-specific particle number concentration (PNC) and lung-deposited particle surface area concentration (PSC) were measured during the 2h exposure. Systolic and diastolic blood pressure were measured before, during, directly, 2, 4 and 24h after exposure. We performed multiple mixed linear regression analyses of different particle metrics and BP. BP significantly increased with increasing PMC, PSC and PNC resulting from toasting bread. For example, an increase per 10µg/m(3) PM10 and PM2.5, systolic BP increased at all time points with largest changes 1h after exposure initiation of 1.5mmHg (95%-CI: 1.1; 1.9) and of 2.2mmHg (95%-CI: 1.3; 3.1), respectively. Our study suggests an association of short-term exposure to fine and ultrafine particles emitted from toasting bread with increases in BP. Particles emitted from frying sausages and candle burning did not consistently affect BP. Copyright © 2017. Published by Elsevier Inc.

  6. Preparation of Fe3O4Spherical Nanoporous Particles Facilitated by Polyethylene Glycol 4000

    Directory of Open Access Journals (Sweden)

    Wang Li-Li

    2009-01-01

    Full Text Available Abstract Much interest has been attracted to the magnetic materials with porous structure because of their unique properties and potential applications. In this report, Fe3O4nanoporous particles assembled from small Fe3O4nanoparticles have been prepared by thermal decomposition of iron acetylacetonate in the presence of polyethylene glycol 4000. The size of the spherical nanoporous particles is 100–200 nm. Surface area measurement shows that these Fe3O4nanoporous particles have a high surface area of 87.5 m2/g. Magnetization measurement and Mössbauer spectrum indicate that these particles are nearly superparamagnetic at room temperature. It is found that the morphology of the products is greatly influenced by polyethylene glycol concentration and the polymerization degree of polyethylene glycol. Polyethylene glycol molecules are believed to facilitate the formation of the spherical assembly.

  7. Experiments and Modeling of the Preparation of Ultrafine Calcium Carbonate in Spouted Beds with Inert Particles

    Institute of Scientific and Technical Information of China (English)

    林诚; 朱涛; 朱跃姿; 张济宇

    2003-01-01

    A novel reaction-drying process was carried out in a spouted bed reactor with inert particles and used to prepare ultrafine CaCO3 particles. Effects of concentrations of CO2 and Ca(OH)2, and reaction temperature on Ca(OH)2 conversion were experimentally investigated. The particle sizes and composition of CaCO3 produced were characterized with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that ultrafine CaCO3 particles with mean size of 80 nm could be obtained with this novel process.By modifying the Arrhenius Equation and considering the Ca(OH)2 state, a kinetic model was established to describe the process in the spouted bed. The model parameters estimated from the reaction-drying experiments were found to fit well the experimental data, indicating the applicability of the proposed kinetic model.

  8. Effect of weightlessness on colloidal particle transport and segregation in self-organising microtubule preparations.

    Science.gov (United States)

    Tabony, James; Rigotti, Nathalie; Glade, Nicolas; Cortès, Sandra

    2007-05-01

    Weightlessness is known to effect cellular functions by as yet undetermined processes. Many experiments indicate a role of the cytoskeleton and microtubules. Under appropriate conditions in vitro microtubule preparations behave as a complex system that self-organises by a combination of reaction and diffusion. This process also results in the collective transport and organisation of any colloidal particles present. In large centimetre-sized samples, self-organisation does not occur when samples are exposed to a brief early period of weightlessness. Here, we report both space-flight and ground-based (clinorotation) experiments on the effect of weightlessness on the transport and segregation of colloidal particles and chromosomes. In centimetre-sized containers, both methods show that a brief initial period of weightlessness strongly inhibits particle transport. In miniature cell-sized containers under normal gravity conditions, the particle transport that self-organisation causes results in their accumulation into segregated regions of high and low particle density. The gravity dependence of this behaviour is strongly shape dependent. In square wells, neither self-organisation nor particle transport and segregation occur under conditions of weightlessness. On the contrary, in rectangular canals, both phenomena are largely unaffected by weightlessness. These observations suggest, depending on factors such as cell and embryo shape, that major biological functions associated with microtubule driven particle transport and organisation might be strongly perturbed by weightlessness.

  9. Electromagnetic properties of flake-shaped Fe–Si alloy particles prepared by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Jiang, Jian-Tang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Wang, Zeng-Quan [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Gong, Yuan-Xun [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Aerospace Research Institute of Special Material and Processing Technology, Beijing 100074 (China); Liu, Chao [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, Liang, E-mail: lzhen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); MOE Key Laboratory of Micro-system and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin 150080 (China)

    2014-11-15

    Flake-shaped Fe–Si alloy particles with high aspect ratios were fabricated by ball milling commercially available Fe–Si powder, aiming to fabricate high-performance microwave absorbing fillers for coatings applied in 1–4 GHz range. To compare with spherical particles, higher permittivity and permeability was observed by using flaky particles as fillers. High aspect ratios contributed to an enhanced dielectric relaxation in the 1–4 GHz band, resulting in an increased permittivity. The thin thickness together with the high resistivity of Fe–Si flakes was believed to be helpful for suppressing the effect of eddy current and thus lead to an increase in the permeability. The electromagnetic wave absorbing (EMA) performances were observed to be enhanced. With a thin thickness of 2 mm, a wide absorption band with a minimum reflection loss of −12 dB was achieved in 1–4 GHz range, when using 75 wt% of flaky Fe–Si particles as fillers. The study indicated that flake-shaped Fe–Si particles were a promising candidate for EMA materials in L and S bands. - Highlights: • Flaky Fe–Si alloy particles were prepared in large scale via a simple ball milling method. • Coatings containing flakes Fe–Si particles present excellent EMA performance in L–S band. • The high shape anisotropy and the thin thickness contribute to the excellent EM property.

  10. Simulation of the dynamic packing behavior of preparative chromatography columns via discrete particle modeling.

    Science.gov (United States)

    Dorn, Martin; Hekmat, Dariusch

    2016-03-01

    Preparative packed-bed chromatography using polymer-based, compressible, porous resins is a powerful method for purification of macromolecular bioproducts. During operation, a complex, hysteretic, thus, history-dependent packed bed behavior is often observed but theoretical understanding of the causes is limited. Therefore, a rigorous modeling approach of the chromatography column on the particle scale has been made which takes into account interparticle micromechanics and fluid-particle interactions for the first time. A three-dimensional deterministic model was created by applying Computational Fluid Dynamics (CFD) coupled with the Discrete Element Method (DEM). The column packing behavior during either flow or mechanical compression was investigated in-silico and in laboratory experiments. A pronounced axial compression-relaxation profile was identified that differed for both compression strategies. Void spaces were clearly visible in the packed bed after compression. It was assumed that the observed bed inhomogeneity was because of a force-chain network at the particle scale. The simulation satisfactorily reproduced the measured behavior regarding packing compression as well as pressure-flow dependency. Furthermore, the particle Young's modulus and particle-wall friction as well as interparticle friction were identified as crucial parameters affecting packing dynamics. It was concluded that compaction of the chromatographic bed is rather because of particle rearrangement than particle deformation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:363-371, 2016. © 2015 American Institute of Chemical Engineers.

  11. Incorporation of ovalbumin into ISCOMs and related colloidal particles prepared by the lipid film hydration method.

    Science.gov (United States)

    Demana, Patrick H; Davies, Nigel M; Berger, Bianca; Rades, Thomas

    2004-07-08

    The aim of this study was to investigate the incorporation of a model antigen, fluorescently labelled ovalbumin (FITC-OVA), into various colloidal particles including immune stimulating complexes (ISCOMs), liposomes, ring and worm-like micelles, lamellae and lipidic/layered structures that are formed from various combinations of the triterpene saponin Quil A, cholesterol and phosphatidylethanolamine (PE) following hydration of PE/cholesterol lipid films with aqueous solutions of Quil A. Colloidal dispersions of these three components were also prepared by the dialysis method for comparison. FITC-OVA was conjugated with palmitic acid (P) and PE to produce P-FITC-OVA and PE-FITC-OVA, respectively. Both P-FITC-OVA and PE-FITC-OVA could be incorporated in all colloidal structures whereas FITC-OVA was incorporated only into liposomes. The incorporation of PE-FITC-OVA into all colloidal structures was significantly higher than P-FITC-OVA (P < 0.05). The degree of incorporation of protein was in the order: ring and worm-like micelles < liposomes and lipidic/layered structures < ISCOMs and lamellae. The incorporation of protein into the various particles prepared by the lipid film hydration method was similar to those for colloidal particles prepared by the dialysis method (provided both methods lead to the formation of the same colloidal structures). In the case of different colloidal structures arising due to the preparation method, differences in encapsulation efficiency were found (P < 0.05) for formulations with the same polar lipid composition. This study demonstrates that the various colloidal particles formed as a result of hydrating PE/cholesterol lipid films with different amounts of Quil A are capable of incorporating antigen, provided it is amphipathic. Some of these colloidal particles may be used as effective vaccine delivery systems.

  12. B-vitamin Supplementation Mitigates Effects of Fine Particles on Cardiac Autonomic Dysfunction and Inflammation: A Pilot Human Intervention Trial

    Science.gov (United States)

    Zhong, Jia; Trevisi, Letizia; Urch, Bruce; Lin, Xinyi; Speck, Mary; Coull, Brent A.; Liss, Gary; Thompson, Aaron; Wu, Shaowei; Wilson, Ander; Koutrakis, Petros; Silverman, Frances; Gold, Diane R.; Baccarelli, Andrea A.

    2017-04-01

    Ambient fine particle (PM2.5) pollution triggers acute cardiovascular events. Individual-level preventions are proposed to complement regulation in reducing the global burden of PM2.5-induced cardiovascular diseases. We determine whether B vitamin supplementation mitigates PM2.5 effects on cardiac autonomic dysfunction and inflammation in a single-blind placebo-controlled crossover pilot trial. Ten healthy adults received two-hour controlled-exposure-experiment to sham under placebo, PM2.5 (250 μg/m3) under placebo, and PM2.5 (250 μg/m3) under B-vitamin supplementation (2.5 mg/d folic acid, 50 mg/d vitamin B6, and 1 mg/d vitamin B12), respectively. At pre-, post-, 24 h-post-exposure, we measured resting heart rate (HR) and heart rate variability (HRV) with electrocardiogram, and white blood cell (WBC) counts with hematology analyzer. Compared to sham, PM2.5 exposure increased HR (3.8 bpm, 95% CI: 0.3, 7.4; P = 0.04), total WBC count (11.5%, 95% CI: 0.3%, 24.0%; P = 0.04), lymphocyte count (12.9%, 95% CI: 4.4%, 22.1%; P = 0.005), and reduced low-frequency power (57.5%, 95% CI: 2.5%, 81.5%; P = 0.04). B-vitamin supplementation attenuated PM2.5 effect on HR by 150% (P = 0.003), low-frequency power by 90% (P = 0.01), total WBC count by 139% (P = 0.006), and lymphocyte count by 106% (P = 0.02). In healthy adults, two-hour PM2.5 exposure substantially increases HR, reduces HRV, and increases WBC. These effects are reduced by B vitamin supplementation.

  13. "Hairy" Poly(3-hexylthiophene) Particles Prepared via Surface-Initiated Kumada Catalyst-Transfer Polycondensation

    DEFF Research Database (Denmark)

    Senkovskyy, Volodymyr; Tkachov, Roman; Beryozkina, Tetyana

    2009-01-01

    Herein, we present a new paradigm in the engineering of nanostructured hybrids between conjugated polymer and inorganic materials via a chain-growth surface-initiated Kumada catalyst-transfer polycondensation (SI-KCTP) from particles. Poly(3-hexylthiophene), P3HT, a benchmark material for organic...... this to strong interchain interactions within densely grafted P3HT chains, which can be tuned by changing the surface curvature (or size) of the supporting particle. The hairy P3HT nanoparticles were successfully applied in bulk heterojunction solar cells....... electronics, was selectively grown by SI-KCTP from (nano)particles bearing surface-immobilized Ni catalysts supported by bidentate phosphorus ligands, that resulted in hairy (nano)particles with end-tethered P3HT chains. Densely grafted P3HT chains exhibit strongly altered optical properties compared...... to the untethered counterparts (red shift and vibronic fine structure in absorption and fluorescence spectra), as a result of efficient planarization and chain-aggregation. These effects are observed in solvents that are normally recognized as good solvents for P3HT (e.g., tetrahydrofurane). We attribute...

  14. Electroless plating preparation and electromagnetic properties of Co-coated carbonyl iron particles/polyimide composite

    Science.gov (United States)

    Zhou, Yingying; Zhou, Wancheng; Li, Rong; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2016-03-01

    To solve the serious electromagnetic interference problems at elevated temperature, one thin microwave-absorbing sheet employing Co-coated carbonyl iron particles and polyimide was prepared. The Co-coated carbonyl iron particles were successfully prepared using an electroless plating method. The microstructure, composition, phase and static magnetic properties of Co-coated carbonyl iron particles were characterized by combination of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The electromagnetic parameters of Co-coated carbonyl iron particles/polyimide composite were measured in the frequency range of 2-18 GHz, and the electromagnetic loss mechanism of the material-obtained was discussed. The microwave absorption properties of composites before and after heat treatment at 300 °C for 100 h were characterized in 2-18 GHz frequency range. It was established that composites based on Co-coated carbonyl iron demonstrate thermomagnetic stability, indicating that Co coating reduces the oxidation of carbonyl iron. Thus, Co-coated carbonyl iron particles/polyimide composites are useful in the design of microwave absorbers operating at temperatures up to 300 °C.

  15. NOVEL PREPARATION AND MAGNETO CHEMICAL CHARACTERIZATION OF NANO-PARTICLE MIXED ALCOHOL CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Seetala V. Naidu; Upali Siriwardane; Akundi N. Murty

    2004-02-23

    The preparation of Cu, Co, Fe, Cu/Co, Cu/Fe and Co/Fe nano-particle metal loaded mesoporous 1 mm spherical granular {gamma}-Al{sub 2}O{sub 3} catalysts, by combined sol-gel/oil-drop methods followed by calcination and hydrogenation steps, is accomplished. Parameters for calcination process were optimized using DTA. The properties of metal loaded {gamma}-Al{sub 2}O{sub 3} granules were compared for the preparations starting with two precursors: aluminum tri-sec-butoxide (ALTSB) and aluminum tri-iso-propoxide (ALTIP). Three sol-gel/oil-drop catalyst preparation methods; (1) Metal nitrate solutions co-entrapped-sol-gel (2) nano-particle metal oxide co-entrapped-sol-gel, and (3) Metal impregnation on preformed alumina granules, were used. Structure and composition of metal-loaded-granules were investigated using XRD, SEM, EDX, and surface area measurements (BET method). The nano-particle nature of catalysts was confirmed using SEM and X-ray diffraction. The reduction efficiency of hydrogenation of catalysts was examined by magnetic studies using a vibrating sample magnetometer (VSM). Catalysts could be effectively calcined at 450 C and the surface area values obtained were between 200-350 m{sup 2}/g, indicating the mesoporous nature of catalyst support. Parameters affecting the metal loading process were also studied, and the optimum conditions were identified and reported for reproducible synthesis of the metal loaded {gamma}-alumina granular particles. The catalyst activities of Fe, Co, and Co/Fe on alumina for the conversion of CO/H{sub 2} and CO{sub 2}/H{sub 2} mixtures were investigated using Gas chromatography (GC) with N{sub 2} as a standard carrier gas. Both, slurry-phase-batch and gas-phase-continuous-flow, reactors were used. Magnetization studies on reduced, CO/H{sub 2} post-reaction catalyst in both gas and slurry phase were performed using vibrating sample magnetometer (VSM). Magnetic studies of post-reaction Co and Fe nano-catalysts showed that the

  16. Preparation and preclinical evaluation of {sup 211}At-labelled compounds for {alpha}-particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.H.

    1994-12-31

    The interest for {alpha}-particle emitters in internal radiotherapy is increasing due to improved conjugation chemistry. Experimental work has concentrated on {sup 211}At and {sup 212}Bi since these to nuclides have radiochemical and physical properties suitable for medical application. In this report it is demonstrated that biologically active {sup 211}At-labelled compounds can be prepared within a relatively short time allowing utilization of this 7.2 h {alpha}-particle. It is further shown that {sup 211}At-TP-3 treatment of human osteosarcoma in vitro gives promising therapeutic ratios. 76 refs., 5 figs., 3 tabs.

  17. Novel titanium particles reinforced Zr-based bulk metallic glass composites prepared by infiltration casting

    Institute of Scientific and Technical Information of China (English)

    Cuimei Zhang; Xidong Hui; Meiling Wang; Guoliang Chen

    2008-01-01

    A novel Ti/Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 composite was successfully prepared by infiltrating the melt into sintered Ti preform. It shows that the introduction of Ti particles into the composite results in an increase in elastic strain to 3% and an enhancement of the strength up to 2.1 GPa. High specific strength has been obtained because of the decrease in density of the composite. It is suggested that an improvement in the mechanical properties of the composite may be attributed to the generation of multiple shear bands and some deformation in the Ti particles.

  18. Preparation and formation mechanisms of metallic particles with controlled size, shape, structure and surface functionality

    Science.gov (United States)

    Lu, Lu

    Due to their excellent conductivity and chemical stability, particles of silver (Ag), gold (Au), copper (Cu) and their alloys are widely used in the electronic industry. Other unique properties extend their uses to the biomedical, optical and catalysis fields. All of these applications rely on particles with well controlled size, morphology, structure, and surface properties. Chemical precipitation from homogeneous solutions was selected as the synthetic route for the investigations described in this work. Based on the evaluation of key process parameters (temperature, reactant concentrations, reactant addition rate, mixing, etc.) the general formation mechanisms of metallic particles in various selected precipitation systems were investigated and elucidated. Five different systems for preparing particles with controlled size, morphology, structure and surface functionality are discussed. The first system involves the precipitation of Ag nanoparticles with spherical and anisotropic (platy or fiber-like) morphology. It will be shown that the formation of a stable Ag/Daxad complex has a significant impact on the reaction kinetics, and that the chromonic properties of Daxad molecules are responsible for the particle anisotropy. In the second system, Au-Ag core-shell nanoparticles were prepared in aqueous solution by a two-step precipitation process. The optical properties of these particles can be tailored by varying the thickness of the Ag shell. It was also determined that the stability of the bimetallic metallic sols depends on the Cl-ion concentration in solution. The third system discussed deals with preparation by the polyol process of well dispersed Cu nanospheres with high crystallinity and excellent oxidation resistance. We show that the heterogeneous nucleation (seeding) approach has significant merit in controlling particle size and uniformity. The functionalization of Au nanoparticle surfaces with glutathione molecules is discussed in the next section. The

  19. Principle and Method of Preparation of Explosive Micro-particles Through the Supercritical Anti-solvent Process

    Institute of Scientific and Technical Information of China (English)

    JIN Liang-an; LIU Xue-wu; LI Zhi-yi; WANG Xiao-tong; YIN Xing-bo

    2005-01-01

    In explosive research area, one of important trends is to study on the preparation technology of explosive microparticles. A new principle and method based on supercritical anti-solvent (SAS) process is put forward and discussed for the preparation of explosive micro-particles. The satisfactory micro-particles of explosives can be obtained easily by its particular mechanism of creating micro-particles, and operating conditions at normal temperature. This method is good for further study and development.

  20. Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model

    Science.gov (United States)

    Vara-Vela, A.; Andrade, M. F.; Kumar, P.; Ynoue, R. Y.; Muñoz, A. G.

    2016-01-01

    The objective of this work is to evaluate the impact of vehicular emissions on the formation of fine particles (PM2.5; ≤ 2.5 µm in diameter) in the Sao Paulo Metropolitan Area (SPMA) in Brazil, where ethanol is used intensively as a fuel in road vehicles. The Weather Research and Forecasting with Chemistry (WRF-Chem) model, which simulates feedbacks between meteorological variables and chemical species, is used as a photochemical modelling tool to describe the physico-chemical processes leading to the evolution of number and mass size distribution of particles through gas-to-particle conversion. A vehicular emission model based on statistical information of vehicular activity is applied to simulate vehicular emissions over the studied area. The simulation has been performed for a 1-month period (7 August-6 September 2012) to cover the availability of experimental data from the NUANCE-SPS (Narrowing the Uncertainties on Aerosol and Climate Changes in Sao Paulo State) project that aims to characterize emissions of atmospheric aerosols in the SPMA. The availability of experimental measurements of atmospheric aerosols and the application of the WRF-Chem model made it possible to represent some of the most important properties of fine particles in the SPMA such as the mass size distribution and chemical composition, besides allowing us to evaluate its formation potential through the gas-to-particle conversion processes. Results show that the emission of primary gases, mostly from vehicles, led to a production of secondary particles between 20 and 30 % in relation to the total mass concentration of PM2.5 in the downtown SPMA. Each of PM2.5 and primary natural aerosol (dust and sea salt) contributed with 40-50 % of the total PM10 (i.e. those ≤ 10 µm in diameter) concentration. Over 40 % of the formation of fine particles, by mass, was due to the emission of hydrocarbons, mainly aromatics. Furthermore, an increase in the number of small particles impaired the

  1. C-ADU Gel Particle Preparation by Modified-External Gelation Method

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyung Cha; Eom, Sung Ho; Cho, Cho Moon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Carbon black powder as a carbon source in the final UCO kernel is added during the broth solution preparation, in the processing of UCO kernel fabrication. The preparation of a good quality UCO kernel is very difficult owing to the homogeneous distribution of carbon in a UCO kernel. The key technology used to obtain a good quality sphere (sphericity, density, C/U, O/U ratios) is a uniform distribution of carbon particles into the C-ADU gel sphere, i.e., during the gelation step of liquid droplets formation before the thermal treatment. We carried out carbon source selection experiments on the various kinds of carbon black powder and a dispersion test in a simulated broth solution. The CB10 sample shows that the relative cumulative velocity and the velocity distribution density have the highest value. This is a Cabot Emperor 1800 CB particle.

  2. Mineral-vegetal co-milling: An effective process to improve lignocellulosic biomass fine milling and to increase interweaving between mixed particles.

    Science.gov (United States)

    Motte, J-C; Delenne, J-Y; Rouau, X; Mayer-Laigle, C

    2015-09-01

    Fine-milling is a crucial objective for lignocellulosic biomass valorization. Co-milling appears to be a promising technique to improve its efficiency. However, the mechanisms occurring while co-milling remain poorly understood. In this study, an experimental work was performed to produce co-milled powders from both lignocellulosic (wheat, straw or pine sawdust) and mineral materials (limestone, quartzite or tile) with very contrasted physicochemical properties. The main consequences of co-milling were studied for both materials. A two-component mixing law for the prediction of the blend properties was proposed (particle sizes and true densities) to highlight the gain of this single processing step compared to separate milling and mixing. The predicted values were compared with experimental data for co-milled powders at 7 biomass contents from 0% to 100%. In all cases, co-milling leads to a reduction in particle size of lignocellulosic materials and create strong interweaving with mineral particles.

  3. Preparation and Characterization of Stainless Steel/TiC Nanocomposite Particles by Ball-milling Method

    Institute of Scientific and Technical Information of China (English)

    CHEN Wenyi; ZHOU Jian

    2009-01-01

    A stainless steel/10wt%TiC nanocomposite particles were prepared by high-energy ball-milling method using stainless steel, carbon and titanium as raw materials. The evolution of phase composition, microstructure and specific surface area of the stainless steel/TiC nanocomposite particles with increasing ball-milling time in the range of 0-100 h were investigated by XRD, SEM, TEM and BET techniques. The results showed that the stainless steel/TiC nano-composite particles were fabricated when the ball-milling time was longer than 20 h. However, the nanocomposite particles were soldered and agglomerated again when the ball-milling time was longer than 60 h. The microstructure of the composite particles transformed from lamellar structure to nanostructure during the repeated process of the cold welding and cracking. TEM image reveals clearly that the in-situ TiC nanoparticles with grain size of 3-8 nm are in the interior of the stainless steel/TiC nanocomposite particles obtained by ball-milling 100 h.

  4. Preparation of sulphonate-containing core/shell latex particles via seeded emulsion copolymerization

    Institute of Scientific and Technical Information of China (English)

    Ji Shuai Wang; Wei Deng; Yun Shen Chen; Cheng You Kan

    2010-01-01

    In this study,P(St-MAA)seed latex particles were first prepared via soap-free emulsion polymerization of styrene(St)and methacrylic acid(MAA),then the seed particles were allowed to swell with St at room temperature,and the P(St-MAA)/P(St-NaSS)core/shell latex particles were then synthesized via seeded emulsion copolymerization of St and sodium styrene sulphonate(NaSS)using AIBN as initiator in the presence of N,N'-methylenebisacrylamide(BAA,water-soluble crosslinker).Results showed that the polymerization could be carried out smoothly when the ratio of BAA to total monomers was less than 3 mol%,the narrow dispersed P(St-MAA)seed particles with the diameter of 150 nm and the P(St-MAA)/P(St-NaSS)core/shell latexes with the particle size of about 200 nm were synthesized.When the 25/75 mole ratio of NaSS/(St+MAA)and 2 mol% of BAA were used in the seeded emulsion polymerization,the resulted P(St-MAA)/P(St-NaSS)latex product showed a low weight loss after water extraction,and the NaSS unit content in the whole particle and in the shell reached 11.7 mol% and 34.6 mol%,respectively.

  5. Preparation and characterization of core/shell particles with siloxane in the shell

    Energy Technology Data Exchange (ETDEWEB)

    Liu Bailing [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)]. E-mail: blliuchem@hotmail.com; Deng Xiaobo [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Cao Shunsheng [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Li Songjun [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Luo Rong [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)

    2006-01-15

    The core/shell particles consisting of polystyrene core and 3-(methacryloxypropyl)-trimethoxysilane (MPS) shell were prepared in the present study by successive seeding polymerization under kinetically controlled conditions and were characterized by particle size analyser, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The TEM image indicated that the particles containing organic siloxane presented an evident core/shell structure. Additionally, the study of XPS also revealed that MPS could be grafted onto the surface of polystyrene microspheres and the atomic ratio of C/Si on the surface of the core/shell particles (MPS-40) was very close to the ratio of C/Si in the molecule of MPS. The surface properties of the films produced from the core/shell particles were also investigated by the static contact angle method. Compared with the homopolymer of PS, the core/shell particles were more effective to create hydrophobic surface, so, the introduction of MPS was capable of obvious increase in water repellency.

  6. Plasma etching of polystyrene latex particles for the preparation of graphene oxide nanowalls

    Directory of Open Access Journals (Sweden)

    Bon Bittolo Silvia

    2012-01-01

    Full Text Available Graphene oxide nanowalls were prepared by casting a water dispersion of polystyrene latex particles onto a graphene oxide film followed by tetrafluoromethane plasma etching. Mild plasma etching conditions allow one to retain the oxygen functional groups on the graphene oxide nanowalls. It was found that the exposure to a xenon light source of such graphene oxide nanowalls coated with a gold thin film results in an increase of the electrical conductivity.

  7. Carbon particle induced foaming of molten sucrose for the preparation of carbon foams

    Energy Technology Data Exchange (ETDEWEB)

    Narasimman, R.; Vijayan, Sujith; Prabhakaran, K., E-mail: kp2952002@gmail.com

    2014-11-15

    Graphical abstract: - Highlights: • An easy method for the preparation of carbon foam from sucrose is presented. • Wood derived activated carbon particles are used to stabilize the molten sucrose foam. • The carbon foams show relatively good mechanical strength. • The carbon foams show excellent CO{sub 2} adsorption and oil absorption properties. • The process could be scaled up for the preparation of large foam bodies. - Abstract: Activated carbon powder was used as a foaming and foam setting agent for the preparation of carbon foams with a hierarchical pore structure from molten sucrose. The rheological measurements revealed the interruption of intermolecular hydrogen bonding in molten sucrose by the carbon particles. The carbon particles stabilized the bubbles in molten sucrose by adsorbing on the molten sucrose–gas interface. The carbon foams obtained at the activated carbon powder to sucrose weight ratios in the range of 0–0.25 had a compressive strength in the range of 1.35–0.31 MPa. The produced carbon foams adsorb 2.59–3.04 mmol/g of CO{sub 2} at 760 mmHg at 273 K and absorb oil from oil–water mixtures and surfactant stabilized oil-in-water emulsions with very good selectivity and recyclability.

  8. Residual baculovirus in insect cell-derived influenza virus-like particle preparations enhances immunogenicity.

    Directory of Open Access Journals (Sweden)

    Irina Margine

    Full Text Available Influenza virus-like particles are currently evaluated in clinical trials as vaccine candidates for influenza viruses. Most commonly they are produced in baculovirus- or mammalian- expression systems. Here we used different vaccination schemes in order to systematically compare virus-like particle preparations generated in the two systems. Our work shows significant differences in immunogenicity between the two, and indicates superior and broader immune responses induced by the baculovirus-derived constructs. We demonstrate that these differences critically influence protection and survival in a mouse model of influenza virus infection. Finally, we show that the enhanced immunogenicity of the baculovirus-derived virus-like particles is caused by contamination with residual baculovirus which activates the innate immune response at the site of inoculation.

  9. Preparation of zinc oxide particles by using layered basic zinc acetate as a precursor

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lanqin, E-mail: lanqin_tang@ycit.edu.cn [College of Chemical and Biological Engineering, Yancheng Institute of Technology, 9 Yingbin Avenue, Yancheng 224051 (China); College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ding, Xuefeng; Zhao, Xu; Wang, Zichen; Zhou, Bing [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A simple aqueous solution process has been applied to prepare zinc oxide particles. Black-Right-Pointing-Pointer This novel method exempts traditional calcinations. Black-Right-Pointing-Pointer Various zinc oxide particles are obtained. - Abstract: TEA and NaOH are applied to transform layered basic zinc acetate into zinc oxide particles by a simple aqueous solution process (<100 Degree-Sign C). Zinc oxide with different morphologies, including dumbbells, earthnuts, ellipsoids and hexagonal pillars, are obtained by carefully controlling the amounts of sodium hydroxide, triethanolamine, and reaction temperature. Field emission scanning electron microscope images, X-ray powder diffraction patterns, X-ray photoelectron spectroscopy spectra and room-temperature photoluminescence spectra are used to characterize final products. Furthermore, a possible growth mechanism is discussed in this paper. This easy procedure for zinc oxide fabrication offers the possibility of a generalized approach to the production of metal oxide with tunable morphology.

  10. Preparation and characterization of LiAlxCoyNi1-x-yO2 particles

    Institute of Scientific and Technical Information of China (English)

    ChenFeng Kao; KaoHeng Liu

    2008-01-01

    Lithium-aluminum-cobalt-nickel oxide (LiAlxCoyNi1-x-yO2) particles, generally used as cathode of lithium battery, were prepared by chemical coprecipitation from an aqueous solution of LiOH, AI(NO3)3, Co(NO3)2 and Ni(NO3)2 with NH4OH. XRD, SEM and FTIR were used to examine the effect of nickel content on the product. FHR patterns showed that increase in nickel content decreased the absorption strength of the peak of spinel structure of the product, attributed to the occupation by nickel in the aluminum sites. Particle size and electrical properties of the lithium-aluminum-cobalt-nickel oxide (abbreviated as LACNO) particles were also determined.

  11. Preparation and antifrictional properties of surface modified hybrid fluorine-containing silica particles

    Science.gov (United States)

    Gorbunova, T. I.; Zapevalov, A. Ya.; Beketov, I. V.; Demina, T. M.; Timoshenkova, O. R.; Murzakaev, A. M.; Gaviko, V. S.; Safronov, A. P.; Saloutin, V. I.

    2015-01-01

    Modified SiO2 particles were successfully prepared via [(perfluorobutyl)methyl]oxirane and [(perfluorobutyl)methyl]thiirane in sol-gel conditions using basic catalysis. As a result of acid catalysis non-modified nano-sized SiO2 particles were formed. Chemically modified SiO2 particles were characterized by means of FT-IR, BET, TEM, XRD- and XPS-analyses. Friction coefficients were determined at steel surface for base oil with modified SiO2 additives (5, 10 and 15 wt.%) at 10, 20, 30 and 60 N loads. Friction was reduced most strongly in the oil mix with the lowest content of the additive. A possible mechanism of antifrictional improvement is the formation of boundary lubrication layers containing iron salts.

  12. Impacts of Roadway Emissions on Urban Fine Particle Exposures: the Nairobi Area Traffic Contribution to Air Pollution (NATCAP) Study

    Science.gov (United States)

    Gatari, Michael; Ngo, Nicole; Ndiba, Peter; Kinney, Patrick

    2010-05-01

    Air quality is a serious and worsening problem in the rapidly growing cities of sub-Saharan Africa (SSA), due to rapid urbanization, growing vehicle fleets, changing life styles, limited road infrastructure and land use planning, and high per-vehicle emissions. However, the absence of ambient monitoring data, and particularly urban roadside concentrations of particulate matter in SSA cities, severely limits our ability to assess the real extent of air quality problems. Emitted fine particles by on-road vehicles may be particularly important in SSA cities because large concentrations of poorly maintained vehicles operate in close proximity to commercial and other activities of low-income urban residents. This scenario provokes major air quality concerns and its investigation should be of priority interest to policy makers, city planners and managers, and the affected population. As part of collaboration between Columbia University and the University of Nairobi, a PM2.5 air monitoring study was carried out over two weeks in July 2009. The objectives of the study were 1) to assess average daytime PM2.5 concentrations on a range of Nairobi streets that represent important hot-spots in terms of the joint distribution of traffic, commercial, and resident pedestrian activities, 2) to relate those concentrations to motor vehicle counts, 3) to compare urban street concentrations to urban and rural background levels, and 4) to assess vertical and horizontal dispersion of PM2.5 near roadways. Portable, battery-operated PM2.5 samplers were carried by field teams at each of the five sites (three urban, one commuter highway, and one rural site), each of which operated from 7 AM to 7 PM during 10 weekdays in July 2009. Urban background monitoring took place on a rooftop at the University of Nairobi. Preliminary findings suggest highly elevated PM2.5 concentrations at the urban sites where the greatest pedestrian traffic was observed. These findings underscore the need for air

  13. Inter-comparison of Seasonal Variation, Chemical Characteristics, and Source Identification of Atmospheric Fine Particles on Both Sides of the Taiwan Strait

    Science.gov (United States)

    Li, Tsung-Chang; Yuan, Chung-Shin; Huang, Hu-Ching; Lee, Chon-Lin; Wu, Shui-Ping; Tong, Chuan

    2016-01-01

    The spatiotemporal distribution and chemical composition of atmospheric fine particles in areas around the Taiwan Strait were firstly investigated. Fine particles (PM2.5) were simultaneously collected at two sites on the west-side, one site at an offshore island, and three sites on the east-side of the Taiwan Strait in 2013–2014. Field sampling results indicated that the average PM2.5 concentrations at the west-side sampling sites were generally higher than those at the east-side sampling sites. In terms of chemical composition, the most abundant water-soluble ionic species of PM2.5 were SO42−, NO3−, and NH4+, while natural crustal elements dominated the metallic content of PM2.5, and the most abundant anthropogenic metals of PM2.5 were Pb, Ni and Zn. Moreover, high OC/EC ratios of PM2.5 were commonly observed at the west-side sampling sites, which are located at the downwind of major stationary sources. Results from CMB receptor modeling showed that the major sources of PM2.5 were anthropogenic sources and secondary aerosols at the both sides, and natural sources dominated PM2.5 at the offshore site. A consistent decrease of secondary sulfate and nitrate contribution to PM2.5 suggested the transportation of aged particles from the west-side to the east-side of the Taiwan Strait. PMID:26973085

  14. Regulating Drug Release Behavior and Kinetics from Matrix Tablets Based on Fine Particle-Sized Ethyl Cellulose Ether Derivatives: An In Vitro and In Vivo Evaluation

    Directory of Open Access Journals (Sweden)

    Kifayat Ullah Shah

    2012-01-01

    Full Text Available The design and fabrication of sustained/controlled release dosage forms, employing new excipients capable of extending/controlling the release of drugs from the dosage forms over prolonged periods, has worked well in achieving optimally enhanced therapeutic levels of the drugs. In this sense, the objective of this study was to investigate the suitability of selected cellulose ether derivatives for use in direct compression (DC and as efficient drug release controlling agents. Controlled release matrix tablets of ciprofloxacin were prepared at different drug-to-polymer (D : P ratios by direct compression using a fine particle sized ethylcellulose ether derivative (ETHOCEL Standard Premium 7FP as rate controlling polymer. The tablets obtained were evaluated for various physico-chemical characteristics and in-vitro drug release studies were conducted in phosphate buffer (pH 7.4 using PharmaTest dissolution apparatus at constant temperature of 37∘C±0.1. Similarity factor 2 was employed to the release profiles of test formulations and were compared with marketed ciprofloxacin conventional tablets. Drug release mechanism and the kinetics involved were investigated by fitting the release profile data to various kinetic models. It was found that with increasing the proportion of ethylcellulose ether derivative in the matrix, the drug release was significantly extended up to 24 hours. The tablets exhibited zero order or nearly zero order drug transport mechanism. In vivo drug release performance of the developed controlled release tablets and reference conventional tablets containing ciprofloxacin were determined in rabbit serum according to randomized two-way crossover study design using High Performance Liquid Chromatography. Several bioavailability parameters of both the test tablets and conventional tablets including max, max and AUC0- were compared which showed an optimized max and max (<0.05. A good correlation was obtained between in vitro

  15. Regulating drug release behavior and kinetics from matrix tablets based on fine particle-sized ethyl cellulose ether derivatives: an in vitro and in vivo evaluation.

    Science.gov (United States)

    Shah, Kifayat Ullah; Khan, Gul Majid

    2012-01-01

    The design and fabrication of sustained/controlled release dosage forms, employing new excipients capable of extending/controlling the release of drugs from the dosage forms over prolonged periods, has worked well in achieving optimally enhanced therapeutic levels of the drugs. In this sense, the objective of this study was to investigate the suitability of selected cellulose ether derivatives for use in direct compression (DC) and as efficient drug release controlling agents. Controlled release matrix tablets of ciprofloxacin were prepared at different drug-to-polymer (D : P) ratios by direct compression using a fine particle sized ethylcellulose ether derivative (ETHOCEL Standard Premium 7FP) as rate controlling polymer. The tablets obtained were evaluated for various physico-chemical characteristics and in-vitro drug release studies were conducted in phosphate buffer (pH 7.4) using PharmaTest dissolution apparatus at constant temperature of 37 °C ± 0.1. Similarity factor f(2) was employed to the release profiles of test formulations and were compared with marketed ciprofloxacin conventional tablets. Drug release mechanism and the kinetics involved were investigated by fitting the release profile data to various kinetic models. It was found that with increasing the proportion of ethylcellulose ether derivative in the matrix, the drug release was significantly extended up to 24 hours. The tablets exhibited zero order or nearly zero order drug transport mechanism. In vivo drug release performance of the developed controlled release tablets and reference conventional tablets containing ciprofloxacin were determined in rabbit serum according to randomized two-way crossover study design using High Performance Liquid Chromatography. Several bioavailability parameters of both the test tablets and conventional tablets including C(max⁡), T(max⁡) and AUC(0-t) were compared which showed an optimized C(max⁡) and T(max⁡) (P < 0.05). A good correlation was obtained

  16. Fine particle emissions from biomass cookstoves : Evaluation of a new laboratory setup and comparison of three appliances

    OpenAIRE

    Garcìa Lòpez, Natxo

    2017-01-01

    It is estimated that around three billion people globally rely on traditional usage of biomass to cover their daily energy needs, which causes health and social inequality problems and contributes to global warming. Thus, the study of particle emissions from cookstoves provides important information that can help improve global welfare.   This study aims to (a) evaluate a new laboratory setup for measurement of particle emissions from cookstoves and (b) use this setup to compare the particle ...

  17. Evaluation of the degree of mixing of combinations of dry syrup, powder, and fine granule products in consideration of particle size distribution using near infrared spectrometry.

    Science.gov (United States)

    Yamamoto, Yoshihisa; Suzuki, Toyofumi; Matsumoto, Mika; Ohtani, Michiteru; Hayano, Shuichi; Fukami, Toshiro; Tomono, Kazuo

    2012-01-01

    We used near infrared (NIR) spectroscopy to evaluate the degree of mixing of blended dry syrup (DS) products whose particle sizes are not specified in the Revised 16th Edition of the Japanese Pharmacopoeia, and also evaluated the degree of mixing when powder products or fine granule products were added to DS products. The data obtained were used to investigate the relationship between the particle size distributions of the products studied and the degree of mixing. We found that the particle size distribution characteristics of the 15 DS products studied can be broadly classified into 5 types. Combinations of frequently prescribed products were selected to represent 4 of the 5 particle size distribution types and were blended with a mortar and pestle. The coefficient of variation (CV) decreased as the percent mass of Asverin® Dry Syrup 2% (Asverin-DS) increased in blends of Periactin® Powder 1% (Periactin) and Asverin-DS, indicating an improved degree of mixing (uniformity). In contrast, in blends of Periactin and Mucodyne® DS 33.3%, mixing a combination at a 1:1 mass ratio 40 times resulted in a CV of 20%. Other mixing frequencies and mass ratios resulted in a CV by 50% to 70%, indicating a very poor degree of mixing (poor uniformity). These results suggest that when combining different DSs, or a DS with a powder or fine granule product, the blending obtained with a mortar and pestle improves as the particle size distributions of the components approach each other and as the ranges of the distributions narrow.

  18. Preparation of Small Particle Sized ZnAl-Hydrotalcite-Like Compounds by Ultrasonic Crystallization

    Institute of Scientific and Technical Information of China (English)

    Xianmei Xie; Xiurong Ren; Jinping Li; Xiaojun Hu; Zhizhong Wang

    2006-01-01

    Ultrasonic technology has been intensively studied recently due to its special features. In this paper, an ultrasonic crystallization method was introduced for the preparation of ZnAl-Hydrotalcite-Like compounds (ZnAl-HTLcs). Samples with high crystallinity, small particle size and narrow particle size distribution were obtained and fully characterized using conventional techniques of XRD, FT-IR and TG-DTA. The results prove that both ultrasonic frequency and ultrasonic power have effects on the sizes of the product particles. By varying the ultrasonic power from 250 W to 88 W, with the ultrasonic frequency fixed at 59 kHz, the median particle size of the samples increased from 0.37μm to 0.82μm. By altering the hydrothermal treatment time from 1 h to 5 h at 110 ℃, the median particle size of ZnAl-HTLcs synthesized via ultrasonic crystallization increased from 0.88 μm to 1.11 μm.

  19. Preparation and characterization of silica coated iron oxide magnetic nano-particles

    Science.gov (United States)

    Li, Ying-Sing; Church, Jeffrey S.; Woodhead, Andrea L.; Moussa, Filsun

    2010-09-01

    Iron oxide magnetic nano-particles have been prepared by precipitation in an aqueous solution of iron(II) and iron(III) chlorides under basic condition. Surface modifications have been carried out by using tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS). The uncoated and coated particles have been characterized with transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, thermal gravimetric analysis (TGA), and infrared (IR) and Raman spectroscopy. The particle sizes as measured from TEM images were found to have mean diameters of 13 nm for the uncoated and about 19 nm for the coated particles. The measured IR spectra of the uncoated and MPTMS coated particles showed the conversion of magnetite to hematite at high temperature. The results obtained from both IR spectroscopy and TGA revealed that the mercaptopropylsilyl group in the MPTMS coated magnetite decomposed at 600 °C and the silica layer of the TEOS coated magnetite was rather stable. Raman spectroscopy has shown the laser heating effect through the conversion of magnetite to maghemite and hematite.

  20. Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes.

    Science.gov (United States)

    Chen, Xiaojin; Wang, Ting; Lu, Mengmeng; Zhu, Luyan; Wang, Yan; Zhou, WenZhong

    2014-01-01

    Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated. When prepared with polyvinyl alcohol concentrations of 0.2%, 1%, and 5%, the mean diameters of the nanoparticles in the three suspensions were 920±35 nm, 452±10 nm, and 151±4 nm, respectively. The three suspensions displayed biphasic release profiles similar to that of freeze-dried TMS-HCO-NP powders, with the exception of having a faster initial release. Moreover, suspensions of smaller-sized particles showed faster initial release, and lower minimum inhibitory concentrations and minimum bactericidal concentrations. Time-kill curves showed that within 12 hours, the suspension with the 151 nm particles had the most potent bactericidal activity, but later, the suspensions with larger-sized particles showed increased antibacterial activity. None of the three suspensions were cytotoxic at clinical dosage levels. At higher drug concentrations, all three suspensions showed similar concentration-dependent cytotoxicity. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, perhaps due to faster drug release. All three suspensions exhibited good stability at 4°C and at room temperature for at least 6 months. These results demonstrate that TMS-HCO-NP suspensions can be a promising formulation for tilmicosin, and that nanoparticle size can be an important consideration for formulation development.

  1. One step preparation of spherical drug particles by contamination-free dry milling technique with corn starch beads.

    Science.gov (United States)

    Niwa, Toshiyuki; Yoshida, Maria; Hayashi, Naoko; Kondo, Keita

    2017-08-07

    The novel dry milling technique has been developed by using a mechanical powder processor for improving the dissolution properties of poorly water-soluble drugs. It was found that the drug crystals were well pulverized by co-processing with fine particles of corn starch (CS). The morphological observation and particle size evaluation revealed that the processed products formed the composite particles with ordered-mixed structure, having double-layered particles with a core of CS and a coating layer of phenytoin (Phe), as a model drug. This result suggested that the drug crystals were selectively micronized and the resultant miniaturized Phe particles were adhered/fixed on the surface of un-milled CS particles. The mechanical characteristics detected by the indentation test assumed that the brittle Phe crystals sandwiched between elastic CS particles would be successfully crushed down by high shearing stress in the processor. The newly-established dispersion-sedimentation test indicated that the fine Phe particles were immediately detached from the composite particles in aqueous phase, constructing the suspension. The dissolution behavior from the processed particles was found to be improved and strongly dependent on the size and amount of detached Phe particles. Such milling and ordered-mixturization have been also successfully done by using recrystallized larger Phe particles than 100μm. These results would propose the contamination-free dry milling technique without using hard milling balls or beads. The mechanism of the current milling and ordered-mixing phenomena is also provided in this report. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose-palmitic acid inclusion complexes.

    Science.gov (United States)

    Fanta, George F; Selling, Gordon W; Felker, Frederick C; Kenar, James A

    2015-05-05

    The use of starch in polymer composites for film production has been studied for increasing biodegradability, improving film properties and reducing cost. In this study, submicron particles were prepared from amylose-sodium palmitate complexes both by rapidly cooling jet-cooked starch-palmitic acid mixtures and by acidifying solutions of starch-sodium palmitate complexes. Films were cast containing poly(vinyl alcohol) (PVOH) with up to 50% starch particles. Tensile strength decreased and Young's modulus increased with starch concentration, but percent elongations remained similar to controls regardless of preparation method or starch content. Microscopy showed particulate starch distribution in films made with rapidly cooled starch-palmitic acid particles but smooth, diffuse starch staining with acidified sodium palmitate complexes. The mild effects on tensile properties suggest that submicron starch particles prepared from amylose-palmitic acid complexes provide a useful, commercially viable approach for PVOH film modification.

  3. An extended particle swarm optimization algorithm based on coarse-grained and fine-grained criteria and its application

    Institute of Scientific and Technical Information of China (English)

    LI Xing-mei; ZHANG Li-hui; QI Jian-xun; ZHANG Su-fang

    2008-01-01

    In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using the information in the iterative process of more particles was analyzed and the optimal system of particle swarm algorithm was improved. The extended particle swarm optimization algorithm (EPSO) was proposed. The coarse-grained and free-grained criteria that can control the selection were given to ensure the convergence of the algorithm. The two criteria considered the parameter selection mechanism under the situation of random probability. By adopting MATLAB7.1, the extended particle swarm optimization algorithm was demonstrated in the resource leveling of power project scheduling. EPSO was compared with genetic algorithm (GA) and common PSO, the result indicates that the variance of the objective function of resource leveling is decreased by 7.9%, 18.2%, respectively, certifying thee effectiveness and stronger global convergence ability of the EPSO.

  4. Behavior of HVOF WC-10Co4Cr Coatings with Different Carbide Size in Fine and Coarse Particle Abrasion

    Science.gov (United States)

    Ghabchi, Arash; Varis, Tommi; Turunen, Erja; Suhonen, Tomi; Liu, Xuwen; Hannula, S.-P.

    2010-01-01

    A modified ASTM G 65 rubber wheel test was employed in wet and dry conditions using 220 nm titania particles and 368 μm sand particles, respectively. Both tests were conducted on WC-CoCr coatings produced with two powders with different carbide grain sizes (conventional and sub-micron) to address the effect of carbide size and abrasive medium characteristics on the wear performance. The same spot before and after the wet abrasion wear testing was analyzed in detail using SEM to visualize wear mechanisms. It was shown that the wear mechanism depends on the relative size of the carbide and abrasive particles. Wear mechanisms in dry sand abrasion were studied by analyzing the single scratches formed by individual abrasive particles. Interaction of surface open porosity with moving abrasive particles causes formation of single scratches. By tailoring the carbide size, the wear performance can be improved.

  5. A study on preparation of PTFE fine powder from its dispersions%从聚四氟乙烯分散液制备微粉的研究

    Institute of Scientific and Technical Information of China (English)

    龚天龙; 余自力

    2014-01-01

    Polytetrafluoroethylene( PTFE) fine powder was prepared from its dispersions by destroying the pH balance. The obtained PTFE fine powder was found to have molecular weight in the order of 107 ,median diameter D50 of 25 μm,and has the same struc-ture as commercial PTFE.%本文以聚四氟乙烯( PTFE)分散液(乳液)为原料,利用破坏其酸碱平衡的原理,成功地制备了PTFE微粉。所得到PTFE微粉分子量达到107数量级,中值粒径D50为25μm,树脂结构与PTFE一致。

  6. Clarithromycin highly-loaded gastro-floating fine granules prepared by high-shear melt granulation can enhance the efficacy of Helicobacter pylori eradication.

    Science.gov (United States)

    Aoki, Hajime; Iwao, Yasunori; Mizoguchi, Midori; Noguchi, Shuji; Itai, Shigeru

    2015-05-01

    In an effort to develop a new gastro-retentive drug delivery system (GRDDS) without a large amount of additives, 75% clarithromycin (CAM) loaded fine granules were prepared with three different hydrophobic binders by high-shear melt granulation and their properties were evaluated. Granules containing the higher hydrophobic binder showed sustained drug release and were able to float over 24h. The synchrotron X-ray CT measurement indicated that both the high hydrophobicity of the binder and the void space inside the granules might be involved in their buoyancy. In an in vivo experiment, the floating granules more effectively eradicated Helicobacter pylori than a CAM suspension by remaining in the stomach for a longer period. In short, CAM highly-loaded gastro-floating fine granules can enhance the eradication efficiency of H. pylori compared with CAM alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Spatially selective surface platforms for binding fibrinogen prepared by particle lithography with organosilanes.

    Science.gov (United States)

    Englade-Franklin, Lauren E; Saner, Chamarra K; Garno, Jayne C

    2013-06-06

    We introduce an approach based on particle lithography to prepare spatially selective surface platforms of organosilanes that are suitable for nanoscale studies of protein binding. Particle lithography was applied for patterning fibrinogen, a plasma protein that has a major role in the clotting cascade for blood coagulation and wound healing. Surface nanopatterns of mercaptosilanes were designed as sites for the attachment of fibrinogen within a protein-resistant matrix of 2-[methoxy(polyethyleneoxy)propyl] trichlorosilane (PEG-silane). Preparing site-selective surfaces was problematic in our studies, because of the self-reactive properties of PEG-organosilanes. Certain organosilanes presenting hydroxyl head groups will cross react to form mixed surface multi-layers. We developed a clever strategy with particle lithography using masks of silica mesospheres to protect small, discrete regions of the surface from cross reactions. Images acquired with atomic force microscopy (AFM) disclose that fibrinogen attached primarily to the surface areas presenting thiol head groups, which were surrounded by PEG-silane. The activity for binding anti-fibrinogen was further evaluated using ex situ AFM studies, confirming that after immobilization the fibrinogen nanopatterns retained capacity for binding immunoglobulin G. Studies with AFM provide advantages of achieving nanoscale resolution for detecting surface changes during steps of biochemical surface reactions, without requiring chemical modification of proteins or fluorescent labels.

  8. Particle Board and Oriented Strand Board Prepared with Nanocellulose-Reinforced Adhesive

    Directory of Open Access Journals (Sweden)

    Stefan Veigel

    2012-01-01

    Full Text Available Adhesives on the basis of urea-formaldehyde (UF and melamine-urea-formaldehyde (MUF are extensively used in the production of wood-based panels. In the present study, the attempt was made to improve the mechanical board properties by reinforcing these adhesives with cellulose nanofibers (CNFs. The latter were produced from dissolving grade beech pulp by a mechanical homogenization process. Adhesive mixtures with a CNF content of 0, 1, and 3 wt% based on solid resin were prepared by mixing an aqueous CNF suspension with UF and MUF adhesives. Laboratory-scale particle boards and oriented strand boards (OSBs were produced, and the mechanical and fracture mechanical properties were investigated. Particle boards prepared with UF containing 1 wt% CNF showed a reduced thickness swelling and better internal bond and bending strength than boards produced with pure UF. The reinforcing effect of CNF was even more obvious for OSB where a significant improvement of strength properties of 16% was found. For both, particle board and OSB, mode I fracture energy and fracture toughness were the parameters with the greatest improvement indicating that the adhesive bonds were markedly toughened by the CNF addition.

  9. Characterization of a Purified Photosystem II-Phycobilisome Particle Preparation from Porphyridium cruentum1

    Science.gov (United States)

    Chereskin, Barbara M.; Clement-Metral, Jenny D.; Gantt, Elisabeth

    1985-01-01

    Detergent preparations isolated from thylakoids of the red alga Porphyridium cruentum, in a sucrose, phosphate, citrate, magnesium chloride medium consist of phycobilisomes and possess high rates of photosystem II activity. Characterization of these particles shows that the O2-evolving activity is stable for several hours and the pH optimum is about 6.5 to 7.2. Response of the system to light, electron donors and acceptors, and inhibitors verify that the observed activity, measured both as O2 evolution and 2,6-dichlorophenol-indophenol reduction, is due to photosystem II. Furthermore, photosystem II is functionally coupled to the phycobilisome in this preparation since green light, absorbed by phycobilisomes of P. cruentum, is effective in promoting both O2 evolution and 2,6-dichlorophenol-indophenol reduction. Photosystem II activity declines when light with wavelengths shorter than 665 nm is removed. Both 3-(3,4-dichlorophenyl)-1,1-dimethylurea and atrazine inhibit photosystem II activity in this preparation, indicating that the herbicide binding site is a component of the photosystem II-phycobilisome particle. PMID:16664110

  10. Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source

    Energy Technology Data Exchange (ETDEWEB)

    Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.; Iskandar, Ferry, E-mail: ferry@fi.itb.ac.id; Abdullah, Mikrajuddin; Khairurrijal [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Ganesha 10 Bandung, Indonesia 40132 (Indonesia); Ogi, Takashi; Okuyama, Kikuo [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, Japan 739-8527 (Japan)

    2015-04-16

    A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained by varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.

  11. Study of SiC Layer with Fine Grains in HTGR Coated Fuel Particles%HTGR 包覆燃料颗粒碳化硅层细晶化研究

    Institute of Scientific and Technical Information of China (English)

    刘荣正; 刘马林; 刘兵; 邵友林

    2015-01-01

    高温气冷堆(HTGR)是能适应未来能源市场的第四代先进核反应堆堆型之一,其固有安全性的第一道保障是使用的T RISO型包覆燃料颗粒。在T RISO型燃料颗粒4层包覆结构中,SiC包覆层是承受包覆燃料颗粒内压和阻挡裂变产物释放的关键层,制备高质量S iC包覆层是核燃料领域中的重大问题和关键技术之一。本文介绍高温气冷堆燃料颗粒的基本结构,详述制备S iC包覆层的流化床‐化学气相沉积过程,提出S iC层细晶化这一研究方向,并系统阐述包覆燃料颗粒S iC包覆层细晶化的优势。在细晶化S iC材料制备方法方面,系统分析S iC粉体、陶瓷、薄膜和厚膜材料的研究现状,并结合本实验室前期研究成果提出制备细晶S iC包覆层的可行制备策略。%High temperature gas‐cooled reactor (HTGR) with inherent safety character‐istics is considered as one of the attractive and competitive generation Ⅳ nuclear reactors in the future energy markets .Tristructural‐isotropic (TRISO)‐coated particle fuel is the most significant safety aspect in this nuclear reactor ,since it relies on the properties of the four coating layers surrounding the kernel fuel to hinder the release of harmful radio‐active material .Among these layers ,the silicon carbide (SiC) coating is considered the most important as it not only provides the TRISO particle with structural integrity but also retains fission products at elevated temperatures .The preparation of high quality SiC layers is one of significant issues and key technologies in nuclear fuel fabrication . T he basic structure of the T RISO‐coated fuel particles and the fluidized bed chemical vapor deposition (FBCVD) method to prepare SiC layers were introduced .The advanta‐ges of decreasing grain size of SiC layers were analyzed and the idea to prepare SiC layers with fine grain size was proposed .In the preparation strategies ,recent

  12. The formation of ultra-fine particles during ozone-initiated oxidations with terpenes emitted from natural paint

    Energy Technology Data Exchange (ETDEWEB)

    Lamorena, Rheo B. [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-Dong, Yuseong-Gu, Daejeon 305-701 (Korea, Republic of); Jung, Sang-Guen [Environment and Process Technology Division, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Bae, Gwi-Nam [Environment and Process Technology Division, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Lee, Woojin [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-Dong, Yuseong-Gu, Daejeon 305-701 (Korea, Republic of)]. E-mail: woojin_lee@kaist.ac.kr

    2007-03-06

    The formation of secondary products during the ozone-initiated oxidations with biogenic VOCs emitted from natural paint was investigated in this study. Mass spectrometry and infrared spectroscopy measurements have shown that the major components of gas-phase chemicals emitted from natural paint are monoterpenes including {alpha}- and {beta}-pinenes, camphene, p-cymene, and limonene. A significant formation of gaseous carbonyl products and nano-sized particles (4.4-168 nm) was observed in the presence of ozone. Carboxylic acids were also observed to form during the reactions (i.e. formic acid at 0.170 ppm and acetic acid at 0.260 ppm). The formation of particles increased as the volume of paint introduced into a reaction chamber increased. A secondary increase in the particle number concentration was observed after 440 min, which suggests further partitioning of oxidation products (i.e. carboxylic acids) into the particles previously existing in the reaction chamber. The growth of particles increased as the mean particle diameter and particle mass concentrations increased during the reaction. The experimental results obtained in this study may provide insight into the potential exposure of occupants to irritating chemical compounds formed during the oxidations of biogenic VOCs emitted from natural paint in indoor environments.

  13. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles

    Science.gov (United States)

    Lehmann, Johannes; Liang, Biqing; Solomon, Dawit; Lerotic, Mirna; LuizãO, Flavio; Kinyangi, James; SchäFer, Thorsten; Wirick, Sue; Jacobsen, Chris

    2005-03-01

    Small-scale heterogeneity of organic carbon (C) forms in soils is poorly quantified since appropriate analytical techniques were not available up to now. Specifically, tools for the identification of functional groups on the surface of micrometer-sized black C particles were not available up to now. Scanning Transmission X-ray Microscopy (STXM) using synchrotron radiation was used in conjunction with Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy to investigate nano-scale distribution (50-nm resolution) of C forms in black C particles and compared to synchrotron-based FTIR spectroscopy. A new embedding technique was developed that did not build on a C-based embedding medium and did not pose the risk of heat damage to the sample. Elemental sulfur (S) was melted to 220°C until it polymerized and quenched with liquid N2 to obtain a very viscous plastic S in which the black C could be embedded until it hardened to a noncrystalline state and was ultrasectioned. Principal component and cluster analysis followed by singular value decomposition was able to resolve distinct areas in a black carbon particle. The core of the studied biomass-derived black C particles was highly aromatic even after thousands of years of exposure in soil and resembled the spectral characteristics of fresh charcoal. Surrounding this core and on the surface of the black C particle, however, much larger proportions of carboxylic and phenolic C forms were identified that were spatially and structurally distinct from the core of the particle. Cluster analysis provided evidence for both oxidation of the black C particle itself as well as adsorption of non-black C. NEXAFS spectroscopy has great potential to allow new insight into black C properties with important implications for biogeochemical cycles such as mineralization of black C in soils and sediments, and adsorption of C, nutrients, and pollutants as well as transport in the geosphere, hydrosphere, and atmosphere.

  14. Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 year study

    Science.gov (United States)

    Cusack, M.; Pérez, N.; Pey, J.; Alastuey, A.; Querol, X.

    2013-05-01

    The chemical composition and sources of ambient fine particulate matter (PM1) over a period of 2.5 years for a regional background site in the western Mediterranean are presented in this work. Furthermore, sub-micron particle number concentrations and the sources of these particles are also presented. The mean PM1 concentration for the measurement period was 8.9 μg m-3, with organic matter (OM) and sulphate comprising most of the mass (3.2 and 1.5 μg m-3 respectively). Six sources were identified in PM1 by Positive Matrix Factorisation (PMF): secondary organic aerosol, secondary nitrate, industrial, traffic + biomass burning, fuel oil combustion and secondary sulphate. Typically anthropogenic sources displayed elevated concentrations during the week with reductions at weekends. Nitrate levels were elevated in winter and negligible in summer, whereas secondary sulphate levels underwent a contrasting seasonal evolution with highest concentrations in summer, similar to the fuel oil combustion source. The SOA source was influenced by episodes of sustained pollution as a result of anticyclonic conditions occurring during winter, giving rise to thermal inversions and the accumulation of pollutants in the mixing layer. Increased levels in summer were owing to higher biogenic emissions and regional recirculation of air masses. The industrial source decreased in August due to decreased emissions during the vacation period. Increases in the traffic + biomass burning source were recorded in January, April and October, which were attributed to the occurrence of the aforementioned pollution episodes and local biomass burning emission sources, which include agriculture and domestic heating systems. Average particle number concentrations (N9-825 nm) from 5/11/2010 to 01/06/2011 and from 15/10/2011 to 18/12/2011 reached 3097 cm-3. Five emission sources of particle of sub-micron particles were determined by Principal Component Analysis (PCA); industrial + traffic + biomass

  15. Specimen Preparation for Metal Matrix Composites with a High Volume Fraction of Reinforcing Particles for EBSD Analysis

    Science.gov (United States)

    Smirnov, A. S.; Belozerov, G. A.; Smirnova, E. O.; Konovalov, A. V.; Shveikin, V. P.; Muizemnek, O. Yu.

    2016-07-01

    The paper deals with a procedure of preparing a specimen surface for the EBSD analysis of a metal matrix composite (MMC) with a high volume fraction of reinforcing particles. Unlike standard procedures of preparing a specimen surface for the EBSD analysis, the proposed procedure is iterative with consecutive application of mechanical and electrochemical polishing. This procedure significantly improves the results of an indexed MMC matrix in comparison with the standard procedure of specimen preparation. The procedure was verified on a MMC with pure aluminum (99.8% Al) as the matrix, SiC particles being used as reinforcing elements. The average size of the SiC particles is 14 μm, and their volume fraction amounts to 50% of the total volume of the composite. It has been experimentally found that, for making the EBSD analysis of a material matrix near reinforcing particles, the difference in height between the particles and the matrix should not exceed 2 µm.

  16. Particle Size and Pore Structure Characterization of Silver Nanoparticles Prepared by Confined Arc Plasma

    Directory of Open Access Journals (Sweden)

    Mingru Zhou

    2009-01-01

    Full Text Available In the protecting inert gas, silver nanoparticles were successfully prepared by confined arc plasma method. The particle size, microstructure, and morphology of the particles by this process were characterized via X-ray powder diffraction (XRD, transmission electron microscopy (TEM and the corresponding selected area electron diffraction (SAED. The N2 absorption-desorption isotherms of the samples were measured by using the static volumetric absorption analyzer, the pore structure of the sample was calculated by Barrett-Joyner-Halenda (BJH academic model, and the specific surface area was calculated from Brunauer-Emmett-Teller (BET adsorption equation. The experiment results indicate that the crystal structure of the samples is face-centered cubic (FCC structure the same as the bulk materials, the particle size distribution ranging from 5 to 65 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results. The specific surface area is 23.81 m2/g, pore volumes are 0.09 cm3/g, and average pore diameter is 18.7 nm.

  17. Preparation and characterization of fibrous NiO particles by thermal decomposition of nickelous complex precursors

    Institute of Scientific and Technical Information of China (English)

    张传福; 湛菁; 邬建辉; 黎昌俊

    2004-01-01

    The influences of pyrolytic conditions, including temperature, time, the flow rate of air, and the heating rate, on the morphology, average size and specific surface area of the NiO particles were investigated, and the composition and morphologies of the products were characterized by using of XRD, SEM and BET. It is found that fibrous NiO particles were produced under the optimal conditions. A suitable range of pH for preparing dispersive precursors was chosen according to analysis of zeta potential. Based on the observations of NiO precursors growth and SEM morphology of the precursor, the oriented attachment was proposed for the well-aligned growth of the NiO precursor fibres. The final product NiO inherits the morphology of the precursor.

  18. Y_2SiO_5:Ce~(3+) particle growth during sol-gel preparation

    Ins