WorldWideScience

Sample records for fine particle sources

  1. Source contributions to atmospheric fine carbon particle concentrations

    Science.gov (United States)

    Andrew Gray, H.; Cass, Glen R.

    A Lagrangian particle-in-cell air quality model has been developed that facilitates the study of source contributions to atmospheric fine elemental carbon and fine primary total carbon particle concentrations. Model performance was tested using spatially and temporally resolved emissions and air quality data gathered for this purpose in the Los Angeles area for the year 1982. It was shown that black elemental carbon (EC) particle concentrations in that city were dominated by emissions from diesel engines including both on-highway and off-highway applications. Fine primary total carbon particle concentrations (TC=EC+organic carbon) resulted from the accumulation of small increments from a great variety of emission source types including both gasoline and diesel powered highway vehicles, stationary source fuel oil and gas combustion, industrial processes, paved road dust, fireplaces, cigarettes and food cooking (e.g. charbroilers). Strategies for black elemental carbon particle concentration control will of necessity need to focus on diesel engines, while controls directed at total carbon particle concentrations will have to be diversified over a great many source types.

  2. Sources of mutagenic activity in urban fine particles

    International Nuclear Information System (INIS)

    Stevens, R.K.; Lewis, C.W.; Dzubay, T.G.; Cupitt, L.T.; Lewtas, J.

    1990-01-01

    Samples were collected during the winter of 1984-1985 in the cities of Albuquerque, NM and Raleigh NC as part of a US Environmental Protection Agency study to evaluate methods to determine the emission sources contributing to the mutagenic properties of extractable organic matter (EOM) present in fine particles. Data derived from the analysis of the composition of these fine particles served as input to a multi-linear regression (MLR) model used to calculate the relative contribution of wood burning and motor vehicle sources to mutagenic activity observed in the extractable organic matter. At both sites the mutagenic potency of EOM was found to be greater (3-5 times) for mobile sources when compared to wood smoke extractable organics. Carbon-14 measurements which give a direct determination of the amount of EOM that originated from wood burning were in close agreement with the source apportionment results derived from the MLR model

  3. Iron solubility related to particle sulfur content in source emission and ambient fine particles.

    Science.gov (United States)

    Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J

    2012-06-19

    The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.

  4. Identifying sources of atmospheric fine particles in Havana City using Positive Matrix Factorization technique

    International Nuclear Information System (INIS)

    Pinnera, I.; Perez, G.; Ramos, M.; Guibert, R.; Aldape, F.; Flores M, J.; Martinez, M.; Molina, E.; Fernandez, A.

    2011-01-01

    In previous study a set of samples of fine and coarse airborne particulate matter collected in a urban area of Havana City were analyzed by Particle-Induced X-ray Emission (PIXE) technique. The concentrations of 14 elements (S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br and Pb) were consistently determined in both particle sizes. The analytical database provided by PIXE was statistically analyzed in order to determine the local pollution sources. The Positive Matrix Factorization (PMF) technique was applied to fine particle data in order to identify possible pollution sources. These sources were further verified by enrichment factor (EF) calculation. A general discussion about these results is presented in this work. (Author)

  5. Construction of Fine Particles Source Spectrum Bank in Typical Region and Empirical Research of Matching Diagnosis

    Science.gov (United States)

    Wang, Xing; Sun, Wenliang; Guo, Min; Li, Minjiao; Li, Wan

    2018-01-01

    The research object of this paper is fine particles in typical region. The construction of component spectrum bank is based on the technology of online source apportionment, then the result of the apportionment is utilized to verify the effectiveness of fine particles component spectrum bank and which also act as the matching basis of online source apportionment receptor sample. On the next, the particle source of air pollution is carried through the matching diagnosis empirical research by utilizing online source apportionment technology, to provide technical support for the cause analysis and treatment of heavy pollution weather.

  6. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere.

    Science.gov (United States)

    Lü, Senlin; Zhang, Rui; Yao, Zhenkun; Yi, Fei; Ren, Jingjing; Wu, Minghong; Feng, Man; Wang, Qingyue

    2012-01-01

    Ambient coarse particles (diameter 1.8-10 microm), fine particles (diameter 0.1-1.8 microm), and ultrafine particles (diameter Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 +/- 2.18, 8.82 +/- 3.52, and 2.02 +/- 0.41 microg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.

  7. HONO and Inorganic Fine Particle Composition in Typical Monsoon Region with Intensive Anthropogenic Emission: In-situ Observations and Source Identification.

    Science.gov (United States)

    Xie, Y.; Nie, W.; Ding, A.; Huang, X.

    2015-12-01

    Yangtze River Delta (YRD) is one of the most typical monsoon area with probably the most largest population intensity in the world. With sharply economic development and the large anthropogenic emissions, fine particle pollution have been one of the major air quality problem and may further have impact on the climate system. Though a lot of control policy (sulfur emission have been decreasing from 2007) have been conducted in the region, studies showed the sulfate in fine particles still take major fraction as the nitrate from nitrogen oxides increased significantly. In this study, the role of inorganic chemical compositions in fine particles was investigated with two years in-situ observation. Sulfate and Nitrate contribute to fine particle mass equally in general, but sulfate contributes more during summer and nitrate played more important role in winter. Using lagrangian dispersion backward modeling and source contribution clustering method, the impact of airmass coming from different source region (industrial, dust, biogenic emissions, etc) on fine particle inorganic compositions were discussed. Furthermore, we found two unique cases showing in-situ implications for sulfate formation by nitrogen dioxide oxidation mechanisms. It was showed that the mixing of anthropogenic pollutants with long-range transported mineral dust and biomass burning plume would enhance the sulfate formation by different chemistry mechanisms. This study focus on the complex aspects of fine particle formation in airmasses from different source regions: . It highlights the effect of NOx in enhancing the atmospheric oxidization capacity and indicates a potentially very important impact of increasing NOx on air pollution formation and regional climate change in East Asia.

  8. Chemical characterisation of fine particles from biomass burning

    Energy Technology Data Exchange (ETDEWEB)

    Saarnio, K.

    2013-10-15

    Biomass burning has lately started to attract attention because there is a need to decrease the carbon dioxide (CO{sub 2}) emissions from the combustion of fossil fuels. Biomass is considered as CO{sub 2} neutral fuel. However, the burning of biomass is one of the major sources of fine particles both at the local and global scale. In addition to the use of biomass as a fuel for heat energy production, biomass burning emissions can be caused, e.g. by slash-and-burn agriculture and wild open-land fires. Indeed, the emissions from biomass burning are crucially important for the assessment of the potential impacts on global climate and local air quality and hence on human health. The chemical composition of fine particles has a notable influence on these impacts. The overall object of this thesis was to gain knowledge on the chemistry of fine particles that originate from biomass burning as well as on the contribution of biomass burning emissions to the ambient fine particle concentrations. For this purpose novel analytical methods were developed and tested in this thesis. Moreover, the thesis is based on ambient aerosol measurements that were carried out in six European countries at 12 measurement sites during 2002-2011. Additionally, wood combustion experiments were conducted in a laboratory. The measurements included a wide range of techniques: filter and impactor samplings, offline chemical analyses (chromatographic and mass spectrometric techniques, thermal-optical method), and online measurements of particles' physical properties and chemical composition (incl. particle number and mass concentrations and size distributions, concentrations of carbonaceous components, water-soluble ions, and tracer compounds). This thesis presents main results of different studies aimed towards chemical characterisation of fine particle emissions from biomass burning. It was found that wood combustion had a significant influence on atmospheric fine particle concentrations in

  9. Charge neutrality of fine particle (dusty) plasmas and fine particle cloud under gravity

    Energy Technology Data Exchange (ETDEWEB)

    Totsuji, Hiroo, E-mail: totsuji-09@t.okadai.jp

    2017-03-11

    The enhancement of the charge neutrality due to the existence of fine particles is shown to occur generally under microgravity and in one-dimensional structures under gravity. As an application of the latter, the size and position of fine particle clouds relative to surrounding plasmas are determined under gravity. - Highlights: • In fine particle (dusty) plasmas, the charge neutrality is much enhanced by the existence of fine particles. • The enhancement of charge neutrality generally occurs under microgravity and gravity. • Structure of fine particle clouds under gravity is determined by applying the enhanced charge neutrality.

  10. A hazard to health? Fine particles arouse worldwide interest

    Energy Technology Data Exchange (ETDEWEB)

    Karas, J; Oesch, P

    1998-07-01

    The most recent studies show that particles contained in the air that we breathe may have harmful effects on the health of asthmatics, children and old people in particular. Particle material found in ambient air is formed by emissions resulting from traffic, industry and other use of fuels. Nature`s own sources also have a significant effect on particle concentrations. The mechanisms by which fine particles may produce negative health effects are so far unknown. At present it is therefore impossible to assess the effects of emissions of fine particles resulting, for instance, from the use of fossil fuels

  11. Characteristics of fine and coarse particles of natural and urban aerosols of Brazil

    International Nuclear Information System (INIS)

    Orsini, C.M.Q.; Tabacniks, M.H.; Artaxo Netto, P.E.; Andrade, M.F.; Kerr, A.

    1986-02-01

    Fine and coarse particles have been sampled from 1982 to 1985 in one natural forest seacoast site (Jureia) and five urban-industrial cities (Vitoria, Salvador, Porto Alegre, Sao Paulo, and Belo Horizonte). The time variations of concentrations in air and the relative elemental compositions of fine and coarse particle fractions, sampled by Nuclepore stacked filter units (SFU), have been determined gravimetrically and by PIXE analysis, respectively. Enrichment factors and correlation coefficients of the trace elements measured lead to unambiguous characterization of soil dust and sea salt, both major aerosol sources that emit coarse particles, and soil dust is also a significant source of fine particles. (Author) [pt

  12. Determining contributions of biomass burning and other sources to fine particle contemporary carbon in the western United States

    Science.gov (United States)

    Holden, Amanda S.; Sullivan, Amy P.; Munchak, Leigh A.; Kreidenweis, Sonia M.; Schichtel, Bret A.; Malm, William C.; Collett, Jeffrey L., Jr.

    2011-02-01

    Six-day integrated fine particle samples were collected at urban and rural sampling sites using Hi-Volume samplers during winter and summer 2004-2005 as part of the IMPROVE (Interagency Monitoring of PROtected Visual Environments) Radiocarbon Study. Filter samples from six sites (Grand Canyon, Mount Rainier, Phoenix, Puget Sound, Rocky Mountain National Park, and Tonto National Monument) were analyzed for levoglucosan, a tracer for biomass combustion, and other species by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD). Contemporary carbon concentrations were available from previous carbon isotope measurements at Lawrence Livermore National Laboratory. Primary contributions of biomass burning to measured fine particle contemporary carbon were estimated for residential wood burning (winter) and wild/prescribed fires (summer). Calculated contributions ranged from below detection limit to more than 100% and were typically higher at rural sites and during winter. Mannitol, a sugar alcohol emitted by fungal spores, was analyzed and used to determine contributions of fungal spores to fine particle contemporary carbon. Contributions reached up to 13% in summer samples, with higher contributions at rural sites. Concentrations of methyltetrols, oxidation products of isoprene, were also measured by HPAEC-PAD. Secondary organic aerosol (SOA) from isoprene oxidation was estimated to contribute up to 22% of measured contemporary carbon. For each sampling site, a substantial portion of the contemporary carbon was unexplained by primary biomass combustion, fungal spores, or SOA from isoprene oxidation. This unexplained fraction likely contains contributions from other SOA sources, including oxidation products of primary smoke emissions and plant emissions other than isoprene, as well as other primary particle emissions from meat cooking, plant debris, other biological aerosol particles, bio-diesel combustion, and other sources. Loss

  13. Chemical compositions and sources of organic matter in fine particles of soils and sands from the vicinity of Kuwait city.

    Science.gov (United States)

    Rushdi, Ahmed I; Al-Zarban, Sheikha; Simoneit, Bernd R T

    2006-09-01

    Fine particles in the atmosphere from soil and sand resuspension contain a variety of organic compounds from natural biogenic and anthropogenic matter. Soil and sand samples from various sites near Kuwait city were collected, sieved to retain the fine particles, and extracted with a mixture of dichloromethane and methanol. The extracts were derivatized and analyzed by gas chromatography-mass spectrometry in order to characterize the chemical compositions and sources of the organic components. The major inputs of organic compounds were from both natural biogenic and anthropogenic sources in these samples. Vegetation was the major natural source of organic compounds and included n-alkanols, n-alkanoic acids, n-alkanes, sterols and triterpenoids. Saccharides had high concentrations (31-43%) in the sand dune and seafront samples, indicating sources from decomposed vegation materials and/or the presence of viable microbiota such as bacteria and fungi. Vehicular emission products, leakage of lubricating oils, discarded plastics and emissions from cooking operations were the major anthropogenic inputs in the samples from the urban areas. This input was mainly UCM, n-alkanes, hopanes, plasticizers and cholesterol, respectively.

  14. IBA and synchrotron methods for sub-micron fine particle characterisation

    International Nuclear Information System (INIS)

    Cohen, D.D.; Siegele, R. Stampfl. A.; Cai, Z.; Ilinski, P.; Rodrigues, W.; Legnini, D.G.; Yun, W.; Lai, B.

    1999-01-01

    Fine air-borne particles, whose average diameters are 2.5 μm and less (PM2.5), are known to play significant roles in a number of human and environmental issues. They may penetrate deep into the human lung system and are believed, due to their small size or due to toxins adsorbed onto their surfaces, to be responsible for up to 60,000 and 10,000 deaths in the U.S. and U.K. respectively. Health studies within NSW, Australia carried out by the NSW EPA, have shown increased hospital admissions and excess deaths related to high fine particle pollution episodes. A number of environmental issues are affected by the amount and type of fine-particles in the air. The white and brown hazes that occur in populated cities causing poor visibility are due to light scattering from fine particles. These same particles are easily transported large distances in the lower atmosphere playing a key role in global pollution and climate forcing. Current knowledge of fine-particle concentrations and constituents is very limited. Sources of fine particles are both natural and man-made. Over the past few years considerable work on the characterisation of these particles has been going on at ANSTO using accelerator based ion beam analysis (IBA) methods. X-ray fluorescence using ion beams from accelerators and synchrotron fluorescence are complementary techniques. This is well demonstrated by the plot. PIXE has higher cross sections for low Z elements, but for high Z elements closer to the excitation energy (16keV) synchrotron radiation cross sections are larger. Both techniques are multi-elemental analysis techniques

  15. Source Term Model for Fine Particle Resuspension from Indoor Surfaces

    National Research Council Canada - National Science Library

    Kim, Yoojeong; Gidwani, Ashok; Sippola, Mark; Sohn, Chang W

    2008-01-01

    This Phase I effort developed a source term model for particle resuspension from indoor surfaces to be used as a source term boundary condition for CFD simulation of particle transport and dispersion in a building...

  16. Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations

    Science.gov (United States)

    Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    1996-08-01

    An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that

  17. The fine particle emissions of energy production in Finland

    International Nuclear Information System (INIS)

    Ohlstroem, M.

    1998-01-01

    The main purpose of this master's thesis was to define the fine particle (PM2.5, diameter under 2,5 μm) emissions of the energy production and to compare the calculated emission factors between different energy production concepts. The purpose was also to define what is known about fine particle emissions and what should still be studied/measured. The purpose was also to compare briefly the fine particle emissions of energy production and vehicle traffic, and their correlations to the fine particle concentrations of urban air. In the theory part of this work a literature survey was made about fine particles in energy production, especially how they form and how they are separated from the flue gas. In addition, the health effects caused by fine particles, and different measuring instruments were presented briefly. In the experimental part of this work, the aim was to find out the fine particle emissions of different energy production processes by calculating specific emission factors (mg/MJ fuel ) from powerplants' annual total particulate matter emissions (t/a), which were obtained from VAHTI-database system maintained by the Finnish Environmental Institute, and by evaluating the share of fine particles from total emissions with the help of existing measurement results. Only those energy production processes which produce significantly direct emissions of solid particles have been treated (pulverised combustion and oil burners from burner combustion, fluidized bed combustion processes, grate boilers, recovery boilers and diesel engines). The processes have been classified according to boiler type, size category, main fuel and also according to dust separation devices. To be able to compare different energy production processes, shared specific emission factor have been calculated for the similar subprocesses. The fine particle emissions depend strongest on the boiler size category and dust separation devices used. Spent fuel or combustion technique does not have

  18. Insights into metals in individual fine particles from municipal solid waste using synchrotron radiation-based micro-analytical techniques.

    Science.gov (United States)

    Zhu, Yumin; Zhang, Hua; Shao, Liming; He, Pinjing

    2015-01-01

    Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW). In this study, we investigated fine particles of heavy metal content, using bulk detection techniques. A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction. We also discussed the association, speciation and source apportionment of heavy metals. Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of metals revealed the potential sources of fine particles from size-reduced waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles. The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products. Copyright © 2014. Published by Elsevier B.V.

  19. Emissions and measure analysis of fine particles 2000-2020; Emissionen und Massnahmenanalyse Feinstaub 2000-2020

    Energy Technology Data Exchange (ETDEWEB)

    Joerss, Wolfram; Handke, Volker [Institut fuer Zukunftsstudien und Technologiebewertung gGmbH (IZT), Berlin (Germany)

    2007-08-15

    With this study, the Federal Environmental Agency's emission inventory on total suspended particles and the fine fractions PM{sub 1}0 and PM{sub 2}.5 was updated. On that basis, a reference scenario was developed for anthropogenic emissions of particulate matter up to the years 2010, 2015 and 2020. In addition, potential additional emission reduction measures were systematically collected and quantified. At the source groups which contribute most strongly to the emissions there are clear differences between the fine fractions and in the course of time. In particular, with the total fine the emission freight is very broadly distributed over many source groups. With PM{sub 2}.5, the emissions are more strongly concentrated on a limited number of source groups. The decrease of the emissions in the years between 2000 and 2020 in the reference scenario takes place in source groups with high portions of PM{sub 2}.5 of the emissions of total fine particles.

  20. Emissions and measure analysis of fine particles 2000-2020; Emissionen und Massnahmenanalyse Feinstaub 2000-2020

    Energy Technology Data Exchange (ETDEWEB)

    Joerss, Wolfram; Handke, Volker [Institut fuer Zukunftsstudien und Technologiebewertung gGmbH (IZT), Berlin (Germany)

    2007-08-15

    With this study, the Federal Environmental Agency's emission inventory on total suspended particles and the fine fractions PM{sub 1}0 and PM{sub 2}.5 was updated. On that basis, a reference scenario was developed for anthropogenic emissions of particulate matter up to the years 2010, 2015 and 2020. In addition, potential additional emission reduction measures were systematically collected and quantified. At the source groups which contribute most strongly to the emissions there are clear differences between the fine fractions and in the course of time. In particular, with the total fine the emission freight is very broadly distributed over many source groups. With PM{sub 2}.5, the emissions are more strongly concentrated on a limited number of source groups. The decrease of the emissions in the years between 2000 and 2020 in the reference scenario takes place in source groups with high portions of PM{sub 2}.5 of the emissions of total fine particles.

  1. Association of fine particulate matter from different sources with daily mortality in six US cities

    Energy Technology Data Exchange (ETDEWEB)

    Laden, F.; Neas, L.M.; Dockery, D.W.; Schwartz, J. [Harvard University, Boston, MA (USA). School of Medicine, Brigham & Womens Hospital

    2000-07-01

    In this study, the authors use the elemental composition of size-fractionated particles to identify several distinct source-related fractions of fine particles and examined the association of these fractions with daily mortality in each of six US cities. Using specific rotation factor analysis for each city, a silicon factor classified as soil and crustal material, a lead factor classified as motor vehicle exhaust, a selenium factor representing coal combustion, and up to two additional factors were identified. Daily counts of deaths from National Center for Health Statistics records were extracted and city-specific associations of mortality with each source factor were estimated. Combined effect estimates were calculated as the inverse variance weighted mean of the city-specific estimates. Results indicated that combustion particles in the fine fraction from mobile and coal combustion sources, but not fine crustal particles, are associated with increased mortality.

  2. Insights into metals in individual fine particles from municipal solid waste using synchrotron radiation-based micro-analytical techniques

    Institute of Scientific and Technical Information of China (English)

    Yumin Zhu; Hua Zhang; Liming Shao; Pinjing He

    2015-01-01

    Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW).In this study,we investigated fine particles of <2 mm,which are small fractions in MSW but constitute a significant component of the total heavy metal content,using bulk detection techniques.A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction.We also discussed the association,speciation and source apportionment of heavy metals.Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of <10 μm within the fine particles.Zn-Cu,Pb-Fe and Fe-Mn-Cr had significant correlations in terms of spatial distribution.The overlapped enrichment,spatial association,and the mineral phases of metals revealed the potential sources of fine particles from size-reduced waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles.The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products.

  3. Fine-particle sodium tracer for long-range transport of the Kuwaiti oil-fire smoke

    Energy Technology Data Exchange (ETDEWEB)

    Lowenthal, D.H.; Borys, R.D.; Rogers, C.F.; Chow, J.C.; Stevens, R.K.

    1993-04-23

    Evidence for long-range transport of the Kuwaiti oil-fire smoke during the months following the Persian Gulf War has been more or less indirect. However, more-recent data on the aerosol chemistry of Kuwaiti oil-fire plumes provides a direct link between those fires and aerosols collected at the Mauna Loa Observatory (MLO) during the late spring and summer of 1991. By itself, temporal covariation of fine-particle concentrations of elemental carbon, sulfur, and the noncrustal V/Zn ratio in MLO aerosols suggested a link to large-scale oil-combustion sources, but not necessarily to Kuwait. However, high concentrations of fine-particle (0.1-1.0 microm diameter) NaCl were observed in the 'white' oil-fire plumes over Kuwait during the summer of 1991. In the absence of other demonstratable sources of fine-particle Na, these relationships provide a direct link between the Kuwaiti oil-fires and aerosol composition observed at MLO. (Copyright (c) 1993 American Geophysical Union.)

  4. The PM2.5 Fine Particle Background Network of the German Meteorological Service-First Results

    Directory of Open Access Journals (Sweden)

    Uwe Kaminski

    2013-04-01

    Full Text Available Since 2009, the measurement of the background concentration of the fine particle fraction has been a part of the climate-monitoring program of the German Meteorological Service (DWD. These particles are of high health relevance as a critical air pollutant affecting processes like the scattering and absorption of solar radiation and influencing cloud formation and visibility. At 12 weather stations, the coarse (2.5 to 10 l m and the fine particle fractions (PM2.5 are measured by means of passive and active samplers. First results are presented for the mass concentrations of coarse and fine particles as well as for the black carbon (BC content and the concentration of certain inorganic ions of fine particles. There is not only a seasonal correlation between the fraction of fine and coarse particles, but also a correlation with the location (urban background or rural background. With the help of light microscopy, coarse particles can be differentiated for a geogenic (predominantly wind blown mineral and sea salt particles of natural origin and road abrasion and for an anthropogenic opaque component (combustion residues, e.g. fly ash and non-exhaust vehicle emissions, e.g. abrasion particles of brakes and tires. Measuring the fine fraction and the coarse fraction separately instead of PM10 allows for a better source allocation and thus is a more appropriate method for the improvement of the air quality in, e.g. low emission zones.

  5. Numerical modeling of fine particle fractal aggregates in turbulent flow

    Directory of Open Access Journals (Sweden)

    Cao Feifeng

    2015-01-01

    Full Text Available A method for prediction of fine particle transport in a turbulent flow is proposed, the interaction between particles and fluid is studied numerically, and fractal agglomerate of fine particles is analyzed using Taylor-expansion moment method. The paper provides a better understanding of fine particle dynamics in the evolved flows.

  6. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    Science.gov (United States)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  7. Fine particle retention within stream storage areas at base flow and in response to a storm event

    Science.gov (United States)

    Drummond, J. D.; Larsen, L. G.; González-Pinzón, R.; Packman, A. I.; Harvey, Judson

    2017-01-01

    Fine particles (1–100 µm), including particulate organic carbon (POC) and fine sediment, influence stream ecological functioning because they may contain or have a high affinity to sorb nitrogen and phosphorus. These particles are immobilized within stream storage areas, especially hyporheic sediments and benthic biofilms. However, fine particles are also known to remobilize under all flow conditions. This combination of downstream transport and transient retention, influenced by stream geomorphology, controls the distribution of residence times over which fine particles influence stream ecosystems. The main objective of this study was to quantify immobilization and remobilization rates of fine particles in a third-order sand-and-gravel bed stream (Difficult Run, Virginia, USA) within different geomorphic units of the stream (i.e., pool, lateral cavity, and thalweg). During our field injection experiment, a thunderstorm-driven spate allowed us to observe fine particle dynamics during both base flow and in response to increased flow. Solute and fine particles were measured within stream surface waters, pore waters, sediment cores, and biofilms on cobbles. Measurements were taken at four different subsurface locations with varying geomorphology and at multiple depths. Approximately 68% of injected fine particles were retained during base flow until the onset of the spate. Retention was evident even after the spate, with 15.4% of the fine particles deposited during base flow still retained within benthic biofilms on cobbles and 14.9% within hyporheic sediment after the spate. Thus, through the combination of short-term remobilization and long-term retention, fine particles can serve as sources of carbon and nutrients to downstream ecosystems over a range of time scales.

  8. Fine particle retention within stream storage areas at base flow and in response to a storm event

    Science.gov (United States)

    Drummond, J. D.; Larsen, L. G.; González-Pinzón, R.; Packman, A. I.; Harvey, J. W.

    2017-07-01

    Fine particles (1-100 µm), including particulate organic carbon (POC) and fine sediment, influence stream ecological functioning because they may contain or have a high affinity to sorb nitrogen and phosphorus. These particles are immobilized within stream storage areas, especially hyporheic sediments and benthic biofilms. However, fine particles are also known to remobilize under all flow conditions. This combination of downstream transport and transient retention, influenced by stream geomorphology, controls the distribution of residence times over which fine particles influence stream ecosystems. The main objective of this study was to quantify immobilization and remobilization rates of fine particles in a third-order sand-and-gravel bed stream (Difficult Run, Virginia, USA) within different geomorphic units of the stream (i.e., pool, lateral cavity, and thalweg). During our field injection experiment, a thunderstorm-driven spate allowed us to observe fine particle dynamics during both base flow and in response to increased flow. Solute and fine particles were measured within stream surface waters, pore waters, sediment cores, and biofilms on cobbles. Measurements were taken at four different subsurface locations with varying geomorphology and at multiple depths. Approximately 68% of injected fine particles were retained during base flow until the onset of the spate. Retention was evident even after the spate, with 15.4% of the fine particles deposited during base flow still retained within benthic biofilms on cobbles and 14.9% within hyporheic sediment after the spate. Thus, through the combination of short-term remobilization and long-term retention, fine particles can serve as sources of carbon and nutrients to downstream ecosystems over a range of time scales.

  9. Identification of sources of aerosol particles in three locations in eastern Botswana

    Science.gov (United States)

    Chimidza, S.; Moloi, K.

    2000-07-01

    Airborne particles have been collected using a dichotomous virtual impactor at three different locations in the eastern part of Botswana: Serowe, Selibe-Phikwe, and Francistown. The particles were separated into two fractions (fine and coarse). Sampling at the three locations was done consecutively during the months of July and August, which are usually dry and stable. The sampling time for each sample was 12 hours during the day. For elemental composition, energy-dispersive x-ray fluorescence technique was used. Correlations and principal component analysis with varimax rotation were used to identify major sources of aerosol particles. In all the three places, soil was found to be the main source of aerosol particles. A copper-nickel mine and smelter at Selibe-Phikwe was found to be not only a source of copper and nickel particles in Selibe-Phikwe but also a source of these particles in far places like Serowe. In Selibe-Phikwe and Francistown, car exhaust was found to be the major source of fine particles of lead and bromine.

  10. Sources of organic compounds in fine soil and sand particles during winter in the metropolitan area of Riyadh, Saudi Arabia.

    Science.gov (United States)

    Rushdi, Ahmed I; Al-Mutlaq, Khalid; Simoneit, Bernd R T

    2005-11-01

    Major advances have been made in molecular marker analysis to distinguish between natural and anthropogenic organic matter inputs to the atmosphere. Resuspension of soil and sand by wind is one of the major mechanisms that produces particle dusts in the atmosphere. Soil and sand samples from the Riyadh area were collected in winter 2002, sieved to remove coarse particles and extracted with a mixture of dichloromethane and methanol (3:1, v:v). The total extracts were analyzed by gas chromatography-mass spectrometry in order to characterize the contents and identify the potential sources of the organic components. The major organic compounds of these extracts were derived from natural biogenic and anthropogenic sources. Organic compounds from natural sources, mainly vegetation, were major in samples from outside the city of Riyadh and included n-alkanes, n-alkanoic acids, n- alkanols, methyl alkanoates, and sterols. Anthropogenic inputs were significant in the fine particles of soil and sand samples collected from populated areas of the city. They consisted mainly of n-alkanes, hopanes, UCM (from vehicular emissions), and plasticizers (from discarded plastics, e.g., shopping bags). Carbohydrates had high concentrations in all samples and indicate sources from decomposed cellulose fibers and/or the presence of viable microbiota such as bacteria and fungi.

  11. Coupling fine particle and bedload transport in gravel-bedded streams

    Science.gov (United States)

    Park, Jungsu; Hunt, James R.

    2017-09-01

    Fine particles in the silt- and clay-size range are important determinants of surface water quality. Since fine particle loading rates are not unique functions of stream discharge this limits the utility of the available models for water quality assessment. Data from 38 minimally developed watersheds within the United States Geological Survey stream gauging network in California, USA reveal three lines of evidence that fine particle release is coupled with bedload transport. First, there is a transition in fine particle loading rate as a function of discharge for gravel-bedded sediments that does not appear when the sediment bed is composed of sand, cobbles, boulders, or bedrock. Second, the discharge at the transition in the loading rate is correlated with the initiation of gravel mobilization. Third, high frequency particle concentration and discharge data are dominated by clockwise hysteresis where rising limb discharges generally have higher concentrations than falling limb discharges. These three observations across multiple watersheds lead to a conceptual model that fine particles accumulate within the sediment bed at discharges less than the transition and then the gravel bed fluidizes with fine particle release at discharges above the transition discharge. While these observations were individually recognized in the literature, this analysis provides a consistent conceptual model based on the coupling of fine particle dynamics with filtration at low discharges and gravel bed fluidization at higher discharges.

  12. Autonomous patterning of cells on microstructured fine particles

    International Nuclear Information System (INIS)

    Takeda, Iwori; Kawanabe, Masato; Kaneko, Arata

    2015-01-01

    Regularly patterned cells can clarify cellular function and are required in some biochip applications. This study examines cell patterning along microstructures and the effect of microstructural geometry on selective cellular adhesion. Particles can be autonomously assembled on a soda-lime glass substrate that is chemically patterned by immersion in a suspension of fine particles. By adopting various sizes of fine particles, we can control the geometry of the microstructure. Cells adhere more readily to microstructured fine particles than to flat glass substrate. Silica particles hexagonally packed in 5–40 μm line and space microstructures provide an effective cell scaffold on the glass substrate. Cultured cells tend to attach and proliferate along the microstructured region while avoiding the flat region. The difference in cell adhesion is attributed to their geometries, as both of the silica particles and soda-lime glass are hydrophilic related with cell adhesiveness. After cell seeding, cells adhered to the flat region migrated toward the microstructured region. For most of the cells to assemble on the scaffold, the scaffolding microstructures must be spaced by at most 65 μm. - Highlights: • PS and SiO 2 particles provide effective scaffolds for cells. • Cells that adhere to microstructured particles successfully proliferate and differentiate. • Selective adhesion and growth along the scaffold can be achieved by patterning the fine particle microstructure. • Cells adhered to flat regions migrate toward microstructured regions. • Selective adhesion by cells depends on the microstructural geometry; specifically, on the inter-line spacing

  13. [Pollution characteristics and source of the atmospheric fine particles and secondary inorganic compounds at Mount Dinghu in autumn season].

    Science.gov (United States)

    Liu, Zi-Rui; Wang, Yue-Si; Liu, Quan; Liu, Lu-Ning; Zhang, De-Qiang

    2011-11-01

    Real-time measurements of PM2.5, secondary inorganic compounds in PM2.5 (SO4(2-), NH4(+), and NO3(-)) and related gaseous pollutants were conducted at Mount Dinghu, a regional background station of the Pearl River Delta (PRD), in October and November 2008 by using a conventional R&P TEOM and a system of rapid collection of fine particles and ion chromatography (RCFP-IC). Sources and transportation of atmospheric particles during the experiment were discussed with principal component analysis and backward trajectories calculated using HYSPLIT model. The average daily mass concentrations of PM2.5 were 76.9 microg x m(-3) during sampling period, and average daily mass concentrations of SO4(2-), NH4(+), and NO3(-) were 20.0 microg x m(-3), 6.8 microg x m(-3) and 2.6 microg x m(-3), respectively. The sum of these three secondary inorganic compounds accounted for more than one third of the PM2.5 mass concentration, which had become the major source of atmospheric fine particles at Mount Dinghu. The diurnal variation of PM2.5, SO4(2-), and NH4(+) all showed a "bimodal" distribution with two peaks appeared at 10:00 am and at 16:00 pm, respectively, whereas NO3(-s) howed "single peak" distribution peaked at 10:00 am. The mass concentrations of SO4(2-) in PM2.5 had the similar diurnal variation with that of SO2, SO4(2-) in PM2.5 was mainly transformed from SO2, whereas NO3(-) showed difference diurnal variation with that of NO2, and the second conversion rate of NO2 was far lower than that of SO2. NH4(+) in PM2.5 existed mainly in the form of sulfate, nitrate and chloride. Both of principal component analysis and back trajectory analysis showed that the variations of PM2.5 and secondary inorganic compounds at Mount Dinghu were mainly affected by the long-range transport air mass passed over Guangzhou, Huizhou and other highly industrialized areas which carried air pollutants to the observation site, at the same time local sulfate originated from secondary formation also

  14. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides x trichocarpa 'Beaupre', Pinus nigra and x Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment

    International Nuclear Information System (INIS)

    Freer-Smith, P.H.; Beckett, K.P.; Taylor, Gail

    2005-01-01

    Trees are effective in the capture of particles from urban air to the extent that they can significantly improve urban air quality. As a result of their aerodynamic properties conifers, with their smaller leaves and more complex shoot structures, have been shown to capture larger amounts of particle matter than broadleaved trees. This study focuses on the effects of particle size on the deposition velocity of particles (Vg) to five urban tree species (coniferous and broadleaved) measured at two field sites, one urban and polluted and a second more rural. The larger uptake to conifers is confirmed, and for broadleaves and conifers Vg values are shown to be greater for ultra-fine particles (Dp<1.0 μm) than for fine and coarse particles. This is important since finer particles are more likely to be deposited deep in the alveoli of the human lung causing adverse health effects. The finer particle fraction is also shown to be transported further from the emission source; in this study a busy urban road. In further sets of data the aqueous soluble and insoluble fractions of the ultra-fines were separated, indicating that aqueous insoluble particles made up only a small proportion of the ultra-fines. Much of the ultra-fine fraction is present as aerosol. Chemical analysis of the aqueous soluble fractions of coarse, fine and ultra-fine particles showed the importance of nitrates, chloride and phosphates in all three size categories at the polluted and more rural location

  15. The interaction of fine particles with stranded oil

    International Nuclear Information System (INIS)

    Owens, E.H.

    1999-01-01

    The interaction of micron-sized mineral particles with stranded oil reduces its adhesion to solid surfaces, such as sediments or bedrock. The net result is the formation of stable, micron-sized, oil droplets that disperse into the water column. In turn, the increase in surface area makes the oil more available for biodegradation. Oil and Fine-particle Interaction ('OFI') can explain how oiled shorelines are cleaned naturally in the absence of wave action in very sheltered coastal environments. Fine-particle interaction can be accelerated during a spill response by relocating the oiled sediments into the surf zone. This has been achieved successfully on two occasions to date: the Tampa Bay response in Florida, and the Sea Empress operation in Wales. Sediment relocation also causes physical abrasion by the hydraulic action of waves so that the processes of fine-particle interaction and surf washing usually occur in combination on open coasts. (author)

  16. Fractal aggregation and breakup of fine particles

    Directory of Open Access Journals (Sweden)

    Li Bingru

    2016-01-01

    Full Text Available Breakup may exert a controlling influence on particle size distributions and particles either are fractured or are eroded particle-by-particle through shear. The shear-induced breakage of fine particles in turbulent conditions is investigated using Taylor-expansion moment method. Their equations have been derived in continuous form in terms of the number density function with particle volume. It suitable for future implementation in computational fluid dynamics modeling.

  17. Innovations in the flotation of fine and coarse particles

    Science.gov (United States)

    Fornasiero, D.; Filippov, L. O.

    2017-07-01

    Research on the mechanisms of particle-bubble interaction has provided valuable information on how to improve the flotation of fine (100 µm) with novel flotation machines which provide higher collision and attachment efficiencies of fine particles with bubbles and lower detachment of the coarse particles. Also, new grinding methods and technologies have reduced energy consumption in mining and produced better mineral liberation and therefore flotation performance.

  18. On the Accelerated Settling of Fine Particles in a Bidisperse Slurry

    Directory of Open Access Journals (Sweden)

    Leonid L. Minkov

    2015-01-01

    Full Text Available An estimation of increasing the volume average sedimentation velocity of fine particles in bidisperse suspension due to their capturing in the circulation zone formed in the laminar flow of incompressible viscous fluid around the spherical coarse particle is proposed. The estimation is important for an explanation of the nonmonotonic shape of the separation curve observed for hydrocyclones. The volume average sedimentation velocity is evaluated on the basis of a cellular model. The characteristic dimensions of the circulation zone are obtained on the basis of a numerical solution of Navier-Stokes equations. Furthermore, these calculations are used for modelling the fast sedimentation of fine particles during their cosedimentation in bidisperse suspension. It was found that the acceleration of sedimentation of fine particles is determined by the concentration of coarse particles in bidisperse suspension, and the sedimentation velocity of fine fraction is proportional to the square of the coarse and fine particle diameter ratio. The limitations of the proposed model are ascertained.

  19. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode.

    Science.gov (United States)

    Schauer, James J; Fraser, Matthew P; Cass, Glen R; Simoneit, Bernd R T

    2002-09-01

    A comprehensive organic compound-based receptor model is developed that can simultaneously apportion the source contributions to atmospheric gas-phase organic compounds, semivolatile organic compounds, fine particle organic compounds, and fine particle mass. The model is applied to ambient data collected at four sites in the south coast region of California during a severe summertime photochemical smog episode, where the model determines the direct primary contributions to atmospheric pollutants from 11 distinct air pollution source types. The 11 sources included in the model are gasoline-powered motor vehicle exhaust, diesel engine exhaust, whole gasoline vapors, gasoline headspace vapors, organic solvent vapors, whole diesel fuel, paved road dust, tire wear debris, meat cooking exhaust, natural gas leakage, and vegetative detritus. Gasoline engine exhaust plus whole gasoline vapors are the predominant sources of volatile organic gases, while gasoline and diesel engine exhaust plus diesel fuel vapors dominate the emissions of semivolatile organic compounds from these sources during the episode studied at all four air monitoring sites. The atmospheric fine particle organic compound mass was composed of noticeable contributions from gasoline-powered motor vehicle exhaust, diesel engine exhaust, meat cooking, and paved road dust with smaller but quantifiable contributions from vegetative detritus and tire wear debris. In addition, secondary organic aerosol, which is formed from the low-vapor pressure products of gas-phase chemical reactions, is found to be a major source of fine particle organic compound mass under the severe photochemical smog conditions studied here. The concentrations of secondary organic aerosol calculated in the present study are compared with previous fine particle source apportionment results for less intense photochemical smog conditions. It is shown that estimated secondary organic aerosol concentrations correlate fairly well with the

  20. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m{sup 3} or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 {mu}g/cm{sup 2} of material which corresponds to about 10{mu}g/m{sup 3} of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5{mu}m. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs.

  1. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    International Nuclear Information System (INIS)

    Cohen, D.

    1996-01-01

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m 3 or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 μg/cm 2 of material which corresponds to about 10μg/m 3 of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5μm. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs

  2. Ion beam analysis techniques for the elemental fingerprinting of fine particle smoke from vegetation burning in NSW

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    Accelerator based ion beam analysis (IBA) techniques, including PIXE, PIGME, RBS and PESA, have been used to analyse elemental compositions of airborne particles covering a 60,000 square kilometres area of Wollongong, Sydney and Newcastle. These IBA techniques provide elemental concentrations for over 20 different elements from hydrogen to lead, they include H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Br and Pb. The four ion beam techniques are performed simultaneously on the 3MV Van de Graaff accelerator at ANSTO and have been described in detail elsewhere. They are sufficiently sensitive to analyse for many of these elements to levels around 10 ng/m{sup 3} or less in about five minutes of accelerator running time per filter. This is more than adequate for aerosol analyses as most filters contain around 150 {mu}g/cm{sup 2} of material which corresponds to about 10{mu}g/m{sup 3} of fine particles in the atmosphere. For this work fine particles are those with diameters less than 2.5{mu}m. Fine particle data has been collected twice a week and analysed for each of the above elements by ANSTO since 1991 at more than 25 different sites throughout NSW. This large dataset set allows us to not only determine the composition of fine particles and to look for signature elements for particular sources but also to use multivariate statistics to define elemental source fingerprints and then to determine the percentage contributions of these fingerprints to the total fine particle mass in the atmosphere. This paper describes the application of these techniques to the study of domestic wood fires and vegetation burning in NSW over a two year period from 1992-93. It also presents, for the first time, fine particle data related to the January 1994 bushfires in NSW. 6 refs., 1 tab., 5 figs.

  3. Relation between aerosol sources and meteorological parameters for inhalable atmospheric particles in Sao Paulo City, Brazil

    Science.gov (United States)

    Andrade, Fatima; Orsini, Celso; Maenhaut, Willy

    Stacked filter units were used to collect atmospheric particles in separate coarse and fine fractions at the Sao Paulo University Campus during the winter of 1989. The samples were analysed by particle-induced X-ray emission (PIXE) and the data were subjected to an absolute principal component analysis (APCA). Five sources were identified for the fine particles: industrial emissions, which accounted for 13% of the fine mass; emissions from residual oil and diesel, explaining 41%; resuspended soil dust, with 28%; and emissions of Cu and of Mg, together with 18%. For the coarse particles, four sources were identified: soil dust, accounting for 59% of the coarse mass; industrial emissions, with 19%; oil burning, with 8%; and sea salt aerosol, with 14% of the coarse mass. A data set with various meteorological parameters was also subjected to APCA, and a correlation analysis was performed between the meteorological "absolute principal component scores" (APCS) and the APCS from the fine and coarse particle data sets. The soil dust sources for the fine and coarse aerosol were highly correlated with each other and were anticorrelated with the sea breeze component. The industrial components in the fine and coarse size fractions were also highly positively correlated. Furthermore, the industrial component was related with the northeasterly wind direction and, to a lesser extent, with the sea breeze component.

  4. Risk of pneumonia in obstructive lung disease: A real-life study comparing extra-fine and fine-particle inhaled corticosteroids.

    Science.gov (United States)

    Sonnappa, Samatha; Martin, Richard; Israel, Elliot; Postma, Dirkje; van Aalderen, Wim; Burden, Annie; Usmani, Omar S; Price, David B

    2017-01-01

    Regular use of inhaled corticosteroids (ICS) in patients with obstructive lung diseases has been associated with a higher risk of pneumonia, particularly in COPD. The risk of pneumonia has not been previously evaluated in relation to ICS particle size and dose used. Historical cohort, UK database study of 23,013 patients with obstructive lung disease aged 12-80 years prescribed extra-fine or fine-particle ICS. The endpoints assessed during the outcome year were diagnosis of pneumonia, acute exacerbations and acute respiratory events in relation to ICS dose. To determine the association between ICS particle size, dose and risk of pneumonia in unmatched and matched treatment groups, logistic and conditional logistic regression models were used. 14788 patients were stepped-up to fine-particle ICS and 8225 to extra-fine ICS. On unmatched analysis, patients stepping-up to extra-fine ICS were significantly less likely to be coded for pneumonia (adjusted odds ratio [aOR] 0.60; 95% CI 0.37, 0.97]); experience acute exacerbations (adjusted risk ratio [aRR] 0.91; 95%CI 0.85, 0.97); and acute respiratory events (aRR 0.90; 95%CI 0.86, 0.94) compared with patients stepping-up to fine-particle ICS. Patients prescribed daily ICS doses in excess of 700 mcg (fluticasone propionate equivalent) had a significantly higher risk of pneumonia (OR [95%CI] 2.38 [1.17, 4.83]) compared with patients prescribed lower doses, irrespective of particle size. These findings suggest that patients with obstructive lung disease on extra-fine particle ICS have a lower risk of pneumonia than those on fine-particle ICS, with those receiving higher ICS doses being at a greater risk.

  5. Trimethylsilyl derivatives of organic compounds in source samples and in atmospheric fine particulate matter.

    Science.gov (United States)

    Nolte, Christopher G; Schauer, James J; Cass, Glen R; Simoneit, Bernd R T

    2002-10-15

    Source sample extracts of vegetative detritus, motor vehicle exhaust, tire dust paved road dust, and cigarette smoke have been silylated and analyzed by GC-MS to identify polar organic compounds that may serve as tracers for those specific emission sources of atmospheric fine particulate matter. Candidate molecular tracers were also identified in atmospheric fine particle samples collected in the San Joaquin Valley of California. A series of normal primary alkanols, dominated by even carbon-numbered homologues from C26 to C32, the secondary alcohol 10-nonacosanol, and some phytosterols are prominent polar compounds in the vegetative detritus source sample. No new polar organic compounds are found in the motor vehicle exhaust samples. Several hydrogenated resin acids are present in the tire dust sample, which might serve as useful tracers for those sources in areas that are heavily impacted by motor vehicle traffic. Finally, the alcohol and sterol emission profiles developed for all the source samples examined in this project are scaled according to the ambient fine particle mass concentrations attributed to those sources by a chemical mass balance receptor model that was previously applied to the San Joaquin Valley to compute the predicted atmospheric concentrations of individual alcohols and sterols. The resulting underprediction of alkanol concentrations at the urban sites suggests that alkanols may be more sensitive tracers for natural background from vegetative emissions (i.e., waxes) than the high molecular weight alkanes, which have been the best previously available tracers for that source.

  6. Health impact of exposure to fine particles. Epidemiology of short-term effects

    International Nuclear Information System (INIS)

    Peters, Annette; Wichmann, H.-Erich; Univ. Muenchen; Heinrich, Joachim

    2002-01-01

    Epidemiological studies on short-term effects of fine particles are investigating whether morbidity or mortality increase on days with high particle concentrations. Multi-center studies have shown on a daily basis that there is an increase in morbidity and/or mortality in association with particle concentrations. Studies on the effects of particles on the respiratory tract have indicated that there is an impact of particles at their place of deposition. In addition, numerous studies have revealed that particles also have effects on the cardiovascular system, including acute-phase reactions, increased hospital admissions, and also an increase in cardiovascular disease mortality in association with elevated particle concentrations. For PM 10 consistent effects were found. Furthermore, the analyses showed that no threshold value could be established, but a linear dose-effect relation. Studies measuring PM 2.5 point to fine particles being mainly responsible for these effects. Current studies show that in addition to fine particles, ultra-fine particles can cause further health effects. (orig.) [de

  7. Handbook on simultaneous x-ray and γ-ray ion beam methods for fine particle analysis

    International Nuclear Information System (INIS)

    Cohen, D.D.

    2000-01-01

    Sampling, measurement, characterisation and source appointment of fine atmospheric particles has become increasingly important in recent times. This is due in part to the realisation that the fine particle pollution caused by anthropogenic activities plays a key role in certain aspects of human health, pollution transport and global climate change. This publication discusses accelerator based ion beam analysis (IBA) methods of particle induced X-ray emission (PIXE) and particle induced γ-ray emission (PIGE) as applied to aerosol analysis. These techniques are sensitive, multielemental, mainly non-destructive, require no sample preparation, have short analysis times and can be used to analyse hundreds of filter samples a day in batch processing with minimum operator interaction. The aspects discussed in the publication include: the basics of the techniques; spectrum analysis; system calibration and blank subtraction; quantification; sensitivity; measurement errors

  8. Sintering of Fine Particles in Suspension Plasma Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Leszek Latka

    2010-07-01

    Full Text Available Suspension plasma spraying is a process that enables the production of finely grained nanometric or submicrometric coatings. The suspensions are formulated with the use of fine powder particles in water or alcohol with some additives. Subsequently, the suspension is injected into plasma jet and the liquid additives evaporate. The remaining fine solids are molten and subsequently agglomerate or remain solid, depending on their trajectory in the plasma jet. The coating’s microstructure results from these two groups of particles arriving on a substrate or previously deposited coating. Previous experimental studies carried out for plasma sprayed titanium oxide and hydroxyapatite coatings enabled us to observe either a finely grained microstructure or, when a different suspension injection mode was used, to distinguish two zones in the microstructure. These two zones correspond to the dense zone formed from well molten particles, and the agglomerated zone formed from fine solid particles that arrive on the substrate in a solid state. The present paper focuses on the experimental and theoretical analysis of the formation process of the agglomerated zone. The experimental section establishes the heat flux supplied to the coating during deposition. In order to achieve this, calorimetric measurements were made by applying experimental conditions simulating the real coatings’ growth. The heat flux was measured to be in the range from 0.08 to 0.5 MW/m2,depending on the experimental conditions. The theoretical section analyzes the sintering during the coating’s growth, which concerns the fine particles arriving on the substrate in the solid state. The models of volume, grain boundary and surface diffusion were analyzed and adapted to the size and chemistry of the grains, temperature and time scales corresponding to the suspension plasma spraying conditions. The model of surface diffusion was found to best describe the sintering during suspension

  9. Mercury speciation and fine particle size distribution on combustion of Chinese coals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Wang, Shuxiao; Hao, Jiming [Tsinghua Univ., Beijing (China). Dept. of Environmental Science and Engineering and State Key Joint Lab. of Environment Simulation and Pollution Control; Daukoru, Michael; Torkamani, Sarah; Biswas, Pratim [Washington Univ., St. Louis, MO (United States). Aerosol and Air Quality Research Lab.

    2013-07-01

    Coal combustion is the dominant anthropogenic mercury emission source of the world. Electrostatic precipitator (ESP) can remove almost all the particulate mercury (Hg{sub p}), and wet flue gas desulfurization (WFGD) can retain a large part of the gaseous oxidized mercury (Hg{sup 2+}). Only a small percentage of gaseous elemental mercury (Hg{sup 0}) can be abated by the air pollution control devices (APCDs). Therefore, the mercury behavior across APCDs largely depends on the mercury speciation in the flue gas exhausting from the coal combustor. To better understand the formation process of three mercury species, i.e. Hg{sup 0}, Hg{sup 2+} and Hg{sub p}, in gaseous phase and fine particles, bench-scale measurements for the flue gas exhausting from combustion of different types of coal in a drop-tube furnace set-up, were carried out. It was observed that with the limitation of reaction kinetics, higher mercury concentration in flue gas will lead to lower Hg{sup 2+} proportion. The concentration of chlorine has the opposite effect, not as significantly as that of mercury though. With the chlorine concentration increasing, the proportion of Hg{sup 2+} increases. Combusting the finer coal powder results in the formation of more Hg{sup 2+}. Mineral composition of coal and coal particle size has a great impact on fine particle formation. Al in coal is in favor of finer particle formation, while Fe in coal can benefit the formation of larger particles. The coexistence of Al and Si can strengthen the particle coagulation process. This process can also be improved by the feeding of more or finer coal powder. The oxy-coal condition can make for both the mercury oxidation process and the metal oxidation in the fine particle formation process.

  10. EFFECT OF BODY SIZE ON BREATHING PATTERN AND FINE PARTICLE DEPOSITION IN CHILDREN

    Science.gov (United States)

    Inter-child variability in breathing patterns may contribute to variability in fine particle, lung deposition and morbidity in children associated with those particles. Fractional deposition (DF) of fine particles (2um monodisperse, carnauba wax particles) was measured in healthy...

  11. Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.J.; Bao, J.J.; Yan, J.P.; Liu, J.H.; Song, S.J.; Fan, F.X. [Southeast University, Nanjing (China). School of Energy & Environment

    2010-01-01

    A novel process to remove fine particles with high efficiency by heterogeneous condensation in a wet flue gas desulfurization (WFGD) system is presented. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO{sub 2} absorption zone and at the top of the wet FGD scrubber by adding steam in the gas inlet and above the scrubbing liquid inlet of the scrubber, respectively. The condensational grown droplets were then removed by the scrubbing liquid and a high-efficiency demister. The results show that the effectiveness of the WFGD system for removal of fine particles is related to the SO{sub 2} absorbent employed. When using CaCO{sub 3} and NH{sub 3} {center_dot} H{sub 2}O to remove SO{sub 2} from flue gas, the fine particle removal efficiencies are lower than those for Na2CO{sub 3} and water, and the morphology and elemental composition of fine particles are changed. This effect can be attributed to the formation of aerosol particles in the limestone and ammonia-based FGD processes. The performance of the WFGD system for removal of fine particles can be significantly improved for both steam addition cases, for which the removal efficiency increases with increasing amount of added steam. A high liquid to gas ratio is beneficial for efficient removal of fine particles by heterogeneous condensation of water vapor.

  12. Association of fine particles with respiratory disease mortality: a meta-analysis.

    Science.gov (United States)

    Chang, Xuhong; Zhou, Liangjia; Tang, Meng; Wang, Bei

    2015-01-01

    Short-time exposure to high levels of fine particles (particulate matter with an aerodynamic diameter≤2.5 μm; PM2.5) may trigger respiratory disease, but this association has not been determined. The objective of this study was to evaluate and quantify the short-time exposure to fine particles on respiratory disease mortality. Published articles were obtained from electronic databases and a validity assessment was used. The meta-analysis was conducted with the incorporation of good-quality studies. After applying the inclusion criteria, 9 articles were included in the study. The methodological qualities of the published studies were good, and every study achieved a score of 3. Fine particles were significantly associated with an increase in respiratory mortality risk (for every 10 μg/m3 increment, rate difference [RD]=1.32%, 95% confidence interval [CI]: 0.95%-1.68%; p=.000). These findings indicate that short-time exposure to fine particles could increase the risk of respiratory disease mortality.

  13. Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran

    Science.gov (United States)

    Arhami, Mohammad; Hosseini, Vahid; Zare Shahne, Maryam; Bigdeli, Mostafa; Lai, Alexandra; Schauer, James J.

    2017-03-01

    Frequent air pollution episodes have been reported for Tehran, Iran, mainly because of critically high levels of fine particulate matter (PM2.5). The composition and sources of these particles are poorly known, so this study aims to identify the major components and heavy metals in PM2.5 along with their seasonal trends and associated sources. 24-hour PM2.5 samples were collected at a main residential station every 6 days for a full year from February 2014 to February 2015. The samples were analyzed for ions, organic carbon (including water-soluble and insoluble portions), elemental carbon (EC), and all detectable elements. The dominant mass components, which were determined by means of chemical mass closure, were organic matter (35%), dust (25%), non-sea salt sulfate (11%), EC (9%), ammonium (5%), and nitrate (2%). Organic matter and EC together comprised 44% of fine PM on average (increased to >70% in the colder season), which reflects the significance of anthropogenic urban sources (i.e. vehicles). The contributions of different components varied considerably throughout the year, particularly the dust component that varied from 7% in the cold season to 56% in the hot and dry season. Principal component analyses were applied, resulting in 5 major source factors that explained 85% of the variance in fine PM. Factor 1, representing soil dust, explained 53%; Factor 2 denotes heavy metals mainly found in industrial sources and accounted for 18%; and rest of factors, mainly representing combustion sources, explained 14% of the variation. The levels of major heavy metals were further evaluated, and their trends showed considerable increases during cold seasons. The results of this study provide useful insight to fine PM in Tehran, which could help in identifying their health effects and sources, and also adopting effective control strategies.

  14. Source contributions of fine particulate matter during one winter haze episodes in Xi'an, China

    Science.gov (United States)

    Yang, X.; Wu, Q.

    2017-12-01

    Long-term exposure to high levels of fine particulate matter (PM2.5) is found to be associated with adverse effects on human health, ecological environment and climate change. Identification the major source regions of fine particulate matter are essential to proposing proper joint prevention and control strategies for heavy haze mitigation. In this work, the Comprehensive Air Quality Model with extensions (CAMx) together with the Particulate Source Apportionment Technology (PSAT) and the Weather Research and Forecast Model (WRF), have been applied to analyze the major source regions of PM2.5 in Xi'an during the heavy haze episodes in winter (29, December, 2016 - 5 January 2017), and the framework of the model system is shown in Fig. 1. Firstly, according to the model evaluation of the daily PM2.5 concentrations for the two months, the model has well performance, and the fraction of predictions within a factor of 2 of the observations (FAC2) is 84%, while the correlation coefficient (R) is 0.80 in Xi'an. By using the PSAT in CAMx model, a detailed source region contribution matrix is derived for all points within the Xi'an region and its six surrounding areas, and long-range regional transport. The results show that the local emission in Xi'an is the mainly sources at downtown area, which contributing 72.9% as shown in Fig.2, and the contribution rate of transportations between adjacent areas depends on wind direction. Meanwhile, three different suburban areas selected for detailed analysis in fine particles sources. Comparing to downtown area, the sources of suburban areas are more multiply, and the transportations make the contribution 40%-82%. In the suburban areas, regional inflows play an important role in the fine particles concentrations, indicating a strong need for regional joint emission control efforts. The results enhance the quantitative understanding of the PM2.5 source regions and provide a basis for policymaking to advance the control of pollution

  15. Using multiple continuous fine particle monitors to characterize tobacco, incense, candle, cooking, wood burning, and vehicular sources in indoor, outdoor, and in-transit settings

    Science.gov (United States)

    Ott, Wayne R.; Siegmann, Hans C.

    This study employed two continuous particle monitors operating on different measurement principles to measure concentrations simultaneously from common combustion sources in indoor, outdoor, and in-transit settings. The pair of instruments use (a) photo-charging (PC) operating on the principle ionization of fine particles that responds to surface particulate polycyclic aromatic hydrocarbons (PPAHs), and (b) diffusion charging (DC) calibrated to measure the active surface area of fine particles. The sources studied included: (1) secondhand smoke (cigarettes, cigars, and pipes), (2) incense (stick and cone), (3) candles used as food warmers, (4) cooking (toasting bread and frying meat), (5) fireplaces and ambient wood smoke, and (6) in-vehicle exposures traveling on California arterials and interstate highways. The ratio of the PC to the DC readings, or the PC/DC ratio, was found to be different for major categories of sources. Cooking, burning toast, and using a "canned heat" food warmer gave PC/DC ratios close to zero. Controlled experiments with 10 cigarettes averaged 0.15 ng mm -2 (ranging from 0.11 to 0.19 ng mm -2), which was similar to the PC/DC ratio for a cigar, although a pipe was slightly lower (0.09 ng mm -2). Large incense sticks had PC/DC ratios similar to those of cigarettes and cigars. The PC/DC ratios for ambient wood smoke averaged 0.29 ng mm -2 on 6 dates, or about twice those of cigarettes and cigars, reflecting a higher ratio of PAH to active surface area. The smoke from two artificial logs in a residential fireplace had a PC/DC ratio of 0.33-0.35 ng mm -2. The emissions from candles were found to vary, depending on how the candles were burned. If the candle flickered and generated soot, a higher PC/DC ratio resulted than if the candle burned uniformly in still air. Inserting piece of metal into the candle's flame caused high PPAH emissions with a record PC/DC reading of 1.8 ng mm -2. In-vehicle exposures measured on 43- and 50-min drives on a

  16. Asthma-Related Outcomes in Patients Initiating Extrafine Ciclesonide or Fine-Particle Inhaled Corticosteroids

    Science.gov (United States)

    Postma, Dirkje S.; Dekhuijzen, Richard; van der Molen, Thys; Martin, Richard J.; van Aalderen, Wim; Roche, Nicolas; Guilbert, Theresa W.; Israel, Elliot; van Eickels, Daniela; Khalid, Javaria Mona; Herings, Ron M.C.; Overbeek, Jetty A.; Miglio, Cristiana; Thomas, Victoria; Hutton, Catherine; Hillyer, Elizabeth V.

    2017-01-01

    Purpose Extrafine-particle inhaled corticosteroids (ICS) have greater small airway deposition than standard fine-particle ICS. We sought to compare asthma-related outcomes after patients initiated extrafine-particle ciclesonide or fine-particle ICS (fluticasone propionate or non-extrafine beclomethasone). Methods This historical, matched cohort study included patients aged 12-60 years prescribed their first ICS as ciclesonide or fine-particle ICS. The 2 cohorts were matched 1:1 for key demographic and clinical characteristics over the baseline year. Co-primary endpoints were 1-year severe exacerbation rates, risk-domain asthma control, and overall asthma control; secondary endpoints included therapy change. Results Each cohort included 1,244 patients (median age 45 years; 65% women). Patients in the ciclesonide cohort were comparable to those in the fine-particle ICS cohort apart from higher baseline prevalence of hospitalization, gastroesophageal reflux disease, and rhinitis. Median (interquartile range) prescribed doses of ciclesonide and fine-particle ICS were 160 (160-160) µg/day and 500 (250-500) µg/day, respectively (P<0.001). During the outcome year, patients prescribed ciclesonide experienced lower severe exacerbation rates (adjusted rate ratio [95% CI], 0.69 [0.53-0.89]), and higher odds of risk-domain asthma control (adjusted odds ratio [95% CI], 1.62 [1.27-2.06]) and of overall asthma control (2.08 [1.68-2.57]) than those prescribed fine-particle ICS. The odds of therapy change were 0.70 (0.59-0.83) with ciclesonide. Conclusions In this matched cohort analysis, we observed that initiation of ICS with ciclesonide was associated with better 1-year asthma outcomes and fewer changes to therapy, despite data suggesting more difficult-to-control asthma. The median prescribed dose of ciclesonide was one-third that of fine-particle ICS. PMID:28102056

  17. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibo, E-mail: hbzhang@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Makino, Tomoyuki [National Institute for Agro-Environmental Sciences, Tsukuba 3058604 (Japan); Wu, Longhua [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Nanzyo, Masami [Tohoku University, Sendai 9808576 (Japan)

    2013-03-15

    Highlights: ► A continuous flow ultra-centrifugation method has been developed to obtain fine particles from polluted agricultural soil. ► Pollution source affected the heavy metal fractionation in size-fractions by changing soil particle properties. ► The iron oxides affected the distribution of lead species more than other metals in the smelter dust polluted particles. -- Abstract: The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (<1 μm, <0.6 μm and <0.2 μm) of the submicron particles from the soil polluted by wastewater and smelter dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of <1 μm or less were observed in the soil contaminated by wastewater than by smelter dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessblity of the metals as well as the mobility of the fine particles in soil.

  18. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust

    International Nuclear Information System (INIS)

    Zhang, Haibo; Luo, Yongming; Makino, Tomoyuki; Wu, Longhua; Nanzyo, Masami

    2013-01-01

    Highlights: ► A continuous flow ultra-centrifugation method has been developed to obtain fine particles from polluted agricultural soil. ► Pollution source affected the heavy metal fractionation in size-fractions by changing soil particle properties. ► The iron oxides affected the distribution of lead species more than other metals in the smelter dust polluted particles. -- Abstract: The partitioning of pollutant in the size-fractions of fine particles is particularly important to its migration and bioavailability in soil environment. However, the impact of pollution sources on the partitioning was seldom addressed in the previous studies. In this study, the method of continuous flow ultra-centrifugation was developed to separate three size fractions (<1 μm, <0.6 μm and <0.2 μm) of the submicron particles from the soil polluted by wastewater and smelter dust respectively. The mineralogy and physicochemical properties of each size-fraction were characterized by X-ray diffraction, transmission electron microscope etc. Total content of the polluted metals and their chemical speciation were measured. A higher enrichment factor of the metals in the fractions of <1 μm or less were observed in the soil contaminated by wastewater than by smelter dust. The organic substance in the wastewater and calcite from lime application were assumed to play an important role in the metal accumulation in the fine particles of the wastewater polluted soil. While the metal accumulation in the fine particles of the smelter dust polluted soil is mainly associated with Mn oxides. Cadmium speciation in both soils is dominated by dilute acid soluble form and lead speciation in the smelter dust polluted soil is dominated by reducible form in all particles. This implied that the polluted soils might be a high risk to human health and ecosystem due to the high bioaccessblity of the metals as well as the mobility of the fine particles in soil

  19. Coupling Solute and Fine Particle Transport with Sand Bed Morphodynamics within a Field Experiment

    Science.gov (United States)

    Phillips, C. B.; Ortiz, C. P.; Schumer, R.; Jerolmack, D. J.; Packman, A. I.

    2017-12-01

    Fine suspended particles are typically considered to pass through streams and rivers as wash load without interacting with the bed, however experiments have demonstrated that hyporheic flow causes advective exchange of fine particles with the stream bed, yielding accumulation of fine particle deposits within the bed. Ultimately, understanding river morphodynamics and ecosystem dynamics requires coupling both fine particle and solute transport with bed morphodynamics. To better understand the coupling between these processes we analyze a novel dataset from a controlled field experiment conducted on Clear Run, a 2nd order sand bed stream located within the North Carolina coastal plain. Data include concentrations of continuously injected conservative solutes and fine particulate tracers measured at various depths within the stream bed, overhead time lapse images of bed forms, stream discharge, and geomorphological surveys of the stream. We use image analysis of bed morphodynamics to assess exchange, retention, and remobilization of solutes and fine particles during constant discharge and a short duration experimental flood. From the images, we extract a time series of bedform elevations and scour depths for the duration of the experiment. The high-resolution timeseries of bed elevation enables us to assess coupling of bed morphodynamics with both the solute and fine particle flux during steady state mobile bedforms prior to the flood and to changing bedforms during the flood. These data allow the application of a stochastic modeling framework relating bed elevation fluctuations to fine particle residence times. This combined experimental and modeling approach ultimately informs our ability to predict not only the fate of fine particulate matter but also associated nutrient and carbon dynamics within streams and rivers.

  20. Molecular marker analysis as a guide to the sources of fine organic aerosols

    International Nuclear Information System (INIS)

    Rogge, W.F.; Cass, G.R.; Hildemann, L.M.; Simoneit, B.R.T.

    1992-07-01

    The molecular composition of fine particulate (D p ≥ 2 μm) organic aerosol emissions from the most important sources in the Los Angeles area has been determined. Likewise, ambient concentration patterns for more than 80 single organic compounds have been measured at four urban sites (West Los Angeles, Downtown Los Angeles, Pasadena, and Rubidoux) and at one remote offshore site (San Nicolas Island). It has been found that cholesterol serves as a marker compound for emissions from charbroilers and other meat cooking operations. Vehicular exhaust being emitted from diesel and gasoline powered engines can be traced in the Los Angeles atmosphere using fossil petroleum marker compounds such as steranes and pentacyclic triterpanes (e.g., hopanes). Biogenic fine particle emission sources such as plant fragments abraded from leaf surfaces by wind and weather can be traced in the urban atmosphere. Using distinct and specific source organic tracers or assemblages of organic compounds characteristic for the sources considered it is possible to estimate the influence of different source types at any urban site where atmospheric data are available

  1. Role of hydrotreating products in deposition of fine particles in reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Chung, K.; Gray, M.R. [University of Alberta, Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2001-06-11

    Hydrotreating reactions may affect the deposition of fine particles, which can eventually lead to reactor plugging. The deposition of fine particles from gas oil was measured in an internally recirculating reactor at 375{degree}C under hydrogen. H{sub 2}S from hydrodesulfurization would convert corrosion products to metal sulfides. Iron sulfide deposited rapidly in the packed bed because the mineral surface did not retain a stabilizing layer of asphaltenic material. Addition of water, to test the role of hydrodeoxygenation, doubled the deposition of clay particles by reducing the surface coating of organic material. Neither ammonia or quinoline had any effect on particle deposition, therefore, hydrodenitrogenation did not affect particle behavior. 16 refs., 4 figs., 3 tabs.

  2. Source apportionment of fine organic aerosols in Beijing

    Directory of Open Access Journals (Sweden)

    S. Guo

    2009-11-01

    Full Text Available Fine particles (PM2.5, i.e., particles with an aerodynamic diameter of ≤2.5 μm were collected from the air in August 2005, August–September 2006, and January–February 2007, in Beijing, China. The chemical compositions of particulate organic matter in the ambient samples were quantified by gas chromatography/mass spectrometry. The dominant compounds identified in summertime were n-alkanoic acids, followed by dicarboxylic acids and sugars, while sugars became the most abundant species in winter, followed by polycyclic aromatic hydrocarbons, n-alkanes, and n-alkanoic acids. The contributions of seven emission sources (i.e., gasoline/diesel vehicles, coal burning, wood/straw burning, cooking, and vegetative detritus to particulate organic matter in PM2.5 were estimated using a chemical mass balance receptor model. The model results present the seasonal trends of source contributions to organic aerosols. Biomass burning (straw and wood had the highest contribution in winter, followed by coal burning, vehicle exhaust, and cooking. The contribution of cooking was the highest in summer, followed by vehicle exhaust and biomass burning, while coal smoke showed only a minor contribution to ambient organic carbon.

  3. Dynamic Simulation of Random Packing of Polydispersive Fine Particles

    Science.gov (United States)

    Ferraz, Carlos Handrey Araujo; Marques, Samuel Apolinário

    2018-02-01

    In this paper, we perform molecular dynamic (MD) simulations to study the two-dimensional packing process of both monosized and random size particles with radii ranging from 1.0 to 7.0 μm. The initial positions as well as the radii of five thousand fine particles were defined inside a rectangular box by using a random number generator. Both the translational and rotational movements of each particle were considered in the simulations. In order to deal with interacting fine particles, we take into account both the contact forces and the long-range dispersive forces. We account for normal and static/sliding tangential friction forces between particles and between particle and wall by means of a linear model approach, while the long-range dispersive forces are computed by using a Lennard-Jones-like potential. The packing processes were studied assuming different long-range interaction strengths. We carry out statistical calculations of the different quantities studied such as packing density, mean coordination number, kinetic energy, and radial distribution function as the system evolves over time. We find that the long-range dispersive forces can strongly influence the packing process dynamics as they might form large particle clusters, depending on the intensity of the long-range interaction strength.

  4. Fine particles in the Soufriere eruption plume

    Science.gov (United States)

    Woods, D. C.; Chuan, R. L.

    1982-01-01

    The size distributions of fine particles measured at tropospheric altitudes in the periphery of the eruption plume formed during the April 17, 1979 eruption of Soufriere Volcano and in the low-level effluents on May 15, 1979 were found to be bimodal, having peak concentrations at geometric mean diameters of 1.1 and 0.23 micrometers. Scanning electron microscopy and energy-dispersive X-ray analysis of the samples revealed an abundance of aluminum and silicon and traces of sodium, magnesium, chlorine, potassium, calcium, and iron in the large-particle mode. The submicrometer-sized particles were covered with liquid containing sulfur, assumed to be in the form of liquid sulfuric acid.

  5. Correlation of light transmittance with asthma attack: fine water particles as a possible inducing factor of asthma.

    Science.gov (United States)

    Kanaya, Kazuo; Okamoto, Koji; Shimbo, Shinichiro; Ikeda, Masayuki

    2011-01-01

    It has been postulated that air-borne fine water particles (or mist) can induce asthma attacks in asthmatic children. To date, no attempt has been made to quantify the density of air-borne fine water particles with the aim of relating particle density to the etiology of asthma among children. The aim of this study was to investigate the relation of asthma attack frequency and the particle density evaluated in terms of light transmittance. The density of fine water particles was quantified by measuring reductions in light transmittance at 250, 365 and 580 nm at an outdoor location when the surroundings were in darkness. The measurements were made at distances varying from 1 to 3 m from the light sources and performed every morning and evening for 1 year. Each day was separated into two half-day units [i.e., morning (from midnight to noon) and afternoon (from noon to midnight)]. The number of asthma attacks among 121 enrolled asthmatic children was counted for each unit. A possible correlation between the transmittance reduction and frequency of asthma attacks was assessed. A significant difference was observed in the extent of reduction in light transmittance at 365 nm between the units with asthma attacks and those without attacks. Furthermore, the reduction in the transmittance was more evident when more asthma attacks were recorded among the patients. No difference was detected in the reduction in light transmittance at 250 or 580 nm. These results support the hypothesis that air-borne fine water particles are among the etiological factors that induce asthma attacks in asthmatic children.

  6. Computer Models Simulate Fine Particle Dispersion

    Science.gov (United States)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  7. A new approach to the combination of IBA techniques and wind back trajectory data to determine source contributions to long range transport of fine particle air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, David D., E-mail: dcz@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Crawford, Jagoda; Stelcer, Eduard; Atanacio, Armand [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2012-02-15

    A new approach to link HYSPLIT back trajectories to the source of fine particle pollution as characterised by standard IBA techniques is discussed. The example of the long range transport of desert dust from inland Australia across the eastern coast is used to show that over a 10-year period extreme soil events originated from major agricultural regions some 30% of the time and that dust from known deserts are not always the problem.

  8. Chemical characteristics of fine particles emitted from different gas cooking methods

    Science.gov (United States)

    See, Siao Wei; Balasubramanian, Rajasekhar

    Gas cooking is an important indoor source of fine particles (PM 2.5). The chemical characteristics of PM 2.5 emitted from different cooking methods, namely, steaming, boiling, stir-frying, pan-frying and deep-frying were investigated in a domestic kitchen. Controlled experiments were conducted to measure the mass concentration of PM 2.5 and its chemical constituents (elemental carbon (EC), organic carbon (OC), polycyclic aromatic hydrocarbons (PAHs), metals and ions) arising from these five cooking methods. To investigate the difference in particle properties of different cooking emissions, the amount and type of food, and the heat setting on the gas stove were kept constant during the entire course of the experiments. Results showed that deep-frying gave rise to the largest amount of PM 2.5 and most chemical components, followed by pan-frying, stir-frying, boiling, and steaming. Oil-based cooking methods released more organic pollutants (OC, PAHs, and organic ions) and metals, while water-based cooking methods accounted for more water-soluble (WS) ions. Their source profiles are also presented and discussed.

  9. The Effect Of Fine Particle Migration On Void Ratio Of Gap Graded Soil

    Directory of Open Access Journals (Sweden)

    Mayssa Salem Flayh

    2017-12-01

    Full Text Available Soil is exposed to the migration of fine particles in some cases because of some conditions including excavation and the presence of a level of groundwater which is equal to the level of soil in this case and because of the existence of this water leakage which would work on the migration of fine particles in the soil. This migration of fine particles will change the structure of the soil and change its properties. In this study we will know the change in the properties of the fouling soil due to the migration of fine particles and four types of soil. The first type does not contain fine particles and the second type the third and the fourth contains 10 20 30 granules respectively and tests were carried out for these soils Atterberg limits sieve analysis specific gravity shear resistance permeability modified Procter consolidation. A model was created to simulate the reality of soil exposed to excavations. Three levels were selected in the model to compare the results of each of the four soils under study. The total number of models 24 model through laboratory work obtained the initial and final voids ratio before and after aft the initial and final voids ratio er the particles migration. After these tests it was found that the migration of granules clearly affects the increase in the voids ratio.

  10. Fine Particle Matter (PM2.5) Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Fine particulate matter or PM2.5 (total mass of particles below 2.5 micron is diameter) is known to cause adverse health effects in humans.See the following websites...

  11. Performance of a New Fine Particle Impact Damper

    Directory of Open Access Journals (Sweden)

    Yanchen Du

    2008-01-01

    Full Text Available The energy dissipation mechanisms of conventional impact damper (CID are mainly momentum exchange and friction. During the impact process, a lot of vibration energy cannot be exhausted but reverberated among the vibration partners. Besides, the CID may produce the additional vibration to the system or even amplify the response in the low-frequency vibration. To overcome these shortcomings, this paper proposes a new fine particle impact damper (FPID which for the first time introduces the fine particle plastic deformation as an irreversible energy sink. Then, the experiments of the cantilevered beam with the CID and that with the FPID are, respectively, carried out to investigate the behavior of FPID. The experimental results indicate that the FPID has a better performance in vibration damping than in the CID and the FPID works well in control of the vibration with frequency lower than 50 Hz, which is absent to the non-obstructive particle damper. Thus, the FPID has a bright and significant application future because most of the mechanical vibration falls in the range of low freqency.

  12. Fine particle magnetic mineralogy of archaeological ceramics

    International Nuclear Information System (INIS)

    Atkinson, D; King, J A

    2005-01-01

    This study investigated the magnetic mineralogy of a worldwide collection of archaeological pottery. The mineral types, the mass fractions and the domain states of the constituent magnetic fine particles were elucidated from a range of measurements including magnetic hysteresis behaviour, the acquisition of isothermal remanence, low field susceptibility and thermomagnetic curves. The magnetic mineralogy of most samples was dominated by magnetite. Titanomagnetites with limited titanium substitution and cation deficient magnetites (indicative of low temperature oxidation) were dominant in some samples. Haematite was detected in 53% of the samples, but seldom contributed much to the saturation magnetization. Magnetic particle sizes are skewed to smaller sizes, with sherds mostly having a large superparamagnetic or a stable single domain fraction. Low temperature susceptibility data suggest that 30% of samples had some multidomain component. The percentage by mass of magnetic material in the ancient pottery studied was less than 0.8% for all but one of the samples and the majority of samples contain less than 0.3% by weight of magnetic fine particles. The presence of low temperature oxidation in many samples and the occurrence of a multidomain component in a third of the collection suggest that ancient pottery may not always be suitable for determining the intensity of the ancient geomagnetic field

  13. Health impacts due to personal exposure to fine particles caused by insulation of residential buildings in Europe

    Science.gov (United States)

    Gens, Alexandra; Hurley, J. Fintan; Tuomisto, Jouni T.; Friedrich, Rainer

    2014-02-01

    The insulation of residential buildings affects human exposure to fine particles. According to current EU guidelines, insulation is regulated for energy saving reasons. As buildings become tighter, the air exchange rate is reduced and, thus, the indoor concentration of pollutants is increased if there are significant indoor sources. While usually the effects of heat insulation and increase of the air-tightness of buildings on greenhouse gas emissions are highlighted, the negative impacts on human health due to higher indoor concentrations are not addressed. Thus, we investigated these impacts using scenarios in three European countries, i. e. Czech Republic, Switzerland and Greece. The assessment was based on modelling the human exposure to fine particles originating from sources of particles within outdoor and indoor air, including environmental tobacco smoke. Exposure response relationships were derived to link (adverse) health effects to the exposure. Furthermore, probable values for the parameters influencing the infiltration of fine particles into residential buildings were modelled. Results show that the insulation and increase of the air-tightness of residential buildings leads to an overall increase of the mean population exposure - and consequently adverse health effects - in all considered countries (ranging for health effects from 0.4% in Czech Republic to 11.8% in Greece for 100% insulated buildings) due to an accumulation of particles indoors, especially from environmental tobacco smoke. Considering only the emission reductions in outdoor air (omitting changes in infiltration parameters) leads to a decrease of adverse health effects. This study highlights the importance of ensuring a sufficient air exchange rate when insulating buildings, e. g. by prescribing heat ventilation and air conditioning systems in new buildings and information campaigns on good airing practice in renovated buildings. It also shows that assessing policy measures based on the

  14. The dispersion of fine chitosan particles by beads-milling

    Science.gov (United States)

    Rochima, Emma; Utami, Safira; Hamdani, Herman; Azhary, Sundoro Yoga; Praseptiangga, Danar; Joni, I. Made; Panatarani, Camellia

    2018-02-01

    This research aimed to produce fine chitosan particles from a crab shell waste by beads-milling method by two different concentration of PEG as dispersing agent (150 and 300 wt. %). The characterization was performed to obtain the size and size distribution, the characteristics of functional groups and the degree of deacetylation. The results showed that the chitosan fine particles was obtained with a milling time 120 minutes with the best concentration of PEG 400 150 wt. %. The average particle size of the as-prepared suspension is 584 nm after addition of acetic acid solution (1%, v/v). Beads milling process did not change the glucosamine and N-acetylglucosamine content on chitosan structure which is indicated by degree of deacetylation higher than 70%. It was concluded that beads milling process can be applied to prepare chitosan fineparticles by proper adjustment in the milling time, pH and dosage of dispersing agent.

  15. The sedimentation of fine particles in liquid foams

    OpenAIRE

    Rouyer , Florence; Fritz , Christelle; Pitois , Olivier

    2010-01-01

    International audience; We investigate the sedimentation of fine particles in liquid channels of foams. The study combines numerical simulations with experiments performed in foams and in isolated vertical foam channels. Results show that particulate motion is controlled by the confinement parameter (l) and the mobility of the channel surfaces modelled by interfacial shear viscosity. Interestingly, whereas the position of the particle within the channel cross-section is expected to be a relev...

  16. Experimental investigation on improving the removal effect of WFGD system on fine particles by heterogeneous condensation

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Jingjing; Yang, Linjun; Yan, Jinpei; Xiong, Guilong; Shen, Xianglin [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Heterogeneous condensation of water vapor as a preconditioning technique for the removal of fine particles from flue gas was investigated experimentally in a wet flue gas desulfurization (WFGD) system. A supersaturated vapor phase, necessary for condensational growth of fine particles, was achieved in the SO{sub 2} absorption zone and at the top of the wet FGD scrubber by adding steam in the gas inlet and above the scrubbing liquid inlet of the scrubber, respectively. The condensational grown droplets were then removed by the scrubbing liquid and a high-efficiency demister. The results show that the effectiveness of the WFGD system for removal of fine particles is related to the SO{sub 2} absorbent and the types of scrubber employed. Despite a little better effectiveness for the removal of fine particles in the rotating-stream-tray scrubber at the same liquid-to-gas ratio, The similar trends are obtained between the spray scrubber and rotating-stream-tray scrubber. Due to the formation of aerosol particles in the limestone and ammonia-based FGD processes, the fine particle removal efficiencies are lower than those for Na{sub 2}CO{sub 3} and water. The performance of the WFGD system for removal of fine particles can be significantly improved for both steam addition cases, for which the removal efficiency increases with increasing amount of added steam. A high liquid to gas ratio is beneficial for efficient removal of fine particles by heterogeneous condensation of water vapor.

  17. Retention and Migration of Fine Organic Particles within an Agricultural Stream: Toenepi, Waikato, New Zealand

    Science.gov (United States)

    Drummond, J. D.; Davies-Colley, R.; Stott, R.; Sukias, J.; Nagels, J.; Sharp, A.; Packman, A. I.

    2013-12-01

    Fine organic particle dynamics are important to stream biogeochemistry, ecology, and transport of contaminant microbes. These particles migrate downstream through a series of deposition and resuspension events, which results in a wide range of residence times. This retention influences biogeochemical processing and in-stream stores of contaminant microbes that may mobilize during flood events and present a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into organic particle dynamics in streams, with a campaign of experiments and modeling. The results should improve understanding of nutrient (C, N, P) spiraling and fine sediment movement in streams, and have particular application to microbial hazards. We directly measure microbial transport by including the indicator organism, E. coli, as a tracer, which is compared to a fluorescent inert particle tracer and conservative solute to gain insight on both microbial ecology and waterborne disease transmission. We developed a stochastic model to describe the transport and retention of fine suspended particles in rivers, including advective delivery of particles to the streambed, transport through porewaters, and reversible filtration within the streambed. Because fine particles are only episodically transported in streams, with intervening periods at rest in the bed, this transport process violates conventional advection-dispersion assumptions. Instead we adopt a stochastic mobile-immobile model formulation to describe fine particle transport. We apply this model to measurements of particle transport from multiple tracer experiments in an agricultural stream in the Waikato dairy region of New Zealand, and use the model to improve interpretation of baseflow particle dynamics. Our results show the importance of the benthic and hyporheic regions and in-stream vegetation as a reservoir for fine organic particles in streams.

  18. Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS, Brazil

    Science.gov (United States)

    Teixeira, Elba Calesso; Agudelo-Castañeda, Dayana M.; Fachel, Jandyra Maria Guimarães; Leal, Karen Alam; Garcia, Karine de Oliveira; Wiegand, Flavio

    2012-11-01

    The purpose of the present study was to evaluate the polycyclic aromatic hydrocarbons (PAHs) in fine (PM2.5) and coarse particles (PM2.5-10) in an urban and industrial area in the Metropolitan Area of Porto Alegre (MAPA), Brazil. Sixteen U.S. Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) were measured. Filters containing ambient air particulate were extracted with dichloromethane using Soxhlet. Extracts were later analyzed, for determining PAH concentrations, using a gaseous chromatograph coupled with a mass spectrometer (GC-MS). The polycyclic aromatic hydrocarbons (PAHs) were more concentrated in PM2.5 with an average of 70% of total PAHs in the MAPA. The target PAH apportionment among the main emission sources was carried out by diagnostic PAH concentration ratios, and principal component analysis (PCA). PAHs with higher molecular weight showed higher percentages in the fine particles in the MAPA. Based on the diagnostic ratios and PCA analysis, it may be concluded that the major contribution of PAHs was from vehicular sources (diesel and gasoline), especially in the PM2.5 fraction, as well as coal and wood burning. The winter/summer ratio in the PM2.5 and PM2.5-10 fractions in the MAPA was 3.1 and 1.8, respectively, revealing the seasonal variation of PAHs in the two fractions. The estimated toxicity equivalent factor (TEF), used to assess the contribution of the carcinogenic potency, confirms a significant presence of the moderately active carcinogenic PAHs BaP and DahA in the samples collected in the MAPA.

  19. Synthesis of AlN fine particles by surface corona discharge-CVD; Enmen corona hoden CVD ni yoru AlN biryushi no gosei

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y.; Chiba, S. [Hokkaido National Industrial Research Institute, Sapporo (Japan); Harima, K> ; Kondo, K.; Shinohara, K. [Hokkaido University, Sapporo (Japan)

    1994-09-15

    With an objective to improve insulating and heat dissipating substrates substituting for the conventional alumina substrates, discussions been given on synthesis of AlN fine particles by means of gaseous phase reaction between AlCl3 and NH3 using surface corona discharge as a reaction exciting source. AIN particles should be highly pure to acquire high-heat conductivity, and fine and uniform particles to obtain dense sinters at low temperatures. The particles obtained by using the present method were amorphous particles having nearly spherical form and smooth surface. The particle diameter depends on the initial concentration of AlCl3, and is proportional to 0.4 square of the concentration. Within the range in the present experiment, the diameters ranged from 208 nm to 431 nm. The particle diameter increased in proportion to 0.2 square of an average gas stagnating time within the plasma generating region. The particle size distribution consisted of highly uniform fine particles having the standard deviation at about the same degree as that in the conventional thermal CVD process. The alumina-based oxygen was removed completely by reduction due to graphite powder, but the re-oxidation during removal of the remaining graphite using combustion had oxygen remained at 7.4% by weight. 16 refs., 7 figs.

  20. Levels, chemical composition and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin

    International Nuclear Information System (INIS)

    Caggiano, Rosa; Macchiato, Maria; Trippetta, Serena

    2010-01-01

    Daily samples of fine aerosol particles (i.e., PM1, aerosol particles with an aerodynamic diameter less than 1.0 μm) were collected in Tito Scalo - Southern Italy - from April 2006 to March 2007. Measurements were performed by means of a low-volume gravimetric sampler, and each PM1 sample was analyzed by means of Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Atomic Absorption Spectrometry (GFAAS and FAAS) techniques in order to determine its content in fourteen trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Ti and Zn). During the period examined, PM1 daily concentrations ranged between 0.3 μg m -3 and 55 μg m -3 with a mean value of 8 μg m -3 , a standard deviation of 7 μg m -3 and a median value of 6 μg m -3 . As far as PM1 chemical composition is concerned, the mean values of the trace element concentrations decreased in the following order: Ca > Fe > Al > Na > K > Cr > Mg > Pb > Ni ∼ Ti ∼ Zn > Cd ∼ Cu > Mn. Principal Component Analysis (PCA) allowed the identification of three probable PM1 sources: industrial emissions, traffic and re-suspension of soil dust. Moreover, the results of a procedure applied to study the potential long-range transport contribution to PM1 chemical composition, showed that trace element concentrations do not seem to be affected by air mass origin and path. This was probably due to the strong impact of the local emission sources and the lack of the concentration measurements of some important elements and compounds that could better reveal the long-range transport influence on PM1 measurements at ground level.

  1. Levels, chemical composition and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin.

    Science.gov (United States)

    Caggiano, Rosa; Macchiato, Maria; Trippetta, Serena

    2010-01-15

    Daily samples of fine aerosol particles (i.e., PM1, aerosol particles with an aerodynamic diameter less than 1.0mum) were collected in Tito Scalo - Southern Italy - from April 2006 to March 2007. Measurements were performed by means of a low-volume gravimetric sampler, and each PM1 sample was analyzed by means of Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Atomic Absorption Spectrometry (GFAAS and FAAS) techniques in order to determine its content in fourteen trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Ti and Zn). During the period examined, PM1 daily concentrations ranged between 0.3microgm(-3) and 55microgm(-3) with a mean value of 8 microg m(-3), a standard deviation of 7microgm(-3) and a median value of 6microgm(-3). As far as PM1 chemical composition is concerned, the mean values of the trace element concentrations decreased in the following order: Ca>Fe>Al>Na>K>Cr>Mg>Pb>Ni approximately Ti approximately Zn>Cd approximately Cu>Mn. Principal Component Analysis (PCA) allowed the identification of three probable PM1 sources: industrial emissions, traffic and re-suspension of soil dust. Moreover, the results of a procedure applied to study the potential long-range transport contribution to PM1 chemical composition, showed that trace element concentrations do not seem to be affected by air mass origin and path. This was probably due to the strong impact of the local emission sources and the lack of the concentration measurements of some important elements and compounds that could better reveal the long-range transport influence on PM1 measurements at ground level. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Chemical characterzation of fine particle emissions from the fireplace combustion of woods grown in the Southern United States.

    Science.gov (United States)

    Fine, Philip M; Cass, Glen R; Simoneit, Bernd R T

    2002-04-01

    The fireplace combustion of wood is a significant and largely unregulated source of fine particle pollution in the United States. Source apportionment techniques that use particulate organic compounds as tracers have been successful in determining the contribution of wood smoke to ambient fine particle levels in specific areas in California. To apply these techniques to the rest of the United States, the differences in emissions profiles between different wood smoke sources and fuel types should be resolved. To this end, a series of fireplace source tests was conducted on six fuel wood species found in the Southern United States to determine fine particulate emission factors for total mass, ionic and elemental species, elemental and organic carbon, and over 250 individual organic compounds. The wood species tested, chosen for their high abundance and availability in the Southern U.S. region, were yellow poplar, white ash, sweetgum, mockernut hickory, loblolly pine, and slash pine. The differences in the emissions of compounds such as substituted phenols and resin acids help to distinguish between the smoke from hardwood and softwood combustion. Levoglucosan, a cellulose pyrolysis product which may serve as a tracer for wood smoke in general, was quantified in the emissions from all the wood species burned. The furofuran lignan, yangambin, which was emitted in significant quantities from yellow poplar combustion and not detected in any of the other North American wood smokes, is a potential species-specific molecular tracer which may be useful in qualitatively identifying particulate emissions from a specific geographical area where yellow poplar is being burned.

  3. Fine particles from Independence Day fireworks events: chemical characterization and source apportionment

    Science.gov (United States)

    Zhang, J.; Lance, S.; Freedman, J. M.; Yele, S.; Crandall, B.; Wei, X.; Schwab, J. J.

    2017-12-01

    To study the impact of fireworks (FW) events on air quality, aerosol particles from FW displays were measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and collocated instruments during the Independence Day holiday 2017 in Albany, NY. Three FW events were identified through potassium ion (K+) signals in the mass spectra. The largest FW event signal measured at two different locations was the Independence Day celebration in Albany, with maximum aerosol concentrations of about 55 ug/m3 at the downtown site and 35 ug/m3 at the uptown site. The aerosol concentration peaked at the uptown site about 2 hours later than at the downtown site. FW events resulted in significant increases in both organic and inorganic (K+, sulfate, chloride) compounds. Among the organics, Positive Matrix Factorization (PMF) identified one special FW organic aerosol factor (FW-OA), which was highly oxidized. The intense emission of FW particles from the Independence Day celebration contributed 76% of total PM1 at the uptown site. The aerosol and wind LiDAR measurements showed two distinct pollution sources, one from the Independence Day FW event in Albany, and another aerosol source transported from other areas, potentially associated with other town's FW events.

  4. Restraint of fatigue crack growth by wedge effects of fine particles

    CERN Document Server

    Takahashi, I; Kotani, N

    2000-01-01

    Presents some experimental results which demonstrate restraint of fatigue crack growth in an Al-Mg alloy by wedge effects of fine particles. Fatigue test specimens were machined from a JIS A5083P-O Al-Mg alloy plate of 5 mm thickness and an EDM starter notch was introduced to each specimen. Three kinds of fine particles were prepared as the materials to be wedged into the fatigue cracks, i.e. magnetic particles and two kinds of alumina particles having different mean particle sizes of 47.3 mu m and 15.2 mu m. Particles of each kind were suspended in an oil to form a paste, which was applied on the specimen surface covering the notch zone prior to the fatigue tests. In order to make some fracture mechanics approaches, in situ observations of fatigue cracks were performed for the two cases using a CCD microscope, with a magnification of *1000. The crack length and the crack opening displacement (COD) at the notch root, delta , were measured. The crack retardation effect continues almost through the entire lifet...

  5. A Constitutive Relationship for Gravelly Soil Considering Fine Particle Suffusion.

    Science.gov (United States)

    Zhang, Yuning; Chen, Yulong

    2017-10-23

    Suffusion erosion may occur in sandy gravel dam foundations that use suspended cutoff walls. This erosion causes a loss of fine particles, degrades the soil strength and deformation moduli, and adversely impacts the cutoff walls of the dam foundation, as well as the overlying dam body. A comprehensive evaluation of these effects requires models that quantitatively describe the effects of fine particle losses on the stress-strain relationships of sandy gravels. In this work, we propose an experimental scheme for studying these types of models, and then perform triaxial and confined compression tests to determine the effects of particle losses on the stress-strain relationships. Considering the Duncan-Chang E-B model, quantitative expressions describing the relationship between the parameters of the model and the particle losses were derived. The results show that particle losses did not alter the qualitative stress-strain characteristics of the soils; however, the soil strength and deformation moduli were degraded. By establishing the relationship between the parameters of the model and the losses, the same model can then be used to describe the relationship between sandy gravels and erosion levels that vary in both time and space.

  6. A Constitutive Relationship for Gravelly Soil Considering Fine Particle Suffusion

    Directory of Open Access Journals (Sweden)

    Yuning Zhang

    2017-10-01

    Full Text Available Suffusion erosion may occur in sandy gravel dam foundations that use suspended cutoff walls. This erosion causes a loss of fine particles, degrades the soil strength and deformation moduli, and adversely impacts the cutoff walls of the dam foundation, as well as the overlying dam body. A comprehensive evaluation of these effects requires models that quantitatively describe the effects of fine particle losses on the stress-strain relationships of sandy gravels. In this work, we propose an experimental scheme for studying these types of models, and then perform triaxial and confined compression tests to determine the effects of particle losses on the stress-strain relationships. Considering the Duncan-Chang E-B model, quantitative expressions describing the relationship between the parameters of the model and the particle losses were derived. The results show that particle losses did not alter the qualitative stress-strain characteristics of the soils; however, the soil strength and deformation moduli were degraded. By establishing the relationship between the parameters of the model and the losses, the same model can then be used to describe the relationship between sandy gravels and erosion levels that vary in both time and space.

  7. A Modelling Approach on Fine Particle Spatial Distribution for Street Canyons in Asian Residential Community

    Science.gov (United States)

    Ling, Hong; Lung, Shih-Chun Candice; Uhrner, Ulrich

    2016-04-01

    Rapidly increasing urban pollution poses severe health risks.Especially fine particles pollution is considered to be closely related to respiratory and cardiovascular disease. In this work, ambient fine particles are studied in street canyons of a typical Asian residential community using a computational fluid dynamics (CFD) dispersion modelling approach. The community is characterised by an artery road with a busy traffic flow of about 4000 light vehicles (mainly cars and motorcycles) per hour at rush hours, three streets with hundreds light vehicles per hour at rush hours and several small lanes with less traffic. The objective is to study the spatial distribution of the ambient fine particle concentrations within micro-environments, in order to assess fine particle exposure of the people living in the community. The GRAL modelling system is used to simulate and assess the emission and dispersion of the traffic-related fine particles within the community. Traffic emission factors and traffic situation is assigned using both field observation and local emissions inventory data. High resolution digital elevation data (DEM) and building height data are used to resolve the topographical features. Air quality monitoring and mobile monitoring within the community is used to validate the simulation results. By using this modelling approach, the dispersion of fine particles in street canyons is simulated; the impact of wind condition and street orientation are investigated; the contributions of car and motorcycle emissions are quantified respectively; the residents' exposure level of fine particles is assessed. The study is funded by "Taiwan Megacity Environmental Research (II)-chemistry and environmental impacts of boundary layer aerosols (Year 2-3) (103-2111-M-001-001-); Spatial variability and organic markers of aerosols (Year 3)(104-2111-M-001 -005 -)"

  8. Theoretical Studies of Strongly Interacting Fine Particle Systems

    Science.gov (United States)

    Fearon, Michael

    Available from UMI in association with The British Library. A theoretical analysis of the time dependent behaviour of a system of fine magnetic particles as a function of applied field and temperature was carried out. The model used was based on a theory assuming Neel relaxation with a distribution of particle sizes. This theory predicted a linear variation of S_{max} with temperature and a finite intercept, which is not reflected by experimental observations. The remanence curves of strongly interacting fine-particle systems were also investigated theoretically. It was shown that the Henkel plot of the dc demagnetisation remanence vs the isothermal remanence is a useful representation of interactions. The form of the plot was found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is investigated. These results are consistent with a previous experimental study. Finally the results of the noise power spectral density for erased and saturated recording media are presented, so that characterisation of interparticle interactions may be carried out with greater accuracy.

  9. Microbial and Organic Fine Particle Transport Dynamics in Streams - a Combined Experimental and Stochastic Modeling Approach

    Science.gov (United States)

    Drummond, Jen; Davies-Colley, Rob; Stott, Rebecca; Sukias, James; Nagels, John; Sharp, Alice; Packman, Aaron

    2014-05-01

    Transport dynamics of microbial cells and organic fine particles are important to stream ecology and biogeochemistry. Cells and particles continuously deposit and resuspend during downstream transport owing to a variety of processes including gravitational settling, interactions with in-stream structures or biofilms at the sediment-water interface, and hyporheic exchange and filtration within underlying sediments. Deposited cells and particles are also resuspended following increases in streamflow. Fine particle retention influences biogeochemical processing of substrates and nutrients (C, N, P), while remobilization of pathogenic microbes during flood events presents a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into the dynamics of fine particles and microbes in streams, with a campaign of experiments and modeling. The results improve understanding of fine sediment transport, carbon cycling, nutrient spiraling, and microbial hazards in streams. We developed a stochastic model to describe the transport and retention of fine particles and microbes in rivers that accounts for hyporheic exchange and transport through porewaters, reversible filtration within the streambed, and microbial inactivation in the water column and subsurface. This model framework is an advance over previous work in that it incorporates detailed transport and retention processes that are amenable to measurement. Solute, particle, and microbial transport were observed both locally within sediment and at the whole-stream scale. A multi-tracer whole-stream injection experiment compared the transport and retention of a conservative solute, fluorescent fine particles, and the fecal indicator bacterium Escherichia coli. Retention occurred within both the underlying sediment bed and stands of submerged macrophytes. The results demonstrate that the combination of local measurements, whole-stream tracer experiments, and advanced modeling

  10. Preparation of UO_2 Fine Particle by Hydrolysis of Uranium(IV) Alkoxide

    OpenAIRE

    Satoh, Isamu; Takahashi, Mitsuyuki; Miura, Shigeyuki

    1997-01-01

    Fine particles of uranium(IV) dioxides were obtained by hydrolysis of uranium(IV) ethoxide which was synthesized by reacting uranium tetrachloride with sodium ethoxide. The monodispersed submicrometer particles were confirmed by SEM observation.

  11. Particle size distribution and property of bacteria attached to carbon fines in drinking water treatment

    Directory of Open Access Journals (Sweden)

    Wang Leilei

    2008-06-01

    Full Text Available The quantitative change and size distribution of particles in the effluents from a sand filter and a granular activated carbon (GAC filter in a drinking water treatment plant were investigated. The average total concentration of particles in the sand filter effluent during a filter cycle was 148 particles/mL, 27 of which were larger than 2 µm in size. The concentration in the GAC effluent (561 particles/mL was significantly greater than that in the sand filter effluent. The concentration of particles larger than 2 µm in the GAC filter effluent reached 201 particles/mL, with the amount of particles with sizes between 2 µm and 15 µm increasing. The most probable number (MPN of carbon fines reached 43 unit/L after six hours and fines between 0.45 µm and 8.0 µm accounted for more than 50%. The total concentration of outflowing bacteria in the GAC filter effluent, 350 CFU (colony-forming units/mL, was greater than that in the sand filter effluent, 210 CFU/mL. The desorbed bacteria concentration reached an average of 310 CFU/mg fines. The disinfection efficiency of desorbed bacteria was lower than 40% with 1.5 mg/L of chlorine. The disinfection effect showed that the inactivation rate with 2.0 mg/L of chloramine (90% was higher than that with chlorine (70%. Experimental results indicated that the high particle concentration in raw water and sedimentation effluent led to high levels of outflowing particles in the sand filter effluent. The activated carbon fines in the effluent accounted for a small proportion of the total particle amount, but the existing bacteria attached to carbon fines may influence the drinking water safety. The disinfection efficiency of desorbed bacteria was lower than that of free bacteria with chlorine, and the disinfection effect on bacteria attached to carbon fines with chloramine was better than that with only chlorine.

  12. Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles

    Science.gov (United States)

    Teixeira, Elba Calesso; Garcia, Karine Oliveira; Meincke, Larissa; Leal, Karen Alam

    2011-08-01

    The purpose of the present study was to evaluate six nitro-polycyclic aromatic hydrocarbons (NPAHs) in fine (MAPA), RS, Brazil. The method used was of NPAHs isolation and derivatization, and subsequent gas chromatography by electron capture detection (CG/ECD). Results revealed a higher concentration of NPAHs, especially 3-nitrofluoranthene and 1-nitropyrene, in fine particles in the sampling sites studied within the MAPA. The diagnostic ratios calculated for PAHs and NPAHs identified the influence of heavy traffic, mainly of diesel emissions. The correlation of NPAHs with other pollutants (NO x, NO 2, NO and O 3) evidence the influence of vehicular emissions in the MAPA. The seasonal variation evidenced higher NPAHs concentrations in the fine particles during winter for most compounds studied.

  13. Urban cyclist exposure to fine particle pollution in a rapidly growing city

    Science.gov (United States)

    Luce, B. W.; Barrett, T. E.; Ponette-González, A.

    2017-12-01

    Urban cyclists are exposed to elevated atmospheric concentrations of fine particulate matter (particles vehicle exhaust, which is emitted directly into cyclists' "breathing zone." In cities, human exposure to PM2.5 is a concern because its small size allows it to be inhaled deeper into the lungs than most particles. The aim of this research is to determine "hotspots" (locations with high PM2.5 concentrations) within the Dallas-Fort Worth Metroplex, Texas, where urban cyclists are most exposed to fine particle pollution. Recent research indicates that common exposure hotspots include traffic signals, junctions, bus stations, parking lots, and inclined streets. To identify these and other hotspots, a bicycle equipped with a low-cost, portable, battery-powered particle counter (Dylos 1700) coupled with a Trimble Geo 5T handheld Global Positioning System (GPS; ≤1 m ± resolution) will be used to map and measure particle mass concentrations along predetermined routes. Measurements will be conducted during a consecutive four-month period (Sep-Dec) during morning and evening rush hours when PM2.5 levels are generally highest, as well as during non-rush hour times to determine background concentrations. PM2.5 concentrations will be calculated from particle counts using an equation developed by Steinle et al. (2015). In addition, traffic counts will be conducted along the routes coinciding with the mobile monitoring times. We will present results on identified "hotspots" of high fine particle concentrations and PM2.5 exposure in the City of Denton, where particle pollution puts urban commuters most at risk, as well as average traffic counts from monitoring times. These data can be used to determine pollution mitigation strategies in rapidly growing urban areas.

  14. Sources and Chemical Composition of Atmospheric Fine Particles in Rabigh, Saudi Arabia

    Science.gov (United States)

    Nayebare, S. R.; Aburizaiza, O. S.; Siddique, A.; Hussain, M. M.; Zeb, J.; Khwaja, H. A.

    2014-12-01

    Air pollution research in Saudi Arabia and the whole of Middle East is at its inception, making air pollution in the region a significant problem. This study presents the first detailed data on fine particulate matter (PM2.5) concentrations of Black Carbon (BC), ions, and trace metals at Rabigh, Saudi Arabia, and assesses their sources. Results showed several characteristic aspects of air pollution at Rabigh. Daily levels of PM2.5 and BC showed significant temporal variability ranging from 12.2 - 75.9 µg/m3 and 0.39 - 1.31 µg/m3, respectively. More than 90% of the time, the daily PM2.5 exceeded the 24 h WHO guideline of 20 µg/m3. Sulfate, NO3-, and NH4+ dominated the identifiable components. Trace metals with significantly higher concentrations included Si, S, Ca, Al, Fe, Na, Cl, Mg, K, and Ti, with average concentrations of 3.1, 2.2, 1.6, 1.2, 1.1, 0.7, 0.7, 0.5, 0.4 and 0.1 µg/m3, respectively. Based on the Air Quality Index (AQI), there were 44% days of moderate air quality, 33% days of unhealthy air quality for sensitive groups, and 23% days of unhealthy air quality throughout the study period. Two categories of aerosol trace metal sources were defined: anthropogenic (S, V, Cr, Ni, Cu, Zn, Br, Cd, Sb, and Pb) and naturally derived elements (Si, Al, and Fe). The extent of anthropogenic contribution was estimated by the degree of enrichment of these elements compared to the crustal composition. Soil resuspension and/or mobilization is an important source of "natural" elements, while "anthropogenic" elements originate primarily from fossil fuel combustion and industries. Ni and V correlated strongly pointing to combustion of heavy fuel oil as the likely source. A positive matrix factorization (PMF) was used to obtain information about possible sources. Our study highlights the need for stringent laws on PM2.5 emission control to protect human health and the environment.

  15. Contributions of Organic Sources to Atmospheric Aerosol Particle Concentrations and Growth

    Science.gov (United States)

    Russell, L. M.

    2017-12-01

    Organic molecules are important contributors to aerosol particle mass and number concentrations through primary emissions as well as secondary growth in the atmosphere. New techniques for measuring organic aerosol components in atmospheric particles have improved measurements of this contribution in the last 20 years, including Scanning Transmission X-ray Microscopy Near Edge X-ray Absorption Fine Structure (STXM-NEXAFS), Fourier Transform Infrared spectroscopy (FTIR), and High-Resolution Aerosol Mass Spectrometry (AMS). STXM-NEXAFS individual aerosol particle composition illustrated the variety of morphology of organic components in marine aerosols, the inherent relationships between organic composition and shape, and the links between atmospheric aerosol composition and particles produced in smog chambers. This type of single particle microscopy has also added to size distribution measurements by providing evidence of how surface-controlled and bulk-controlled processes contribute to the growth of particles in the atmosphere. FTIR analysis of organic functional groups are sufficient to distinguish combustion, marine, and terrestrial organic particle sources and to show that each of those types of sources has a surprisingly similar organic functional group composition over four different oceans and four different continents. Augmenting the limited sampling of these off-line techniques with side-by-side inter-comparisons to online AMS provides complementary composition information and consistent quantitative attribution to sources (despite some clear method differences). Single-particle AMS techniques using light scattering and event trigger modes have now also characterized the types of particles found in urban, marine, and ship emission aerosols. Most recently, by combining with off-line techniques, single particle composition measurements have separated and quantified the contributions of organic, sulfate and salt components from ocean biogenic and sea spray

  16. Identification of metals into fine particles (PM2.5) during the dry cold season in the Toluca City

    International Nuclear Information System (INIS)

    Martinez P, A. A.; Aldape U, F.

    2008-01-01

    To know the elemental content of fine particles PM 2.5 that can affect people in the Toluca City, such as metals and another, it was made a campaign collection of fine particles during dry-cold ( November 2006-March 2007). The aerosol samples were collected on Teflon filters with an equipment BGI model PQ200 mark authorized by the Environment Protection Agency (EPA), every other day with a time resolution of 24 h. The determination of the elemental composition of the samples was performed by means of the technique Particle Induced X-Ray Emission (PIXE). The results of the analysis showed consistently 13 elements S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, as, throughout the collection period. We calculated the enrich factor that separates the elements of the natural component of the anthropogenic component. The correlation matrix shows the pairs of elements that are contained in the same air mass as Vanadium and Nickel. From the results it is concluded that the sources that gave rise to these particles are the burning of fossil fuels in motor vehicles, lubricants, additives and burning tires wear of automotive vehicles, besides the products used in agricultural activities. (Author)

  17. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana

    International Nuclear Information System (INIS)

    Zhou, Zheng; Dionisio, Kathie L; Verissimo, Thiago G; Kerr, Americo S; Coull, Brent; Arku, Raphael E; Koutrakis, Petros; Spengler, John D; Vallarino, Jose; Hughes, Allison F; Agyei-Mensah, Samuel; Ezzati, Majid

    2013-01-01

    The highest levels of air pollution in the world now occur in developing country cities, where air pollution sources differ from high-income countries. We analyzed particulate matter (PM) chemical composition and estimated the contributions of various sources to particle pollution in poor and affluent neighborhoods of Accra, Ghana. Elements from earth’s crust were most abundant during the seasonal Harmattan period between late December and late January when Saharan dust is carried to coastal West Africa. During Harmattan, crustal particles accounted for 55 μg m −3 (37%) of fine particle (PM 2.5 ) mass and 128 μg m −3 (42%) of PM 10 mass. Outside Harmattan, biomass combustion, which was associated with higher black carbon, potassium, and sulfur, accounted for between 10.6 and 21.3 μg m −3 of fine particle mass in different neighborhoods, with its contribution largest in the poorest neighborhood. Other sources were sea salt, vehicle emissions, tire and brake wear, road dust, and solid waste burning. Reducing air pollution in African cities requires policies related to energy, transportation and urban planning, and forestry and agriculture, with explicit attention to impacts of each strategy in poor communities. Such cross-sectoral integration requires emphasis on urban environment and urban poverty in the post-2015 Development Agenda. (letter)

  18. Rotating drum tests of particle suspensions within a fines dispersion

    Science.gov (United States)

    Cabrera, Miguel Angel; Gollin, Devis; Kaitna, Roland; Wu, Wei

    2014-05-01

    Natural flows like mudflows, debris flow, and hyperconcentrated flows are commonly composed by a matrix of particles suspended in a viscous fluid. The nature of the interactions between particles immersed in a fluid is related to its size. While coarse particles (sand, gravel, and boulders) interact with each other or with the surrounding fluid, a dispersion of fine particles interacts with each other through colloidal forces or Brownian motion effects (Coussot and Piau, 1995, and Ancey and Jorrot, 2001). The predominance of one of the previous interactions defines the rheology of the flow. On this sense, experimental insight is required to validate the limits where the rheology of a dispersion of fines is valid. For this purpose, an experimental program in a rotating drum is performed over samples of sand, loess, and kaolin. The solid concentration and angular velocity of the rotating drum are varied. Height and normal loads are measured during flow. High-speed videos are performed to obtain the flow patterns of the mixtures. The experiments provide new laboratory evidence of granular mixture behaviour within an increased viscous fluid phase and its characterization. The results show an apparent threshold in terms of solid concentration, in which the mixtures started to behave as a shear-dependent material.

  19. Fine particle number and mass concentration measurements in urban Indian households.

    Science.gov (United States)

    Mönkkönen, P; Pai, P; Maynard, A; Lehtinen, K E J; Hämeri, K; Rechkemmer, P; Ramachandran, G; Prasad, B; Kulmala, M

    2005-07-15

    Fine particle number concentration (D(p)>10 nm, cm(-3)), mass concentrations (approximation of PM(2.5), microg m(-3)) and indoor/outdoor number concentration ratio (I/O) measurements have been conducted for the first time in 11 urban households in India, 2002. The results indicate remarkable high indoor number and mass concentrations and I/O number concentration ratios caused by cooking. Besides cooking stoves that used liquefied petroleum gas (LPG) or kerosene as the main fuel, high indoor concentrations can be explained by poor ventilation systems. Particle number concentrations of more than 300,000 cm(-3) and mass concentrations of more than 1000 microg m(-3) were detected in some cases. When the number and mass concentrations during cooking times were statistically compared, a correlation coefficient r>0.50 was observed in 63% of the households. Some households used other fuels like wood and dung cakes along with the main fuel, but also other living activities influenced the concentrations. In some areas, outdoor combustion processes had a negative impact on indoor air quality. The maximum concentrations observed in most cases were due to indoor combustion sources. Reduction of exposure risk and health effects caused by poor indoor air in urban Indian households is possible by improving indoor ventilation and reducing penetration of outdoor particles.

  20. Sources for charged particles

    International Nuclear Information System (INIS)

    Arianer, J.

    1997-01-01

    This document is a basic course on charged particle sources for post-graduate students and thematic schools on large facilities and accelerator physics. A simple but precise description of the creation and the emission of charged particles is presented. This course relies on every year upgraded reference documents. Following relevant topics are considered: electronic emission processes, technological and practical considerations on electron guns, positron sources, production of neutral atoms, ionization, plasma and discharge, different types of positive and negative ion sources, polarized particle sources, materials for the construction of ion sources, low energy beam production and transport. (N.T.)

  1. Response of consumer and research grade indoor air quality monitors to residential sources of fine particles.

    Science.gov (United States)

    Singer, B C; Delp, W W

    2018-04-23

    The ability to inexpensively monitor PM 2.5 to identify sources and enable controls would advance residential indoor air quality (IAQ) management. Consumer IAQ monitors incorporating low-cost optical particle sensors and connections with smart home platforms could provide this service if they reliably detect PM 2.5 in homes. In this study, particles from typical residential sources were generated in a 120 m 3 laboratory and time-concentration profiles were measured with 7 consumer monitors (2-3 units each), 2 research monitors (Thermo pDR-1500, MetOne BT-645), a Grimm Mini Wide-Range Aerosol Spectrometer (GRM), and a Tapered Element Oscillating Microbalance with Filter Dynamic Measurement System (FDMS), a Federal Equivalent Method for PM 2.5 . Sources included recreational combustion (candles, cigarettes, incense), cooking activities, an unfiltered ultrasonic humidifier, and dust. FDMS measurements, filter samples, and known densities were used to adjust the GRM to obtain time-resolved mass concentrations. Data from the research monitors and 4 of the consumer monitors-AirBeam, AirVisual, Foobot, Purple Air-were time correlated and within a factor of 2 of the estimated mass concentrations for most sources. All 7 of the consumer and both research monitors substantially under-reported or missed events for which the emitted mass was comprised of particles smaller than 0.3 μm diameter. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Deposition of fine and ultrafine particles on indoor surface materials

    DEFF Research Database (Denmark)

    Afshari, Alireza; Reinhold, Claus

    2008-01-01

    -scale test chamber. Experiments took place in a 32 m3 chamber with walls and ceiling made of glass. Prior to each experiment the chamber was flushed with outdoor air to reach an initial particle concentration typical of indoor air in buildings with natural ventilation. The decay of particle concentrations...... The aim of this study was the experimental determination of particle deposition for both different particle size fractions and different indoor surface materials. The selected surface materials were glass, gypsum board, carpet, and curtain. These materials were tested vertically in a full...... was monitored. Seven particle size fractions were studied. These comprised ultrafine and fine particles. Deposition was higher on carpet and curtain than on glass and gypsum board. Particles ranging from 0.3 to 0.5 µm had the lowest deposition. This fraction also has the highest penetration and its indoor...

  3. A New Type of Non-Mechanical Valves for Recirculation of Fine Particles

    DEFF Research Database (Denmark)

    Azizaddini, Seyednezamaddin

    of the thesis is to design a new version of a non-mechanical valve for transportation of the particles and closing the loop in circulating or interconnected fluidized bed systems. As the primary proposal, combination of three assistive methods (tapered fluidized bed, mixture of coarse and fine particles...

  4. Indoor fine particles: the role of terpene emissions from consumer products.

    Science.gov (United States)

    Sarwar, Golam; Olson, David A; Corsi, Richard L; Weschler, Charles J

    2004-03-01

    Consumer products can emit significant quantities of terpenes, which can react with ozone (O3). Resulting byproducts include compounds with low vapor pressures that contribute to the growth of secondary organic aerosols (SOAs). The focus of this study was to evaluate the potential for SOA growth, in the presence of O3, following the use of a lime-scented liquid air freshener, a pine-scented solid air freshener, a lemon-scented general-purpose cleaner, a wood floor cleaner, and a perfume. Two chamber experiments were performed for each of these five terpene-containing agents, one at an elevated O3 concentration and-the other at a lower O3 concentration. Particle number and mass concentrations increased and O3 concentrations decreased during each experiment. Experiments with terpene-based air fresheners produced the highest increases in particle number and mass concentrations. The results of this study clearly demonstrate that homogeneous reactions between O3 and terpenes from various consumer products can lead to increases in fine particle mass concentrations when these products are used indoors. Particle increases can occur during periods of elevated outdoor O3 concentrations or indoor O3 generation, coupled with elevated terpene releases. Human exposure to fine particles can be reduced by minimizing indoor terpene concentrations or O3 concentrations.

  5. ESF collection effectiveness, a study in fine particle dynamics

    International Nuclear Information System (INIS)

    Winegardner, W.K.; Owczarski, P.C.

    1985-04-01

    The characterization and dynamic behavior of fine particles are the main subjects of an ongoing investigation of the particle collection effectiveness of the engineered safety feature (ESF) systems in nuclear power plants. This investigation is part of a larger study of the release of radionuclides to the environment from such plants during postulated accidents that are severe but extremely unlikely. The ESF systems are installed to prevent the occurrence of severe accidents or mitigate their consequences. Several of these engineered systems can serve as particle collection devices. This report focuses on the analytical models that were developed to predict particle behavior in two systems that were not specifically designed for particle retention: the ice compartments of ice condenser containment systems in Pressurized Water Reactors (PWRs) and the suppression pools of Boiling Water Reactors (BWRs). The following section summarizes the topics considered in the development of models and computer codes for estimating the particle retention effectiveness of these two ESF systems. After the summary this paper describes the two ESF systems in more detail and discusses the behavior of particles in both situations

  6. A twelve month study of PM2.5 and PM10 fine particle aerosol composition in the Sydney region using ion beam analysis techniques. Appendix 2

    International Nuclear Information System (INIS)

    Cohen, David D.; Bailey, G.M.; Kondepudi, Ramesh

    1995-01-01

    The accelerator based ion beam (IBA) analysis techniques of PIXE, PIGME, PESA, and RBS have been used to characterise fine particles at selected sites in the Sydney region. The four techniques operating simultaneously provide elemental concentrations on 24 chemical species, including H, Q N, 0, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Ni, Zn, Br and Pb. The total mass and the elemental carbon by laser integrated plate techniques were also measured. A stacked filter system, built by the University of Gent, Belgium and supplied by the IAEA was used to provide fine particle data on PM2.5 and PM10 particles. While a cyclone sampler, built at ANSTO, Lucas Heights, was used to provide data on PM2.5 particles only. The two different types of units were operated along side each other for the whole of 1994 and the results compared. The use of the multi-elemental IBA techniques also allowed for some fine particle source fingerprinting to be performed. (author)

  7. A novel permanently magnetised high gradient magnetic filter using assisted capture for fine particles

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.H.P. [Univ. of Southampton (United Kingdom)

    1995-02-01

    This paper describes the structure and properties of a novel permanently magnetised magnetic filter for fine friable radioactive material. Previously a filter was described and tested. This filter was designed so that the holes in the filter are left open as capture proceeds which means the pressure drop builds up only slowly. This filter is not suitable for friable composite particles which can be broken by mechanical forces. The structure of magnetic part of the second filter has been changed so as to strongly capture particles composed of fine particles weakly bound together which tend to break when captured. This uses a principle of assisted-capture in which coarse particles aid the capture of the fine fragments. The technique has the unfortunate consequence that the pressure drop across the filter rises faster as capture capture proceeds than the filter described previously. These filters have the following characteristics: (1) No external magnet is required. (2) No external power is required. (3) Small is size and portable. (4) Easily interchangeable. (5) Can be cleaned without demagnetising.

  8. New methods and standards for fine dust

    International Nuclear Information System (INIS)

    Spielvogel, Juergen; Hartstock, Stefan; Grimm, Hans

    2009-01-01

    There seems to be common agreement that PM10 is a suboptimal quantity for the quantification of potential dangers from fine dust due to a number of reasons, notably because the chemical composition of the particles is not considered, because the size distribution is disregarded, and because of sampling artefacts. In a first step for improving the particle measurements, the European Community has published new directives for ambient air in June 2008 (EU 2008), which as a main part included new regulations for PM2.5 measurements, in addition to the further on valid regulations for PM10. The comparison of PM2.5 and PM10 may allow a source apportionment and a better assessment of the influence of fine dust on human health. The source apportionment may allow more effective fine dust reduction strategies.

  9. Fine particles flotation of the Moatize coal/Mozambique

    Science.gov (United States)

    Castro, Amilton; de Brum, Irineu A. S.

    2017-11-01

    This study was done from a sample of coal mined at the Vale-Mozambique mine, located in Moatize district, Tete Province. The aim of this work is to analyze the reagent system in the flotation of coal fines belonging to the UCB layer. Among coal processing methods, flotation stands out as one of the most important for the concentration of this material, in particular in the treatment of fine particles. The total feed of the Vale-Mozambique processing plant is 8000 tph of coal, where 10% of this feed corresponds to the fine fraction that feeds the flotation circuit. The material used in this study had a particle size of 96% smaller than 0.25 mm. The reagents used in the flotation tests were Betacol and diesel oil as hydrophobizing agents and MIBC as frother. The range of Betacol concentrations in the first test phase was 200 g / t at 500 g / t, and in the second phase 200 g / t at 500 g / t of diesel oil and MIBC were kept constant at 300 g / t. The immediate analysis followed the Brazilian standards: NBR 8289, NBR 8293, NBR 8290, NBR 8299. The results showed that it is possible, from a feed with the ash content around 22.84%, to obtain products with levels below of 10% ash, with a mass recovery around 50%. The recovery of carbonaceous matter was also evaluated and presented positive results. Complementing this study, the effect of H2O recovery was evaluated and it was observed that for the concentrations of Betacol the recoveries ranged from 6 to 9%, and for diesel oil plus MIBC were 4 to 7%.

  10. Fine particles in homes of predominantly low-income families with children and smokers: Key physical and behavioral determinants to inform indoor-air-quality interventions.

    Science.gov (United States)

    Klepeis, Neil E; Bellettiere, John; Hughes, Suzanne C; Nguyen, Benjamin; Berardi, Vincent; Liles, Sandy; Obayashi, Saori; Hofstetter, C Richard; Blumberg, Elaine; Hovell, Melbourne F

    2017-01-01

    Children are at risk for adverse health outcomes from occupant-controllable indoor airborne contaminants in their homes. Data are needed to design residential interventions for reducing low-income children's pollutant exposure. Using customized air quality monitors, we continuously measured fine particle counts (0.5 to 2.5 microns) over a week in living areas of predominantly low-income households in San Diego, California, with at least one child (under age 14) and at least one cigarette smoker. We performed retrospective interviews on home characteristics, and particle source and ventilation activities occurring during the week of monitoring. We explored the relationship between weekly mean particle counts and interview responses using graphical visualization and multivariable linear regression (base sample n = 262; complete cases n = 193). We found associations of higher weekly mean particle counts with reports of indoor smoking of cigarettes or marijuana, as well as with frying food, using candles or incense, and house cleaning. Lower particle levels were associated with larger homes. We did not observe an association between lower mean particle counts and reports of opening windows, using kitchen exhaust fans, or other ventilation activities. Our findings about sources of fine airborne particles and their mitigation can inform future studies that investigate more effective feedback on residential indoor-air-quality and better strategies for reducing occupant exposures.

  11. Fine particles in homes of predominantly low-income families with children and smokers: Key physical and behavioral determinants to inform indoor-air-quality interventions.

    Directory of Open Access Journals (Sweden)

    Neil E Klepeis

    Full Text Available Children are at risk for adverse health outcomes from occupant-controllable indoor airborne contaminants in their homes. Data are needed to design residential interventions for reducing low-income children's pollutant exposure. Using customized air quality monitors, we continuously measured fine particle counts (0.5 to 2.5 microns over a week in living areas of predominantly low-income households in San Diego, California, with at least one child (under age 14 and at least one cigarette smoker. We performed retrospective interviews on home characteristics, and particle source and ventilation activities occurring during the week of monitoring. We explored the relationship between weekly mean particle counts and interview responses using graphical visualization and multivariable linear regression (base sample n = 262; complete cases n = 193. We found associations of higher weekly mean particle counts with reports of indoor smoking of cigarettes or marijuana, as well as with frying food, using candles or incense, and house cleaning. Lower particle levels were associated with larger homes. We did not observe an association between lower mean particle counts and reports of opening windows, using kitchen exhaust fans, or other ventilation activities. Our findings about sources of fine airborne particles and their mitigation can inform future studies that investigate more effective feedback on residential indoor-air-quality and better strategies for reducing occupant exposures.

  12. Important sources and chemical species of ambient fine particles related to adverse health effects

    Science.gov (United States)

    Heo, J.

    2017-12-01

    Although many epidemiological studies have reported that exposure to ambient fine particulate matter (PM2.5) has been linked to increases in mortality and mobidity health outcomes, the key question of which chemical species and sources of PM2.5 are most harmful to public health remains unanswered in the air pollution research area. This study was designed to address the key question with evaluating the risks of exposure to chemical species and source-specific PM2.5 mass on morbidity. Hourly measurements of PM2.5 mass and its major chemical species, including organic carbon, elemental carbon, ions, and trace elements, were observed from January 1 to December 31, 2013 at four of the PM2.5 supersites in urban environments in Korea and the reuslts were used in a positive matrix factorization to estimate source contributions to PM2.5 mass. Nine sources, including secondary sulfate, secondary nitrate, mobile, biomass burning, roadway emission, industry, oil combustion, soil, and aged sea salt, were identified and secondary inorganic aerosol factors (i.e. secondary sulfalte, and secondary nitrate) were the dominant sources contributing to 40% of the total PM2.5 mass in the study region. In order to evaluate the risks of exposure to chemical species and sources of PM2.5 on morbidity, emergency room visits for cardivascular disease and respiratory disease were considered. Hourly health outcomes were compared with hourly measurments of the PM2.5 chemical species and sources using a poission generalized linear model incorporating natural splines, as well as time-stratified case-crossover design. The PM2.5 mass and speveral chemical components, such as organic carbon, elemetal carbon, zinc, and potassium, were strongly associated with morbidity. Source-apporitionmened PM2.5 mass derived from biomass burning, and mobile sources, was significantly associated with cardiovascular and respiratory diseases. The findings represent that local combustion may be particularly important

  13. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks

    International Nuclear Information System (INIS)

    Taner, Simge; Pekey, Beyhan; Pekey, Hakan

    2013-01-01

    Cooking is a significant source of indoor particulate matter that can cause adverse health effects. In this study, a 5-stage cascade impactor was used to collect particulate matter from 14 restaurants that cooked with charcoal in Kocaeli, the second largest city in Turkey. A total of 24 elements were quantified using ICP-MS. All of the element contents except for Mn were higher for fine particles (PM 2.5 ) than coarse particles (PM >2.5 ), and the major trace elements identified in the PM 2.5 included V, Se, Zn, Cr, As, Cu, Ni, and Pb. Principle component analysis (PCA) and enrichment factor (EF) calculations were used to determine the sources of PM 2.5 . Four factors that explained over 77% of the total variance were identified by the PCA. These factors included charcoal combustion, indoor activities, crustal components, and road dust. The Se, As, Cd, and V contents in the PM 2.5 were highly enriched (EF > 100). The health risks posed by the individual metals were calculated to assess the potential health risks associated with inhaling the fine particles released during charcoal cooking. The total hazard quotient (total HQ) for a PM 2.5 of 4.09 was four times greater than the acceptable limit (i.e., 1.0). In addition, the excess lifetime cancer risk (total ELCR) for PM 2.5 was 1.57 × 10 −4 , which is higher than the acceptable limit of 1.0 × 10 −6 . Among all of the carcinogenic elements present in the PM 2.5 , the cancer risks resulting from Cr(VI) and As exposure were the highest (i.e., 1.16 × 10 −4 and 3.89 × 10 −5 , respectively). Overall, these results indicate that the lifetime cancer risk associated with As and Cr(VI) exposure is significant at selected restaurants, which is of concern for restaurant workers. - Highlights: • Particulate emissions from charcoal combustion in the BBQ restaurants were studied. • Vanadium, Se, Zn, Cr and As were found as high concentrations in PM 2.5 . • Charcoal combustion and indoor activities were the

  14. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks

    Energy Technology Data Exchange (ETDEWEB)

    Taner, Simge; Pekey, Beyhan, E-mail: bpekey@kocaeli.edu.tr; Pekey, Hakan

    2013-06-01

    Cooking is a significant source of indoor particulate matter that can cause adverse health effects. In this study, a 5-stage cascade impactor was used to collect particulate matter from 14 restaurants that cooked with charcoal in Kocaeli, the second largest city in Turkey. A total of 24 elements were quantified using ICP-MS. All of the element contents except for Mn were higher for fine particles (PM{sub 2.5}) than coarse particles (PM{sub >2.5}), and the major trace elements identified in the PM{sub 2.5} included V, Se, Zn, Cr, As, Cu, Ni, and Pb. Principle component analysis (PCA) and enrichment factor (EF) calculations were used to determine the sources of PM{sub 2.5}. Four factors that explained over 77% of the total variance were identified by the PCA. These factors included charcoal combustion, indoor activities, crustal components, and road dust. The Se, As, Cd, and V contents in the PM{sub 2.5} were highly enriched (EF > 100). The health risks posed by the individual metals were calculated to assess the potential health risks associated with inhaling the fine particles released during charcoal cooking. The total hazard quotient (total HQ) for a PM{sub 2.5} of 4.09 was four times greater than the acceptable limit (i.e., 1.0). In addition, the excess lifetime cancer risk (total ELCR) for PM{sub 2.5} was 1.57 × 10{sup −4}, which is higher than the acceptable limit of 1.0 × 10{sup −6}. Among all of the carcinogenic elements present in the PM{sub 2.5}, the cancer risks resulting from Cr(VI) and As exposure were the highest (i.e., 1.16 × 10{sup −4} and 3.89 × 10{sup −5}, respectively). Overall, these results indicate that the lifetime cancer risk associated with As and Cr(VI) exposure is significant at selected restaurants, which is of concern for restaurant workers. - Highlights: • Particulate emissions from charcoal combustion in the BBQ restaurants were studied. • Vanadium, Se, Zn, Cr and As were found as high concentrations in PM{sub 2.5}.

  15. Chemical characterization and sources of personal exposure to fine particulate matter in the general population of Guangzhou, China

    Science.gov (United States)

    Chen, Xiao-Cui; Jahn, Heiko J.; Engling, Guenter; Ward, Tony J.; Kraemer, Alexander; Ho, Kin-Fai; Hung-Lam Yim, Steve; Chan, Chuen-Yu

    2017-04-01

    Fine particulate matter pollution severely deteriorates the environmental conditions and negatively impacts human health in the Chinese megacity Guangzhou. Concurrent ambient and personal measurements of fine particulate matter (PM2.5) were conducted in Guangzhou, China. Personal-to-ambient (P-C) relationships of PM2.5 chemical components were determined and sources of personal PM2.5 exposure were evaluated using principal component analysis along with a mixed-effects model. Water-soluble inorganic ions (mainly secondary inorganic ions) and anhydrosugars exhibited median personal-to-ambient (P/C) ratios < 1 accompanied by strong P-C correlations, indicating that these constituents in personal PM2.5 were significantly affected by ambient sources. Conversely, elemental carbon (EC) and calcium (Ca2+) showed median P/C ratios greater than unity, which indicated that among subjects who spent a great amount of time indoors, aside from particles of ambient origin, individual's total exposure to PM2.5 includes contributions of non-ambient exposure while indoors and outdoors (e.g., local traffic, indoor sources, personal activities). SO42- displayed very low coefficient of divergence (COD) values coupled with strong P-C correlations, implying a uniform distribution of SO42- in the urban area of Guangzhou. EC, Ca2+, and levoglucosan were otherwise heterogeneously distributed across individuals in different districts. Regional air pollution (50.4 ± 0.9%), traffic-related particles (8.6 ± 0.7%), dust-related particles (5.8 ± 0.7%), and biomass burning emissions (2.0 ± 0.2%) were moderate to high positive sources of personal PM2.5 exposure in Guangzhou. The observed positive and significant contribution of Ca2+ to personal PM2.5 exposure, highlighting indoor sources and/or personal activities, were driving factors determining personal exposure to dust-related particles. Considerable discrepancies (COD values ranging from 0.42 to 0.50) were shown between ambient

  16. Fine structure of 25 extragalactic radio sources

    International Nuclear Information System (INIS)

    Wittels, J.J.; Knight, C.A.; Shapiro, I.I.; Hinteregger, H.F.; Rogers, A.E.E.; Whitney, A.R.; Clark, T.A.; Hutton, L.K.; Marandino, G.E.; Neill, A.E.; Ronnang, B.G.; Rydbeck, O.E.H.; Klemperer, W.K.; Warnock, W.W.

    1975-01-01

    Between 1972 April and 1973 May, 25 extragalactic radio sources were observed interferometrically at 7.8 GHz(lambdaapprox. =3.8 cm) with five pairings of antennas. These sources exhibit a broad variety of fine structures from very simple to complex. Although the structure and the total power of some of these sources have remained unchanged within the sensitivity of our measurements during the year of observations, both the total flux and the correlated flux of others have undergone large changes in a few weeks

  17. Probing fine magnetic particles with neutron scattering

    International Nuclear Information System (INIS)

    Pynn, R.

    1991-01-01

    Because thermal neutrons are scattered both by nuclei and by unpaired electrons, they provide an ideal probe for studying the atomic and magnetic structures of fine-grained magnetic materials, including nanocrystalline solids, thin epitaxial layers, and colloidal suspensions of magnetic particles, known as ferrofluids. Diffraction, surface reflection, and small angle neutron scattering (SANS) are the techniques used. With the exception of surface reflection, these methods are described in this article. The combination of SANS with refractive-index matching and neutron polarisation analysis is particularly powerful because it allows the magnetic and atomic structures to be determined independently. This technique has been used to study both dilute and concentrated ferrofluid suspensions of relatively monodisperse cobalt particles, subjected to a series of applied magnetic fields. The size of the cobalt particle core and the surrounding surfactant layer were determined. The measured interparticle structure factor agrees well with a recent theory that allows correlations in binary mixtures of magnetic particles to be calculated in the case of complete magnetic alignment. When one of the species in such a binary mixture is a nonmagnetic, cyclindrical macromolecule, application of a magnetic field leads to some degree of alignment of the nonmagnetic species. This result has been demonstrated with tobacco mosaic virus suspended in a water-based ferrofluid

  18. Study of reduction permeability for deposit of fine particles and bacteria in porous media

    International Nuclear Information System (INIS)

    Restrepo Restrepo, Dora Patricia; Cardona Bernal, Felipe Andres; Usta Diaz, Martha Lucia

    2004-01-01

    This work shows a theoretical and practical description of the main variables and physical principles that lead to the obstruction by fine particles and therefore a reduction in permeability for unconsolidated porous media with almost a length foot. The results were also adjusted to theoretical model for the obstruction by fine particles in the entrance face. A first study about bacteria plugging was also carried out in order to try to understand it when these bacteria are in the water of injection of a normal process of water flooding

  19. The mechanisms of fine particle generation and electrification during Mount St. Helens volcanic eruption

    Science.gov (United States)

    Cheng, R. J.

    1982-01-01

    Microscopical investigation of volcanic ash collected from ground stations during Mount St. Helens eruptions reveal a distinctive bimodel size distribution with high concentrations of particle ranges at (1) 200-100 microns and (2) 20-0.1 microns. Close examination of individual particles shows that most larger ones are solidified magma particles of porous pumice with numerous gas bubbles in the interior and the smaller ones are all glassy fragments without any detectable gas bubbles. Elemental analysis demonstrates that the fine fragments all have a composition similar to that of the larger pumice particles. Laboratory experiments suggest that the formation of the fine fragments is by bursting of glassy bubbles from a partially solidified surface of a crystallizing molten magma particle. The production of gas bubbles is due to the release of absorbed gases in molten magma particles when solubility decreases during phase transition. Diffusion cloud chamber experiments strongly indicate that sub-micron volcanic fragments are highly hygroscopic and extremely active as cloud condensation nuclei. Ice crystals also are evidently formed on those fragments in a supercooled (-20 C) cloud chamber. It has been reported that charge generation from ocean volcanic eruptions is due to contact of molten lava with sea water. This seems to be insufficient to explain the observed rapid and intense lightning activities over Mount St. Helens eruptions. Therefore, a hypothesis is presented here that highly electrically charged fine solid fragments are ejected by bursting of gas bubbles from the surface of a crystallizing molten magma particles.

  20. Elutriation characteristics of fine particles from bubbling fluidized bed incineration for sludge cake treatment.

    Science.gov (United States)

    Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung

    2005-01-01

    In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.

  1. Design of sustained release fine particles using two-step mechanical powder processing: particle shape modification of drug crystals and dry particle coating with polymer nanoparticle agglomerate.

    Science.gov (United States)

    Kondo, Keita; Ito, Natsuki; Niwa, Toshiyuki; Danjo, Kazumi

    2013-09-10

    We attempted to prepare sustained release fine particles using a two-step mechanical powder processing method; particle-shape modification and dry particle coating. First, particle shape of bulk drug was modified by mechanical treatment to yield drug crystals suitable for the coating process. Drug crystals became more rounded with increasing rotation speed, which demonstrates that powerful mechanical stress yields spherical drug crystals with narrow size distribution. This process is the result of destruction, granulation and refinement of drug crystals. Second, the modified drug particles and polymer coating powder were mechanically treated to prepare composite particles. Polymer nanoparticle agglomerate obtained by drying poly(meth)acrylate aqueous dispersion was used as a coating powder. The porous nanoparticle agglomerate has superior coating performance, because it is completely deagglomerated under mechanical stress to form fine fragments that act as guest particles. As a result, spherical drug crystals treated with porous agglomerate were effectively coated by poly(meth)acrylate powder, showing sustained release after curing. From these findings, particle-shape modification of drug crystals and dry particle coating with nanoparticle agglomerate using a mechanical powder processor is expected as an innovative technique for preparing controlled-release coated particles having high drug content and size smaller than 100 μm. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Religious burning as a potential major source of atmospheric fine aerosols in summertime Lhasa on the Tibetan Plateau

    Science.gov (United States)

    Cui, Yu Yan; Liu, Shang; Bai, Zhixuan; Bian, Jianchun; Li, Dan; Fan, Kaiyu; McKeen, Stuart A.; Watts, Laurel A.; Ciciora, Steven J.; Gao, Ru-Shan

    2018-05-01

    We carried out field measurements of aerosols in Lhasa, a major city in the Tibetan Plateau that has been experiencing fast urbanization and industrialization. Aerosol number size distribution was continuously measured using an optical particle size spectrometer near the center of Lhasa city during the Asian summer monsoon season in 2016. The mass concentration of fine particles was modulated by boundary layer dynamics, with an average of 11 μg m-3 and the high values exceeding 50 μg m-3 during religious holidays. Daytime high concentration coincided with the religious burning of biomass and incense in the temples during morning hours, which produced heavy smoke. Factor analysis revealed a factor that likely represented religious burning. The factor contributed 34% of the campaign-average fine particle mass and the contribution reached up to 80% during religious holidays. The mass size distribution of aerosols produced from religious burnings peaked at ∼500 nm, indicating that these particles could efficiently decrease visibility and promote health risk. Because of its significance, our results suggest that further studies of religious burning, a currently under-studied source, are needed in the Tibetan Plateau and in other regions of the world where religious burnings are frequently practiced.

  3. Religious Burning as a Major Source of Atmospheric Fine Aerosols in Lhasa city in the Tibetan Plateau

    Science.gov (United States)

    Liu, S.; Cui, Y.; Zhixuan, B.; Bian, J.; McKeen, S. A.; Watts, L. A.; Ciciora, S. J.; Gao, R. S.

    2017-12-01

    Measurements of aerosols in the Tibetan Plateau are scant due to the high altitude and harsh climate. To bridge this gap, we carried out the first field measurements of aerosol size distributions in Lhasa, a major city in the Tibetan Plateau that has been experiencing fast urbanization and reduced air quality. Aerosol number size distribution was continuously measured using an optical particle size spectrometer near the center of Lhasa city during the Asian summer monsoon season in 2016. The mass concentration of fine particles was modulated by boundary layer dynamics, with an average of 11 µg m-3 and the high values exceeding 50 µg m-3 during religious holidays. Daytime high concentration coincided with the religious burning of biomass and incense in the temples during morning hours, which produced heavy smoke. Factor analysis revealed a factor that is likely induced by religious burning. The factor contributed 34% of the campaign-average fine particle mass and the contribution reached up to 80% during religious holidays. The mass size distribution of aerosols produced from religious burnings peaked at 500 nm, indicating that these particles could efficiently decrease visibility and promote health risk. Because of its significance, our results suggest that more attention should be paid to religious burning, a currently under-studied source, in the Tibetan Plateau and in other regions of the world where religious burnings are frequently practiced.

  4. Elemental analysis of airborne fine particles collected at the roadside of an arterial road

    International Nuclear Information System (INIS)

    Hirabayashi, M.

    2008-01-01

    Airborne particulate matter was collected at the intersection of Industrial Road in Kawasaki-city, Kanagawa, Japan using a 12-stage low-pressure impactor. High concentrations of airborne particulate matter have been observed in this area. The collected samples were analyzed for 34 elements by instrumental neutron activation analysis (INAA), and data on the elemental concentrations were obtained. High concentrations of fine particles of As, Br, Sb, V, and Zn were observed. It was further observed that these fine particles were originated predominantly from the wear of tires and brakes, and not from automobile exhaust emissions. (author)

  5. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    International Nuclear Information System (INIS)

    Totsuji, Hiroo

    2008-01-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  6. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    Science.gov (United States)

    Totsuji, Hiroo

    2008-07-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  7. Sources for charged particles; Les sources de particules chargees

    Energy Technology Data Exchange (ETDEWEB)

    Arianer, J.

    1997-09-01

    This document is a basic course on charged particle sources for post-graduate students and thematic schools on large facilities and accelerator physics. A simple but precise description of the creation and the emission of charged particles is presented. This course relies on every year upgraded reference documents. Following relevant topics are considered: electronic emission processes, technological and practical considerations on electron guns, positron sources, production of neutral atoms, ionization, plasma and discharge, different types of positive and negative ion sources, polarized particle sources, materials for the construction of ion sources, low energy beam production and transport. (N.T.).

  8. Source apportionment of airborne particulate matter using organic compounds as tracers

    Science.gov (United States)

    Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.

  9. The coercive force of fine particles of monoclinic pyrrhotite (Fe7S8 ...

    African Journals Online (AJOL)

    The temperature dependence of coercive force (Hc) between 77 K and 600 K has been investigated for fine particles of monoclinic pyrrhotite (Fe7S8) of < 1 mm and 1- 30 mm particle sizes. The study has shown that Hc is strongly dependent on temperature, as temperature rises above room temperature (293 K) to near the ...

  10. Spatial Variability of Sources and Mixing State of Atmospheric Particles in a Metropolitan Area.

    Science.gov (United States)

    Ye, Qing; Gu, Peishi; Li, Hugh Z; Robinson, Ellis S; Lipsky, Eric; Kaltsonoudis, Christos; Lee, Alex K Y; Apte, Joshua S; Robinson, Allen L; Sullivan, Ryan C; Presto, Albert A; Donahue, Neil M

    2018-05-30

    Characterizing intracity variations of atmospheric particulate matter has mostly relied on fixed-site monitoring and quantifying variability in terms of different bulk aerosol species. In this study, we performed ground-based mobile measurements using a single-particle mass spectrometer to study spatial patterns of source-specific particles and the evolution of particle mixing state in 21 areas in the metropolitan area of Pittsburgh, PA. We selected sampling areas based on traffic density and restaurant density with each area ranging from 0.2 to 2 km 2 . Organics dominate particle composition in all of the areas we sampled while the sources of organics differ. The contribution of particles from traffic and restaurant cooking varies greatly on the neighborhood scale. We also investigate how primary and aged components in particles mix across the urban scale. Lastly we quantify and map the particle mixing state for all areas we sampled and discuss the overall pattern of mixing state evolution and its implications. We find that in the upwind and downwind of the urban areas, particles are more internally mixed while in the city center, particle mixing state shows large spatial heterogeneity that is mostly driven by emissions. This study is to our knowledge, the first study to perform fine spatial scale mapping of particle mixing state using ground-based mobile measurement and single-particle mass spectrometry.

  11. Contributions of fuel combustion to pollution by airborne particles in urban and non-urban environments

    International Nuclear Information System (INIS)

    1995-06-01

    The application of ion beam analysis (IBA) techniques to aerosol pollution problems has been used in a number of countries since the late 1970's and early 1980's. The technique, however, had not been tested in Australia. This document is the final report of a project which aimed to establish a fine particle monitoring network covering the greater Wollongong/Sydney/ Newcastle ares, investigate the relationships between fuel combustion and fine particle aerosols in urban and non urban environments, add to the limited database of baseline information on concentrations of fine particles resulting from such processes as fossil fuel burning and industrial manufacturing, identify and quantify sources of fine particles in New South Wales, and introduce into Australia accelerator based IBA techniques for the analysis of filter papers obtained from large scale monitoring networks. These objectives were addressed by the project which identified and quantified some sources of fine particles and established some relationships between fuel combustion and fine aerosols. More work is required to fully quantify relationships between natural and anthropogenic fine particle sources. 24 tabs., 44 figs., 83 refs

  12. Translocation and potential neurological effects of fine and ultrafine particles a critical update.

    Science.gov (United States)

    Peters, Annette; Veronesi, Bellina; Calderón-Garcidueñas, Lilian; Gehr, Peter; Chen, Lung Chi; Geiser, Marianne; Reed, William; Rothen-Rutishauser, Barbara; Schürch, Samuel; Schulz, Holger

    2006-09-08

    Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects. Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be

  13. Physicochemical characteristics and occupational exposure to coarse, fine and ultrafine particles during building refurbishment activities

    Energy Technology Data Exchange (ETDEWEB)

    Azarmi, Farhad; Kumar, Prashant, E-mail: p.kumar@surrey.ac.uk, E-mail: prashant.kumar@cantab.net; Mulheron, Mike [University of Surrey, Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences (United Kingdom); Colaux, Julien L.; Jeynes, Chris [University of Surrey, Faculty of Engineering and Physical Sciences, Ion Beam Centre (United Kingdom); Adhami, Siavash; Watts, John F. [University of Surrey, The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences (United Kingdom)

    2015-08-15

    Understanding of the emissions of coarse (PM{sub 10} ≤10 μm), fine (PM{sub 2.5} ≤2.5 μm) and ultrafine particles (UFP <100 nm) from refurbishment activities and their dispersion into the nearby environment is of primary importance for developing efficient risk assessment and management strategies in the construction and demolition industry. This study investigates the release, occupational exposure and physicochemical properties of particulate matter, including UFPs, from over 20 different refurbishment activities occurring at an operational building site. Particles were measured in the 5–10,000-nm-size range using a fast response differential mobility spectrometer and a GRIMM particle spectrometer for 55 h over 8 days. The UFPs were found to account for >90 % of the total particle number concentrations and <10 % of the total mass concentrations released during the recorded activities. The highest UFP concentrations were 4860, 740, 650 and 500 times above the background value during wall-chasing, drilling, cementing and general demolition activities, respectively. Scanning electron microscopy, X-ray photoelectron spectroscopy and ion beam analysis were used to identify physicochemical characteristics of particles and attribute them to probable sources considering the size and the nature of the particles. The results confirm that refurbishment activities produce significant levels (both number and mass) of airborne particles, indicating a need to develop appropriate regulations for the control of occupational exposure of operatives undertaking building refurbishment.

  14. Particle identification by means of fine sampling dE/dX measurements

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, A; Ishii, T; Ohshima, T; Okuno, H; Shiino, K [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study; Naito, F [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology; Matsuda, T [Osaka Univ., Toyonaka (Japan). Faculty of Engineering Science

    1983-04-01

    Identification of relativistic charged particles by means of fine sampling d E/d X measurements with a longitudinal drift chamber has been studied. Using a fast-sampling ADC (25 MHz), dE/dX was measured in a 1.4 mm gas thickness over an electron drift space of 51 mm. For the simulated 1 m long tracks of pions and electrons of 500 MeV/c, a particle separation of 10sigma - 12sigma has been obtained, where sigma is the r.m.s. resolution of the dE/dX measurement. This result with fine sampling is better by a factor of 1.7 compared to the dE/dX measurement, with 21 mm sampling thickness. Further improvement achievable by reducing the correlation between neighbouring samples and simplification of electronics by use of the delta-ray clipping method are also discussed.

  15. Characterization of road runoff with regard to seasonal variations, particle size distribution and the correlation of fine particles and pollutants.

    Science.gov (United States)

    Hilliges, R; Endres, M; Tiffert, A; Brenner, E; Marks, T

    2017-03-01

    Urban runoff is known to transport a significant pollutant load consisting of e.g. heavy metals, salts and hydrocarbons. Interactions between solid and dissolved compounds, proper understanding of particle size distribution, dissolved pollutant fractions and seasonal variations is crucial for the selection and development of appropriate road runoff treatment devices. Road runoff at an arterial road in Augsburg, Germany, has been studied for 3.5 years. A strong seasonal variation was observed, with increased heavy metal concentrations with doubled and tripled median concentrations for heavy metals during the cold season. Correlation analysis showed that de-icing salt is not the only factor responsible for increased pollutant concentrations in winter. During the cold period, the fraction of dissolved metals was lower compared to the warm season. In road dust, the highest metal concentrations were measured for fine particles. Metals in road runoff were found to show a significant correlation to fine particles SS63 (removal rates.

  16. Impact of superplasticizer concentration and of ultra-fine particles on the rheological behaviour of dense mortar suspensions

    International Nuclear Information System (INIS)

    Artelt, C.; Garcia, E.

    2008-01-01

    This work aims at investigating the impact of the addition of superplasticizer and of ultra-fine particles, namely of silica fume and of precipitated titania, on the rheological behaviour of water-lean mortar pastes. The pastes are characterised in terms of their spread, their flowing behaviour and by means of performing a shear test, giving access to viscosity/shear gradient correlations. Adding superplasticizer is shown to shift the onset of shear thickening of the referring pastes to higher shear rates and to attenuate its otherwise rapid evolution, possibly by means of favouring steric particle-particle interactions. The workability of these mortars, which is characterised in terms of spread values and draining, is also improved. For the case of fly ash based mortars, adding ultra-fine particles is another way of (slightly) 'retarding' shear thickening and of attenuating its evolution, possibly because of resulting in - on the average - lower hydrodynamic forces and reduced attractive Van der Waals interactions between particles. However, at the same time these mortars are characterised by a worsening in workability which is attributed to the huge amount of surface area provided by the ultra-fines

  17. A two-stage treatment for Municipal Solid Waste Incineration (MSWI) bottom ash to remove agglomerated fine particles and leachable contaminants.

    Science.gov (United States)

    Alam, Qadeer; Florea, M V A; Schollbach, K; Brouwers, H J H

    2017-09-01

    In this lab study, a two-stage treatment was investigated to achieve the valorization of a municipal solid waste incineration (MSWI) bottom ash fraction below 4mm. This fraction of MSWI bottom ash (BA) is the most contaminated one, containing potentially toxic elements (Cu, Cr, Mo and Sb), chlorides and sulfates. The BA was treated for recycling by separating agglomerated fine particles (≤125µm) and soluble contaminants by using a sequence of sieving and washing. Initially, dry sieving was performed to obtain BA-S (≤125µm), BA-M (0.125-1mm) and BA-L (1-4mm) fractions from the original sample. The complete separation of fine particles cannot be achieved by conventional sieving, because they are bound in a cementitious matrix around larger BA grains. Subsequently, a washing treatment was performed to enhance the liberation of the agglomerated fine particles from the BA-M and BA-L fractions. These fine particles were found to be similar to the particles of BA-S fraction in term of chemical composition. Furthermore, the leaching behavior of Cr, Mo Sb, chlorides and sulfates was investigated using various washing parameters. The proposed treatment for the separation of agglomerated fine particles with dry sieving and washing (L/S 3, 60min) was successful in bringing the leaching of contaminants under the legal limit established by the Dutch environmental norms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Assessment of Fine Aggregates from Different Sources in Ibadan and Environs for Concrete Production

    Directory of Open Access Journals (Sweden)

    W. O. Ajagbe

    2018-03-01

    Full Text Available Assessment of natural sand being used as fine aggregate for concrete production in Ibadan and its environs was carried out. Ten sources (F1 – F10 were selected for the study; four (F5, F6, F7, F8 were river sand sources while six (F1, F2, F3, F4, F9, F10 were burrow pit sand sources. Samples from each source were subjected to sieve analysis, atterberg limit, bulk density, specific gravity, water absorption, sand equivalent, clay lumps and friable particles, amount of materials passing 75μm and organic impurities adopting ASTM standard procedures. Results revealed that sand from river sources met all the criteria for concrete production stated in ASTM standard while sand from burrow pits deviated from limits of the standard in some respects. F10 had water absorption of 2.6% which exceeded maximum 2% specified, F9 was not free from clay lumps and friable particles with a significant value of 6% as against 3% maximum specification. F1, F2, F3, F4, F9 and F10 have more amounts of materials passing the 75μm sieve ranging from 10.8% for F9 to 20.1% for F10 than maximum of 5% in standard specification while F1, F9 and F10 showed an indication of having organic impurities. It is recommended that performance test be conducted on concrete made from burrow pits sand before use for concrete production. The knowledge of this study can be used as a prospecting tool for selecting suitable sand for the production of quality concrete.

  19. Impact of meteorological conditions on airborne fine particle composition and secondary pollutant characteristics in urban area during winter-time

    Directory of Open Access Journals (Sweden)

    Klaus Schäfer

    2016-06-01

    Full Text Available The assessment of airborne fine particle composition and secondary pollutant characteristics in the case of Augsburg, Germany, during winter (31 January–12 March 2010 is studied on the basis of aerosol mass spectrometry (3 non-refractory components and organic matter, 3 positive matrix factorizations (PMF factors, particle size distributions (PSD, 5 size modes, 5 PMF factors, further air pollutant mass concentrations (7 gases and VOC, black carbon, PM10, PM2.5 and meteorological measurements, including mixing layer height (MLH, with one-hourly temporal resolution. Data were subjectively assigned to 10 temporal phases which are characterised by different meteorological influences and air pollutant concentrations. In each phase hierarchical clustering analysis with the Ward method was applied to the correlations of air pollutants, PM components, PM source contributions and PSD modes and correlations of these data with all meteorological parameters. This analysis resulted in different degrees of sensitivities of these air pollutant data to single meteorological parameters. It is generally found that wind speed (negatively, MLH (negatively, relative humidity (positively and wind direction influence primary pollutant and accumulation mode particle (size range 100–500 nm concentrations. Temperature (negatively, absolute humidity (negatively and also relative humidity (positively are relevant for secondary compounds of PM and particle (PM2.5, PM10 mass concentrations. NO, nucleation and Aitken mode particle and the fresh traffic aerosol concentrations are only weakly dependent on meteorological parameters and thus are driven by emissions. These daily variation data analyses provide new, detailed meteorological influences on air pollutant data with the focus on fine particle composition and secondary pollutant characteristics and can explain major parts of certain PM component and gaseous pollutant exposure.

  20. Deviation from the superparamagnetic behaviour of fine-particle systems

    CERN Document Server

    Malaescu, I

    2000-01-01

    Studies concerning superparamagnetic behaviour of fine magnetic particle systems were performed using static and radiofrequency measurements, in the range 1-60 MHz. The samples were: a ferrofluid with magnetite particles dispersed in kerosene (sample A), magnetite powder (sample B) and the same magnetite powder dispersed in a polymer (sample C). Radiofrequency measurements indicated a maximum in the imaginary part of the complex magnetic susceptibility, for each of the samples, at frequencies with the magnitude order of tens of MHz, the origin of which was assigned to Neel-type relaxation processes. The static measurements showed a Langevin-type dependence of magnetisation M and of susceptibility chi, on the magnetic field for sample A. For samples B and C deviations from this type of dependence were found. These deviations were analysed qualitatively and explained in terms of the interparticle interactions, dispersion medium influence and surface effects.

  1. Rapid removal of fine particles from mine water using sequential processes of coagulation and flocculation.

    Science.gov (United States)

    Jang, Min; Lee, Hyun-Ju; Shim, Yonsik

    2010-04-01

    The processes of coagulation and flocculation using high molecular weight long-chain polymers were applied to treat mine water having fine flocs of which about 93% of the total mass was less than 3.02 microm, representing the size distribution of fine particles. Six different combinations of acryl-type anionic flocculants and polyamine-type cationic coagulants were selected to conduct kinetic tests on turbidity removal in mine water. Optimization studies on the types and concentrations of the coagulant and flocculant showed that the highest rate of turbidity removal was obtained with 10 mg L(-1) FL-2949 (coagulant) and 12 mg L(-1) A333E (flocculant), which was about 14.4 and 866.7 times higher than that obtained with A333E alone and that obtained through natural precipitation by gravity, respectively. With this optimized condition, the turbidity of mine water was reduced to 0 NTU within 20 min. Zeta potential measurements were conducted to elucidate the removal mechanism of the fine particles, and they revealed that there was a strong linear relationship between the removal rate of each pair of coagulant and flocculant application and the zeta potential differences that were obtained by subtracting the zeta potential of flocculant-treated mine water from the zeta potential of coagulant-treated mine water. Accordingly, through an optimization process, coagulation-flocculation by use of polymers could be advantageous to mine water treatment, because the process rapidly removes fine particles in mine water and only requires a small-scale plant for set-up purposes owing to the short retention time in the process.

  2. Fine particle water and pH in the Eastern Mediterranean: Sources, variability and implications for nutrients availability

    Science.gov (United States)

    Bougiatioti, Aikaterini; Nikolaou, Panayiota; Stavroulas, Iasonas; Kouvarakis, Giorgos; Nenes, Athanasios; Weber, Rodney; Kanakidou, Maria; Mihalopoulos, Nikolaos

    2016-04-01

    Atmospheric particles have the ability to absorb significant amounts of water, which greatly impacts on their physical and chemical properties. Direclty linked to aerosol pH and LWC is the bioavailability of nutrients contained within mineral dust, involving pH-dependent catalyzed redox-reaction pathways. Liquid water content (LWC) and pH, even though are important constituents of the aerosol phase, are rarely monitored. Direct measurements of aerosol pH "in situ" are scarce and require considerations owing to the non-conserved nature of the hydronium ion and partial dissociation of inorganic and organic electrolytes in the aerosol. To overcome these challenges, indirect alternatives such as measuring the semi-volatile partitioning of key species sensitive to pH, combined with comprehensive models are used to provide a reasonably accurate estimate of pH that can be carried out with routine measurements. Using concurrent measurements of aerosol chemical composition, tandem light scattering coefficients and the thermodynamic model ISORROPIA-II, LWC mass concentrations associated with the aerosol inorganic and organic components are determined for the remote background site of Finokalia, Crete. The predicted water was subsequently compared to the one measured by the ambient versus dry light scattering coefficients. The sum of Winorg and Worg was highly correlated and in close agreement with the measured LWC (on average within 10%), with slope 0.92 (R2=0.8) for the whole measurement period between August and November 2012 (n=5201 points). As expected, the highest fine aerosol water values are observed during night-time, when RH is at its maximum, resulting in important water uptake. The average concentration of total aerosol water was found to be 2.19±1.75 μg m-3, which according to the dry mass measurements, can contribute on average up to 33% to the total aerosol submicron mass. The average Worg was found to be 0.56±0.37 μg m-3, which constitutes about 28% of the

  3. Characteristics of Fine Particles in an Urban Atmosphere—Relationships with Meteorological Parameters and Trace Gases

    Science.gov (United States)

    Zhang, Tianhao; Zhu, Zhongmin; Gong, Wei; Xiang, Hao; Fang, Ruimin

    2016-01-01

    Atmospheric fine particles (diameter industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm–661 nm), meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm–30 nm), Aitken mode (30 nm–100 nm), and accumulation mode (100 nm–661 nm) reached 4923 cm−3, 12193 cm−3 and 4801 cm−3, respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of “repeated, short-lived” nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in industrial cities of developing countries. PMID:27517948

  4. Briquetting of coal fines and sawdust - effect of particle-size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Patil, D.P.; Taulbee, D.; Parekh, B.K.; Honaker, R. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2009-07-01

    The coal industry usually discards fine-size (-150 microns) coal because of its high-moisture content and handling problems. One avenue for utilization is to either pelletize or briquette this material. However, industry has not adopted this route due in large part to significant drying and binder costs. In an effort to reduce these costs, compacting and briquetting studies were conducted to determine the effect of combining a coarse (1.18x0.15mm) spiral separator product with a fine coal flotation product (-150microns), with and without adding sawdust. Maximizing the packing density of the coal and wood waste mixture could potentially reduce the binder requirement by minimizing the void space as well as reducing shipping costs. Accordingly, work reported here focused on evaluating the impact of the particle-size distribution of different blends of fine and coarse coal, with and without sawdust and/or binder. The modified Proctor density of compacted blends along with the porosity and compressive strengths of briquettes made from each blend were determined. For the coal-only blends, the packing density was maximized by a relatively high (70% to 80%) coarse coal content. However, the packing density did not correlate with the compressive strength of the briquette that instead maximized with 100% fine flotation coal and continuously decreased as higher proportions of coarse coal were added. Similar compaction and compressive-strength results were obtained with mixtures of sawdust and varying proportions of coarse and fine coal. With the addition of a binder, the highest strengths were no longer obtained with 100% fine coal but instead maximized between 20% and 50% coarse coal addition depending on how long the briquettes were cured.

  5. SOURCE SAMPLING FINE PARTICULATE MATTER--INSTITUTIONAL OIL-FIRED BOILER

    Science.gov (United States)

    EPA seeks to understand the correlation between ambient fine PM and adverse human health effects, and there are no reliable emission factors to use for estimating PM2.5 or NH3. The most common source of directly emitted PM2.5 is incomplete combustion of fossil or biomass fuels. M...

  6. Mathematical Model of Transfer and Deposition of Finely Dispersed Particles in a Turbulent Flow of Emulsions and Suspensions

    Science.gov (United States)

    Laptev, A. G.; Basharov, M. M.

    2018-05-01

    The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.

  7. Rapid removal of fine particles from mine water using sequential processes of coagulation and flocculation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, M.; Lee, H.J.; Shim, Y. [Korean Mine Reclamation Corporation MIRECO, Seoul (Republic of Korea)

    2010-07-01

    The processes of coagulation and flocculation using high molecular weight long-chain polymers were applied to treat mine water having fine flocs of which about 93% of the total mass was less than 3.02 {mu} m, representing the size distribution of fine particles. Six different combinations of acryl-type anionic flocculants and polyamine-type cationic coagulants were selected to conduct kinetic tests on turbidity removal in mine water. Optimization studies on the types and concentrations of the coagulant and flocculant showed that the highest rate of turbidity removal was obtained with 10 mg L{sup -1} FL-2949 (coagulant) and 12 mg L{sup -1} A333E (flocculant), which was about 14.4 and 866.7 times higher than that obtained with A333E alone and that obtained through natural precipitation by gravity, respectively. With this optimized condition, the turbidity of mine water was reduced to 0 NTU within 20 min. Zeta potential measurements were conducted to elucidate the removal mechanism of the fine particles, and they revealed that there was a strong linear relationship between the removal rate of each pair of coagulant and flocculant application and the zeta potential differences that were obtained by subtracting the zeta potential of flocculant-treated mine water from the zeta potential of coagulant-treated mine water. Accordingly, through an optimization process, coagulation-flocculation by use of polymers could be advantageous to mine water treatment, because the process rapidly removes fine particles in mine water and only requires a small-scale plant for set-up purposes owing to the short retention time in the process.

  8. Multi-criteria ranking and receptor modelling of airborne fine particles at three sites in the Pearl River Delta region of China.

    Science.gov (United States)

    Friend, Adrian J; Ayoko, Godwin A; Guo, Hai

    2011-01-15

    The multi-criteria decision making methods, Preference Ranking Organization METHods for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA), and the two-way Positive Matrix Factorization (PMF) receptor model were applied to airborne fine particle compositional data collected at three sites in Hong Kong during two monitoring campaigns held from November 2000 to October 2001 and November 2004 to October 2005. PROMETHEE/GAIA indicated that the three sites were worse during the later monitoring campaign, and that the order of the air quality at the sites during each campaign was: rural site>urban site>roadside site. The PMF analysis on the other hand, identified 6 common sources at all of the sites (diesel vehicle, fresh sea salt, secondary sulphate, soil, aged sea salt and oil combustion) which accounted for approximately 68.8±8.7% of the fine particle mass at the sites. In addition, road dust, gasoline vehicle, biomass burning, secondary nitrate, and metal processing were identified at some of the sites. Secondary sulphate was found to be the highest contributor to the fine particle mass at the rural and urban sites with vehicle emission as a high contributor to the roadside site. The PMF results are broadly similar to those obtained in a previous analysis by PCA/APCS. However, the PMF analysis resolved more factors at each site than the PCA/APCS. In addition, the study demonstrated that combined results from multi-criteria decision making analysis and receptor modelling can provide more detailed information that can be used to formulate the scientific basis for mitigating air pollution in the region. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. NANODERM. Quality of skin as a barrier to ultra-fine particles

    International Nuclear Information System (INIS)

    Kiss, A.Z.; Kertesz, Zs.; Szikszai, Z.; Biro, T.; Czifra, G.; Toth, B.I.; Juhasz, I.; Kiss, B.; Hunyadi, J.

    2007-01-01

    Complete text of publication follows. The EU5 project carried out by a consortium of 12 European universities and research institutes under the leadership of the Faculty of Physics and Geosciences, University of Leipzig started in 2003 and ended with the publication of its final report in 2007. The main goal of the project was to get quantitative information on the penetration of ultra-fine particles in all strata of skin, on their penetration pathways as well as on their impact on human health. Details of the project can be found on the following website: http://www.uni-leipzig.de/"~nanoderm. The Hungarian team was lead by the Department of Dermatology, University of Debrecen, who provided human skin grafted on SCID (Severe Combined Immune Deficiency) mice as a suitable model for studying particle penetration. In the Institute of Physiology, University of Debrecen, the cellular effects of the nanoparticles were assessed. The ATOMKI group performed ion beam analytical investigations using proton induced x-ray emission and scanning transmission ion microscopy techniques to determine the particle distribution on porcine, SCID graft and human skin samples on which various nanoparticle (TiO 2 ) formulations including commercially available sunscreens were applied. Several pre-treatments of the skin were tested, too. The skin samples were cryofixed native specimens, reducing considerably the possibility of creating artefacts. Results Titanium was only detected in the stratum corneum for healthy skin. Penetration to layers consisting of living cells was not observed. No diffusion profile was present therefore we conclude that the penetration takes place through mechanical action. Deep penetration into hair follicles was also observed, but not into vital tissue. Clearance is expected via desquamation and sebum excretion respectively for corneocyte layers and hair follicles. In conclusion, the NANODERM group does not expect any harmful effects of sunscreens containing

  10. Concentrations and size distributions of fine aerosol particles measured at roof level in urban zone

    Science.gov (United States)

    Despiau, S.; Croci, D.

    2007-05-01

    During the experimental Field Experiments to Constrain Models of Atmospheric Pollution and Transport of Emissions (ESCOMPTE) campaign in June-July 2001, concentrations and size distributions of fine particles (14-722 nm) were measured at roof level in downtown Marseille (France). Part of the campaign was dedicated to the study of aerosol behavior in relation to strong photochemical events (which were identified as "IOP" days) and their regional modeling. The analysis of the concentration variations and the evolution of average diurnal size distribution showed that an "IOP day" is not characterized by a specific concentration or its variation, nor by a specific evolution of the average size distribution. The morning traffic rush is detected at roof level by a net increase in particle concentration over the whole size range measured, indicating a production of ultrafine particles by the traffic but also the raising to roof level of particles of the accumulation mode. The increase is observed about 1 hour after the traffic peak at street level, which is characterized by strong increases in NOx and CO concentrations. The corresponding flux of particles at roof level has been estimated around 3 × 104 cm-2 s-1. A specific signature characterized by a strong and rapid burst of concentration (factor 2 to 4 in 15 min) of particles between 25 and 50 nm, independent of the traffic source, has been detected on six occasions during the campaign. These events occur systematically around noon, in cases of strong radiation, low relative humidity, and common wind direction. Despite the high-diameter value of these particles, it is suggested that they could result from a specific "secondary aerosol process" event involving ozone, biogenic, and/or anthropogenic gas precursors like iodine and VOCs.

  11. The utility of satellite observations for constraining fine-scale and transient methane sources

    Science.gov (United States)

    Turner, A. J.; Jacob, D.; Benmergui, J. S.; Brandman, J.; White, L.; Randles, C. A.

    2017-12-01

    Resolving differences between top-down and bottom-up emissions of methane from the oil and gas industry is difficult due, in part, to their fine-scale and often transient nature. There is considerable interest in using atmospheric observations to detect these sources. Satellite-based instruments are an attractive tool for this purpose and, more generally, for quantifying methane emissions on fine scales. A number of instruments are planned for launch in the coming years from both low earth and geostationary orbit, but the extent to which they can provide fine-scale information on sources has yet to be explored. Here we present an observation system simulation experiment (OSSE) exploring the tradeoffs between pixel resolution, measurement frequency, and instrument precision on the fine-scale information content of a space-borne instrument measuring methane. We use the WRF-STILT Lagrangian transport model to generate more than 200,000 column footprints at 1.3×1.3 km2 spatial resolution and hourly temporal resolution over the Barnett Shale in Texas. We sub-sample these footprints to match the observing characteristics of the planned TROPOMI and GeoCARB instruments as well as different hypothetical observing configurations. The information content of the various observing systems is evaluated using the Fisher information matrix and its singular values. We draw conclusions on the capabilities of the planned satellite instruments and how these capabilities could be improved for fine-scale source detection.

  12. Using monosaccharide anhydrides to estimate the impact of wood combustion on fine particles in the Helsinki Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Saarnio, K.; Saarikoski, S. [Finnish Meteorological Institute, Helsinki (Finland); Niemi, J.V. [HSY Helsinki Region Environmental Services Authority, Helsinki (Finland)

    2012-11-01

    The spatiotemporal variation of ambient particles under the influence of biomass burning emissions was studied in the Helsinki Metropolitan Area (HMA) in selected periods during 2005-2009. Monosaccharide anhydrides (MAs; levoglucosan, mannosan and galactosan), commonly known biomass burning tracers, were used to estimate the wood combustion contribution to local particulate matter (PM) concentration levels at three urban background sites close to the city centre, and at three suburban sites influenced by local small-scale wood combustion. In the cold season (October-March), the mean MAs concentrations were 115-225 ng m{sup -3} and 83-98 ng m{sup -} {sup 3}at the suburban and urban sites, respectively. In the warm season, the mean MAs concentrations were low (19-78 ng m{sup -3}), excluding open land fire smoke episodes (222-378 ng m{sup -}3{sup )}. Regionally distributed wood combustion particles raised the levels over the whole HMA while particles from local wood combustion sources raised the level at suburban sites only. The estimated average contribution of wood combustion to fine particles (PM{sub 2.5}) ranged from 18% to 29% at the urban sites and from 31% to 66% at the suburban sites in the cold season. The PM measurements from ambient air and combustion experiments showed that the proportions of the three MAs can be utilised to separate the wildfire particles from residential wood combustion particles. (orig.)

  13. [Health evaluation of fine particulate matter in indoor air].

    Science.gov (United States)

    2008-11-01

    When evaluating the health effects of indoor air fine particulate matter, the indoor dynamics as well as the physical, chemical and biological properties of fine particles have to be considered. The indoor air fraction PM2.5 largely stems from outdoor air. Accordingly, the German Working Group on Indoor Guideline Values of the Federal Environmental Agency and the States' Health Authorities also recommends WHO's (2006) 24-hour mean guideline value of 25 microg PM2,5 per cubic meter for indoor air evaluation. In contrast to PM2.5, coarse particles (PM10) in schools, kindergartens and dwellings show much higher indoor air concentrations. Additional sources indoors have to be assumed. Because of the different composition of indoor air compared to outdoor air and due to the lack of dose-response relationships of coarse particles in indoor air, the health effects of indoor air PM10 can not be evaluated yet. Sufficient and consistent ventilation is an indispensable basis to reduce PM concentrations in indoor spaces. Furthermore, known sources of PM indoors should be detected consequently and subsequently minimized.

  14. Source Apportionment of Atmospheric Particles by Electron Probe X-Ray Microanalysis and Receptor Models.

    Science.gov (United States)

    van Borm, Werner August

    abundance and particle composition. Alternatively, the bulk analysis of filters (total, fine and coarse mode) using Particle Induced X -Ray Emission (PIXE) and the application of a receptor modeling approach provided for complementary information on a macroscopical level. A computer program was developed incorporating an absolute factor analysis based receptor modeling procedure. Source profiles and contributions are described by elemental concentrations and an atmospheric mass balance is put forward. The latter method was applied in a two year study of the Antwerp urban aerosol and for the swiss aerosol, revealing a number of previously known and unknown sources. Both methods were successfully combined to increase the source resolution.

  15. Source-specific fine particulate air pollution and systemic inflammation in ischaemic heart disease patients

    Science.gov (United States)

    Siponen, Taina; Yli-Tuomi, Tarja; Aurela, Minna; Dufva, Hilkka; Hillamo, Risto; Hirvonen, Maija-Riitta; Huttunen, Kati; Pekkanen, Juha; Pennanen, Arto; Salonen, Iiris; Tiittanen, Pekka; Salonen, Raimo O; Lanki, Timo

    2015-01-01

    Objective To compare short-term effects of fine particles (PM2.5; aerodynamic diameter <2.5 µm) from different sources on the blood levels of markers of systemic inflammation. Methods We followed a panel of 52 ischaemic heart disease patients from 15 November 2005 to 21 April 2006 with clinic visits in every second week in the city of Kotka, Finland, and determined nine inflammatory markers from blood samples. In addition, we monitored outdoor air pollution at a fixed site during the study period and conducted a source apportionment of PM2.5 using the Environmental Protection Agency's model EPA PMF 3.0. We then analysed associations between levels of source-specific PM2.5 and markers of systemic inflammation using linear mixed models. Results We identified five source categories: regional and long-range transport (LRT), traffic, biomass combustion, sea salt, and pulp industry. We found most evidence for the relation of air pollution and inflammation in LRT, traffic and biomass combustion; the most relevant inflammation markers were C-reactive protein, interleukin-12 and myeloperoxidase. Sea salt was not positively associated with any of the inflammatory markers. Conclusions Results suggest that PM2.5 from several sources, such as biomass combustion and traffic, are promoters of systemic inflammation, a risk factor for cardiovascular diseases. PMID:25479755

  16. Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway

    Directory of Open Access Journals (Sweden)

    Castranova Vincent

    2009-04-01

    Full Text Available Abstract Background Carcinogenicity of nickel compounds has been well documented. However, the carcinogenic effect of metallic nickel is still unclear. The present study investigates metallic nickel nano- and fine particle-induced apoptosis and the signal pathways involved in this process in JB6 cells. The data obtained from this study will be of benefit for elucidating the pathological and carcinogenic potential of metallic nickel particles. Results Using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, we found that metallic nickel nanoparticles exhibited higher cytotoxicity than fine particles. Both metallic nickel nano- and fine particles induced JB6 cell apoptosis. Metallic nickel nanoparticles produced higher apoptotic induction than fine particles. Western-blot analysis showed an activation of proapoptotic factors including Fas (CD95, Fas-associated protein with death domain (FADD, caspase-8, death receptor 3 (DR3 and BID in apoptotic cells induced by metallic nickel particles. Immunoprecipitation (IP western blot analysis demonstrated the formation of the Fas-related death-inducing signaling complex (DISC in the apoptotic process. Furthermore, lamin A and beta-actin were cleaved. Moreover, we found that apoptosis-inducing factor (AIF was up-regulated and released from mitochondria to cytoplasm. Interestingly, although an up-regulation of cytochrome c was detected in the mitochondria of metallic nickel particle-treated cells, no cytochrome c release from mitochondria to cytoplasm was found. In addition, activation of antiapoptotic factors including phospho-Akt (protein kinase B and Bcl-2 was detected. Further studies demonstrated that metallic nickel particles caused no significant changes in the mitochondrial membrane permeability after 24 h treatment. Conclusion In this study, metallic nickel nanoparticles caused higher cytotoxicity and apoptotic induction than fine particles in JB6 cells. Apoptotic cell death

  17. Chemical Composition and Emission Sources of the Fine Particulate Matters in a Southeast Asian Mega City (Dhaka, Bangladesh)

    Science.gov (United States)

    Salam, Abdus

    2016-04-01

    Air pollution has significant impact on human health, climate change, agriculture, visibility reduction, and also on the atmospheric chemistry. There are many studies already reported about the direct relation of the human mortality and morbidity with the increase of the atmospheric particulate matters. Especially, fine particulate matters can easily enter into the human respiratory system and causes many diseases. Particulate matters have the properties to absorb the solar radiation and impact on the climate. Dhaka, Bangladesh is a densely populated mega-city in the world. About 16 million inhabitants are living within an area of 360 square kilometers. Air quality situation has been degrading due to unplanned growth, increasing vehicles, severe traffic jams, brick kilns, industries, construction, and also transboundary air pollution. A rapidly growing number of vehicles has worsen the air quality in spite of major policy interventions, e.g., ban of two-stroke and three-wheeled vehicles, phase out of 20 years old vehicles, conversion to compressed natural gas (CNGs), etc. Introduction of CNGs to reduce air pollution was not the solution for fine particles at all, as evidence shows that CNGs and diesel engines are the major sources of fine particles. High concentration of the air pollutants in Dhaka city such as PM, carbonaceous species (black and organic carbon), CO, etc. has already been reported. PM2.5 mass, chemical composition (e.g., BC, OC, SO42-, NO3-, trace elements, etc.), aerosol Optical Depth (AOD) and emission sources of our recent measurements at the highly polluted south East Asian Mega city (Dhaka) Bangladesh will be presented in the conference. PM2.5 samples were collected on filters with Digital PM2.5 sampler (Switzerland) and Air photon, USA. BC was measured from filters (with thermal and optical method) and also real time with an Aethalometer AE42 (Magee Scitific., USA). Water soluble ions were determined from filters with ion chromatogram. AOD

  18. Fine-grained suspended sediment source identification for the Kharaa River basin, northern Mongolia

    Science.gov (United States)

    Rode, Michael; Theuring, Philipp; Collins, Adrian L.

    2015-04-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on the water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (source discrimination with geochemical composite fingerprints based on a new Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal-Wallis H-test and Principal Component Analysis. The composite fingerprints were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin) with the pattern generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of riverbank erosion was shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the general applicability and associated uncertainties of an approach for fine-grained sediment source investigation in large scale semi-arid catchments. The combined application of source fingerprinting and catchment modelling approaches can be used to assess whether tracing estimates are credible and in combination such approaches provide a basis for making sediment source apportionment more compelling to catchment stakeholders and managers.

  19. Quantifying sources of fine sediment supplied to post-fire debris flows using fallout radionuclide tracers

    Science.gov (United States)

    Smith, Hugh; Sheridan, Gary; Nyman, Petter; Child, David; Lane, Patrick; Hotchkis, Michael

    2013-04-01

    The supply of fine sediment and ash has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides (Cs-137, excess Pb-210 and Pu-239,240) as tracers to measure proportional contributions of fine sediment (bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While Cs-137 and excess Pb-210 have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The estimated range in hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment was 22-69% and 32-74%, respectively. No systematic change in the source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the sediment tracing with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on the changing source contributions of fine sediment during debris flow events.

  20. Source Term Model for Fine Particle Resuspension from Indoor Surfaces

    Science.gov (United States)

    2008-02-01

    spreading airborne radioactivity from nuclear weapon test sites or from possible accidental release from the nuclear industry. Other studies in...agents, to design countermeasure devices, and to plan decontamination schemes, it is important to under- stand how CB agents migrate through a building...Particle Stainless steel (SS) spheres, glass spheres, Lycopodium spores Silica spheres dp (μm) SS: 70, glass: 72, 32, Lyco- podium: 30 4.1, 9.6

  1. A comparative study of the number and mass of fine particles emitted with diesel fuel and marine gas oil (MGO)

    Science.gov (United States)

    Nabi, Md. Nurun; Brown, Richard J.; Ristovski, Zoran; Hustad, Johan Einar

    2012-09-01

    The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.

  2. Methods for forming particles from single source precursors

    Science.gov (United States)

    Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID

    2011-08-23

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  3. Fine-Grained Energy Modeling for the Source Code of a Mobile Application

    DEFF Research Database (Denmark)

    Li, Xueliang; Gallagher, John Patrick

    2016-01-01

    The goal of an energy model for source code is to lay a foundation for the application of energy-aware programming techniques. State of the art solutions are based on source-line energy information. In this paper, we present an approach to constructing a fine-grained energy model which is able...

  4. Formation of fine solid particles from aqueous solutions of sodium chloropalladate by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Fujita, Iwao; Korekawa, Kei-ichi.

    1994-10-01

    Studies have been carried out on the radiation chemical formation of palladium fine particles in argon saturated aqueous solutions of sodium chloropalladate without organic stabilizer. The solutions were irradiated with gamma-rays from a cobalt gamma-ray source and the irradiated solutions were subjected to the dynamic light scattering analysis for the particle diameter measurements, and to the UV-visible optical absorption spectroscopy for the measurements of turbidity (absorption at 700 nm) and remaining chloropalladate ion concentrations in the solution. In the solution of pH = 1.95 by HCl, the turbidity increased after the irradiation and then decreased with time. The concentration of remaining palladate ion in the solution decreased by the irradiation, but it gradually increased with time after the irradiation. These phenomena were qualitatively explained by the reaction scheme in that a precursor to the solid particles still exists in the solution after the irradiation was terminated, and that intermediates including the precursor reacted with chloride ion to re-form chloropalladate ions. The average diameter of the particles after the irradiation was ca. 20 nm and it increased with time to 40 nm at 2.75 kGy, and to 80 nm at 8.25 kGy absorption of radiation. The solution of pH = 0.65 by HCl was found to give lower yields of particles than those observed for the solution of pH = 1.95, and to give the particles of diameters about 150-200 nm. In the solution containing HClO 4 instead of HCl, palladium particles were also formed by the irradiation, whereas no backward reaction after the irradiation was observed due to the low concentration of chloride ion in the solution. The average diameter of the particles after the irradiation was about 300 nm and increased with time after the irradiation to a final values which was found to depend on pH of the solution and dose. (author)

  5. Sources of ultrafine particles in the Eastern United States

    Science.gov (United States)

    Posner, Laura N.; Pandis, Spyros N.

    2015-06-01

    Source contributions to ultrafine particle number concentrations for a summertime period in the Eastern U.S. are investigated using the chemical transport model PMCAMx-UF. New source-resolved number emissions inventories are developed for biomass burning, dust, gasoline automobiles, industrial sources, non-road and on-road diesel. According to the inventory for this summertime period in the Eastern U.S., gasoline automobiles are responsible for 40% of the ultrafine particle number emissions, followed by industrial sources (33%), non-road diesel (16%), on-road diesel (10%), and 1% from biomass burning and dust. With these emissions as input, the chemical transport model PMCAMx-UF reproduces observed ultrafine particle number concentrations (N3-100) in Pittsburgh with an error of 12%. For this summertime period in the Eastern U.S., nucleation is predicted to be the source of more than 90% of the total particle number concentrations. The source contributions to primary particle number concentrations are on average similar to those of their source emissions contributions: gasoline is predicted to contribute 36% of the total particle number concentrations, followed by industrial sources (31%), non-road diesel (18%), on-road diesel (10%), biomass burning (1%), and long-range transport (4%). For this summertime period in Pittsburgh, number source apportionment predictions for particles larger than 3 nm in diameter (traffic 65%, other combustion sources 35%) are consistent with measurement-based source apportionment (traffic 60%, combustion sources 40%).

  6. Compressive Strength of Concrete made from Natural Fine Aggregate Sources in Minna, Nigeria

    Directory of Open Access Journals (Sweden)

    M. Abdullahi

    2017-12-01

    Full Text Available This work presented an investigation of concrete developed from five fine aggregate sources in Minna, Niger state, Nigeria. Tests conducted on the fine aggregate samples included specific gravity, sieve analysis, bulk density and moisture content. The concrete mix design was done using absolute volume method at various mix proportion of 1:2:4, 1:2:3 and 1:1:2 and water-cement ratios of 0.4, 0.45, 0.5, 0.55 and 0.6. The compressive strengths of concrete were determined at 28-day curing age. Test results revealed that the specific gravities of the aggregate were between 2.60 to 2.70, compacted bulk densities also ranged from 1505.18 to 1701.15kg/m3, loose bulk densities ranged from 1379.32 to 1478.17kg/m3, and moisture content ranged from 0.93 to 2.47%. All the fine aggregate samples satisfied the overall and medium grading limits for natural fine aggregates. The coarse aggregate used fairly followed the grading limit for aggregate size of 20 to 5 mm. The compressive strength of the concrete obtained using the aggregate samples A, B, C, D, and Eall within the ranges of 18.97 to 34.98 N/mm2. Statistical models were developed for the compressive strength of concrete as a function of water-cement ratio for various fine aggregate sources and mix proportions. The models were found to have good predictive the capabilities of the compressive strength of concrete for given water-cement ratio. The properties of fine aggregates and the resulting concrete characteristics showed that all the fine aggregate samples are suitable to be used for concrete production.

  7. Sources and geographical origins of fine aerosols in Paris (France)

    International Nuclear Information System (INIS)

    Bressi, M.; Nicolas, J.B.; Sciare, J.; Feron, A.; Nonnaire, N.; Petit, J.E.

    2014-01-01

    The present study aims at identifying and apportioning fine aerosols to their major sources in Paris (France) - the second most populated - larger urban zone - in Europe - and determining their geographical origins. It is based on the daily chemical composition of PM2.5 examined over 1 year at an urban background site of Paris (Bressi et al., 2013). Positive matrix factorization (EPA PMF3.0) was used to identify and apportion fine aerosols to their sources; bootstrapping was performed to determine the adequate number of PMF factors, and statistics (root mean square error, coefficient of determination, etc.) were examined to better model PM2.5 mass and chemical components. Potential source contribution function (PSCF) and conditional probability function (CPF) allowed the geographical origins of the sources to be assessed; special attention was paid to implement suitable weighting functions. Seven factors, namely ammonium sulfate (A.S.)-rich factor, ammonium nitrate (A.N.)-rich factor, heavy oil combustion, road traffic, biomass burning, marine aerosols and metal industry, were identified; a detailed discussion of their chemical characteristics is reported. They contribute 27, 24, 17, 14, 12, 6 and 1% of PM2.5 mass (14.7 μgm -3 ) respectively on the annual average; their seasonal variability is discussed. The A.S.- and A.N.-rich factors have undergone mid- or long-range transport from continental Europe; heavy oil combustion mainly stems from northern France and the English Channel, whereas road traffic and biomass burning are primarily locally emitted. Therefore, on average more than half of PM2.5 mass measured in the city of Paris is due to mid- or long-range transport of secondary aerosols stemming from continental Europe, whereas local sources only contribute a quarter of the annual averaged mass. These results imply that fine-aerosol abatement policies conducted at the local scale may not be sufficient to notably reduce PM2.5 levels at urban background sites

  8. Local and regional sources of fine and coarse particulate matter based on traffic and background monitoring

    Science.gov (United States)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-05-01

    The aim of this study was to identify local and exogenous sources affecting particulate matter (PM) levels in five major cities of Northern Europe namely: London, Paris, Hamburg, Copenhagen and Stockholm. Besides local emissions, PM profile at urban and suburban areas of the European Union (EU) is also influenced by regional PM sources due to atmospheric transport, thus geographical city distribution is of a great importance. At each city, PM10, PM2.5, NO2, SO2, CO and O3 air pollution data from two air pollution monitoring stations of the EU network were used. Different background characteristics of the selected two sampling sites at each city facilitated comparisons, providing a more exact analysis of PM sources. Four source apportionment methods: Pearson correlations among the levels of particulates and gaseous pollutants, characterisation of primal component analysis components, long-range transport analysis and extrapolation of PM size distribution ratios were applied. In general, fine (PM2.5) and coarse (PM10) particles were highly correlated, thus common sources are suggested. Combustion-originated gaseous pollutants (CO, NO2, SO2) were strongly associated to PM10 and PM2.5, primarily at areas severely affected by traffic. On the contrary, at background stations neighbouring important natural sources of particles or situated in suburban areas with rural background, natural emissions of aerosols were indicated. Series of daily PM2.5/PM10 ratios showed that minimum fraction values were detected during warm periods, due to higher volumes of airborne biogenic PM coarse, mainly at stations with important natural sources of particles in their vicinity. Hybrid single-particle Lagrangian integrated trajectory model was used, in order to extract 4-day backward air mass trajectories that arrived in the five cities which are under study during days with recorded PM10 exceedances. At all five cities, a significantly large fraction of those trajectories were classified

  9. Chemical composition and source apportionment of aerosol over the Klang valley

    International Nuclear Information System (INIS)

    Shamsiah Abdul Rahman; Mohd Suhaimi Hamzah; Abdul Khalik Wood; Nazaratul Ashifa Abdullah Salim; Mohd Suhaimi Elias; Eswiza Sanuri

    2009-01-01

    This paper reports the study of aerosol chemical composition of fine particles (PM 2.5) and possible sources of air pollution over the Klang Valley, Kuala Lumpur, based on the samples collected for a period of 6 years from July 2000 to Jun 2006. Samples collected were measured for mass, black carbon and elemental content of Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Br and Pb. The fine aerosol mass concentration ranged from 11 - 110 ?g/m3. Black carbon is the major component of the fine aerosol with the weight fraction of 20%, whilst S is the major elemental content with the weight fraction about 5% as relative to the fine particle mass. The factor analysis method, positive matrix factorization (PMF) was then used to confirm the possible sources. The result of PMF analysis produced five-factor sources that contribute to the fine particles in the Klang Valley area. The five factors represent sea spray, industry, motor vehicles, smoke and soil. Motor vehicle is the main source of particulates in the area, with an average contribution of 51% of the fine mass concentration, followed by industry, smoke, sea spray and soil, with average contribution of 28%, 14%, 3.6% and 2.1%, respectively. (Author)

  10. Fine hematite particles of Martian interest: absorption spectra and optical constants

    International Nuclear Information System (INIS)

    Marra, A C; Blanco, A; Fonti, S; Jurewicz, A; Orofino, V

    2005-01-01

    Hematite is an iron oxide very important for the study of climatic evolution of Mars. It can occur in two forms: red and grey, mainly depending on the granulometry of the samples. Spectra of bright regions of Mars suggest the presence of red hematite particles. Moreover the Thermal Emission Spectrometer (TES), on board the Mars Global Surveyor mission, has discovered a deposit of crystalline grey hematite in Sinus Meridiani. TES spectra of that Martian region exhibit features at about 18, 23 and 33 μm that are consistent with hematite. Coarse grey hematite is considered strong evidence for longstanding water, while it is unknown whether the formation of fine-grained red hematite requires abundant water. Studies are needed in order to further characterize the spectral properties of the two kinds of hematite. For this reason we have analyzed a sample of submicron hematite particles in the 6.25-50 μm range in order to study the influence of particles size and shape on the infrared spectra. The optical constants of a particulate sample have been derived and compared with published data concerning bulk samples of hematite. Our results seem to indicate that particle shape is an important factor to take into account for optical constants derivation

  11. The additive association of indoor cigarette and marijuana smoking on potential exposure to fine particles

    OpenAIRE

    Posis, Alexander Ivan; Klepeis, Neil; Bellettiere, John; Liles, Sandy; Berardi, Vincent; Nguyen, Ben; Hughes, Suzanne; Hovell, Melbourne

    2017-01-01

    Air particle monitors were placed in 298 homes of families with at least 1 cigarette smoker and 1 child under the age of 14. After monitors continuously measured fine particle counts (0.5 to 2.5 microns) for at least 7 days, participants were interviewed about past 7-day frequency of cigarette and marijuana smoking, other PGEs (e.g., burning candles, burning food) and ventilation activities such as use of exhaust fans. Dichotomized survey responses (any vs. none) from 193 ho...

  12. The application of IBA techniques to air pollution source fingerprinting and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D., E-mail: dcz@ansto.gov.au; Stelcer, E.; Atanacio, A.; Crawford, J.

    2014-01-01

    IBA techniques have been used to measure elemental concentrations of more than 20 different elements found in fine particle (PM2.5) air pollution. These data together with their errors and minimum detectable limits were used in Positive Matrix Factorisation (PMF) analyses to quantitatively determine source fingerprints and their contributions to the total measured fine mass. Wind speed and direction back trajectory data from the global HYSPLIT codes were then linked to these PMF fingerprints to quantitatively identify the location of the sources.

  13. Characterization of ultrafine and fine particles from CHP Plants

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    Samples of particles collected at CHP plants in the project 'Survey of emissions from CHP Plants' have been analysed in this project to give information on the morphology and chemical composition of individual particle size classes. The objective of this project was to characterize ultrafine and fine particles emitted to the atmosphere from Danish CHP plants. Nine CHP plants were selected in the Emission Survey Project as being representative for the different types of CHP plants operating in Denmark: 1) Three Waste-to Energy (WTE) plants. 2) Three biomass fired (BM) plants (two straw fired, one wood/saw dust fired). 3) Two gas fired (GF) plants (one natural gas, one landfill gas fired). 4) One gasoil (GO) fired plant. At the WTE and BM plants, various types of emission control systems implemented. The results from these plants represent the composition and size distribution of combustion particles that are emitted from the plants emission control systems. The measured emissions of particles from the waste-to-energy plants WTE1-3 are generally very low. The number and mass concentrations of ultrafine particles (PM{sub 0.1}) were particularly low in the flue gas from WTE2 and WTE3, where bag filters are used for the reduction of particle emissions. The EDX analysis of particles from the WTE plants indicates that the PM{sub 0.1} that penetrates the ECS at WTE can contain high fractions of metals such as Fe, Mn and Cu. The SEM analysis of particles from WTE1-3 showed that the particles were generally porous and irregular in shape. The concentrations of particles in the flue gas from the biomass plants were generally higher than found for the WTE plants. The time series results showed that periodical, high concentration peaks of PM emissions occur from BM1 and BM2. The chemical composition of the particles emitted from the three biomass plants is generally dominated by C, O and S, and to some extend also Fe and Si. A high amount of Cu was found in selected

  14. Fine and coarse elemental components in the urban aerosol of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Boueres, L.C.S.; Orsini, C.M.Q.

    1981-01-01

    Using cascade impactor sampling and PIXE analysis we have measured particle size distributions for approximately 15 elements in the Sao Paulo urban atmosphere. These elements, in our case, may be classified, according to their occurrence in fine or coarse aerosol log-normal modes, into three groups: (a) soil dust reference elements (coarse particle mode): Ti, Si and Ca; (b) anthropogenic fine particle mode: Zn, Br and Pb; and (c) mixed bimodal elements: S, K, V, Cr, Mn, Ni, Cu and Fe. All of the soil dust reference elements show consistently the log-normal parameters MMAD approx. 5.5 μm and sigmasub(g) approx. 3.2 (mass median aerodynamic diameter and geometric standard deviation, respectively). Enrichment factor calculations for Ti, Si, Ca and K in the coarse particle fraction (> 2 μmad), relative to Fe and the standard crustal aerosol values of Lawson and Winchester, show that Ti and Si are mainly soil derived while Ca and K may have significant industrial components in this particle fraction (i.e. coarse mode). The fine mode parameters for the other elements show variations with element suggesting different air pollution sources (such as motor vehicles, resuspended dust, refuse burning, industrial activities, etc.) and/or different chemical pathways, which presumably could be identifiable. For example, the modal parameters for group (b) are: Zn, MMAD = 0.9 μm, sigmasub(g) = 2.2; Br, MMAD = 0.5 μm, sigmasub(g) = 4.0; Pb, MMAD = 0.6 μm, sigmasub(g) = 3.0; thus suggesting a common source (automotive) for Br and Pb, unrelated to the source of Zn (possibly refuse burning). (orig.)

  15. Stacked dipole line source excitation of active nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel

    This work investigates electromagnetic properties of cylindrical active coated nano-particles excited by a stac- ked electric dipole line source. The nano-particles consist of a silica nano-core, layered by silver, gold, or copper nano-shell. Attention is devoted to the influence of the source...... location and dipole orientation, the gain constant, and the nano-particle material composition on the electromagnetic field distributions and radiated powers. The results are contrasted to those for the magnetic line source illumination of the nano-particles....

  16. Identification and characterization of fine and coarse particulate matter sources in a middle-European urban environment

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Szoboszlai, Z.; Angyal, A.; Dobos, E.; Borbely-Kiss, I.

    2010-01-01

    In this work a source apportionment study is presented which aimed to characterize the PM 2.5 and PM 2.5-10 sources in the urban area of Debrecen, East-Hungary by using streaker samples, IBA methods and positive matrix factorization (PMF) analysis. Samples of fine (PM 2.5 ) and coarse (PM 2.5-10 ) urban particulate matter were collected with 2 h time resolution in the frame of five sampling campaigns during 2007-2009 in different seasons in the downtown of Debrecen. Elemental concentrations from Al to Pb of over 1000 samples were obtained by particle induced X-ray emission (PIXE); concentrations of black carbon (BC) were determined with a smoke stain reflectometer. On this data base source apportionment was carried out by using the PMF method. Seven factors were identified for both size fractions, including soil dust, traffic, secondary aerosol - sulphates, domestic heating, oil combustion, agriculture and an unknown factor enriched with chlorine. Seasonal and daily variation of the different factors was studied as well as their dependence on meteorological parameters. Besides determining the time patterns characteristic to the city, several emission episodes were identified including a Saharan dust intrusion on 21st-24th May, 2008.

  17. Characterization of fine particle components in Mexico City

    International Nuclear Information System (INIS)

    Saitoh, K.; Sera, K.; Perales, J.G.; Garcia, F.A.; Suzuki, H.

    1999-01-01

    Particulate matter (PM-3.9 and PM-15.8) samples were collected in the three zones at the Northeast, Southwest and Southeast suburbs of Mexico City, from July to August 1998, for one week for each sampling site. The concentrations of several elements in the PM-3.9 and PM-15.8 samples were determined by Particle Induced X-ray Emission (PIXE). In the PM-3.9 samples, 21 elements were determined for each zone, and Na, Mg, Al, Si, S, K, Ca, Ti, Fe, Cu, Zn and Pb are found to be the major elemental components. On the other hand, 22 elements including P were determined on the PM-15.8 samples, and the dominant elements were the same as in the PM-3.9. Factor analysis is applied to the 28 variables (14 elements for each PM-3.9 and PM-15.8 groups) and for 21 samples (seven days for three zones) in order to identify possible sources of the particles. The result of factor analysis allows to identify five major sources, being soil the major contributor. (author)

  18. Characterization of fine particle components in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, K. [Akita Prefectural Institute of Environmental Science, Yabase-Shimoyabase, Akita (Japan); Sera, K. [Iwate Medical Univ., Cyclotron Research Center, Takizawa, Iwate (Japan); Perales, J.G.; Garcia, F.A. [Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA), Av. Michoacan y la Purisima Col. Vicentina C.P. 09340 Mexico (Mexico); Suzuki, H. [Environmental Data Analysis Laboratory, System Design, Inc., Shinagawa, Tokyo (Japan)

    1999-07-01

    Particulate matter (PM-3.9 and PM-15.8) samples were collected in the three zones at the Northeast, Southwest and Southeast suburbs of Mexico City, from July to August 1998, for one week for each sampling site. The concentrations of several elements in the PM-3.9 and PM-15.8 samples were determined by Particle Induced X-ray Emission (PIXE). In the PM-3.9 samples, 21 elements were determined for each zone, and Na, Mg, Al, Si, S, K, Ca, Ti, Fe, Cu, Zn and Pb are found to be the major elemental components. On the other hand, 22 elements including P were determined on the PM-15.8 samples, and the dominant elements were the same as in the PM-3.9. Factor analysis is applied to the 28 variables (14 elements for each PM-3.9 and PM-15.8 groups) and for 21 samples (seven days for three zones) in order to identify possible sources of the particles. The result of factor analysis allows to identify five major sources, being soil the major contributor. (author)

  19. A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects.

    Science.gov (United States)

    Mukherjee, Arideep; Agrawal, Madhoolika

    Fine particulate matter (PM) in the ambient air is implicated in a variety of human health issues throughout the globe. Regulation of fine PM in the atmosphere requires information on the dimension of the problem with respect to variations in concentrations and sources. To understand the current status of fine particles in the atmosphere and their potential harmful health effects in different regions of the world this review article was prepared based on peer-reviewed scientific papers, scientific reports, and database from government organizations published after the year 2000 to evaluate the global scenario of the PM 2.5 (particles levels and exceedances of national and international standards were several times higher in Asian countries, while levels in Europe and USA were mostly well below the respective standards. Vehicular traffic has a significant influence on PM 2.5 levels in urban areas; followed by combustion activities (biomass, industrial, and waste burning) and road dust. In urban atmosphere, fine particles are mostly associated with different health effects with old aged people, pregnant women, and more so children being the most susceptible ones. Fine PM chemical constituents severely effect health due to their carcinogenic or mutagenic nature. Most of the research indicated an exceedance of fine PM level of the standards with a diverse array of health effects based on PM 2.5 chemical constituents. Emission reduction policies with epidemiological studies are needed to understand the benefits of sustainable control measures for fine PM mitigation.

  20. Distribution of lead in single atmospheric particles

    Science.gov (United States)

    Murphy, D. M.; Hudson, P. K.; Cziczo, D. J.; Gallavardin, S.; Froyd, K. D.; Johnston, M. V.; Middlebrook, A. M.; Reinard, M. S.; Thomson, D. S.; Thornberry, T.; Wexler, A. S.

    2007-06-01

    Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent.

  1. Distribution of lead in single atmospheric particles

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2007-06-01

    Full Text Available Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent.

  2. [Evaluation of Cellular Effects Caused by Lunar Regolith Simulant Including Fine Particles].

    Science.gov (United States)

    Horie, Masanori; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2015-06-01

    The National Aeronautics and Space Administration has announced a plan to establish a manned colony on the surface of the moon, and our country, Japan, has declared its participation. The surface of the moon is covered with soil called lunar regolith, which includes fine particles. It is possible that humans will inhale lunar regolith if it is brought into the spaceship. Therefore, an evaluation of the pulmonary effects caused by lunar regolith is important for exploration of the moon. In the present study, we examine the cellular effects of lunar regolith simulant, whose components are similar to those of lunar regolith. We focused on the chemical component and particle size in particular. The regolith simulant was fractionated to lunar regolith simulant such as cell membrane damage, induction of oxidative stress and proinflammatory effect.

  3. Cooling of an internal-heated debris bed with fine particles

    International Nuclear Information System (INIS)

    Yang, Z.L.; Sehgal, B.R.

    2001-01-01

    In this paper, an analytical model on dryout heat flux of ex-vessel debris beds with fines particles under top flooding conditions has been developed. The parametric study is performed on the effect of the stratification of the debris beds on the dryout heat flux. The calculated results show that the stratification configuration of the debris beds with smaller particles and lower porosity layer resting on the top of another layer of the beds has profound effect on the dryout heat flux for the debris beds both with and without a downcomer. The enhancement of the dryout heat flux by the downcomer is significant. The efficiency of the single downcomer on the enhancement of the dryout heat flux is also analyzed. This, in general, agrees well with experimental data. The model is also employed to perform the assessment on the coolability of the ex-vessel debris bed under representative accidental conditions. One conservative case is chosen, and it is found that the downcomer could be efficient measure to cool the debris bed and hence terminate the severe accident. (authors)

  4. Floodplains as a source of fine sediment in grazed landscapes: tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    Science.gov (United States)

    Yu, M.; Rhoads, B. L.; Stumpf, A.

    2017-12-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five potential sources: streambanks, forested floodplain, grassland, and grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and fallout radionuclides were used as potential tracers. Principal Component analysis was employed to complement the results and Monte Carlo random sampling routine was used to test the uncertainty in estimated contributions of sources to in-stream sediment loads. Results indicate that the majority of suspended sediment is derived from streambanks and grazed floodplains. Erosion of the floodplain both by surface runoff and by streambank erosion from lateral channel migration contributes to the production of fine sediment within the stream system. These results suggest that human activities, in this case grazing, have converted portions of floodplains, normally net depositional environments, into sources of fine sediments. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on degraded floodplain surfaces and eroding channel banks within heavily grazed reaches of the stream.

  5. Evaluation of fine ceramics raw powders with particle size analyzers having different measuring principle and its problem

    International Nuclear Information System (INIS)

    Hayakawa, Osamu; Nakahira, Kenji; Tsubaki, Junichiro.

    1995-01-01

    Many kinds of analyzers based on various principles have been developed for measuring particle size distribution of fine ceramics powders. But the reproducibility of the results, interchangeability of the models, reliability of the ends of the measured distribution have not been investigated for each principle. In this paper, these important points for particle size analysis were clarified by measuring raw material powders of fine ceramics. (1) in the case of laser diffraction and scattering method, the reproducibility in the same model is good, however, interchangeability of the different models is not so good, especially at the ends of the distribution. Submicron powders having high refractive index show such a tendency remarkably. (2) the photo sedimentation method has some problems to be conquered, especially in measuring submicron powders having high refractive index or flaky shape particles. The reproducibility of X-ray sedimentation method is much better than that of photo sedimentation. (3) the light obscuration and electrical sensing zone methods, show good reproducibility, however, sometime bad interchangeability is affected by calibration and so on. (author)

  6. NARSTO fine-particle and ozone assessments

    International Nuclear Information System (INIS)

    Hales, Jeremy M.

    2003-01-01

    The NARSTO ozone and fine-particle assessments compile and present policy-relevant scientific information. - NARSTO, a tri-national North American consortium for applied tropospheric pollution research, conducts periodic assessments of air-pollution behavior to provide an information interface between the research community and individuals working in policy analysis and air-quality management. The first of these, entitled An Assessment of Tropospheric Ozone Pollution-A North American Perspective, appeared in late 2000 and has been circulated widely throughout the United States, Canada, Mexico, Europe, and South America. The second (currently) entitled NARSTO Assessment of the Atmospheric Science on Particulate Matter, is presently in its third-draft phase and is available for general review. A fourth draft, incorporating comments from the current review stage, will be submitted in January 2002 to a tri-national review committee composed of the Canadian Royal Society, the US National Academy of Sciences, and the Mexican Red de Desarrollo e Investigacion de la Calidad del Aire en Grandes Ciudades. Finalization of the document will follow this review, which will conclude in July 2000. Publication is expected in December 2002. These two assessments contain substantial amounts of policy-relevant information, which is of interest to the research community as well as those working in policy analysis and air-quality management. This presentation provides a brief overview of features and findings of the two documents

  7. Comparison of fine particle colemanite and boron frit in concrete for time-strength relationship

    International Nuclear Information System (INIS)

    Volkman, D.E.; Bussolini, P.L.

    1992-01-01

    This paper reports that the element boron, when added to concrete, has proved effective in shielding neutron particles by absorbing the neutron and emitting a low-energy gamma ray. The various boron additives used with concrete can severely retard the set time and strength gain. An advantage to using small particle size boron is that the smaller grain size provides better boron disbursement within the concrete matrix to absorb neutrons. However, boron additives of powder consistency are usually not used due to the greater potential of forming chemical solutions that act as a retarder in the concrete. Research has shown that the amount of boron additives in concrete can be reduced significantly if fine grain particles can be successfully incorporated into the concrete matrix. The purpose of this study is to compare strength gain characteristics of concrete mixes containing various quantities of fine grain boron additive. The boron additive colemanite, a natural mineral, is compared with two brands of manufactured aggregate, boron frit. Concrete test cylinders are molded for testing the compressive strength of the mix after 4, 7, 28, and 56 days. Tested are five different quantities of colemanite as well as five comparable amounts of boron frit for each brand of the material. The test values are compared with a control concrete specimen containing no boron additive. Results of this study can be used to optimize the cost and effectiveness of boron additives in radiation shielding concrete

  8. The influence of fine char particles burnout on bed agglomeration during the fluidized bed combustion of a biomass fuel

    Energy Technology Data Exchange (ETDEWEB)

    Scala, Fabrizio; Chirone, Riccardo [Istituto di Ricerche sulla Combustione, CNR, P.le V. Tecchio, 80-80125 Naples (Italy); Salatino, Piero [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, P.le V. Tecchio, 80-80125 Naples (Italy)

    2003-11-15

    The combustion of biomass char in a bubbling fluidized bed is hereby addressed, with specific reference to the influence that the combustion of fine char particles may exert on ash deposition and bed agglomeration phenomena. Experiments of steady fluidized bed combustion (FBC) of powdered biomass were carried out with the aim of mimicking the postcombustion of attrited char fines generated in the fluidized bed combustion of coarse char. Experimental results showed that the char elutriation rate is much smaller than expected on the basis of the average size of the biomass powder and of the carbon loading in the combustor. Samples of bed material collected after prolonged operation of the combustor were characterized by scanning electron microscopy (SEM)-EDX analysis and revealed the formation of relatively coarse sand-ash-carbon aggregates. The phenomenology is consistent with the establishment of a char phase attached to the bed material as a consequence of adhesion of char fines onto the sand particles. Combustion under sound-assisted fluidization conditions was also tested. As expected, enhancement of fines adhesion on bed material and further reduction of the elutriation rate were observed. Experimental results are interpreted in the light of a simple model which accounts for elutriation of free fines, adhesion of free fines onto bed material and detachment of attached fines by attrition of char-sand aggregates. Combustion of both free and attached char fines is considered. The parameters of the model are assessed on the basis of the measured carbon loadings and elutriation rates. Model computations are directed to estimate the effective size and the peak temperature of char-sand aggregates. The theoretical estimates of the effective aggregate size match fairly well those observed in the experiments.

  9. Parameter and model uncertainty in a life-table model for fine particles (PM2.5): a statistical modeling study.

    Science.gov (United States)

    Tainio, Marko; Tuomisto, Jouni T; Hänninen, Otto; Ruuskanen, Juhani; Jantunen, Matti J; Pekkanen, Juha

    2007-08-23

    The estimation of health impacts involves often uncertain input variables and assumptions which have to be incorporated into the model structure. These uncertainties may have significant effects on the results obtained with model, and, thus, on decision making. Fine particles (PM2.5) are believed to cause major health impacts, and, consequently, uncertainties in their health impact assessment have clear relevance to policy-making. We studied the effects of various uncertain input variables by building a life-table model for fine particles. Life-expectancy of the Helsinki metropolitan area population and the change in life-expectancy due to fine particle exposures were predicted using a life-table model. A number of parameter and model uncertainties were estimated. Sensitivity analysis for input variables was performed by calculating rank-order correlations between input and output variables. The studied model uncertainties were (i) plausibility of mortality outcomes and (ii) lag, and parameter uncertainties (iii) exposure-response coefficients for different mortality outcomes, and (iv) exposure estimates for different age groups. The monetary value of the years-of-life-lost and the relative importance of the uncertainties related to monetary valuation were predicted to compare the relative importance of the monetary valuation on the health effect uncertainties. The magnitude of the health effects costs depended mostly on discount rate, exposure-response coefficient, and plausibility of the cardiopulmonary mortality. Other mortality outcomes (lung cancer, other non-accidental and infant mortality) and lag had only minor impact on the output. The results highlight the importance of the uncertainties associated with cardiopulmonary mortality in the fine particle impact assessment when compared with other uncertainties. When estimating life-expectancy, the estimates used for cardiopulmonary exposure-response coefficient, discount rate, and plausibility require careful

  10. Parameter and model uncertainty in a life-table model for fine particles (PM2.5: a statistical modeling study

    Directory of Open Access Journals (Sweden)

    Jantunen Matti J

    2007-08-01

    Full Text Available Abstract Background The estimation of health impacts involves often uncertain input variables and assumptions which have to be incorporated into the model structure. These uncertainties may have significant effects on the results obtained with model, and, thus, on decision making. Fine particles (PM2.5 are believed to cause major health impacts, and, consequently, uncertainties in their health impact assessment have clear relevance to policy-making. We studied the effects of various uncertain input variables by building a life-table model for fine particles. Methods Life-expectancy of the Helsinki metropolitan area population and the change in life-expectancy due to fine particle exposures were predicted using a life-table model. A number of parameter and model uncertainties were estimated. Sensitivity analysis for input variables was performed by calculating rank-order correlations between input and output variables. The studied model uncertainties were (i plausibility of mortality outcomes and (ii lag, and parameter uncertainties (iii exposure-response coefficients for different mortality outcomes, and (iv exposure estimates for different age groups. The monetary value of the years-of-life-lost and the relative importance of the uncertainties related to monetary valuation were predicted to compare the relative importance of the monetary valuation on the health effect uncertainties. Results The magnitude of the health effects costs depended mostly on discount rate, exposure-response coefficient, and plausibility of the cardiopulmonary mortality. Other mortality outcomes (lung cancer, other non-accidental and infant mortality and lag had only minor impact on the output. The results highlight the importance of the uncertainties associated with cardiopulmonary mortality in the fine particle impact assessment when compared with other uncertainties. Conclusion When estimating life-expectancy, the estimates used for cardiopulmonary exposure

  11. Chemical characterization and sources of personal exposure to fine particulate matter (PM2.5) in the megacity of Guangzhou, China.

    Science.gov (United States)

    Chen, Xiao-Cui; Jahn, Heiko J; Engling, Guenter; Ward, Tony J; Kraemer, Alexander; Ho, Kin-Fai; Yim, S H L; Chan, Chuen-Yu

    2017-12-01

    Concurrent ambient and personal measurements of fine particulate matter (PM 2.5 ) were conducted in eight districts of Guangzhou during the winter of 2011. Personal-to-ambient (P-C) relationships of PM 2.5 chemical components were determined and sources of personal PM 2.5 exposures were evaluated using principal component analysis and a mixed-effects model. Water-soluble inorganic ions (e.g., SO 4 2- , NO 3 - , NH 4 + , C 2 O 4 2- ) and anhydrosugars (e.g., levoglucosan, mannosan) exhibited median personal-to-ambient (P/C) ratios personal PM 2.5 were significantly affected by ambient sources. Conversely, elemental carbon (EC) and calcium (Ca 2+ ) showed median P/C ratios greater than unity, illustrating significant impact of local traffic, indoor sources, and/or personal activities on individual's exposure. SO 4 2- displayed very low coefficient of divergence (COD) values coupled with strong P-C correlations, implying a uniform distribution of SO 4 2- in the urban area of Guangzhou. EC, Ca 2+ , and levoglucosan were otherwise heterogeneously distributed across individuals in different districts. Regional air pollution (50.4 ± 0.9%), traffic-related particles (8.6 ± 0.7%), dust-related particles (5.8 ± 0.7%), and biomass burning emissions (2.0 ± 0.2%) were moderate to high positive sources of personal PM 2.5 exposure in Guangzhou. The observed positive and significant contribution of Ca 2+ to personal PM 2.5 exposure, highlighting indoor sources and/or personal activities, were driving factors determining personal exposure to dust-related particles. Considerable discrepancies (COD values ranging from 0.42 to 0.50) were shown between ambient concentrations and personal exposures, indicating caution should be taken when using ambient concentrations as proxies for personal exposures in epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Oxygenated organic functional groups and their sources in single and submicron organic particles in MILAGRO 2006 campaign

    Directory of Open Access Journals (Sweden)

    S. Liu

    2009-09-01

    Full Text Available Fourier Transform Infrared (FTIR and X-ray Fluorescence (XRF were used to measure organic functional groups and elements of submicron particles collected during MILAGRO in March 2006 on three platforms: the Mexico City urban area (SIMAT, the high altitude site at 4010 m (Altzomoni, and the NCAR C130 aircraft. Scanning Transmission X-ray Microscopy (STXM and Near-Edge X-ray Absorption Fine Structure (NEXAFS were applied to single particle organic functional group abundance analysis of particles simultaneously collected at SIMAT and C130. Correlations of elemental concentrations showed different groups of source-related elements at SIMAT, Altzomoni, and C130, suggesting different processes affecting the air masses sampled at the three platforms. Cluster analysis resulted in seven distinct clusters of FTIR spectra, with the last three clusters consisting of spectra collected almost exclusively on the C130 platform, reflecting the variety of sources contributing to C130 samples. Positive Matrix Factorization (PMF of STXM-NEXAFS spectra identified three main factors representing soot, secondary, and biomass burning type spectra. PMF of FTIR spectra resulted in two fossil fuel combustion factors and one biomass burning factor, the former representative of source regions to the northeast and southwest of SIMAT. Alkane, carboxylic acid, amine, and alcohol functional groups were mainly associated with combustion related sources, while non-acid carbonyl groups were likely from biomass burning events. The majority of OM and O/C was attributed to combustion sources, although no distinction between direct emissions and atmospherically processed OM could be identified.

  13. Temporal variations of fine and coarse particulate matter sources in Jeddah, Saudi Arabia.

    Science.gov (United States)

    Lim, Chris C; Thurston, George D; Shamy, Magdy; Alghamdi, Mansour; Khoder, Mamdouh; Mohorjy, Abdullah M; Alkhalaf, Abdulrahman K; Brocato, Jason; Chen, Lung Chi; Costa, Max

    2018-02-01

    This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (aerodynamic diameter Saudi Arabia. Air quality samples were collected over 1 yr, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM 2.5 (21.9 μg/m 3 ) and PM 10 (107.8 μg/m 3 ) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM 2.5 (10 μg/m 3 ) and PM 10 (20 μg/m 3 ), respectively. Similar to other Middle Eastern locales, PM 2.5-10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM 10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM 2.5 and PM 2.5-10 : (1) soil/road dust, (2) incineration, and (3) traffic; and for PM 2.5 only, (4) residual oil burning. Soil/road dust accounted for a major portion of both the PM 2.5 (27%) and PM 2.5-10 (77%) mass, and the largest source contributor for PM 2.5 was from residual oil burning (63%). Temporal variations of PM 2.5-10 and PM 2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency) and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM 2.5 and PM 2.5-10 masses in this city may have implications regarding the toxicity of these particles versus those in the Western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting. Temporal variations of fine and coarse PM mass, elemental constituents, and sources were examined in Jeddah, Saudi Arabia, for the first time. The main source

  14. Source identification and metallic profiles of size-segregated particulate matters at various sites in Delhi.

    Science.gov (United States)

    Hazarika, Naba; Jain, V K; Srivastava, Arun

    2015-09-01

    A study of elemental composition in the ambient air of Delhi was carried out in the monsoon, winter and summer seasons at four different sites from August 2012 to April 2013 in the size ranges 10 μm using "Dekati PM10" impactor. At each site, three samples were collected and were analyzed by energy-dispersive X-ray fluorescence (EDXRF). The presence of elements was found to be very common and highly concentrated in aerosol particles at all the sites, which are Na, Al, Si, K, Ca, Zn and Ba. Total suspended particulate matters (TSPMs) of fine particles were found high in comparison to coarse particles at all seasons. The TSPM of fine particles was found to be varied in the range from 303.6 to 416.2 μg/m(3). Similarly, the range of coarse TSPM was observed from 162.9 to 262.8 μg/m(3). Correlation matrices were observed between fine (size ranges 10 μm) size particles for all elements with seasons. Source apportionments of elements were carried out using MS Excel 2010 through XLSTAT software. The source apportionments between fine and coarse particles were carried out through factor analysis and dominated sources found to be crustal re-suspension and industrial activities.

  15. Microwave and particle beam sources and directed energy concepts

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1989-01-01

    This book containing the proceedings of the SPIE on microwave and particle beam sources and directed energy concepts. Topics covered include: High power microwave sources, Direct energy concepts, Advanced accelerators, and Particle beams

  16. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Hildemann, L.M.; Simoneit, B.R.T.

    1990-10-01

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs

  17. Water Soluble Organic Nitrogen (WSON) in Ambient Fine Particles Over a Megacity in South China: Spatiotemporal Variations and Source Apportionment

    Science.gov (United States)

    Yu, Xu; Yu, Qingqing; Zhu, Ming; Tang, Mingjin; Li, Sheng; Yang, Weiqiang; Zhang, Yanli; Deng, Wei; Li, Guanghui; Yu, Yuegang; Huang, Zhonghui; Song, Wei; Ding, Xiang; Hu, Qihou; Li, Jun; Bi, Xinhui; Wang, Xinming

    2017-12-01

    Organic nitrogen aerosols are complex mixtures and important compositions in ambient fine particulate matters (PM2.5), yet their sources and spatiotemporal patterns are not well understood particularly in regions influenced by intensive human activities. In this study, filter-based ambient PM2.5 samples at four stations (one urban, two rural, plus one urban roadside) and PM samples from combustion sources (vehicle exhaust, ship emission, and biomass burning) were collected in the coastal megacity Guangzhou, south China, for determining water soluble organic nitrogen (WSON) along with other organic and inorganic species. The annual average WSON concentrations, as well as the ratios of WSON to water soluble total nitrogen, were all significantly higher at rural sites than urban sites. Average WSON concentrations at the four sites during the wet season were quite near each other, ranging from 0.41 to 0.49 μg/m3; however, they became 2 times higher at the rural sites than at the urban sites during the dry season. Five major sources for WSON were identified through positive matrix factorization analysis. Vehicle emission (29.3%), biomass burning (22.8%), and secondary formation (20.2%) were three dominant sources of WSON at the urban station, while vehicle emission (45.4%) and dust (28.6%) were two dominant sources at the urban roadside station. At the two rural sites biomass burning (51.1% and 34.1%, respectively) and secondary formation (17.8% and 30.5%, respectively) were dominant sources of WSON. Ship emission contributed 8-12% of WSON at the four sites. Natural vegetation seemed to have very minor contribution to WSON.

  18. Source identification of fine-grained suspended sediment in the Kharaa River basin, northern Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Theuring, Philipp [Department of Aquatic Ecosystem Analysis and Management — ASAM, Helmholtz Centre for Environmental Research — UFZ, Brückstrasse 3a, D-39114 Magdeburg (Germany); Collins, Adrian L. [Sustainable Soils and Grassland Systems Department, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB (United Kingdom); Rode, Michael [Department of Aquatic Ecosystem Analysis and Management — ASAM, Helmholtz Centre for Environmental Research — UFZ, Brückstrasse 3a, D-39114 Magdeburg (Germany)

    2015-09-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (< 10 μm) sediment in the 15 000 km{sup 2} Kharaa River basin in northern Mongolia. Variation in geochemical composition (e.g. in Ti, Sn, Mo, Mn, As, Sr, B, U, Ca and Sb) was used for sediment source discrimination with geochemical composite fingerprints based on Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal–Wallis H-test and Principal Component Analysis. All composite fingerprints yielded a satisfactory GOF (> 0.97) and were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin), generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of river bank erosion is shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the applicability and associated uncertainties of the approach for fine-grained sediment source investigation in large scale semi-arid catchments. - Highlights: • Applied statistical approach for selecting composite fingerprints in Mongolia. • Geochemical fingerprinting for the definition of source areas in semiarid catchment. • Test of applicability of sediment sourcing in large scale semi-arid catchments

  19. Explaining the spatiotemporal variation of fine particle number concentrations over Beijing and surrounding areas in an air quality model with aerosol microphysics

    International Nuclear Information System (INIS)

    Chen, Xueshun; Wang, Zifa; Li, Jie; Chen, Huansheng; Hu, Min; Yang, Wenyi; Wang, Zhe; Ge, Baozhu; Wang, Dawei

    2017-01-01

    In this study, a three-dimensional air quality model with detailed aerosol microphysics (NAQPMS + APM) was applied to simulate the fine particle number size distribution and to explain the spatiotemporal variation of fine particle number concentrations in different size ranges over Beijing and surrounding areas in the haze season (Jan 15 to Feb 13 in 2006). Comparison between observations and the simulation indicates that the model is able to reproduce the main features of the particle number size distribution. The high number concentration of total particles, up to 26600 cm −3 in observations and 39800 cm −3 in the simulation, indicates the severity of pollution in Beijing. We find that primary particles with secondary species coating and secondary particles together control the particle number size distribution. Secondary particles dominate particle number concentration in the nucleation mode. Primary and secondary particles together determine the temporal evolution and spatial pattern of particle number concentration in the Aitken mode. Primary particles dominate particle number concentration in the accumulation mode. Over Beijing and surrounding areas, secondary particles contribute at least 80% of particle number concentration in the nucleation mode but only 10–20% in the accumulation mode. Nucleation mode particles and accumulation mode particles are anti-phased with each other. Nucleation or primary emissions alone could not explain the formation of the particle number size distribution in Beijing. Nucleation has larger effects on ultrafine particles while primary particles emissions are efficient in producing large particles in the accumulation mode. Reduction in primary particle emissions does not always lead to a decrease in the number concentration of ultrafine particles. Measures to reduce fine particle pollution in terms of particle number concentration may be different from those addressing particle mass concentration. - Highlights:

  20. Metal-bearing fine particle sources in a coastal industrialized environment

    Czech Academy of Sciences Publication Activity Database

    Mbengue, Saliou; Alleman, L. Y.; Flament, P.

    2017-01-01

    Roč. 183, jan (2017), s. 202-211 ISSN 0169-8095 Institutional support: RVO:67179843 Keywords : PM2.5 * Trace elements * Industrial emissions * Sources apportionment Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 3.778, year: 2016

  1. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models

    Directory of Open Access Journals (Sweden)

    S. Song

    2018-05-01

    Full Text Available pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in northern China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic to as high as 7 (neutral. In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol-phase composition as inputs (i.e., reverse mode are sensitive to the measurement errors of ionic species, and inferred pH values exhibit a bimodal distribution, with peaks between −2 and 2 and between 7 and 10, depending on whether anions or cations are in excess. Calculations using total (gas plus aerosol phase measurements as inputs (i.e., forward mode are affected much less by these measurement errors. In future studies, the reverse mode should be avoided whereas the forward mode should be used. Forward-mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5 for fine particles in northern China winter haze, indicating further that ammonia plays an important role in determining this property. The assumed particle phase state, either stable (solid plus liquid or metastable (only liquid, does not significantly impact pH predictions. The unrealistic pH values of about 7 in a few previous studies (using the standard ISORROPIA model and stable state assumption resulted from coding errors in the model, which have been identified and fixed in this study.

  2. Particle accelerators and lasers high energy sources

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1985-04-01

    Particle accelerators and lasers are to-day precious devices for physicist and engineer. Their performance and scope do not stop growing. Producing thin beams of high energy particles or photons, they are able to be very high energy sources which interact strongly with matter. Numerous applications use them: research, industry, communication, medicine, agroalimentary, defence, and soon. In this note, their operation principles are described and some examples of their use as high energy sources are given [fr

  3. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers

    Directory of Open Access Journals (Sweden)

    Y. Mancilla

    2016-01-01

    Full Text Available Primary emissions from anthropogenic and biogenic sources as well as secondary formation are responsible for the pollution levels of ambient air in major urban areas. These sources release fine particles into the air that negatively impact human health and the environment. Organic molecular markers, which are compounds that are unique to specific PM2.5 sources, can be utilized to identify the major emission sources in urban areas. In this study, 43 representative PM2.5 samples, for both daytime and nighttime periods, were built from individual samples collected in an urban site of the Monterrey metropolitan area (MMA during the spring and fall of 2011 and 2012. The samples were analyzed for organic carbon, elemental carbon, and organic molecular markers. Several diagnostic tools were employed for the preliminary identification of emission sources. Organic compounds for eight compound classes were quantified. The n-alkanoic acids were the most abundant, followed by n-alkanes, wood smoke markers, and levoglucosan/alkenoic acids. Polycyclic aromatic hydrocarbons (PAHs and hopanes were less abundant. The carbon preference index (0.7–2.6 for n-alkanes indicates a major contribution of anthropogenic and mixed sources during the fall and the spring, respectively. Hopanes levels confirmed the contribution from gasoline and diesel engines. In addition, the contribution of gasoline and diesel vehicle exhaust was confirmed and identified by the PAH concentrations in PM2.5. Diagnostic ratios of PAHs showed emissions from burning coal, wood, biomass, and other fossil fuels. The total PAHs and elemental carbon were correlated (r2 =  0.39–0.70 across the monitoring periods, reinforcing that motor vehicles are the major contributors of PAHs. Cholesterol levels remained constant during the spring and fall, showing evidence of the contribution of meat-cooking operations, while the isolated concentrations of levoglucosan suggested occasional biomass

  4. Study on fine particles influence on sodium sulfite and oxygen gas-liquid reaction

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Shuchang; Zhao, Bo; Wang, Shujuan; Zhuo, Yuqun; Chen, Changhe [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    Wet limestone scrubbing is the most common flue gas desulfurization process for control of sulfur dioxide emissions from the combustion of fossil fuels, and forced oxidation is a key part of the reaction. During the reaction which controlled by gas-liquid mass transfer, the fine particles' characteristic, size, solid loading and temperature has a great influence on gas-liquid mass transfer. In the present work is to explain how these factors influence the reaction between Na{sub 2}SO{sub 3} and O{sub 2} and find the best react conditions through experiment. The oxidation rate was experimentally studied by contacting pure oxygen with a sodium sulfite solution with active carbon particle in a stirred tank, and the system pressure drop was record by the pressure sensor. At the beginning the pressure is about 215 kPa and Na{sub 2}SO{sub 3} is about 0.5mol/L. The temperature is 40, 50, 60, 70, 80 C. Compare the results of no particles included, we can conclude that high temperature, proper loadings and smaller particles resulting in higher mass transfer coefficients k{sub L}.

  5. Significance of Fines in Hot Mix Asphalt Synthesis

    Directory of Open Access Journals (Sweden)

    Kalaitzaki Elvira

    2017-07-01

    Full Text Available According to their size, aggregates are classified in coarse grained, fine grained, and fines. The determination of fines content in aggregate materials is very simple and is performed through the aggregate washing during the sieving procedure to define the gradation curve. The very fine material consists of grains having a size lower than 63 μm. The presence of fines directly influences the composition and performance of concrete and asphalt mixtures (e.g. asphalt content, elasticity, fracture. The strength and load carrying capacity of hot mix asphalt (HMA results from the aggregate framework created through particle-particle contact and interlock. Fines or mineral filler have a role in HMA. The coarse aggregate framework is filled by the sand-sized material and finally by the mineral filler. At some point, the smallest particles lose contact becoming suspended in the binder not having the particle-particle contact that is created by the larger particles. The overall effect of mineral filler in hot mix asphalt specimens has been investigated through a series of laboratory tests. It is clear that a behaviour influenced by the adherence of fines to asphalt film has been developed. The optimum bitumen content requirement in case of stone filler is almost the same as that for fly ash. It has been found that the percentage of fly ash filler is crucial if it exceeds approximately a value of 4%.

  6. Growth and sedimentation of fine particles produced in aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Jonah, C.D.

    1994-10-01

    It is known that palladium and palladium-silver fine particles were formed from deaerated aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation. Changes in particle size and with amount of particles in the solution with time during and after irradiation were studied using dynamic light scattering technique and UV spectrophotometer. The particles formed from palladium sulfate solution are found to be water-filled bulky particles of diameter of 200 nm, which grow by mutual coagulation even after irradiation was terminated. Average density depends on concentration of palladium ion in the solution and dose, and the lowest density was about 2 g/cm 3 for particles of 200 nm obtained from 0.06 mM solution by 2.4 kGy irradiation. The average density of the particles obtained from palladium sulfate-silver sulfate solutions was smaller than those obtained for the corresponding palladium sulfate solutions. Supersonic agitation destroyed coagulated precipitates to form fine particles, but did not form clusters of a few atoms. (author)

  7. The importance of source positions during radio fine structure observations

    International Nuclear Information System (INIS)

    Chernov, Guennadi P.; Yan Yi-Hua; Fu Qi-Jun

    2014-01-01

    The measurement of positions and sizes of radio sources in the observations of the fine structure of solar radio bursts is a determining factor for the selection of the radio emission mechanism. The identical parameters describing the radio sources for zebra structures (ZSs) and fiber bursts confirm there is a common mechanism for both structures. It is very important to measure the size of the source in the corona to determine if it is distributed along the height or if it is point-like. In both models of ZSs (the double plasma resonance (DPR) and the whistler model) the source must be distributed along the height, but by contrast to the stationary source in the DPR model, in the whistler model the source should be moving. Moreover, the direction of the space drift of the radio source must correlate with the frequency drift of stripes in the dynamic spectrum. Some models of ZSs require a local source, for example, the models based on the Bernstein modes, or on explosive instability. The selection of the radio emission mechanism for fast broadband pulsations with millisecond duration also depends on the parameters of their radio sources. (mini-volume: solar radiophysics — recent results on observations and theories)

  8. Agglomeration of coal fines for premium fuel application

    International Nuclear Information System (INIS)

    Atalay, A.; Zaman, M.D.

    1992-01-01

    This paper reports on fine coal in liquid suspension, which can be agglomerated in a number of ways. One of the oldest procedures involves the addition of electrolyte to the suspension to cause a reduction in the zeta potential and allow colliding particles to agglomerate. A second method involves the use of polymeric flocculants to bridge between particles. Both of these technologies are being used in the wastewater treatment plants for removal of fine waste particles from contaminated water. A third method involves the addition of a second immiscible liquid preferentially to wet the particles and cause adhesion by capillary interfacial forces. While the bonding forces in the first two methods are small and result in rather weak and voluminous agglomerates, the third method is postulated to produce more dense and much stronger agglomerates. In the case of fine coals, the carbonaceous constituents can be agglomerated and recovered from the aqueous suspension with many different coagulants. Inorganic or ash-forming constituents are also agglomerated along with the fine coal particles. As the froth floatation, agglomeration using coal and colloidal dust to effect a separation. Froth floatation, however, becomes less effective where extremely fine particles of cal must be treated or if there is considerable clay-size particle present. In contrast, there appears to be virtually no lower limit on the particle size suitable for agglomeration uses

  9. Source specific risk assessment of indoor aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Koivisto, A.J.

    2013-05-15

    In the urban environment, atmospheric aerosols consist mainly of pollutants from anthropogenic sources. The majority of these originate from traffic and other combustion processes. A fraction of these pollutants will penetrate indoors via ventilation. However, indoor air concentrations are usually predominated by indoor sources due to the small amount of dilution air. In modern societies, people spend most of their time indoors. Thus, their exposure is controlled mainly by indoor concentrations from indoor sources. During the last decades, engineering of nanosized structures has created a new field of material science. Some of these materials have been shown to be potentially toxic to human health. The greatest potential for exposure to engineered nanomaterials (ENMs) occurs in the workplace during production and handling of ENMs. In an exposure assessment, both gaseous and particulate matter pollutants need to be considered. The toxicities of the particles usually depend on the source and age. With time, particle morphology and composition changes due to their tendency to undergo coagulation, condensation and evaporation. The PM exposure risk is related to source specific emissions, and thus, in risk assessment one needs to define source specific exposures. This thesis describes methods for source specific risk assessment of airborne particulate matter. It consists of studies related to workers' ENM exposures during the synthesis of nanoparticles, packing of agglomerated TiO{sub 2} nanoparticles, and handling of nanodiamonds. Background particles were distinguished from the ENM concentrations by using different measurement techniques and indoor aerosol modelings. Risk characterization was performed by using a source specific exposure and calculated dose levels in units of particle number and mass. The exposure risk was estimated by using non-health based occupational exposure limits for ENMs. For the nanosized TiO{sub 2}, the risk was also assessed from dose

  10. Short-term exposure to fine and coarse particles and mortality: A multicity time-series study in East Asia

    International Nuclear Information System (INIS)

    Lee, Hyewon; Honda, Yasushi; Hashizume, Masahiro; Guo, Yue Leon; Wu, Chang-Fu; Kan, Haidong; Jung, Kweon; Lim, Youn-Hee; Yi, Seungmuk; Kim, Ho

    2015-01-01

    Few studies on size-specific health effects of particulate matter have been conducted in Asia. We examined the association between both fine and coarse particles (PM_2_._5 and PM_1_0_−_2_._5) and mortality across 11 East Asian cities from 4 countries (Korea, Japan, Taiwan, and China). We performed a two-stage analysis: we generated city-specific estimates using a time-series analysis with a generalized additive model (Quasi-Poisson distribution), and estimated the overall effects by conducting a meta-analysis. Each 10−μg/m"3 increase in PM_2_._5 (lag01) was associated with an increase of 0.38% (95% confidence interval = 0.21%–0.55%) in all causes mortality, 0.96% (0.46%–1.46%) in cardiovascular mortality, and 1% (0.23%–1.78%) in respiratory mortality. Each 10−μg/m"3 increase in PM_1_0_−_2_._5 (lag01) was associated with cardiovascular mortality (0.69%, [0.05%–1.33%]), although this association attenuated after controlling for other pollutants, especially PM_2_._5. Increased mortality was associated with increasing PM_2_._5 and PM_1_0_−_2_._5 concentrations over 11 East Asian cities. - Highlights: • Few studies on size-specific health effects of PM have been conducted in East Asia. • We estimated size-specific PM effects on mortality over 11 East Asian cities. • Both fine and coarse particles were associated with mortality in East Asian cites. • Effect estimates for fine particles were higher than those for coarse particles. - Short-term exposure to PM_2_._5 and PM_1_0_−_2_._5 was associated with an increased risk of mortality in East Asian cities, and PM_2_._5 effect estimates were higher than PM_1_0_−_2_._5.

  11. SWeRF--A method for estimating the relevant fine particle fraction in bulk materials for classification and labelling purposes.

    Science.gov (United States)

    Pensis, Ingeborg; Luetzenkirchen, Frank; Friede, Bernd

    2014-05-01

    In accordance with the European regulation for classification, labelling and packaging of substances and mixtures (CLP) as well as the criteria as set out in the Globally Harmonized System (GHS), fine fraction of crystalline silica (CS) has been classified as a specific target organ toxicity, the specific organ in this case being the lung. Generic cut-off values for products containing a fine fraction of CS trigger the need for a method for the quantification of the fine fraction of CS in bulk materials. This article describes the so-called SWeRF method, the size-weighted relevant fine fraction. The SWeRF method combines the particle size distribution of a powder with probability factors from the EN 481 standard and allows the relevant fine fraction of a material to be calculated. The SWeRF method has been validated with a number of industrial minerals. This will enable manufacturers and blenders to apply the CLP and GHS criteria for the classification of mineral products containing RCS a fine fraction of CS.

  12. Tribological Properties of Aluminum Alloy treated by Fine Particle Peening/DLC Hybrid Surface Modification

    Directory of Open Access Journals (Sweden)

    Nanbu H.

    2010-06-01

    Full Text Available In order to improve the adhesiveness of the DLC coating, Fine Particle Peening (FPP treatment was employed as pre-treatment of the DLC coating process. FPP treatment was performed using SiC shot particles, and then AA6061-T6 aluminum alloy was DLC-coated. A SiC-rich layer was formed around the surface of the aluminum alloy by the FPP treatment because small chips of shot particles were embedded into the substrate surface. Reciprocating sliding tests were conducted to measure the friction coefficients. While the DLC coated specimen without FPP treatment showed a sudden increase in friction coefficient at the early stage of the wear cycles, the FPP/DLC hybrid treated specimen maintained a low friction coefficient value during the test period. Further investigation revealed that the tribological properties of the substrate after the DLC coating were improved with an increase in the amount of Si at the surface.

  13. Luna 24 regolith breccias: A possible source of the fine size material of the Luna 24 regolith

    Science.gov (United States)

    Rode, O. D.; Lindstrom, M. M.

    1994-01-01

    The regolith breccias from the Luna 24 core were analyzed. The Luna 24 regolith is a mixture of fine and coarse grain materials. The comparable analysis of the grain size distributions, the modal and chemical compositions of the breccias, and the regolith from the same levels show that the friable slightly litificated breccia with a friable fine grain matrix may be a source of fine grain material of the Luna 24 present day regolith.

  14. Dispersibility of lactose fines as compared to API in dry powders for inhalation.

    Science.gov (United States)

    Thalberg, Kyrre; Åslund, Simon; Skogevall, Marcus; Andersson, Patrik

    2016-05-17

    This work investigates the dispersion performance of fine lactose particles as function of processing time, and compares it to the API, using Beclomethasone Dipropionate (BDP) as model API. The total load of fine particles is kept constant in the formulations while the proportions of API and lactose fines are varied. Fine particle assessment demonstrates that the lactose fines have higher dispersibility than the API. For standard formulations, processing time has a limited effect on the Fine Particle Fraction (FPF). For formulations containing magnesium stearate (MgSt), FPF of BDP is heavily influenced by processing time, with an initial increase, followed by a decrease at longer mixing times. An equation modeling the observed behavior is presented. Surprisingly, the dispersibility of the lactose fines present in the same formulation remains unaffected by mixing time. Magnesium analysis demonstrates that MgSt is transferred to the fine particles during the mixing process, thus lubrication both BDP and lactose fines, which leads to an increased FPF. Dry particle sizing of the formulations reveals a loss of fine particles at longer mixing times. Incorporation of fine particles into the carrier surfaces is believed to be behind this, and is hence a mechanism of importance as regards the dispersion performance of dry powders for inhalation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China

    Science.gov (United States)

    Hagler, G. S. W.; Bergin, M. H.; Salmon, L. G.; Yu, J. Z.; Wan, E. C. H.; Zheng, M.; Zeng, L. M.; Kiang, C. S.; Zhang, Y. H.; Lau, A. K. H.; Schauer, J. J.

    Fine particulate matter (PM 2.5) was measured for 4 months during 2002-2003 at seven sites located in the rapidly developing Pearl River Delta region of China, an area encompassing the major cities of Hong Kong, Shenzhen and Guangzhou. The 4-month average fine particulate matter concentration ranged from 37 to 71 μg m -3 in Guangdong province and from 29 to 34 μg m -3 in Hong Kong. Main constituents of fine particulate mass were organic compounds (24-35% by mass) and sulfate (21-32%). With sampling sites strategically located to monitor the regional air shed patterns and urban areas, specific source-related fine particulate species (sulfate, organic mass, elemental carbon, potassium and lead) and daily surface winds were analyzed to estimate influential source locations. The impact of transport was investigated by categorizing 13 (of 20 total) sampling days by prevailing wind direction (southerly, northerly or low wind-speed mixed flow). The vicinity of Guangzhou is determined to be a major source area influencing regional concentrations of PM 2.5, with levels observed to increase by 18-34 μg m -3 (accounting for 46-56% of resulting particulate levels) at sites immediately downwind of Guangzhou. The area near Guangzhou is also observed to heavily impact downwind concentrations of lead. Potassium levels, related to biomass burning, appear to be controlled by sources in the northern part of the Pearl River Delta, near rural Conghua and urban Guangzhou. Guangzhou appears to contribute 5-6 μg m -3 of sulfate to downwind locations. Guangzhou also stands out as a significant regional source of organic mass (OM), adding 8.5-14.5 μg m -3 to downwind concentrations. Elemental carbon is observed to be strongly influenced by local sources, with highest levels found in urban regions. In addition, it appears that sources outside of the Pearl River Delta contribute a significant fraction of overall fine particulate matter in Hong Kong and Guangdong province. This is evident

  16. Effect of shot peening using ultra-fine particles on fatigue properties of 5056 aluminum alloy under rotating bending

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Shoichi, E-mail: kikuchi@mech.kobe-u.ac.jp [Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe-shi, Hyogo 657-8501 (Japan); Nakamura, Yuki [Department of Mechanical Engineering, National Institute of Technology, Toyota College, 2-1 Eisei-cho, Toyota-shi, Aichi 471-8525 (Japan); Nambu, Koichiro [Department of Mechanical Engineering, National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka-shi, Mie 510-0294 (Japan); Ando, Masafumi [Innovation Team, IKK SHOT Co. Ltd., 412-4, Nunowari, Minami-Shibata-machi, Tokai-shi, Aichi 476-0001 (Japan)

    2016-01-15

    Shot peening using particles 10 μm in diameter (ultra-fine particle peening: Ultra-FPP) was introduced to improve the fatigue properties of 5056 aluminum alloy. The surface microstructures of the Ultra-FPP treated specimens were characterized using a micro-Vickers hardness tester, scanning electron microscopy (SEM), X-ray diffraction (XRD), non-contact scanning white light interferometry, and electron backscatter diffraction (EBSD). The Ultra-FPP treated specimen had higher hardness than the conventional FPP treated specimen with a short nozzle distance due to the high velocity of the ultra-fine particles. Furthermore, the surface hardness of the Ultra-FPP treated specimen tended to increase as the peening time decreased. Fatigue tests were performed in air at room temperature using a cantilever-type rotating bending fatigue testing machine. It was found that the fatigue life of the Ultra-FPP treated specimen tended to increase with decreasing peening time. Mainly, the Ultra-FPP improved the fatigue properties of 5056 aluminum alloy in the very high cycle regime of more than 10{sup 7} cycles compared with the un-peened specimens. This is because the release of the compressive residual stress is small during fatigue tests at low stress amplitudes.

  17. Winter-time size distribution and source apportionment of total suspended particulate matter and associated metals in Delhi

    Science.gov (United States)

    Srivastava, Arun; Gupta, Sandeep; Jain, V. K.

    2009-03-01

    A study of the winter time size distribution and source apportionment of total suspended particulate matter (TSPM) and associated heavy metal concentrations have been carried out for the city of Delhi. This study is important from the point of view of implementation of compressed natural gas (CNG) as alternate of diesel fuel in the public transport system in 2001 to reduce the pollution level. TSPM were collected using a five-stage cascade impactor at six sites in the winters of 2005-06. The results of size distribution indicate that a major portion (~ 40%) of TSPM concentration is in the form of PM0.7 (heavy metals associated with various size fractions of TSPM. A very good correlation between coarse and fine size fraction of TSPM was observed. It was also observed that the metals associated with coarse particles have more chances of correlation with other metals; rather they are associated with fine particles. Source apportionment was carried out separately in coarse and fine size modes of TSPM by Chemical Mass Balance Receptor Model (CMB8) as well as by Principle Component Analysis (PCA) of SPSS. Source apportionment by PCA reveals that there are two major sources (possibly vehicular and crustal re-suspension) in both coarse and fine size fractions. Results obtained by CMB8 show the dominance of vehicular pollutants and crustal dust in fine and coarse size mode respectively. Noticeably the dominance of vehicular pollutants are now confined to fine size only whilst during pre CNG era it dominated both coarse and fine size mode. An increase of 42.5, 44.4, 48.2, 38.6 and 38.9% in the concentrations of TSPM, PM10.9, coarse particles, fine particles and lead respectively was observed during pre (2001) to post CNG (2005-06) period.

  18. Aerosol composition and source apportionment in Santiago de Chile

    International Nuclear Information System (INIS)

    Artaxo, Paulo; Oyola, Pedro; Martinez, Roberto

    1999-01-01

    Santiago de Chile, Sao Paulo and Mexico City are Latin American urban areas that suffer from heavy air pollution. In order to study air pollution in Santiago area, an aerosol source apportionment study was designed to measure ambient aerosol composition and size distribution for two downtown sampling sites in Santiago. The aerosol monitoring stations were operated in Gotuzo and Las Condes during July and August 1996. The study employed stacked filter units (SFU) for aerosol sampling, collecting fine mode aerosol (dp 10 mass of particles smaller than 10 μm) and black carbon concentration were also measured. Particle-Induced X-ray Emission (PIXE) was used to measure the concentration of 22 trace elements at levels below 0.5 ng m -3 . Quantitative aerosol source apportionment was performed using Absolute Principal Factor Analysis (APFA). Very high aerosol concentrations were observed (up to 400 μg/m 3 PM 10 ). The main aerosol particle sources in Santiago are resuspended soil dust and traffic emissions. Coarse particles account for 63% of PM 10 aerosol in Gotuzo and 53% in Las Condes. A major part of this component is resuspended soil dust. In the fine fraction, resuspended soil dust accounts for 15% of fine mass, and the aerosols associated with transportation activities account for a high 64% of the fine particle mass. Sulfate particle is an important component of the aerosol in Santiago, mainly originating from gas-to-particle conversion from SO 2 . In the Gotuzo site, sulfates are the highest aerosol component, accounting for 64.5% of fine mass. Direct traffic emissions are generally mixed with resuspended soil dust. It is difficult to separate the two components, because the soil dust in downtown Santiago is contaminated with Pb, Br, Cl, and other heavy metals that are also tracers for traffic emissions. Residual oil combustion is observed, with the presence of V, S and Ni. An aerosol components from industrial emissions is also present, with the presence of

  19. Particle beam generator using a radioactive source

    Science.gov (United States)

    Underwood, D.G.

    1993-03-30

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  20. Antifouling paint particles: Sources, occurrence, composition and dynamics.

    Science.gov (United States)

    Soroldoni, Sanye; Castro, Ítalo Braga; Abreu, Fiamma; Duarte, Fabio Andrei; Choueri, Rodrigo Brasil; Möller, Osmar Olinto; Fillmann, Gilberto; Pinho, Grasiela Lopes Leães

    2018-06-15

    Sources, occurrence, composition and dynamics of antifouling paint particles (APPs) were assessed in Patos Lagoon estuary (PLE), Southern Brazil. Ten areas including boatyards, a marina and artisanal fishing harbors were identified in the estuarine system as potential sources of APPs. The APPs generated in these areas were highly heterogeneous considering the size, shape and composition. Based on an estimate of antifouling paint usage and amount of boats in each studied area, artisanal fishing harbors could be the main source of particles to PLE. However, relatively high amounts of APPs, which ranged from 130 to 40,300 μg g -1 , were detected in sediments collected in front of boatyards and a marina. The uneven distribution of APPs levels among the sediment samples were probably due to the presence of diffuse sources (fishing harbors) associated to "hotspots" (boatyards and marina) along the study area. Additionally, data of settling experiment indicate that size, shape and density of APPs, combined to local hydrodynamics, appears to contribute to the mobility of these residues within the estuary. In the main channel of PLE, smaller particles tend to be transported to adjacent coastal zone while particles tend to be deposited in the sediment surface of sheltered areas. Since different trace metals, and booster biocides were detected in APPs that were not correctly disposed, these particles can be considered as an important source of contamination to aquatic environments. The present data suggest that APPs represent an environmental problem for aquatic systems in Brazil, since the country lacks legislation in addition to inefficient control mechanisms. An improvement in boat maintenance processes are urgently needed to avoid this continuous release of APPs into the aquatic systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon

    Science.gov (United States)

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...

  2. Source apportionment of fine particles and its chemical components over the Yangtze River Delta, China during a heavy haze pollution episode

    Science.gov (United States)

    Li, L.; An, J. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y. J.; Tao, S. K.; Qiao, L. P.; Zhu, S. H.; Chen, C. H.

    2015-12-01

    contributors to organic carbon. Results show that the Yangtze River Delta region should focus on the joint pollution control of industrial processing, combustion emissions, mobile source emissions, and fugitive dust. Regional transport of air pollution among the cities are prominent, and the implementation of regional joint prevention and control of air pollution will help to alleviate fine particulate matter concentrations under heavy pollution case significantly.

  3. Associations between fine particle, coarse particle, black carbon and hospital visits in a Chinese city.

    Science.gov (United States)

    Wang, Xi; Chen, Renjie; Meng, Xia; Geng, Fuhai; Wang, Cuicui; Kan, Haidong

    2013-08-01

    China is one of the countries with the highest ambient particle levels in the world; however, there have been no epidemiologic studies examining the effects of fine particle (PM2.5), coarse particle (PM10-2.5) and black carbon (BC) simultaneously on morbidity outcomes. In this study, we conducted a time-series analysis to evaluate the acute effects of PM2.5, PM10-2.5, and BC on daily hospital visits in Shanghai, China. During our study period, the mean daily concentrations of PM2.5, PM10-2.5 and BC were 53.9 μg/m(3), 38.4 μg/m(3) and 3.9 μg/m(3), respectively. We found significant associations of PM2.5, PM 10-2.5, and BC with daily hospital visits. An inter-quartile range increase of the average concentrations of the current and previous days in PM2.5, PM10-2.5 and BC was associated with a 1.88% (95% CI: 0.69% to 3.06%), a 1.30% (95% CI: 0.25% to 2.34%) and a 1.33% (95% CI: 0.34% to 2.32%) increase in emergency-room visits, respectively. For outpatient visits, the corresponding estimated changes were -2.44% (95% CI: -6.62% to 1.74%), 1.09% (95% CI: -2.72% to 4.90%) and 3.34% (95% CI: 0.10% to 6.57%) respectively. The effects of BC were more robust than the effects of PM2.5 and PM10-2.5 in two-pollutant models. To our knowledge, this is the first study in China, or even in Asian developing countries, to report the effect of PM2.5, PM10-2.5, and BC simultaneously on morbidity. Our findings also suggest that BC could serve as a valuable air quality indicator that reflects the health risks of airborne particles. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Impact of fiber source and feed particle size on swine manure properties related to spontaneous foam formation during anaerobic decomposition.

    Science.gov (United States)

    Van Weelden, M B; Andersen, D S; Kerr, B J; Trabue, S L; Pepple, L M

    2016-02-01

    Foam accumulation in deep-pit manure storage facilities is of concern for swine producers because of the logistical and safety-related problems it creates. A feeding trial was performed to evaluate the impact of feed grind size, fiber source, and manure inoculation on foaming characteristics. Animals were fed: (1) C-SBM (corn-soybean meal): (2) C-DDGS (corn-dried distiller grains with solubles); and (3) C-Soybean Hull (corn-soybean meal with soybean hulls) with each diet ground to either fine (374 μm) or coarse (631 μm) particle size. Two sets of 24 pigs were fed and their manure collected. Factors that decreased feed digestibility (larger grind size and increased fiber content) resulted in increased solids loading to the manure, greater foaming characteristics, more particles in the critical particle size range (2-25 μm), and a greater biological activity/potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The ozonolysis of primary aliphatic amines in fine particles

    Science.gov (United States)

    Zahardis, J.; Geddes, S.; Petrucci, G. A.

    2008-02-01

    The oxidative processing by ozone of the particulate amines octadecylamine (ODA) and hexadecylamine (HDA) is reported. Ozonolysis of these amines resulted in strong NO2- and NO3- ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitroalkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3- (HNO3). For ozonized mixed particles containing ODA or HDA + oleic acid (OL), with pO3≥3×10-7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines) and stabilized Criegee intermediates (SCI) or secondary ozonides (for amides) from the fatty acid. The routes to amides via SCI and/or secondary ozonides were shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10-3 atm for 17 s). This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g.~NO2, NO3), formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  6. Picobubble enhanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Y.J.; Liu, J.T.; Yu, S.; Tao, D. [University of Kentucky, Lexington, KY (United States). Dept. of Mining Engineering

    2006-07-01

    Froth flotation is widely used in the coal industry to clean -28 mesh fine coal. A successful recovery of particles by flotation depends on efficient particle-bubble collision and attachment with minimal subsequent particle detachment from bubble. Flotation is effective in a narrow size range beyond which the flotation efficiency drops drastically. It is now known that the low flotation recovery of particles in the finest size fractions is mainly due to a low probability of bubble-particle collision while the main reason for poor coarse particle flotation recovery is the high probability of detachment. A fundamental analysis has shown that use of picobubbles can significantly improve the flotation recovery of particles in a wide range of size by increasing the probability of collision and attachment and reducing the probability of detachment. A specially designed column with a picobubble generator has been developed for enhanced recovery of fine coal particles. Picobubbles were produced based on the hydrodynamic cavitation principle. They are characterized by a size distribution that is mostly below 1 {mu}m and adhere preferentially to the hydrophobic surfaces. The presence of picobubbles increases the probability of collision and attachment and decreases the probability of detachment, thus enhancing flotation recovery. Experimental results with the Coalberg seam coal in West Virginia, U.S.A. have shown that the use of picobubbles in a 2 in. column flotation increased fine coal recovery by 10-30%, depending on the feed rate, collector dosage, and other flotation conditions. Picobubbles also acted as a secondary collector and reduced the collector dosage by one third to one half.

  7. Logarithmic contributions in the particle-mass ratio to the fine shift of S energy levels of hydrogen-like atoms in the fifth order in the fine-structure constant

    International Nuclear Information System (INIS)

    Boikova, N.A.; Kleshchevskaya, S.V.; Tyukhtyaev, Yu.N.; Faustov, R.N.

    2004-01-01

    A high-precision investigation of a logarithmic contribution in the particle-mass ratio to the fine shift of the S energy levels of hydrogen-like atoms from the exchange of a Coulomb photon is performed. It is shown that diagrams describing the exchange of one transverse photon and two Coulomb photons do not make such contributions

  8. Aerosol composition and source apportionment in Santiago de Chile

    Science.gov (United States)

    Artaxo, Paulo; Oyola, Pedro; Martinez, Roberto

    1999-04-01

    Santiago de Chile, São Paulo and Mexico City are Latin American urban areas that suffer from heavy air pollution. In order to study air pollution in Santiago area, an aerosol source apportionment study was designed to measure ambient aerosol composition and size distribution for two downtown sampling sites in Santiago. The aerosol monitoring stations were operated in Gotuzo and Las Condes during July and August 1996. The study employed stacked filter units (SFU) for aerosol sampling, collecting fine mode aerosol (dpsource apportionment was performed using Absolute Principal Factor Analysis (APFA). Very high aerosol concentrations were observed (up to 400 μg/m 3 PM 10). The main aerosol particle sources in Santiago are resuspended soil dust and traffic emissions. Coarse particles account for 63% of PM 10 aerosol in Gotuzo and 53% in Las Condes. A major part of this component is resuspended soil dust. In the fine fraction, resuspended soil dust accounts for 15% of fine mass, and the aerosols associated with transportation activities account for a high 64% of the fine particle mass. Sulfate particle is an important component of the aerosol in Santiago, mainly originating from gas-to-particle conversion from SO 2. In the Gotuzo site, sulfates are the highest aerosol component, accounting for 64.5% of fine mass. Direct traffic emissions are generally mixed with resuspended soil dust. It is difficult to separate the two components, because the soil dust in downtown Santiago is contaminated with Pb, Br, Cl, and other heavy metals that are also tracers for traffic emissions. Residual oil combustion is observed, with the presence of V, S and Ni. An aerosol components from industrial emissions is also present, with the presence of several heavy metals such as Zn, Cu and others. A factor with molybdenum, arsenic, copper and sulfur was observed frequently, and it results from emissions of copper smelters.

  9. Physical properties and structure of fine core-shell particles used as packing materials for chromatography Relationships between particle characteristics and column performance.

    Science.gov (United States)

    Gritti, Fabrice; Leonardis, Irene; Abia, Jude; Guiochon, Georges

    2010-06-11

    The recent development of new brands of packing materials made of fine porous-shell particles, e.g., Halo and Kinetex, has brought great improvements in potential column efficiency, demanding considerable progress in the design of chromatographic instruments. Columns packed with Halo and Kinetex particles provide minimum values of their reduced plate heights of nearly 1.5 and 1.2, respectively. These packing materials have physical properties that set them apart from conventional porous particles. The kinetic performance of 4.6mm I.D. columns packed with these two new materials is analyzed based on the results of a series of nine independent and complementary experiments: low-temperature nitrogen adsorption (LTNA), scanning electron microscopy (SEM), inverse size-exclusion chromatography (ISEC), Coulter counter particle size distributions, pycnometry, height equivalent to a theoretical plate (HETP), peak parking method (PP), total pore blocking method (TPB), and local electrochemical detection across the column exit section (LED). The results of this work establish links between the physical properties of these superficially porous particles and the excellent kinetic performance of columns packed with them. It clarifies the fundamental origin of the difference in the chromatographic performances of the Halo and the Kinetex columns. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Particle reacceleration and apparent radio source structure

    International Nuclear Information System (INIS)

    Eilek, J.A.

    1982-01-01

    The radio galaxy model which uses magnetohydrodynamic turbulence generated by surface instabilities to reaccelerate the radiating electrons has striking consequences for apparent source structure. Strong wave damping in the plasma results in a narrow turbulent edge. Particles accelerated in this edge must diffuse across field lines into the radio source; this predicts strong limb brightening in some cases. The structure of this edge and diffusion into the source are described. The relevance of this model to jets, radio tails, and standard double sources is discussed

  11. The ozonolysis of primary aliphatic amines in fine particles

    Directory of Open Access Journals (Sweden)

    J. Zahardis

    2008-02-01

    Full Text Available The oxidative processing by ozone of the particulate amines octadecylamine (ODA and hexadecylamine (HDA is reported. Ozonolysis of these amines resulted in strong NO2 and NO3 ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitroalkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3 (HNO3. For ozonized mixed particles containing ODA or HDA + oleic acid (OL, with pO3≥3×10–7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines and stabilized Criegee intermediates (SCI or secondary ozonides (for amides from the fatty acid. The routes to amides via SCI and/or secondary ozonides were shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10−3 atm for 17 s. This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g.~NO2, NO3, formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  12. Coarse and fine particles but nout ultrafine particles in urban air trigger hospital admission for asthma in children

    DEFF Research Database (Denmark)

    Iskander, A.; Andersen, Z.J.; Bønnelykke, K.

    2012-01-01

    .AimTo study whether short-term exposure to air pollution is associated with hospital admissions for asthma in children. It is hypothesised that (1) the association between asthma admissions and air pollution is stronger with UFPs than with coarse (PM(10)) and fine (PM(2.5)) particles, nitrogen oxides (NO...... association was found between hospital admissions for asthma in children aged 0-18 years and NO(x) (OR 1.11; 95% CI 1.05 to 1.17), NO(2) (1.10; 95% CI 1.04 to 1.16), PM(10) (1.07; 95% CI 1.03 to 1.12) and PM(2.5) (1.09; 95% CI 1.04 to 1.13); there was no association with UFPs. The association was stronger...

  13. Two-Step Single Particle Mass Spectrometry for On-Line Monitoring of Polycyclic Aromatic Hydrocarbons Bound to Ambient Fine Particulate Matter

    Science.gov (United States)

    Zimmermann, R.; Bente, M.; Sklorz, M.

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAH) are formed as trace products in combustion processes and are emitted to the atmosphere. Larger PAH have low vapour pressure and are predominantly bound to the ambient fine particulate matter (PM). Upon inhalation, PAH show both, chronic human toxicity (i.e. many PAH are potent carcinogens) as well as acute human toxicity (i.e. inflammatory effects due to oxi-dative stress) and are discussed to be relevant for the observed health effect of ambient PM. Therefore a better understanding of the occurrence, dynamics and particle size dependence of particle bound-PAH is of great interest. On-line aerosol mass spectrometry in principle is the method of choice to investigate the size resolved changes in the chemical speciation of particles as well the status of internal vs. external mixing of chemical constituents. However the present available aerosol mass spectrometers (ATOFMS and AMS) do not allow detection of PAH from ambient air PM. In order to allow a single particle based monitoring of PAH from ambient PM a new single particle laser ionisation mass spectrometer was built and applied. The system is based on ATOFMS principle but uses a two- step photo-ionization. A tracked and sized particle firstly is laser desorbed (LD) by a IR-laser pulse (CO2-laser, λ=10.2 μm) and subsequently the released PAH are selectively ionized by an intense UV-laser pulse (ArF excimer, λ=248 nm) in a resonance enhanced multiphoton ionisation process (REMPI). The PAH-ions are detected in a time of flight mass spectrometer (TOFMS). A virtual impactor enrichment unit is used to increase the detection frequency of the ambient particles. With the current inlet system particles from about 400 nm to 10 μm are accessible. Single particle based temporal profiles of PAH containing particles ion (size distribution and PAH speciation) have been recorded in Oberschleissheim, Germany from ambient air. Furthermore profiles of relevant emission sources (e

  14. FREE AND COMBINED AMINO COMPOUNDS IN ATMOSPHERIC FINE PARTICLES (PM2.5) AND FOG WATERS FROM NORTHERN CALIFORNIA. (R825433)

    Science.gov (United States)

    Atmospheric fine particles (PM2.5) collected during August 1997–July 1998 and wintertime fog waters collected during 1997–1999 at Davis, California were analyzed for free and combined amino compounds. In both PM2.5 and fog waters, the averag...

  15. Ultrafine and fine particle formation in a naturally ventilated office as a result of reactions between ozone and scented products

    DEFF Research Database (Denmark)

    Toftum, Jørn; Dijken, F. v.

    2003-01-01

    Ultrafine and fine particle formation as a result of chemical reactions between ozone and four different air fresheners and a typical lemon-scented domestic cleaner was studied in a fully furnished, naturally ventilated office. The study showed that under conditions representative of those...

  16. Health effects of exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Pihlava, T.; Uuppo, M.; Niemi, S.

    2013-11-01

    This report introduces general information about diesel particles and their health effects. The purpose of this report is to introduce particulate matter pollution and present some recent studies made regarding the health effects of particulate matter. The aim is not to go very deeply into the science, but instead to keep the text understandable for the average layman. Particulate matter is a complex mixture of extremely small particles and liquid droplets. These small particles are made up of a number of components that include for example acids, such as nitrates and sulphates, as well as organic chemicals, metals and dust particles from the soil. Particulate matter comes from several sources, such as transportation emissions, industrial emissions, forest fires, cigarette smoke, volcanic ash and climate variations. Particles are divided into coarse particles with diameters less than 10 ..m, fine particles with diameters smaller than 2.5 ..m and ultra-fine particles with diameters less than 0.1 ..m. The particulate matter in diesel exhaust gas is a highly complex mixture of organic, inorganic, solid, volatile and partly volatile compounds. Many of these particles do not form until they reach the air. Many carcinogenic compounds have been found in diesel exhaust gas and it is considered carcinogenic to humans. Particulate matter can cause several health effects, such as premature death in persons with heart or lung disease, cancer, nonfatal heart attacks, irregular heartbeat, aggravated asthma, decreased lung function and an increase in respiratory symptoms, such as irritation of the airways, coughing or difficulty breathing. It is estimated that in Finland about 1300 people die prematurely due to particles and the economic loss in the EU due to the health effects of particles can be calculated in the billions. Ultra-fine particles are considered to be the most harmful to human health. Ultrafine particles usually make the most of their quantity and surface area

  17. Verifying mapping, monitoring and modeling of fine sediment pollution sources in West Maui, Hawai'i, USA

    Science.gov (United States)

    Cerovski-Darriau, C.; Stock, J. D.

    2017-12-01

    Coral reef ecosystems, and the fishing and tourism industries they support, depend on clean waters. Fine sediment pollution from nearshore watersheds threatens these enterprises in West Maui, Hawai'i. To effectively mitigate sediment pollution, we first have to know where the sediment is coming from, and how fast it erodes. In West Maui, we know that nearshore sediment plumes originate from erosion of fine sand- to silt-sized air fall deposits where they are exposed by grazing, agriculture, or other disturbances. We identified and located these sediment sources by mapping watershed geomorphological processes using field traverses, historic air photos, and modern orthophotos. We estimated bank lowering rates using erosion pins, and other surface erosion rates were extrapolated from data collected elsewhere on the Hawaiian Islands. These measurements and mapping led to a reconnaissance sediment budget which showed that annual loads are dominated by bank erosion of legacy terraces. Field observations during small storms confirm that nearshore sediment plumes are sourced from bank erosion of in-stream, legacy agricultural deposits. To further verify this sediment budget, we used geochemical fingerprinting to uniquely identify each potential source (e.g. stream banks, agricultural fields, roads, other human modified soils, and hillslopes) from the Wahikuli watershed (10 km2) and analyzed the fine fraction using ICP-MS for elemental geochemistry. We propose to apply this the fingerprinting results to nearshore suspended sediment samples taken during storms to identify the proportion of sediment coming from each source. By combining traditional geomorphic mapping, monitoring and geochemistry, we hope to provide a powerful tool to verify the primary source of sediment reaching the nearshore.

  18. Use of Unprocessed Coal Bottom Ash as Partial Fine Aggregate ...

    African Journals Online (AJOL)

    2012r

    transportation applications such as structural fill, road base material, and as snow ... normal fine particles resulting in weak porous paste, modulus of elasticity is ..... with the porous structure and high absorptivity of fine particles of bottom ash.

  19. Comparison of fine particle measurements from a direct-reading instrument and a gravimetric sampling method.

    Science.gov (United States)

    Kim, Jee Young; Magari, Shannon R; Herrick, Robert F; Smith, Thomas J; Christiani, David C

    2004-11-01

    Particulate air pollution, specifically the fine particle fraction (PM2.5), has been associated with increased cardiopulmonary morbidity and mortality in general population studies. Occupational exposure to fine particulate matter can exceed ambient levels by a large factor. Due to increased interest in the health effects of particulate matter, many particle sampling methods have been developed In this study, two such measurement methods were used simultaneously and compared. PM2.5 was sampled using a filter-based gravimetric sampling method and a direct-reading instrument, the TSI Inc. model 8520 DUSTTRAK aerosol monitor. Both sampling methods were used to determine the PM2.5 exposure in a group of boilermakers exposed to welding fumes and residual fuel oil ash. The geometric mean PM2.5 concentration was 0.30 mg/m3 (GSD 3.25) and 0.31 mg/m3 (GSD 2.90)from the DUSTTRAK and gravimetric method, respectively. The Spearman rank correlation coefficient for the gravimetric and DUSTTRAK PM2.5 concentrations was 0.68. Linear regression models indicated that log, DUSTTRAK PM2.5 concentrations significantly predicted loge gravimetric PM2.5 concentrations (p gravimetric PM2.5 concentrations was found to be modified by surrogate measures for seasonal variation and type of aerosol. PM2.5 measurements from the DUSTTRAK are well correlated and highly predictive of measurements from the gravimetric sampling method for the aerosols in these work environments. However, results from this study suggest that aerosol particle characteristics may affect the relationship between the gravimetric and DUSTTRAK PM2.5 measurements. Recalibration of the DUSTTRAK for the specific aerosol, as recommended by the manufacturer, may be necessary to produce valid measures of airborne particulate matter.

  20. Contribution of road traffic to ambient fine particle concentrations (PM{sub 10}) in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Hueglin, Ch.; Devos, W.; Gehrig, R.; Hofer, P.; Kobler, J. [Swiss Federal Laboratoires for Materials Testing and Research, EMPA, Dubendorf (Switzerland); Stahel, W.A. [Seminar for Statistics, ETH Zurich (Switzerland); Baltensperger, U. [Paul Scherrer Institute, Villigen PSI (Switzerland); Monn, Ch. [Institute for Hygiene and Applied Physiology, ETH Zurich (Switzerland)

    2000-07-01

    A multivariate receptor model was applied to estimate the contribution of road traffic to ambient levels of fine particles (PM{sub 10}) at different locations in Switzerland. At two roadside sites with heavy local traffic, the road traffic was found to account for 46% and 64% of PM{sub 10}. At an urban background site, the estimated average road traffic contribution was 34%, whereas a slightly higher value was obtained at a suburban site (36%). This results are in good agreement with the findings of a recent study, where a conceptually different approach (dispersion modelling) was applied. (authors)

  1. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1-3

    Science.gov (United States)

    Kinsey, John S.; Dong, Yuanji; Williams, D. Craig; Logan, Russell

    2010-06-01

    The fine particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine for PM mass and number concentration, particle size distribution, and total volatile matter using both time-integrated and continuous sampling techniques. The experimental results showed a PM mass emission index (EI) ranging from 10 to 550 mg kg -1 fuel depending on engine type and test parameters as well as a characteristic U-shaped curve of the mass EI with increasing fuel flow for the turbofan engines tested. Also, the Teflon filter sampling indicated that ˜40-80% of the total PM mass on a test-average basis was comprised of volatile matter (sulfur and organics) for most engines sampled. The number EIs, on the other hand, varied from ˜10 15 to 10 17 particles kg -1 fuel with the turbofan engines exhibiting a logarithmic decay with increasing fuel flow. Finally, the particle size distributions of the emissions exhibited a single primary mode that were lognormally distributed with a minor accumulation mode also observed at higher powers for all engines tested. The geometric (number) mean particle diameter ranged from 9.4 to 37 nm and the geometric standard deviation ranged from 1.3 to 2.3 depending on engine type, fuel flow, and test conditions.

  2. Sources and acceleration efficiencies for energetic particles in the heliosphere

    International Nuclear Information System (INIS)

    Kucharek, H; Moebius, E

    2006-01-01

    Shocks at solar wind stream interaction regions, coronal mass ejections and magnetospheric obstacles have long been known for their intimate link with particle acceleration. Much enhanced capabilities to determine mass and charge composition at interplanetary shocks with ACE and SOHO have enabled us to identify sources and acceleration processes for the energetic particles. Both solar wind and interstellar pickup ions are substantial sources for particle acceleration in corotating interaction regions and at coronal mass ejections driven shocks and that flare particles are re-accelerated. Suprathermal distributions, such as pickup ions and pre-existing flare populations are accelerated much more efficiently than particles out of the solar wind. Recent results of the termination shock crossing by Voyager I and the scientific goals of the upcoming IBEX mission will be discussed

  3. Determination of air exchange rates of rooms and deposition factors for fine particles by means of photoelectric aerosol sensors

    International Nuclear Information System (INIS)

    Skillas, G.; Siegmann, H.C.; Hueglin, Ch.

    1999-01-01

    Indoor and outdoor concentrations or airborne fine particles from internal combustion engines have been measured over periods of 24 h with a time resolution of 10 s. With this time series, the ventilation air exchange rate of different rooms has been computed using a novel approach to the solution of the mass balance equation. A 'mixing time' parameter has been introduced in order to account for the initial non-homogeneous distribution of the pollutants in the rooms. It is demonstrated that this method can be used to determine the impact of health relevant outdoor particles on the indoor particle concentration. This yields information on the protection a building offers against pollutants entering from outdoors. (author)

  4. Fine sediment erodibility in Lake Okeechobee, Florida

    OpenAIRE

    Mehta, Ashish J.; Hwang, Kyu-Nam

    1989-01-01

    The critical need to predict the turbidity in water due to fine-grained sediment suspension under wave action over mud deposits for sedimentation and erosion studies, as well as sorbed contaminant transport, is well known. Since fall velocities of fine sediment particles are very small, they can be easily transported by hydrodynamic flows such as waves and currents. The presence of these particles in the water column affects accoustic transmission, heat absorption and depth of ...

  5. Evaluation of methods for the physical characterization of the fine particle emissions from two residential wood combustion appliances

    Science.gov (United States)

    Kinsey, John S.; Kariher, Peter H.; Dong, Yuanji

    The fine particle emissions from a U. S. certified non-catalytic wood stove and a zero-clearance fireplace burning Quercus rubra L. (northern red oak) and Pseudotsuga menziesii (Douglas fir) cordwood each at two different moisture levels were determined. Emission testing was performed using both time-integrated and continuous instrumentation for total particle mass, particle number, particle size distribution, and fixed combustion gases using an atmospheric wind tunnel, full-flow laboratory dilution tunnel, and dilution stack sampler with a comparison made between the three dilution systems and two sampling filter types. The total mass emission factors (EFs) for all dilution systems and filter media are extremely variable ranging from fireplace emissions burning wet oak averaged 11 g kg -1. A substantial number of ultrafine particles in the accumulation size range were also observed during all tests as determined by an Electrical Low Pressure Impactor (ELPI) and Scanning Mobility Particle Sizer. The PM-2.5 (particles ≤2.5 μm in aerodynamic diameter) fractions determined from the ELPI electrometer data ranged from 93 to 98% (mass) depending on appliance type as reported previously by Hays et al. (Aerosol Science, 34, 1061, 2003).

  6. Table - Impacts of the Proposed Transport Rule on Counties with Monitors Projected to have Ozone and/or Fine Particle Air Quality Problems

    Science.gov (United States)

    This table shows the impacts of the proposed Transport Rule on Counties with Monitors Projected to have Ozone and/or Fine Particle Air Quality Problems, both with and without the Cross-State Air Pollution Rule.

  7. Floodplains as a source of fine sediment in grazed landscapes: Tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    Science.gov (United States)

    Yu, Mingjing; Rhoads, Bruce L.

    2018-05-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five sources: croplands, forested floodplains, grasslands, upper grazed floodplains, and lower grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from the five sources to the suspended sediment loads. To account for possible effects of small sample sizes, the analysis was repeated with only two sources: grazed floodplains and croplands/grasslands/forested floodplains. Results based on mean values of tracers indicate that the vast majority of suspended sediment within the stream (>95%) is derived from erosion of channel banks and the soil surface within areas of grazed floodplains. Uncertainty analysis based on Monte Carlo simulations indicates that mean values of tracer properties, which do not account for sampling variability in these properties, probably overestimate contributions from the two major sources. Nevertheless, this analysis still supports the conclusion that floodplain erosion accounts for the largest percentage of instream sediment (≈55-75%). Although grazing occurs over only a small portion of the total watershed area, grazed floodplains, which lie in close proximity to the stream channel, are an important source of sediment in this headwater steam system. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should

  8. Single particle analysis of eastern Mediterranean aerosol particles: Influence of the source region on the chemical composition

    Science.gov (United States)

    Clemen, Hans-Christian; Schneider, Johannes; Köllner, Franziska; Klimach, Thomas; Pikridas, Michael; Stavroulas, Iasonas; Sciare, Jean; Borrmann, Stephan

    2017-04-01

    The Mediterranean region is one of the most climatically sensitive areas and is influenced by air masses of different origin. Aerosol particles are one important factor contributing to the Earth's radiative forcing, but knowledge about their composition and sources is still limited. Here, we report on results from the INUIT-BACCHUS-ACTRIS campaign, which was conducted at the Cyprus Atmospheric Observatory (CAO, Agia Marina Xyliatou) in Cyprus in April 2016. Our results show that the chemical composition of the aerosol particles in the eastern Mediterranean is strongly dependent on their source region. The composition of particles in a size range between 150 nm and 3 μm was measured using the Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA), which is a single particle laser ablation instrument using a bipolar time-of-flight mass spectrometer. The mass spectral information on cations and anions allow for the analysis of different molecular fragments. The information about the source regions results from backward trajectories using HYSPLIT Trajectory Model (Trajectory Ensemble) on hourly basis. To assess the influence of certain source regions on the air masses arriving at CAO, we consider the number of trajectories that crossed the respective source region within defined time steps. For a more detailed picture also the height and the velocity of the air masses during their overpass above the source regions will be considered. During the campaign at CAO in April 2016 three main air mass source regions were observed: 1) Northern Central Europe, likely with an enhanced anthropogenic influence (e.g. sulfate and black carbon from combustion processes, fly ash particles from power plants, characterized by Sr and Ba), 2) Southwest Europe, with a higher influence of the Mediterranean Sea including sea salt particles (characterized by, e.g., NaxCly, NaClxNOy), 3) Northern Africa/Sahara, with air masses that are expected to have a higher load of mineral dust

  9. Water-soluble ions in nano/ultrafine/fine/coarse particles collected near a busy road and at a rural site

    International Nuclear Information System (INIS)

    Lin, C.-C.; Chen, S.-J.; Huang, K.-L.; Lee, W.-J.; Lin, W.-Y.; Liao, C.-J.; Chaung, H.-C.; Chiu, C.-H.

    2007-01-01

    This study investigated water-soluble ions in the sized particles (particularly nano (PM 0.01-0.056 )/ultrafine (PM 0.01-0.1 )) collected using MOUDI and Nano-MOUDI samplers near a busy road site and at a rural site. The analytical results demonstrate that nano and coarse particles exhibited the highest (16.3%) and lowest (8.37%) nitrate mass ratios, respectively. The mass ratio of NO 3 - was higher than that of SO 4 2- in all the sized particles at the traffic site. The secondary aerosols all displayed trimodal distributions. The aerosols in ultrafine particles collected at the roadside site exhibited Aitken mode distributions indicating they were of local origin. This finding was not observed for those ultrafine particles collected at the rural site. The mass median diameters (MMDs) of the nano, ultrafine, and fine particles were smaller at the traffic site than at the rural site, possibly related to the contribution of mobile engine emissions. - NO 3 - > SO 4 2- in mass ratio, different from common observations in rural areas, was found in (particularly the nano) traffic-associated particles

  10. Preparation of nickel-based amorphous alloys with finely dispersed lead and lead-bismuth particles and their superconducting properties

    International Nuclear Information System (INIS)

    Inoue, A.; Oguchi, M.; Harakawa, Y.; Masumoto, T.; Matsuzaki, K.

    1986-01-01

    The application of the melt-quenching technique to Ni-Si-B-Pb, Ni-P-B-Pb, Ni-Si-B-Pb-Bi and Ni-P-B-Pb-Bi alloys containing immiscible elements such as lead and bismuth has been tried and it has been found to result in the formation of a new type of material consisting of fine fcc Pb or hcp epsilon(Pb-Bi) + bct X(Pb-Bi) particles dispersed uniformly in the nickel-based amorphous matrix. The particle size and interparticle distance were 1 to 3 and 1 to 4 μm, respectively, for the lead phase, and less than 0.2 to 0.5 μm and 0.2 to 1.0 μm for the Pb-Bi phase. The uniform dispersion of such fine particles into the amorphous matrix was achieved in the composition range below about 6 at% Pb and 7 at% (Pb+Bi). Additionally, these amorphous alloys have been found to exhibit a superconductivity by the proximity effect of fcc Pb or epsilon(Pb-Bi) superconducting particles. The transition temperature Tsub(c) was in the range 6.8 to 7.5 K for the Ni-Si (or P)-B-Pb alloys and 8.6 to 8.8 K for the Ni-Si (or P)-B-Pb-Bi alloys. The upper critical field Hsub(c2) and the critical current density Jsub(c) for (Nisub(0.8)Psub(0.1)Bsub(0.1)) 95 Pb 3 Bi 2 at 4.2 K were, respectively, about 1.6 T and of the order of 7 x 10 7 Am -2 at zero applied field. (author)

  11. Re-evaluation of the Pressure Effect for Nucleation in Laminar Flow Diffusion Chamber Experiments with Fluent and the Fine Particle Model

    Czech Academy of Sciences Publication Activity Database

    Herrmann, E.; Hyvärinen, A.-P.; Brus, David; Lihavainen, H.; Kulmala, M.

    2009-01-01

    Roč. 113, č. 8 (2009), s. 1434-1439 ISSN 1089-5639 Institutional research plan: CEZ:AV0Z40720504 Keywords : laminar flow diffusion chamber * experimental data * fine particle model Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.899, year: 2009

  12. The Role of Fine Sediment Content on Soil Consolidation and Debris Flows Development after Earthquake

    Science.gov (United States)

    Lyu, L.; Xu, M., III; Wang, Z.

    2017-12-01

    Fine sediment has been identified as an important factor determining the critical runoff that initiates debris flows because its contribution to shear strength through consolidation. Especially, owing to the 2008 Wenchuan earthquake in China enormous of loose sediment with different fractions of fine particles was eroded and supplied as materials for debris flows. The loose materials are gradually consolidated along with time, and therefore stronger rainfall is required to overcome the shear strength and to initiate debris flows. In this study, flume experiments were performed to explore soil consolidation and shear strength on mass failure and debris flow initiation under the conditions that different fractions of fine sediment were contained in the materials. Under the low content of fine sediment conditions (mass percentages: 0-10%), the debris flows formed with large pores and low shear strength and thus fine particles were too few to fill up the pores among the coarse particles. The consolidation rate was mostly influenced by the content of the fine particles. Consolidation of fine particles caused an increase of the shear strength and decrease of the rainfall infiltration, and therefore, debris flow initiation required stronger rainfall as the consolidation of the fine particles developed.

  13. The fine art of ‘sourcery’

    CERN Multimedia

    2009-01-01

    The commissioning of the new Linac4 source – first element of the new acceleration chain for the upgrade of the LHC (sLHC) – started at the beginning of July. After years of preparation but after only a few hours of fine-tuning of the numerous parameters involved, the source has delivered its first negative ions. The civil engineering work for the new Linac4 going on near Restaurant 2.While the LHC is preparing for restart, teams of experts involved in the sLHC project are also working on the new facilities that will allow the LHC to run at higher luminosity. The beginning of the new chain of accelerators is Linac4, whose excavation works started October last year. "The particle source that we are commissioning now will be installed at the beginning of the path", explains Maurizio Vretenar, Linac4 project leader. "It is a critical element of the chain as all protons that will circulate in the CERN accelerators will originate from it." The Linac 4 source is differ...

  14. Programming of mouse obesity by maternal exposure to concentrated ambient fine particles.

    Science.gov (United States)

    Chen, Minjie; Wang, Xiaoke; Hu, Ziying; Zhou, Huifen; Xu, Yanyi; Qiu, Lianglin; Qin, Xiaobo; Zhang, Yuhao; Ying, Zhekang

    2017-06-23

    Many diseases including obesity may originate through alterations in the early-life environment that interrupts fetal development. Increasing evidence has shown that exposure to ambient fine particles (PM 2.5 ) is associated with abnormal fetal development. However, its long-term metabolic effects on offspring have not been systematically investigated. To determine if maternal exposure to PM 2.5 programs offspring obesity, female C57Bl/6j mice were exposed to filtered air (FA) or concentrated ambient PM 2.5 (CAP) during pre-conception, pregnancy, and lactation, and the developmental and metabolic responses of offspring were assessed. The growth trajectory of offspring revealed that maternal exposure to CAP significantly decreased offspring birth weight but increased body weight of adult male but not female offspring, and the latter was expressed as increased adiposity. These adult male offspring had increased food intake, but were sensitive to exogenous leptin. Their hypothalamic expression of Socs3 and Pomc, two target genes of leptin, was not changed, and the hypothalamic expression of NPY, an orexigenic peptide that is inhibited by leptin, was significantly increased. These decreases in central anorexigenic signaling were accompanied by reduced plasma leptin and its expression in adipose tissues, the primary source of circulating leptin. In contrast, maternal exposure did not significantly change any of these indexes in adult female offspring. Pyrosequencing demonstrated that the leptin promoter methylation of adipocytes was significantly increased in CAP-exposed male but not female offspring. Our data indicate that maternal exposure to ambient PM 2.5 programs obesity in male offspring probably through alterations in the methylation of the promoter region of the leptin gene.

  15. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion

    Science.gov (United States)

    Tissari, Jarkko; Hytönen, Kati; Lyyränen, Jussi; Jokiniemi, Jorma

    Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg -1 (of dry wood burned)), carbon monoxide (CO) (120 g kg -1) and fine particle mass (PM 1) (2.7 g kg -1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9-9 g kg -1 TVOC, 28-68 g kg -1 CO and 0.6-1.6 g kg -1 PM 1. The emission of 12 PAHs (PAH 12) from the sauna stove was 164 mg kg -1 and consisted mainly of PAHs with four benzene rings in their structure. PAH 12 emission from other appliances was, on average, 21 mg kg -1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.

  16. Study of fine particles (PM2.5) during the dry-hot time in the Toluca city

    International Nuclear Information System (INIS)

    Rosendo G, V.; Aldape U, F.

    2007-01-01

    The first obtained results of the analysis of the fine fraction particulate material (PM 2.5 ) samples collected in the Toluca City are presented. The samples analyzed are part of a more extensive campaign that contemplates the low project the one which one carries out this work and that it integrates three climatic times (dry-hot, of rains and dry-cold time) with the purpose of investigating the events of contamination in one complete year. The obtained results correspond to the dry-hot time and its include mainly the database starting from which the temporal variation graphs were obtained, the correlations among elements and the enrichment factor, as well as a multiple correlation analysis. Additionally the gravimetry was measured. Its are not observed significant episodes, however, it was found an element of the traces order, little common in other atmospheric studies as it is arsenic. From the gravimetry it was deduced that the air quality standard of fine particle, it does not violate. (Author)

  17. Particle acceleration in radio sources with internal turbulence

    International Nuclear Information System (INIS)

    Eilek, J.A.; Henriksen, R.N.

    1982-01-01

    In this paper the authors propose that the flowing plasma displays vortical hydrodynamic turbulence, and that this turbulence drives MHD waves throughout a large portion of the source. They discuss whether the strength and spectrum of the MHD waves generated in this process are sufficient to reaccelerate the particles in the face of synchrotron and expansion losses and the effect that this reacceleration has on the particle spectrum. (Auth.)

  18. Assessing and reducing fine and ultrafine particles inside Los Angeles taxis

    Science.gov (United States)

    Yu, Nu; Shu, Shi; Lin, Yan; Zhu, Yifang

    2018-05-01

    Taxi drivers and passengers are exposed to high levels of traffic-related air pollutants, but their exposures to fine (PM2.5) and ultrafine particles (UFPs) and related mitigation strategies are rarely explored. In this study, UFP and PM2.5 concentrations were monitored concurrently inside and outside of 22 taxis under different ventilation and mitigation conditions. Under realistic working conditions (no mitigation; NM), the average UFP and PM2.5 levels inside taxis were 1.46 × 104 particles/cm3 and 26 μg/m3, respectively. When the taxi ventilation was set to outside air mode and the windows kept closed, in-cabin UFP and PM2.5 concentrations are significantly associated with on-road concentrations, driving speed, and cabin air filter usage. The average in-cabin to on-roadway (I/O) ratios for UFP and PM2.5 were reduced from 0.60 to 0.75 under NM, to 0.47 and 0.52 under the most stringent mitigation strategy of keeping the windows closed and operating a high efficiency cabin air filter (WC + HECA). Among all tested taxi models, Toyota Prius exhibited the lowest UFP and PM2.5 I/O ratios under WC + HECA. Switching cabin air filters from the originally equipped manufacturer filter (OEM) to a HECA filter reduced the UFP and PM2.5 I/O ratios most effectively in Toyota Prius taxis as well.

  19. Sources of carbonaceous aerosol in the Amazon basin

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2011-03-01

    Full Text Available The quantification of sources of carbonaceous aerosol is important to understand their atmospheric concentrations and regulating processes and to study possible effects on climate and air quality, in addition to develop mitigation strategies.

    In the framework of the European Integrated Project on Aerosol Cloud Climate Interactions (EUCAARI fine (Dp < 2.5 μm and coarse (2.5 μm < Dp <10 μm aerosol particles were sampled from February to June (wet season and from August to September (dry season 2008 in the central Amazon basin. The mass of fine particles averaged 2.4 μg m−3 during the wet season and 4.2 μg m−3 during the dry season. The average coarse aerosol mass concentration during wet and dry periods was 7.9 and 7.6 μg m−3, respectively. The overall chemical composition of fine and coarse mass did not show any seasonality with the largest fraction of fine and coarse aerosol mass explained by organic carbon (OC; the average OC to mass ratio was 0.4 and 0.6 in fine and coarse aerosol modes, respectively. The mass absorbing cross section of soot was determined by comparison of elemental carbon and light absorption coefficient measurements and it was equal to 4.7 m2 g−1 at 637 nm. Carbon aerosol sources were identified by Positive Matrix Factorization (PMF analysis of thermograms: 44% of fine total carbon mass was assigned to biomass burning, 43% to secondary organic aerosol (SOA, and 13% to volatile species that are difficult to apportion. In the coarse mode, primary biogenic aerosol particles (PBAP dominated the carbonaceous aerosol mass. The results confirmed the importance of PBAP in forested areas.

    The source apportionment results were employed to evaluate the ability of global chemistry transport models to simulate carbonaceous aerosol sources in a regional tropical background site. The comparison showed an overestimation

  20. Cement waste form development for ion-exchange resins and fine particles ILW of AREVA La Hague Reprocessing Plant

    International Nuclear Information System (INIS)

    Chartier, D.; Sanchez-Canet, J.; Avril, D.; Roussel, C.; Pineau, J.N.

    2015-01-01

    Wastes have been temporarily stored in dedicated silos in La Hague reprocessing plant. These wastes are to be retrieved in the near future and to be conditioned for final disposal. Some of these wastes are supposed to be encapsulated in cement matrix and, depending on the chemical composition of the waste streams, several projects are presently ongoing. The present article aims to focus on one amongst these cement encapsulation relevant projects, namely the conditioning of a mix of spent ion-exchange resins (from filtration of pool) and fine particles (insoluble fission products from spent fuel dissolution and Zircaloy and stainless steel fines from cladding shearing). The project, aims to retrieve these wastes from a silo, separate the resins and fine particles from the other waste (hulls and end pieces), in order to encapsulate the intermediate-level fines and resins in a cement matrix. The waste forms will be produced in AREVA's La Hague reprocessing plant, prior to being sent as intermediate-level waste to a long-term repository. The cement formulation developments were initially carried out at a small scale at C.E.A. Marcoule on surrogate wastes. One of the main issues that were considered was the chemical compatibility between waste and cement matrix. Indeed, swelling phenomena are sometimes reported when ion exchange resins are embedded in cement matrixes such as Portland cement. This kind of destructive phenomenon has been prevented by the use of cement containing a high amount of ground granulated blast furnace slag. The impact of the variability of ionic charge of the resins on the waste form's properties has also been addressed in order to comfort the results obtained on the reference ionic charge of resins NaNO 3 . Once the results obtained were satisfactory, intermediate scale and full scale tests were performed by AREVA. These tests have focused on adjusting the mixing process and controlling the thermal properties of the mix during setting

  1. General relativistic fields of an isolated spin-half charged particle near the spin axis with application to the rest-mass of the electron and positron

    International Nuclear Information System (INIS)

    Lynch, J.T.

    1999-01-01

    Using a lowest-order approximation, the field equations of a general relativistic spinor-connection theory are solved semi-analytically for the fields of a stable, spin-half changed particle near the spin axis. With the exception of the atomic fine-structure constant, all parameters arising in the solution, including the rest mass of the source particle, are found by imposing the standard junction conditions of general relativity and electromagnetism. Using the empirical value for the fine-structure constant, the value derived for the rest mass gives some reason to identify the source particle with the electron. Moreover, since the rest mass is independent of the sign of the electron charge carried by the source, the solution is equally applicable to the positron

  2. Fine filament NbTi superconductive composite

    International Nuclear Information System (INIS)

    Hong, S.; Grabinsky, G.; Marancik, W.; Pattanayak, D.

    1986-01-01

    The large superconducting magnet for the high energy physics accelerator requires fine filament composite to minimize the field error due to the persistent current in the filaments. New concepts toward the fine filament composite and its cable fabrication are discussed. Two-stage cables of fine wire with intermediate number of filaments were introduced. The first stage was six wires cables around one and in the second stage this was used to produce a Rutherford cable. The advantage of this process is in the ease of billet fabrication since the number of filaments in a single wire is within the range of easy billet fabrication. The disadvantage is in the cable fabrication. One of the major concerns in the fabrication of fine NbTi filaments composite in a copper matrix is the intermetallic compound formation during the extrusion and heat treatment steps. The hard intermetallic particles degrade the uniformity of the filaments and reduce the critical current density. The process of using Nb barrier between the filaments and copper matrix in order to prevent this CuTi intermetallic particle formation is described

  3. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China.

    Science.gov (United States)

    Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao

    2015-09-22

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM₁ (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  4. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China

    Directory of Open Access Journals (Sweden)

    Qiulin Xiong

    2015-09-01

    Full Text Available Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office of the study area. Correspondingly, PM1 (particulate matter with aerodynamic diameter smaller than 1.0 um concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  5. Development of solar flares and features of the fine structure of solar radio emission

    Science.gov (United States)

    Chernov, G. P.; Fomichev, V. V.; Yan, Y.; Tan, B.; Tan, Ch.; Fu, Q.

    2017-11-01

    The reason for the occurrence of different elements of the fine structure of solar radio bursts in the decimeter and centimeter wavelength ranges has been determined based on all available data from terrestrial and satellite observations. In some phenomena, fast pulsations, a zebra structre, fiber bursts, and spikes have been observed almost simultaneously. Two phenomena have been selected to show that the pulsations of radio emission are caused by particles accelerated in the magnetic reconnection region and that the zebra structure is excited in a source, such as a magnetic trap for fast particles. The complex combination of unusual fiber bursts, zebra structure, and spikes in the phenomenon on December 1, 2004, is associated with a single source, a magnetic island formed after a coronal mass ejection.

  6. Fireplace and woodstove fine particle emissions from combustion of western Mediterranean wood types

    Science.gov (United States)

    Alves, Célia; Gonçalves, Cátia; Fernandes, Ana Patrícia; Tarelho, Luís; Pio, Casimiro

    2011-08-01

    Wood from seven species of trees grown in the Portuguese forest ( Pinus pinaster, Eucalyptus globulus, Quercus suber, Acacia longifolia, Quercus faginea, Olea europea and Quercus ilex rotundifolia), and briquettes produced from forest biomass waste were burned in a fireplace and in a woodstove to determine the chemical composition of fine particle (PM 2.5) emissions. Samples were analysed for organic and elemental carbon (OC/EC), water soluble ions (Na +, NH 4+, K +, Mg 2+, Ca 2+, Cl -, NO 3- and SO 42-) and 67 elements. The PM 2.5 emission factors (g kg - 1 fuel burned, dry basis) were in the ranges 9.9-20.2 and 4.2-16.3, respectively, for the fireplace and the woodstove. Organic carbon contributed to about 50% of the fine particle mass in the emissions from every wood species studied in both burning appliances. The carbonaceous component of PM 2.5 was dominated by organic carbon, accounting for more than 85% of the total carbon (TC): OC/TC ranged from 0.85 to 0.96 (avg. 0.92) for the fireplace and from 0.86 to 0.97 (avg. 0.93) for the woodstove. The water-soluble ions accounted for 0.64 to 11.3% of the PM 2.5 mass emitted from the fireplace, whereas mass fractions between 0.53 and 13.6% were obtained for the woodstove. The golden wattle wood smoke showed a much higher ionic content than the emissions from the other wood types. Trace elements represented 0.4 to 2.5% and 0.2 to 2.2% of the PM 2.5 mass emitted, respectively, from the fireplace and the woodstove, which corresponded to average total emissions of 132 ± 77.3 mg kg - 1 and 93.4 ± 60.8 mg kg - 1 of wood burned. Among these, K, Pb, Al, Mn and Sr were present in all samples. From the emission profiles of the individual experiments, composite wood combustion profiles are suggested with the aid of a cluster analysis.

  7. A Preliminary Experimental Investigation of Wet Fine Erosion in Two-Phase Flow

    Science.gov (United States)

    Ya, H. H.; Luthfi, Haziq; Ngo, Nguyet-Tran; Hassan, Suhaimi; Pao, William

    2018-03-01

    Solid particles below 62 μm is classified as fine. In oil producing operation, the most commonly used downhole sand screen can only capture solid particles of 140 μm and above. Most predictive erosion model is limited to particle size of 100 μm with single phase flow assumption because it is commonly believed that erosion due to particles below 100 μm is insignificant and typically ignored by oil and gas consultants when proposing facilities design. The objective of this paper is to investigate the impact of fines particle on mild steel plate in two-phase flow at different collision angles. A two phase flow loop was set up. The average size of fine particle was 60 μm, mixed with water with sand to water ratio at 1:65 wt/wt. The mild steel plates were oriented at three different impact angles which are -30°, 30° and 90°, with respect to the horizon. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), surface roughness and Vickers micro hardness techniques were used to quantify the effects of fine particle on the exposed surface.

  8. PM1 particles at coal- and gas-fired power plant work areas.

    Science.gov (United States)

    Hicks, Jeffrey B; McCarthy, Sheila A; Mezei, Gabor; Sayes, Christie M

    2012-03-01

    With the increased interest in the possible adverse health effects attributed to inhalation of fine particle matter, this study was conducted to gather preliminary information about workplace exposures at coal- and gas-fired power plants to fine particles (PM(1); i.e. <1 μm) and ultrafine particles (i.e. <0.1 μm). Combustion of fossil fuel is known to produce fine particles, and due to their proximity and durations of exposure, power plant workers could be a group of individuals who experience high chronic exposures to these types of particles. The results of a series of real-time instrument measurements showed that concentrations of PM(1) were elevated in some locations in power plants. The highest concentrations were in locations near combustion sources, indicating that combustion materials were leaking from conventional fossil fuel-fired boilers or it was associated with emission plume downwash. Concentrations were the lowest inside air-conditioned control rooms where PM(1) were present at levels similar to or lower than upwind concentrations. Microscopic examinations indicate that PM(1) at the coal-fired plants are dominated by vitrified spheres, although there were also unusual elongated particles. Most of the PM(1) were attached to larger coal fly ash particles that may affect where and how they could be deposited in the lung.

  9. Picobubble column flotation of fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Tao; Samuel Yu; Xiaohua Zhou; R.Q. Honaker; B.K. Parekh [University of Kentucky, Lexington, KY (United States). Department of Mining Engineering

    2008-01-15

    Froth flotation is widely used in the coal industry to clean -28 mesh (0.6 mm) or -100 mesh (0.15 mm) fine coal. A successful recovery of particles by flotation depends on efficient particle-bubble collision and attachment with minimal subsequent particle detachment from bubble. Flotation is effective in a narrow size range, nominally 10-100 {mu}m, beyond which the flotation efficiency drops sharply. A fundamental analysis has shown that use of picobubbles can significantly improve the flotation recovery of particles by increasing the probability of collision and attachment and reducing the probability of detachment. A specially designed column with a picobubble generator has been developed for enhanced recovery of fine coal particles. Picobubbles were produced based on the hydrodynamic cavitation principle. Experimental results have shown that the use of picobubbles in a 5-cm diameter column flotation increased the combustible recovery of a highly floatable coal by up to 10% and that of a poorly floatable coal by up to 40%, depending on the feed rate, collector dosage, and other flotation conditions. 14 refs.

  10. Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model

    Directory of Open Access Journals (Sweden)

    A. Vara-Vela

    2016-01-01

    Full Text Available The objective of this work is to evaluate the impact of vehicular emissions on the formation of fine particles (PM2.5;  ≤  2.5 µm in diameter in the Sao Paulo Metropolitan Area (SPMA in Brazil, where ethanol is used intensively as a fuel in road vehicles. The Weather Research and Forecasting with Chemistry (WRF-Chem model, which simulates feedbacks between meteorological variables and chemical species, is used as a photochemical modelling tool to describe the physico-chemical processes leading to the evolution of number and mass size distribution of particles through gas-to-particle conversion. A vehicular emission model based on statistical information of vehicular activity is applied to simulate vehicular emissions over the studied area. The simulation has been performed for a 1-month period (7 August–6 September 2012 to cover the availability of experimental data from the NUANCE-SPS (Narrowing the Uncertainties on Aerosol and Climate Changes in Sao Paulo State project that aims to characterize emissions of atmospheric aerosols in the SPMA. The availability of experimental measurements of atmospheric aerosols and the application of the WRF-Chem model made it possible to represent some of the most important properties of fine particles in the SPMA such as the mass size distribution and chemical composition, besides allowing us to evaluate its formation potential through the gas-to-particle conversion processes. Results show that the emission of primary gases, mostly from vehicles, led to a production of secondary particles between 20 and 30 % in relation to the total mass concentration of PM2.5 in the downtown SPMA. Each of PM2.5 and primary natural aerosol (dust and sea salt contributed with 40–50 % of the total PM10 (i.e. those  ≤  10 µm in diameter concentration. Over 40 % of the formation of fine particles, by mass, was due to the emission of hydrocarbons, mainly aromatics. Furthermore, an increase in the

  11. Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model

    Science.gov (United States)

    Vara-Vela, A.; Andrade, M. F.; Kumar, P.; Ynoue, R. Y.; Muñoz, A. G.

    2016-01-01

    The objective of this work is to evaluate the impact of vehicular emissions on the formation of fine particles (PM2.5; ≤ 2.5 µm in diameter) in the Sao Paulo Metropolitan Area (SPMA) in Brazil, where ethanol is used intensively as a fuel in road vehicles. The Weather Research and Forecasting with Chemistry (WRF-Chem) model, which simulates feedbacks between meteorological variables and chemical species, is used as a photochemical modelling tool to describe the physico-chemical processes leading to the evolution of number and mass size distribution of particles through gas-to-particle conversion. A vehicular emission model based on statistical information of vehicular activity is applied to simulate vehicular emissions over the studied area. The simulation has been performed for a 1-month period (7 August-6 September 2012) to cover the availability of experimental data from the NUANCE-SPS (Narrowing the Uncertainties on Aerosol and Climate Changes in Sao Paulo State) project that aims to characterize emissions of atmospheric aerosols in the SPMA. The availability of experimental measurements of atmospheric aerosols and the application of the WRF-Chem model made it possible to represent some of the most important properties of fine particles in the SPMA such as the mass size distribution and chemical composition, besides allowing us to evaluate its formation potential through the gas-to-particle conversion processes. Results show that the emission of primary gases, mostly from vehicles, led to a production of secondary particles between 20 and 30 % in relation to the total mass concentration of PM2.5 in the downtown SPMA. Each of PM2.5 and primary natural aerosol (dust and sea salt) contributed with 40-50 % of the total PM10 (i.e. those ≤ 10 µm in diameter) concentration. Over 40 % of the formation of fine particles, by mass, was due to the emission of hydrocarbons, mainly aromatics. Furthermore, an increase in the number of small particles impaired the

  12. Improved process for contacting finely divided solid particles with gases

    Energy Technology Data Exchange (ETDEWEB)

    1952-07-30

    A process of contacting solids and gases of the type in which finely divided solids are maintained in a dense fluidized state in a treating zone by means of an upflowing gaseous fluidizing medium wherein solid packing in the form of a body static contiguous elements is maintained in the treating zone. The size, shape, and arrangement of the elements constituting the packing being such as to define a labyrinth of passageways in which the finely divided solids are maintained in a fluidized state, and the finely divided solids are adapted to flow freely downwardly through the passageways in the absence of a gaseous fluidizing medium.

  13. Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model.

    Science.gov (United States)

    Singh, Nandita; Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, Tirthankar

    2017-04-01

    Fine particulates (PM 2.5 ) constitute dominant proportion of airborne particulates and have been often associated with human health disorders, changes in regional climate, hydrological cycle and more recently to food security. Intrinsic properties of particulates are direct function of sources. This initiates the necessity of conducting a comprehensive review on PM 2.5 sources over South Asia which in turn may be valuable to develop strategies for emission control. Particulate source apportionment (SA) through receptor models is one of the existing tool to quantify contribution of particulate sources. Review of 51 SA studies were performed of which 48 (94%) were appeared within a span of 2007-2016. Almost half of SA studies (55%) were found concentrated over few typical urban stations (Delhi, Dhaka, Mumbai, Agra and Lahore). Due to lack of local particulate source profile and emission inventory, positive matrix factorization and principal component analysis (62% of studies) were the primary choices, followed by chemical mass balance (CMB, 18%). Metallic species were most regularly used as source tracers while use of organic molecular markers and gas-to-particle conversion were minimum. Among all the SA sites, vehicular emissions (mean ± sd: 37 ± 20%) emerged as most dominating PM 2.5 source followed by industrial emissions (23 ± 16%), secondary aerosols (22 ± 12%) and natural sources (20 ± 15%). Vehicular emissions (39 ± 24%) also identified as dominating source for highly polluted sites (PM 2.5 >100 μgm -3 , n = 15) while site specific influence of either or in combination of industrial, secondary aerosols and natural sources were recognized. Source specific trends were considerably varied in terms of region and seasonality. Both natural and industrial sources were most influential over Pakistan and Afghanistan while over Indo-Gangetic plain, vehicular, natural and industrial emissions appeared dominant. Influence of vehicular emission was

  14. Sources of sub-micrometre particles near a major international airport

    Science.gov (United States)

    Masiol, Mauro; Harrison, Roy M.; Vu, Tuan V.; Beddows, David C. S.

    2017-10-01

    The international airport of Heathrow is a major source of nitrogen oxides, but its contribution to the levels of sub-micrometre particles is unknown and is the objective of this study. Two sampling campaigns were carried out during warm and cold seasons at a site close to the airfield (1.2 km). Size spectra were largely dominated by ultrafine particles: nucleation particles ( strategies are applied successfully.

  15. Using 239Pu as a tracer for fine sediment sources in the Daly River, Northern Australia

    Directory of Open Access Journals (Sweden)

    Lal R.

    2015-01-01

    Full Text Available The Daly River drains a large (52500 km2 and mainly undisturbed catchment in the Australian wet–dry tropics. Clearing and cropping since 2002 have raised concerns about possible increased sediment input into the river and motivated this study of its fine sediment sources. Using 239Pu as a tracer it is shown that the fine sediments originate mainly from erosion by gullying and channel change. Although the results also indicate that the surface soil contribution to the river channel sediments from sheet erosion has increased to 5-22% for the Daly River and 7-28% for the Douglas River (a tributary of the Daly River in 2009 vs. 3-6% for the Daly River and 4-9% for the Douglas River in 2005. This excess top soil likely originates from thecleared land adjacent to the Daly River since 2005. However, channel widening largely as a result of hydrologic change is still the dominant sediment source in this catchment.

  16. Environmental and health impacts of fine and ultrafine metallic particles: Assessment of threat scores

    Energy Technology Data Exchange (ETDEWEB)

    Goix, Sylvaine [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); Lévêque, Thibaut [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); ADEME (French Agency for Environment and Energy Management), 20 Avenue du Grésillé, BP 90406, 49004 Angers Cedex 01 (France); Xiong, Tian-Tian [Université de Toulouse, INP-ENSAT, Av. Agrobiopôle, 31326 Castanet-Tolosan (France); UMR 5245 CNRS-INP-UPS, EcoLab (Laboratoire d' écologie fonctionnelle), Avenue de l' Agrobiopôle, BP 32607, 31326 Castanet-Tolosan (France); Schreck, Eva [Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse (France); and others

    2014-08-15

    This study proposes global threat scores to prioritize the harmfulness of anthropogenic fine and ultrafine metallic particles (FMP) emitted into the atmosphere at the global scale. (Eco)toxicity of physicochemically characterized FMP oxides for metals currently observed in the atmosphere (CdO, CuO, PbO, PbSO{sub 4}, Sb{sub 2}O{sub 3}, and ZnO) was assessed by performing complementary in vitro tests: ecotoxicity, human bioaccessibility, cytotoxicity, and oxidative potential. Using an innovative methodology based on the combination of (eco)toxicity and physicochemical results, the following hazard classification of the particles is proposed: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}. Both cadmium compounds exhibited the highest threat score due to their high cytotoxicity and bioaccessible dose, whatever their solubility and speciation, suggesting that cadmium toxicity is due to its chemical form rather than its physical form. In contrast, the Sb{sub 2}O{sub 3} threat score was the lowest due to particles with low specific area and solubility, with no effects except a slight oxidative stress. As FMP physicochemical properties reveal differences in specific area, crystallization systems, dissolution process, and speciation, various mechanisms may influence their biological impact. Finally, this newly developed and global approach could be widely used in various contexts of pollution by complex metal particles and may improve risk management. - Highlights: • Seven micro- and nano- monometallic characterized particles were studied as references. • Bioaccessibility, eco and cytotoxicity, and oxidative potential assays were performed. • According to calculated threat scores: CdCl{sub 2}∼CdO>CuO>PbO>ZnO>PbSO{sub 4}>Sb{sub 2}O{sub 3}.

  17. Simulating variable source problems via post processing of individual particle tallies

    International Nuclear Information System (INIS)

    Bleuel, D.L.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    2000-01-01

    Monte Carlo is an extremely powerful method of simulating complex, three dimensional environments without excessive problem simplification. However, it is often time consuming to simulate models in which the source can be highly varied. Similarly difficult are optimization studies involving sources in which many input parameters are variable, such as particle energy, angle, and spatial distribution. Such studies are often approached using brute force methods or intelligent guesswork. One field in which these problems are often encountered is accelerator-driven Boron Neutron Capture Therapy (BNCT) for the treatment of cancers. Solving the reverse problem of determining the best neutron source for optimal BNCT treatment can be accomplished by separating the time-consuming particle-tracking process of a full Monte Carlo simulation from the calculation of the source weighting factors which is typically performed at the beginning of a Monte Carlo simulation. By post-processing these weighting factors on a recorded file of individual particle tally information, the effect of changing source variables can be realized in a matter of seconds, instead of requiring hours or days for additional complete simulations. By intelligent source biasing, any number of different source distributions can be calculated quickly from a single Monte Carlo simulation. The source description can be treated as variable and the effect of changing multiple interdependent source variables on the problem's solution can be determined. Though the focus of this study is on BNCT applications, this procedure may be applicable to any problem that involves a variable source

  18. Short-term Associations between Fine and Coarse Particulate Matter and Hospitalizations in Southern Europe: Results from the MED-PARTICLES Project

    Science.gov (United States)

    Samoli, Evangelia; Alessandrini, Ester; Cadum, Ennio; Ostro, Bart; Berti, Giovanna; Faustini, Annunziata; Jacquemin, Benedicte; Linares, Cristina; Pascal, Mathilde; Randi, Giorgia; Ranzi, Andrea; Stivanello, Elisa; Forastiere, Francesco

    2013-01-01

    Background: Evidence on the short-term effects of fine and coarse particles on morbidity in Europe is scarce and inconsistent. Objectives: We aimed to estimate the association between daily concentrations of fine and coarse particles with hospitalizations for cardiovascular and respiratory conditions in eight Southern European cities, within the MED-PARTICLES project. Methods: City-specific Poisson models were fitted to estimate associations of daily concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), ≤ 10 μm (PM10), and their difference (PM2.5–10) with daily counts of emergency hospitalizations for cardiovascular and respiratory diseases. We derived pooled estimates from random-effects meta-analysis and evaluated the robustness of results to co-pollutant exposure adjustment and model specification. Pooled concentration–response curves were estimated using a meta-smoothing approach. Results: We found significant associations between all PM fractions and cardiovascular admissions. Increases of 10 μg/m3 in PM2.5, 6.3 μg/m3 in PM2.5–10, and 14.4 μg/m3 in PM10 (lag 0–1 days) were associated with increases in cardiovascular admissions of 0.51% (95% CI: 0.12, 0.90%), 0.46% (95% CI: 0.10, 0.82%), and 0.53% (95% CI: 0.06, 1.00%), respectively. Stronger associations were estimated for respiratory hospitalizations, ranging from 1.15% (95% CI: 0.21, 2.11%) for PM10 to 1.36% (95% CI: 0.23, 2.49) for PM2.5 (lag 0–5 days). Conclusions: PM2.5 and PM2.5–10 were positively associated with cardiovascular and respiratory admissions in eight Mediterranean cities. Information on the short-term effects of different PM fractions on morbidity in Southern Europe will be useful to inform European policies on air quality standards. Citation: Stafoggia M, Samoli E, Alessandrini E, Cadum E, Ostro B, Berti G, Faustini A, Jacquemin B, Linares C, Pascal M, Randi G, Ranzi A, Stivanello E, Forastiere F, the MED-PARTICLES Study Group. 2013. Short

  19. Electrode geometry effects on the collection efficiency of submicron and ultra-fine dust particles in spike-plate electrostatic precipitators

    International Nuclear Information System (INIS)

    Brocilo, D; Podlinski, J; Chang, J S; Mizeraczyk, J; Findlay, R D

    2008-01-01

    The collection efficiency of electrostatic precipitators for the submicron particles ranging from 0.1 to 1 μm and ultrafine particles smaller than 0. lμm is below the requirements of new PM2.5 emission regulations. In this work, numerical and experimental studies were conducted to examine the effect of discharge and collecting electrode geometries on the ion density and electric field profiles and consequently their effect on the particle surface charge and collection efficiency. The collection efficiency prediction was based on a modified Deutsche's equation after calculation of three dimensional electric field and ion density profiles. Whereas, the particle surface charge was obtained from diffusion and field charging models. Results show that the collection efficiency of fine particles for the spike-type discharge electrode when compared to the conventional wire-type was improved. Experimental validations were conducted on a bench scale electrostatic precipitator for total and partial collection efficiency of particles ranging in size from 0.01 to 20 μm and the results indicated that the model can be effectively applied for prototype design, modification, and scale-up of collecting and discharge electrodes.

  20. Differences in Preferential Sorting of Fine Particles in the Panama Basin Over the Past 25 kyr: Effects on 230Th-derived Focusing Factors

    Science.gov (United States)

    Loveley, M. R.; Marcantonio, F.; Lyle, M. W.; Wang, J. K.

    2013-12-01

    In this study, we attempt to understand how preferential sorting of fine particles during redistribution processes in the Panama Basin affects the 230Th constant-flux proxy. Fine particles likely contain greater amounts of 230Th, so that preferential sorting of fine particles may bias sediment mass accumulation rates (MARs). We examined sediments that span the past 25 kyr from two new sediment cores retrieved within about 56 km of each other in the northern part of the basin (MV1013-01-'4JC', 5° 44.699'N 85° 45.498' W, 1730 m depth; MV1014-01-'8JC', 6° 14.038'N 86° 2.613' W, 1993 m depth). Core 4JC, closer to the ridge top that bounds the basin (Cocos Ridge), has a thin sediment drape, while the deeper core 8JC, has a thicker sediment drape and lies further from the ridge top. 230Th-derived focusing factors from 4JC are similar and suggest winnowing with average values of about 0.5 and 0.6 during the Holocene and the last glacial, respectively. For 8JC, calculated average focusing factors are significantly different and suggest focusing with values of about 2 during the Holocene and 4 during the last glacial. Since the two sites are close to each other, one would expect similar rain rates and, therefore, similar 230Th-derived MARs within similar windows of time, i.e., the rain rate should not vary significantly at each site temporally. In addition, the radiocarbon-derived sand (>63μm) MARs should behave similarly since coarser particles are likely not transported by bottom currents. Sand MARs are, indeed, similar during the Holocene and the last glacial at each site. During the last glacial, however, sand MARs are about a factor of 3 higher than those during the Holocene. On the other hand, there is little variability in the 230Th-derived MARs both spatially and temporally. We interpret the discrepancies between the radiocarbon-derived sand and 230Th-derived MARs as being due to preferential sorting of fine particles during the redistribution of sediments by

  1. Aero particles characterization emitted by mobile sources

    International Nuclear Information System (INIS)

    Rojas V, A.; Romero G, E. T.; Lopez G, H.

    2009-01-01

    In our country, the mobile sources that conform most of the emissions at the atmosphere, are concentrated on the urban areas. For the present work, samples coming from the escapes of terrestrial transport were obtained, such as: passenger buses, load transport and particular vehicles of the Metropolitan area of the Toluca valley. The material was analyzed by means of scanning electron microscopy of low vacuum and X-ray diffraction. The objective was to characterize the emitted particles by mobile sources, morphological and chemically to know the structure, size and elements that compose them. (Author)

  2. Spectral Discrimination of Fine and Coarse Mode Aerosol Optical Depth from AERONET Direct Sun Data of Singapore and South-East Asia

    Science.gov (United States)

    Salinas Cortijo, S.; Chew, B.; Liew, S.

    2009-12-01

    Aerosol optical depth combined with the Angstrom exponent and its derivative, are often used as a qualitative indicator of aerosol particle size, with Angstrom exp. values greater than 2 indicating small (fine mode) particles associated with urban pollution and bio-mass burning. Around this region, forest fires are a regular occurrence during the dry season, specially near the large land masses of Sumatra and Borneo. The practice of clearing land by burning the primary and sometimes secondary forest, results in a smog-like haze covering large areas of regional cities such as cities Singapore, Kuala Lumpur and sometimes the south of Thailand, often reducing visibility and increasing health problems for the local population. In Singapore, the sources of aerosols are mostly from fossil fuel burning (energy stations, incinerators, urban transport etc.) and from the industrial and urban areas. The proximity to the sea adds a possible oceanic source. However, as stated above and depending on the time of the year, there can be a strong bio-mass component coming from forest fires from various regions of the neighboring countries. Bio-mass related aerosol particles are typically characterized by showing a large optical depth and small, sub-micron particle size distributions. In this work, we analyze three years of direct Sun measurements performed with a multi-channel Cimel Sun-Photometer (part of the AERONET network) located at our site. In order to identify bio-mass burning events in this region, we perform a spectral discrimination between coarse and fine mode optical depth; subsequently, the fine mode parameters such as optical depth, optical ratio and fine mode Angstrom exponents (and its derivative) are used to identify possible bio-mass related events within the data set.

  3. Fine Particulate Pollution and Source Apportionment in the Urban Centers for Africa, Asia and Latin America

    Science.gov (United States)

    Guttikunda, S. K.; Johnson, T. M.; Procee, P.

    2004-12-01

    Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.

  4. Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, Mexico, during Cal-Mex campaign

    Science.gov (United States)

    Minguillón, María Cruz; Campos, Arturo Alberto; Cárdenas, Beatriz; Blanco, Salvador; Molina, Luisa T.; Querol, Xavier

    2014-05-01

    This work was carried out in the framework of the Cal-Mex project, which focuses on investigating the atmosphere along Mexico-California border region. Sampling was carried out at two sites located in Tijuana urban area: Parque Morelos and Metales y Derivados. PM2.5 and PM10 24 h samples were collected every three days from 17th May 2010 to 27th June 2010, and were used for gravimetric and chemical analyses (major and minor elements, inorganic ions, organic and elemental carbon) of PM. A subsequent Positive Matrix Factorization (PMF) analysis was performed. PM2.5 and PM10 average concentrations during Cal-Mex were relatively lower compared to usual annual averages. Trace elements concentrations recorded in the present study were lower than those recorded in Mexico City in 2006, with the exception of Pb at Metales y Derivados, attributed to the influence of a specific industrial source, which also includes As, Cd and Tl. Apart from this industrial source, both urban sites were found to be affected by similar sources with respect to bulk PM. Fine PM (PM2.5) was mainly apportioned by fueloil and biomass combustion and secondary aerosols, and road traffic. Coarse PM (PM2.5-10) was mainly apportioned by a mineral source (sum of road dust resuspension, construction emissions and natural soil) and fresh and aged sea salt. The road traffic was responsible for more than 60% of the fine elemental carbon and almost 40% of the fine organic matter.

  5. Household Air Pollution: Sources and Exposure Levels to Fine Particulate Matter in Nairobi Slums

    Directory of Open Access Journals (Sweden)

    Kanyiva Muindi

    2016-07-01

    Full Text Available With 2.8 billion biomass users globally, household air pollution remains a public health threat in many low- and middle-income countries. However, little evidence on pollution levels and health effects exists in low-income settings, especially slums. This study assesses the levels and sources of household air pollution in the urban slums of Nairobi. This cross-sectional study was embedded in a prospective cohort of pregnant women living in two slum areas—Korogocho and Viwandani—in Nairobi. Data on fuel and stove types and ventilation use come from 1058 households, while air quality data based on the particulate matters (PM2.5 level were collected in a sub-sample of 72 households using the DustTrak™ II Model 8532 monitor. We measured PM2.5 levels mainly during daytime and using sources of indoor air pollutions. The majority of the households used kerosene (69.7% as a cooking fuel. In households where air quality was monitored, the mean PM2.5 levels were high and varied widely, especially during the evenings (124.6 µg/m3 SD: 372.7 in Korogocho and 82.2 µg/m3 SD: 249.9 in Viwandani, and in households using charcoal (126.5 µg/m3 SD: 434.7 in Korogocho and 75.7 µg/m3 SD: 323.0 in Viwandani. Overall, the mean PM2.5 levels measured within homes at both sites (Korogocho = 108.9 µg/m3 SD: 371.2; Viwandani = 59.3 µg/m3 SD: 234.1 were high. Residents of the two slums are exposed to high levels of PM2.5 in their homes. We recommend interventions, especially those focusing on clean cookstoves and lighting fuels to mitigate indoor levels of fine particles.

  6. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt

    2002-08-15

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  7. PREFACE: 8th International Conference on Fine Particle Magnetism (ICFPM2013)

    Science.gov (United States)

    2014-06-01

    The 8th International Conference on Fine Particle Magnetism (ICFPM) was held in Perpignan from 24 to 27 June 2013, and was the continuation of the previous meetings held in Bangor (1996), Rome (1991), Barcelona (1999), Pittsburg (2002), London (2004), Rome (2007) and Uppsala (2010). The next meeting will be organized by Profs. Robert D. Shull, George Hadjipanayis and Cindi Dennis, in 2016 at NIST, Gaithersburg (USA). ICFPM is a small-sized conference focused on the magnetism of nanoparticles. It provides an international forum for discussing the state-of-the-art understanding of physics of these systems, of their properties and the underlying phenomena, as approached from a variety of directions: theory and modelling, experiments on well characterized or model systems (both fabricated and synthetised), as well as experiments on technologically-relevant non-ideal systems. This meeting brought together about 120 participants working on experimental, theoretical and applied topics of the multidisciplinary research areas covered by magnetic nanoparticles, with focused interest on either single-particle or collective phenomena. The technical program of the conference was based on keynote conferences, invited talks, oral contributions and poster sessions, covering the following aspects: . Fabrication, synthesis, characterization . Single particle, surface and finite-size effects on magnetic properties . Magnetization dynamics, micro-wave assisted switching, dynamical coupling . Assemblies, collective effects, self-assembling and nanostructuring . Applications : hyperthermia, drug delivery, magneto-caloric, magneto-resistance, magneto-plasmonics, magnetic particle imaging This ICFPM edition was organized by the group Nanoscale Spin Systems of the laboratory PROMES of the CNRS (UPR8521), and Université de Perpignan Via Domitia. The meeting took place at the Congress Center of the city of Perpignan providing high-quality facilities for the technical program as well for the

  8. Field studies of hydrodynamic conditions and fine-sediment suspension in the Kapar coastal region, Malaysia

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak

    2006-01-01

    Field studies to determine the hydrodynamics and fine-sediment transport were carried out at the Kapar coastal region, on the west coast of the Malaysian Peninsula. Several observation stations were established to measure near-bed tidal currents, suspended sediment concentration (SSC), water temperature, salinity and tidal elevation. It was found that resuspension (erosion) and deposition of fine sediment occurred during every tidal cycle, with greater transport occurred during the ebb than the flood. This become the major source of fine sediment that contribute to the siltation problem in this region. The high resuspension and entrainment of sediment into the flow column was due to a high near-bed current velocity which was at its peak at 1.3 m/s (during spring tides) and easily-eroded fine particles recently settled during previous tidal cycles. Significant erosion (and deposition) took place during the spring tides but little erosion was observed during the neap. The secondary source of fine sediment is from Sungai Kelang transported to the area by ebb currents in particular during spring tides. The measurement data also showed that the current flows around an industrial construction, the Kapar power station, had been modified and greatly reduced, which had resulted in a significant siltation problem in this region. This study contributes to a better understanding of the influence of hydrodynamics on the physical processes relating to the resuspension, transport and deposition of the fine-sediment in this region. (Author)

  9. Source Apportionment of Primary and Secondary Fine Particulate Matter in China

    Science.gov (United States)

    Hu, J.; Zhang, H.; Ying, Q.

    2015-12-01

    In the past few decades, China have been facing extreme particulate matter (PM) pollution problems due to the combination of fast increase of population, industrialization, urbanization and associated energy consumption and lagging of sufficient emission control measures. Studies have identified the major components of fine PM (PM2.5) in China include primary PM (which is directly emitted into the atmosphere), sulfate and nitrate (which are mainly secondary PM, i.e., formed from gaseous precursors), and organic aerosols (which can be primary or secondary). Contributions of different source sectors to the different PM components are substantially different; therefore source apportionment of these components can provide critical information needed for policy makers to design effective emission control strategies. In the current study, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model that directly tracks the contributions from multiple emission sources to primary and secondary PM2.5 is developed, and then applied to determine the regional contributions of power, industry, transportation and residential sectors to primary PM, nitrate and sulfate concentrations in China. Four months in 2012-2013 are simulated to predict the seasonal variations of source contributions. Model predictions are evaluated with ambient measured concentrations. The source-oriented CMAQ model is capable of reproducing most of the available PM10 and PM2.5 mass, and PM2.5 EC, POC, nitrate and sulfate observations. Predicted source contributions for EC also generally agree with to the source contributions estimated by receptor models reported in previous studies. Model predictions suggest residential is a major contributor to primary PM (30-70%) in the spring and winter, and industrial contributes 40-60% of primary PM in the summer and fall; Transportation is an important source for EC (20-30%); Power sector is the dominating source of nitrate and sulfate in both

  10. Geometric effects in alpha particle detection from distributed air sources

    International Nuclear Information System (INIS)

    Gil, L.R.; Leitao, R.M.S.; Marques, A.; Rivera, A.

    1994-08-01

    Geometric effects associated to detection of alpha particles from distributed air sources, as it happens in Radon and Thoron measurements, are revisited. The volume outside which no alpha particle may reach the entrance window of the detector is defined and determined analytically for rectangular and cylindrical symmetry geometries. (author). 3 figs

  11. Picobubble enhanced column flotation of fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Tao, D.; Yu, S.; Parekh, B.K. [University of Kentucky, Lexington, KY (United States). Mining Engineering

    2006-07-01

    The purpose is to study the effectiveness of picobubbles in the column flotation of -28 mesh fine coal particles. A flotation column with a picobubble generator was developed and tested for enhancing the recovery of ultrafine coal particles. The picobubble generator was designed using the hydrodynamic cavitation principle. A metallurgical and a steam coal were tested in the apparatus. The results show that the use of picobubbles in a 2in. flotation column increased the recovery of fine coal by 10 to 30%. The recovery rate varied with feed rate, collector dosage, and other column conditions. 40 refs., 8 figs., 2 tabs.

  12. Study of Black Sand Particles from Sand Dunes in Badr, Saudi Arabia Using Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Haider Abbas Khwaja

    2015-08-01

    Full Text Available Particulate air pollution is a health concern. This study determines the microscopic make-up of different varieties of sand particles collected at a sand dune site in Badr, Saudi Arabia in 2012. Three categories of sand were studied: black sand, white sand, and volcanic sand. The study used multiple high resolution electron microscopies to study the morphologies, emission source types, size, and elemental composition of the particles, and to evaluate the presence of surface “coatings or contaminants” deposited or transported by the black sand particles. White sand was comprised of natural coarse particles linked to wind-blown releases from crustal surfaces, weathering of igneous/metamorphic rock sources, and volcanic activities. Black sand particles exhibited different morphologies and microstructures (surface roughness compared with the white sand and volcanic sand. Morphological Scanning Electron Microscopy (SEM and Laser Scanning Microscopy (LSM analyses revealed that the black sand contained fine and ultrafine particles (50 to 500 nm ranges and was strongly magnetic, indicating the mineral magnetite or elemental iron. Aqueous extracts of black sands were acidic (pH = 5.0. Fe, C, O, Ti, Si, V, and S dominated the composition of black sand. Results suggest that carbon and other contaminant fine particles were produced by fossil-fuel combustion and industrial emissions in heavily industrialized areas of Haifa and Yanbu, and transported as cloud condensation nuclei to Douf Mountain. The suite of techniques used in this study has yielded an in-depth characterization of sand particles. Such information will be needed in future environmental, toxicological, epidemiological, and source apportionment studies.

  13. Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California

    International Nuclear Information System (INIS)

    Basu, Rupa; Harris, Maria; Sie, Lillian; Malig, Brian; Broadwin, Rachel; Green, Rochelle

    2014-01-01

    Relationships between prenatal exposure to fine particles (PM 2.5 ) and birth weight have been observed previously. Few studies have investigated specific constituents of PM 2.5 , which may identify sources and major contributors of risk. We examined the effects of trimester and full gestational prenatal exposures to PM 2.5 mass and 23 PM 2.5 constituents on birth weight among 646,296 term births in California between 2000 and 2006. We used linear and logistic regression models to assess associations between exposures and birth weight and risk of low birth weight (LBW; 2.5 mass and several PM 2.5 constituents were significantly associated with reductions in term birth weight. The largest reductions in birth weight were associated with exposure to vanadium, sulfur, sulfate, iron, elemental carbon, titanium, manganese, bromine, ammonium, zinc, and copper. Several of these PM 2.5 constituents were associated with increased risk of term LBW. Reductions in birth weight were generally larger among younger mothers and varied by race/ethnicity. Exposure to specific constituents of PM 2.5 , especially traffic-related particles, sulfur constituents, and metals, were associated with decreased birth weight in California. -- Highlights: • Examine full gestational and trimester fine particle and its constituents on term birth weight. • Fine particles and several of its constituents associated with birth weight reductions. • Largest reductions for traffic-related particles, sulfur constituents, and metals. • Greater birth weight reductions for younger mothers, and varied by race/ethnicity

  14. Unexpected spatial impact of treatment plant discharges induced by episodic hydrodynamic events: Modelling Lagrangian transport of fine particles by Northern Current intrusions in the bays of Marseille (France).

    Science.gov (United States)

    Millet, Bertrand; Pinazo, Christel; Banaru, Daniela; Pagès, Rémi; Guiart, Pierre; Pairaud, Ivane

    2018-01-01

    Our study highlights the Lagrangian transport of solid particles discharged at the Marseille Wastewater Treatment Plant (WWTP), located at Cortiou on the southern coastline. We focused on episodic situations characterized by a coastal circulation pattern induced by intrusion events of the Northern Current (NC) on the continental shelf, associated with SE wind regimes. We computed, using MARS3D-RHOMA and ICHTHYOP models, the particle trajectories from a patch of 5.104 passive and conservative fine particles released at the WWTP outlet, during 2 chosen representative periods of intrusion of the NC in June 2008 and in October 2011, associated with S-SE and E-SE winds, respectively. Unexpected results highlighted that the amount of particles reaching the vulnerable shorelines of both northern and southern bays accounted for 21.2% and 46.3% of the WWTP initial patch, in June 2008 and October 2011, respectively. Finally, a conceptual diagram is proposed to highlight the mechanisms of dispersion within the bays of Marseille of the fine particles released at the WWTP outlet that have long been underestimated.

  15. Self-absorption and self-scattering in emitter source of alpha particles

    International Nuclear Information System (INIS)

    Terini, R.A.

    1990-01-01

    This paper describes preliminary results on spectrometric analysis and activity measurements of alpha-emitting sources prepared by evaporation on mylar. The measurements were made with a Si surface barrier detector. By the analysis of the angular distribuition of the alpha particles emitted, it was possible to observe that the width of the spectrum low energy tail increases with the emission angle θ, due to the energy degradation in the source material, which affects the measured particles energy. The source activity was also measured from detection solid angles of approx. 10 -1 and aprox. 10 -3 Sr, as a function of θ. The absolute activity of the alpha source was determined and a discussion is present on the ideal conditions necessary for such measurements. (author) [pt

  16. A study of the horizontal and vertical profile of submicrometer particles in relation to a busy road

    Science.gov (United States)

    Morawska, Lidia; Thomas, Stephen; Gilbert, Dale; Greenaway, Chris; Rijnders, Esther

    Epidemiological studies are consistently reporting an association between fine particulate pollution and ill-health. Motor vehicle emissions are considered to be the main source of fine particles in ambient urban air of cities which are not directly influenced by industrial emissions. The aim of this work was to assess the influence of a major arterial road on concentration levels of airborne fine particles in its vicinity. Measurements of over 500 particle size distributions in the particle size range 16-626 nm, were made using two scanning mobility particle sizers (SMPS). A subsequent comparison of the recorded values from differing locations is discussed, with reference made to topographic and climatic influences. Both horizontal and vertical profile measurements of fine particle number size distributions are described; the combination of the two yielding information as to the relative exposures of occupants of buildings in the vicinity of a major arterial route. With the exception of measurements in close proximity to the freeway (about 15 m), the horizontal profile measurements did not provide any evidence of a statistically significant difference in fine particle number concentration with respect to distance at ground level up to a distance of 200 m within the study area. The vertical profile measurements also revealed no significant correlation between particle concentration and height. However, for buildings in the immediate proximity to the arterial road (about 15 m) concentrations around the building envelope are very high, comparable to those in the immediate vicinity of the road, indicating undiluted concentrations drawn directly from the freeway. This finding has a significant implication for management of indoor air quality in the buildings located in the immediate vicinity of major roads.

  17. Co-formation of hydroperoxides and ultra-fine particles during the reactions of ozone with a complex VOC mixture under simulated indoor conditions

    DEFF Research Database (Denmark)

    Fan, Z.H.; Weschler, Charles J.; Han, IK

    2005-01-01

    In this study we examined the co-formation of hydrogen peroxide and other hydroperoxides (collectively presented as H2O2*) as well as submicron particles, including ultra-fine particles (UFP), resulting from the reactions of ozone (O-3) with a complex mixture of volatile organic compounds (VOCs...... higher than typical indoor levels. When O-3 was added to a 25-m(3) controlled environmental facility (CEF) containing the 23 VOC mixture, both H2O2* and submicron particles were formed. The 2-h average concentration of H2O2* was 1.89 +/- 0.30ppb, and the average total particle number concentration was 46...... to achieve saturated concentrations of the condensable organics. When the 2 terpenes were removed from the O-3/23 VOCs mixture, no H2O2* or particles were formed, indicating that the reactions of O-3 With the two terpenes were the key processes contributing to the formation of H2O2* and submicron particles...

  18. Pulse-based electron spin transient nutation measurement of BaTiO3 fine particle: Identification of controversial signal around g = 2.00

    Science.gov (United States)

    Sawai, Takatoshi; Yamaguchi, Yoji; Kitamura, Noriko; Date, Tomotsugu; Konishi, Shinya; Taga, Kazuya; Tanaka, Katsuhisa

    2018-05-01

    Two dimensional pulse-based electron spin transient nutation (2D-ESTN) spectroscopy is a powerful tool for determining the spin quantum number and has been applied to BaTiO3 fine powder in order to identify the origin of the continuous wave electron spin resonance (CW-ESR) signal around g = 2.00. The signal is frequently observed in BaTiO3 ceramics, and the correlation between the signal intensity and positive temperature coefficient of resistivity (PTCR) properties has been reported to date. The CW-ESR spectrum of BaTiO3 fine particles synthesized by the sol-gel method shows a typical asymmetric signal at g = 2.004. The 2D-ESTN measurements of the sample clearly reveal that the signal belongs to the S = 5/2 high spin state, indicating that the signal is not due to a point defect as suggested by a number of researchers but rather to a transition metal ion. Our elemental analysis, as well as previous studies, indicates that the origin of the g = 2.004 signal is due to the presence of an Fe3+ impurity. The D value (second-order fine structure parameter) reveals that the origin of the signal is an Fe3+ center with distant charge compensation. In addition, we show a peculiar temperature dependence of the CW-ESR spectrum, suggesting that the phase transition behavior of a BaTiO3 fine particle is quite different from that of a bulk single crystal. Our identification does not contradict a vacancy-mediated mechanism for PTCR. However, it is incorrect to use the signal at g = 2.00 as evidence to support the vacancy-mediated mechanism.

  19. Fines Classification Based on Sensitivity to Pore-Fluid Chemistry

    KAUST Repository

    Jang, Junbong; Santamarina, Carlos

    2015-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing

  20. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    Science.gov (United States)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  1. Derivation of the fine-structure constant

    International Nuclear Information System (INIS)

    Samec, A.

    1980-01-01

    The fine-structure constant is derived as a dynamical property of quantum electrodynamics. Single-particle solutions of the coupled Maxwell and Dirac equations have a physical charge spectrum. The solutions are used to construct lepton-and quark-like particles. The strong, weak, electromagnetic, and gravitational forces are described as the interactions of complex charges in multiple combinations

  2. Polymer degradation and ultrafine particles - Potential inhalation hazards for astronauts

    Science.gov (United States)

    Ferin, J.; Oberdoerster, G.

    1992-01-01

    To test the hypothesis that exposure to ultrafine particles results in an increased interstiatilization of the particles which is accompanied by an acute pathological inflammation, rats were exposed to titanium dioxide (TiO2) particles by intratracheal instillation and by inhalation. Both acute intratracheal instillation and subchronic inhalation studies on rats show that ultrafine TiO2 particles access the pulmonary interstitium to a larger extent than fine particles and that they elicit an inflammatory response as indicated by PMN increase in lavaged cells. The release of ultrafine particles into the air of an enclosed environment from a thermodegradation event or from other sources is a potential hazard for astronauts. Knowing the mechanisms of action is a prerequisite for technical or medical countermeasures.

  3. Contribution from indoor sources to particle number and mass concentrations in residential houses

    Science.gov (United States)

    He, Congrong; Morawska, Lidia; Hitchins, Jane; Gilbert, Dale

    As part of a large study investigating indoor air in residential houses in Brisbane, Australia, the purpose of this work was to quantify emission characteristics of indoor particle sources in 15 houses. Submicrometer particle number and approximation of PM 2.5 concentrations were measured simultaneously for more than 48 h in the kitchen of all the houses by using a condensation particle counter (CPC) and a photometer (DustTrak), respectively. In addition, characterizations of particles resulting from cooking conducted in an identical way in all the houses were measured by using a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS) and a DustTrak. All the events of elevated particle concentrations were linked to indoor activities using house occupants diary entries, and catalogued into 21 different types of indoor activities. This enabled quantification of the effect of indoor sources on indoor particle concentrations as well as quantification of emission rates from the sources. For example, the study found that frying, grilling, stove use, toasting, cooking pizza, cooking, candle vaporizing eucalyptus oil and fan heater use, could elevate the indoor submicrometer particle number concentration levels by more than five times, while PM 2.5 concentrations could be up to 3, 30 and 90 times higher than the background levels during smoking, frying and grilling, respectively.

  4. Characterization of urban aerosol sources in Debrecen, Hungary

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Szoboszlai, T.; Angyal, A.; Dobos, E.; Borbely-Kiss, I.

    2009-01-01

    Complete text of publication follows. Aerosol pollution represents significant health hazard in urban environments. Despite the fact that Debrecen has not a much stressed environment the city is highly exposed to aerosol pollution. In order to evaluate the impact of aerosol particles on health, the knowledge of the particle size distribution, chemical composition, sources, and their change in time and space is needed. This work presents a source apportionment study of fine (particles with aerodynamic diameter less than 2.5 μm) and coarse (particles with aerodynamic diameter between 2.5 and 10 μm) particulate matter in Debrecen by following the evolution of the elemental components with hourly time resolution. The variation of the elemental concentrations, their periodicity, correlation with other elements and meteorological parameters were studied on samples collected in different seasons. Aerosol sources were determined using the positive matrix factorization (PMF) method. Aerosol samples were collected in the garden of the ATOMKI with a 2-stage sequential streaker sampler manufactured by PIXE International, which collected the fine and coarse fraction separately with few hours' time resolution. Between October 2007 and January 2009 five 10-days long sampling campaigns were carried out. The elemental composition was determined by Particle Induced X-ray emission (PIXE) for Z ≥ 13, and the elemental carbon (BC) content was estimated with a smoke stain reflectometer. Source apportionment was carried out with the PMF receptor model developed for aerosol source characterization, provided by US EPA. Mass of species apportioned to factor, percentage of species apportioned to factors and average factor contributions of the campaigns, of working days and weekends and within the days were calculated. The PMF analysis resulted seven factors in the fine and seven factors in the coarse mode. The main sources of atmospheric aerosol in the city of Debrecen were traffic

  5. The aggregation efficiency of very fine volcanic ash

    Science.gov (United States)

    Del Bello, E.; Taddeucci, J.; Scarlato, P.

    2013-12-01

    Explosive volcanic eruptions can discharge large amounts of very small sized pyroclasts (under 0.090 mm) into the atmosphere that may cause problems to people, infrastructures and environment. The transport and deposition of fine ash are ruled by aggregation that causes premature settling of fine ash and, as consequence, significantly reduces the concentration of airborne material over long distances. Parameterizing the aggregation potential of fine ash is then needed to provide accurate modelling of ash transport and deposition from volcanic plumes. Here we present the first results of laboratory experiments investigating the aggregation efficiency of very fine volcanic particles. Previous laboratory experiments have shown that collision kinetic and relative humidity provide the strongest effect on aggregation behaviour but were only limited to particles with size > 0.125 mm. In our work, we focus on natural volcanic ash at ambient humidity with particles size aggregation potential. Two types of ash were used in our experiments: fresh ash, collected during fall-out from a recent plume-forming eruption at Sakurajima (Japan -July 2013) and old ash, collected from fall-out tephra deposits at Campi Flegrei (Italy, ca. 10 ka), to account for the different chemical composition and morphoscopic effects of altered ash on aggregation efficiency. Total samples were hand sieved to obtain three classes with unimodal grain size distributions (sieved from the top of a transparent tank where a fan, placed at the bottom, allows turbulent dispersion of particles. Collision and sticking of particles on a vertical glass slide were filmed with a high speed cameras at 6000 fps. Our lenses arrangement provide high image resolution allowing to capture particles down to 0.005 mm in diameter. Video sequences of particles motion and collision were then processed with image analysis and particle tracking tools to determine i) the particle number density and ii) the grain size distribution

  6. Where does particle acceleration occur in extended extragalactic radio sources

    International Nuclear Information System (INIS)

    Hughes, P.A.

    1980-01-01

    It is suggested that particle acceleration does not occur in the extended lobes of extragalactic radio sources, but only in the compact heads. Away from these, waves capable of accelerating particles may not propagate. Although wave generation within the lobes would allow acceleration there, it is not obvious that the plasma is sufficiently disturbed for this to occur. (author)

  7. Occurrence and sources of aliphatic hydrocarbons in surface soils from Riyadh city, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed I. Rushdi

    2013-01-01

    Full Text Available Soil particles contain a variety of anthropogenic and natural organic components derived from many sources such as industrial and traffic fossil fuel emissions and terrestrial biota. The organic contents of soil and sand from the Arabian region have not fully characterized. Thus, samples of fine soil particles (sieved to <125 μM were collected from the Riyadh area in November 2006 (late summer and February 2007 (late winter. The samples were extracted with a mixture of dichloromethane/hexane and analyzed by gas chromatography–mass spectroscopy (GCMS in order to characterize the chemical composition and sources of aliphatic hydrocarbons. The results showed that both anthropogenic and natural biogenic inputs were the major sources of the aliphatic hydrocarbons in these extracts. Vehicular emission products and discarded plastics were the major anthropogenic sources in the fine particles of the soils and ranged from 64% to 96% in November 2006 and from 70% to 92% in February 2007. Their tracers were n-alkanes, hopanes, sterane, plasticizers and UCM. Vegetation was also a major natural source of hydrocarbon compounds in samples ranging from ∼0% to18% in November 2006 and from 1% to 13% in February 2007 and included n-alkanes and triterpenoids.

  8. A 2D Micromodel Study of Fines Migration and Clogging Behavior in Porous Media: Implications of Fines on Methane Extraction from Hydrate-Bearing Sediments

    Science.gov (United States)

    Cao, S. C.; Jang, J.; Waite, W. F.; Jafari, M.; Jung, J.

    2017-12-01

    Fine-grained sediment, or "fines," exist nearly ubiquitously in natural sediment, even in the predominantly coarse-grained sediments that host gas hydrates. Fines within these sandy sediments can play a crucial role during gas hydrate production activities. During methane extraction, several processes can alter the mobility and clogging potential of fines: 1) fluid flow as the formation is depressurized to release methane from hydrate; 2) pore-fluid chemistry shifts as pore-fluid brine freshens due to pure water released from dissociating hydrate; 3) the presence of a moving gas/water interface as gas evolves from dissociating hydrate and moves through the reservoir toward the production well. To evaluate fines migration and clogging behavior changes resulting from methane gas production and pore-water freshening during hydrate dissociation, 2D micromodel experiments have been conducted on a selection of pure fines, pore-fluids, and micromodel pore-throat sizes. Additionally, tests have been run with and without an invading gas phase (CO2) to test the significance of a moving meniscus on fines mobility and clogging. The endmember fine particles chosen for this research include silica silt, mica, calcium carbonate, diatoms, kaolinite, illite, and bentonite (primarily made of montmorillonite). The pore fluids include deionized water, sodium chloride brine (2M concentration), and kerosene. The microfluidic pore models, used as porous media analogs, were fabricated with pore-throat widths of 40, 60, and 100 µm. Results from this research show that in addition to the expected dependence of clogging on the ratio of particle-to-pore-throat size, pore-fluid chemistry is also a significant factor because the interaction between a particular type of fine and pore fluid influences that fine's capacity to cluster, clump together and effectively increase its particle "size" relative to the pore-throat width. The presence of a moving gas/fluid meniscus increases the clogging

  9. Impact of aerosol particle sources on optical properties in urban, regional and remote areas in the north-western Mediterranean

    Science.gov (United States)

    Ealo, Marina; Alastuey, Andrés; Pérez, Noemí; Ripoll, Anna; Querol, Xavier; Pandolfi, Marco

    2018-01-01

    sp and σap, being the second most efficient light-absorbing source in BCN (MAE = 0.9 m2 g-1). The traffic source at BCN and the industrial/traffic at MSY exhibited the highest MAEs (1.7 and 0.9 m2 g-1). These sources were major contributors to σap at BCN and MSY; however at MSA, secondary nitrate exerted the highest influence on σap (MAE = 0.4 m2 g-1). The sources which were predominantly composed of fine and relatively dark particles, such as industrial/traffic, aged organics and V-Ni, were simultaneously characterized by low single scattering albedo (SSA) and a high scattering Ångström exponent (SAE). Conversely, mineral and aged marine showed the lowest SAE and the highest SSA, being scattering the dominant process in the light extinction. The good agreement found between modelled and measured particle optical properties allowed the reconstruction of σsp and σap long-term series over the period 2004-2014 at MSY. Significant decreasing trends were found for the modelled σsp and σap (-4.6 and -4.1 % yr-1).

  10. Effects of Temperature and Residence Time on the Emissions of PIC and Fine Particles during Fixed Bed Combustion of Conifer Stemwood Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Christoffer; Lindmark, Fredrik; Oehman, Marcus; Nordin, Anders [Umeaa Univ. (Sweden). Energy Technology and Thermal Process Chemistry; Pettersson, Esbjoern [Energy Technology Centre, Piteaa (Sweden); Westerholm, Roger [Stockholm Univ., Arrhenius Laboratory (Sweden). Dept. of Analytical Chemistry

    2006-07-15

    The use of wood fuel Pellets has proved to be well suited for the small-scale market enabling controlled and efficient combustion with low emission of products of incomplete combustion (PIC). Still a potential for further emission reduction exists and a thorough understanding of the influence of combustion conditions on the emission characteristics of air pollutants like PAH and particulate matter (PM) is important. The objective was to determine the effects of temperature and residence time on the emission performance and characteristics with focus on hydrocarbons and PM during combustion of conifer stemwood Pellets in a laboratory fixed bed reactor (<5 kW). Temperature and residence time after the bed section were varied according to statistical experimental designs (650-970 deg C and 0.5-3.5 s) with the emission responses; CO, organic gaseous carbon, NO, 20 VOC compounds, 43 PAH compounds, PM{sub tot}, fine particle mass/count median diameter (MMD and CMD) and number concentration. Temperature was negatively correlated with the emissions of all studied PIC with limited effects of residence time. The PM{sub tot} emissions of 15-20 mg/MJ was in all cases dominated by fine (<1 {mu}m) particles of K, Na, S, Cl, C, O and Zn. Increased residence time resulted in increased fine particle sizes (i.e. MMD and CMD) and decreased number concentrations. The importance of high temperature (>850 deg C) in the bed zone with intensive, air rich and well mixed isothermal conditions for 0.5-1.0 s in the post combustion zone was illustrated for wood Pellets combustion with almost a total depletion of all studied PIC. The results emphasize the need for further verification studies and technology development work.

  11. Trajectory calculation of a trapped particle in electro-dynamic balance for study of chemical reaction of aerosol particles

    International Nuclear Information System (INIS)

    Okuma, Miho; Itou, Takahiro; Harano, Azuchi; Takarada, Takayuki; James, Davis E

    2013-01-01

    Electrodynamic balance (EDB) is a powerful tool for investigating the chemical reactions between a fine particle and gaseous species. But the EDB device alone is inadequate to match the rapid weight change of a fine particle caused by chemical reactions, because it takes a few seconds to set a fine particle at null point. The particle trajectory calculation for the trapped particle added to the EDB is thus a very useful tool for the measurement of the transient response of a particle weight change with no need to adjust the applied DC voltage to set the null point. The purpose of this study is to develop the trajectory calculation method to track the particle oscillation pattern in the EDB and examine the possibility for kinetic studies on the reaction of a single aerosol particle with gaseous species. The results demonstrated the feasibility of applying particle trajectory calculation to realize the research purpose.

  12. A source-independent empirical correction procedure for the fast mobility and engine exhaust particle sizers

    Science.gov (United States)

    Zimmerman, Naomi; Jeong, Cheol-Heon; Wang, Jonathan M.; Ramos, Manuel; Wallace, James S.; Evans, Greg J.

    2015-01-01

    The TSI Fast Mobility Particle Sizer (FMPS) and Engine Exhaust Particle Sizer (EEPS) provide size distributions for 6-560 nm particles with a time resolution suitable for characterizing transient particle sources; however, the accuracy of these instruments can be source dependent, due to influences of particle morphology. The aim of this study was to develop a source-independent correction protocol for the FMPS and EEPS. The correction protocol consists of: (1) broadening the >80 nm size range of the distribution to account for under-sizing by the FMPS and EEPS; (2) applying an existing correction protocol in the 8-93 nm size range; and (3) dividing each size bin by the ratio of total concentration measured by the FMPS or EEPS and a water-based Condensation Particle Counter (CPC) as a surrogate scaling factor to account for particle morphology. Efficacy of the correction protocol was assessed for three sources: urban ambient air, diluted gasoline direct injection engine exhaust, and diluted diesel engine exhaust. Linear regression against a reference instrument, the Scanning Mobility Particle Sizer (SMPS), before and after applying the correction protocol demonstrated that the correction ensured agreement within 20%.

  13. Test Method for High β Particle Emission Rate of 63Ni Source Plate

    OpenAIRE

    ZHANG Li-feng

    2015-01-01

    For the problem of measurement difficulties of β particle emission rate of Ni-63 source plate used for Ni-63 betavoltaic battery, a relative test method of scintillation current method was erected according to the measurement principle of scintillation detector.β particle emission rate of homemade Ni-63 source plate was tested by the method, and the test results were analysed and evaluated, it was initially thought that scintillation current method was a feasible way of testing β particle emi...

  14. Vertical profiles of fine and coarse aerosol particles over Cyprus: Comparison between in-situ drone measurements and remote sensing observations

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Pikridas, Michael; Kottas, Michael; Binietoglou, Ioannis; Kokkalis, Panagiotis; Tsekeri, Aleksandra; Amiridis, Vasilis; Sciare, Jean; Keleshis, Christos; Engelmann, Ronny; Ansmann, Albert; Russchenberg, Herman W. J.; Biskos, George

    2017-04-01

    Vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) measurements were compared to airborne dried optical particle counter (OPC MetOne; Model 212) measurements during the INUIT-BACCHUS-ACTRIS campaign. The campaign took place in April 2016 and its main focus was the study of aerosol dust particles. During the campaign the NOA Polly-XT Raman lidar located at Nicosia (35.08° N, 33.22° E) was providing round-the-clock vertical profiles of aerosol optical properties. In addition, an unmanned aerial vehicle (UAV) carrying an OPC flew on 7 days during the first morning hours. The flights were performed at Orounda (35.1018° N, 33.0944° E) reaching altitudes of 2.5 km a.s.l, which allows comparison with a good fraction of the recorded lidar data. The polarization lidar photometer networking method (POLIPHON) was used for the estimation of the fine (non-dust) and coarse (dust) mode aerosol mass concentration profiles. This method uses as input the particle backscatter coefficient and the particle depolarization profiles of the lidar at 532 nm wavelength and derives the aerosol mass concentration. The first step in this approach makes use of the lidar observations to separate the backscatter and extinction contributions of the weakly depolarizing non-dust aerosol components from the contributions of the strongly depolarizing dust particles, under the assumption of an externally mixed two-component aerosol. In the second step, sun photometer retrievals of the fine and the coarse modes aerosol optical thickness (AOT) and volume concentration are used to calculate the associated concentrations from the extinction coefficients retrieved from the lidar. The estimated aerosol volume concentrations were converted into mass concentration with an assumption for the bulk aerosol density, and compared with the OPC measurements. The first results show agreement within the experimental uncertainty. This project received funding from the

  15. Characterizing and controlling industrial dust: a case study in small particle measurement.

    Science.gov (United States)

    Combes, Richard S; Warren, D Alan

    2005-07-01

    Instrumentation used to measure characteristics of fine particles entrained in gas or suspended in aerosols provides information needed to develop valid regulations for emission sources and to support the design of control technologies. This case study offers a brief history of "micromeritics," a term used by early researchers to describe the science of small particles, and the related invention of laboratory instruments for characterizing very fine particles. The historical view provides insights into the role that Progressive Era government agencies played in advancing esoteric science and applying this knowledge to the regulation of workplace air pollution. Micromeritics instrumentation developed in conjunction with federal research now has many commercial applications worldwide, with characterizing airborne pollutants only a minor one. However, the continuing advances in the micromeritics field provide important laboratory measurement capabilities to environmental research organizations, such as the National Institute for Occupational Safety and Health (NIOSH).

  16. Reprint of: A numerical investigation of fine sediment resuspension in the wave boundary layer-Uncertainties in particle inertia and hindered settling

    Science.gov (United States)

    Cheng, Zhen; Yu, Xiao; Hsu, Tian-Jian; Balachandar, S.

    2016-05-01

    The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to continental margins. Hence, studying fine sediment resuspensions in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycles. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with sediment availabilities. As the sediment availability and hence the sediment-induced stable stratification increases, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to hindered settling and particle inertia effects. Present numerical simulations including the particle inertia suggest that for a typical wave condition in continental shelves, the effect of particle inertia is negligible. Through additional numerical experiments, we also confirm that the particle inertia tends (up to the Stokes number St = 0.2) to attenuate flow turbulence. On the other hand, for flocs with lower gelling concentrations, the hindered settling can play a key role in sustaining a large amount of suspended sediments and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A sufficient condition for the occurrence of gelling ignition is hypothesized for a range of wave intensities as a function of sediment/floc properties and erodibility parameters.

  17. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Charles E. Kolb

    2008-03-31

    This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen

  18. Distribution of the solvent-extractable organic compounds in fine (PM1) and coarse (PM1-10) particles in urban, industrial and forest atmospheres of Northern Algeria.

    Science.gov (United States)

    Ladji, Riad; Yassaa, Noureddine; Balducci, Catia; Cecinato, Angelo; Meklati, Brahim Youcef

    2009-12-20

    The distribution of the solvent-extractable organic components in the fine (PM(1)) and coarse (PM(1-10)) fractions of airborne particulate was studied for the first time in Algeria. That was done during October 2006 concurrently in a big industrial district, a busy urban area, and a forest national park located in Algiers, Boumerdes, Blida, respectively, which are the three biggest provinces of Northern Algeria. Most of the organic matter identified in both particle size ranges consisted of n-alkanes and n-alkanoic acids, with minor contributions coming from polycyclic aromatic hydrocarbons (PAHs), nitrated polycyclic aromatic hydrocarbons (NPAHs), oxygenated PAHs, and other polar compounds (e.g., caffeine and nicotine). The potential emission sources of airborne contaminants were reconciled by combining the values of n-alkane carbon preference index (CPI) and selected diagnostic ratios of PAHs, calculated in both size ranges. The mean cumulative concentrations of PAHs reached 3.032 ng m(-3) at the Boumerdes site, urban, 80% of which (i.e. 2.246 ng m(-3)) in the PM(1) fraction, 6.462 ng m(-3) at Rouiba-Réghaia, industrial district, (5.135 ng m(-3) or 80% in PM(1)), and 0.512 ng m(-3) at Chréa, forested mountains (0.370 ng m(-3) or 72% in PM(1)). Similar patterns were shown by all organic groups, which resulted overall enriched in the fine particles at the three sites. Carcinogenic and mutagenic potencies associated to PAHs were evaluated by multiplying the concentrations of "toxic" compounds times the corresponding potency factors normalized vs. benzo(a)pyrene (BaP), and were found to be both acceptable.

  19. Source contributions to airborne particle deposition at the Yungang Grottoes, China

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Lynn G.; Christoforou, Christos S.; Gerk, Timothy J.; Cass, Glen R. [Environmental Engineering Science Department and Environmental Quality Laboratory, California Institute of Technology Pasadena, CA (United States); Casuccio, Gary S.; Cooke, Gary A.; Leger, Michael [R.J. Lee Group, Inc., Monroeville, PA (United States); Olmez, Ilhan [Nuclear Reactor Laboratory, Massachusetts Institute of Technology Cambridge, MA (United States)

    1995-04-28

    The Buddhist cave temple complex at Yungang in northern China is affected by a rapid accumulation of airborne particles that settle onto the thousands of statues contained within those caves. Experiments have been conducted to identify the most important air pollution sources that contribute to the dust deposition problem. The spatial distribution of the deposition rate of airborne particles within a 2 km x 2 km area surrounding the grottoes was measured during a 2-day period in April, 1991. Peak particle deposition rates of >60 {mu}g m{sup -2} s{sup -1} were found at locations within the village of Yungang itself and along the adjacent coal-haul highway. Moving away from the village and coal-haul highway, deposition rates decline to much lower values, indicating that the village and highway are significant sources of airborne particles. A comparison of the mineralogical composition of the dust deposits in the caves with the composition of local soil dust, paved road dust from the coal-haul highway and deteriorated cave ceiling rock material indicates that the dust deposits in the caves are a combination of the above sources, with the paved road dust from the coal-haul highway providing the closest match to the largest quantity of the material deposited in the caves

  20. Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California

    Science.gov (United States)

    Shields, Laura Grace

    Composed of a mixture of chemical species and phases and existing in a variety of shapes and sizes, atmospheric aerosols are complex and can have serious influence on human health, the environment, and climate. In order to better understand the impact of aerosols on local to global scales, detailed measurements on the physical and chemical properties of ambient particles are essential. In addition, knowing the origin or the source of the aerosols is important for policymakers to implement targeted regulations and effective control strategies to reduce air pollution in their region. One of the most ground breaking techniques in aerosol instrumentation is single particle mass spectrometry (SPMS), which can provide online chemical composition and size information on the individual particle level. The primary focus of this work is to further improve the ability of one specific SPMS technique, aerosol time-of-flight mass spectrometry (ATOFMS), for the use of identifying the specific origin of ambient aerosols, which is known as source apportionment. The ATOFMS source apportionment method utilizes a library of distinct source mass spectral signatures to match the chemical information of the single ambient particles. The unique signatures are obtained in controlled source characterization studies, such as with the exhaust emissions of heavy duty diesel vehicles (HDDV) operating on a dynamometer. The apportionment of ambient aerosols is complicated by the chemical and physical processes an individual particle can undergo as it spends time in the atmosphere, which is referred to as "aging" of the aerosol. Therefore, the performance of the source signature library technique was investigated on the ambient dataset of the highly aged environment of Riverside, California. Additionally, two specific subsets of the Riverside dataset (ultrafine particles and particles containing trace metals), which are known to cause adverse health effects, were probed in greater detail. Finally

  1. Source apportionment of fine particulate matter in China in 2013 using a source-oriented chemical transport model.

    Science.gov (United States)

    Shi, Zhihao; Li, Jingyi; Huang, Lin; Wang, Peng; Wu, Li; Ying, Qi; Zhang, Hongliang; Lu, Li; Liu, Xuejun; Liao, Hong; Hu, Jianlin

    2017-12-01

    China has been suffering high levels of fine particulate matter (PM 2.5 ). Designing effective PM 2.5 control strategies requires information about the contributions of different sources. In this study, a source-oriented Community Multiscale Air Quality (CMAQ) model was applied to quantitatively estimate the contributions of different source sectors to PM 2.5 in China. Emissions of primary PM 2.5 and gas pollutants of SO 2 , NO x , and NH 3 , which are precursors of particulate sulfate, nitrate, and ammonium (SNA, major PM 2.5 components in China), from eight source categories (power plants, residential sources, industries, transportation, open burning, sea salt, windblown dust and agriculture) were separately tracked to determine their contributions to PM 2.5 in 2013. Industrial sector is the largest source of SNA in Beijing, Xi'an and Chongqing, followed by agriculture and power plants. Residential emissions are also important sources of SNA, especially in winter when severe pollution events often occur. Nationally, the contributions of different source sectors to annual total PM 2.5 from high to low are industries, residential sources, agriculture, power plants, transportation, windblown dust, open burning and sea salt. Provincially, residential sources and industries are the major anthropogenic sources of primary PM 2.5 , while industries, agriculture, power plants and transportation are important for SNA in most provinces. For total PM 2.5 , residential and industrial emissions are the top two sources, with a combined contribution of 40-50% in most provinces. The contributions of power plants and agriculture to total PM 2.5 are about 10%, respectively. Secondary organic aerosol accounts for about 10% of annual PM 2.5 in most provinces, with higher contributions in southern provinces such as Yunnan (26%), Hainan (25%) and Taiwan (21%). Windblown dust is an important source in western provinces such as Xizang (55% of total PM 2.5 ), Qinghai (74%), Xinjiang (59

  2. Numerical simulation of fine oil sand tailings drying in test cells

    NARCIS (Netherlands)

    Vardon, P.J.; Nijssen, T.; Yao, Y.; Van Tol, A.F.

    2014-01-01

    As a promising technology in disposal of mature fine tailings (MFT), atmospheric fines drying (AFD) is currently being implemented on a commercial scale at Shell Canada’s Muskeg River Mine near Fort McMurray, Alberta. AFD involves the use of a polymer flocculent to bind fine particles in MFT

  3. Nuclear microprobe analysis and source apportionment of individual atmospheric aerosol particles

    International Nuclear Information System (INIS)

    Artaxo, P.; Rabello, M.L.C.; Watt, F.; Grime, G.; Swietlicki, E.

    1993-01-01

    In atmospheric aerosol reserach, one key issue is to determine the sources of the airborne particles. Bulk PIXE analysis coupled with receptor modeling provides a useful, but limited view of the aerosol sources influencing one particular site or sample. The scanning nuclear microprobe (SNM) technique is a microanalytical technique that gives unique information on individual aerosol particles. In the SNM analyses a 1.0 μm size 2.4 MeV proton beam from the Oxford SNM was used. The trace elements with Z>11 were measured by the particle induced X-ray emission (PIXE) method with detection limits in the 1-10 ppm range. Carbon, nitrogen and oxygen are measured simultaneously using Rutherford backscattering spectrometry (RBS). Atmospheric aerosol particles were collected at the Brazilian Antarctic Station and at biomass burning sites in the Amazon basin tropical rain forest in Brazil. In the Antarctic samples, the sea-salt aerosol particles were clearly predominating, with NaCl and CaSO 4 as major compounds with several trace elements as Al, Si, P, K, Mn, Fe, Ni, Cu, Zn, Br, Sr, and Pb. Factor analysis of the elemental data showed the presence of four components: 1) Soil dust particles; 2) NaCl particles; 3) CaSO 4 with Sr; and 4) Br and Mg. Strontium, observed at 20-100 ppm levels, was always present in the CaSO 4 particles. The hierarchical cluster procedure gave results similar to the ones obtained through factor analysis. For the tropical rain forest biomass burning aerosol emissions, biogenic particles with a high organic content dominate the particle population, while K, P, Ca, Mg, Zn, and Si are the dominant elements. Zinc at 10-200 ppm is present in biogenic particles rich in P and K. The quantitative aspects and excellent detection limits make SNM analysis of individual aerosol particles a very powerful analytical tool. (orig.)

  4. Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign

    Science.gov (United States)

    Guo, Hongyu; Liu, Jiumeng; Froyd, Karl D.; Roberts, James M.; Veres, Patrick R.; Hayes, Patrick L.; Jimenez, Jose L.; Nenes, Athanasios; Weber, Rodney J.

    2017-05-01

    pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2. 5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (CalNex) study from 15 May to 15 June 2010 in Pasadena, CA. Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to measured gas-particle partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard deviation PM1 pH was 1.9 ± 0.5 for the SO42--NO3--NH4+-HNO3-NH3 system. For PM2. 5, internal mixing of sea salt components (SO42--NO3--NH4+-Na+-Cl--K+-HNO3-NH3-HCl system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with PM2. 5 components. The results show little effect of sea salt on PM1 pH, but significant effects on PM2. 5 pH. A mean PM1 pH of 1.9 at Pasadena was approximately one unit higher than what we have reported in the southeastern US, despite similar temperature, relative humidity, and sulfate ranges, and is due to higher total nitrate concentrations (nitric acid plus nitrate) relative to sulfate, a situation where particle water is affected by semi-volatile nitrate concentrations. Under these conditions nitric acid partitioning can further promote nitrate formation by increasing aerosol water, which raises pH by dilution, further increasing nitric acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This study provides insights into the complex interactions between particle pH and nitrate in a summertime coastal environment and a contrast to recently reported pH in the eastern US in summer and winter and the eastern Mediterranean. All studies have consistently found highly acidic PM1 with pH generally below 3.

  5. The ozonolysis of primary aliphatic amines in single and multicomponent fine particles

    Science.gov (United States)

    Zahardis, J.; Geddes, S.; Petrucci, G. A.

    2007-10-01

    The oxidative processing by ozone of the particulate amines octadecylamine (ODA) and hexadecylamine (HDA) is reported. Ozonolysis of these amines resulted in strong NO2- and NO3- ion signals that increased with ozone exposure as monitored by photoelectron resonance capture ionization aerosol mass spectrometry. These products suggest a mechanism of progressive oxidation of the particulate amines to nitro alkanes. Additionally, a strong ion signal at 125 m/z is assigned to the ion NO3-(HNO3). For ozonized mixed particles containing ODA or HDA + oleic acid (OL), with pO3≥3×10-7 atm, imine, secondary amide, and tertiary amide products were measured. These products most likely arise from reactions of amines with aldehydes (for imines) and stabilized Criegee intermediates (SCI) or secondary ozonides (for amides) from the fatty acid. The routes to amides via SCI and/or secondary ozonides was shown to be more important than comparable amide forming reactions between amines and organic acids, using azelaic acid as a test compound. Finally, direct evidence is provided for the formation of a surface barrier in the ODA + OL reaction system that resulted in the retention of OL at high ozone exposures (up to 10-3 atm for 17 s). This effect was not observed in HDA + OL or single component OL particles, suggesting that it may be a species-specific surfactant effect from an in situ generated amide or imine. Implications to tropospheric chemistry, including particle bound amines as sources of oxidized gas phase nitrogen species (e.g. NO2, NO3), formation of nitrogen enriched HULIS via ozonolysis of amines and source apportionment are discussed.

  6. Element determination of fine particles in environmental aerosols using PIXE

    International Nuclear Information System (INIS)

    Garcia O, B.; Aldape U, F.

    2007-01-01

    The Mexico city is classified as one of the more populated cities of the world which presents a decrease in the air quality and that gives place to a severe problematic in atmospheric pollution. To cooperate in the solution of this problem it is necessary to carry out studies that allow a better knowledge of the atmosphere of the city. This study presents the results of a monitoring campaign of fine particle carried out from September 21 to December 12, 2001 in three sites of the Mexico City center area. The samples were collected every third day with a collector type unit of heaped filters (Gent). The analysis of these samples was carried out in the 2 MV accelerator of the National Institute of Nuclear Research (ININ) applying the PIXE technique and with this analysis its were identified in the samples approximately 15 elements in each one of the 3 sites and was calculated the concentration in that its were present. With these results a database was created and by means of it mathematical treatment the Enrichment factor (FE), the time series of each element and the multiple correlation matrix were evaluated. The obtained results showed that the Civil Registration site (Salto del Agua) it was the more polluted coinciding that to a bigger concentration of activities a bigger increase in the pollution is generated. (Author)

  7. Regulatory T Cells Protect Fine Particulate Matter-Induced Inflammatory Responses in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wen-cai Zhang

    2014-01-01

    Full Text Available Objective. To investigate the role of CD4+CD25+ T cells (Tregs in protecting fine particulate matter (PM- induced inflammatory responses, and its potential mechanisms. Methods. Human umbilical vein endothelial cells (HUVECs were treated with graded concentrations (2, 5, 10, 20, and 40 µg/cm2 of suspension of fine particles for 24h. For coculture experiment, HUVECs were incubated alone, with CD4+CD25− T cells (Teff, or with Tregs in the presence of anti-CD3 monoclonal antibodies for 48 hours, and then were stimulated with or without suspension of fine particles for 24 hours. The expression of adhesion molecules and inflammatory cytokines was examined. Results. Adhesion molecules, including vascular cell adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1, and inflammatory cytokines, such as interleukin (IL- 6 and IL-8, were increased in a concentration-dependent manner. Moreover, the adhesion of human acute monocytic leukemia cells (THP-1 to endothelial cells was increased and NF-κB activity was upregulated in HUVECs after treatment with fine particles. However, after Tregs treatment, fine particles-induced inflammatory responses and NF-κB activation were significantly alleviated. Transwell experiments showed that Treg-mediated suppression of HUVECs inflammatory responses impaired by fine particles required cell contact and soluble factors. Conclusions. Tregs could attenuate fine particles-induced inflammatory responses and NF-κB activation in HUVECs.

  8. Application of CR-39 microfilm for rapid discrimination between alpha-particle sources

    Energy Technology Data Exchange (ETDEWEB)

    Dwaikat, Nidal; Al-karmi, Anan M. [Dept. of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2017-06-15

    This work presents a new technique for discriminating between alpha particles of different energy levels. In a first study, two groups of alpha particles emitted from radium-226 and americium-241 sources were successfully separated using a CR-39 microfilm of appropriate thickness. This thickness was adjusted by chemical etching before and after irradiation so that lower-energy particles were stopped within the detector, while higher-energy particles were revealed on the back side of the detector. The number of tracks on the front side of the microfilm represented all alpha particles incident on that side from the two sources. However, the number of tracks on the back side of the microfilm represented only the long-range alpha particles of higher energy that arrived at that side. Therefore, by subtracting the number of tracks on the back side from the number of tracks on the front side, one could easily determine the number of tracks for the short-range alpha particles of lower energy that remained embedded in the microfilm. Discrimination of the two energy levels is thus achieved in a simple, fast, and reliable process.

  9. Light extinction by fine atmospheric particles in the White Mountains region of New Hampshire and its relationship to air mass transport.

    Science.gov (United States)

    Slater, John F; Dibb, Jack E; Keim, Barry D; Talbot, Robert W

    2002-03-27

    Chemical, optical, and physical measurements of fine aerosols (aerodynamic diameter mass origin. Filter-based, 24-h integrated samples were collected and analyzed for major inorganic ions, as well as organic (OC), elemental (EC), and total carbon. Light scattering and light absorption coefficients were measured at 5-min intervals using an integrating nephelometer and a light absorption photometer. Fine particle number density was measured with a condensation particle counter. Air mass origins and transport patterns were investigated through the use of 3-day backward trajectories and a synoptic climate classification system. Two distinct transport regimes were observed: (1) flow from the north/northeast (N/NE) occurred during 9 out of 18 sample-days; and (2) flow from the west/southwest (W/SW) occurred 8 out of 18 sample-days. All measured and derived aerosol and meteorological parameters were separated into two categories based on these different flow scenarios. During W/SW flow, higher values of aerosol chemical concentration, absorption and scattering coefficients, number density, and haziness were observed compared to N/NE flow. The highest level of haziness was associated with the climate classification Frontal Atlantic Return, which brought polluted air into the region from the mid-Atlantic corridor. Fine particle mass scattering efficiencies of (NH4)2SO4 and OC were 5.35 +/- 0.42 m2 g(-1) and 1.56 +/- 0.40 m2 g(-1), respectively, when transport was out of the N/NE. When transport was from the W/SW the values were 4.94 +/- 0.68 m2 g(-1) for (NH4)2SO4 and 2.18 +/- 0.91 m2 g(-1) for OC. EC mass absorption efficiency when transport was from the N/NE was 9.66 +/- 1.06 m2 g(-1) and 10.80 +/- 1.76 m2 g(-1) when transport was from the W/SW. Results from this work can be used to predict visual air quality in the White Mountain National Forest based on a forecasted synoptic climate classification and its associated visibility.

  10. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    Directory of Open Access Journals (Sweden)

    S. L. Tian

    2016-01-01

    Full Text Available Additional size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood; however, this information remains unavailable in most regions of China due to lacking measurement data. In this study, we report observations of various chemical species in size-segregated particle samples that were collected over 1 year in the urban area of Beijing, a megacity that experiences severe haze episodes. In addition to fine particles, high concentrations of coarse particles were measured during the periods of haze. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contributions of organic matter to the particle mass decreased from 37.9 to 31.2 %, and the total contribution of sulfate, nitrate and ammonium increased from 19.1 to 33.9 % between non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peak concentrations of the organic carbon, cadmium and sulfate, nitrate, ammonium, chloride and potassium shifted from 0.43 to 0.65 µm on non-haze days to 0.65–1.1 µm on haze days. Although the size distributions of lead and thallium were similar during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We observed that sulfate and ammonium, which have a size range of 0.43–0.65 µm, sulfate and nitrate, which have a size range of 0.65–1.1 µm, calcium, which has a size range of 5.8–9 µm, and the meteorological factors of relative humidity and wind speed were responsible for haze pollution when the visibility was less than 10 km. Source apportionment using Positive Matrix Factorization showed six PM2.1 sources and seven PM2.1–9 common sources: secondary inorganic aerosol (25.1 % for fine particles vs. 9.8

  11. Computational Fluid-Particle Dynamics for the Flame Synthesis of Alumina Particles

    DEFF Research Database (Denmark)

    Johannessen, Tue; Pratsinis, Sotirie E.; Livbjerg, Hans

    2000-01-01

    A mathematical model for the dynamics of particle growth during synthesis of ultra fine particles in diffusion flames is presented. The model includes the kinetics of particle coalescence and coagulation, and when combined with a calculation of the temperature, velocity and gas composition distri...

  12. Particle damage sources for fused silica optics and their mitigation on high energy laser systems.

    Science.gov (United States)

    Bude, J; Carr, C W; Miller, P E; Parham, T; Whitman, P; Monticelli, M; Raman, R; Cross, D; Welday, B; Ravizza, F; Suratwala, T; Davis, J; Fischer, M; Hawley, R; Lee, H; Matthews, M; Norton, M; Nostrand, M; VanBlarcom, D; Sommer, S

    2017-05-15

    High energy laser systems are ultimately limited by laser-induced damage to their critical components. This is especially true of damage to critical fused silica optics, which grows rapidly upon exposure to additional laser pulses. Much progress has been made in eliminating damage precursors in as-processed fused silica optics (the advanced mitigation process, AMP3), and very high damage resistance has been demonstrated in laboratory studies. However, the full potential of these improvements has not yet been realized in actual laser systems. In this work, we explore the importance of additional damage sources-in particular, particle contamination-for fused silica optics fielded in a high-performance laser environment, the National Ignition Facility (NIF) laser system. We demonstrate that the most dangerous sources of particle contamination in a system-level environment are laser-driven particle sources. In the specific case of the NIF laser, we have identified the two important particle sources which account for nearly all the damage observed on AMP3 optics during full laser operation and present mitigations for these particle sources. Finally, with the elimination of these laser-driven particle sources, we demonstrate essentially damage free operation of AMP3 fused silica for ten large optics (a total of 12,000 cm 2 of beam area) for shots from 8.6 J/cm 2 to 9.5 J/cm 2 of 351 nm light (3 ns Gaussian pulse shapes). Potentially many other pulsed high energy laser systems have similar particle sources, and given the insight provided by this study, their identification and elimination should be possible. The mitigations demonstrated here are currently being employed for all large UV silica optics on the National Ignition Facility.

  13. Solubility of iron from combustion source particles in acidic media linked to iron speciation.

    Science.gov (United States)

    Fu, Hongbo; Lin, Jun; Shang, Guangfeng; Dong, Wenbo; Grassian, Vichi H; Carmichael, Gregory R; Li, Yan; Chen, Jianmin

    2012-10-16

    In this study, iron solubility from six combustion source particles was investigated in acidic media. For comparison, a Chinese loess (CL) dust was also included. The solubility experiments confirmed that iron solubility was highly variable and dependent on particle sources. Under dark and light conditions, the combustion source particles dissolved faster and to a greater extent relative to CL. Oil fly ash (FA) yielded the highest soluble iron as compared to the other samples. Total iron solubility fractions measured in the dark after 12 h ranged between 2.9 and 74.1% of the initial iron content for the combustion-derived particles (Oil FA > biomass burning particles (BP) > coal FA). Ferrous iron represented the dominant soluble form of Fe in the suspensions of straw BP and corn BP, while total dissolved Fe presented mainly as ferric iron in the cases of oil FA, coal FA, and CL. Mössbauer measurements and TEM analysis revealed that Fe in oil FA was commonly presented as nanosized Fe(3)O(4) aggregates and Fe/S-rich particles. Highly labile source of Fe in corn BP could be originated from amorphous Fe form mixed internally with K-rich particles. However, Fe in coal FA was dominated by the more insoluble forms of both Fe-bearing aluminosilicate glass and Fe oxides. The data presented herein showed that iron speciation varies by source and is an important factor controlling iron solubility from these anthropogenic emissions in acidic solutions, suggesting that the variability of iron solubility from combustion-derived particles is related to the inherent character and origin of the aerosols themselves. Such information can be useful in improving our understanding on iron solubility from combustion aerosols when they undergo acidic processing during atmospheric transport.

  14. Cleaning and dewatering fine coal

    Science.gov (United States)

    Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad

    2017-10-17

    Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also be used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.

  15. Source apportionment of aerosol particles using polycapillary slightly focusing X-ray lens

    Energy Technology Data Exchange (ETDEWEB)

    Sun Tianxi [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China) and Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China) and Beijing Radiation Center, Beijing 100875 (China)], E-mail: stxbeijing@163.com; Liu Zhiguo [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China) and Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China) and Beijing Radiation Center, Beijing 100875 (China)], E-mail: liuzgbeijing@163.com; Zhu Guanghua; Liu Hui [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Xu Qing [Institute of High Energy Physics, Chinese Academy of Science, Beijing 100039 (China); Li Yude; Wang Guangpu; Luo Ping; Pan Qiuli; Ding Xunliang [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2009-06-11

    A micro-X-ray fluorescence (Micro-XRF) spectrometer based on a polycapillary slightly focusing X-ray lens (PSFXRL) and laboratory X-ray source was designed to carry out the source apportionment of aerosol particles. In the distribution curve of the X-ray intensity in the focal spot of PSFXRL, there was a plateau with a diameter of about 65 {mu}m. The uniformity of this plateau was about 3%. This was helpful in measuring the XRF spectrum of a single aerosol particle in which the element distributions are not uniform. The minimum detection limit (MDL) of this Micro-XRF spectrometer was 15 ppm for the Fe-K{sub {alpha}}. The origins of the aerosol particles at the exit of a subway station and a construction site were apportioned. This Micro-XRF spectrometer has potential applications in analysis of single aerosol particles.

  16. Field characterization of the PM2.5 Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China

    Science.gov (United States)

    Zhang, Yunjiang; Tang, Lili; Croteau, Philip L.; Favez, Olivier; Sun, Yele; Canagaratna, Manjula R.; Wang, Zhuang; Couvidat, Florian; Albinet, Alexandre; Zhang, Hongliang; Sciare, Jean; Prévôt, André S. H.; Jayne, John T.; Worsnop, Douglas R.

    2017-12-01

    A PM2.5-capable aerosol chemical speciation monitor (Q-ACSM) was deployed in urban Nanjing, China, for the first time to measure in situ non-refractory fine particle (NR-PM2.5) composition from 20 October to 19 November 2015, along with parallel measurements of submicron aerosol (PM1) species by a standard Q-ACSM. Our results show that the NR-PM2.5 species (organics, sulfate, nitrate, and ammonium) measured by the PM2.5-Q-ACSM are highly correlated (r2 > 0.9) with those measured by a Sunset Lab OC  /  EC analyzer and a Monitor for AeRosols and GAses (MARGA). The comparisons between the two Q-ACSMs illustrated similar temporal variations in all NR species between PM1 and PM2.5, yet substantial mass fractions of aerosol species were observed in the size range of 1-2.5 µm. On average, NR-PM1-2.5 contributed 53 % of the total NR-PM2.5, with sulfate and secondary organic aerosols (SOAs) being the two largest contributors (26 and 27 %, respectively). Positive matrix factorization of organic aerosol showed similar temporal variations in both primary and secondary OAs between PM1 and PM2.5, although the mass spectra were slightly different due to more thermal decomposition on the capture vaporizer of the PM2.5-Q-ACSM. We observed an enhancement of SOA under high relative humidity conditions, which is associated with simultaneous increases in aerosol pH, gas-phase species (NO2, SO2, and NH3) concentrations and aerosol water content driven by secondary inorganic aerosols. These results likely indicate an enhanced reactive uptake of SOA precursors upon aqueous particles. Therefore, reducing anthropogenic NOx, SO2, and NH3 emissions might not only reduce secondary inorganic aerosols but also the SOA burden during haze episodes in China.

  17. Isotope source apportionment of carbonaceous aerosol as a function of particle size and thermal refractiveness

    Science.gov (United States)

    Masalaite, Agne; Holzinger, Rupert; Remeikis, Vidmantas; Röckmann, Thomas; Dusek, Ulrike

    2016-04-01

    The stable carbon isotopes can be used to get information about sources and processing of carbonaceous aerosol. We will present results from source apportionment of carbonaceous aerosol as a function of particle size thermal refractiveness. Separate source apportionment for particles smaller than 200 nm and for different carbon volatility classes are rarely reported and give new insights into aerosol sources in the urban environment. Stable carbon isotope ratios were measured for the organic carbon (OC) fraction and total carbon (TC) of MOUDI impactor samples that were collected on a coastal site (Lithuania) during the winter 2012 and in the city of Vilnius (Lithuania) during the winter of 2009. The 11 impactor stages spanned a size range from 0.056 to 18 μm, but only the 6 stages in the submicron range were analysed. The δ13C values of bulk total carbon (δ13CTC) were determined with an elemental analyser (Flash EA 1112) coupled with an isotope ratio mass spectrometer (Thermo Finnigan Delta Plus Advantage) (EA - IRMS). Meanwhile δ13COC was measured using thermal-desorption isotope ratio mass spectrometry (IRMS) system. This allows a rough separation of the more volatile OC fraction (desorbed in the oven of IRMS up to 250 0C) from the more refractory fraction (desorbed up to 400 0C). In this study we investigated the composition of organic aerosol desorbed from filter samples at different temperatures using the thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS) technique. During winter-time in Lithuania we expect photochemistry and biogenic emissions to be of minor importance. The main sources of aerosol carbon should be fossil fuel and biomass combustion. In both sites, the coastal and the urban site, δ13C measurements give a clear indication that the source contributions differ for small and large particles. Small particles < 200 nm are depleted in 13C with respect to larger particles by 1 - 2 ‰Ṫhis shows that OC in small particle

  18. Single-particle effects in fine structure of super-asymmetric fission

    International Nuclear Information System (INIS)

    Mirea, M.

    1999-01-01

    Energy spectrum measurements concerning the 14 C decay from 223 Ra revealed a fine structure with an intense branch on the excited state of the daughter 209 Pb. Apart the great number of microscopic--macroscopic attempts of different authors in describing this behavior (compiled recently), this phenomenon was explained quantitatively using the Landau--Zener effect, i.e., the promotion mechanism of a unpaired nucleon between two levels characterised by the same quantum numbers connected to some symmetries of the nuclear system in the region where an avoided level crossing is exhibited. The adiabatic levels during the super-asymmetric fission process were determined with a new version of the two--centre shell model especially constructed for very large mass--asymmetries. The half--lives are obtained in the framework of the Wentzel--Kramers--Brillouin approximation. The amount of the variation of the barrier height in the excited channels was estimated accounting the specialization energy which can be interpreted as the excess of the energy of a nucleon with a given spin over the energy for the same spin nucleon state of lowest energy. It is evidenced that the fine structure of cluster decay is due to two competitive effects: the Landau--Zener effect which enhances the probability to have an excited daughter in the final channel and the specialization energy which increases the potential barrier and therefore leads to a diminution of the penetrability. This formalism was used for predictions of the fine structure in the case of 14 C decay of 225 Ac and to explain the fine structure of alpha decay. (author)

  19. Overview of sources of radioactive particles of Nordic relevance as well as a short description of available particle characterisation techniques

    International Nuclear Information System (INIS)

    Lind, O.C.; Salbu, B.; Nygren, U.; Thaning, L.; Ramebaeck, H.; Sidhu, S.; Roos, P.; Poellaenen, R.; Ranebo, Y.; Holm, E.

    2008-10-01

    The present overview report show that there are many existing and potential sources of radioactive particle contamination of relevance to the Nordic countries. Following their release, radioactive particles represent point sources of short- and long-term radioecological significance, and the failure to recognise their presence may lead to significant errors in the short- and long-term impact assessments related to radioactive contamination at a particular site. Thus, there is a need of knowledge with respect to the probability, quantity and expected impact of radioactive particle formation and release in case of specified potential nuclear events (e.g. reactor accident or nuclear terrorism). Furthermore, knowledge with respect to the particle characteristics influencing transport, ecosystem transfer and biological effects is important. In this respect, it should be noted that an IAEA coordinated research project was running from 2000-2006 (IAEA CRP, 2001) focussing on characterisation and environmental impact of radioactive particles, while a new IAEA CRP focussing on the biological effects of radioactive particles will be launched in 2008. (au)

  20. Overview of sources of radioactive particles of Nordic relevance as well as a short description of available particle characterisation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lind, O.C.; Salbu, B. (Norwegian Univ. of Life Sciences (Norway)); Nygren, U.; Thaning, L.; Ramebaeck, H. (Swedish Defense Research Agency (FOI) (Sweden)); Sidhu, S. (Inst. for Energy Technology (Norway)); Roos, P. (Technical Univ. of Denmark. Risoe DTU, Roskilde (Denmark)); Poellaenen, R. (STUK (Finland)); Ranebo, Y.; Holm, E. (Univ. Lund (Sweden))

    2008-10-15

    The present overview report show that there are many existing and potential sources of radioactive particle contamination of relevance to the Nordic countries. Following their release, radioactive particles represent point sources of short- and long-term radioecological significance, and the failure to recognise their presence may lead to significant errors in the short- and long-term impact assessments related to radioactive contamination at a particular site. Thus, there is a need of knowledge with respect to the probability, quantity and expected impact of radioactive particle formation and release in case of specified potential nuclear events (e.g. reactor accident or nuclear terrorism). Furthermore, knowledge with respect to the particle characteristics influencing transport, ecosystem transfer and biological effects is important. In this respect, it should be noted that an IAEA coordinated research project was running from 2000-2006 (IAEA CRP, 2001) focussing on characterisation and environmental impact of radioactive particles, while a new IAEA CRP focussing on the biological effects of radioactive particles will be launched in 2008. (author)

  1. Molecular characterization of primary humic-like substances in fine smoke particles by thermochemolysis-gas chromatography-mass spectrometry

    Science.gov (United States)

    Fan, Xingjun; Wei, Siye; Zhu, Mengbo; Song, Jianzhong; Peng, Ping'an

    2018-05-01

    In this study, the molecular structures of primary humic-like substances (HULIS) in fine smoke particles emitted from the combustion of biomass materials (including rice straw, corn straw, and pine branches) and coal, and atmospheric HULIS were determined by off-line tetramethylammonium hydroxide thermochemolysis coupled with gas chromatography and mass spectrometry (TMAH-GC/MS). A total of 89 pyrolysates were identified by the thermochemolysis of primary and atmospheric HULIS. The main groups were polysaccharide derivatives, N-containing compounds, lignin derivatives, aromatic acid methyl ester, aliphatic acid methyl ester, and diterpenoid derivatives. Both the type and distribution of pyrolysates among primary HULIS were comparable to those in atmospheric HULIS. This indicates that primary HULIS from combustion processes are important contributors to atmospheric HULIS. Some distinct differences were also observed. The aromatic compounds, including lignin derivatives and aromatic acid methyl ester, were the major pyrolysates (53.0%-84.9%) in all HULIS fractions, suggesting that primary HULIS significantly contributed aromatic structures to atmospheric HULIS. In addition, primary HULIS from biomass burning (BB) contained a relatively high abundance of lignin and polysaccharide derivatives, which is consistent with the large amounts of lignin and cellulose structures contained in biomass materials. Aliphatic acid methyl ester and benzyl methyl ether were prominent pyrolysates in atmospheric HULIS. Moreover, some molecular markers of specific sources were obtained from the thermochemolysis of primary and atmospheric HULIS. For example, polysaccharide derivatives, pyridine and pyrrole derivatives, and lignin derivatives can be used as tracers of fresh HULIS emitted from BB. Diterpenoid derivatives are important markers of HULIS from pine wood combustion sources. Finally, the differences in pyrolysate types and the distributions between primary and atmospheric HULIS

  2. Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow.

    Science.gov (United States)

    Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi

    2013-01-01

    We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system.

  3. The study of anthropogenic fine particles transported from urban areas to rural and non-urban environments using nuclear related techniques

    International Nuclear Information System (INIS)

    Cohen, D.D.; Bailey, G.M.; Martin, J.W.; Crisp, P.T.

    1994-01-01

    Aerosol particles in the size range less than 2.5 μm play an important role in pollution studies. They are small enough to lodge in lungs and cause health problems, they impair visibility and the public's perception of pollution and they are capable of being transported over large distances as they do not settle out readily. In this report we will describe the large area fine particle network consisting of 25 cyclone sampling units covering 80,000 square kilometre of the state of New South Wales in Australia. The network called ASP-Air Sampling Program - collects particles on 25 mm stretched Teflon filter papers which are ideal targets for accelerator based Ion Beam Analysis (IBA). We will discuss the four IBA techniques, PIXE, PIGME, PESA and RBS used simultaneously on the accelerator at ANSTO and present some of the early results of the Co-operative Research Programme. (author). 7 refs, 8 figs, 1 tab

  4. An evaluation of the impact of flooring types on exposures to fine and coarse particles within the residential micro-environment using CONTAM.

    Science.gov (United States)

    Bramwell, Lisa; Qian, Jing; Howard-Reed, Cynthia; Mondal, Sumona; Ferro, Andrea R

    2016-01-01

    Typical resuspension activities within the home, such as walking, have been estimated to contribute up to 25% of personal exposures to PM10. Chamber studies have shown that for moderate walking intensities, flooring type can impact the rate at which particles are re-entrained into the air. For this study, the impact of residential flooring type on incremental average daily (24 h) time-averaged exposure was investigated. Distributions of incremental time-averaged daily exposures to fine and coarse PM while walking within the residential micro-environment were predicted using CONTAM, the multizone airflow and contaminant transport program of the National Institute of Standards and Technology. Knowledge of when and where a person was walking was determined by randomly selecting 490 daily diaries from the EPA's consolidated human activity database (CHAD). On the basis of the results of this study, residential flooring type can significantly impact incremental time-averaged daily exposures to coarse and fine particles (α=0.05, P<0.05, N=490, Kruskal-Wallis test) with high-density cut pile carpeting resulting in the highest exposures. From this study, resuspension from walking within the residential micro-environment contributed 6-72% of time-averaged daily exposures to PM10.

  5. Performance of japanese quails fed feeds containing different corn and limestone particle sizes

    Directory of Open Access Journals (Sweden)

    DA Berto

    2007-09-01

    Full Text Available This study aimed at evaluating performance and egg quality of Japanese quails fed feeds containing different corn and limestone particle sizes. A total number of 648 birds in the peak of production was distributed in a random complete block experimental design, using a 2x3 factorial arrangement (2 corn particle sizes and 3 limestone particle sizes. Birds were designated to one of two blocks, with six replicates of 18 birds each. Mean geometric diameter (MGD values used were 0.617mm and 0.723mm (corn fine and coarse particle sizes, respectively, and 0.361mm, 0.721mm, and 0.947mm (limestone fine, intermediate and coarse particle sizes, respectively. The following treatments were applied: T1: fine corn feed, with 100% fine limestone; T2: fine corn feed, with 50% fine limestone and 50% intermediate limestone; T3: fine corn feed, with 50% fine limestone and 50% coarse limestone; T4: coarse corn feed, with 100% fine limestone; T5: coarse corn feed, with 50% fine limestone and 50% intermediate limestone; T6: coarse corn feed, with 50% fine limestone and 50% coarse limestone. The experiment lasted 112 days, consisting of 4 cycles of 28 days. No significant interaction was observed among corn and limestone particle sizes for any of the analyzed parameters. There were no significant effects (p>0.05 of the tested corn particle sizes on quail performance or egg quality. There were significant (p<0.05 isolated effects of limestone particle size only on the percentage of cracked eggs, which was reduced when birds fed 50% coarse limestone (0.947mm and 50% fine limestone (0.361mm as compared to those fed 100% fine limestone. Therefore, the inclusion of 50% coarse limestone (0.947mm is recommended for quail egg production.

  6. Source attribution of insoluble light-absorbing particles in seasonal snow across northern China

    Science.gov (United States)

    Zhang, R.; Hegg, D. A.; Huang, J.; Fu, Q.

    2013-06-01

    Seasonal snow samples obtained at 46 sites in 6 provinces of China in January and February 2010 were analyzed for a suite of chemical species and these data are combined with previously determined concentrations of insoluble light-absorbing particles (ILAP), including all particles that absorb light in the 650-700 nm wavelength interval. The ILAP, together with 14 other analytes, are used as input to a positive matrix factorization (PMF) receptor model to explore the sources of ILAP in the snow. The PMF analysis for ILAP sources is augmented with backward trajectory cluster analysis and the geographic locations of major source areas for the three source types. The two analyses are consistent and indicate that three factors/sources were responsible for the measured light absorption of snow: a soil dust source, an industrial pollution source, and a biomass and / or biofuel burning source. Soil dust was the main source of the ILAP, accounting for ~53% of ILAP on average.

  7. Source attribution of insoluble light-absorbing particles in seasonal snow across northern China

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2013-06-01

    Full Text Available Seasonal snow samples obtained at 46 sites in 6 provinces of China in January and February 2010 were analyzed for a suite of chemical species and these data are combined with previously determined concentrations of insoluble light-absorbing particles (ILAP, including all particles that absorb light in the 650–700 nm wavelength interval. The ILAP, together with 14 other analytes, are used as input to a positive matrix factorization (PMF receptor model to explore the sources of ILAP in the snow. The PMF analysis for ILAP sources is augmented with backward trajectory cluster analysis and the geographic locations of major source areas for the three source types. The two analyses are consistent and indicate that three factors/sources were responsible for the measured light absorption of snow: a soil dust source, an industrial pollution source, and a biomass and / or biofuel burning source. Soil dust was the main source of the ILAP, accounting for ~53% of ILAP on average.

  8. Comparison of the physical and chemical characteristics of fine road dust at different urban sites.

    Science.gov (United States)

    Lee, Kwang Yul; Batmunkh, Tsatsral; Joo, Hung Soo; Park, Kihong

    2018-04-18

    The size distribution and chemical components of a fine fraction (road dust collected at urban sites in Korea (Gwangju) and Mongolia (Ulaanbaatar) where distinct urban characteristics exist were measured. A clear bimodal size distribution was observed for the resuspended fine road dust at the urban sites in Korea. The first mode peaked at 100-110 nm, and the second peak was observed at 435-570 nm. Ultrafine mode (~30 nm) was found for the fine road dust at the Mongolia site, which was significantly affected by residential coal/biomass burning. The contribution of the water-soluble ions to the fine road dust was higher at the sites in Mongolia (15.8-16.8%) than at those in Korea (1.2-4.8%). Sulfate and chloride were the most dominant ionic species for the fine road dust in Mongolia. As (arsenic) was also much higher for the Mongolian road dust than the others. The sulfate, chloride, and As mainly come from coal burning activity, suggesting that coal and biomass combustion in Mongolia during the heating season should affect the size and chemical components of the fine road dust. Cu (copper) and Zn (zinc), carbonaceous particles (organic carbon [OC] and elemental carbon [EC]) increased at sites in Korea, suggesting that the fine road dust at these sites was significantly affected by the high volume of traffic (engine emission and brake/tire wear). Our results suggest that chemical profiles for road dust specific to certain sites should be applied to more accurately apportion road dust source contributing to the ambient particulate matter. Size and chemical characteristics of fine road dust at sites having distinct urban characteristics were examined. Residential coal and biomass burning and traffic affected physiochemical properties of the fine road dust. Different road dust profiles at different sites should be needed to determine the ambient PM2.5 sources more accurately.

  9. Operation of the ORNL High Particle Flux Helicon Plasma Source

    International Nuclear Information System (INIS)

    Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.; Chen, G. C.; Owen, L. W.; Sparks, D. O.

    2011-01-01

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Γ p 10 23 m -3 s -1 , and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of ∼10 MW/m 2 . An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength |B| in the antenna region up to ∼0.15 T. Maximum densities of 3x10 19 m -3 in He and 2.5x10 19 m -3 in H have been achieved. Radial density profiles have been seen to be dependent on the axial |B| profile.

  10. Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications

    Science.gov (United States)

    Zhang, Zhi-Hui; Khlystov, Andrey; Norford, Leslie K.; Tan, Zhen-Kang; Balasubramanian, Rajasekhar

    2017-07-01

    Vehicular traffic emission is an important source of particulate pollution in most urban areas. The detailed chemical speciation of traffic-related PM2.5 (fine particles) is relatively sparse in the literature, especially in Asian cities. To fill this knowledge gap, we carried out an intensive field study in Singapore from November 2015 to February 2016. PM2.5 samples were collected concurrently at a typical roadside microenvironment and at an urban background site. A detailed chemical speciation of PM2.5 samples was conducted to gain insights into the emission characteristics of traffic-related fine aerosols. Analyses of diagnostic ratios and molecular markers of selected chemical species were explored for source attribution of different classes of chemical constituents in traffic-related PM2.5. The human health risk due to inhalation of the particulate-bound PAHs (polycyclic aromatic hydrocarbons) and toxic trace elements was estimated for both adults and children. The overall results of the study indicate that gasoline-powered vehicles make a higher contribution to traffic-related fine aerosol components such as organic carbon (OC), particle-bound PAHs and particulate ammonium than that of diesel-powered vehicles. However, both types of vehicles contribute to traffic-related EC emissions significantly. The combustion of petroleum fuels and lubricating oil make significant contributions to the emission of n-alkanes and hopanes into the urban atmosphere, respectively. The study further reveals that some toxic trace elements are emitted from non-exhaust sources and that aromatic acids represent an important component of secondary organic aerosols. The emission of toxic trace elements from non-exhaust sources is of particular concern as they could pose a higher carcinogenic risk to both adults and children than other chemical species.

  11. Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Rupa, E-mail: Rupa.Basu@oehha.ca.gov [California Office of Environmental Health Hazard Assessment, Air Pollution Epidemiology Section, Oakland, CA (United States); Harris, Maria [School of Public Health, Boston University, Boston, MA (United States); Sie, Lillian [School of Public Health, University of California, Berkeley, CA (United States); Malig, Brian; Broadwin, Rachel; Green, Rochelle [California Office of Environmental Health Hazard Assessment, Air Pollution Epidemiology Section, Oakland, CA (United States)

    2014-01-15

    Relationships between prenatal exposure to fine particles (PM{sub 2.5}) and birth weight have been observed previously. Few studies have investigated specific constituents of PM{sub 2.5}, which may identify sources and major contributors of risk. We examined the effects of trimester and full gestational prenatal exposures to PM{sub 2.5} mass and 23 PM{sub 2.5} constituents on birth weight among 646,296 term births in California between 2000 and 2006. We used linear and logistic regression models to assess associations between exposures and birth weight and risk of low birth weight (LBW; <2500 g), respectively. Models were adjusted for individual demographic characteristics, apparent temperature, month and year of birth, region, and socioeconomic indicators. Higher full gestational exposures to PM{sub 2.5} mass and several PM{sub 2.5} constituents were significantly associated with reductions in term birth weight. The largest reductions in birth weight were associated with exposure to vanadium, sulfur, sulfate, iron, elemental carbon, titanium, manganese, bromine, ammonium, zinc, and copper. Several of these PM{sub 2.5} constituents were associated with increased risk of term LBW. Reductions in birth weight were generally larger among younger mothers and varied by race/ethnicity. Exposure to specific constituents of PM{sub 2.5}, especially traffic-related particles, sulfur constituents, and metals, were associated with decreased birth weight in California. -- Highlights: • Examine full gestational and trimester fine particle and its constituents on term birth weight. • Fine particles and several of its constituents associated with birth weight reductions. • Largest reductions for traffic-related particles, sulfur constituents, and metals. • Greater birth weight reductions for younger mothers, and varied by race/ethnicity.

  12. EXPOSURE TO CONCENTRATED AMBIENT PARTICLES (CAPS): REVIEW

    Science.gov (United States)

    Epidemiologic studies support a participation of fine particulate matter (PM) with a diameter of 0.1 to 2.5 microm in the effects of air pollution particles on human health. The ambient fine particle concentrator is a recently developed technology that can enrich the mass of ambi...

  13. Radioactivity in fine papers

    International Nuclear Information System (INIS)

    Taylor, H.W.; Singh, B.

    1993-01-01

    The radioactivity of fine papers has been studied through γ-ray spectroscopy with an intrinsic Ge detector. Samples of paper from European and North American sources were found to contain very different amounts of 226 Ra and 232 Th. The processes which introduce radionuclides into paper are discussed. The radioactivity from fine papers makes only a small contribution to an individual's annual radiation dose; nevertheless it is easily detectable and perhaps, avoidable. (Author)

  14. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    DEFF Research Database (Denmark)

    Jantzen, Kim; Møller, Peter Horn; Karottki, Dorina Gabriela

    2016-01-01

    . Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate......Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked...... to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related...

  15. Development of detection method for individual environmental particles containing alpha radioactive nuclides

    International Nuclear Information System (INIS)

    Esaka, Konomi; Yasuda, Kenichiro; Esaka, Fumitaka; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu; Nakayama, Shinichi

    2006-01-01

    Artificial radioactive nuclides have been emitted from various sources and have fallen on the surface of the earth as fine particles. Although the characterization of the individual fallout particles is very important, their analysis is difficult. The purpose of this study is to develop a new detection method for individual objective particles containing radioactive nuclides in the environment. The soil or sediment sample was confined in a plastic film and the locations of objective particles were identified with alpha tracks created in a solid-state detectors (BARYOTRAK, Fukuvi Chemical, Ltd) stuck to the both sides of the plastic film. A piece of the film containing the objective particle was cut with a nitrogen laser for following individual particle analysis. This procedure allowed us to detect the objective particle from innumerable number of particles in the environment and characterize the individual particles. (author)

  16. Production of talc nano sheets via fine grinding and sonication processes

    International Nuclear Information System (INIS)

    Samayamutthirian Palaniandy; Noorina Hidayu Jamil Khairun Azizi Mohd Azizli; Syed Fuad Saiyid Hashim; Hashim Hussin

    2009-01-01

    Fine grinding of high purity talc in jet mill at low grinding pressure was carried out by varying the feed rate and classifier rotational speed. These ground particles were sonicated in laboratory ultrasonic bath by varying the soniction period at five levels. The ground and sonicated particles were characterized in terms of particle size and particle size distribution. Mechanochemical and sonochemical effect of talc was determine via X-ray diffraction. Particle shape and surface texture of the ground and sonicated product was determined via scanning electron microscope and transmission electron microscope. The ground particle size exhibited particle size below 10 μm with narrow size distribution. The reduction of peak intensity in (002) plane indicated the layered structure has been distorted. The sonicated talc shows that the thickness of the talc particles after the sonication process is 20 nm but the lateral particle size still remains in micron range. The reduction of the XRD peak intensity for (002) plane and thickness of sonicated talc as shown in SEM and TEM micrographs proves that fine grinding and sonication process produces talc nano sheets. (author)

  17. Revealing transboundary and local air pollutant sources affecting Metro Manila through receptor modeling studies

    International Nuclear Information System (INIS)

    Pabroa, Preciosa Corazon B.; Bautista VII, Angel T.; Santos, Flora L.; Racho, Joseph Michael D.

    2011-01-01

    Ambient fine particulate matter (PM 2 .5) levels at the Metro Manila air sampling stations of the Philippine Nuclear Research Research Institute were found to be above the WHO guideline value of 10 μg m 3 indicating, in general, very poor air quality in the area. The elemental components of the fine particulate matter were obtained using the energy-dispersive x-ray fluorescence spectrometry. Positive matrix factorization, a receptor modelling tool, was used to identify and apportion air pollution sources. Location of probable transboundary air pollutants were evaluated using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) while location of probable local air pollutant sources were determined using the conditional probability function (CPF). Air pollutant sources can either be natural or anthropogenic. This study has shown natural air pollutant sources such as volcanic eruptions from Bulusan volcano in 2006 and from Anatahan volcano in 2005 to have impacted on the region. Fine soils was shown to have originated from China's Mu US Desert some time in 2004. Smoke in the fine fraction in 2006 show indications of coming from forest fires in Sumatra and Borneo. Fine particulate Pb in Valenzuela was shown to be coming from the surrounding area. Many more significant air pollution impacts can be evaluated with the identification of probable air pollutant sources with the use of elemental fingerprints and locating these sources with the use of HYSPLIT and CPF. (author)

  18. Characterization of aerosol particles at the forested site in Lithuania

    Science.gov (United States)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  19. Indoor particle levels in small- and medium-sized commercial buildings in California.

    Science.gov (United States)

    Wu, Xiangmei May; Apte, Michael G; Bennett, Deborah H

    2012-11-20

    This study monitored indoor and outdoor particle concentrations in 37 small and medium commercial buildings (SMCBs) in California with three buildings sampled on two occasions, resulting in 40 sampling days. Sampled buildings included offices, retail establishments, restaurants, dental offices, and hair salons, among others. Continuous measurements were made for both ultrafine and fine particulate matter as well as black carbon inside and outside of the building. Integrated PM(2.5), PM(2.5-10), and PM(10) samples were also collected inside and outside the building. The majority of the buildings had indoor/outdoor (I/O) particle concentration ratios less than 1.0, indicating that contributions from indoor sources are less than removal of outdoor particles. However, some of the buildings had I/O ratios greater than 1, indicating significant indoor particle sources. This was particularly true of restaurants, hair salons, and dental offices. The infiltration factor was estimated from a regression analysis of indoor and outdoor concentrations for each particle size fraction, finding lower values for ultrafine and coarse particles than for submicrometer particles, as expected. The I/O ratio of black carbon was used as a relative measure of the infiltration factor of particles among buildings, with a geometric mean of 0.62. The contribution of indoor sources to indoor particle levels was estimated for each building.

  20. Charged-particle beam diagnostics for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Lumpkin, A.H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Wang, X.; Chung, Y.

    1992-01-01

    Plans, prototypes, and initial test results for the charged-particle beam (e - , e + ) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture

  1. High time-resolved elemental components in fine and coarse particles in the Pearl River Delta region of Southern China: Dynamic variations and effects of meteorology.

    Science.gov (United States)

    Zhou, Shengzhen; Davy, Perry K; Wang, Xuemei; Cohen, Jason Blake; Liang, Jiaquan; Huang, Minjuan; Fan, Qi; Chen, Weihua; Chang, Ming; Ancelet, Travis; Trompetter, William J

    2016-12-01

    Hourly-resolved PM 2.5 and PM 10-2.5 samples were collected in the industrial city Foshan in the Pearl River Delta region, China. The samples were subsequently analyzed for elemental components and black carbon (BC). A key purpose of the study was to understand the composition of particulate matter (PM) at high-time resolution in a polluted urban atmosphere to identify key components contributing to extreme PM concentration events and examine the diurnal chemical concentration patterns for air quality management purposes. It was found that BC and S concentrations dominated in the fine mode, while elements with mostly crustal and oceanic origins such as Si, Ca, Al and Cl were found in the coarse size fraction. Most of the elements showed strong diurnal variations. S did not show clear diurnal variations, suggesting regional rather than local origin. Based on empirical orthogonal functions (EOF) method, 3 forcing factors were identified contributing to the extreme events of PM 2.5 and selected elements, i.e., urban direct emissions, wet deposition and a combination of coarse mode sources. Conditional probability functions (CPF) were performed using wind profiles and elemental concentrations. The CPF results showed that BC and elemental Cl, K, Fe, Cu and Zn in the fine mode were mostly from the northwest, indicating that industrial emissions and combustion were the main sources. For elements in the coarse mode, Si, Al, K, Ca, Fe and Ti showed similar patterns, suggesting same sources such as local soil dust/construction activities. Coarse elemental Cl was mostly from the south and southeast, implying the influence of marine aerosol sources. For other trace elements, we found vanadium (V) in fine PM was mainly from the sources located to the southeast of the measuring site. Combined with CPF results of S and V in fine PM, we concluded shipping emissions were likely an important elemental emission source. Copyright © 2016. Published by Elsevier B.V.

  2. Sources of sub-micrometre particles near a major international airport

    Directory of Open Access Journals (Sweden)

    M. Masiol

    2017-10-01

    Full Text Available The international airport of Heathrow is a major source of nitrogen oxides, but its contribution to the levels of sub-micrometre particles is unknown and is the objective of this study. Two sampling campaigns were carried out during warm and cold seasons at a site close to the airfield (1.2 km. Size spectra were largely dominated by ultrafine particles: nucleation particles ( < 30 nm were found to be  ∼ 10 times higher than those commonly measured in urban background environments of London. Five clusters and six factors were identified by applying k means cluster analysis and positive matrix factorisation (PMF, respectively, to particle number size distributions; their interpretation was based on their modal structures, wind directionality, diurnal patterns, road and airport traffic volumes, and on the relationship with weather and other air pollutants. Airport emissions, fresh and aged road traffic, urban accumulation mode, and two secondary sources were then identified and apportioned. The fingerprint of Heathrow has a characteristic modal structure peaking at  < 20 nm and accounts for 30–35 % of total particles in both the seasons. Other main contributors are fresh (24–36 % and aged (16–21 % road traffic emissions and urban accumulation from London (around 10 %. Secondary sources accounted for less than 6 % in number concentrations but for more than 50 % in volume concentration. The analysis of a strong regional nucleation event showed that both the cluster categorisation and PMF contributions were affected during the first 6 h of the event. In 2016, the UK government provisionally approved the construction of a third runway; therefore the direct and indirect impact of Heathrow on local air quality is expected to increase unless mitigation strategies are applied successfully.

  3. Operation of the ORNL High Particle Flux Helicon Plasma Source

    International Nuclear Information System (INIS)

    Goulding, Richard Howell; Biewer, Theodore M.; Caughman, John B.; Chen, Guangye; Owen, Larry W.; Sparks, Dennis O.

    2011-01-01

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.

  4. Bose-Einstein correlation of particles produced by expanding sources

    International Nuclear Information System (INIS)

    Hama, Y.; Padula, S.S.

    1988-01-01

    Bose-Einstein correlation is discussed for particles produced by rapidly expanding sources, when kinematical effects hinder a direct relation between the observed correlations and the source dimensions. Some of these effects are illustrated by considering Landau's hydrodynamical model wherein each space-time point of the fluid with temperature T = T/sub c/≅m/sub π/ is taken as an independent and chaotic emitting center with a Planck spectral distribution. In particular, this model reproduces surprisingly well the observed π-π and K-K correlations at the CERN ISR

  5. Rotational particle separator: A new method for separating fine particles and mist from gases

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    1996-01-01

    An account is given of the patented technique of the rotational particle separator for separating solid and liquid particles of diameter 0.1 µm and larger from gases. Attention is focused on the working principle, fluid mechanical constraints, particle design, separation performance, power

  6. ALPHACAL: A new user-friendly tool for the calibration of alpha-particle sources.

    Science.gov (United States)

    Timón, A Fernández; Vargas, M Jurado; Gallardo, P Álvarez; Sánchez-Oro, J; Peralta, L

    2018-05-01

    In this work, we present and describe the program ALPHACAL, specifically developed for the calibration of alpha-particle sources. It is therefore more user-friendly and less time-consuming than multipurpose codes developed for a wide range of applications. The program is based on the recently developed code AlfaMC, which simulates specifically the transport of alpha particles. Both cylindrical and point sources mounted on the surface of polished backings can be simulated, as is the convention in experimental measurements of alpha-particle sources. In addition to the efficiency calculation and determination of the backscattering coefficient, some additional tools are available to the user, like the visualization of energy spectrum, use of energy cut-off or low-energy tail corrections. ALPHACAL has been implemented in C++ language using QT library, so it is available for Windows, MacOs and Linux platforms. It is free and can be provided under request to the authors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. [Soil particle size distribution and its fractal dimension among degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River, Qinghai-Tibetan Plateau, China].

    Science.gov (United States)

    Wei, Mao-Hong; Lin, Hui-Long

    2014-03-01

    The alpine meadow in the source region of the Yangtze and Yellow River is suffering serious deterioration. Though great efforts have been put into, the restoration for the degraded grassland is far from being effective, mainly due to poor understanding of the degradation mechanism of alpine meadow in this region. In order to clarify the formation mechanism of degradation grassland and provide the new ideas for restoration, degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River were taken as target systems to analyze the soil particle size distribution, the fractal dimension of the soil particle size, and the relationship between soil erosion modulus and fractal dimension. The results showed that, with increasing grassland degradation, the percentage contents of clay increased while the percentage contents of silt sand and very fine sand showed a decreasing trend. The fractal dimension presented a positive correlation with clay among the degradation sequences while negative correlations were found with very fine sand and silt sand. The curvilinear regression of fractal dimension and erosion modulus fitted a quadratic function. Judged by the function, fractal dimension 2.81 was the threshold value of soil erosion. The threshold value has an indicative meaning on predicting the breakout of grazing-induced erosion and on restoration of the degraded grassland. Taking fractal dimension of 2.81 as the restoration indicator, adoption of corresponding measures to make fractal dimension less than 2.81, would an effective way to restore the degradation grassland.

  8. The feasibility of 225Ac as a source of α-particles in radioimmunotherapy

    International Nuclear Information System (INIS)

    Geerlings, M.W.; Hout, R. van der; Kaspersen, F.M.; Apostolides, C.

    1993-01-01

    This paper proposes the utilization of 225 Ac for the α-radioimmunotherapy of cancer. The isotope decays with a radioactive half-life of 10 days into a cascade of short-lived α-and β-emitting isotopes. In addition, when indicated by the pharmacokinetic requirements of particular clinical applications, 213 Bi, with a radioactive half-life of 47 min, can be chosen as an alternative source of α-particles in radioimmunotherapy. This isotope is the last α emitter in the 225 Ac decay-cascade and can be extracted from a 225 Ac source at the bedside of the patient. 225 Ac can quasi ad infinitum be obtained from one of its precursors, 229 Th, which can be made available by various means. The indications for the use of α-particles as an alternative to more traditional classes of radiation are derived from the particle-kinetic characteristics and the radioactive half-life of their source isotope, as well as from the properties of the target-selective carrier moiety for the source isotope. It may be expected that useful applications, complementary to and/or in conjunction with other means of therapy will be identified. (author)

  9. Effects of oral administration of titanium dioxide fine-sized particles on plasma glucose in mice.

    Science.gov (United States)

    Gu, Ning; Hu, Hailong; Guo, Qian; Jin, Sanli; Wang, Changlin; Oh, Yuri; Feng, Yujie; Wu, Qiong

    2015-12-01

    Titanium dioxide (TiO2) is an authorized additive used as a food colorant, is composed of nano-sized particles (NP) and fine-sized particles (FP). Previous study reported that oral administration of TiO2 NPs triggers an increase in plasma glucose of mice. However, no previous studies have focused on toxic effects of TiO2 FPs on plasma glucose homeostasis following oral administration. In the current study, mice were orally administered TiO2 FPs greater than 100 nm in size (64 mg/kg body weight per day), and effects on plasma glucose levels examined. Our results showed that titanium levels was not changed in mouse blood, livers and pancreases after mice were orally administered TiO2 FPs. Biochemical analyzes showed that plasma glucose and ROS levels were not affected by TiO2 FPs. Histopathological results showed that TiO2 FPs did not induce pathology changes in organs, especially plasma glucose homeostasis regulation organs, such as pancreas and liver. Western blotting showed that oral administration of TiO2 FPs did not induce insulin resistance (IR) in mouse liver. These results showed that, TiO2 FPs cannot be absorbed via oral administration and affect plasma glucose levels in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong

    Science.gov (United States)

    Li, Yunchun

    Organic aerosols, as an important fraction of airborne particulate mass, significantly affect the environment, climate, and human health. Compared with inorganic species, characterization of individual organic compounds is much less complete and comprehensive because they number in thousands or more and are diverse in chemical structures. The source contributions of organic aerosols are far from being well understood because they can be emitted from a variety of sources as well as formed from photochemical reactions of numerous precursors. This thesis work aims to improve the characterization of polar organic compounds and source apportionment analysis of fine organic carbon (OC) in Hong Kong, which consists of two parts: (1) An improved analytical method to determine monocarboxylic acids, dicarboxylic acids, ketocarboxylic acids, and dicarbonyls collected on filter substrates has been established. These oxygenated compounds were determined as their butyl ester or butyl acetal derivatives using gas chromatography-mass spectrometry. The new method made improvements over the original Kawamura method by eliminating the water extraction and evaporation steps. Aerosol materials were directly mixed with the BF 3/BuOH derivatization agent and the extracting solvent hexane. This modification improves recoveries for both the more volatile and the less water-soluble compounds. This improved method was applied to study the abundances and sources of these oxygenated compounds in PM2.5 aerosol samples collected in Hong Kong under different synoptic conditions during 2003-2005. These compounds account for on average 5.2% of OC (range: 1.4%-13.6%) on a carbon basis. Oxalic acid was the most abundant species. Six C2 and C3 oxygenated compounds, namely oxalic, malonic, glyoxylic, pyruvic acids, glyoxal, and methylglyoxal, dominated this suite of oxygenated compounds. More efforts are therefore suggested to focus on these small compounds in understanding the role of oxygenated

  11. Chemical composition of Martian fines

    Science.gov (United States)

    Clark, B. C.; Baird, A. K.; Weldon, R. J.; Tsusaki, D. M.; Schnabel, L.; Candelaria, M. P.

    1982-01-01

    Of the 21 samples acquired for the Viking X-ray fluorescence spectrometer, 17 were analyzed to high precision. Compared to typical terrestrial continental soils and lunar mare fines, the Martian fines are lower in Al, higher in Fe, and much higher in S and Cl concentrations. Protected fines at the two lander sites are almost indistinguishable, but concentration of the element S is somewhat higher at Utopia. Duricrust fragments, successfully acquired only at the Chryse site, invariably contained about 50% higher S than fines. No elements correlate positively with S, except Cl and possibly Mg. A sympathetic variation is found among the triad Si, Al, Ca; positive correlation occurs between Ti and Fe. Sample variabilities are as great within a few meters as between lander locations (4500 km apart), implying the existence of a universal Martian regolith component of constant average composition. The nature of the source materials for the regolith fines must be mafic to ultramafic.

  12. Viscous properties of ferrofluids containing both micrometer-size magnetic particles and fine needle-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Ido, Yasushi, E-mail: ido.yasushi@nitech.ac.jp [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Nishida, Hitoshi [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, 13 Hongo-cho, Toyama (Japan); Iwamoto, Yuhiro [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Yokoyama, Hiroki [KYB Corporation, 2-4-1 Hamamatsu-cho, Minato-ku, Tokyo (Japan)

    2017-06-01

    Ferrofluids containing both micrometer-size spherical magnetic particles and nanometer-size needle-like nonmagnetic hematite particles were newly produced. Average length of long axis of the needle-like nonmagnetic particles was 194 nm and the aspect ratio was 8.3. Shear stress and viscosity were measured using the rheometer with the additional equipment for viscosity measurements in the presence of magnetic field. When the total volume fraction of particles in the fluid is constant (0.30), there is the specific mixing ratio of the particles to increase viscosity of the fluid drastically in the absence of magnetic field due to the percolation phenomenon. The fluid of the specific mixing ratio shows solid-like behavior even in the absence of magnetic field. Mixing the needle-like nonmagnetic particles causes strong yield stress and strong viscous force in the presence of magnetic field. - Highlights: • Viscous properties of new magnetic functional fluids were studied experimentally. • The new fluids contain spherical magnetic particles and needle-like particles. • Percolation occurs in the fluid of specific mixing ratio of particles without field. • The fluid of the specific mixing ratio behaves like solid without field. • Mixing needle-like particles causes strong yield stress of the fluid in the field.

  13. Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City

    Directory of Open Access Journals (Sweden)

    L. C. Marr

    2006-01-01

    Full Text Available Understanding sources, concentrations, and transformations of polycyclic aromatic hydrocarbons (PAHs in the atmosphere is important because of their potent mutagenicity and carcinogenicity. The measurement of particle-bound PAHs by three different methods during the Mexico City Metropolitan Area field campaign in April 2003 presents a unique opportunity for characterization of these compounds and intercomparison of the methods. The three methods are (1 collection and analysis of bulk samples for time-integrated gas- and particle-phase speciation by gas chromatography/mass spectrometry; (2 aerosol photoionization for fast detection of PAHs on particles' surfaces; and (3 aerosol mass spectrometry for fast analysis of size and chemical composition. This research represents the first time aerosol mass spectrometry has been used to measure ambient PAH concentrations and the first time that fast, real-time methods have been used to quantify PAHs alongside traditional filter-based measurements in an extended field campaign. Speciated PAH measurements suggest that motor vehicles and garbage and wood burning are important sources in Mexico City. The diurnal concentration patterns captured by aerosol photoionization and aerosol mass spectrometry are generally consistent. Ambient concentrations of particle-phase PAHs typically peak at ~110 ng m-3 during the morning rush hour and rapidly decay due to changes in source activity patterns and dilution as the boundary layer rises, although surface-bound PAH concentrations decay faster. The more rapid decrease in surface versus bulk PAH concentrations during the late morning suggests that freshly emitted combustion-related particles are quickly coated by secondary aerosol material in Mexico City's atmosphere and may also be transformed by heterogeneous reactions.

  14. Carbon fuel particles used in direct carbon conversion fuel cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  15. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  16. Ozone and limonene in indoor air: a source of submicron particle exposure.

    Science.gov (United States)

    Wainman, T; Zhang, J; Weschler, C J; Lioy, P J

    2000-12-01

    overall particle exposure. This study provides data for assessing the impact of outdoor ozone on indoor particles. This is important to determine the efficacy of the mass-based particulate matter standards in protecting public health because the indoor secondary particles can vary coincidently with the variations of outdoor fine particles in summer.

  17. The green synthesis of fine particles of gold using an aqueous extract of Monotheca buxifolia (Flac.)

    Science.gov (United States)

    Anwar, Natasha; Khan, Abbas; Shah, Mohib; Azam, Andaleeb; Zaman, Khair; Parven, Zahida

    2016-12-01

    This study deals with the synthesis and physicochemical investigation of gold nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of tetrachloroauric acid with the plant extract, gold nanoparticles were rapidly fabricated. The synthesized particles were characterized by UV-Vis spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AuNPs was confirmed by noting the change in color through visual observations as well as via UV-Vis spectroscopy. UV‒Vis spectrum of the aqueous medium containing gold nanoparticles showed an absorption peak at around 540 nm. FTIR was used to identify the chemical composition of gold nanoparticles and Au-capped plant extract. The presence of elemental gold was also confirmed through EDX analysis. SEM analysis of the gold nanoparticles showed that they have a uniform spherical shape with an average size in the range of 70-78 nm. This green system showed to be better capping and stabilizing agent for the fine particles. Further, the antioxidant activity of Monotheca buxifolia (Flac.) extract and Au-capped with the plant extract was also evaluated using FeCl3/K3[Fe(CN)]6 in vitro assay.

  18. Elemental composition of aerosol particles from two atmospheric monitoring stations in the Amazon Basin

    International Nuclear Information System (INIS)

    Artaxo, P.; Gerab, F.; Rabello, M.L.C.

    1993-01-01

    One key region for the study of processes that are changing the composition of the global atmosphere is the Amazon Basin tropical rain forest. The high rate of deforestation and biomass burning is emitting large amounts of gases and fine-mode aerosol particles to the global atmosphere. Two background monitoring stations are operating continuously measuring aerosol composition, at Cuiaba, and Serra do Navio. Fine- and coarse-mode aerosol particles are being collected using stacked filter units. Particle induced X-ray emission (PIXE) was used to measure concentrations of up to 21 elements: Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Zr, and Pb. The elemental composition was measured at the new PIXE facility from the University of Sao Paulo, using a dedicated 5SDH tandem Pelletron nuclear accelerator. Absolute principal factor analysis (APFA) has derived absolute elemental source profiles. At the Serra do Navio sampling site a very clean background aerosol is being observed. Biogenic aerosol dominates the fine-mode mass concentration, with the presence of K, P, S, Cl, Zn, Br, and FPM. Three components dominate the aerosol composition: Soil dust particles, the natural biogenic release by the forest, and a marine aerosol component. At the Cuiaba site, during the dry season, a strong component of biomass burning is observed. An aerosol mass concentration up to 120 μg/m 3 was measured. APFA showed three components: Soil dust (Al, Ca, Ti, Mn, Fe), biomass burning (soot, FPM, K, Cl) and natural biogenic particles (K, S, Ca, Mn, Zn). The fine-mode biogenic component of both sites shows remarkable similarities, although the two sampling sites are 3000 km apart. Several essential plant nutrients like P, K, S, Ca, Ni and others are transported in the atmosphere as a result of biomass burning processes. (orig.)

  19. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    -road vehicles: the MCMA motor vehicles produce abundant amounts of primary PM, elemental carbon, particle-bound polycyclic aromatic hydrocarbons, carbon monoxide and a wide range of air toxics; the feasibility of using eddy covariance techniques to measure fluxes of volatile organic compounds in an urban core and a valuable tool for validating local emissions inventory; a much better understanding of the sources and atmospheric loadings of volatile organic compounds; the first spectroscopic detection of glyoxal in the atmosphere; a unique analysis of the high fraction of ambient formaldehyde from primary emission sources; characterization of ozone formation and its sensitivity to VOCs and NOx; a much more extensive knowledge of the composition, size distribution and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models; evaluations of significant errors that can arise from standard air quality monitors for O3 and NO2; and the implementation of an innovative Markov Chain Monte Carlo method for inorganic aerosol modeling as a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. During the MILAGRO Campaign the collaborative team utilized a combination of central fixed sites and a mobile laboratory deployed throughout the MCMA to representative urban and boundary sites to measure trace gases and fine particles. Analysis of the extensive 2006 data sets has confirmed the key findings from MCMA-2002/2003; additionally MCMA-2006 provided more detailed gas and aerosol chemistry and wider regional scale coverage. Key results include an updated 2006 emissions inventory; extension of the flux system to measure fluxes of fine particles; better understanding of the sources and apportionment of aerosols, including contribution from biomass burning and industrial sources; a

  20. A marine biogenic source of atmospheric ice-nucleating particles

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, Susannah M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, Gordon; Miller, L. A.; Najera, J.; Polishchuk, E. A.; Rae, S.; Schiller, C. L.; Si, M.; Vergara Temprado, J.; Whale, Thomas; Wong, J P S; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, JPD; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.

    2015-09-09

    The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates ice under conditions that occur in mixed-phase clouds and high-altitude ice clouds. The ice active material is likely biogenic and is less than ~0.2 ?m in size. We also show that organic material (exudate) released by a common marine diatom nucleates ice when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed ice nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that ice nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.

  1. Study of Cl-containing urban aerosol particles by ion beam analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Angyal, A. [Laboratory of Ion Beam Applications (IBA LAB), Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), H-4001 Debrecen, P.O. Box 51 (Hungary); University of Debrecen - ATOMKI, Department of Environmental Physics, H-4001 Debrecen, P.O. Box 51 (Hungary); Kertesz, Zs., E-mail: zsofi@atomki.h [Laboratory of Ion Beam Applications (IBA LAB), Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), H-4001 Debrecen, P.O. Box 51 (Hungary); Szikszai, Z. [Laboratory of Ion Beam Applications (IBA LAB), Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), H-4001 Debrecen, P.O. Box 51 (Hungary); Szoboszlai, Z. [Laboratory of Ion Beam Applications (IBA LAB), Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), H-4001 Debrecen, P.O. Box 51 (Hungary); University of Debrecen - ATOMKI, Department of Environmental Physics, H-4001 Debrecen, P.O. Box 51 (Hungary)

    2010-06-15

    Fine (aerodynamic diameter < 2.5 {mu}m) and coarse (10 {mu}m {>=} aerodynamic diameter {>=} 2.5 {mu}m) mode urban aerosol samples were collected with 2-h time resolution in the frame of several sampling campaigns between 2007 and 2009 in downtown Debrecen, East-Hungary. The elemental composition (for Z {>=} 13) of the samples was measured by particle induced X-ray emission (PIXE). On this basis sources of urban aerosol were determined by factor analysis. For both size fractions a source characterized by high chlorine content were found. However, the origin of the Cl-containing aerosol could not be ascertained. Further investigation of samples characterized with high Cl content were done on the ATOMKI Scanning Nuclear Microprobe Facility in order to determine the possible chemical composition of these particles and thus the potential sources. Morphology, size and elemental composition for Z {>=} 6 of around 1000 coarse mode particles were determined by using STIM (Scanning Transmission Ion Microscopy), light-element PIXE and PIXE analytical methods. Hierarchical cluster analysis was performed on the obtained dataset in order to group the particles; correlations between different elements were also calculated. Five possible sources of Cl were identified, from which four were anthropogenic: winter salting of streets, agriculture through fertilizers, buildings and industry; the natural group was sea-salt.

  2. Rock Magnetic Characterization of fine Particles from car Engines, Break pads and Tobacco: An Environmental Pilot Study

    Science.gov (United States)

    Herrero-Bervera, E.; Lopez, V. A.; Gerstnecker, K.; Swilley, B.

    2017-12-01

    Today, it is very well known that small magnetic particles are very harmful to the health of humans. For the first time we have conducted an environmental pilot study of fine magnetic particles on the island of Oahu, Hawaii, of particulate matter (pm) 60, pm=10, and pm= 2.5. In order to do a rock magnetic characterization we have preformed low field susceptibility versus temperature (k-T) experiments to determine the Curie points of small particles collected from exhaust pipes, as well as from brake pads of 4 different types of car engines using octane ratings of 85, 87 and 92. The Curie point determinations are very well defined and range from 292 °C through 393 °C to 660 °C. In addition, we have conducted magnetic granulometry experiments on raw tobacco, burnt ashes as well as on car engines and brake pads in question. The results of the experiments show ferro- and ferrimagnetic hysteresis loops with magnetic grain sizes ranging from superparamagnetic-multidomain (SP_MD), multi-domain (MD) and pseudo-single domain (PSD) shown on the modified Day et al. diagram of Dunlop (2002). Thus far, the results we have obtained from this pilot study are in agreement with other studies conducted from cigarette ashes from Bulgaria (Jordanova et al., 2005). Our results could be correlated to the traffic-related PM in Rome, Italy where the SP fraction mainly occurs as coating of MD particles that originated by localized stress in the oxidized outer shell surrounding the unoxidized core of magnetite like grains as published by Sagnotti and Winkler (2012).

  3. Extrinsic lactose fines improve dry powder inhaler formulation performance of a cohesive batch of budesonide via agglomerate formation and consequential co-deposition.

    Science.gov (United States)

    Kinnunen, Hanne; Hebbink, Gerald; Peters, Harry; Huck, Deborah; Makein, Lisa; Price, Robert

    2015-01-15

    The aim of the study was to investigate how the fine particle content of lactose carriers prepared with different types of lactose fines regulates dry powder inhaler (DPI) formulation performance of a cohesive batch of micronised budesonide. Budesonide formulations (0.8 wt%) were prepared with three different lactose carriers (Lactohale (LH) LH100, 20 wt% LH210 in LH100 and 20 wt% LH300 in LH100). Fine particle fraction of emitted dose (FPFED) and mean mass aerodynamic diameter (MMAD) of budesonide was assessed with a Next Generation Impactor (NGI) using a Cyclohaler at 90 l/min. Morphological and chemical characteristics of particles deposited on Stage 2 were determined using a Malvern Morphologi G3-ID. The results indicate that increasing concentration of lactose fines (agglomerates. Presence of agglomerates on Stage 2 was confirmed by morphological analysis of particles. Raman analysis of material collected on Stage 2 indicated that the more fine lactose particles were available the more agglomerates of budesonide and lactose were delivered to Stage 2. These results suggest drug-fines agglomerate formation is an important mechanism for how lactose fines improve and regulate DPI formulation performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    International Nuclear Information System (INIS)

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-01-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34 + KDR + cells) or early (CD34 + CD133 + KDR + cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2′,7′-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health.

  5. Thermal insulator made of ultra fine particles of silica. Chobiryushi silica kei dannetsuzai

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, T.

    1991-05-30

    An overview was presented of properties and applications of thermal insulator made of ultra fine powder of silica, MICROTHERM. The thermal conductivity of MICROTHERM is as low as (1/3) - (1/4) of that of conventional thermal insulator, because it is mainly composed of fumed silica or aero gel and formed into porous structure. In addition, metal oxide of special particle size is added to it in order to reject the radiative heat. The thermal insulation property and the mechanical strength of MICROTHERM is not affected by a sudden change in temperature and moisture. The standard type of MICROTHERM can be used at a temperature up to 950 {degree}C, while the high temperature type MICROTHERM can stand a high temperature up to 1025 {degree}C for long period of time. The thickness of insulator can be reduced markedly by using MICROTHERM as compared with the use of conventional insulating materials. Many new products in which MICROTHERM is used came into market. New type kilt, Semi-cylindrical block, Super high temperature MICROTHERM are just a few examples. Variety of application and energy saving effect are attracting public attention. 11 figs.

  6. Method and equipment to determine fine dust concentrations

    International Nuclear Information System (INIS)

    Breuer, H.; Gebhardt, J.; Robock, K.

    1979-01-01

    The measured values for the fine dust concentration are obtained by optical means which where possible agree with the probable deposited quantity of fine dust in the pulmonary alveoli. This is done by receiving the strong radiation produced in dependence of the particle size at an angle of 70 0 to the angle of incidence of the primary beam. The wavelength of the primary radiation is in the region of 1000 to 2000 nm. (RW) [de

  7. Optimal configuration of power grid sources based on optimal particle swarm algorithm

    Science.gov (United States)

    Wen, Yuanhua

    2018-04-01

    In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.

  8. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit

    Science.gov (United States)

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J.; Banfield, Jillian F.; Nazaroff, William W.

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses’ station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3–1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3–10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37–81%. Near-room indoor emissions and outdoor sources contributed 18–59% and 1–5%, respectively. Airborne particle levels in the size range 1–10 μm showed strong dependence on human activities, indicating the importance of indoor

  9. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit.

    Directory of Open Access Journals (Sweden)

    Dusan Licina

    Full Text Available Premature infants in neonatal intensive care units (NICUs have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses' station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3-1 μm particles. The mean indoor particle mass concentrations averaged across the size range 0.3-10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3. Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37-81%. Near-room indoor emissions and outdoor sources contributed 18-59% and 1-5%, respectively. Airborne particle levels in the size range 1-10 μm showed strong dependence on human activities, indicating the importance of indoor

  10. Assessment of Fine Aggregates from Different Sources in Ibadan ...

    African Journals Online (AJOL)

    OLUWASOGO

    shown in Table 2 ranges from 14% to 17%, which confirmed that the fine grained ..... Management, 6 (1): 12 – 22. BSI (British Standard ... (5th ed.),. Pearson Education Limited, England. Obla, K. H. (2011). Variation in Concrete Performance.

  11. Fines Classification Based on Sensitivity to Pore-Fluid Chemistry

    KAUST Repository

    Jang, Junbong

    2015-12-28

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil "electrical sensitivity." Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems. © ASCE.

  12. Fines classification based on sensitivity to pore-fluid chemistry

    Science.gov (United States)

    Jang, Junbong; Santamarina, J. Carlos

    2016-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil “electrical sensitivity.” Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems.

  13. Strategy for fitting source strength and reconstruction procedure in radioactive particle tracking

    International Nuclear Information System (INIS)

    Mosorov, Volodymyr

    2015-01-01

    The Radioactive Particle Tracking (RPT) technique is widely applied to study the dynamic properties of flows inside a reactor. Usually, a single radioactive particle that is neutrally buoyant with respect to the phase is used as a tracker. The particle moves inside a 3D volume of interest, and its positions are determined by an array of scintillation detectors, which count the incoming photons. The particle position coordinates are calculated by using a reconstruction procedure that solves a minimization problem between the measured counts and calibration data. Although previous studies have described the influence of specified factors on the RPT resolution and sensitivities, the question of how to choose an appropriate source strength and reconstruction procedure for the given RPT setup remains an unsolved problem. This work describes and applies the original strategy for fitting both the source strength and the sampling time interval to a specified RPT setup to guarantee a required accuracy of measurements. Additionally, the measurement accuracy of an RPT setup can be significantly increased by changing the reconstruction procedure. The results of the simulations, based on the Monte Carlo approach, have demonstrated that the proposed strategy allows for the successful implementation of the As Low As Reasonably Achievable (ALARA) principle when designing the RPT setup. The limitations and drawbacks of the proposed procedure are also presented. - Highlights: • We develop an original strategy for fitting source strength and measurement time interval in radioactive particle tracking (RPT) technique. • The proposed strategy allows successfully to implement the ALAPA (As Low As Reasonably Achievable) principle in designing of a RPT setup. • Measurement accuracy of a RPT setup can be significantly increased by improvement of the reconstruction procedure. • The algorithm can be applied to monitor the motion of the radioactive tracer in a reactor

  14. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    Science.gov (United States)

    Tian, S. L.; Pan, Y. P.; Wang, Y. S.

    2015-03-01

    More size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood, but this information remains unavailable in most regions of China due to a paucity of measurement data. In this study, we report a one-year observation of various chemical species in size-segregated particle samples collected in urban Beijing, a mega city that experiences severe haze episodes. In addition to fine particles, the measured particle size distributions showed high concentrations of coarse particles during the haze periods. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contribution of the organic matter to the mass decreased from 37.9 to 33.1%, whereas the total contribution of SO42-, NO3- and NH4+ increased from 19.1 to 32.3% on non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peaks in the size distributions of organic carbon, SO42-, NO3-, NH4+, Cl-, K+ and Cu shifted from 0.43-0.65 μm on non-haze days to 0.65-1.1 μm on haze days. Although the size distributions are similar for the heavy metals Pb, Cd and Tl during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We found that NH4+ with a size range of 0.43-0.65 μm, SO42- and NO3- with a size range of 0.65-1.1 μm and Ca2+ with a size range of 5.8-9 μm as well as the meteorological factors of relative humidity and wind speed were responsible for the haze pollution when the visibility was less than 15 km. Source apportionment using positive matrix factorization identified six common sources: secondary inorganic aerosols (26.1% for fine particles vs. 9.5% for coarse particles), coal combustion (19 vs. 23.6%), primary emissions from vehicles (5.9 vs. 8.0%), biomass burning (8.5 vs. 2

  15. A novel waste water cleanup, fines sequestration and consolidation technology for oil sands applications

    Energy Technology Data Exchange (ETDEWEB)

    Soane, D.; Ware, W.; Mahoney, R.; Kincaid, P. [Soane Energy LLC, Cambridge, MA (United States)

    2010-07-01

    This paper discussed a wastewater technology designed to rapidly sequester suspended fines and other pollutants from the tailings produced during oil sands processes. The technology can also be used to clarify existing tailings ponds, and is expected to help address growing environmental concerns over the remediation of oil sands tailings. The ATA system is comprised of the following 3 components: (1) an activator polymer, (2) a tether polymer, and (3) an anchor particle. A small dose of the activator polymer is added to the fine or mature tailings, which then causes the suspended clay fines to aggregate. The anchor particles are then coated with the tether polymer. The anchor particle is formed from sand derived from coarser tailings. The tether-bearing anchor particles bind to the aggregated clay fines in the activated tailings to form robust complexes that can easily be separated from the waste stream. Output streams from the ATA process include a clean water stream that can be reused in oil sands extraction processes; and a dewatered solid that can be used as landfill as well as in construction and reclamation applications. The sensible heat retained in the recycled water is expected to also reduce the energy requirements of the oil sands extraction process. 6 refs., 1 tab., 5 figs.

  16. Field characterization of the PM2.5 Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2017-12-01

    Full Text Available A PM2.5-capable aerosol chemical speciation monitor (Q-ACSM was deployed in urban Nanjing, China, for the first time to measure in situ non-refractory fine particle (NR-PM2.5 composition from 20 October to 19 November 2015, along with parallel measurements of submicron aerosol (PM1 species by a standard Q-ACSM. Our results show that the NR-PM2.5 species (organics, sulfate, nitrate, and ammonium measured by the PM2.5-Q-ACSM are highly correlated (r2 > 0.9 with those measured by a Sunset Lab OC  /  EC analyzer and a Monitor for AeRosols and GAses (MARGA. The comparisons between the two Q-ACSMs illustrated similar temporal variations in all NR species between PM1 and PM2.5, yet substantial mass fractions of aerosol species were observed in the size range of 1–2.5 µm. On average, NR-PM1−2.5 contributed 53 % of the total NR-PM2.5, with sulfate and secondary organic aerosols (SOAs being the two largest contributors (26 and 27 %, respectively. Positive matrix factorization of organic aerosol showed similar temporal variations in both primary and secondary OAs between PM1 and PM2.5, although the mass spectra were slightly different due to more thermal decomposition on the capture vaporizer of the PM2.5-Q-ACSM. We observed an enhancement of SOA under high relative humidity conditions, which is associated with simultaneous increases in aerosol pH, gas-phase species (NO2, SO2, and NH3 concentrations and aerosol water content driven by secondary inorganic aerosols. These results likely indicate an enhanced reactive uptake of SOA precursors upon aqueous particles. Therefore, reducing anthropogenic NOx, SO2, and NH3 emissions might not only reduce secondary inorganic aerosols but also the SOA burden during haze episodes in China.

  17. Gas-particle phase partitioning and particle size distribution of chlorinated and brominated polycyclic aromatic hydrocarbons in haze.

    Science.gov (United States)

    Jin, Rong; Zheng, Minghui; Yang, Hongbo; Yang, Lili; Wu, Xiaolin; Xu, Yang; Liu, Guorui

    2017-12-01

    Chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) are emerging semi-volatile organic pollutants in haze-associated particulate matter (PM). Their gas-particle phase partitioning and distribution among PM fractions have not been clarified. Clarification would increase understanding of atmospheric behavior and health risks of Cl/Br-PAHs. In this study, samples of the gas phase and 4 PM phases (aerodynamic diameters (d ae ) > 10 μm, 2.5-10 μm, 1.0-2.5 μm, and <1.0 μm) were collected simultaneously during haze events in Beijing and analyzed. Normalized histogram distribution indicated that the Cl/Br-PAHs tended to adhere to fine particles. Over 80% of the Cl-PAHs and 70% of the Br-PAHs were associated with fine PM (d ae  < 2.5 μm). The gas-particle phase partitioning and PM distribution of Cl/Br-PAHs when heating of buildings was required, which was associated with haze events, were obviously different from those when heating was not required. The relationship between the logarithmic geometric mean diameters of the Cl/Br-PAH congeners and reciprocal of the temperature (1/T) suggested that low air temperatures during the heating period could lead to high proportions of Cl/Br-PAHs in the fine particles. Increased coal burning during the heating period also contributed to high Cl/Br-PAH loads in the fine particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [Size distribution of particle and polycyclic aromatic hydrocarbons in particle emissions from simulated emission sources].

    Science.gov (United States)

    Fu, Hai-Huan; Tian, Na; Shang, Hui-Bin; Zhang, Bin; Ye, Su-Fen; Chen, Xiao-Qiu; Wu, Shui-Ping

    2014-01-01

    Particles from cooking lampblack, biomass and plastics burning smoke, gasoline vehicular exhausts and gasoline generator exhausts were prepared in a resuspension test chamber and collected using a cascade MOUDI impactor. A total of 18 polycyclic aromatic hydrocarbons (PAHs) associated with particles were analyzed by GC-MS. The results showed that there were two peaks in the range of 0.44-1.0 microm and 2.5-10 microm for cooking lampblack, and only one peak in the range of 0.44-1.0 microm for straw and wood burning smoke. But there were no clear peak for plastics burning smoke. The peak for gasoline vehicular exhausts was found in the range of 2.5-10 microm due to the influence of water vapor associated with particles, while the particles from gasoline generator exhausts were mainly in the range of lampblack and gasoline vehicular exhausts. The peak in the range of 0.44-1.0 microm became more and more apparent with the increase of PAHs molecular weight. The fraction of PAH on particles less than 1.0 microm to that on the total particles increased along with PAH's molecular weight. Phenanthrene was the dominant compound for cooking lampblack and combustion smoke, while gasoline vehicular exhausts and generator exhausts were characterized with significantly high levels of naphthalene and benzo[g, h, i] perylene, respectively. The distribution of source characteristic ratios indicated that PAHs from cooking lampblack and biomass burning were close and they were different from those of vehicular exhausts and generator exhausts.

  19. [Emission characteristics of fine particles from grate firing boilers].

    Science.gov (United States)

    Wang, Shu-Xiao; Zhao, Xiu-Juan; Li, Xing-Hua; Wei, Wei; Hao, Ji-Ming

    2009-04-15

    Grate firing boilers are the main type of Chinese industrial boilers, which accounts for 85% of the industrial boilers and is one of the most important emission sources of primary air pollutants in China. In this study, five boilers in three cities were selected and tested to measure the emission characteristics of PM2.5, and gaseous pollutants were applied by a compact dilution sampling system, which was developed for this field study. Results showed that particles mass size distributions for the five industrial boilers presented single peak or double peak, former peaks near 0.14 microm and the later peaks after 1.0 microm; the cyclone dust remover and wet scrubber dust remover had effective removal efficiencies not only to PM2.5, but also to PM1.0; and under the condition of same control techniques, grate firing boiler with high capacity has less PM2.5 emission than the boiler with low capacity. In the PM2.5 collected from flue gases, SO4(2-) was the most abundant ion, accounted for 20%-40% of the PM2.5; and C was the most abundant element (7.5%-31.8%), followed by S (8.4%-18.7%). Carbon balance method was applied to calculate the emission factors of these pollutants. The emission factors of PM2.5, NO, and SO2 were in the range of 0.046-0.486 g x kg(-1), 1.63-2.47 g x kg(-1), 1.35-9.95 g x kg(-1) respectively. The results are useful for the emission inventory development of industrial boilers and the source analysis of PM2.5 in atmospheric environment.

  20. New Mechanisms to Explain the Effects of Added Lactose Fines on the Dispersion Performance of Adhesive Mixtures for Inhalation

    Science.gov (United States)

    Grasmeijer, Floris; Lexmond, Anne J.; van den Noort, Maarten; Hagedoorn, Paul; Hickey, Anthony J.; Frijlink, Henderik W.; de Boer, Anne H.

    2014-01-01

    Fine excipient particles or ‘fines’ have been shown to improve the dispersion performance of carrier-based formulations for dry powder inhalation. Mechanistic formulation studies have focussed mainly on explaining this positive effect. Previous studies have shown that higher drug contents may cause a decrease in dispersion performance, and there is no reason why this should not be true for fines with a similar shape, size and cohesiveness as drug particles. Therefore, the effects on drug detachment of ‘fine lactose fines’ (FLF, X50 = 1.95 µm) with a similar size and shape as micronised budesonide were studied and compared to those of ‘coarse lactose fines’ (CLF, X50 = 3.94 µm). Furthermore, interactions with the inhalation flow rate, the drug content and the mixing order were taken into account. The observed effects of FLF are comparable to drug content effects in that the detached drug fraction was decreased at low drug content and low flow rates but increased at higher flow rates. At high drug content the effects of added FLF were negligible. In contrast, CLF resulted in higher detached drug fractions at all flow rates and drug contents. The results from this study suggest that the effects of fines may be explained by two new mechanisms in addition to those previously proposed. Firstly, fines below a certain size may increase the effectiveness of press-on forces or cause the formation of strongly coherent fine particle networks on the carrier surface containing the drug particles. Secondly, when coarse enough, fines may prevent the formation of, or disrupt such fine particle networks, possibly through a lowering of their tensile strength. It is recommended that future mechanistic studies are based on the recognition that added fines may have any effect on dispersion performance, which is determined by the formulation and dispersion conditions. PMID:24489969

  1. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    Science.gov (United States)

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  2. Historical evolution of sources identification by means of Receptor Modeling in the Metropolitan Area of São Paulo, Brazil.

    Science.gov (United States)

    Miranda, R. M.; Andrade, M. D. F.; Marien, Y., Sr.

    2017-12-01

    The atmospheric aerosols sources have been identified in Sao Paulo since the 80´s with the use of receptor models. The Metropolitan Area of São Paulo (MASP) is a megacity with a population of 21 million, corresponding to more than 11% of the total population of Brazil. The first results for the identification of sources of particles were obtained with the application of Absolute Principal Component Analysis, Factor Analysis and Chemical Mass Balance. More recently the Positive Matrix Factorization has been used in combination with the other receptor models. With the improvement of the aerosol composition analytical determination (more elements and better resolution) the source identification has became more accurate. But, in spite of that, the main sources are the same for fine particles: vehicular emission, secondary formation and biomass burning. The large amount of biofuels used in the MASP makes this region an important example of the atmospheric chemistry of fossil fuel and biofuel emissions. The 7 million vehicles can run on gasohol, ethanol (95% ethanol + 5% gasoline) and biodiesel (mostly for trucks and buses). We have considered the Black Carbon as the tracer for diesel engines and biomass burning, being this last source associated not only with burning of sugar cane plantation and forest fires, but also with wood and charcoal used in restaurant and domestic cooking and residues burning. The responsibility of the vehicular emission to the fine particles has been maintained in approximately 50% of the mass. The soil resuspension was associated with 8% of the fine particles origin. We are presenting the data obtained from experiments performed from 1983 to 2014, not continuously and mainly performed in the winter time. It is a long period of data that is going to be considered. The previous results obtained with the application of PCA were compared to that obtained with PMF applied to the historical data collected at MASP, showing the evolution of the

  3. Physics of compact radio sources. I. Particle acceleration and flux variations

    International Nuclear Information System (INIS)

    Pacholczyk, A.G.; Scott, J.S.

    1976-01-01

    The observed patterns of variability of compact radio sources may be explained by assuming that the radio components are plasmons containing relativistic particles, and by applying a model with the following features: (1) the plasmons are ejected at high speed into the interstellar medium in the nuclei of active galaxies: (2) ram pressure confinement of the plasmons leads to Rayleigh-Taylor and Kelvin-Helmholtz instabilities therein; (3) turbulence is thereby introduced into the plasmons; (4) the turbulence amplifies the plasmon magnetic field (for a short period) and this leads to betatron aceleration of the relativistic particles; (5) the turbulence vortices continue to accelerate the particles by the second-order Fermi acceleration mechanism. The emission patterns are the result of the combination of these accelerations and adiabatic losses

  4. The influence of wind speed on airflow and fine particle transport within different building layouts of an industrial city.

    Science.gov (United States)

    Mei, Dan; Wen, Meng; Xu, Xuemei; Zhu, Yuzheng; Xing, Futang

    2018-04-20

    In atmospheric environment, the layout difference of urban buildings has a powerful influence on accelerating or inhibiting the dispersion of particle matters (PM). In industrial cities, buildings of variable heights can obstruct the diffusion of PM from industrial stacks. In this study, PM dispersed within building groups was simulated by Reynolds-averaged Navier-Stokes equations coupled Lagrangian approach. Four typical street building arrangements were used: (a) a low-rise building block with Height/base H/b = 1 (b = 20 m); (b) step-up building layout (H/b = 1, 2, 3, 4); (c) step-down building layout (H/b = 4, 3, 2, 1); (d) high-rise building block (H/b = 5). Profiles of stream functions and turbulence intensity were used to examine the effect of various building layouts on atmospheric airflow. Here, concepts of particle suspension fraction and concentration distribution were used to evaluate the effect of wind speed on fine particle transport. These parameters showed that step-up building layouts accelerated top airflow and diffused more particles into street canyons, likely having adverse effects on resident health. In renewal old industry areas, the step-down building arrangement which can hinder PM dispersion from high-level stacks should be constructed preferentially. High turbulent intensity results in formation of a strong vortex that hinders particles into the street canyons. It is found that an increase in wind speed enhanced particle transport and reduced local particle concentrations, however, it did not affect the relative location of high particle concentration zones, which are related to building height and layout. This study has demonstrated the height variation and layout of urban architecture affect the local concentration distribution of particulate matter (PM) in the atmosphere and for the first time that wind velocity has particular effects on PM transport in various building groups. The findings may have general implications in optimization

  5. Ultrashort particle sources: innovating advances for chemistry and trans-disciplinary domains

    International Nuclear Information System (INIS)

    Malka, V.; Faure, J.; Glinec, Y.; Gauduel, Y.A.

    2005-01-01

    High-energy laser interaction with matter (gaseous and solid targets) provides electric fields going beyond the limit of one tera-volt per meter (1 TV = 10 12 V) and permit efficient acceleration of particles in the relativistic regime, typically with MeV energy. Exceptional properties of these new particle sources (shortness, charge, emittance) may conjecture trans-disciplinary researches such as physics' accelerators, pre-thermal reactivity in soft matter, radiobiology and radiotherapy, imaging. The challenge of high-energy femto-chemistry is broached in the framework of water, 'the life's solvent'. (authors)

  6. Characterization of a alpha particle detector CR-39 exposed to a source of radium

    International Nuclear Information System (INIS)

    Maino, Leandro Marcondes

    2009-01-01

    In this project, the main goal is the characterization of a alpha particle detector CR-39 exposed to a source of radio. Three detectors were exposed to a source of radium and then chemically treated for different periods. This way, we could analyze these samples and collect the information needed to verify that at least one of the chemical attack, there has been a separation of the energies alpha particles incident with distinct peaks, thus characterizing the CR-39 as alpha spectrometer in the range 2.5 to 6.3 MeV . (author)

  7. Analysis of fine-dispersed chalk usage as mineral additive in the composition of sand aggrerate concrete

    Directory of Open Access Journals (Sweden)

    Светлана Николаевна Чепурная

    2016-12-01

    Full Text Available The research results of fine-disperse chalk addition on physical and mechanical properties of the cement stone and concrete are shown. It is determined that fine-disperse chalk addition in the binder composition increases the content of ultrafine particles. The chalk particles fill the pore space between the cement particles, increasing the packing density, which leads to a density increase, which consequently leads to improved physical and mechanical properties of the concrete: water tightness, cold resistance, corrosion resistance, crack resistance and other properties

  8. Effects of chlorine and sulphur on particle formation in wood combustion performed in a laboratory scale reactor

    Energy Technology Data Exchange (ETDEWEB)

    Olli Sippula; Terttaliisa Lind; Jorma Jokiniemi [University of Kuopio, Kuopio (Finland). Fine Particle and Aerosol Technology Laboratory, Department of Environmental Sciences

    2008-09-15

    Fine particle formation in wood combustion was studied in a laboratory scale laminar flow reactor at various flue gas chlorine and sulphur concentrations. Aerosol samples were quenched at around 850{sup o}C using a porous tube diluter. Fine particle number concentrations, mass concentrations, size distributions and chemical compositions were measured. In addition, flue gas composition, including SO{sub 2} and HCl, was monitored. Experimental results were interpreted by thermodynamic equilibrium calculations. Addition of HCl clearly raised fine particle mass concentration (PM1.0) which was because of increased release of ash-forming material to fine particles. Especially the release of K, Na, Zn and Cd to fine particles increased. These species form chlorides which apparently increases their volatilization from the fuel. When a sufficient amount of SO{sub 2} was supplied in a chlorine rich combustion (S/Cl molar ratio from 4.7 to 7.5), most of the HCl stayed in the gas phase, release of ash-forming elements decreased and also fine particle concentrations dropped significantly. The sulphation of alkali metals is suggested to play a key role in the observed decrease in the fine particle concentration. It seems that the formation of sulphates leads to alkali metal retention in the coarse particle fraction. 27 refs., 11 figs., 1 tab.

  9. Validity of a traffic air pollutant dispersion model to assess exposure to fine particles.

    Science.gov (United States)

    Kostrzewa, Aude; Reungoat, Patrice; Raherison, Chantal

    2009-08-01

    Fine particles (PM(2.5)) are an important component of air pollution. Epidemiological studies have shown health effects due to ambient air particles, particularly allergies in children. Since the main difficulty is to determine exposure to such pollution, traffic air pollutant (TAP) dispersions models have been developed to improve the estimation of individual exposure levels. One such model, the ExTra index, has been validated for nitrogen oxide concentrations but not for other pollutants. The purpose of this study was to assess the validity of the ExTra index to assess PM(2.5) exposure. We compared PM(2.5) concentrations calculated by the ExTra index to reference measures (passive samplers situated under the covered part of the playground), in 15 schools in Bordeaux, in 2000. First, we collected the input data required by the ExTra index: background and local pollution depending on traffic, meteorology and topography. Second, the ExTra index was calculated for each school. Statistical analysis consisted of a graphic description; then, we calculated an intraclass correlation coefficient. Concentrations calculated with the ExTra index and the reference method were similar. The ExTra index underestimated exposure by 2.2 microg m(-3) on average compared to the reference method. The intraclass correlation coefficient was 0.85 and its 95% confidence interval was [0.62; 0.95]. The results suggest that the ExTra index provides an assessment of PM(2.5) exposure similar to that of the reference method. Although caution is required in interpreting these results owing to the small number of sites, the ExTra index could be a useful epidemiological tool for reconstructing individual exposure, an important challenge in epidemiology.

  10. Two- and three-particle interference correlations of identical bosons and fermions with close momenta in the model of independent point-like sources

    International Nuclear Information System (INIS)

    Lyuboshits, V.L.

    1991-01-01

    Interference correlations introduced between identical particles with close momenta by the effect of Bose or Fermi statistics are discussed. Relations describing two- and three-particle correlations of identical bosons and fermions with arbitrary spin and arbitrary spin polarization are obtained on the basis of the model of independent single-particle point-like sources. The general structure of the dependence of narrow two- and three-particle correlations on the difference of the four-momenta in the presence of several groups of single-particle sources with different space-time distributions is analyzed. The idea of many-particle point sources of identical bosons is introduced. The suppression of two- and three-particle interference correlations between identical π mesons under conditions when one or several many-particle sources are added to a system of randomly distributed independent single-particle sources is studied. It is shown that if the multiplicities of the particles emitted by the sources are distributed according to the Poisson law, the present results agree with the relations obtained by means of the formalism of coherent states. This agreement also holds in the limit of very large multiplicities with any distribution laws

  11. Rotational particle separator: A new method for separating fine particles and mists from gases

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    1996-01-01

    An account is given of the patented technique of the rotational particle separator for separating solid and liquid particles of diameter 0.1 µm and larger from gases. Attention is focussed on the working principle, fluid mechanical constraints, practical designs, separation performance, power

  12. Cause-specific stillbirth and exposure to chemical constituents and sources of fine particulate matter.

    Science.gov (United States)

    Ebisu, Keita; Malig, Brian; Hasheminassab, Sina; Sioutas, Constantinos; Basu, Rupa

    2018-01-01

    The stillbirth rate in the United States is relatively high, but limited evidence is available linking stillbirth with fine particulate matter (PM 2.5 ), its chemical constituents and sources. In this study, we explored associations between cause-specific stillbirth and prenatal exposures to those pollutants with using live birth and stillbirth records from eight California locations during 2002-2009. ICD-10 codes were used to identify cause of stillbirth from stillbirth records. PM 2.5 total mass and chemical constituents were collected from ambient monitors and PM 2.5 sources were quantified using Positive Matrix Factorization. Conditional logistic regression was applied using a nested case-control study design (N = 32,262). We found that different causes of stillbirth were associated with different PM 2.5 sources and/or chemical constituents. For stillbirths due to fetal growth, the odds ratio (OR) per interquartile range increase in gestational age-adjusted exposure to PM 2.5 total mass was 1.23 (95% confidence interval (CI): 1.06, 1.44). Similar associations were found with resuspended soil (OR=1.25, 95% CI: 1.10, 1.42), and secondary ammonium sulfate (OR=1.45, 95% CI: 1.18, 1.78). No associations were found between any pollutants and stillbirths caused by maternal complications. This study highlighted the importance of investigating cause-specific stillbirth and the differential toxicity levels of specific PM 2.5 sources and chemical constituents. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Source apportionment of fine organic aerosol in Mexico City during the MILAGRO experiment 2006

    Directory of Open Access Journals (Sweden)

    E. A. Stone

    2008-03-01

    Full Text Available Organic carbon (OC comprises a large fraction of fine particulate matter (PM2.5 in Mexico City. Daily and select 12-h PM2.5 samples were collected in urban and peripheral sites in Mexico City from 17–30 March 2006. Samples were analyzed for OC and elemental carbon (EC using thermal-optical filter-based methods. Real-time water-soluble organic carbon (WSOC was collected at the peripheral site. Organic compounds, particularly molecular markers, were quantified by soxhlet extraction with methanol and dichloromethane, derivitization, and gas chromatography with mass spectrometric detection (GCMS. A chemical mass balance model (CMB based on molecular marker species was used to determine the relative contribution of major sources to ambient OC. Motor vehicles, including diesel and gasoline, consistently accounted for 49% of OC in the urban area and 32% on the periphery. The daily contribution of biomass burning to OC was highly variable, and ranged from 5–26% at the urban site and 7–39% at the peripheral site. The remaining OC unapportioned to primary sources showed a strong correlation with WSOC and was considered to be secondary in nature. Comparison of temporally resolved OC showed that contributions from primary aerosol sources during daylight hours were not significantly different from nighttime. This study provides quantitative understanding of the important sources of OC during the MILAGRO 2006 field campaign.

  14. The chemical composition and sources of PM2.5 during the 2009 Chinese New Year's holiday in Shanghai

    Science.gov (United States)

    Feng, Jialiang; Sun, Peng; Hu, Xiaoling; Zhao, Wei; Wu, Minghong; Fu, Jiamo

    2012-11-01

    China is virtually shut down during the week-long Chinese New Year's holiday. This implies that the anthropogenic emissions would be greatly decreased during the period thus providing an opportunity to study the air quality in China under reduced emissions, and the drastic emission changes during a short period of time allows the comparison of source contributions under significantly different conditions. Seventeen PM2.5 samples were collected during the 2009 Chinese New Year's holiday in Shanghai to study the composition and sources of the fine particles. Organic carbon (OC), elemental carbon (EC), eight water-soluble ions, fourteen metals and solvent extractable organic compounds (SEOC) including alkanes, hopanes, polycyclic aromatic hydrocarbons (PAHs) and fatty acids were measured. Diagnostic PAH ratios, correlation analysis of OC, EC, n-alkanes, hopanes and PAHs showed that vehicle emissions were the main source of n-alkanes and EC, and an important source of the locally emitted particulate PAHs in urban Shanghai, while coal burning should be the main source of the transported PAHs from the inland areas. The composition of n-fatty acids also provided some clue on the significance of the contribution by kitchen activities. In the New Year's Eve's sample, 75% of the particle mass was estimated to be from fireworks, and K+, SO42 -, Cl-, OC, Al and Ba were the main components. Firework fine particles had high OC/EC ratio and low NO3-/SO42 - ratio.

  15. Finding the bearings of a source of high-energy charged particles

    International Nuclear Information System (INIS)

    Lotyshev, E.V.; Suprunov, V.I.

    1993-01-01

    Different methods are now used to find the direction of a radiation source. One method is based on the analysis information provided by the detection block that includes a system of six two-dimensional coordinate-sensitive semiconductor detectors (CSSDs) forming a cube filled with a special absorber. The CSSD numbers, the coordinates measured by them, and the order of crossing the cube edges bear all the information necessary to find the bearings of a radiation source. However, in this method the efficiency of detection depends on the relative orientation of the detection block and the radiation flux. In addition, the size of the detection block is limited by the condition of direct passage which, in combination with the demand of an unchanging shape, make it impossible to mount it with other devices. In this work the authors address the problem of finding the bearings of a source of charged particles that is fast and allows the detection block to be mounted with the components of other devices. It is shown that the bearings of a source of charged particles can be found by analyzing signals from NN s detector elements located on N s symmetric surfaces inserted into each other and separated by an absorber. The method is fast and makes it possible structurally to combine the detector block with other components. 5 refs., 2 figs

  16. Relationship between polycyclic aromatic hydrocarbons (PAHs) and particle size in dated core sediments in Lake Lianhuan, Northeast China

    International Nuclear Information System (INIS)

    Sun, Li; Zang, Shuying

    2013-01-01

    Atmospheric particle associated with pyrogenic polycyclic aromatic hydrocarbons (PAHs) poses serious threats to human health by inhalation exposure, especially in semiarid areas. Hence, the distributions of PAHs and particle size in two core sediments collected from Lake Lianhuan, Northeast China were studied. The sediments were dated radiometrically, and particle size distribution and PAH concentration were evaluated and potential human health risk was assessed. From 1980 to 2007, the dominant PAHs in the two cores were 2- and 3-ring PAHs, and the concentrations of 3–6 ring PAHs gradually increased from the early 1990s. Diagnostic ratios indicated that pyrogenic PAHs were the main sources of PAHs which changed over time from combustions of wood and coal to liquid fossil fuel sources. Fine particles ( 125 μm were found. Future research should focus on the seven carcinogenic pyrogenic PAHs due to a rapidly increasing trend since 1995 based on the assessment of toxic equivalency factors. - Highlights: • PAHs and particle size in core sediments were used to evaluate the role of eolian particles in delivering pyrogenic PAHs. • Changes of PAH sources closely followed local historical socioeconomic development since 1980s. • Changes of particulate sources from eolian to lacustrine reflected the evolving history of the lake. • Significant correlations between pyrogenic PAHs and eolian particles indicated potential risk from inhalation exposure. • Petroleum source PAHs are likely to stick to coarse particles and accumulate in lake sediments by surface runoff

  17. Ultra fine particulates. Small particulates with large consequences?; Ultrafijn stof. Kleine deeltjes met grote gevolgen?

    Energy Technology Data Exchange (ETDEWEB)

    Hensema, A.; Keuken, M.; Kooter, I.; Verbeek, R.; Van Vugt, M. [TNO Science and Industry, Delft (Netherlands)

    2009-02-15

    The concentrations of ultra fine particles (and elementary carbon) have increased significantly near traffic routes. The amount of ultra fine particles (and the chemical composition of particulate matter) are related to traffic emissions and are therefore relevant to the established health effects. Better insight in the effectiveness of particulate matter policy requires more attention for ultra fine particles than just maintaining the standards for PM2,5 and PM10. [mk]. [Dutch] De concentraties van ultrafijne deeltjes (en elementair koolstof) zijn fors verhoogd in de buurt van verkeerswegen. Het aantal ultrafijne deeltjes (en de chemische samenstelling van fijnstof) gerelateerd aan verkeersemissies lijkt daarom relevant voor de vastgestelde gezondheidseffecten. Voor een beter inzicht in de effectiviteit van het fijnstofbeleid is meer aandacht nodig voor ultrafijne deeltjes dan alleen handhaving van de normen voor PM2,5 en PM10.

  18. Smelting reduction rate of fine Wustite particles in a CO gas-conveyed bed; CO gas yuso sonai Wustite biryushi no yoyu kangen sokudo

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S; Iguchi, Y [Nagoya Institute of Technology, Nagoya (Japan)

    1999-06-01

    Using a laboratory scale fine particles-gas conveyed bed, the reduction rates of liquid wustite with CO gas were measured. CO-CO{sub 2} mixtures having various flow rates and compositions were flowed downward through a cylindrical reactor maintained at a constant temperature of 1,723 to 1,823K. A batch of pure spherical wustite particles (mean dia.: 48.5 {mu}m) was concurrently fed into the reactor at a small constant rate and reduced in a hot zone. The reduction process was found to proceed in such a manner that metallic iron particles were enclosed inside a wustite droplet. Rate analysis was made of one dimensional mass balance equations for particles and gas in a steady moving bed under an isothermal condition using the reaction rate for a single particle taking the shrinkage into consideration. Under relatively small reducing potentials, it was concluded that the major fraction of overall reaction resistance is attributable to chemical reaction. However, under higher reducing potentials, the reduction process was estimated to include some mass transfer resistances within the liquid oxide phase. From the temperature dependence of forward chemical reaction rate constants, the activation energy was evaluated to be 90.6 kJ/mol. (author)

  19. Winter fine particulate air quality in Cranbrook, British Columbia, 1973 to 1999

    International Nuclear Information System (INIS)

    McDonald, L.E.

    2001-06-01

    Fine particulate levels in Cranbrook, BC, are analyzed and reported based on monitoring records which began in 1973. Prior to 1988 the sampler collected all particle sizes, but was subsequently replaced with a selective size inlet to capture only PM 1 0 particles or smaller. A mathematical relationship was produced and used to convert historical total suspended particulates measurements to PM 1 0. It was determined that only monitoring records obtained during the winter months could be reliably converted in this fashion; however, that was not a problem since the winter months happen to correspond to the highest levels of fine particulates. Results of the analysis showed increased levels of PM 1 0 from the early 1970s to the early 1980s; during this time average and maximum annual PM 1 0 levels in Cranbrook were higher than those in Los Angeles in 1999. Winter PM 1 0 levels began to fall through the late 1980s and early 1990s. The lowest average and maximum (18 microgram/cubic metre and 47 microgram/cubic metre, respectively) was recorded in the winter of 1996/1997. Worst conditions were recorded in 1980/1981 when 15 of 21 samples exceeded the current provincial PM 1 0 air quality objective of 50 microgram/cubic metre. In the five winters between 1994/1995 and 1998/1999 only three of 109 samples exceeded the provincial objective. There appears to be no correlation between known changes in industrial and mobile sources of pollutants and historical patterns of fine particulate air pollution in Cranbrook, BC. Observation and experience over three decades suggest that the major source of PM 1 0 in Cranbrook was combustion of wood for home heating. The most probable major cause of the improvements in winter air quality was identified as the gradual conversion from wood to natural gas fired appliances through the 1980s and the 1990s. The 115 per cent increase in the cost of natural gas in the last two years unfortunately, will again make wood an attractive alternative

  20. Production of fines during co-combustion of coal with biomass fuels by fragmentation and attrition

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; D. Boavida; H. Lopes (and others) [DEECA-INETI, Lisbon (Portugal)

    2005-07-01

    Results are reported from a project funded by the RFCS Programme of the European Union. The aim is to investigate, experimentally and by modeling, the production of fine char and ash particles during co-combustion of coal with wastes and biofuels in circulating fluidized bed. Work was undertaken at installations of different scales. Polish and Colombian coals were base fuels. The additional fuels were two sewage sludges. Bed temperature, feeding system, sand particle size, devolatilisation behaviour and char burn-out were studied to verify their influence on the fine particle production. Modeling was also carried out to understand the mechanisms of fragmentation and attrition. Samples from bed and cyclone were collected to determine particle size distributions. 11 refs.

  1. ACCUMULATION AND TISSUE DISPOSITION OF PARTICLE ASSOCIATED ELEMENTS IN THE RAT AFTER REPEATED INTRATRACHAEL ADMINISTRATION OF SOURCE PARTICLES

    Science.gov (United States)

    The goal of this study was to determine the fate of source particle tracer elements following repeated intratracheal instillation (IT) to rats. PM samples comprised Mt. St. Helens ash (MSH) with no water-soluble metals, and oil flyash emission PM (EPM) with water-leachable solubl...

  2. Recovery of clean coal fines through a combination of gravity concentrator and flotation processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Banerjee, P.K.; Dutta, A.; Mishra, A. [Tata Steel, Jamshedpur (India). Research & Development

    2007-07-01

    Flotation feed is a mixture of coarse and ultra-fine fractions. During conditioning of the flotation feed with collector and frother, the finer fraction consumes more reagents as compared to coarser particles. This is mainly due to more specific surface area of the ultra fine than the coarse fraction. This favors the adsorption of reagents toward ultra-finer fractions leads to less complete surface coverage of coarse particles and more entrainment of finer gangue particles. This results in the lower yield of coarse fractions from the flotation circuit and loss in selectivity. Hence, the major challenge is to improve the recovery of the coarser fraction and selectivity of ultra-fine fractions by improving flotation kinetics of all size fractions. This article deals with an approach to overcome the improper reagent adsorption by fine and coarse coal fractions in the flotation circuit through an innovative washing circuit containing gravity operation and flotation processes. Flotation performance between a new washing circuit having stub cyclone and flotation and normal single-stage reagent addition flotation process is compared in terms of selectivity, separation efficiency, rate constant, and size-wise recovery. The washing circuit having stub cyclone and flotation processes improves the fine clean coal yield by 10% and reduces the consumption of reagent compared to the normal single-stage reagent addition flotation process.

  3. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region

    Science.gov (United States)

    Zhao, Bin; Wu, Wenjing; Wang, Shuxiao; Xing, Jia; Chang, Xing; Liou, Kuo-Nan; Jiang, Jonathan H.; Gu, Yu; Jang, Carey; Fu, Joshua S.; Zhu, Yun; Wang, Jiandong; Lin, Yan; Hao, Jiming

    2017-10-01

    The Beijing-Tianjin-Hebei (BTH) region has been suffering from the most severe fine-particle (PM2. 5) pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM) technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM). The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24-36 %) to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA) to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM2. 5 concentrations. The contributions of primary

  4. Source characterization of ambient fine aerosol in Singapore during a haze episode in 2015

    Science.gov (United States)

    Hapsari Budisulistiorini, Sri; Riva, Matthieu; Williams, Michael; Miyakawa, Takuma; Komazaki, Yuichi; Chen, Jing; Surratt, Jason; Kuwata, Mikinori

    2017-04-01

    Recurring transboundary haze from Indonesia peatland fires in the previous decades has significantly elevated particulate matter (PM) concentration in Southeast Asia, particularly during the 2015 El Niño event. Previous studies have investigated chemical composition of particles emitted during haze episodes; however, they were limited to time-integrated samples and the number of identified compounds. Low time-resolution measurement results in co-variance of PM sources; therefore, higher time-resolution measurement is important in PM source apportionment. Between October 10-31, 2015, Aerodyne Time-of-Flight Aerosol Chemical Speciation Monitor (ToF-ACSM) was deployed for real-time chemical characterization of ambient submicron PM (NR-PM1) in Singapore. Simultaneously, PM2.5 filter samples were collected for molecular-level organic aerosol (OA) constituents, organic carbon (OC), elemental carbon (EC) and water-soluble OC (WSOC) analyses. OA constituents were quantified by gas chromatography interfaced to electron ionization mass spectrometry (GC/EI-MS) and ultra-performance liquid chromatography interfaced to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometer operated in the negative ion mode (UPLC/(-)ESI-HR-Q-TOFMS). OA and SO42- are dominant components of the haze particles, accounting for ˜77% and ˜12% of the total NR-PM1 mass, respectively. OC/EC ratio of 4.8 might indicate formation of secondary OA (SOA) and aerosols from biomass burning, including those from peat burning. OA fraction from ToF-ACSM measurements was analyzed for source apportionment using a bilinear model through multi-linear engine algorithm (ME-2) in graphical user interface SoFi (Source Finder). Five OA factors were identified: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), peat burning OA (PBOA), low-volatility oxygenated OA (LV-OOA), and semi-volatile oxygenated OA (SV-OOA). The HOA factor shows a distinct diurnal profile peaking in the morning and

  5. Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride

    Directory of Open Access Journals (Sweden)

    H. Kouyoumdjian

    2006-01-01

    Full Text Available Levels of coarse (PM10-2.5 and fine (PM2.5 particles were determined between February 2004 and January 2005 in the city of Beirut, Lebanon. While low PM mass concentrations were measured in the rainy season, elevated levels were detected during sand storms originating from Arabian desert and/or Africa. Using ATR-FTIR and IC, it was shown that nitrate, sulfate, carbonate and chloride were the main anionic constituents of the coarse particles, whereas sulfate was mostly predominant in the fine particles in the form of (NH42SO4. Ammonium nitrate was not expected to be important because the medium was defined as ammonium poor. In parallel, the cations Ca2+ and Na+ dominated in the coarse, and NH4+, Ca2+ and Na+ in the fine particles. Coarse nitrate and sulfate ions resulted from the respective reactions of nitric and sulfuric acid with a relatively high amount of calcium carbonate. Both CaCO3 and Ca(NO32 crystals identified by ATR-FTIR in the coarse particles were found to be resistant to soaking in water for 24 h but became water soluble when they were formed in the fine particles suggesting, thereby, different growth and adsorption phenomena. The seasonal variational study showed that nitrate and sulfate ion concentrations increased in the summer due to the enhancement of photochemical reactions which facilitated the conversion of NO2 and SO2 gases into NO3- and SO42-, respectively. While nitrate was mainly due to local heavy traffic, sulfates were due to local and long-range transport phenomena. Using the air mass trajectory HYSPLIT model, it was found that the increase in the sulfate concentration correlated with wind vectors coming from Eastern and Central Europe. Chloride levels, on the other hand, were high when wind originated from the sea and low during sand storms. In addition to sea salt, elevated levels of chloride were also attributed to waste mass burning in proximity to the site. In comparison to other neighboring Mediterranean

  6. Interaction of fine sediment with alluvial streambeds

    Science.gov (United States)

    Jobson, Harvey E.; Carey, William P.

    1989-01-01

    More knowledge is needed about the physical processes that control the transport of fine sediment moving over an alluvial bed. The knowledge is needed to design rational sampling and monitoring programs that assess the transport and fate of toxic substances in surface waters because the toxics are often associated with silt- and clay-sized particles. This technical note reviews some of the past research in areas that may contribute to an increased understanding of the processes involved. An alluvial streambed can have a large capacity to store fine sediments that are extracted from the flow when instream concentrations are high and it can gradually release fine sediment to the flow when the instream concentrations are low. Several types of storage mechanisms are available depending on the relative size distribution of the suspended load and bed material, as well as the flow hydraulics. Alluvial flow tends to segregate the deposited material according to size and density. Some of the storage locations are temporary, but some can store the fine sediment for very long periods of time.

  7. Mechanical strength development of mortars containing volcanic scoria-based binders with different fineness

    Directory of Open Access Journals (Sweden)

    Aref M. al-Swaidani

    2016-06-01

    Full Text Available The benefits of using natural pozzolan as cement replacement are often associated with shortcomings such as the need to moist-curing for longer time and a reduction of strength at early ages. The objective of the study is to investigate the influence of binder fineness on the mechanical strength development of scoria-based binder mortars. In the study, mortar specimens have been produced with four types of binder: one plain Portland cement (control and three scoria-based binders with three replacement levels: 25%, 30% and 35%, respectively. All scoria-based binders have been inter-ground into four different Blaine fineness: 2400, 3200, 4200 and 5100 cm2/g. The development of the compressive and flexural tensile strength of all mortar specimens with curing time has been investigated. The effects of the Blaine fineness of the scoria-based blended cement on the compressive and flexural strengths of mortar have been evaluated at curing ages of 2, 7, 28 and 90 days, respectively. Particle size distribution measured by a laser diffractometer has been considered in the study. Test results revealed that there is a decrease in strength with increasing amounts of scoria. In addition, there was found an increase in strength with increasing the Blaine fineness values. No direct relationship between Blaine and particle size distribution was observed. Effects of Blaine fineness on some physical properties of blended cements such as water demand, setting times and soundness have also been investigated. Further, an estimation equation for strength development incorporating the effects of fineness measured either by Blaine or by particle size distribution has been derived by the authors.

  8. Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    CERN Document Server

    Kim, Do Yoon; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-01-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGA...

  9. Use of GSR particle analysis program on an analytical SEM to identify sources of emission of airborne particles

    International Nuclear Information System (INIS)

    Chan, Y.C.; Trumper, J.; Bostrom, T.

    2002-01-01

    Full text: High concentrations of airborne particles, in particular PM 10 (particulate matter 10 , but has been little used in Australia for airborne particulates. Two sets of 15 mm PM 10 samples were collected in March and April 2000 from two sites in Brisbane, one within a suburb and one next to an arterial road. The particles were collected directly onto double-sided carbon tapes with a cascade impactor attached to a high-volume PM 10 sampler. The carbon tapes were analysed in a JEOL 840 SEM equipped with a Be-window energy-dispersive X-ray detector and Moran Scientific microanalysis system. An automated Gun Shot Residue (GSR) program was used together with backscattered electron imaging to characterise and analyse individual particulates. About 6,000 particles in total were analysed for each set of impactor samples. Due to limitations of useful pixel size, only particles larger than about 0.5 μm could be analysed. The size, shape and estimated elemental composition (from Na to Pb) of the particles were subjected to non-hierarchical cluster analysis and the characteristics of the clusters were related to their possible sources of emission. Both samples resulted in similar particle clusters. The particles could be classified into three main categories non-spherical (58% of the total number of analysed particles, shape factor >1 1), spherical (15%) and 'carbonaceous' (27%, ie with unexplained % of elemental mass >75%). Non-spherical particles were mainly sea salt and soil particles, and a small amount of iron, lead and mineral dust. The spherical particles were mainly sea salt particles and flyash, and a small amount of iron, lead and secondary sulphate dust. The carbonaceous particles included carbon material mixed with secondary aerosols, roadside dust, sea salt or industrial dust. The arterial road sample also contained more roadside dust and less secondary aerosols than the suburb sample. Current limitations with this method are the minimum particle size

  10. Microwave background anisotropy and decaying-particle models for a flat universe

    International Nuclear Information System (INIS)

    Vittorio, N.; Silk, J.

    1985-01-01

    The fine-scale anisotropy of the cosmic microwave background radiation, induced by primordial scale-invariant adiabatic density fluctuations, has been studied in flat cosmological models dominated by relativistic particles from the recent decay of a massive relic-particle species. We find that, if the relic-particle species consists of massive, unstable neutrinos, there is appreciable, and probably excessive, fine-scale anisotropy in the cosmic microwave background

  11. Seasonal variations of ultra-fine and submicron aerosols in Taipei, Taiwan: implications for particle formation processes in a subtropical urban area

    Directory of Open Access Journals (Sweden)

    H. C. Cheung

    2016-02-01

    Full Text Available The aim of this study is to investigate the seasonal variations in the physicochemical properties of atmospheric ultra-fine particles (UFPs, d ≤ 100 nm and submicron particles (PM1, d ≤ 1 µm in an east Asian urban area, which are hypothesized to be affected by the interchange of summer and winter monsoons. An observation experiment was conducted at TARO (Taipei Aerosol and Radiation Observatory, an urban aerosol station in Taipei, Taiwan, from October 2012 to August 2013. The measurements included the mass concentration and chemical composition of UFPs and PM1, as well as the particle number concentration (PNC and the particle number size distribution (PSD with size range of 4–736 nm. The results indicated that the mass concentration of PM1 was elevated during cold seasons with a peak level of 18.5 µg m−3 in spring, whereas the highest concentration of UFPs was measured in summertime with a mean of 1.64 µg m−3. Moreover, chemical analysis revealed that the UFPs and PM1 were characterized by distinct composition; UFPs were composed mostly of organics, whereas ammonium and sulfate were the major constituents of PM1. The seasonal median of total PNCs ranged from 13.9  ×  103 cm−3 in autumn to 19.4  ×  103 cm−3 in spring. Median concentrations for respective size distribution modes peaked in different seasons. The nucleation-mode PNC (N4 − 25 peaked at 11.6  ×  103 cm−3 in winter, whereas the Aitken-mode (N25 − 100 and accumulation-mode (N100 − 736 PNC exhibited summer maxima at 6.0  ×  103 and 3.1  ×  103 cm−3, respectively. The change in PSD during summertime was attributed to the enhancement in the photochemical production of condensable organic matter that, in turn, contributed to the growth of aerosol particles in the atmosphere. In addition, clear photochemical production of particles was observed, mostly in the summer season

  12. Improving the Quality of Recycled Fine Aggregate by Selective Removal of Brittle Defects

    OpenAIRE

    Ogawa, Hideo; Nawa, Toyoharu

    2012-01-01

    Crushed recycled aggregate contains particles with brittle defects such as cracks, pores, and voids. This study presents a method for improving the quality of recycled fine aggregate by selectively removing these defects. Fourteen recycled fine aggregates were manufactured by three types of processors including a jaw crusher, ball mill, and granulator. The influence of the recycled fine aggregate on the flowability and strength of the mortar was evaluated by multivariate analysis. The results...

  13. Fine particles in homes of predominantly low-income families with children and smokers: Key physical and behavioral determinants to inform indoor-air-quality interventions

    OpenAIRE

    Klepeis, Neil E.; Bellettiere, John; Hughes, Suzanne C.; Nguyen, Benjamin; Berardi, Vincent; Liles, Sandy; Obayashi, Saori; Hofstetter, C. Richard; Blumberg, Elaine; Hovell, Melbourne F.

    2017-01-01

    Children are at risk for adverse health outcomes from occupant-controllable indoor airborne contaminants in their homes. Data are needed to design residential interventions for reducing low-income children's pollutant exposure. Using customized air quality monitors, we continuously measured fine particle counts (0.5 to 2.5 microns) over a week in living areas of predominantly low-income households in San Diego, California, with at least one child (under age 14) and at least one cigarette smok...

  14. Kinetic modeling of particle dynamics in H− negative ion sources (invited)

    International Nuclear Information System (INIS)

    Hatayama, A.; Shibata, T.; Nishioka, S.; Ohta, M.; Yasumoto, M.; Nishida, K.; Yamamoto, T.; Miyamoto, K.; Fukano, A.; Mizuno, T.

    2014-01-01

    Progress in the kinetic modeling of particle dynamics in H − negative ion source plasmas and their comparisons with experiments are reviewed, and discussed with some new results. Main focus is placed on the following two topics, which are important for the research and development of large negative ion sources and high power H − ion beams: (i) Effects of non-equilibrium features of EEDF (electron energy distribution function) on H − production, and (ii) extraction physics of H − ions and beam optics

  15. Current status and application of fine screening technology in China

    Science.gov (United States)

    Chernova, E. V.; Chernov, D. V.

    2017-10-01

    The paper presents data on the design and technical parameters of high frequency vibrating screens, which are produced by Chinese manufacturer - company Landsky Tech Ltd. The technology of high frequency vibration is widely used at mining and metallurgical industries to separate fine and ultra-fine particles from the flow of dry material or pulp. The paper contains different types of screening systems, description, advantages and disadvantages of equipment and test results from mineral processing plants.

  16. Airborne reduced nitrogen: ammonia emissions from agriculture and other sources.

    Science.gov (United States)

    Anderson, Natalie; Strader, Ross; Davidson, Cliff

    2003-06-01

    Ammonia is a basic gas and one of the most abundant nitrogen-containing compounds in the atmosphere. When emitted, ammonia reacts with oxides of nitrogen and sulfur to form particles, typically in the fine particle size range. Roughly half of the PM(2.5) mass in eastern United States is ammonium sulfate, according to the US EPA. Results from recent studies of PM(2.5) show that these fine particles are typically deposited deep in the lungs and may lead to increased morbidity and/or mortality. Also, these particles are in the size range that will degrade visibility. Ammonia emission inventories are usually constructed by multiplying an activity level by an experimentally determined emission factor for each source category. Typical sources of ammonia include livestock, fertilizer, soils, forest fires and slash burning, industry, vehicles, the oceans, humans, pets, wild animals, and waste disposal and recycling activities. Livestock is the largest source category in the United States, with waste from livestock responsible for about 3x10(9) kg of ammonia in 1995. Volatilization of ammonia from livestock waste is dependent on many parameters, and thus emission factors are difficult to predict. Despite a seasonal variation in these values, the emission factors for general livestock categories are usually annually averaged in current inventories. Activity levels for livestock are from the USDA Census of Agriculture, which does not give information about animal raising practices such as housing types and grazing times, waste handling systems, and approximate animal slurry spreading times or methods. Ammonia emissions in the United States in 1995 from sources other than livestock are much lower; for example, annual emissions are roughly 8x10(8) kg from fertilizer, 7x10(7) kg from industry, 5x10(7) kg from vehicles and 1x10(8) kg from humans. There is considerable uncertainty in the emissions from soil and vegetation, although this category may also be significant

  17. Compressible Flow Phenomena at Inception of Lateral Density Currents Fed by Collapsing Gas-Particle Mixtures

    Science.gov (United States)

    Valentine, Greg A.; Sweeney, Matthew R.

    2018-02-01

    Many geological flows are sourced by falling gas-particle mixtures, such as during collapse of lava domes, and impulsive eruptive jets, and sustained columns, and rock falls. The transition from vertical to lateral flow is complex due to the range of coupling between particles of different sizes and densities and the carrier gas, and due to the potential for compressible flow phenomena. We use multiphase modeling to explore these dynamics. In mixtures with small particles, and with subsonic speeds, particles follow the gas such that outgoing lateral flows have similar particle concentration and speed as the vertical flows. Large particles concentrate immediately upon impact and move laterally away as granular flows overridden by a high-speed jet of expelled gas. When a falling flow is supersonic, a bow shock develops above the impact zone, and this produces a zone of high pressure from which lateral flows emerge as overpressured wall jets. The jets form complex structures as the mixtures expand and accelerate and then recompress through a recompression zone that mimics a Mach disk shock in ideal gas jets. In mixtures with moderate to high ratios of fine to coarse particles, the latter tend to follow fine particles through the expansion-recompression flow fields because of particle-particle drag. Expansion within the flow fields can lead to locally reduced gas pressure that could enhance substrate erosion in natural flows. The recompression zones form at distances, and have peak pressures, that are roughly proportional to the Mach numbers of impacting flows.

  18. Novel particle and radiation sources and advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mako, Frederick [FM Technologies, Inc. and Electron Technologies, Inc. (United States)

    2016-03-25

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and “green” klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  19. Novel particle and radiation sources and advanced materials

    International Nuclear Information System (INIS)

    Mako, Frederick

    2016-01-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and “green” klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  20. Novel particle and radiation sources and advanced materials

    Science.gov (United States)

    Mako, Frederick

    2016-03-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and "green" klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  1. Preferential Redistribution of Fine-Grained Particles in the Panama Basin and Potential Errors in 230Th-Derived Focusing Factors

    Science.gov (United States)

    Marcantonio, F.; Lyle, M. W.; Ibrahim, R.

    2013-12-01

    The 230Th constant-flux proxy technique, commonly used in paleoceanography to estimate sediment fluxes, is thought to differentiate lateral from vertical fluxes of sediment at sites that have undergone sediment redistribution. However, redistribution processes (focusing or winnowing) are expected to fractionate fine particles from those that are coarse. Since fine particles with greater surface area are known to contain greater concentrations of 230Th, one might expect that sediment redistribution would bias 230Th-derived sediment mass accumulation rates (MARs). We investigate this possibility in two regions of the Panama Basin where significant sediment focusing has been hypothesized to occur. We examine multicore sediments from paired sites at two locations, one close to the equator at the southern limit of the Panama Basin (Carnegie Ridge) where upwelling and primary productivity are high, and one at 6°N at the northern boundary of the Panama Basin (Cocos Ridge), where primary productivity is lower. The multicores, which are constrained by radiocarbon ages that span the latest Holocene at each paired site, represent regions that have undergone potential winnowing and focusing (thin vs thick sediment drapes identified using seismic reflection) at each Panama Basin location. Since the distance separating the paired sites at each location is no more than about 50 km, one would expect the 230Th-derived MARs to be similar, i.e., the rain rate should not be significantly different at each of the paired sites. The radiocarbon-derived sand fraction (>63-μm) MARs, which likely represent the vertical rain of particles not transported by bottom currents, are identical at each of the paired sites, with fluxes at the Carnegie Ridge about 3.5 times greater than those at the Cocos Ridge over the past several thousand years. Over the same time period, the 230Th-normalized MARs are relatively similar at both the Carnegie and Cocos sites, but are different by about 60% at each

  2. Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY.

    Science.gov (United States)

    Kasumba, John; Hopke, Philip K; Chalupa, David C; Utell, Mark J

    2009-09-01

    Sources contributing to the submicron particles (100-470 nm) measured between January 2002 and December 2007 at two different New York State Department of Environmental Conservation (NYS DEC) sites in Rochester, NY were identified and apportioned using a bilinear receptor model, positive matrix factorization (PMF). Measurements of aerosol size distributions and number concentrations for particles in the size range of 10-500 nm have been made since December 2001 to date in Rochester. The measurements are being made using a scanning mobility particle sizer (SMPS) consisting of a DMA and a CPC (TSI models 3071 and 3010, respectively). From December 2001 to March 2004, particle measurements were made at the NYS DEC site in downtown Rochester, but it was moved to the eastside of Rochester in May 2004. Each measurement period was divided into three seasons i.e., winter (December, January, and February), summer (June, July, and August), and the transitional periods (March, April, May, September, October, and November) so as to avoid experimental uncertainty resulting from too large season-to-season variability in ambient temperature and solar photon intensity that would lead to unstable/non-stationary size distributions. Therefore, the seasons were analyzed independently for possible sources. Ten sources were identified at both sites and these include traffic, nucleation, residential/commercial heating, industrial emissions, secondary nitrate, ozone- rich secondary aerosol, secondary sulfate, regionally transported aerosol, and a mixed source of nucleation and traffic. These results show that the measured total outdoor particle number concentrations in Rochester generally vary with similar temporal patterns, suggesting that the central monitoring site data can be used to estimate outdoor exposure in other parts of the city.

  3. Chemical characteristics and source apportionment of fine particulate organic carbon in Hong Kong during high particulate matter episodes in winter 2003

    Science.gov (United States)

    Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Schauer, James J.; Yuan, Zibing; Lau, Alexis K. H.; Louie, Peter K. K.

    2013-02-01

    PM2.5 samples were collected at six general stations and one roadside station in Hong Kong in two periods of high particulate matter (PM) in 2003 (27 October-4 November and 30 November-13 December). The highest PM2.5 reached 216 μg m- 3 during the first high PM period and 113 μg m- 3 during the second high PM period. Analysis of synoptic weather conditions identified individual sampling days under dominant influence of one of three types of air masses, that is, local, regional and long-range transported (LRT) air masses. Roadside samples were discussed separately due to heavy influences from vehicular emissions. This research examines source apportionment of fine organic carbon (OC) and contribution of secondary organic aerosol on high PM days under different synoptic conditions. Six primary OC (POC) sources (vehicle exhaust, biomass burning, cooking, cigarette smoke, vegetative detritus, and coal combustion) were identified on the basis of characteristic organic tracers. Individual POC source contributions were estimated using chemical mass balance model. In the roadside and the local samples, OC was dominated by the primary sources, accounting for more than 74% of OC. In the samples influenced by regional and LRT air masses, secondary OC (SOC), which was approximated to be the difference between the total measured OC and the apportioned POC, contributed more than 54% of fine OC. SOC was highly correlated with water-soluble organic carbon and sulfate, consistent with its secondary nature.

  4. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    Science.gov (United States)

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  5. A comparison of four gravimetric fine particle sampling methods.

    Science.gov (United States)

    Yanosky, J D; MacIntosh, D L

    2001-06-01

    A study was conducted to compare four gravimetric methods of measuring fine particle (PM2.5) concentrations in air: the BGI, Inc. PQ200 Federal Reference Method PM2.5 (FRM) sampler; the Harvard-Marple Impactor (HI); the BGI, Inc. GK2.05 KTL Respirable/Thoracic Cyclone (KTL); and the AirMetrics MiniVol (MiniVol). Pairs of FRM, HI, and KTL samplers and one MiniVol sampler were collocated and 24-hr integrated PM2.5 samples were collected on 21 days from January 6 through April 9, 2000. The mean and standard deviation of PM2.5 levels from the FRM samplers were 13.6 and 6.8 microg/m3, respectively. Significant systematic bias was found between mean concentrations from the FRM and the MiniVol (1.14 microg/m3, p = 0.0007), the HI and the MiniVol (0.85 microg/m3, p = 0.0048), and the KTL and the MiniVol (1.23 microg/m3, p = 0.0078) according to paired t test analyses. Linear regression on all pairwise combinations of the sampler types was used to evaluate measurements made by the samplers. None of the regression intercepts was significantly different from 0, and only two of the regression slopes were significantly different from 1, that for the FRM and the MiniVol [beta1 = 0.91, 95% CI (0.83-0.99)] and that for the KTL and the MiniVol [beta1 = 0.88, 95% CI (0.78-0.98)]. Regression R2 terms were 0.96 or greater between all pairs of samplers, and regression root mean square error terms (RMSE) were 1.65 microg/m3 or less. These results suggest that the MiniVol will underestimate measurements made by the FRM, the HI, and the KTL by an amount proportional to PM2.5 concentration. Nonetheless, these results indicate that all of the sampler types are comparable if approximately 10% variation on the mean levels and on individual measurement levels is considered acceptable and the actual concentration is within the range of this study (5-35 microg/m3).

  6. Improved process for heating finely divided carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    1956-08-01

    A process for heating finely divided carbonaceous particles by burning a proportion of the carbon consists of passing the carbonaceous material at a temperature above 800/sup 0/F into an upwardly disposed, slender, combustion zone, suspending the particles in an upwardly-moving gas containing free oxygen so that the suspension has a density from 0.1 to 5.0 lb/cu. ft., passing the suspension upwardly through the combustion zone at a velocity of from 5 to 100 ft./sec., and injecting at least one stream of a second gas containing free oxygen at a point in the combustion zone such that at least 50% of the oxygen in the first gas has been consumed by the time the suspension reaches this point. The total quantity of oxygen is chosen so that the finely divided carbonaceous material is heated to a temperature of not less than 1,050/sup 0/F.

  7. Coating of Si3N4 fine particles with AlN by fluidized bed-CVD; Ryudoso CVD ho ni yoru Si3N4 biryushi no AlN hifuku

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, S.; Oyama, Y. [Hokkaido National Industrial Research Institute, Sapporo (Japan); Harima, K.; Kondo, K.; Shinohara, K. [Hokkaido University, Sapporo (Japan)

    1996-03-10

    Agglomerates of 100-250 {mu}m consisting of Si3N4 primary particles of 0.76 {mu}m were made with a rotary vibrating sieve. Si3N4 fine particles were coated with AlN by gas phase reaction with AlCl3 and NH3 in some fluidized beds of the agglomerates. The cross sectional distribution of AlN in the agglomerate was measured by EPMA analysis. As a result, uniform deposition of AlN was obtained at a relatively low reaction temperature and low gas velocity. 4 refs., 3 figs.

  8. Chemical mass balance source apportionment of fine and PM10 in the Desert Southwest, USA

    Directory of Open Access Journals (Sweden)

    Andrea L. Clements

    2016-03-01

    Full Text Available The Desert Southwest Coarse Particulate Matter Study was undertaken in Pinal County, Arizona, to better understand the origin and impact of sources of fine and coarse particulate matter (PM in rural, arid regions of the U.S. southwestern desert. The desert southwest experiences some of the highest PM10 mass concentrations in the country. To augment previously reported results, 6-week aggregated organic speciation data that included ambient concentrations of n-alkanes, polycyclic aromatic hydrocarbons, organic acids, and saccharides were used in chemical mass balance modeling (CMB. A set of re-suspended soil samples were analyzed for specific marker species to provide locally-appropriate source profiles for the CMB analysis. These profiles, as well as previously collected plant and fungal spore profiles from the region, were combined with published source profiles for other relevant sources and used in the CMB analysis. The six new region-specific source profiles included both organic and inorganic species for four crustal material sources, one plant detritus source, and one fungal spore source.Results indicate that up to half of the ambient PM2.5 was apportioned to motor vehicles with the highest regional contribution observed in the small urban center of Casa Grande. Daily levels of apportioned crustal material accounted for up to 50% of PM2.5 mass with the highest contributions observed at the sites closest to active agricultural areas. Apportioned secondary PM, biomass burning, and road dust typically contributed less than 35% as a group to the apportioned PM2.5 mass. Crustal material was the primary source apportioned to PM10 and accounted for between 50–90% of the apportioned mass. Of the other sources apportioned to PM10, motor vehicles and road dust were the largest contributors at the urban and one of the rural sites, whereas road dust and meat cooking operations were the largest contributors at the other rural site.

  9. Evidence for the distortion product frequency place as a source of distribution product otoacoustic emission (DPOAE) fine structure in humans : I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1

    NARCIS (Netherlands)

    Mauermann, M; Uppenkamp, S; van Hengel, P.W.J.; Kollmeier, B

    1999-01-01

    Critical experiments were performed in order to validate the two-source hypothesis of distortion product otoacoustic emissions (DPOAE) generation. Measurements of the spectral fine structure of DPOAE in response to stimulation with two sinusoids have been:performed with normal-hearing subjects. The

  10. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  11. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    Science.gov (United States)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  12. On the sources of submicron aerosol particles in savannah: implications for climate and air quality

    Energy Technology Data Exchange (ETDEWEB)

    Vakkari, V.

    2013-11-01

    Aerosol is defined as solid or liquid particles suspended in a gas lighter than the particles, which means that the atmosphere we live in is an aerosol in itself. Although aerosol particles are only a trace component of the atmosphere they affect our lives in several ways. The aerosol particles can cause adverse health effects and deteriorate visibility, but they affect also the Earth s climate directly by scattering and absorbing solar radiation and indirectly by modulating the properties of the clouds. Anthropogenic aerosol particles have a net cooling effect on the climate, but the uncertainty in the amount of cooling is presently as large as the heating effect of carbon dioxide. To reduce the uncertainty in the aerosol climate effects, spatially representative reference data of high quality are needed for the global climate models. To be able to capture the diurnal and seasonal variability the data have to be collected continuously over time periods that cover at least one full seasonal cycle. Until recently such data have been nearly non-existing for continental Africa and hence one aim of this work was to establish a permanent measurement station measuring the key aerosol particle properties in a continental location in southern Africa. In close collaboration with the North-West University in South Africa this aim has now been achieved at the Welgegund measurement station. The other aims of this work were to determine the aerosol particle concentrations including their seasonal and diurnal variation and to study the most important aerosol particle sources in continental southern Africa. In this thesis the aerosol size distribution and its seasonal and diurnal variation is reported for different environments ranging from a clean rural background to an anthropogenically heavily influenced mining region in continental southern Africa. Atmospheric regional scale new particle formation has been observed at a world record high frequency and it dominates the diurnal

  13. Two-phase flow in beds of spherical particles

    International Nuclear Information System (INIS)

    Schulenberg, T.; Mueller, U.

    1984-02-01

    A refined model for two-phase flow in beds of uniform spherical particles is presented. It includes the influence of interfacial drag forces between liquid and gas, which are important in beds of coarse particles, and an incrase of porosity due to vapour channels or similiar irreversible bed disturbances, which occur in beds of fine particles. The model is based on the momentum equations for separated flow, which are closed with empirical relations for wall shear stress and interfacial drag. To improve this model it is applied to volumetrically heated beds on a adiabatic bottom, which are saturated and superimposed with a boiling liquid. In case of fine particles only an impermeable bottom is considered, whereas in case of coarse particles also beds on a permeable support are discussed. (orig.) [de

  14. Micro Fine Sized Palm Oil Fuel Ash Produced Using a Wind Tunnel Production System

    Directory of Open Access Journals (Sweden)

    R. Ahmadi

    2016-01-01

    Full Text Available Micro fine sized palm oil fuel ash (POFA is a new supplementary cementitious material that can increase the strength, durability, and workability of concrete. However, production of this material incurs high cost and is not practical for the construction industry. This paper investigates a simple methodology of producing micro fine sized POFA by means of a laboratory scale wind tunnel system. The raw POFA obtained from an oil palm factory is first calcined to remove carbon residue and then grinded in Los Angeles abrasion machine. The grinded POFA is then blown in the fabricated wind tunnel system for separation into different ranges of particle sizes. The physical, morphological, and chemical properties of the micro fine sized POFA were then investigated using Laser Particle Size Analyser (PSA, nitrogen sorption, and Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX. A total of 32.1% micro fine sized POFA were collected from each sample blown, with the size range of 1–10 micrometers. The devised laboratory scale of wind tunnel production system is successful in producing micro fine sized POFA and, with modifications, this system is envisaged applicable to be used to commercialize micro fine sized POFA production for the construction industry.

  15. Source characterization of urban particles from meat smoking activities in Chongqing, China using single particle aerosol mass spectrometry.

    Science.gov (United States)

    Chen, Yang; Wenger, John C; Yang, Fumo; Cao, Junji; Huang, Rujin; Shi, Guangming; Zhang, Shumin; Tian, Mi; Wang, Huanbo

    2017-09-01

    A Single Particle Aerosol Mass Spectrometer (SPAMS) was deployed in the urban area of Chongqing to characterize the particles present during a severe particulate pollution event that occurred in winter 2014-2015. The measurements were made at a time when residents engaged in traditional outdoor meat smoking activities to preserve meat before the Chinese Spring Festival. The measurement period was predominantly characterized by stagnant weather conditions, highly elevated levels of PM 2.5 , and low visibility. Eleven major single particle types were identified, with over 92.5% of the particles attributed to biomass burning emissions. Most of the particle types showed appreciable signs of aging in the stagnant air conditions. To simulate the meat smoking activities, a series of controlled smoldering experiments was conducted using freshly cut pine and cypress branches, both with and without wood logs. SPAMS data obtained from these experiments revealed a number of biomass burning particle types, including an elemental and organic carbon (ECOC) type that proved to be the most suitable marker for meat smoking activities. The traditional activity of making preserved meat in southwestern China is shown here to be a major source of particulate pollution. Improved measures to reduce emissions from the smoking of meat should be introduced to improve air quality in regions where smoking meat activity prevails. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Thermal and microstructural properties of fine-grained material at the Viking Lander 1 site

    Science.gov (United States)

    Paton, M. D.; Harri, A.-M.; Savijärvi, H.; Mäkinen, T.; Hagermann, A.; Kemppinen, O.; Johnston, A.

    2016-06-01

    As Viking Lander 1 touched down on Mars one of its footpads fully penetrated a patch of loose fine-grained drift material. The surrounding landing site, as observed by VL-1, was found to exhibit a complex terrain consisting of a crusted surface with an assortment of rocks, large dune-like drifts and smaller patches of drift material. We use a temperature sensor attached to the buried footpad and covered in fine-grained material to determine the thermal properties of drift material at the VL-1 site. The thermal properties are used to investigate the microstructure of the drift material and understand its relevance to surface-atmosphere interactions. We obtained a thermal inertia value of 103 ± 22 tiu. This value is in the upper range of previous thermal inertia estimates of martian dust as measured from orbit and is significantly lower than the regional thermal inertia of the VL-1 site, of around 283 tiu, obtained from orbit. We estimate a thermal inertia of around 263 ± 29 tiu for the duricrust at the VL-1 site. It was noted the patch of fine-grained regolith around the footpad was about 20-30 K warmer compared to similar material beyond the thermal influence of the lander. An effective diameter of 8 ± 5 μm was calculated for the particles in the drift material. This is larger than atmospheric dust and large compared to previous estimates of the drift material particle diameter. We interpret our results as the presence of a range of particle sizes, <8 μm, in the drift material with the thermal properties being controlled by a small amount of large particles (∼8 μm) and its cohesion being controlled by a large amount of smaller particles. The bulk of the particles in the drift material are therefore likely comparable in size to that of atmospheric dust. The possibility of larger particles being locked into a fine-grained material has implications for understanding the mobilisation of wind blown materials on Mars.

  17. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Gunawardena, Janaka, E-mail: j.gunawardena@qut.edu.au; Ziyath, Abdul M., E-mail: mohamed.ziyath@qut.edu.au; Bostrom, Thor E., E-mail: t.bostrom@qut.edu.au; Bekessy, Lambert K., E-mail: l.bekessy@qut.edu.au; Ayoko, Godwin A., E-mail: g.ayoko@qut.edu.au; Egodawatta, Prasanna, E-mail: p.egodawatta@qut.edu.au; Goonetilleke, Ashantha, E-mail: a.goonetilleke@qut.edu.au

    2013-09-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. - Highlights: • The dust storm contributed a large fraction of fine particles to pollutant build-up. • The dust storm increased TSS, Al, Fe and Mn loads in build-up on ground surfaces. • Dust storm did not significantly increase TOC, Ni, Cu, Pb and Cd loads in build-up. • Cr and Zn in dust storm deposition were contributed by local anthropogenic sources.

  18. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia

    International Nuclear Information System (INIS)

    Gunawardena, Janaka; Ziyath, Abdul M.; Bostrom, Thor E.; Bekessy, Lambert K.; Ayoko, Godwin A.; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2013-01-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. - Highlights: • The dust storm contributed a large fraction of fine particles to pollutant build-up. • The dust storm increased TSS, Al, Fe and Mn loads in build-up on ground surfaces. • Dust storm did not significantly increase TOC, Ni, Cu, Pb and Cd loads in build-up. • Cr and Zn in dust storm deposition were contributed by local anthropogenic sources

  19. Response of spontaneously hypertensive rats to inhalation of fine and ultrafine particles from traffic: experimental controlled study

    Directory of Open Access Journals (Sweden)

    Dormans Jan AMA

    2006-05-01

    Full Text Available Abstract Background Many epidemiological studies have shown that mass concentrations of ambient particulate matter (PM are associated with adverse health effects in the human population. Since PM is still a very crude measure, this experimental study has explored the role of two distinct size fractions: ultrafine (3 to 3613 μg/m3 for fCAP and from 269μg/m3 to 556 μg/m3 for u+fCAP. Results Ammonium, nitrate, and sulphate ions accounted for 56 ± 16% of the total fCAP mass concentrations, but only 17 ± 6% of the u+fCAP mass concentrations. Unambiguous particle uptake in alveolar macrophages was only seen after u+fCAP exposures. Neither fCAP nor u+fCAP induced significant changes of cytotoxicity or inflammation in the lung. However, markers of oxidative stress (heme oxygenase-1 and malondialdehyde were affected by both fCAP and u+fCAP exposure, although not always significantly. Additional analysis revealed heme oxygenase-1 (HO-1 levels that followed a nonmonotonic function with an optimum at around 600 μg/m3 for fCAP. As a systemic response, exposure to u+fCAP and fCAP resulted in significant decreases of the white blood cell concentrations. Conclusion Minor pulmonary and systemic effects are observed after both fine and ultrafine + fine PM exposure. These effects do not linearly correlate with the CAP mass. A greater component of traffic CAP and/or a larger proportion ultrafine PM does not strengthen the absolute effects.

  20. Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode

    Directory of Open Access Journals (Sweden)

    P. Seibert

    2004-01-01

    Full Text Available The possibility to calculate linear-source receptor relationships for the transport of atmospheric trace substances with a Lagrangian particle dispersion model (LPDM running in backward mode is shown and presented with many tests and examples. This mode requires only minor modifications of the forward LPDM. The derivation includes the action of sources and of any first-order processes (transformation with prescribed rates, dry and wet deposition, radioactive decay, etc.. The backward mode is computationally advantageous if the number of receptors is less than the number of sources considered. The combination of an LPDM with the backward (adjoint methodology is especially attractive for the application to point measurements, which can be handled without artificial numerical diffusion. Practical hints are provided for source-receptor calculations with different settings, both in forward and backward mode. The equivalence of forward and backward calculations is shown in simple tests for release and sampling of particles, pure wet deposition, pure convective redistribution and realistic transport over a short distance. Furthermore, an application example explaining measurements of Cs-137 in Stockholm as transport from areas contaminated heavily in the Chernobyl disaster is included.

  1. Currents trends in the application of IBA techniques to air pollution source fingerprinting and source apportionment

    International Nuclear Information System (INIS)

    Cohen, David; Stelcer, Ed.; Atanacio, Armand; Crawford, Jagoda

    2013-01-01

    Full text: IBA techniques have been used for many years to characterise fine particle air pollution. This is not new the techniques are well established. Typically 2-3 MeV protons are used to bombard thin filter papers and up to four simultaneous techniques like PIXE, PIGE, RBS and ERDA will be applied to obtain (μg/g) concentrations for elements from hydrogen to lead. Generally low volume samplers are used to sample between 20-30 m 3 of air over a 24 hour period, this together with IBA's sensitivity means that concentrations down to 1 ng/m 3 of air sampled can be readily achieved with only a few minutes of proton irradiation. With these short irradiation times and low sensitivities for a broad range of elements in the periodic table, large numbers of samples can be obtained and analysed very quickly and easily. At ANSTO we have used IBA methods to acquire a database of over 50,000 filters from 85 different sites through Australia and Asia, each filter has been analysed for more than 21 different chemical species. Large databases extending over many years means that modern statistical techniques like positive matrix factorisation (PMF) can be used to define well characterised source fingerprints and source contributions for a range of different fine particle air pollutants. In this paper we will discuss these PMF techniques and show how they identify both natural sources like sea spray and windblown soils as well as anthropogenic sources like automobiles, biomass burning, coal-fired power stations and industrial emissions. These data are particularly useful for Governments, EPA's and managers of pollution to better understanding pollution sources and their relative contributions and hence to better manage air pollution. Current trends are to take these IBA and PMF techniques a step further and to combine them with wind speed and back trajectory data to better pin point and identify emission sources. We show how this is now being applied on both a local

  2. Currents trends in the application of IBA techniques to air pollution source fingerprinting and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, David; Stelcer, Ed.; Atanacio, Armand; Crawford, Jagoda [Australian Nuclear Science and Technology Organisation, Kirrawee DC (Australia)

    2013-07-01

    Full text: IBA techniques have been used for many years to characterise fine particle air pollution. This is not new the techniques are well established. Typically 2-3 MeV protons are used to bombard thin filter papers and up to four simultaneous techniques like PIXE, PIGE, RBS and ERDA will be applied to obtain (μg/g) concentrations for elements from hydrogen to lead. Generally low volume samplers are used to sample between 20-30 m{sup 3} of air over a 24 hour period, this together with IBA's sensitivity means that concentrations down to 1 ng/m{sup 3} of air sampled can be readily achieved with only a few minutes of proton irradiation. With these short irradiation times and low sensitivities for a broad range of elements in the periodic table, large numbers of samples can be obtained and analysed very quickly and easily. At ANSTO we have used IBA methods to acquire a database of over 50,000 filters from 85 different sites through Australia and Asia, each filter has been analysed for more than 21 different chemical species. Large databases extending over many years means that modern statistical techniques like positive matrix factorisation (PMF) can be used to define well characterised source fingerprints and source contributions for a range of different fine particle air pollutants. In this paper we will discuss these PMF techniques and show how they identify both natural sources like sea spray and windblown soils as well as anthropogenic sources like automobiles, biomass burning, coal-fired power stations and industrial emissions. These data are particularly useful for Governments, EPA's and managers of pollution to better understanding pollution sources and their relative contributions and hence to better manage air pollution. Current trends are to take these IBA and PMF techniques a step further and to combine them with wind speed and back trajectory data to better pin point and identify emission sources. We show how this is now being applied on both

  3. Reduction of atmospheric fine particle level by restricting the idling vehicles around a sensitive area.

    Science.gov (United States)

    Lee, Yen-Yi; Lin, Sheng-Lun; Yuan, Chung-Shin; Lin, Ming-Yeng; Chen, Kang-Shin

    2018-07-01

    Atmospheric particles are a major problem that could lead to harmful effects on human health, especially in densely populated urban areas. Chiayi is a typical city with very high population and traffic density, as well as being located at the downwind side of several pollution sources. Multiple contributors for PM 2.5 (particulate matter with an aerodynamic diameter ≥2.5 μm) and ultrafine particles cause complicated air quality problems. This study focused on the inhibition of local emission sources by restricting the idling vehicles around a school area and evaluating the changes in surrounding atmospheric PM conditions. Two stationary sites were monitored, including a background site on the upwind side of the school and a campus site inside the school, to monitor the exposure level, before and after the idling prohibition. In the base condition, the PM 2.5  mass concentrations were found to increase 15% from the background, whereas the nitrate (NO 3 - ) content had a significant increase at the campus site. The anthropogenic metal contents in PM 2.5 were higher at the campus site than the background site. Mobile emissions were found to be the most likely contributor to the school hot spot area by chemical mass balance modeling (CMB8.2). On the other hand, the PM 2.5 in the school campus fell to only 2% after idling vehicle control, when the mobile source contribution reduced from 42.8% to 36.7%. The mobile monitoring also showed significant reductions in atmospheric PM 2.5 , PM 0.1 , polycyclic aromatic hydrocarbons (PAHs), and black carbon (BC) levels by 16.5%, 33.3%, 48.0%, and 11.5%, respectively. Consequently, the restriction of local idling emission was proven to significantly reduce PM and harmful pollutants in the hot spots around the school environment. The emission of idling vehicles strongly affects the levels of particles and relative pollutants in near-ground air around a school area. The PM 2.5 mass concentration at a campus site increased from

  4. Particle model of a cylindrical inductively coupled ion source

    Science.gov (United States)

    Ippolito, N. D.; Taccogna, F.; Minelli, P.; Cavenago, M.; Veltri, P.

    2017-08-01

    In spite of the wide use of RF sources, a complete understanding of the mechanisms regulating the RF-coupling of the plasma is still lacking so self-consistent simulations of the involved physics are highly desirable. For this reason we are developing a 2.5D fully kinetic Particle-In-Cell Monte-Carlo-Collision (PIC-MCC) model of a cylindrical ICP-RF source, keeping the time step of the simulation small enough to resolve the plasma frequency scale. The grid cell dimension is now about seven times larger than the average Debye length, because of the large computational demand of the code. It will be scaled down in the next phase of the development of the code. The filling gas is Xenon, in order to minimize the time lost by the MCC collision module in the first stage of development of the code. The results presented here are preliminary, with the code already showing a good robustness. The final goal will be the modeling of the NIO1 (Negative Ion Optimization phase 1) source, operating in Padua at Consorzio RFX.

  5. Development of a hadron blind detector using a finely segmented pad readout

    International Nuclear Information System (INIS)

    Kanno, Koki; Aoki, Kazuya; Aramaki, Yoki; En'yo, Hideto; Kawama, Daisuke; Komatsu, Yusuke; Masumoto, Shinichi; Nakai, Wataru; Obara, Yuki; Ozawa, Kyoichiro; Sekimoto, Michiko; Shibukawa, Takuya; Takahashi, Tomonori; Watanabe, Yosuke; Yokkaichi, Satoshi

    2016-01-01

    We constructed a hadron blind detector (HBD) using a finely segmented pad readout. The finely segmented pad readout enabled us to adopt an advanced particle identification method which applies a threshold to the number of pad hits in addition to the total amount of collected charge. The responses of the detector to electrons and pions were evaluated using a negatively charged secondary beam at 1.0 GeV/c containing 20% electrons at the J-PARC K1.1BR beam line. We observed 7.3 photoelectrons per incident electron. Using the advanced particle identification method, an electron detection efficiency of 83% was achieved with a pion rejection factor of 120. The method improved the pion rejection by approximately a factor of five, compared to the one which just applies a threshold to the amount of collected charge. The newly introduced finely segmented pad readout was found to be effective in rejecting pions.

  6. Development of a hadron blind detector using a finely segmented pad readout

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Koki, E-mail: kkanno@post.kek.jp [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aoki, Kazuya [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Aramaki, Yoki; En' yo, Hideto; Kawama, Daisuke [RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Komatsu, Yusuke; Masumoto, Shinichi [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakai, Wataru [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Obara, Yuki [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ozawa, Kyoichiro; Sekimoto, Michiko [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Shibukawa, Takuya [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Takahashi, Tomonori [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Watanabe, Yosuke [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yokkaichi, Satoshi [RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2016-05-21

    We constructed a hadron blind detector (HBD) using a finely segmented pad readout. The finely segmented pad readout enabled us to adopt an advanced particle identification method which applies a threshold to the number of pad hits in addition to the total amount of collected charge. The responses of the detector to electrons and pions were evaluated using a negatively charged secondary beam at 1.0 GeV/c containing 20% electrons at the J-PARC K1.1BR beam line. We observed 7.3 photoelectrons per incident electron. Using the advanced particle identification method, an electron detection efficiency of 83% was achieved with a pion rejection factor of 120. The method improved the pion rejection by approximately a factor of five, compared to the one which just applies a threshold to the amount of collected charge. The newly introduced finely segmented pad readout was found to be effective in rejecting pions.

  7. Generation and emplacement of fine-grained ejecta in planetary impacts

    Science.gov (United States)

    Ghent, R.R.; Gupta, V.; Campbell, B.A.; Ferguson, S.A.; Brown, J.C.W.; Fergason, R.L.; Carter, L.M.

    2010-01-01

    We report here on a survey of distal fine-grained ejecta deposits on the Moon, Mars, and Venus. On all three planets, fine-grained ejecta form circular haloes that extend beyond the continuous ejecta and other types of distal deposits such as run-out lobes or ramparts. Using Earth-based radar images, we find that lunar fine-grained ejecta haloes represent meters-thick deposits with abrupt margins, and are depleted in rocks 1cm in diameter. Martian haloes show low nighttime thermal IR temperatures and thermal inertia, indicating the presence of fine particles estimated to range from ???10??m to 10mm. Using the large sample sizes afforded by global datasets for Venus and Mars, and a complete nearside radar map for the Moon, we establish statistically robust scaling relationships between crater radius R and fine-grained ejecta run-out r for all three planets. On the Moon, ???R-0.18 for craters 5-640km in diameter. For Venus, radar-dark haloes are larger than those on the Moon, but scale as ???R-0.49, consistent with ejecta entrainment in Venus' dense atmosphere. On Mars, fine-ejecta haloes are larger than lunar haloes for a given crater size, indicating entrainment of ejecta by the atmosphere or vaporized subsurface volatiles, but scale as R-0.13, similar to the ballistic lunar scaling. Ejecta suspension in vortices generated by passage of the ejecta curtain is predicted to result in ejecta run-out that scales with crater size as R1/2, and the wind speeds so generated may be insufficient to transport particles at the larger end of the calculated range. The observed scaling and morphology of the low-temperature haloes leads us rather to favor winds generated by early-stage vapor plume expansion as the emplacement mechanism for low-temperature halo materials. ?? 2010 Elsevier Inc.

  8. The Two Sources of Solar Energetic Particles

    Science.gov (United States)

    Reames, Donald V.

    2013-06-01

    Evidence for two different physical mechanisms for acceleration of solar energetic particles (SEPs) arose 50 years ago with radio observations of type III bursts, produced by outward streaming electrons, and type II bursts from coronal and interplanetary shock waves. Since that time we have found that the former are related to "impulsive" SEP events from impulsive flares or jets. Here, resonant stochastic acceleration, related to magnetic reconnection involving open field lines, produces not only electrons but 1000-fold enhancements of 3He/4He and of ( Z>50)/O. Alternatively, in "gradual" SEP events, shock waves, driven out from the Sun by coronal mass ejections (CMEs), more democratically sample ion abundances that are even used to measure the coronal abundances of the elements. Gradual events produce by far the highest SEP intensities near Earth. Sometimes residual impulsive suprathermal ions contribute to the seed population for shock acceleration, complicating the abundance picture, but this process has now been modeled theoretically. Initially, impulsive events define a point source on the Sun, selectively filling few magnetic flux tubes, while gradual events show extensive acceleration that can fill half of the inner heliosphere, beginning when the shock reaches ˜2 solar radii. Shock acceleration occurs as ions are scattered back and forth across the shock by resonant Alfvén waves amplified by the accelerated protons themselves as they stream away. These waves also can produce a streaming-limited maximum SEP intensity and plateau region upstream of the shock. Behind the shock lies the large expanse of the "reservoir", a spatially extensive trapped volume of uniform SEP intensities with invariant energy-spectral shapes where overall intensities decrease with time as the enclosing "magnetic bottle" expands adiabatically. These reservoirs now explain the slow intensity decrease that defines gradual events and was once erroneously attributed solely to slow

  9. Principles, techniques and recent advances in fine particle aggregation for solid-liquid separation

    International Nuclear Information System (INIS)

    Somasundaran, P.; Vasudevan, T.V.

    1993-01-01

    Waste water discharged from various chemical and nuclear processing operations contains dissolved metal species that are highly toxic and, in some cases, radioactive. When the waste is acidic in nature, neutralization using reagents such as lime is commonly practiced to reduce both the acidity and the amount of waste (Kuyucak et al.). The sludge that results from the neutralization process contains metal oxide or hydroxide precipitates that are colloidal in nature and is highly stable. Destabilization of colloidal suspensions can be achieved by aggregation of fines into larger sized agglomerates. Aggregation of fines is a complex phenomenon involving a multitude of forces that control the interparticle interaction. In order to understand the colloidal behavior of suspensions a fundamental knowledge of physicochemical properties that determine the various forces is essential. In this review, a discussion of basic principles governing the aggregation of colloidal fines, various ways in which interparticle forces can be manipulated to achieve the desired aggregation response and recent advances in experimental techniques to probe the interfacial characteristics that control the flocculation behavior are discussed

  10. Estimate of main local sources to ambient ultrafine particle number concentrations in an urban area

    Science.gov (United States)

    Rahman, Md Mahmudur; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia

    2017-09-01

    Quantifying and apportioning the contribution of a range of sources to ultrafine particles (UFPs, D oil refineries, and seaport) sources to the total ambient particle number concentration (PNC) in a busy, inner-city area in Brisbane, Australia using Bayesian statistical modelling and other exploratory tools. The Bayesian model was trained on the PNC data on days where NP formations were known to have not occurred, hourly traffic counts, solar radiation data, and smooth daily trend. The model was applied to apportion and quantify the contribution of NP formations and local traffic and non-traffic sources to UFPs. The data analysis incorporated long-term measured time-series of total PNC (D ≥ 6 nm), particle number size distributions (PSD, D = 8 to 400 nm), PM2.5, PM10, NOx, CO, meteorological parameters and traffic counts at a stationary monitoring site. The developed Bayesian model showed reliable predictive performances in quantifying the contribution of NP formation events to UFPs (up to 4 × 104 particles cm- 3), with a significant day to day variability. The model identified potential NP formation and no-formations days based on PNC data and quantified the sources contribution to UFPs. Exploratory statistical analyses show that total mean PNC during the middle of the day was up to 32% higher than during peak morning and evening traffic periods, which were associated with NP formation events. The majority of UFPs measured during the peak traffic and NP formation periods were between 30-100 nm and smaller than 30 nm, respectively. To date, this is the first application of Bayesian model to apportion different sources contribution to UFPs, and therefore the importance of this study is not only in its modelling outcomes but in demonstrating the applicability and advantages of this statistical approach to air pollution studies.

  11. Seasonal variation and volatility of ultra-fine particles in coastal Antarctic troposphere

    Directory of Open Access Journals (Sweden)

    Keiichiro Hara

    2010-12-01

    Full Text Available The Size distribution and volatility of ultrafine aerosol particles were measured at Syowa Station during the 46-47 Japanese Antarctic Research Expeditions. During the summer, most of the ultrafine particles were volatile particles, which were composed of H_2SO_4, CH_3SO_3H and sulfates bi-sulfates. The abundance of non-volatile particles was ~ 20% during the summer, increasing to>90% in winter-spring. Non-volatile particles in winter were dominantly sea-salt particles. Some ultrafine sea-salt particles might be released from sea-ice. When air mass was transported from the free troposphere over the Antarctic continent, the abundance of non-volatile particles dropped to<30% even in winter.

  12. Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion

    Science.gov (United States)

    Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.

    2014-08-01

    Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R&D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion.

  13. Flotation mechanisms of molybdenite fines by neutral oils

    Science.gov (United States)

    Lin, Qing-quan; Gu, Guo-hua; Wang, Hui; Liu, You-cai; Fu, Jian-gang; Wang, Chong-qing

    2018-01-01

    The flotation mechanisms of molybdenite fines by neutral oils were investigated through microflotation test, turbidity measurements, infrared spectroscopy, and interfacial interaction calculations. The results of the flotation test show that at pH 2-11, the floatability of molybdenite fines in the presence of transformer oil is markedly better than that in the presence of kerosene and diesel oil. The addition of transformer oil, which enhances the floatability of molybdenite fines, promotes the aggregation of molybdenite particles. Fourier transform infrared measurements illustrate that physical interaction dominates the adsorption mechanism of neutral oil on molybdenite. Interfacial interaction calculations indicate that hydrophobic attraction is the crucial force that acts among the oil collector, water, and molybdenite. Strong hydrophobic attraction between the oily collector and water provides the strong dispersion capability of the collector in water. Furthermore, the dispersion capability of the collector, not the interaction strength between the oily collectors and molybdenite, has a highly significant role in the flotation system of molybdenite fines. Our findings provide insights into the mechanism of molybdenite flotation.

  14. Genotoxicity, inflammation and physico-chemical properties of fine particle samples from an incineration energy plant and urban air

    DEFF Research Database (Denmark)

    Sharma, Anoop Kumar; Jensen, Keld Alstrup; Rank, Jette

    2007-01-01

    in the receiving hall may be due to vehicle emissions and suspended waste particles. The inorganic content in the street and background air may have been influenced by break wear, road emissions and long-range transport. The results from a partial least-square regression analysis predicted that both PAHs...... in particle size distribution, chemical composition and the resulting biological effects when A549 cells were incubated with the PM. These characteristics and observations in the oven hall indicated that the PM source was oven exhaust, which was well combusted. (c) 2007 Elsevier B.V. All rights reserved....

  15. Electron beam ion sources for use in second generation synchrotrons for medical particle therapy

    Science.gov (United States)

    Zschornack, G.; Ritter, E.; Schmidt, M.; Schwan, A.

    2014-02-01

    Cyclotrons and first generation synchrotrons are the commonly applied accelerators in medical particle therapy nowadays. Next generation accelerators such as Rapid Cycling Medical Synchrotrons (RCMS), direct drive accelerators, or dielectric wall accelerators have the potential to improve the existing accelerator techniques in this field. Innovative accelerator concepts for medical particle therapy can benefit from ion sources which meet their special requirements. In the present paper we report on measurements with a superconducting Electron Beam Ion Source, the Dresden EBIS-SC, under the aspect of application in combination with RCMS as a well proven technology. The measurements indicate that this ion source can offer significant advantages for medical particle therapy. We show that a superconducting EBIS can deliver ion pulses of medically relevant ions such as protons, C4 + and C6 + ions with intensities and frequencies required for RCMS [S. Peggs and T. Satogata, "A survey of Hadron therapy accelerator technology," in Proceedings of PAC07, BNL-79826- 2008-CP, Albuquerque, New Mexico, USA, 2007; A. Garonna, U. Amaldi et al., "Cyclinac medical accelerators using pulsed C6 +/H+_2 ion sources," in Proceedings of EBIST 2010, Stockholm, Sweden, July 2010]. Ion extraction spectra as well as individual ion pulses have been measured. For example, we report on the generation of proton pulses with up to 3 × 109 protons per pulse and with frequencies of up to 1000 Hz at electron beam currents of 600 mA.

  16. Monte Carlo study of radial energy deposition from primary and secondary particles for narrow and large proton beamlet source models

    International Nuclear Information System (INIS)

    Peeler, Christopher R; Titt, Uwe

    2012-01-01

    In spot-scanning intensity-modulated proton therapy, numerous unmodulated proton beam spots are delivered over a target volume to produce a prescribed dose distribution. To accurately model field size-dependent output factors for beam spots, the energy deposition at positions radial to the central axis of the beam must be characterized. In this study, we determined the difference in the central axis dose for spot-scanned fields that results from secondary particle doses by investigating energy deposition radial to the proton beam central axis resulting from primary protons and secondary particles for mathematical point source and distributed source models. The largest difference in the central axis dose from secondary particles resulting from the use of a mathematical point source and a distributed source model was approximately 0.43%. Thus, we conclude that the central axis dose for a spot-scanned field is effectively independent of the source model used to calculate the secondary particle dose. (paper)

  17. Characterization of Fine Metal Particles Derived from Shredded WEEE Using a Hyperspectral Image System: Preliminary Results

    Science.gov (United States)

    Candiani, Gabriele; Picone, Nicoletta; Pompilio, Loredana; Pepe, Monica; Colledani, Marcello

    2017-01-01

    Waste of electric and electronic equipment (WEEE) is the fastest-growing waste stream in Europe. The large amount of electric and electronic products introduced every year in the market makes WEEE disposal a relevant problem. On the other hand, the high abundance of key metals included in WEEE has increased the industrial interest in WEEE recycling. However, the high variability of materials used to produce electric and electronic equipment makes key metals’ recovery a complex task: the separation process requires flexible systems, which are not currently implemented in recycling plants. In this context, hyperspectral sensors and imaging systems represent a suitable technology to improve WEEE recycling rates and the quality of the output products. This work introduces the preliminary tests using a hyperspectral system, integrated in an automatic WEEE recycling pilot plant, for the characterization of mixtures of fine particles derived from WEEE shredding. Several combinations of classification algorithms and techniques for signal enhancement of reflectance spectra were implemented and compared. The methodology introduced in this study has shown characterization accuracies greater than 95%. PMID:28505070

  18. Characterization of SiC based composite materials by the infiltration of ultra-fine SiC particles

    International Nuclear Information System (INIS)

    Lee, J.K.; Lee, S.P.; Byun, J.H.

    2010-01-01

    The fabrication route of SiC materials by the complex compound of ultra-fine SiC particles and oxide additive materials has been investigated. Especially, the effect of additive composition ratio on the characterization of SiC materials has been examined. The characterization of C/SiC composites reinforced with plain woven carbon fabrics was also investigated. The fiber preform for C/SiC composites was prepared by the infiltration of complex mixture into the carbon fabric structure. SiC based composite materials were fabricated by a pressure assisted liquid phase sintering process. SiC materials possessed a good density higher than about 3.0 Mg/m 3 , accompanying the creation of secondary phase by the chemical reaction of additive materials. C/SiC composites also represented a dense morphology in the intra-fiber bundle region, even if this material had a sintered density lower than that of monolithic SiC materials. The flexural strength of SiC materials was greatly affected by the composition ratio of additive materials.

  19. Individual aerosol particles in ambient and updraft conditions below convective cloud bases in the Oman mountain region

    Science.gov (United States)

    Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.

    2014-03-01

    An airborne study of cloud microphysics provided an opportunity to collect aerosol particles in ambient and updraft conditions of natural convection systems for transmission electron microscopy (TEM). Particles were collected simultaneously on lacey carbon and calcium-coated carbon (Ca-C) TEM grids, providing information on particle morphology and chemistry and a unique record of the particle's physical state on impact. In total, 22 particle categories were identified, including single, coated, aggregate, and droplet types. The fine fraction comprised up to 90% mixed cation sulfate (MCS) droplets, while the coarse fraction comprised up to 80% mineral-containing aggregates. Insoluble (dry), partially soluble (wet), and fully soluble particles (droplets) were recorded on Ca-C grids. Dry particles were typically silicate grains; wet particles were mineral aggregates with chloride, nitrate, or sulfate components; and droplets were mainly aqueous NaCl and MCS. Higher numbers of droplets were present in updrafts (80% relative humidity (RH)) compared with ambient conditions (60% RH), and almost all particles activated at cloud base (100% RH). Greatest changes in size and shape were observed in NaCl-containing aggregates (>0.3 µm diameter) along updraft trajectories. Their abundance was associated with high numbers of cloud condensation nuclei (CCN) and cloud droplets, as well as large droplet sizes in updrafts. Thus, compositional dependence was observed in activation behavior recorded for coarse and fine fractions. Soluble salts from local pollution and natural sources clearly affected aerosol-cloud interactions, enhancing the spectrum of particles forming CCN and by forming giant CCN from aggregates, thus, making cloud seeding with hygroscopic flares ineffective in this region.

  20. Metabarcoding-based fungal diversity on coarse and fine particulate organic matter in a first-order stream in Nova Scotia, Canada [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Christian Wurzbacher

    2016-02-01

    Full Text Available Most streams receive substantial inputs of allochthonous organic material in the form of leaves and twigs (CPOM, coarse particulate organic matter. Mechanical and biological processing converts this into fine particulate organic matter (FPOM. Other sources of particles include flocculated dissolved matter and soil particles. Fungi are known to play a role in the CPOM conversion process, but the taxonomic affiliations of these fungi remain poorly studied. The present study seeks to shed light on the composition of fungal communities on FPOM and CPOM as assessed in a natural stream in Nova Scotia, Canada. Maple leaves were exposed in a stream for four weeks and their fungal community evaluated through pyrosequencing. Over the same period, four FPOM size fractions were collected by filtration and assessed. Particles had much lower ergosterol contents than leaves, suggesting major differences in the extent of fungal colonization. Pyrosequencing documented a total of 821 fungal operational taxonomic units (OTU, of which 726 were exclusive to particles and 47 to leaf samples. Most fungal phyla were represented, including yeast lineages (e.g., Taphrinaceae and Saccharomycotina, Basidiomycota, Chytridiomycota and Cryptomycota, but several classes of Pezizomycontina (Ascomycota dominated. Cluster dendrograms clearly separated fungal communities from leaves and from particles. Characterizing fungal communities may shed some light on the processing pathways of fine particles in streams and broadens our view of the phylogenetic composition of fungi in freshwater ecosystems.

  1. Outdoor fine and ultrafine particle measurements at six bus stops with smoking on two California arterial highways--results of a pilot study.

    Science.gov (United States)

    Ott, Wayne R; Acevedo-Bolton, Viviana; Cheng, Kai-Chung; Jiang, Ruo-Ting; Klepeis, Neil E; Hildemann, Lynn M

    2014-01-01

    As indoor smoking bans have become widely adopted, some U.S. communities are considering restricting smoking outdoors, creating a need for measurements of air pollution near smokers outdoors. Personal exposure experiments were conducted with four to five participants at six sidewalk bus stops located 1.5-3.3 m from the curb of two heavily traveled California arterial highways with 3300-5100 vehicles per hour. At each bus stop, a smoker in the group smoked a cigarette. Gravimetrically calibrated continuous monitors were used to measure fine particle concentrations (aerodynamic diameter bus stop, ultrafine particles (UFP), wind speed, temperature, relative humidity, and traffic counts were also measured. For 13 cigarette experiments, the mean PM2.5 personal exposure of the nonsmoker seated 0.5 m from the smoker during a 5-min cigarette ranged from 15 to 153 microg/m3. Of four persons seated on the bench, the smoker received the highest PM2.5 breathing-zone exposure of 192 microg/m3. There was a strong proximity effect: nonsmokers at distances 0.5, 1.0, and 1.5 m from the smoker received mean PM2.5 personal exposures of 59, 40, and 28 microg/m3, respectively, compared with a background level of 1.7 microg/m3. Like the PM2.5 concentrations, UFP concentrations measured 0.5 m from the smoker increased abruptly when a cigarette started and decreased when the cigarette ended, averaging 44,500 particles/cm3 compared with the background level of 7200 particles/cm3. During nonsmoking periods, the UFP background concentrations showed occasional peaks due to traffic, whereas PM2.5 background concentrations were extremely low. The results indicate that a single cigarette smoked outdoors at a bus stop can cause PM2.5 and UFP concentrations near the smoker that are 16-35 and 6.2 times, respectively, higher than the background concentrations due to cars and trucks on an adjacent arterial highway. Rules banning smoking indoors have been widely adopted in the United States and in

  2. Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background site in East Asia

    Directory of Open Access Journals (Sweden)

    J. S. Han

    2006-01-01

    Full Text Available Size- and time-resolved aerosol samples were collected using an eight-stage Davis rotating unit for monitoring (DRUM sampler from 29 March to 29 May in 2002 at Gosan, Jeju Island, Korea, which is one of the representative background sites in East Asia. These samples were analyzed using synchrotron X-ray fluorescence for 3-h average concentrations of 19 elements consisting of S, Si, Al, Fe, Ca, Cl, Cu, Zn, Ti, K, Mn, Pb, Ni, V, Se, As, Rb, Cr, Br. The size-resolved data sets were then analyzed using the positive matrix factorization (PMF technique in order to identify possible sources and estimate their contribution to particulate matter mass. PMF analysis uses the uncertainty of the measured data to provide an optimal weighting. Fifteen sources were resolved in eight size ranges (0.07~12 μm and included continental soil, local soil, sea salt, biomass/biofuel burning, coal combustion, oil heating furnace, residual oil fired boiler, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, copper smelter and volcanic emission. PMF analysis of size-resolved source contributions showed that natural sources represented by local soil, sea salt and continental soil contributed about 79% to the predicted primary particulate matter (PM mass in the coarse size range (1.15~12 μm. On the other hand, anthropogenic sources such as coal combustion and biomass/biofuel burning contributed about 60% in the fine size range (0.56~2.5 μm. The diesel vehicle source contributed the most in the ultra-fine size range (0.07~0.56 μm and was responsible for about 52% of the primary PM mass.

  3. Silicon surface barrier detector and study of energy spectrum of alpha particles from radioactive source

    International Nuclear Information System (INIS)

    Verma, S.D.; Sinha, Vijaya

    1986-01-01

    The principles of working of three commonly used radiation detectors, namely ionization chambers, scintillation counters with photomultiplier tube (PMT) systems and semiconductor detectors are briefly discussed. Out of the semiconductor detectors, the silicon surface barrier (SSB) detector has distinct advantages for detection of radiations, alpha particles in particular. The experimental setup to obtain the energy spectrum of alpha particles from 241 Am source using SSB fabricated in the Physics Department of Gujarat University, Ahmedabad is described. Its performance is compared with scintillation counter using PMT. SSB detector shows a sharp peak of #approx # 3 per cent energy resolution. The factors affecting the peak, namely, electronic noise, source dependent factors and detector-dependent factors are discussed. A method of calibrating SSB detectors based on energy loss mechanism of alpha particles in thin absorbers is described. Applications of such detectors are indicated. (M.G.B.)

  4. On moistening of ash particles in smoke plumes of industrial sources

    International Nuclear Information System (INIS)

    Geints, Yu.E.; Zemlyanov, A.A.

    1992-01-01

    Moistening of ash particles occurring in the humid atmosphere is one of the main factors decreasing the accuracy of the lidar measurements of thickness of smoke emissions. Theoretical investigation of the growth of water coating of smoke particles under different meteorological conditions within the zone of emission has been carried out based on the Gaussian model of smoke plume with slant axis and its parameters. Numerical calculations have shown that in the case of high initial moisture content of the emissions near the source in the smoke plume the zone appears in which water vapor is supersaturated and the effect of particle moistening is significant. Seasonal trends and diurnal variations in temperature and humidity in the surface layer of the atmosphere also substantially affect moistening. Length of the zone of moistening of ash particles is maximum at night in winter under conditions of light breeze. The possibility of retrieving the initial mass concentration of the dry aerosol in the smoke plume has been shown based on lidar measurements of the scattering coefficient within the zone of maximum degree of moistening of smoke plume. 10 refs., 5 figs

  5. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing–Tianjin–Hebei region

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2017-10-01

    Full Text Available The Beijing–Tianjin–Hebei (BTH region has been suffering from the most severe fine-particle (PM2. 5 pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM. The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24–36 % to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM

  6. Variance analysis of the Monte-Carlo perturbation source method in inhomogeneous linear particle transport problems

    International Nuclear Information System (INIS)

    Noack, K.

    1982-01-01

    The perturbation source method may be a powerful Monte-Carlo means to calculate small effects in a particle field. In a preceding paper we have formulated this methos in inhomogeneous linear particle transport problems describing the particle fields by solutions of Fredholm integral equations and have derived formulae for the second moment of the difference event point estimator. In the present paper we analyse the general structure of its variance, point out the variance peculiarities, discuss the dependence on certain transport games and on generation procedures of the auxiliary particles and draw conclusions to improve this method

  7. The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences.

    Science.gov (United States)

    Sarnat, Stefanie Ebelt; Coull, Brent A; Ruiz, Pablo A; Koutrakis, Petros; Suh, Helen H

    2006-02-01

    Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3-]) components, and particle sizes ranging between 0.02 and 10 microm. FINF was highest for BC (median = 0.84) and lowest for NO3- (median = 0.18). The low FINF for NO3- was likely because of volatilization of NO3- particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3-, reflecting the contributions of both particle components to PM25. FINF varied with particle size, air-exchange rate, and outdoor NO3- concentrations. The FINF for particles between 0.7 and 2 microm in size was considerably lower during periods of high as compared with low outdoor NO3- concentrations, suggesting that outdoor NO3- particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas

  8. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions

    Science.gov (United States)

    Landers, Mark N.; Sturm, Terry W.

    2013-01-01

    Turbidity (T) is the most ubiquitous of surrogate technologies used to estimate suspended-sediment concentration (SSC). The effects of sediment size on turbidity are well documented; however, effects from changes in particle size distributions (PSD) are rarely evaluated. Hysteresis in relations of SSC-to-turbidity (SSC~T) for single stormflow events was observed and quantified for a data set of 195 concurrent measurements of SSC, turbidity, discharge, velocity, and volumetric PSD collected during five stormflows in 2009–2010 on Yellow River at Gees Mill Road in metropolitan Atlanta, Georgia. Regressions of SSC-normalized turbidity (T/SSC) on concurrently measured PSD percentiles show an inverse, exponential influence of particle size on turbidity that is not constant across the size range of the PSD. The majority of the influence of PSD on T/SSC is from particles of fine-silt and smaller sizes (finer than 16 microns). This study shows that small changes in the often assumed stability of the PSD are significant to SSC~T relations. Changes of only 5 microns in the fine silt and smaller size fractions of suspended sediment PSD can produce hysteresis in the SSC~T rating that can increase error and produce bias. Observed SSC~T hysteresis may be an indicator of changes in sediment properties during stormflows and of potential changes in sediment sources. Trends in the PSD time series indicate that sediment transport is capacity-limited for sand-sized sediment in the channel and supply-limited for fine silt and smaller sediment from the hillslope.

  9. Flocculation of Pyrite Fines in Aqueous Suspensions with Corn Starch to Eliminate Mechanical Entrainment in Flotation

    Directory of Open Access Journals (Sweden)

    Wei Ge

    2015-10-01

    Full Text Available The hydrophilic flocculation of pyrite fines in aqueous suspensions with corn starch was studied by measuring particle size distribution, microscopy observation and micro-flotation. Furthermore, the interaction of corn starch with pyrite was investigated by determining the adsorption density and based on zeta potential measurements and X-ray photoelectron spectrometer (XPS analysis in this work. The results of the particle size distribution measurement show that corn starch can effectively aggregate pyrite fines, and the pyrite floccules (flocs are sensitive to mechanical stirring. The micro-flotation results suggest that the mechanical entrainment of pyrite fines in flotation can be effectively eliminated through the formation of large-size flocs. The zeta potential of pyrite particles decreases with the addition of corn starch. The XPS results prove that carboxyl groups are generated on the digested corn starch, and both iron hydroxyl compounds and ferrous disulfide on the pyrite surface can chemically interact with the corn starch digested by sodium hydroxide.

  10. Combining stable isotope and carbohydrate analyses in phloem sap and fine roots to study seasonal changes of source-sink relationships in a Mediterranean beech forest.

    Science.gov (United States)

    Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico

    2015-08-01

    Carbon isotope composition (δ(13)C) and carbohydrate content of phloem sap and fine roots were measured in a Mediterranean beech (Fagus sylvatica L.) forest throughout the growing season to study seasonal changes of source-sink relationships. Seasonal variations of δ(13)C and content of phloem sap sugars, collected during the daylight period, reflected the changes in soil and plant water status. The correlation between δ(13)C and content of phloem sap sugars, collected from plants belonging to different social classes, was significantly positive only during the driest month of July. In this month, δ(13)C of phloem sap sugars was inversely related to the increment of trunk radial growth and positively related to δ(13)C of fine roots. We conclude that the relationship between δ(13)C and the amount of phloem sap sugars is affected by a combination of causes, such as sink strength, tree social class, changes in phloem anatomy and transport capacity, and phloem loading of sugars to restore sieve tube turgor following the reduced plant water potential under drought conditions. However, δ(13)C and sugar composition of fine roots suggested that phloem transport of leaf sucrose to this belowground component was not impaired by mild drought and that sucrose was in a large part allocated towards fine roots in July, depending on tree social class. Hence, fine roots could represent a functional carbon sink during the dry seasonal periods, when transport and use of assimilates in other sink tissues are reduced. These results indicate a strict link between above- and belowground processes and highlight a rapid response of this Mediterranean forest to changes in environmental drivers to regulate source-sink relationships and carbon sink capacity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Recycling of PET bottles as fine aggregate in concrete

    International Nuclear Information System (INIS)

    Frigione, Mariaenrica

    2010-01-01

    An attempt to substitute in concrete the 5% by weight of fine aggregate (natural sand) with an equal weight of PET aggregates manufactured from the waste un-washed PET bottles (WPET), is presented. The WPET particles possessed a granulometry similar to that of the substituted sand. Specimens with different cement content and water/cement ratio were manufactured. Rheological characterization on fresh concrete and mechanical tests at the ages of 28 and 365 days were performed on the WPET/concretes as well as on reference concretes containing only natural fine aggregate in order to investigate the influence of the substitution of WPET to the fine aggregate in concrete. It was found that the WPET concretes display similar workability characteristics, compressive strength and splitting tensile strength slightly lower that the reference concrete and a moderately higher ductility.

  12. Usage of Crushed Concrete Fines in Decorative Concrete

    Science.gov (United States)

    Pilipenko, Anton; Bazhenova, Sofia

    2017-10-01

    The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of

  13. Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks.

    Science.gov (United States)

    Muddle, Joanna; Kirton, Stewart B; Parisini, Irene; Muddle, Andrew; Murnane, Darragh; Ali, Jogoth; Brown, Marc; Page, Clive; Forbes, Ben

    2017-01-01

    Dry powder inhalers are increasingly popular for delivering drugs to the lungs for the treatment of respiratory diseases, but are complex products with multivariate performance determinants. Heuristic product development guided by in vitro aerosol performance testing is a costly and time-consuming process. This study investigated the feasibility of using artificial neural networks (ANNs) to predict fine particle fraction (FPF) based on formulation device variables. Thirty-one ANN architectures were evaluated for their ability to predict experimentally determined FPF for a self-consistent dataset containing salmeterol xinafoate and salbutamol sulfate dry powder inhalers (237 experimental observations). Principal component analysis was used to identify inputs that significantly affected FPF. Orthogonal arrays (OAs) were used to design ANN architectures, optimized using the Taguchi method. The primary OA ANN r 2 values ranged between 0.46 and 0.90 and the secondary OA increased the r 2  values (0.53-0.93). The optimum ANN (9-4-1 architecture, average r 2 0.92 ± 0.02) included active pharmaceutical ingredient, formulation, and device inputs identified by principal component analysis, which reflected the recognized importance and interdependency of these factors for orally inhaled product performance. The Taguchi method was effective at identifying successful architecture with the potential for development as a useful generic inhaler ANN model, although this would require much larger datasets and more variable inputs. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Particle flux at the outlet of an Ecr plasma source

    International Nuclear Information System (INIS)

    Gutierrez T, C.; Gonzalez D, J.

    1999-01-01

    The necessity of processing big material areas this has resulted in the development of plasma sources with the important property to be uniform in these areas. Also the continuous diminution in the size of substrates to be processed have stimulated the study of models which allow to predict the control of energy and the density of the ions and neutral particles toward the substrate. On the other hand, there are other applications of the plasma sources where it is very necessary to understand the effects generated by the energetic fluxes of ions and neutrals. These fluxes as well as another beneficial effects can improve the activation energy for the formation and improvement of the diffusion processes in the different materials. In this work, using the drift kinetic approximation is described a model to calculate the azimuthal and radial fluxes in the zone of materials processing of an Ecr plasma source type. The results obtained are compared with experimental results. (Author)

  15. Particle-size distribution and phosphorus forms as a function of hydrological forcing in the Yellow River.

    Science.gov (United States)

    Yao, Qing-Zhen; Du, Jun-Tao; Chen, Hong-Tao; Yu, Zhi-Gang

    2016-02-01

    Samples were collected monthly from January to December in 2010, and daily observations were made during the water-sediment regulation event in June-July 2010. Sequential extractions were applied to determine the forms of P in different particle-size fractions and to assess the potential bioavailability of particulate phosphorus (PP). The results indicated that exchangeable phosphorus, organic phosphorus, authigenic phosphorus, and refractory phosphorus increased with the decreasing of particulate size; conversely, detrital phosphorus decreased with the decreasing of particulate size. The content of bioavailable particulate phosphorus (BAPP) varied greatly in different sizes of particles. In general, the smaller the particle size, the higher the content of bioavailable phosphorus and its proportion in total phosphorous was found in these particles. Hydrological forcing controlled the variability in the major P phases found in the suspended sediments via changes in the sources and the particle grain-size distribution. The variation of particle sizes can be attributed also to different total suspended sediment (TSS) sources. Water-sediment regulation (WSR) mobilized only particulate matter from the riverbed, while during the rainstorm soil erosion and runoff were the main source. The BAPP fluxes associated with the "truly suspended" fraction was approximately 200 times larger than the dissolved inorganic phosphorus (DIP) flux. Thus, the transfer of fine particles to the open sea is most probably accompanied by BAPP release to the DIP and can support greater primary and secondary production.

  16. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    Science.gov (United States)

    Degrendele, C.; Okonski, K.; Melymuk, L.; Landlová, L.; Kukučka, P.; Audy, O.; Kohoutek, J.; Čupr, P.; Klánová, J.

    2016-02-01

    This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine) had higher concentrations on coarse particles ( > 3.0 µm), which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (regardless the toxicity of the pesticide) and lower potential for long-range atmospheric transport.

  17. Installation and Characterization of Charged Particle Sources for Space Environmental Effects Testing

    Science.gov (United States)

    Skevington, Jennifer L.

    2010-01-01

    Charged particle sources are integral devices used by Marshall Space Flight Center s Environmental Effects Branch (EM50) in order to simulate space environments for accurate testing of materials and systems. By using these sources inside custom vacuum systems, materials can be tested to determine charging and discharging properties as well as resistance to sputter damage. This knowledge can enable scientists and engineers to choose proper materials that will not fail in harsh space environments. This paper combines the steps utilized to build a low energy electron gun (The "Skevington 3000") as well as the methods used to characterize the output of both the Skevington 3000 and a manufactured Xenon ion source. Such characterizations include beam flux, beam uniformity, and beam energy. Both sources were deemed suitable for simulating environments in future testing.

  18. Fine crystalline powders. Analysis of scientific and technical literature

    International Nuclear Information System (INIS)

    Denisenko, Eh.T.; Kulik, O.P.; Eremina, T.V.

    1983-01-01

    The state of development and studies of fine crystalline powders for recent five years is reviewed in the paper. Based on data available in literature, the most significant methods for fine metal and alloy powder production are considered and physicochemical properties of ultrafine particles are discussed from the standpoint of their interrelation with promising techniques for powder production. It is stated that the most important feature of ultrafine powder production technique at the present stage is a transition from the stage of data accumulation to that of controlled production of ultrafine structures of various metals and alloys under controllable conditions

  19. An efficient venturi scrubber system to remove submicron particles in exhaust gas.

    Science.gov (United States)

    Tsai, Chuen-Jinn; Lin, Chia-Hung; Wang, Yu-Min; Hunag, Cheng-Hsiung; Li, Shou-Nan; Wu, Zong-Xue; Wang, Feng-Cai

    2005-03-01

    An efficient venturi scrubber system making use of heterogeneous nucleation and condensational growth of particles was designed and tested to remove fine particles from the exhaust of a local scrubber where residual SiH4 gas was abated and lots of fine SiO2 particles were generated. In front of the venturi scrubber, normal-temperature fine-water mist mixes with high-temperature exhaust gas to cool it to the saturation temperature, allowing submicron particles to grow into micron sizes. The grown particles are then scrubbed efficiently in the venturi scrubber. Test results show that the present venturi scrubber system is effective for removing submicron particles. For SiO2 particles greater than 0.1microm, the removal efficiency is greater than 80-90%, depending on particle concentration. The corresponding pressure drop is relatively low. For example, the pressure drop of the venturi scrubber is approximately 15.4 +/- 2.4 cm H2O when the liquid-to-gas ratio is 1.50 L/m3. A theoretical calculation has been conducted to simulate particle growth process and the removal efficiency of the venturi scrubber. The theoretical results agree with the experimental data reasonably well when SiO2 particle diameter is greater than 0.1 microm.

  20. The role of dust storms in total atmospheric particle concentrations at two sites in the western U.S.

    Science.gov (United States)

    Neff, Jason C.; Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Belnap, Jayne

    2013-01-01

    Mineral aerosols are produced during the erosion of soils by wind and are a common source of particles (dust) in arid and semiarid regions. The size of these particles varies widely from less than 2 µm to larger particles that can exceed 50 µm in diameter. In this study, we present two continuous records of total suspended particle (TSP) concentrations at sites in Mesa Verde and Canyonlands National Parks in Colorado and Utah, USA, respectively, and compare those values to measurements of fine and coarse particle concentrations made from nearby samplers. Average annual concentrations of TSP at Mesa Verde were 90 µg m−3 in 2011 and at Canyonlands were 171 µg m−3 in 2009, 113 µg m−3 in 2010, and 134 µg m−3 in 2011. In comparison, annual concentrations of fine (diameter of 2.5 µm and below) and coarse (2.5–10 µm diameter) particles at these sites were below 10 µg m−3 in all years. The high concentrations of TSP appear to be the result of regional dust storms with elevated concentrations of particles greater than 10 µm in diameter. These conditions regularly occur from spring through fall with 2 week mean TSP periodically in excess of 200 µg m−3. Measurement of particles on filters indicates that the median particle size varies between approximately 10 µm in winter and 40 µm during the spring. These persistently elevated concentrations of large particles indicate that regional dust emission as dust storms and events are important determinants of air quality in this region.