WorldWideScience

Sample records for fine coal floatation

  1. Agglomeration of coal fines for premium fuel application

    International Nuclear Information System (INIS)

    Atalay, A.; Zaman, M.D.

    1992-01-01

    This paper reports on fine coal in liquid suspension, which can be agglomerated in a number of ways. One of the oldest procedures involves the addition of electrolyte to the suspension to cause a reduction in the zeta potential and allow colliding particles to agglomerate. A second method involves the use of polymeric flocculants to bridge between particles. Both of these technologies are being used in the wastewater treatment plants for removal of fine waste particles from contaminated water. A third method involves the addition of a second immiscible liquid preferentially to wet the particles and cause adhesion by capillary interfacial forces. While the bonding forces in the first two methods are small and result in rather weak and voluminous agglomerates, the third method is postulated to produce more dense and much stronger agglomerates. In the case of fine coals, the carbonaceous constituents can be agglomerated and recovered from the aqueous suspension with many different coagulants. Inorganic or ash-forming constituents are also agglomerated along with the fine coal particles. As the froth floatation, agglomeration using coal and colloidal dust to effect a separation. Froth floatation, however, becomes less effective where extremely fine particles of cal must be treated or if there is considerable clay-size particle present. In contrast, there appears to be virtually no lower limit on the particle size suitable for agglomeration uses

  2. Cleaning and dewatering fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad

    2017-10-17

    Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also be used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.

  3. Sahara Coal: the fine art of collecting fines for profit

    Energy Technology Data Exchange (ETDEWEB)

    Schreckengost, D.; Arnold, D.

    1984-09-01

    A considerable increase in the volume of fines in rom coal caused Sahara Coal in Illinois to redesign the fine coal system in their Harrisburg preparation plant. Details of the new design, and particularly the fine refuse system which dewaters and dries 28 mesh x O clean coal, are given. Results have exceeded expectations in reducing product losses, operating costs and slurry pond cleaning costs.

  4. Pelletization of fine coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  5. Sahara Coal: the fine art of collecting fines for profit

    Energy Technology Data Exchange (ETDEWEB)

    Schreckengost, D.; Arnold, D.

    1984-09-01

    Because of a change in underground mining methods that caused a considerable increase in the amount of fine sizes in the raw coal, Sahara Coal Co. designed and constructed a unique and simple fine coal system at their Harrisburg, IL prep plant. Before the new system was built, the overload of the fine coal circuit created a cost crunch due to loss of salable coal to slurry ponds, slurry pond cleaning costs, and operating and maintenance costs--each and every one excessive. Motivated by these problems, Sahara designed a prototype system to dewater the minus 28 mesh refuse. The success of the idea permitted fine refuse to be loaded onto the coarse refuse belt. Sahara also realized a large reduction in pond cleaning costs. After a period of testing, an expanded version of the refuse system was installed to dewater and dry the 28 mesh X 0 clean coal. Clean coal output increased about 30 tph. Cost savings justified the expenditures for the refuse and clean coal systems. These benefits, combined with increased coal sales revenue, paid back the project costs in less than a year.

  6. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  7. Determination of optimum particle size in black coal flotation

    Directory of Open Access Journals (Sweden)

    Øepka Vlastimil

    2003-09-01

    Full Text Available The work deals with the preparation of bituminous coal with focus on fine grains. An increasing share of fine grains arises during mechanized mining which needs to be processed. The most widespread separation technology for processing of fine grains around the world is foam floatation. This physicochemical method of separation is used in the Czech Republic for processing coking coal with a high coalification level. Based on the coalification level, it is possible to determine the floatability of coal grains. Generally it can be said that floatability improves with increasing coalification. In this work we have tested two samples of coking coal with various coalification levels. Two mixtures of floatation agents were also used: commercial Flotakol NX and the second floatation agent - a mixture of dodecane as a collector and cyclohexanol as a frother. Both samples were classified into eight grain size groups and they were floated under the equal conditions

  8. Specification of the fineness of coal ash

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, B.P. [University of Birmingham, Birmingham (United Kingdom). Dept. of Civil Engineering

    1994-12-31

    Specifications for the size distribution of coal ash usually consider one size, for example the mass retained on a 45{mu}m sieve, and ignore the general particle distribution. This over-simplified approach had tended to persist because alternative parameters, such as specific surface obtained from air permeability tests as used for cements, have been found to be even more unsatisfactory. However, if the size distribution is determined satisfactorily using modern techniques then it can be shown that a suitable parameter for the size distribution can be a valuable aid in characterising the material. The paper reviews the reasons for the deficiencies in the earlier tests for determining the fineness of PFA and then describes a technique for specifying PFA fineness which overcomes the problems associated with the above. The application of a suitable grading parameter for PFA is illustrated by reference to mix design for PFA concrete. Only by reference to the relevant characteristics of all the constituents of the concrete is it possible to design for a required property in the resulting concrete with any reasonable accuracy. A comprehensive method of mix design capable of accommodating different cements and PFAs as well as different fine and coarse aggregates and entrained air contents is outlined and it is seen that similar grading parameters can also be utilised for the aggregates to facilitate proportioning of constituents to achieve a required concrete workability in terms of Vebe time. 12 refs., 4 figs., 5 tabs.

  9. Fine coal processing with dense-medium cyclones

    CSIR Research Space (South Africa)

    De Korte, GJ

    2012-10-01

    Full Text Available . The paper provides a brief overview of past and current application of dense medium cyclones in the processing of fine coal and reviews some of the important considerations for the successful application of the technique....

  10. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    Energy Technology Data Exchange (ETDEWEB)

    K. Osseo-Asare; X. Zeng

    2002-01-01

    The objective of this research project is to develop an aqueous biphase extraction process for the treatment of fine coals. Aqueous biphase extraction is an advanced separation technology that relies on the ability of an aqueous system consisting of a water-soluble polymer and another component, e.g., another polymer, an inorganic salt, or a nonionic surfactant, to separate into two immiscible aqueous phases. The principle behind the partition of solid particles in aqueous biphase systems is the physicochemical interaction between the solid surface and the surrounding liquid solution. In order to remove sulfur and mineral matter from fine coal with aqueous biphasic extraction, it is necessary to know the partitioning behavior of coal, as well as the inorganic mineral components. Therefore, in this research emphasis was placed on the partitioning behavior of fine coal particles as well as model fine inorganic particles in aqueous biphase systems.

  11. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL; FINAL

    International Nuclear Information System (INIS)

    K. Osseo-Asare; X. Zeng

    2002-01-01

    The objective of this research project is to develop an aqueous biphase extraction process for the treatment of fine coals. Aqueous biphase extraction is an advanced separation technology that relies on the ability of an aqueous system consisting of a water-soluble polymer and another component, e.g., another polymer, an inorganic salt, or a nonionic surfactant, to separate into two immiscible aqueous phases. The principle behind the partition of solid particles in aqueous biphase systems is the physicochemical interaction between the solid surface and the surrounding liquid solution. In order to remove sulfur and mineral matter from fine coal with aqueous biphasic extraction, it is necessary to know the partitioning behavior of coal, as well as the inorganic mineral components. Therefore, in this research emphasis was placed on the partitioning behavior of fine coal particles as well as model fine inorganic particles in aqueous biphase systems

  12. Leeuwpan fine coal dense medium plant

    CSIR Research Space (South Africa)

    Lundt, M

    2010-11-01

    Full Text Available Introduction Leeuwpan Colliery is located close to Delmas in the Mpumalanga Province, and is one of eight coal mines in the Exxaro Resources group. The dense media separation (DMS) plant at Leeuwpan was commissioned in 1997. The plant originally treated... three Witbank coal seams, namely seams no. 2, 4 and 5. A coal jig plant was built in 2005 to treat the top layer of coal—Seams 4 and 5—to supply a 30% ash coal to power stations. When the jig plant was commissioned, it increased the DMS plant...

  13. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  14. The basic aerodynamics of floatation

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M.J.; Wood, D.H.

    1983-09-01

    The original derivation of the basic theory governing the aerodynamics of both hovercraft and modern floatation ovens, requires the validity of some extremely crude assumptions. However, the basic theory is surprisingly accurate. It is shown that this accuracy occurs because the final expression of the basic theory can be derived by approximating the full Navier-Stokes equations in a manner that clearly shows the limitations of the theory. These limitations are used in discussing the relatively small discrepancies between the theory and experiment, which may not be significant for practical purposes.

  15. Dewatering of coal fines using a super absorbent polymer

    Energy Technology Data Exchange (ETDEWEB)

    Peer, F.; Venter, T. [Sasol Technology for Research & Development, Sasolburg (South Africa)

    2003-08-01

    In most coal preparation processes, water is a necessary medium, but the presence of water in coal after it has been cleaned has a negative impact on transportation costs, handling and specific energy values. The concept of utilizing super absorbent polymers (SAP) was investigated for the purposes of dewatering coal and other fines, generated by preparation processes such as flotation. SAPs are granular highly cross-linked synthetic copolymers with excellent water-absorbing properties. The dewatering process is characterized by three main stages: (a) contact of super absorbent polymer with high-moisture fine coal; (b) separation of dewatered fine coal from super absorbent polymer; and (c) regeneration of used super absorbent polymer, by exploiting its response to changes in conditions such as pH or temperature. The novel idea of encasing a given amount of polymer in a water permeable cloth solved the problem of separating the swollen polymer from the dewatered coal. Preliminary tests investigating the effectiveness of the sachets of polymer showed a drastic decrease in the moisture contents of slurries. Furthermore, it was shown that it was possible to regenerate the polymer (still within the sachets) through thermal drying. A full-scale experimental programme was then followed to accurately determine the feasibility of using sachets of SAP. Thermal regeneration at 70{sup o}C seemed to work successfully. Although the cost of using thermal energy is still a problem, the safety aspect (fire hazards) has been addressed since the polymer does not ignite when heated, unlike fine coal particles that may do so. The alternative method of regeneration, which exploits the pH-sensitivity of the polymer, was less successful, and further work needs to be conducted.

  16. Energy-Saving Vibration Impulse Coal Degradation at Finely Dispersed Coal-Water Slurry Preparation

    Directory of Open Access Journals (Sweden)

    Moiseev V.A.

    2015-01-01

    Full Text Available Theoretical and experimental research results of processes of finely dispersed coal-water slurry preparation for further generation of energetic gas in direct flow and vortex gas generator plants have been presented. It has been stated that frequency parameters of parabolic vibration impulse mill influence degradation degree. Pressure influence on coal parameters in grinding cavity has been proven. Experimental researches have proven efficiency of vibration impulse mill with unbalanced mass vibrator generator development. Conditions of development on intergranular walls of coal cracks have been defined.

  17. Fine particles flotation of the Moatize coal/Mozambique

    Science.gov (United States)

    Castro, Amilton; de Brum, Irineu A. S.

    2017-11-01

    This study was done from a sample of coal mined at the Vale-Mozambique mine, located in Moatize district, Tete Province. The aim of this work is to analyze the reagent system in the flotation of coal fines belonging to the UCB layer. Among coal processing methods, flotation stands out as one of the most important for the concentration of this material, in particular in the treatment of fine particles. The total feed of the Vale-Mozambique processing plant is 8000 tph of coal, where 10% of this feed corresponds to the fine fraction that feeds the flotation circuit. The material used in this study had a particle size of 96% smaller than 0.25 mm. The reagents used in the flotation tests were Betacol and diesel oil as hydrophobizing agents and MIBC as frother. The range of Betacol concentrations in the first test phase was 200 g / t at 500 g / t, and in the second phase 200 g / t at 500 g / t of diesel oil and MIBC were kept constant at 300 g / t. The immediate analysis followed the Brazilian standards: NBR 8289, NBR 8293, NBR 8290, NBR 8299. The results showed that it is possible, from a feed with the ash content around 22.84%, to obtain products with levels below of 10% ash, with a mass recovery around 50%. The recovery of carbonaceous matter was also evaluated and presented positive results. Complementing this study, the effect of H2O recovery was evaluated and it was observed that for the concentrations of Betacol the recoveries ranged from 6 to 9%, and for diesel oil plus MIBC were 4 to 7%.

  18. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  19. POC-scale testing of an advanced fine coal dewatering equipment/technique

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, J.G.; Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Rawls, P. [Department of Energy, Pittsburgh, PA (United States)

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  20. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  1. The Use of Granulation to Reduce Dusting and Manage of Fine Coal

    Directory of Open Access Journals (Sweden)

    Małgorzata Ewa Ozga

    2018-05-01

    Full Text Available The development of mining, processing, accompanied by the formation of fine-grained waste materials that must be processed and used in the treatment process. Sometimes grinding materials is a prerequisite for further processing. There are topics of dust and fine coal granulation presented, to obtain a homogeneous and persistent pieces for using in various industries. The article describes the binders and additives were added to change the properties of the granules. Discusses the key factors affecting the process of granulation of fine -grained coal. Granulated fines of coal have the most usefulness as an alternative fuel for combustion in industrial and household heating systems. However, carbon fuel requires systematic control of mechanical strength and resistance to external factors. Keywords: granulation, fine coal, dusting, management, solid fuels

  2. The effect of sulphide and moisture content on steel corrosion during transport of fine wet coal

    International Nuclear Information System (INIS)

    Waanders, F. B.; Vorster, S. W.

    2013-01-01

    In the present investigation the influence of compaction pressure (stress) on the corrosivity of wet coal was investigated. Two coal samples, one high in sulphur content (3 %) and the other low in sulphur content (0.6 %) were used to determine the influence of compaction stress on the corrosion rates of steel samples in contact with compacted coal. It was found that the pressure exerted on finely divided wet coal is an important factor in determining its water content and corrosivity towards mild steel. Corrosion of the steel was typically in the form of pitting and the sulphur content of the coal was an important factor in determining the corrosivity of the coal. The corrosion rate of the high sulphur content coal was higher than that of the low sulphur coal. Mössbauer spectroscopy showed that a FeS species developed on the steel surface.

  3. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    Energy Technology Data Exchange (ETDEWEB)

    E. James Davis

    1999-12-18

    The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.

  4. Advanced physical fine coal cleaning spherical agglomeration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  5. 46 CFR 197.344 - Inflatable floatation devices.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Inflatable floatation devices. 197.344 Section 197.344 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.344 Inflatable floatation devices...

  6. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-08-28

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

  7. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Suardini, P.J. [Custom Coals, International, Pittsburgh, PA (United States)

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  8. An enhanced-gravity method to recover ultra-fine coal from tailings: Falcon concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Filiz Oruc; Selcuk Ozgen; Eyup Sabah [Afyon Kocatepe University, Afyonkarahisar (Turkey). Department of Mining Engineering

    2010-09-15

    The Falcon concentrator is an enhanced-gravity separator used for the concentration of fine and ultra-fine minerals. This study was conducted to evaluate the effects of different process variables on the performance of the Falcon SB-40 concentrator for beneficiation of tailings to recover ultra-fine coal. Various operating and design conditions such as bowl speed (G force), water pressure, pulp solid ratio and pulp feed rate were investigated. A hydrocyclone was used for pre-enrichment with the Falcon concentrator. Operation parameters of the hydrocyclone, namely feed solids, inlet pressure, vortex finder and apex diameters were investigated. In order to produce fine coal concentrates, regression equations were derived by applying the least squares method using Minitab 15 software. Response functions were produced for the ash content and the recovery of the clean coal concentrates for the performance of the hydrocyclone and Falcon concentrator under different operating conditions. Predicted values were found with the experimental values giving R{sup 2} values of between 0.73 and 0.58 for ash content and between 0.65 and 0.39 for recovery of the clean coal. It was shown that under optimized conditions the Falcon concentrator can produce a clean coal with an ash value of 36% from a feed coal of about 66% ash. 19 refs., 7 figs., 5 tabs.

  9. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Frank J; Schields, Gene L; Jha, Mehesh C; Moro, Nick

    1997-09-26

    The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel™ column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications.

  10. A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chengliang [Univ. of Kentucky, Lexington, KY (United States)

    1993-01-01

    Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.

  11. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view

    Energy Technology Data Exchange (ETDEWEB)

    Kronbauer, Marcio A. [Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500, Bairro Agronomia, CEP: 91501-970, Porto Alegre, RS (Brazil); Izquierdo, Maria [School of Applied Sciences, Cranfield University, Bedfordshire MK43 0AL (United Kingdom); Dai, Shifeng [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083 (China); Waanders, Frans B. [School of Chemical and Minerals Engineering, North West University (Potchefstroom campus), Potchefstroom 2531 (South Africa); Wagner, Nicola J. [School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Mastalerz, Maria [Indiana Geological Survey, Indiana University, Bloomington, IN 47405-2208 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Oliveira, Marcos L.S. [Environmental Science and Nanotechnology Department, Catarinense Institute of Environmental Research and Human Development, IPADHC, Capivari de Baixo, Santa Catarina (Brazil); Taffarel, Silvio R.; Bizani, Delmar [Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); and others

    2013-07-01

    The nano-mineralogy, petrology, and chemistry of coal gasification products have not been studied as extensively as the products of the more widely used pulverized-coal combustion. The solid residues from the gasification of a low- to medium-sulfur, inertinite-rich, volatile A bituminous coal, and a high sulfur, vitrinite-rich, volatile C bituminous coal were investigated. Multifaceted chemical characterization by XRD, Raman spectroscopy, petrology, FE-SEM/EDS, and HR-TEM/SEAD/FFT/EDS provided an in-depth understanding of coal gasification ash-forming processes. The petrology of the residues generally reflected the rank and maceral composition of the feed coals, with the higher rank, high-inertinite coal having anisotropic carbons and inertinite in the residue, and the lower rank coal-derived residue containing isotropic carbons. The feed coal chemistry determines the mineralogy of the non-glass, non-carbon portions of the residues, with the proportions of CaCO{sub 3} versus Al{sub 2}O{sub 3} determining the tendency towards the neoformation of anorthite versus mullite, respectively. Electron beam studies showed the presence of a number of potentially hazardous elements in nanoparticles. Some of the neoformed ultra-fine/nano-minerals found in the coal ashes are the same as those commonly associated with oxidation/transformation of sulfides and sulfates. - Highlights: • Coal waste geochemisty can provide increased environmental information in coal-mining areas. • Oxidation is the major process for mineral transformation in coal ashes. • The electron bean methodology has been applied to investigate neoformed minerals.

  12. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both the ash and sulfur contents of run-of-mine coals. The extent of cleaning depends on the liberation characteristics of the coal, which generally improve with reducing particle size. however, since most of the advanced technologies are wet processes, the clean coal product must be dewatered before it can be transported and burned in conventional boilers. This additional treatment step significantly increases the processing cost and makes the industrial applicability of these advanced technologies much less attractive. In order to avoid problems associated with fine coal dewatering, researchers at the Pittsburgh Energy Technology Center (PETC) developed a novel triboelectrostatic separation (TES) process that can remove mineral matter from dry coal. In this technique, finely pulverized coal is brought into contact with a material (such as copper) having a work function intermediate to that of the carbonaceous material and associated mineral matter. Carbonaceous particles having a relatively low work function become positively charged, while particles of mineral matter having significantly higher work functions become negatively charged. once the particles become selectively charged, a separation can be achieved by passing the particle stream through an electrically charged field. Details related to the triboelectrostatic charging phenomenon have been discussed elsewhere (Inculet, 1984).

  13. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. [California Univ., Berkeley, CA (United States); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. [Columbia Univ., New York, NY (United States); Hu, W.; Zou, Y.; Chen, W. [Utah Univ., Salt Lake City, UT (United States); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. [Praxis Engineers, Inc., Milpitas, CA (United States)

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  14. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    Energy Technology Data Exchange (ETDEWEB)

    E. James Davis

    1998-05-01

    The objective of this research is to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. In this experimental and analytical study the authors elucidate the transport processes that control the rate of concentrated colloidal particle removal, demonstrate the process on a laboratory scale, and develop the scale-up laws needed to design commercial-scale processes. The authors are also addressing the fundamental problems associated with particle-particle interactions (electrical and hydrodynamic), the effects of particle concentration on the applied electric field, the electrochemical reactions that occur at the electrodes, and the prediction of power requirements.

  15. Use of Unprocessed Coal Bottom Ash as Partial Fine Aggregate ...

    African Journals Online (AJOL)

    The research also shows that 20% is the optimum percentage replacement to achieve favorable strength and good strength development pattern as a normal concrete mix with time. Unprocessed bottom ash from FUEL power station can thus be used as fine aggregate replacement in concrete for that specific percentage ...

  16. Improving the efficiency of fine coal grinding circuits - Tarong Power Station sitework

    Energy Technology Data Exchange (ETDEWEB)

    Can Ozer; Frank Shi; Bill Whiten [JKMRC (Australia)

    2009-03-15

    The objective of the research is to improve the efficiency of power station fine coal grinding circuits through the application of modelling and simulation technology. The overall project is expected to complete in 3.5 years as a PhD study program. ACARP funded the first two years (Project C15079) related to the site work conducted at Tarong Power Station, the results of which are presented in this report. A new sampling technique has been developed to collect samples from a fully enclosed vertical spindle ball-race mill and air classifier system and that around the milling circuit. This is crucial in providing reliable data of various streams in the system for model development. Seven surveys on the full scale fine coal grinding operation were conducted at Tarong Power Station using this sampling technique. Extensive sample processing work has been completed. This included size analysis of 217 samples, float-sink tests on 255 samples, and ash content determination on 461 samples. A new float-sink testing technique was developed to process the fine coal samples. Preliminary breakage characterisation using HGI (Hardgrove Grindability Index) tests, DWT (Drop Weight Tester) on single coal particle, and DWT on coal beds of four coal samples was conducted at the JKMRC. This report covers the details of the sampling technique, plant surveys, and preliminary coal breakage characterisation. The observed trends of size distributions, the washability curves, the density - size relation, the density - ash content - size relation, and the correlation among the three breakage characterisation methods are presented and discussed.

  17. Development, testing, and demonstration of an optimal fine coal cleaning circuit

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, M.; Placha, M.; Bethell, P. [and others

    1995-11-01

    The overall objective of this project is to improve the efficiency of fine coal cleaning. The project will be completed in two phases: bench-scale testing and demonstration of four advanced flotation cells and; in-plant proof-of-concept (POC) pilot plant testing of two flotation cells individually and in two-stage combinations. The goal is to ascertain if a two-stage circuit can result in reduced capital and operating costs while achieving improved separation efficiency. The plant selected for this project, Cyprus Emerald Coal Preparation plant, cleans 1200 tph of raw coal. The plant produces approximately 4 million tonnes of clean coal per year at an average as received energy content of 30.2 MJ/Kg (13,000 Btu/lb).

  18. Development, testing, and demonstration of an optimal fine coal cleaning circuit

    International Nuclear Information System (INIS)

    Mishra, M.; Placha, M.; Bethell, P.

    1995-01-01

    The overall objective of this project is to improve the efficiency of fine coal cleaning. The project will be completed in two phases: bench-scale testing and demonstration of four advanced flotation cells and; in-plant proof-of-concept (POC) pilot plant testing of two flotation cells individually and in two-stage combinations. The goal is to ascertain if a two-stage circuit can result in reduced capital and operating costs while achieving improved separation efficiency. The plant selected for this project, Cyprus Emerald Coal Preparation plant, cleans 1200 tph of raw coal. The plant produces approximately 4 million tonnes of clean coal per year at an average as received energy content of 30.2 MJ/Kg (13,000 Btu/lb)

  19. Optimization of a Multi Gravity Separator to produce clean coal from Turkish lignite fine coal tailings

    Energy Technology Data Exchange (ETDEWEB)

    Selcuk Ozgen; Ozkan Malkoc; Ceyda Dogancik; Eyup Sabah; Filiz Oruc Sapci [Afyon Kocatepe University, Afyonkarahisar (Turkey). Department of Mining Engineering

    2011-04-15

    In this study, the beneficiation of two lignite tailings by Multi Gravity Separator (MGS) was investigated. The tailings samples from the Tuncbilek/Kutahya and Soma/Manisa regions have ash contents of 66.21% and 52.65%, respectively. Significant operational parameters of MGS such as solid ratio, drum speed, tilt angle, shaking amplitude, wash water rate, and feed rate were varied. Empirical equations for recovery and ash content were derived by a least squares method using Minitab 15. The equations, which are second-order response functions, were expressed as functions of the six operating parameters of MGS. The results showed that it is possible to produce a coal concentrate containing 22.83% ash with a recovery of 49.32% from Tuncbilek coal tailings, and a coal concentrate containing 22.89% ash with a recovery of 60.01% from Soma coal tailings. 27 refs., 6 figs., 5 tabs.

  20. Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Anne Juul; Glarborg, Peter

    2011-01-01

    Fine particles formed from combustion of a bituminous coal and co-combustion of coal with 7 th% (thermal percentage) solid recovered fuel (SRF) in a pulverized coal-fired power plant were sampled and characterized in this study. The particles from dedicated coal combustion and co-combustion both...... appear to be an important formation mechanism. The elemental composition of the particles from coal combustion showed that S and Ca were significantly enriched in ultrafine particles and P was also enriched considerably. However, compared with supermicron particles, the contents of Al, Si and K were...

  1. Air-Sparged Hydrocyclone/Advanced Froth Flotation fine coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Stoessner, R.D. (Pennsylvania Electric Co., Johnstown, PA (USA)); Shirey, G.A.; Zawadzki, E.A. (Management and Technical Systems, McMurray, PA (USA)); Welsh, C.F. (Davy Dravo (USA)); Miller, J.D. (Utah Univ., Salt Lake City, UT (USA)); Shell, W.P. (Ebasco Services, Inc., New York, NY (USA))

    1990-05-27

    In May 1988, the Pennsylvania Electric Company (Penelec) and New York State Electric and Gas Corporation (NYSEG) were awarded a contract from the Department of Energy's Pittsburgh Energy and Technology Center (DOE-PETC) to evaluate the performance of a two-inch Air-Sparged Hydrocyclone (ASH) for cleaning fine minus-100-mesh coal. A 24-month study was successfully completed, optimizing the performance of the ASH for cleaning raw classified, naturally-occurring minus-100-mesh Upper Freeport coal, and comparing its performance with Advanced Froth Flotation (AFF), a procedure utilizing conventional flotation equipment operated in an advanced manner (low impeller speeds, starvation float, multiple-stage cleaning, etc.) with highly selective reagents to optimize ash and pyritic sulfur rejection. The economics of cleaning fine coal by both processes at commercial scale, for retrofit and greenfield applications were found to be comparable within the accuracy of the study. Technical performance of the two processes were also found to be essentially identical. Thus, the ASH would be the best choice for a retrofit installation into an existing plant because of requiring less space. Both processes were successful in achieving excellent separations when cleaning the Upper Freeport coal. Both the ASH and AFF circuits were able to produce a clean-coal product of yield (65--80 percent weight recovery) and quality (5--6 percent ash) equivalent to that as theoretically determined by float-sink washability analyses. Combining either of the two fine coal flotation processes with a classifying cyclone circuit resulted in pyritic sulfur rejection values of about 85 percent. 47 refs., 109 figs., 75 tabs.

  2. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    Energy Technology Data Exchange (ETDEWEB)

    K. Osseo-Asare; X. Zeng

    2001-06-30

    Ever-stringent environmental constraints dictate that future coal cleaning technologies be compatible with micron-size particles. This research program seeks to develop an advanced coal cleaning technology uniquely suited to micron-size particles, i.e., aqueous biphase extraction. The partitioning behaviors of silica in the polyethylene glycol (PEG)/dextran (Dex) and dextran/Triton X-100 (TX100) systems have been investigated, and the effects of sodium dodecylsulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) on solid partition have been studied. In both biphase systems, silica particles stayed in the top PEG-rich phase at low pH. With increase in pH, the particles moved from the top phase to the interface, then to the bottom phase. At very high pH, the solids preferred the top phase again. These trends are attributable to variations in the polymer/solid and nonionic surfactant/solid interactions. Addition of ionic surfactants into these two systems introduces a weakly charged environment, since ionic surfactants concentrate into one phase, either the top phase or the bottom phase. Therefore, coulombic forces also play a key role in the partition of silica particles because electrostatic attractive or repulsive forces are produced between the solid surface and the ionic-surfactant-concentrated phase. For the PEG/dextran system in the presence of SDS, SiO{sub 2} preferred the bottom dextran-rich phase above its pH{sub PZC}. However, addition of DTAB moved the oxide particles from the top phase to the interface, and then to the bottom phase, with increase in pH. These different behaviors are attributable to the fact that SDS and DTAB concentrated into the opposite phase of the PEG/dextran system. On the other hand, in the dextran/Triton X-100 system, both ionic surfactants concentrated in the top surfactant-rich phase and formed mixed micelles with TX100. Therefore, addition of the anionic surfactant, SDS, moved the silica particles from top phase to the

  3. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  4. DEVELOPMENT OF DEWATERING AIDS FOR MINERALS AND COAL FINES

    Energy Technology Data Exchange (ETDEWEB)

    Roe-Hoam Yoon; Ramazan Asmatulu; Ismail Yildirim; William Jansen; Jinmig Zhang; Brad Atkinson; Jeff Havens

    2004-07-01

    MCT has developed a suite of novel dewatering chemicals (or aids) that are designed to cause a decrease in the capillary pressures of the water trapped in a filter cake by (1) decreasing the surface tension of water, (2) increasing the contact angles of the particles to be dewatered, and (3) causing the particles to coagulate, all at the same time. The decrease in capillary pressure in turn causes an increase in the rate filtration, an increase in throughput, and a decrease in pressure drop requirement for filtration. The reagents are used frequently as blends of different chemicals in order to bring about the changes in all of the process variables noted above. The minerals and coal samples tested in the present work included copper sulfide, lead sulfide, zinc sulfide, kaolin clay, talc, and silica. The laboratory-scale test work included studies of reagent types, drying cycle times, cake thickness, slurry temperature, conditioning intensity and time, solid content, and reagent dosages. To better understand the mechanisms involved, fundamental studies were also conducted. These included the measurements of the contact angles of the particles to be dewatered (which are the measures of particle hydrophobicity) and the surface tensions of the filtrates produced from dewatering tests. The results of the laboratory-scale filtration experiments showed that the use of the novel dewatering aids can reduce the moistures of the filter cake by 30 to 50% over what can be achieved using no dewatering aids. In many cases, such high levels of moisture reductions are sufficient to obviate the needs for thermal drying, which is costly and energy intensive. Furthermore, the use of the novel dewatering aids cause a substantial increase in the kinetics of dewatering, which in turn results in increased throughput. As a result of these technological advantages, the novel dewatering aids have been licensed to Nalco, which is one of the largest mining chemicals companies of the world. At

  5. Influence of the fineness of grinding coal on the results in liquid-phase hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Rank, V.

    1944-02-08

    This short note reported older results of experiments on brown coal from Boehlen, of which two different samples were hydrogenated at 250 atm, with each sample ground to a different degree of fineness. In sieving with a sieve of 16,900 mesh, 76.8% of one sample went through, whereas only 63.4% of the other sample went through. The more finely ground sample gave better values of coal decomposition (98.8% vs. 97.7%), yield of gasoline and middle oil (0.30 kg/liter/hr vs. 0.26), and losses to gas formation (19.3% vs. 20.7%). The experiments were carried out in a 10-liter oven.

  6. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

    2001-04-30

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would

  7. ENGINEERING DEVELOPMENT OF ADVANCED PHYSICAL FINE COAL CLEANING FOR PREMIUM FUEL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1997-06-01

    Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program "Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications," (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R

  8. The treatments of soil Rirang by floatation and Acid leaching

    International Nuclear Information System (INIS)

    Kosim-Affandi; Umar-Sarip; Alwi, Guswita; Sri-Sudaryanto

    2000-01-01

    The treatments of soil Rirang by floatation and acid leaching has been carried out to increase high uranium concentrates of materials, separating associated economical minerals and to reduce the gangue minerals which bothering at chemical processing. The physical treatment has been done by ore preparation and floatation using oleic acid and p ine oil , 20 % of pulp at pH 9, condition time at 5 minutes and collections of float fraction was 10 minutes. The chemical processing has been done by dynamic leaching using H 2 SO 4 100 kg/ton, MnO 2 20 kg/ton, 50 % of solid with ore size - 65 mesh, temperature at 80 o C and time of leaching was 8 hours. The result of experiments is as follows : Physical treatment by floatation shown that the concentrates of U increased at sink fraction by (1.5 - 2) times against feed sample for all the samples, and in the float fraction the recovery of molybdenite separation is 58 - 81 % and rare earths is 57 - 80 %. The result of dynamic leaching is 76 - 91 %, and recovery uranium increasing from 81.02 % (mixture samples soil before floatation) to 91.16 % ( mixture samples of float fraction)

  9. Engineering development of advance physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Smit, F.J.; Shields, G.L. [AMAX R& D Center/ENTECH Global Inc., Golden, CO (United States)

    1995-11-01

    The objective of this project is to develop the engineering design base for prototype fine coal cleaning plants based on Advanced Column Flotation and Selective Agglomeration processes for premium fuel and near-term applications. Removal of toxic trace elements is also being investigated. The scope of the project includes laboratory research and bench-scale testing of each process on six coals followed by design, construction, and operation of a 2 tons/hour process development unit (PDU). Three coals will be cleaned in tonnage quantity and provided to DOE and its contractors for combustion evaluation. Amax R&D (now a subsidiary of Cyprus Amax Mineral Company) is the prime contractor. Entech Global is managing the project and performing most of the research and development work as an on-site subcontractor. Other participants in the project are Cyprus Amax Coal Company, Arcanum, Bechtel, TIC, University of Kentucky and Virginia Tech. Drs. Keller of Syracuse and Dooher of Adelphi University are consultants.

  10. Feasibility Of Making Concrete Using Lignite Coal Bottom Ash As Fine Aggregate

    Directory of Open Access Journals (Sweden)

    Thandavamoorthy T. S.

    2015-09-01

    Full Text Available Concrete is generally produced using materials such as crushed stone and river sand to the extent of about 80-90% combined with cement and water. These materials are quarried from natural sources. Their depletion will cause strain on the environment. To prevent this, bottom ash produced at thermal power plants by burning of coal has been utilized in this investigation into making concrete. The experimental investigation presents the development of concrete containing lignite coal bottom ash as fine aggregate in various percentages of 25, 50, and 100. Compressive, split tensile, and flexural strength as part of mechanical properties; acid, sulphate attack, and sustainability under elevated temperature as part of durability properties, were determined. These properties were compared with that of normal concrete. It was concluded from this investigation that bottom ash to an extent of 25% can be substituted in place of river sand in the production of concrete.

  11. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt

    2002-08-15

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  12. DEVELOPMENT AND DEMONSTRATION OF INTEGRATED CARBON RECOVERY SYSTEMS FROM FINE COAL PROCESSING WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Y.P. Chugh; D. Patil; A. Patwardhan; R.Q. Honaker; B.K. Parekh; D. Tao; Latif Khan

    2000-07-01

    The project involves the development of an efficient, environmentally friendly system for the economical recovery of carbon from fine-coal refuse ponds. The project will be conducted in two phases. Phase I was involved in the development and evaluation of process equipment and techniques to be used in carbon recovery, product dewatering and reconstitution, and refuse management. Phase II will integrate the various units into a continuously operating circuit that will be demonstrated at a site selected based on the results presented in this study.

  13. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    Energy Technology Data Exchange (ETDEWEB)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was

  14. A study of Multistage/Multifunction Column for Fine Coal Cleaning CRADA PC93-005, Final Report; FINAL

    International Nuclear Information System (INIS)

    Ralph Lai; Shiao-Hung Chiang; Daxin He; Yuru Feng

    1998-01-01

    The overall objective of the this research project is to explore the potential applicability of a multistage column for fine coal cleaning and other applications in fluid particle separation. The research work identifies the design parameters and their effects on the performance of the separation device. The results of this study provide an engineering data basis for further development of this technology in coal cleaning and in general areas of fluid and particle separations

  15. POC-scale testing of oil agglomeration techniques and equipment for fine coal processing

    Energy Technology Data Exchange (ETDEWEB)

    W. Pawlak; K. Szymocha

    1999-07-01

    The information presented in this manual is solely for the purpose of operating the POC-scale equipment for fine coal processing as described herein. This manual provides a general description of the process technology and guidelines for plant operating procedures. It is intended for use by the operators and maintenance personnel who will be responsible for the operations of the plant. No attempt should be made to operate the plant until the principles of the process and operating instructions contained in this manual are fully understood. Operating personnel should thoroughly familiarize themselves with all processing equipment prior to commencing plant operation. All equipment is skid mounted to provide a self-contained unit. The dimensions of the unit are comply with standard guidelines. A minimum distance of 2 feet is provided between equipment for walkway and maintenance.

  16. Distinctive features of high-ash bituminuos coals combution with low milling fineness in furnace chambers with bottom blowing

    Science.gov (United States)

    Zroychikov, N. A.; Kaverin, A. A.; Biryukov, Ya A.

    2017-11-01

    Nowadays the problem of improvement of pulverized coal combustion schemes is an actual one for national power engineering, especially for combustion of coals with low milling fineness with significant portion of moisture or mineral impurities. In this case a big portion of inert material in the fuel may cause impairment of its ignition and combustion. In addition there are a lot of boiler installations on which nitrogen oxides emission exceeds standard values significantly. Decreasing of milling fineness is not without interest as a way of lowering an electric energy consumption for pulverization, which can reach 30% of power plant’s auxiliary consumption of electricity. Development of a combustion scheme meeting the requirements both for effective coal burning and environmental measures (related to NOx emission) is a complex task and demands compromising between these two factors, because implementation of NOx control by combustion very often leads to rising of carbon-in-ash loss. However widespread occurrence of such modern research technique as computer modeling allows to conduct big amount of variants calculations of combustion schemes with low cost and find an optimum. This paper presents results of numerical research of combined schemes of coal combustion with high portion of inert material based on straight-flow burners and nozzles. Several distinctive features of furnace aerodynamics, heat transfer and combustion has been found. The combined scheme of high-ash bituminouos coals combustion with low milling fineness, which allows effective combustion of pointed type of fuels with nitrogen oxides emission reduction has been proposed.

  17. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt

    2001-05-04

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NO{sub x} concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end we shall use an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NO{sub x} and low NO{sub x} combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined.

  18. Mineral processing and characterization of coal waste to be used as fine aggregates for concrete paving blocks

    Directory of Open Access Journals (Sweden)

    C. R. Santos

    Full Text Available Commercial coal production in the southern region of Brazil has been occurring since the beginning of the twentieth century. Due to the geological characteristics of the region, large amounts of solid wastes are generated. The aim of this work was to evaluate the use of coal waste to produce concrete paving blocks. A procedure to process the coal waste with the purpose of reducing the sulfur content and changing the particle size distribution of the material to meet the specification of fine aggregates was developed. The methodology considered the following steps: (a sampling of a coal mining waste; (b gravity separation of the fraction with specific gravity between 2.4 and 2.8; (c comminution of the material and particle size analysis; (d technological characterization of the material and production of concrete paving blocks; and (e acidity generation prediction (environmental feasibility. The results showed that the coal waste considered in this work can be used to replace conventional sand as a fine aggregate for concrete paving blocks in a proportion of up to 50%. This practice can result in cleaner coal production and reduce the demand for exploitation of sand deposits.

  19. Resuspension of coal and coal/municipal sewage sludge combustion generated fine particles for inhalation health effects studies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Art; Wendt, Jost O.L. [Department of Chemical and Environmental Engineering, University of Arizona, 85721 Tucson, AZ (United States); Cenni, Roberta [Institut fuer Verfahrenstechnik und Dampfkesselwesen, Universitaet Stuttgart, Stuttgart (Germany); Young, R. Scott; Witten, Mark L. [Lung Injury Laboratory, Department of Pediatrics, Arizona Health Sciences Center, 85721 Tucson, AZ (United States)

    2002-03-27

    Airborne particulate matter (PM) is an important environmental issue because of its association with acute respiratory distress in humans, although the specific particle characteristics that cause lung damage have yet to be identified. Particle size, acid aerosols, water-soluble transition metals (e.g. Cu, Fe, V, Ni and Zn), polyaromatic hydrocarbons, and particle composition are the focus of several popular hypotheses addressing respiratory distress. All of the above mentioned characteristics are contained in PM generated from the combustion of both pulverized coal, and biomass, including dried municipal sewage sludge (MSS). In this investigation, we report results from collaborative interdisciplinary research on the inhalation health risks caused by particles emitted from the co-combustion of municipal sewage sludge (MSS) and coal. A solid particle resuspension system was implemented to resuspend ash particles. Mice were exposed to resuspended coal and MSS/coal ash particles. Mice exposed to MSS/coal ash particulate demonstrated significant increases in lung permeability, a marker of the early stages of pathological lung injury, while the mice exposed to coal-only ash did not. These results show that the composition of particles actually inhaled is important in determining lung damage. Zinc was significantly more concentrated in the MSS/coal ash than coal ash particles and the pH of these particles did not differ significantly. Specifically, an MSS/coal mixture, when burned, emits particles that may cause significantly more lung damage than coal alone, and that consequently, the use of MSS as a 'green', CO{sub 2}-neutral replacement fuel should be carefully considered.

  20. Process development studies on recovery of clean coal from ultra fine hardcoal tailings using enhanced gravity separator

    Energy Technology Data Exchange (ETDEWEB)

    Ozgen, S.; Turksoy, V.O.; Sabah, E.; Oruc, F. [Afyon Kocatepe Univ., Afyonkarahisar (Turkey). Dept. of Mining Engineering

    2009-10-15

    Gravity-based processing methods were used to process and recover clean coal from ultra-fine hardcoal tailings at a site in Turkey. The coal samples were analyzed using X-ray diffraction and X-ray fluorescence. A hydrocyclone was used to conduct classification tests and to separate the clay minerals from the coal. The effects of various operating parameters were also investigated. Regression analysis was used to characterize the relationship between the ash content and coal recovery rate and the feed solid, inlet pressure, diameter of vortex, and diameter of apex variables of the hydrocyclone. The effects of feed pressure were also investigated. The study showed that coal can be economically recovered from hardcoal tailings containing clay minerals. It was concluded that a coal sample with 6.98 per cent ash content and a net calorific value of 28,778 kJ was obtained with a weight recovery of 61.73 per cent. 25 refs., 8 tabs., 18 figs.

  1. Amenability of some Witbank bituminous ultra fine coals to binderless briquetting

    CSIR Research Space (South Africa)

    Mangena, SJ

    2004-10-15

    Full Text Available briquetting press, at various feed moisture contents. The formed briquettes were then tested for compressive strength and water resistance and the values correlated with the coal characteristics and the briquetting conditions. The coals were found...

  2. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt

    2002-02-05

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NO{sub x} concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end work is progress using an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NO{sub x} and low NO{sub x} combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Progress in the Sixth Quarter (January 1, 2002 through March 31, 2002) was slow because of slagging problems in the combustor. These required the combustor to be rebuilt, a job that is not yet complete. A paper describing our results heretofore has been accepted by the Journal Environmental Science and Technology.

  3. Surface electrochemical control for fine coal and pyrite separation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, M.E.; Bodily, D.M.; Hu, Weibai; Chen, Wanxiong; Huang, Qinping; Liang, Jun; Riley, A.M.; Li, Jun; Wann, Jyi-Perng; Zhong, Tingke; Zhu, Ximeng

    1993-01-20

    Laboratory flotation tests were carried out on three coals and on coal pyrite. Floatability measurements included natural floatability, flotation with a xanthate collector and salt flotation. The ranking of the floatability of the three coals were: Upper Freeport > Pittsburgh > Illinois. The floatability of mineral pyrite and coal pyrite increased markedly with xanthate concentration, but decreased with increased pH. In general, coal pyrite was more difficult to float than mineral pyrite. This was attributed to the presence of surface carbonaceous and mineral matter, since floatability of coal pyrite improved by acid pretreatment. Flotation tests demonstrated that the floatability of coal and mineral pyrite was greatly enhanced by the presence of an electrolyte. Flotation was also enhanced by the addition of modifiers such as CuSO{sub 4}, Na{sub 2}S, CO{sub 2} and EDTA. Lime additions markedly reduced the floatability of coal pyrite. Enhanced floatability of coal pyrite resulted when the pyrite was anodically oxidized in a specially constructed electrochemical flotation cell Pretreatment in potential ranges previously observed for polysulfide and sulfur film formation resulted in the enhanced floatability. While interesting trends and influences, both chemical and electrochemical, markedly improved the floatability of coal, there is little hope for reverse flotation as an effective technology for coal/coal-pyrite separations. The effects of poor liberation and entrainment appear overriding.

  4. Compressive strength performance of OPS lightweight aggregate concrete containing coal bottom ash as partial fine aggregate replacement

    Science.gov (United States)

    Muthusamy, K.; Mohamad Hafizuddin, R.; Mat Yahaya, F.; Sulaiman, M. A.; Syed Mohsin, S. M.; Tukimat, N. N.; Omar, R.; Chin, S. C.

    2018-04-01

    Concerns regarding the negative impact towards environment due to the increasing use of natural sand in construction industry and dumping of industrial solid wastes namely coal bottom ash (CBA) and oil palm shell (OPS) has resulted in the development of environmental friendly lightweight concrete. The present study investigates the effect of coal bottom ash as partial fine aggregate replacement towards workability and compressive strength of oil palm shell lightweight aggregate concrete (OPS LWAC). The fresh and mechanical properties of this concrete containing various percentage of coal bottom ash as partial fine aggregate replacement were investigated. The result was compared to OPS LWAC with 100 % sand as a control specimen. The concrete workability investigated by conducting slump test. All specimens were cast in form of cubes and water cured until the testing age. The compressive strength test was carried out at 7 and 28 days. The finding shows that integration of coal bottom ash at suitable proportion enhances the strength of oil palm shell lightweight aggregate concrete.

  5. FINE PARTICAL AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Wayne S. Seames; Art Fernandez

    2003-09-21

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and pulverized coal. The objective was to determine potential tradeoffs between CO{sub 2} mitigation through using a CO{sub 2} neutral fuel, such as municipal sewage sludge, and the emergence of other potential problems such as the emission of toxic fly ash particles. The work led to new insight into mechanisms governing the partitioning of major and trace metals from the combustion of sewage sludge, and mixtures of coal and sewage sludge. The research also showed that the co-combustion of coal and sewage sludge emitted fine particulate matter that might potentially cause greater lung injury than that from the combustion of either coal alone or municipal sewage sludge alone. The reason appeared to be that the toxicity measured required the presence of large amounts of both zinc and sulfur in particles that were inhaled. MSS provided the zinc while coal provided the sulfur. Additional research showed that the toxic effects could most likely be engineered out of the process, through the introduction of kaolinite sorbent downstream of the combustion zone, or removing the sulfur from the fuel. These results are consequences of applying ''Health Effects Engineering'' to this issue. Health Effects Engineering is a new discipline arising out of this work, and is derived from using a collaboration of combustion engineers and toxicologists to mitigate the potentially bad health effects from combustion of this biomass fuel.

  6. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, D.D.; Bencho, J.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

    1995-11-01

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project.

  7. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    Energy Technology Data Exchange (ETDEWEB)

    R. Demler

    2006-04-01

    Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resulted in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal

  8. Effect of reagent type on the froth floatation of Sokoto phosphate ore

    Directory of Open Access Journals (Sweden)

    U.A. Hassan

    2016-06-01

    Full Text Available Effect of reagent type on the froth floatation of Sokoto phosphate ore for its beneficiation has been established. The samples of the Sokoto phosphate mineral ore used for the research work were sourced from mining locations in Dange-Shuni, Bodinga, Yabo, Wurno, and Rabbah Local Government Areas of Sokoto State. Size-Assay analysis conducted on scrubbed Sokoto Phosphates nodules revealed that nodules had a size distribution with 80% passing 29.3 mm. Flotation Tests using AERO704 (fatty Acid, Alkyl Hydroxamates, Melamine as collectors (alone or mixed with diesel, MIBC as frother, Calcium Hydroxide and Sulphuric Acid as pH regulators and Dextrin, Sodium Silicate and Aluminium Chloride as depressants produced poor P2O5 separation in the flotation products due to very poor liberation associated with very fine mineral grains. Based on the results obtained, AERO704 Collector gave the best result with aP2O5 recovery pH of 10.

  9. Coal

    International Nuclear Information System (INIS)

    Muir, D.A.

    1991-01-01

    The international coal market trends are outlined and the place of Australian coal industry is discussed. It is shown that while the world supply and demand for coal has begun to tighten, the demand for coal is expected to remain strong in both Asia and Europe. Consequently, in 1991-1992 Australian black coal production and export returns are forecast to rise by 4% and 7% respectively. 1 fig

  10. Adsorption of Non-ionic Surface Active Agent on Fine Coal and Lignite

    OpenAIRE

    AKTAŞ, Zeki

    2014-01-01

    The adsorption of Triton X-100 in aqueous solution on the less than 53 \\mm size fractions of Tunçbilek lignite and Zonguldak bituminous coal was studied. The adsorption isotherms were formed for 5, 30 and 1,440 (equilibrium) minutes. The isotherms were evaluated using both Langmuir and Freundlich adsorption equations. Concentrations of the reagent in the monolayer after equilibrium adsorption were determined to be 8.17 and 7.27 \\mM/g coal for the lignite and bituminous coal using th...

  11. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications: Task 9 - Selective agglomeration Module Testing and Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.` Jha, M.C.

    1997-09-29

    The primary goal of this project was the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing of both processes on six coals to optimize the processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report summarizes the findings of all the selective agglomeration (SA) test work performed with emphasis on the results of the PDU SA Module testing. Two light hydrocarbons, heptane and pentane, were tested as agglomerants in the laboratory research program which investigated two reactor design concepts: a conventional two-stage agglomeration circuit and a unitized reactor that combined the high- and low-shear operations in one vessel. The results were used to design and build a 25 lb/hr bench-scale unit with two-stage agglomeration. The unit also included a steam stripping and condensation circuit for recovery and recycle of heptane. It was tested on six coals to determine the optimum grind and other process conditions that resulted in the recovery of about 99% of the energy while producing low ash (1-2 lb/MBtu) products. The fineness of the grind was the most important variable with the D80 (80% passing size) varying in the 12 to 68 micron range. All the clean coals could be formulated into coal-water-slurry-fuels with acceptable properties. The bench-scale results were used for the conceptual and detailed design of the PDU SA Module which was integrated with the existing grinding and dewatering circuits. The PDU was operated for about 9 months. During the first three months, the shakedown testing was performed to fine tune the operation and control of various equipment. This was followed by parametric testing, optimization/confirmatory testing, and finally a

  12. Engineering Development of Advanced Physical Fine Coal Cleaning Technologies: Froth flotation. Quarterly technical progress report No. 21, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate.

  13. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  14. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 16, July--September, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Shields, G.L.; Moro, N.; Smit, F.J.; Jha, M.C.

    1996-10-30

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. 28 refs., 13 figs., 19 tabs.

  15. Formation and emission of fine particles from two coal-fired power plants

    DEFF Research Database (Denmark)

    Nielsen, M.T.; Livbjerg, H.; Fogh, C.L.

    2002-01-01

    , before the desulfurisation plant, and in the stack. The following sampling techniques are used: scanning mobility particle sizer, low pressure cascade impactor, dichotomous PM2.5 sampler, and total particle filter. The so-called multi-platform method used in this work Proves useful for gaining insight...... are in the PM2.5 range. The emitted particles primarily stern from the coal ash with a minor contribution of particles of entrained, dried-out droplets of scrubber slurry. The large emitted particles are compact, almost-spherical single particles originating from the ash mineral inclusions in the coal...

  16. Formation characteristics of fine particulates with Na compounds during coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Takuwa, T.; Mkilaha, I.S.N.; Naruse, I. [Toyohashi University of Technology, Toyohashi (Japan)

    2003-11-01

    Some metal compounds in coal vaporize and form fumes during the combustion. The fumes are usually exhausted through the flue gas. For coal-fired combined power generation systems such as pressurized fluidized bed combustion (PFBC), hot metallic vapors may contact with the surfaces of gas-turbine blades. Since this contact of the hot vapors with the surface has a corrosive effect, it is necessary to control the formation of those fumes, which contain alkali metal compounds. In this paper, the evolution behavior of alkali metal compounds, especially sodium compounds, has been studied, using an electrically heated drop tube furnace with a low-pressure impactor. The main objective in this study is to elucidate the conditions and the possible mechanisms to form alkali metal compounds in particulate matter during combustion. Two types of coal with different sodium contents were tested, where the coal conversion characteristics were established. Furthermore, the evolution and inclusion of sodium compounds into the sub-micron particles were studied in relation to the particle size distribution and sodium fraction distribution in the collected particulates. The study proved that the evolution and inclusion of sodium on sub-micron particles depended on the functions of the coal type. The reaction-controlled mechanism and heterogeneous condensation via chemical reactions during the combustion much more influenced the inclusion of sodium in sub-micron particles. At the coarse particles of above about 0.5 {mu}m, the reaction that formed the particles was mainly via gas film diffusion surrounding the particle.

  17. Density measurements of small amounts of high-density solids by a floatation method

    International Nuclear Information System (INIS)

    Akabori, Mitsuo; Shiba, Koreyuki

    1984-09-01

    A floatation method for determining the density of small amounts of high-density solids is described. The use of a float combined with an appropriate floatation liquid allows us to measure the density of high-density substances in small amounts. Using the sample of 0.1 g in weight, the floatation liquid of 3.0 g cm -3 in density and the float of 1.5 g cm -3 in apparent density, the sample densities of 5, 10 and 20 g cm -3 are determined to an accuracy better than +-0.002, +-0.01 and +-0.05 g cm -3 , respectively that correspond to about +-1 x 10 -5 cm 3 in volume. By means of appropriate degassing treatments, the densities of (Th,U)O 2 pellets of --0.1 g in weight and --9.55 g cm -3 in density were determined with an accuracy better than +-0.05 %. (author)

  18. An alternative method for float-sink analysis of fine coal samples using water fluidization

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Callen; S.J. Pratten; B.D. Belcher; N. Lambert; K.P. Galvin [University of Newcastle, Callaghan, NSW (Australia). School of Engineering

    2002-12-01

    The study reported is concerned with the development of a new method, based on water fluidization, for obtaining washability information for -4 +0.045 mm coal samples, with a view to providing a rapid, accurate, and safe alternative to the current laboratory method of float-sink testing. Previously, Galvin and Pratten have reported the technique of utilizing the density segregation effect of a narrow size range of particles in a fluidized bed to determine washability data. Here, the evaluation of the new method by determining the yield-ash data of a number of different Australian coals has demonstrated the robustness and accuracy of the water fluidization method. 7 refs., 9 figs., 1 app.

  19. Identifying The Target Market For a New Floatation Therapy Service, Flowtion

    OpenAIRE

    Varpomaa, Jerry

    2016-01-01

    The purpose of this thesis was to probe and identify the most potential target market for a new kind of wellness-service for Flowtion, a state-of-the-art floatation therapy center, focusing on floatation tanks. To accomplish the main goal for this thesis, a survey was conducted using “Google Forms”. The survey was spread through social media (Facebook), and as a result 41 people answered. The survey helps Flowtion to define their most potential target segment, their behaviour and profile vari...

  20. Coal

    International Nuclear Information System (INIS)

    Muir, D.A.

    1991-01-01

    It is estimated that World coal trade remained strong during the second quarter of 1991, with contributing factors including unseasonally large shipments to Japan for power generation, sustained Japanese steel production at around 112 Mt and some buildup in stocks in that country. Purchases by North Asian and European consumers also remained high. At the same time Soviet output and exports declined because of strikes and political unrest. In addition, exportable supplies in Poland fell. As a result the demand for Indonesian coal increased, and Australia exported larger than previously expected quantities of coal. ills

  1. Pressure-charged steam fluidized bed drying of brown coal. Process optimization by means of fine grain drying; Druckaufgeladene Dampfwirbelschicht-Trocknung (DDWT) von Braunkohlen. Verfahrensoptimierung mittels Feinkorntrocknung

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Stefan; Hoehne, Olaf; Krautz, Hans Joachim [Brandenburgische Technische Univ., Cottbus (Germany). Lehrstuhl Kraftwerkstechnik

    2008-07-01

    Since the year 2002, the professorship power plant technology of the Brandenburg Technical University Cottbus (Federal Republic of Germany) investigates the pressure-charged steam fluidized bed drying of brown coals on the basis of a power station-integrated procedure. At the test facility with a throughput of up to 500 kg/h numerous attempts with fine coal of the granulation between 0 and 6.3 mm are accomplished. Regarding to the optimization of the heat transition for the decrease of the investment costs of the complete system, the dryer was upgraded for the parameters of the fine grain drying process. The fine grain drying process is compared with the coarse grain drying process. First operating results are presented.

  2. Research of composite fuels thermophysical properties based on low-grade coals with addition of fine sawdust and flour industry wastes

    Directory of Open Access Journals (Sweden)

    Yankovsky Stanislav

    2017-01-01

    Full Text Available Experimental studies have been carried out to determine the energy and technical characteristics of composite fuels from coal grade 3B (Balakhtinskoye deposit, fine waste and flour from the milling industry. An effective concentration of 50% / 50% composite fuel has been established without the addition of a flour component, in which the combustion heat is reduced by less than 8%, with the flour component added up to 15%, the heat of combustion further decreases less than 2% of the heat of combustion of homogeneous coal. At the same time, the ash content is reduced to 11%, the yield of volatile components remains at the concentration level of the composite fuel of coal and wood. It is established that this component composition of three types of fuel is suitable for the formation of fuel briquettes suitable for burning in furnaces of small power boilers.

  3. Examining the short-term anxiolytic and antidepressant effect of Floatation-REST.

    Directory of Open Access Journals (Sweden)

    Justin S Feinstein

    Full Text Available Floatation-REST (Reduced Environmental Stimulation Therapy reduces sensory input to the nervous system through the act of floating supine in a pool of water saturated with Epsom salt. The float experience is calibrated so that sensory signals from visual, auditory, olfactory, gustatory, thermal, tactile, vestibular, gravitational and proprioceptive channels are minimized, as is most movement and speech. This open-label study aimed to examine whether Floatation-REST would attenuate symptoms of anxiety, stress, and depression in a clinical sample. Fifty participants were recruited across a spectrum of anxiety and stress-related disorders (posttraumatic stress, generalized anxiety, panic, agoraphobia, and social anxiety, most (n = 46 with comorbid unipolar depression. Measures of self-reported affect were collected immediately before and after a 1-hour float session, with the primary outcome measure being the pre- to post-float change score on the Spielberger State Anxiety Inventory. Irrespective of diagnosis, Floatation-REST substantially reduced state anxiety (estimated Cohen's d > 2. Moreover, participants reported significant reductions in stress, muscle tension, pain, depression and negative affect, accompanied by a significant improvement in mood characterized by increases in serenity, relaxation, happiness and overall well-being (p < .0001 for all variables. In reference to a group of 30 non-anxious participants, the effects were found to be more robust in the anxious sample and approaching non-anxious levels during the post-float period. Further analysis revealed that the most severely anxious participants reported the largest effects. Overall, the procedure was well-tolerated, with no major safety concerns stemming from this single session. The findings from this initial study need to be replicated in larger controlled trials, but suggest that Floatation-REST may be a promising technique for transiently reducing the suffering in those with

  4. Inhalation health effects of fine particles from the co-combustion of coal and refuse derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.; Wendt, J.O.L.; Wolski, N.; Hein, K.R.G.; Wang, S.J.; Witten, M.L. [University of Arizona, Tucson, AZ (USA). Dept. of Chemical & Environmental Engineering

    2003-06-01

    This paper is concerned with health effects from the inhalation of particulate matter (PM) emitted from the combustion of coal, and from the co-combustion of refuse derived fuel (RDF) and pulverized coal mixtures, under both normal and low NOx conditions. Specific issues focus on whether the addition of RDF to coal has an effect on PM toxicity, and whether the application of staged combustion (for low NOx) may also be a factor in this regard. Results on tests on mice show that the re-suspended coal/RDF ash appeared to cause very different effects on lung permeability than did coal ash alone. For the coal/RDF, the greatest lung damage (in terms of lung permeability increase) occurred at the short exposure period of 8 days, and thereafter appeared to be gradually repaired. Ash from staged (low NOx) combustion of coal/RDF appeared to cause greater lung injury than that from unstaged (high NOx) coal/RDF combustion, although the temporal behavior and (apparent) repair processes in each case were similar. In contrast to this, coal ash alone showed a slight decrease of lung permeability after 1 and 3 days, and this disappeared after 12 days. These observations are interpreted in the light of mechanisms proposed in the literature. The results all suggest that the composition of particles actually inhaled is important in determining lung injury. Particle size segregated leachability measurements showed that water soluble sulfur, zinc, and vanadium, but not iron, were present in the coal/RDF ash particles, which caused lung permeabilities to increase. However, the differences in health effects between unstaged and staged coal/RDF combustion could not be attributed to variations in pH values of the leachate.

  5. The Development of an Innovative Vertical Floatation Melter and Scrap Dryer for Use in the Aluminum Processing Industry

    Energy Technology Data Exchange (ETDEWEB)

    Robert De Saro

    2004-08-24

    The project aimed at the development of a Vertical Floatation melter, for application to the aluminum industry. This is intended to improve both the energy efficiency and environmental performance of aluminum melting furnaces. Phase I of this project dealt primarily with the initial research effort. Phase II, dealt with pilot-scale testing.

  6. Sinking/floatation of pipelines and other objects in liquefied soil under waves

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Fredsøe, Jørgen; Christensen, S.

    1999-01-01

    the experiments with the structure model, the displacement of the structure (sinking or floatation) was measured simultaneously with the pore-water pressure. The influence of various parameters (such as the initial position of the object, the specific gravity, the soil layer thickness, and the wave height......, and the experiments with the structure model (a pipeline, a sphere, and a cube). In the former experiments, the pore-water pressure was measured across the soil depth. The pore-water pressure built up, as the waves progressed. The soil was liquefied for wave heights larger than a critical value. Regarding......) was investigated. It was found that while the pipe sank in the soil to a depth of 2-3 times the pipe diameter, the sphere sank to even larger depths. The pipe with a relatively small specific gravity, initially buried, floated to the surface of the soil. The drag coefficients for the objects sinking...

  7. Study of Compressive Strength of Concrete with Coal Power Plant Fly Ash as Partial Replacement of Cement and Fine Aggregate

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2010-10-01

    Full Text Available This research study comprises of concrete cubes made with Ordinary Portland Cement and with different configurations of fly ash by replacing cement and fine aggregate. To achieve the aim of this study, total 81 concrete cubes were cast. Among 81 cubes, 9 cubes were made with normal concrete, 36 cubes were made by replacing 25%, 50%, 75% and 100% of fine aggregate with fly ash and 36 cubes were made by replacing 10%, 25%, 50%, and 75% of cement with fly ash. The cubes were 6\\" x 6\\" in cross-section, and the mix design was aimed for 5000 psi. After proper curing of all 81 cubes, they were tested at 3, 7 and 28 days curing age. The cubes were tested in Forney Universal Testing Machine. By analyzing the test results of all the concrete cubes, the following main findings have been drawn. The compressive strength of concrete cubes made by replacing 100 % fine aggregate by fly ash was higher than the concrete cubes made with Ordinary Portland Cement at all 3, 7 and 28 days curing ages. On the other hand, the compressive strength of concrete cubes made by replacing 10 % and 25 % cement by fly ash was slightly lower than the concrete cubes made with Ordinary Portland Cement at all curing ages, whereas, the compressive strength of concrete cubes made by replacing 50 % and 75 % of cement by fly ash were quite lower than the concrete cubes made with Ordinary Portland Cement at all curing ages.

  8. Effect of particle size on the froth floatation of Sokoto phosphate ore

    Directory of Open Access Journals (Sweden)

    U.A. Hassan

    2016-06-01

    Full Text Available Effect of particle size on the froth floatation of Sokoto phosphate ore for its beneficiation has been investigated and established. The research has been conducted using various reagents, pH(s at different sieve size fractions. Bench scale flotation tests were carried out on -250+180μm, -180+106μm, -106+75μm, -75+45μm and -45+38μm particle size fractions after screening in order to determine the optimum flotation feed size distribution using 1 liter Denver flotation cell. The results of the scoping flotation studies using a conditioning Pulp Density of 60%Solids, pH9, 800g/t reagent dosage for AERO704 Promoter (Fatty Acid and flotation pulp density of 28.5% Solids show that +106μm particle size gave the highest assay content of 20.4% P2O5 with a recovery of 76.2% compared to +38μm (19.9%P2O5 and recovery of 43.2% and +180μm (19.4%P2O5 and 24.1% recovery in their floats (concentrates but with no perfect separation as the tailings fraction also contained similar grades with slight differences.

  9. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2005-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine

  10. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  11. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, May 9, 1992--August 8, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production of mixed pillared clay catalysts and clay-supported catalysts and determination of their catalytic activities were continued in this quarter. To demonstrate the reproducibility of the preparative method for high activity iron/alumina-pillared montmorillonite catalysts, a new batch of the catalyst was prepared and tested for hydrocracking activity with bibenzyl. This preparation gave conversion and product distribution similar to that reported previously. The mixed iron/alumina-pillared clay was also prepared using a pillaring solution that was aged for longer period of time. To determine the importance of the type of pillaring support in hydrocracking activity, iron/zirconia-pillared montmorillonite was prepared using the same technique as that for iron/alumina-pillared montmorillonite. The reaction of bibenzyl with the sulfided iron/zirconia-pillared catalyst gave a lower hydrocracking conversion than the iron/alumina-pillared catalyst. Addition of a second catalytic metal to the clay support was attempted to determine if a synergistic effect could improve liquefaction. Ferric nitrate and stannous chloride were added to the clay, but the resulting catalyst was relatively poor for hydrocracking and hydrogenation compared with ferric nitrate supported on the clay. New disposable iron catalysts with high acidity and surface area are desired for coal liquefaction. Synthetic iron aluminosilicates were prepared by methods similar to those used for the nickel-substituted synthetic mica montmorillonite (NiSMM) catalysts, which are very effective for hydrogenation and reforming of hydrocarbons. The iron aluminosilicate catalysts were tested for hydrocracking and hydrogenation of bibenzyl, naphthalene and pyrene. Pyrene hydrogenation was effectively catalyzed by the sulfided synthetic iron catalyst.

  12. Study on Reduction Kinetics of Briquettes of Hematite Fines with Boiler Grade Coal and Coke Dust in Two Different Forms: Intermixing and Multilayered

    Science.gov (United States)

    Roy, Gopal Ghosh; Sarkar, Bitan Kumar; Chaudhuri, Mahua Ghosh; Mitra, Manoj Kumar; Dey, Rajib

    2017-10-01

    An attempt has been made to utilise hematite ore fines in the form of briquettes with two different form of mixing i.e. intermixing and multilayered by means of carbothermal reduction along with boiler grade coal and coke dust. The influence of reduction temperature (1323, 1373 and 1423 K) and reduction time (10, 20, 30, 45 and 60 min) has been investigated in detail and the reduced briquettes are characterised by XRD, SEM analyses. The reducibility of intermixing briquettes is found to be higher for multilayered briquettes. In addition, isothermal kinetic study has also been carried out for both intermixing and multilayered briquettes. The activation energy for intermixing briquettes are evaluated to be 125.88 kJ/mol for the initial stage of reaction (CG3 controlled mechanism) and 113.11 kJ/mol for the later part of reaction (D3 controlled mechanism), respectively. In case of multilayered briquettes, the corresponding activation energy is found to be 235.59 kJ/mol for reaction (CG3 controlled mechanism). These results corroborate the observed better reducibility of the intermixing briquettes over multilayered briquettes.

  13. Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM2.5) Fraction of Coal Combustion Ash

    Energy Technology Data Exchange (ETDEWEB)

    T. L. Robl; J. G. Groppo; R. Rathbone; B. Marrs; R. Jewell

    2008-07-18

    polyethylene terphthalate filled polymers were prepared and subjected to SEM analysis to verify that the UFA was well dispersed. The addition of fillers increased the modulus of the HDPE composite, but decreased both the offset yield stress and offset yield strain, showing that the fillers essentially made the composite stiffer but the transition to plastic deformation occurred earlier in filled HDPE as stress was applied. Similar results were obtained with TPE, however, the decrease in either stress or strain at offset yield were not as significant. Dynamic mechanical analyses (DMA) were also completed and showed that although there were some alterations in the properties of the HDPE and TPE, the alterations are small, and more importantly, transition temperatures are not altered. The UFA materials were also tested in expanded urethanes, were improvements were made in the composites strength and stiffness, particularly for lighter weight materials. The results of limited flammability and fire safety testing were encouraging. A flowsheet was developed to produce an Ultra-Fine Ash (UFA) product from reclaimed coal-fired utility pond ash. The flowsheet is for an entry level product development scenario and additional production can be accommodated by increasing operating hours and/or installing replicate circuits. Unit process design was based on experimental results obtained throughout the project and cost estimates were derived from single vendor quotes. The installation cost of this plant is estimated to be $2.1M.

  14. Microbiological desulfurization and conversion of coal

    International Nuclear Information System (INIS)

    Quigley, D.R.; Stoner, D.L.; Dugan, P.R.

    1991-01-01

    Bio processing of coal is a young and emerging technology. Until the early 1980's it consisted primarily of coal depyritization using Thiobacillus ferro oxidans to either oxidize pyritic sulfur or to alter particle wettability or floatation properties by binding to exposed pyrite inclusions. Since then, other major avenues of research have been pursued. One of these is the microbiologically mediated liquefaction of coal. Initial work indicated that microorganisms were able to transform low rank coal into a black liquid that was later identified as water solubilized by alkaline substances produced by the microbes and could be enhanced by the removal of multi valent cations from coal. Current work at the INEL involves of the identification and characterization of microorganisms that are able to alter the structure of polymeric desulfurization of coal. This work initially focused on the ability of microorganisms to oxidatively remove organic sulfur from model compounds that were representative of those sulfur containing moieties identified as being in coals (e.g., dibenzo thiophene). The work also focused on those organisms that were could remove the organic sulfur without degrading the carbon structure. While some organisms that are able to perform such these reactions will effectively remove organo sulfur from coal. These concerns stem from steric hindrance considerations and the thermodynamically unfavourable nature of reaction. Current work at the INEL involves the isolation and biochemical characterization of microorganisms that are able to desulfurize and solubilized coals that have high organic sulfur contents. (author)

  15. Exchange of experience: sieve analyses of coal and coal paste

    Energy Technology Data Exchange (ETDEWEB)

    1943-02-01

    This report consisted of a cover letter (now largely illegible) and a graph. The graph showed percentages of material left behind as residue on sieves of various mesh sizes, graphed against the mesh sizes themselves. The materials for which data were shown were both dry coal and coal paste from Ludwigshafen, Scholven, Gelsenberg, and Poelitz. The dry coal from Poelitz seemed to be by far the least finely-ground, but the coal paste from Poelitz seemed to be the most finely-ground. The values for coal paste from the other three plants were very close together over most of the range of mesh sizes. The dry coal from Gelsenberg seemed to be the most finely-ground dry coal, while the dry coals from Scholven and Ludwigshafen gave similar values over most of the range of mesh sizes. In all cases, the coal paste from a plant was more finely-ground than the dry coal from the same plant, but for Gelsenberg, the difference between the two was not nearly as great as it was for the other plants, especially Poelitz. For example, for a sieve with about 3,600 cells per square centimeter, only about 10% of the Poelitz coal paste was retained versus about 85% of the Poelitz dry coal retained, whereas the corresponding figures for Gelsenberg materials were about 36% versus about 53%.

  16. Integrated coal preparation

    International Nuclear Information System (INIS)

    Buchanan, D.J.; Jones, T.F.

    1992-01-01

    Perceptions of quality have changed over the years. The attributes of a certain coal (its rank, slagging propensity, ash content etc) are traditionally referred to as its quality. However, the subject of this paper is quality in a much wider sense: quality as fitness for purpose: and all that such a wide definition entails. British Standard BS 5750 (ISO 9000) Quality Systems defines a systems approach to quality, and includes both the supplier of raw materials and the final customer within this boundary. Coal preparation starts at the production face. The greater the proportion of dirt in run-of-mine product the greater the challenge in satisfying the customer's needs. Significant advances have been made in minimizing mined dirt. For example, the sue of vertical steering on longwall faces improves productivity and quality. Unfortunately modern mining methods produce large quantities of fines, despite efforts to reduce them at the point of production and during transportation to the surface. Coal preparation also produces further fines. It has been estimated that fine coal costs 2.5 times as much to clean as large coal, and the costs of handing wet fine coal product will inflate this estimate. Handling considerations rightly concern our customers and are part of the wider meaning of quality. In this paper the authors address some novel solutions to the challenge posed by fines

  17. A fine art

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, G.; Raaff, T. [Andritz AG (Austria)

    2006-07-15

    The paper describes a new dewatering system for coal fines which challenges established processes by using screenbowl centrifuge and hyperbaric filter combinations. Company acquisitions over the past three to four years enabled Andritz AG to develop a new system combining two technologies. The article describes the benefits of the combination process and explains the basic operation of these machines. 4 figs.

  18. Extraction Yield Efficiency And Loss Of The Traditional Hot Water Floatation HWF Method Of Oil Extraction From The Seeds Of Allanblackia Floribunda

    OpenAIRE

    Alenyorege E. A.; Hussein Y. A.; Adongo T. A.

    2015-01-01

    Abstract The research was conducted to determine the Extraction Yield Extraction Efficiency and Extraction Loss associated with the traditional Hot Water Floatation method of oil extraction. Matured dry seeds of Allanblackia floribunda 50 Kg were used. Allanblackia floribunda a tree species of the Guttiferae family grows naturally in tropical rainforests zones. In Ghana Allanblackia floribunda is quite unknown hence little production of oil is carried out. However the oil extracted can have d...

  19. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  20. Coal geopolitics

    International Nuclear Information System (INIS)

    Giraud, P.N.; Suissa, A.; Coiffard, J.; Cretin, D.

    1991-01-01

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs [fr

  1. Preparation of briquettes on the basis of desintegrated phyto-materials and the admixture of fine-grained coal and coke

    Directory of Open Access Journals (Sweden)

    Jakabský Štefan

    2002-03-01

    Full Text Available The contribution deals with the preparation of small-diameter briquettes on the basis of desintegrated phyto-materials and the admixture of coal and coke. The phyto-materials are classified as a dry biomass that can be, on the one hand, the wastes from wood-working industry,(sawdust, chips, bark, etc. or dried mass from the plant production and, on the other hand, the mass of quick-growing plants cultivated on special plantations. In present time this renewable energy resource attracts attention by its heating value ranging from 10 to 16 MJ.kg-1 (EkoWATT, 2001, a low ash content of 0.5 – 6.5 % and by a low sulphur content in a water free sample of 0.05 –0.12 %.As a phyto-material the spruce sawdusts having a grain size of –2 mm were used. The admixture of brown coal, hard coal and coke with a grain size of 0.040 mm was added to the sawdust and in such way prepared mixtures were subjected to briquetting with the aim to obtain small-diameter briquettes. The influence of admixtures amount on the density, and the suitable briquetting press have been studied. A saleability of briquettes on the basis of phyto-materials is conditioned by their density that must be higher than 1,000 kg.m-3. Thus, an adding of denser material with a relatively high calorific value would enable to attain the required density as well as to retain and/or to improve the main utility properties, i.e. calorific value and ash content.The adding evinces itself in an enhancement of briquetting press, but also density of obtained briquettes is often much higher that required by the market. It was showed that in the case of clear spruce sawdust the density of 1,059 kg.m-3 under the briquetting press of 250 MPa can be attained. According to other results, an admixture of brown coal is not very favourable because briquetting press exceeds the value of 300 MPa. As to hard coal adding, the presses under 250 MPa were achieved at the content of 25 – 30 %. The density of these

  2. Flocculation of chromite ore fines suspension using polysaccharide ...

    Indian Academy of Sciences (India)

    Unknown

    liquid separation. Keywords. Flocculation; graft copolymer; mineral industry effluent; chromite ore fines; ... work well as flocculating agent on coal washery effluent, copper and iron ore fines etc (Karmakar et al 1998, 1999;. Tripathy et al 2001).

  3. Coal sampling device

    Energy Technology Data Exchange (ETDEWEB)

    Huck, W.R.

    1985-10-22

    This invention pertains to a device for taking samples of finely crushed particulate matter, such as coal from a flowing feed stream on a preset selection schedule, using a rotating drum which has one slot in its periphery and a receptable moveable into and out of the center area of the drum in alignment with said slot.

  4. Coal beneficiation by gas agglomeration

    Science.gov (United States)

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  5. Effects of external atmosphere on the metallization phenomenology of composite pellets containing fines of iron ore and coal; Estudo do efeito da atmosfera gasosa na fenomenologia da metalizacao de pelotas auto-redutoras de minerio de ferro e carbono

    Energy Technology Data Exchange (ETDEWEB)

    D`Abreu, Jose C.; Oliveira, Luiz M.R. de [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    1996-12-31

    This work presents the effects of temperature, time and CO/CO{sub 2} ratio on metallization and morphology of metallic iron produced by reduction of composite pellets containing fines of iron and anthracite coal. The experiments were conducted in a temperature range of 950 - 1250 deg C, and maximum time of 60 minutes. On the other hand, mixtures of CO/CO{sub 2}, from 100% CO{sub 2} up to 100% CO, were used in the experiments, conducted in an appropriate electrically heated furnace apparatus. In order to fulfill the objectives, the reduced pellets were chemically analyzed before observed in optical and scanning electronic microscopes and the results presented in graphics of percentage metallization versus . The following main results may be drawn from this work: (a) the type of external atmosphere exert a major influence on the reduction rates and metallization of the composite pellets: (i) when CO is raised in the mixture, there is an increase in metallization and reaction rate and the metallization continue unchanged; (ii) and uniform internal reduction mechanism occurs. (b) when CO is decreased in CO-CO{sub 2} mixture, the reduction led to a superficial metallic layer, the metallization, initially high, drops and a topochemical mechanism of re-oxidation occurs. (c) the scanning electronic microscopy allowed to observe that calcium is always present in the root of whiskers. (author) 4 refs., 4 figs., 4 tabs.

  6. Third symposium on coal preparation. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The third Symposium on Coal preparation, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Fourteen papers from the proceedings have been entered individually into EDB and ERA; five additional papers had been entered previously from other sources. Topics covered involved chemical comminution and chemical desulfurization of coal (aimed at reducing sulfur sufficiently with some coals to meet air quality standards without flue gas desulfurization), coal cleaning concepts, removing coal fines and recycling wash water, comparative evaluation of coal preparation methods, coal refuse disposal without polluting the environment, spoil bank reprocessing, noise control in coal preparation plants, etc. (LTN)

  7. Coal slurries: An environmental bonus?

    International Nuclear Information System (INIS)

    Basta, N.; Moore, S.; Ondrey, G.

    1994-01-01

    Developers and promoters of coal-water slurries and similar CWF (coal-water fuel) technologies have had a hard time winning converts since they unveiled their first commercial processes in the 1970s. The economic appeal of such processes, marginal at best, varies with the price of oil. Nevertheless, the technology is percolating, as geopolitics and environmental pressures drive new processes. Such fuels are becoming increasingly important to coal-rich, oil-poor nations such as China, as they attempt to build an onshore fuel supply. Meanwhile, improvements are changing the way coal-fired processes are viewed. Where air pollution regulations once discouraged the use of coal fuels, new coal processes have been developed that cut nitrous oxides (NOx) emissions and provide a use for coal fines, previously viewed as waste. The latest developments in the field were all on display at the 19th International Technical Conference on Coal Utilization and Fuel Systems, held in Clearwater, Fla., on March 21--24. At this annual meeting, sponsored by the Coal and Slurry Technology Association, (Washington, D.C.) and the Pittsburgh Energy Technology Center of the US Dept. of Energy (PETC), some 200 visitors from around the work gathered to discuss the latest developments in coal slurry utilization--new and improved processes, and onstream plants. This paper presents highlights from the conference

  8. Coal-92

    International Nuclear Information System (INIS)

    Hillring, B.; Sparre, C.

    1992-11-01

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  9. Water pollution profile of coal washeries

    International Nuclear Information System (INIS)

    Gupta, R.K.; Singh, Gurdeep

    1995-01-01

    Environmental problems in coal mining industry is increased with the demand of good quality of coal through coal washing/beneficiation activities. The coal washeries in general have been identified as one of the serious sources of water pollution particularly of Damodar river. Coal washeries though are designed on close water circuit, most of these however, fail to operate on close water circuit thus resulting in enormous quantity of effluents containing coal fines as well. This apart from posing serious water pollution problem also results into economic losses. The present study attempts to provide an insight into water pollution profile from coal washeries in Jharia coalfield. Various process parameters/unit operations in coal washing are also described. Effluents from various selected coal washeries of Jharia coalfield are sampled and analysed over a period of six months during 1993. Suspended solids, oil and grease and COD in the washery effluents are identified as the three major water quality parameters causing lots of concern for Damodar river pollution. Reasons for unavoidable discharge of effluents containing coal fines are also described. (author). 14 refs., 4 tabs., 2 figs

  10. Analysis of coal streams with californium-252

    International Nuclear Information System (INIS)

    Worster, B.W.

    1976-01-01

    The sulfur, ash, water, and energy content of coal are increasingly important parameters to various coal users because of their relationship to air pollution, energy conservation, and to the proper operation of coal-burning plants. For example, ash accumulation is critical in electric power plants and suppliers of coal operate under contracts specifying maximum ash and sulfur content of their product. Conventional analysis of streams of coal on the order of 100 to 2000 tons/hour have relief on elaborate mechanical sampling mechanisms to take primary, secondary, and tertiary cuts from the coal stream with pulverizing stages between cuts to reduce it down to a fine powder which is analyzed off-line with wet chemical methods. (X-ray backscatter techniques have been applied to small coal streams for ash analysis.) This technique is too slow for process control in coal cleaning and blending operations, and is unreliable because of the highly heterogeneous nature of coal as it comes from the mine. Analysis of the entire stream of coal for the parameters of interest appears to be feasible only by analyzing the prompt gamma rays produced by capture of thermal neutrons diffusing through the coal. At FMC Corporation, we are performing extensive tests of the analysis of coal on-line for its important parameters using a californium-252 neutron source. In this paper we report the progress of our tests and the outlook for commercial industrial application of the method

  11. Advanced reclamation of coal refuse ponds

    International Nuclear Information System (INIS)

    Honaker, R.Q.; Chugh, Y.P.; Patwardhan, A.

    1998-01-01

    A vast number of coal refuse ponds represent a significant economical resource base that may also be considered to be environmentally harmful. The fine coal fraction in a preparation plant consists of the purest particles in the entire preparation plant and, thus, if recovered, could enhance the quality of the plant product. However, until recently, the ability to effectively recover fine coal has been limited due to the lack of efficient fine particle separation technologies. As a result, a large portion of the fine coal produced in the US during this century has been disposed into refuse pond along with the acid producing components of the associated gangue material. Research conducted by Southern Illinois University scientists has found that advanced fine coal cleaning technologies can be used to recover high quality coal from refuse ponds while also utilizing a novel technique for neutralizing the acid generation potential of the pyrite-rich reject stream. Various circuitry arrangements will be discussed and metallurgical results presented in this publication

  12. Desulfurization and oxidation behavior of ultra-fine CaO particles prepared from brown coal; Kattan wo mochiite choseishita CaO chobiryushi no datsuryu tokusei to sanka tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, G.; Roman, M.; Yamazaki, Y.; Abe, H.; Harano, Y.; Takarada, Y. [Gunma University, Gunma (Japan). Faculty of Engineering

    1996-10-28

    The effect of reaction temperature and oxygen concentration on the desulfurization and oxidation behavior of ion-exchanged brown coal by Ca as new desulfurizing agent was studied. In experiment, Yallourn coal was used for ion- exchange, and limestone produced in Tochigi prefecture was also used for comparative study. Ca-exchanged brown coal was prepared by agitating coal in Ca(OH)2 slurry for 24 hours. The desulfurization behavior of a desulfurizing agent was obtained by measuring H2S and sulfur compounds in outlet gas of a reactor, and the oxidation behavior by measuring SO2 emission in outlet gas after oxidation reaction. As the experimental result, CaO produced from Ca-exchanged brown coal offered the extremely high activity to desulfurization reaction in a temperature range of 850-950{degree}C as compared with limestone. Although the oxidation behavior was dependent on oxidation temperature and oxygen concentration, CaS obtained from Ca-exchanged brown coal was more rapidly converted to CaSO4 than limestone. 3 refs., 8 figs., 2 tabs.

  13. Briquetting of Coke-Brown Coal Mixture

    Directory of Open Access Journals (Sweden)

    Ïurove Juraj

    1998-09-01

    Full Text Available The paper presents the results of the research of briquetting a coke-brown coal composite The operation consists of the feeding crushed coal and coke to moulds and pressing into briquettes which have been made in the Laboratories at the Mining Faculty of Technical University of Košice (Slovakia. In this research, all demands will be analyzed including the different aspects of the mechanical quality of briquettes, the proportion of fine pulverulent coal and coke in bricks, the requirements for briquetting the coke-brown coal materials.

  14. Coal - 96

    International Nuclear Information System (INIS)

    Sparre, C.

    1996-09-01

    The report deals mainly with coal consumption, but also gives some information about technology, environmental aspects and markets. Data have been collected by questionnaires or via telephone. The use of steam coal for heating was 0.8 Mtons (down 20% from 1994). Cogeneration plants were the main users. Taxes and environmental reasons cause a reduction of the coal use that will probably continue the next years. Use of steam coal in industry has been constant at a level of 0.7 Mtons. The import of metallurgical coal rests constant at a level of 1.6 Mtons. 1.2 Mtons of coke was produced, and 0.3 Mtons imported. The PFBC-plant at Vaertan, Stockholm used 0.13 Mtons of coal, while some coal fired power plants have been converted to peat and wood fuels. The average price of steam coal imported to Sweden in 1995 was 333 SEK/ton, 6% higher than in 1994. The contract prices for delivery 1996 are about the same as at the end of 1995. All cogeneration plants have some sort of SO 2 removal system, mostly wet-dry. The largest plant, at Vaesteraas, has recently invested in a SCR system for NO x removal. Most other plants are using low NO x burners or SNCR systems, based on ammonia or urea, which reduce the emissions 50 - 70%. Some statistic about the world coal market is also given in the report

  15. Ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction for the separation and determination of estrogens in water samples by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke

    2014-11-01

    An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Anne Fine

    Directory of Open Access Journals (Sweden)

    Philip Gaydon

    2015-04-01

    Full Text Available An interview with Anne Fine with an introduction and aside on the role of children’s literature in our lives and development, and our adult perceptions of the suitability of childhood reading material. Since graduating from Warwick in 1968 with a BA in Politics and History, Anne Fine has written over fifty books for children and eight for adults, won the Carnegie Medal twice (for Goggle-Eyes in 1989 and Flour Babies in 1992, been a highly commended runner-up three times (for Bill’s New Frock in 1989, The Tulip Touch in 1996, and Up on Cloud Nine in 2002, been shortlisted for the Hans Christian Andersen Award (the highest recognition available to a writer or illustrator of children’s books, 1998, undertaken the positon of Children’s Laureate (2001-2003, and been awarded an OBE for her services to literature (2003. Warwick presented Fine with an Honorary Doctorate in 2005. Philip Gaydon’s interview with Anne Fine was recorded as part of the ‘Voices of the University’ oral history project, co-ordinated by Warwick’s Institute of Advanced Study.

  17. Coal competitiveness?

    International Nuclear Information System (INIS)

    Rogeaux, B.

    2006-01-01

    Will coal electrical plants be more competitive in the coming years? Answering this one cannot be limited to merely comparing estimates based on reference electricity production costs. The competitiveness of coal will indeed depend on the final product marketed, as the MWhs are not equal: is the purpose to produce base, half-base MWh? Does the electrical equipment structure require flexible MWh (for instance in the event of significant intermittent renewable energy amounts), and therefore plants able to adjust their power rapidly? But the competitiveness of coal will also depend on many factors that will correct reference cost estimates: uncertainties, risks, externalities. These factors will need to be appreciated on a case by case basis. We introduce some of the reasoning used to better appreciate the future competitiveness of coal, and the main factors conditioning it in three contrasting regions of the world: Europe, USA, china. (author)

  18. Physical and chemical coal cleaning

    Science.gov (United States)

    Wheelock, T. D.; Markuszewski, R.

    1981-02-01

    Coal is cleaned industrially by freeing the occluded mineral impurities and physically separating the coal and refuse particles on the basis of differences in density, settling characteristics, or surface properties. While physical methods are very effective and low in cost when applied to the separation of coarse particles, they are much less effective when applied to the separation of fine particles. Also they can not be used to remove impurities which are bound chemically to the coal. These deficiencies may be overcome in the future by chemical cleaning. Most of the chemical cleaning methods under development are designed primarily to remove sulfur from coal, but several methods also remove various trace elements and ash-forming minerals. Generally these methods will remove most of the sulfur associated with inorganic minerals, but only a few of the methods seem to remove organically bound sulfur. A number of the methods employ oxidizing agents as air, oxygen, chlorine, nitrogen dioxide, or a ferric salt to oxidize the sulfur compounds to soluble sulfates which are then extracted with water. The sulfur in coal may also be solubilized by treatment with caustic. Also sulfur can be removed by reaction with hydrogen at high temperature. Furthermore, it is possible to transform the sulfur bearing minerals in coal to materials which are easily removed by magnetic separation.

  19. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    The following report deals with the use of coal and coke during 1997. Some information about technic, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1997 was 730 000 tons and about 500 000 tons lower than in 1996. The extremely high figures of 1996 were due to twice the production of electricity because of lack of hydro power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. Some foreign analysts, however, estimate a doubled use of coal for energy use after 2020 because of the plans to phase out the nuclear power. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. 1997 these figures are 2 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1997 was 1.6 mill tons like the year before. 1.2 mill tons coke were produced. The coke consumption in the industry was 1.5 Mill tons. 0.3 mill tons of coke were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has plans to build a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has taken a fluid bed boiler for different fuels in operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm

  20. Fine chemistry

    International Nuclear Information System (INIS)

    Laszlo, P.

    1988-01-01

    The 1988 progress report of the Fine Chemistry laboratory (Polytechnic School, France) is presented. The research programs are centered on the renewal of the organic chemistry most important reactions and on the invention of new, highly efficient and highly selective reactions, by applying low cost reagents and solvents. An important research domain concerns the study and fabrication of new catalysts. They are obtained by means of the reactive sputtering of the metals and metal oxydes thin films. The Monte Carlo simulations of the long-range electrostatic interaction in a clay and the obtention of acrylamides from anhydrous or acrylic ester are summarized. Moreover, the results obtained in the field of catalysis are also given. The published papers and the congress communications are included [fr

  1. Coal 95

    International Nuclear Information System (INIS)

    Sparre, C.

    1995-01-01

    The report deals with the use of coal and coke in Sweden during 1994. Some information about technology, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used.The use of steam coal for heating purposes has been unchanged during 1994 at a level of 1 Mtons. The production in the cogeneration plants has been constant, but has increased for electricity production. The minor plants have increased their use of forest fuels. The use of steam coal will probably go down in the next years both for heat and cogeneration plants. During the top year 1987 coal was used in 18 hot water and 11 cogeneration plants. 1994 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in industry has been constant at the level 0.7 Mtons. The import of metallurgical coal in 1993 was 1.6 Mtons, like 1992. Import of 0.3 Mtons of coke gives the total consumption of coke in industry as 1.5 Mtons. the average price of steam coal imported to Sweden was 317 SEK/ton, 3% higher than 1993. All Swedish plants meet their emission limit of dust, SO 2 and NO x as given by county administrations or concession boards. The cogeneration plants all have some SO 2 removal system. The biggest cogeneration plant (Vaesteraas) has recently invested in a SCR NO x cleaning system. Most other plants use low NO x burners or SNR injection systems based on ammonia or urea. 2 figs, 13 tabs

  2. Tax credit synfuels influence coal markets

    Energy Technology Data Exchange (ETDEWEB)

    Morey, M.; Leshock, C. [Resource Data International, Boulder, CO (USA)

    2000-05-01

    The recent introduction of synthetic coal products has upset the balance between supply and demand in the US coal market. The imbalance is being driven by the operation of more than 40 facilities that were rapidly pushed into commercial service to meet a 1 July 1998 deadline to qualify for a tax credit. A study by Resource Data International found that synthetic coal will increase in importance and become a critical issue for both coal producers and consumers until 31 December 2007 when the credit expires. The tax credit is granted to qualifying fuels that have undergone a chemical change. However, many plants tout their use of waste coal, pond fines and other mining wastes. The credit amount is based on calorific value. RDI found that 44 synfuel plants were operating to some degree during 1999 with 10 being a West Virginia, 8 in Kentucky and 7 in Pennsylvania. 2 figs.

  3. Coal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kroenig, W.

    1944-02-11

    Some considerations in the selection of a catalyst for the liquid phase of coal hydrogenation are discussed. Some of the previous history of such selections is mentioned. At one stage of the development, the principal catalyst had been iron sulfate (FeSO/sub 4/.7H/sub 2/O). Later, for reasons of cost and availability of large supplies, selections had turned to mixtures of iron sulfate and one or another of some iron oxide- and aluminum oxide-containing byproducts of aluminum manufacture, namely Bayermasse, Luxamsse, or Lautamasse. Much of the discussion centered on optimal proportions for such mixtures, particularly as related to pH values of resulting coal pastes. Upper Silesian coal was more alkaline than Ruhr coal, and Bayermasse, etc., were quite alkaline. Thus, since the iron sulfate served as a partial neutralizer for the coal as well as a catalyst, it seemed necessary to increase the proportions of iron sulfate in the catalyst mixture when processing coal of greater alkalinity. A further reason for a greater proportion of iron sulfate seemed to be that most of the catalytic activity of the iron came from the ferrous iron of iron sulfate rather than from the ferric iron of the other materials. Ferrous-ferric ratios also seemed to indicate that Luxmasse or Lautamasse might be better catalyst components than Bayermasse but their water content sometimes caused handling problems, so Bayermasse had been more widely used. Formation of deposits in the preheater was more likely due to the Bayermasse than to the iron sulfate; sodium sulfide could help to prevent them.

  4. The behaviour of coal blends in power station boilers

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, W.R.; Horne, P.A.; McGhee, B.F.; Gibson, J.R. [Mitsui Babcock Energy Ltd., Renfrew (United Kingdom)

    1998-12-31

    The milling characteristics of coal blends were studied to provide quantitative information which allows the calculation of the Hardgrove Index (HGI) values of coal blends from those of the constituent coals; to provide data on the power requirement to produce a given mill output fineness, and abrasion rates of mill components when milling coal blends, relative to the behaviour of the constituent coals; to investigate the combustion behaviour of coal blends in pulverized fuel-fired systems by carrying out testwork in a semi-industrial combustion test facility, and to assess the deposition characteristics and the potential for utilization of the ashes produced by the combustion of coal blends. It was found that both the HGI and the Abrasion Index values of coals are additive properties. There were linear correlations between the slope of the Rosin-Rammler plot of the Mini-mill product size distribution and both the blend compositions and the HGI values of the coals and coal blends. Investigations showed that the fusion behaviour of the coal ash blends is rather complex, and that the characteristic ash fusion temperature are not additive in a simple way. A number of correlations were found between the ash fusion temperatures of the coals and coal ash blends. 1 ref., 45 figs., 10 tabs., 1 app.

  5. Coal at the crossroads

    International Nuclear Information System (INIS)

    Scaroni, A.W.; Davis, A.; Schobert, H.; Gordon, R.L.; Ramani, R.V.; Frantz, R.L.

    1992-01-01

    Worldwide coal reserves are very large but coal suffers from an image of being an environmentally unfriendly and inconvenient fuel. Aspects discussed in the article include: coal's poor image; techniques for coal analysis, in particular instrumented techniques; developments in clean coal technology e.g. coal liquefaction, fluidized bed combustion, co-generation and fuel slurries; the environmental impact of mining and land reclamation; and health aspects. It is considered that coal's future depends on overcoming its poor image. 6 photos

  6. Coal industry annual 1997

    International Nuclear Information System (INIS)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs

  7. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  8. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  9. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  10. Coal Industry Annual 1995

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995

  11. Coal and the competition

    Energy Technology Data Exchange (ETDEWEB)

    Morey, M. [RDI Consulting, Arlington, VA (United States). FT Energy

    2000-07-01

    24 overheads/viewgraphs outline a presentation on competition in the US coal industry. It discussed four main subjects: key factors driving coal demand (environmental regulations, electric utility deregulation; competition with natural gas, inter-regional coal competition, supply availability and pricing; and the export market and competition from off-shore coal sources); coal's ability to boost market share; shifts in coal distribution and the risk of more branded coal; and attempts to keep more regional sources of coal in business. State tax incentives for coal use in Arizona, Ohio, Oklahoma, Virginia and Alabama were discussed.

  12. Coal industry annual 1996

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs

  13. Characteristic parameters of the coal briquetting process

    International Nuclear Information System (INIS)

    Davkova, Katica

    1998-01-01

    The complete knowledge about the energetic sources in our country - Republic of Macedonia, point to the fact that coals are the most attractive and highly productive, still keeping the leadership position. However, the process of lignite exploitation causes their degradation and formation of large amount of fine fractions. The industrial valorization of these fractions is the most actual problem that could be solved only through production of made-up enriched fuels of wide spectrum of application. Thus, briquetting formation, with or without use of binds, is a process of mechanical or combined modification of coal fine fractions. At the same time, this is a possible procedure of solid fuels enrichment. Lignite from the Macedonian coal deposits 'Suvodol', 'Priskupshtina' and 'Brik-Berovo' is analyzed, in order to examine the possibilities of its briquetting. The results show that the 'Suvodol' lignite satisfy the quality requirements given with the MKS B H1.031 standard as well as the 'Brik-Berovo' lignite

  14. Coal -94

    International Nuclear Information System (INIS)

    Sparre, C.

    1994-05-01

    This report deals with use of coal and coke during 1993; information about techniques, environmental questions and markets are also given. Use of steamcoal for heating purposes has been reduced about 3 % during 1993 to 1,0 mill tons. This is the case especially for the heat generating boilers. Production in co-generation plants has been constant and has increased for electricity production. Minor plants have increased their use of forest fuels, LPG and NG. Use of steamcoal will probably go down in the immediate years both in heat generating and co-generating plants. Coal-based electricity has been imported from Denmark during 1993 corresponding to about 400 000 tons of coal, when several of our nuclear plants were stopped. Use of steamcoal in the industry has been constant at 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1993 was 1,6 mill tons like the year before. 1,2 mill tons coke were produced. Coke consumption in industry was 1,4 mill tons. 0,2 mill tons of coke were imported. Average price of steamcoal imported to Sweden in 1993 was 308 SEK/ton or 13 % higher than in 1992; this can be explained by the dollar price level increasing 34% in 1993. For the world, the average import price was 50,0 USD/ton, a decrease of 6 %. The coal market during 1993 was affected by less consumption in Europe, shut downs of European mines and decreasing prices. High freight price raises in Russia has affected the Russian export and the market in northern Europe. The prices have been stabilized recently. All Swedish plants meet emission limits of dust, SO 2 and NO x . Co-generation plants all have some sort of SO 2 -removal system; the wet-dry method is mostly used. A positive effect of the recently introduced NO x -duties is a 40% reduction

  15. Pneumatic pulse stratification in the gravimetric concentration of fines and its application to coal. La estratificacion neumatica-pulsante en la concentracion gravimetrica de finos y su aplicacion a los carbones

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro Drets, J.; Lopez Santiago, F. (Instituto Geologico y Minero de Espana, Madrid (Spain))

    1988-01-01

    The problem concerning pneumatic concentration of coal slices has not been solved yet using conventional methods. The hydraulic systems in spiskasten, spirals, shaking tables and flotation create the need of clarifying the water for its reutilization or pouring. This problem get worse in the case of lignites due to their high content of clay, their low economic value and the presence of pyrites, a polluting element in thermal plants. The use of pneumatic tables is limited to sizes below 3 mm; however, the presence of links between carbon-slate and carbon-pyrites condition their grades of definition in larger sizes. To solve this problem Rodriguez Baltar designed a pneumatic pulsating cell which allows you to treat these slices using a simple and effective procedure. The IGME has tested this successfully, as the results presented in this study show. However, due to the fact that the process is new and it is still being developed, the first tests were made in a small laboratory cell. A larger, more versatile cell has been made, which improves the results obtained in the tests. 4 refs., 6 figs., 10 tabs.

  16. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  17. Coal industry annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993

  18. Advanced Fine Particulate Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  19. Dynamic classifiers: a fine way to help achieve lower emissions

    Energy Technology Data Exchange (ETDEWEB)

    Landers, A.; Dugdale, K.L.; Leppak, T. [Powergen, Ratcliffe-on-Soar (United Kingdom)

    2004-04-01

    There have been very few conversions of UK coal mills from static to dynamic classifiers. But test experience with a dynamic classifier at Powergen's Ratcliffe-on-Soar power station has demonstrated significant fineness gain, especially at the coarse end of the particle size distribution curve, and minimal effect on mill coal throughput and operability, with greatly reduced in vibration levels. All mills at unit 1 are to be converted. The increased fineness will help offset the lower combustion efficiency to be expected when a boosted overfire air system is fitted to the plant to reduce NOx. 4 figs., 4 tabs.

  20. Further Investigations on Simultaneous Ultrasonic Coal Flotation

    Directory of Open Access Journals (Sweden)

    Safak Gokhan Ozkan

    2017-09-01

    Full Text Available This study investigates the flotation performance of a representative hard coal slime sample (d80 particle size of minus 0.2 mm obtained from the Prosper-Haniel coal preparation plant located in Bottrop, Germany. Flotation was carried out with a newly designed flotation cell refurbished from an old ultrasonic cleaning bath (2.5 L volume equipped with a single frequency (35 kHz and two different power levels (80–160 W and a sub-aeration-type flotation machine operating at a stable impeller speed (1200 rpm and air rate (2.5 L/min. The reagent combination for conventional and simultaneous ultrasonic coal flotation tests was Ekofol-440 at variable dosages (40–300 g/t with controlling water temperature (20–25 °C at natural pH (6.5–7.0. The batch coal flotation results were analyzed by comparing the combustible recovery (% and separation efficiency (% values, taking mass yield and ash concentrations of the froths and tailings into account. It was found that simultaneous ultrasonic coal flotation increased yield and recovery values of the floated products with lower ash values than the conventional flotation despite using similar reagent dosages. Furthermore, particle size distribution of the ultrasonically treated and untreated coals was measured. Finely distributed coal particles seemed to be agglomerated during the ultrasonic treatment, while ash-forming slimes were removed by hydrodynamic cavitation.

  1. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  2. The development and manufacture of coal briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Li Xinshen; Wei Tingfu; Hao Aimin; Ning Weiyun; Liu Fuhua [Chinese Academy of Sciences (China)

    1997-12-31

    Three different kinds of coal briquettes, i.e., gasification briquette, boiler briquette and easy ignition roast briquette, have been developed and produced with the authors` patent binder. The gasification briquette is made from fines of anthracite or coke, hot stability agent and patent binder. It has been used as a substitute of anthracite lump in gasifiers to produce fuel gas and syngas. The three year`s performance of this briquettes in the TG-3MI gasifier has given good economic benefits. The boiler briquette is made from bituminous coal fines, sulphur-fixing agent, combustion-supporting agent, waterproofing agent and patent binder. It can keep its original shape in water for one month. The combustion results of the boiler briquette in a 4t/h coal-fired boiler have shown that heat efficiency increased by 20%, the total suspended particles decreased by 80%, and emission of both SO{sub 2} and Hap were reduced as compared with the raw coal. The easy ignition roast briquette is made from fines of charcoal, anthracite or coke, oxidant and binder. It is convenient and safe to use in that it can be lit with a match or a piece of paper easily and burn continuously for 90 minutes without smoke and odor. It can be used as a fuel for roasting food for a picnic.

  3. Dispersed-phase catalysis in coal liquefaction

    International Nuclear Information System (INIS)

    Utz, B.R.; Cugini, A.V.; Frommell, E.A.

    1990-01-01

    This paper reports that the specific reaction (activation) conditions for the conversion of catalyst precursors to unsupported catalyst have a direct effect on the catalytic activity and dispersion. The importance of reaction intermediates in decomposition of ammonium heptamolybdate and ammonium tetrathiomolybdate, and the sensitivity of these intermediates to reaction conditions, were studied in coal liquefaction systems. Recent results indicate that optimization of activation conditions facilitates the formation of a highly dispersed and active form of molybdenum disulfide for coal liquefaction. The use of the catalyst precursors ammonium heptamolybdate, ammonium tetrathiomolybdate, and molybdenum trisulfide for the conversion of coal to soluble products will be discussed. The use of an unsupported dispersed-phase catalyst for direct coal liquefaction is not a novel concept and has been employed in may studies with varying success. Dispersed-phase catalysts soluble and oil-soluble salts, and as finely divided powders. While some methods of catalyst introduction give higher dispersion of the catalyst and greater activity for the liquefaction of coal, all of the techniques allow the formation of a finely dispersed inorganic phase

  4. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  5. Geochemistry of tin (Sn) in Chinese coals.

    Science.gov (United States)

    Qu, Qinyuan; Liu, Guijian; Sun, Ruoyu; Kang, Yu

    2016-02-01

    Based on 1625 data collected from the published literature, the geochemistry of tin (Sn) in Chinese coals, including the abundance, distribution, modes of occurrence, genetic types and combustion behavior, was discussed to make a better understanding. Our statistic showed the average Sn of Chinese coal was 3.38 mg/kg, almost two times higher than the world. Among all the samples collected, Guangxi coals occupied an extremely high Sn enrichment (10.46 mg/kg), making sharp contrast to Xinjiang coals (0.49 mg/kg). Two modes of occurrence of Sn in Chinese coals were found, including sulfide-bounded Sn and clay-bounded Sn. In some coalfields, such as Liupanshui, Huayingshan and Haerwusu, a response between REEs distribution and Sn content was found which may caused by the transportation of Sn including clay minerals between coal seams. According to the responses reflecting on REEs patterns of each coalfield, several genetic types of Sn in coalfields were discussed. The enrichment of Sn in Guangxi coals probably caused by Sn-rich source rocks and multiple-stage hydrothermal fluids. The enriched Sn in western Guizhou coals was probably caused by volcanic ashes and sulfide-fixing mechanism. The depletion of Sn in Shengli coalfield, Inner Mongolia, may attribute to hardly terrigenous input and fluids erosion. As a relative easily volatilized element, the Sn-containing combustion by-products tended to be absorbed on the fine particles of fly ash. In 2012, the emission flux of Sn by Chinese coal combustion was estimated to be 0.90 × 10(9) g.

  6. Coal data: A reference

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  7. Coal combustion aerothermochemistry research. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Witte, A.B.; Gat, N.; Denison, M.R.; Cohen, L.M.

    1980-12-15

    On the basis of extensive aerothermochemistry analyses, laboratory investigations, and combustor tests, significant headway has been made toward improving the understanding of combustion phenomena and scaling of high swirl pulverized coal combustors. A special attempt has been made to address the gap between scientific data available on combustion and hardware design and scaling needs. Both experimental and theoretical investigations were conducted to improve the predictive capability of combustor scaling laws. The scaling laws derived apply to volume and wall burning of pulverized coal in a slagging high-swirl combustor. They incorporate the findings of this investigation as follows: laser pyrolysis of coal at 10/sup 6/ K/sec and 2500K; effect of coal particle shape on aerodynamic drag and combustion; effect of swirl on heat transfer; coal burnout and slag capture for 20 MW/sub T/ combustor tests for fine and coarse coals; burning particle trajectories and slag capture; particle size and aerodynamic size; volatilization extent and burnout fraction; and preheat level. As a result of this work, the following has been gained: an increased understanding of basic burning mechanisms in high-swirl combustors and an improved model for predicting combustor performance which is intended to impact hardware design and scaling in the near term.

  8. Laboratory determination of the ash content of some Australian coals using radioisotope techniques

    International Nuclear Information System (INIS)

    Campbell, C.E.; Fookes, R.A.; Gardner, K.J.; Gravitis, V.L.; Steffner, E.J.; Watt, J.S.

    1982-01-01

    Two radioisotope techniques suitable for the rapid laboratory determination of the ash content of coal have been tested on unwashed coal samples from four Australian coal seams. In one technique, measurements of backscattered 238 Pu L X-rays and iron K X-rays from finely ground coal samples have been combined to determine ash content in unwashed coals to +- 0.5 weight per cent ash for three seams and +- 0.9 weight per cent ash for the fourth. The second technique, which involves measurements of the transmission by the coal of narrow beams of 241 Am 60 keV and 133 Ba 356 keV ν-rays, requires less sample preparation. The ash was determined to within the range of 0.8 to 2.6 weight per cent for the four seams (unwashed coal). For washed coals, errors are expected to be <+-0.5 weight per cent ash

  9. Coal information 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Coal Information (1997 edition) is the latest edition of a publication that has been produced annually by the IEA since 1983. The report is intended to provide both Member countries of the OECD and those employed in all sectors of the coal industry with information on current world coal market trends and long-term prospects. It includes information on coal prices, demand, trade, supply, production capacity, transport, environmental issues (including emission standards for coal-fired boilers), coal ports, coal-fired power stations and coal used in non -OECD countries. Part I of the publication contains a wide ranging review of world coal market developments in 1996 and current prospects to 2010. The review is based on historical data of OECD energy supply and demand, data on other world regions, projections of OECD coal supply, demand and trade and information provided by the CIAB. Part II provides, in tabular and graphical form, a more detailed and comprehensive statistical picture of coal developments and future prospects for coal in the OECD, by region and for individual Member countries. Readers interested in projections are strongly advised to read the notes for individual countries in Principles and Definitions in Part II. Coal statistics for non-OECD countries are presented in Part III of the book. Summary data are available on hard coal supply and end-use statistics for about 40 countries and regions world-wide. Data are based on official national submissions to the United Nations in Geneva and New York, national energy publications, information provided to the IEA Secretariat by national statistical offices as well as other unofficial Secretariat sources. Further information on coal used in non-OECD countries is published annually by the IEA in Energy Statistics and Balances of Non-OECD Countries. Also included in Part III are the Survey of Coal Ports world-wide and the Survey of Coal-fired Power Stations in coal-importing countries

  10. Influence of high-energy impact on the physical and technical characteristics of coal fuels

    Science.gov (United States)

    Mal'tsev, L. I.; Belogurova, T. P.; Kravchenko, I. V.

    2017-08-01

    Currently, in the world's large-scale coal-fired power industry, the combustion of pulverized coal is the most widely spread technology of combusting the coals. In recent years, the micropulverization technology for preparation and combustion of the coal has been developed in this field. As applied to the small-scale power industry, the method of combusting the coal in the form of a coal-water slurry has been explored for years. Fine coal powders are produced and used in the pulverized-coal gasification. Therefore, the coal preparation methods that involve high-dispersion disintegration of coals attract the greatest interest. The article deals with the problems of high-energy impact on the coal during the preparation of pulverized-coal fuels and coal-water slurries, in particular, during the milling of the coal in ball drum mills and the subsequent regrinding in disintegrators or the cavitation treatment of the coal-water slurries. The investigations were conducted using samples of anthracite and lignite from Belovskii open-pit mine (Kuznetsk Basin). It is shown that both the disintegration and the cavitation treatment are efficient methods for controlling the fuel characteristics. Both methods allow increasing the degree of dispersion of the coal. The content of the small-sized particles reground by cavitation considerably exceeds the similar figure obtained using the disintegrator. The specific surface area of the coal is increased by both cavitation and disintegration with the cavitation treatment producing a considerably greater effect. Being subjected to the cavitation treatment, most coal particles assume the form of a split characterized by the thermodynamically nonequilibrium state. Under external action, in particular, of temperature, the morphological structure of such pulverized materials changes faster and, consequently, the combustion of the treated coal should occur more efficiently. The obtained results are explained from the physical point of view.

  11. International perspectives on coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  12. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  13. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  14. Flash hydrogenation of coal

    Science.gov (United States)

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  15. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    Science.gov (United States)

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  16. Coal-water mixture fuel burner

    Science.gov (United States)

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  17. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  18. Australian Coal Company Risk Factors: Coal and Oil Prices

    OpenAIRE

    M. Zahid Hasan; Ronald A. Ratti

    2014-01-01

    Examination of panel data on listed coal companies on the Australian exchange over January 1999 to February 2010 suggests that market return, interest rate premium, foreign exchange rate risk, and coal price returns are statistically significant in determining the excess return on coal companies’ stock. Coal price return and oil price return increases have statistically significant positive effects on coal company stock returns. A one per cent rise in coal price raises coal company returns ...

  19. Coal Data: A reference

    International Nuclear Information System (INIS)

    1991-01-01

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ''Coal Terminology and Related Information'' provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  20. Use of Unprocessed Coal Bottom Ash as Partial Fine Aggregate ...

    African Journals Online (AJOL)

    2012r

    plastic density to decrease and bleeding to increase. Moreover, above 40% replacement of bottom ash, compressive strength, flexural strength, and modulus of elasticity decreased sharply. In addition, an increase in bottom ash content improved the drying shrinkage performance of the concrete. The research also.

  1. The Fine Structure Constant

    Indian Academy of Sciences (India)

    IAS Admin

    The article discusses the importance of the fine structure constant in quantum mechanics, along with the brief history of how it emerged. Al- though Sommerfelds idea of elliptical orbits has been replaced by wave mechanics, the fine struc- ture constant he introduced has remained as an important parameter in the field of ...

  2. Indonesian coal export potential

    International Nuclear Information System (INIS)

    Millsteed, Ch.; Jolly, L.; Stuart, R.

    1993-01-01

    Indonesia's coal mining sector is expanding rapidly. Much of the increase in coal production since the mid-1980s has been exported. Indonesian coal mining companies have large expansion programs and continuing strong export growth is projected for the remainder of the 1990s. The low mining costs of indonesian coal, together with proximity to Asian markets, mean that Indonesia is well placed to compete strongly with other thermal coal exporters and win market share in the large and expanding thermal coal market in Asia. However, there is significant uncertainty about the likely future level of Indonesia's exportable surplus of coal. The government's planned expansion in coal fired power generation could constrain export growth, while the ability of producers to meet projected output levels is uncertain. The purpose in this article is to review coal supply and demand developments in Indonesia and, taking account of the key determining factors, to estimate the level of coal exports from Indonesia to the year 2000. This time frame has been chosen because all currently committed mine developments are expected to be on stream by 2000 and because it is difficult to project domestic demand for coal beyond that year. 29 refs., 8 tabs., 7 figs

  3. Hazards from radioactivity of fly ash of Greek coal power plants (CPP)

    International Nuclear Information System (INIS)

    Papastefanou, C.; Charalambous, S.

    1980-01-01

    Fly ash and fine dispersion releases from coal combustion in Greek coal power plants were studied. Concentrations in the fly ash up to 20 pCi/g and 10 pCi/g were measured for 238 U and 226 Ra respectively (not in secular equilibrium). Risk from the fly ash derives from its escape in particulate form or fine dispersion and from its use as a substitute for cement in concrete. The new data indicate that coal power plants discharge relatively larger quantities of radioactive material into the atmosphere than nuclear power plants of comparable size, during normal operation. (H.K.)

  4. Anatomy of an intruded coal, I: Effect of contact metamorphism on whole-coal geochemistry, Springfield (No. 5) (Pennsylvanian) coal, Illinois Basin

    Energy Technology Data Exchange (ETDEWEB)

    Rimmer, Susan M. [Department of Geology, Southern Illinois University Carbondale, Carbondale, IL 62901 (United States); Yoksoulian, Lois E. [Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506 (United States); Hower, James C. [Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511 (United States)

    2009-08-01

    If time and heating rate are important agents in coal maturation, one might expect to see differences in chemical changes in response to maturation depending on the means of increased rank. Using a suite of samples obtained from an intruded Pennsylvanian-age coal in southern Illinois, we present whole-coal chemical data. Comparing these data to extant geochemical data for coals that have undergone normal burial maturation, we evaluated the hypothesis that if coal alteration occurs rapidly (due to intrusion) rather than gradually (burial maturation), then different relationships are seen in chemical composition (proximate and ultimate analyses) and vitrinite reflectance. The Pennsylvanian-age (Asturian [Westphalian D]) Springfield (No. 5) coal is mined at the Big Ridge Mine, near Eldorado, southern Illinois. This high volatile B bituminous coal was intruded by an ultramafic igneous intrusion during the early Permian. Alteration occurs out to {proportional_to} 1.2 x dike thickness and includes an increase in random vitrinite reflectance (R{sub m}) from levels {proportional_to} 0.7% to over 5.3%, loss of liptinites, and formation of devolatilization vacuoles and fine mosaic texture. Decreases in volatile matter (VM) and increases in fixed carbon (FC) appear to be less than would be expected for the level of reflectance seen within the alteration halo. Carbonate minerals have a major influence on proximate analyses but even following the removal of carbonates, the decrease in VM is still less than would be seen in coals of similar vitrinite reflectance that were altered by normal burial maturation. Carbonate mineralization also contributes to variability in ultimate analysis values approaching the intrusion, particularly for %C and %O. After carbonate removal, data for these coals do not appear to follow the normal burial coalification tracks when plotted on a van Krevelen diagram and on a Seyler chart. These differences suggest that a slightly different maturation

  5. Evaluation of the effects of coal grinding in terms of coal water slurry preparation

    Directory of Open Access Journals (Sweden)

    Robak Jolanta

    2016-01-01

    Full Text Available Coal Water Slurry (CWS is a specific form of solid fuel. It occurs in the form of finely ground coal particles and water. Depending on the use, the content of combustible matter is from 40 to 70% by weight. The attractiveness of the fuel is primarily its properties, i.e. liquid form, high energy efficiency (for water evaporation 4% energy is used – for CSW with 70% concentration of coal, decreased environmental impurities (lower NOx emission and reduced risk of explosion. The advantages of CWS fuels, the possibility of independence from petrochemical fuels, wide availability of coal and emphasis on the use of cleaner technologies are the driving force for development of slurry fuel technologies. The major parameters characterizing the fuel suspension are: solid phase concentration (share of coal in the slurry expressed as either weight or volume fraction of dry coal, time stability (resistance to delamination and separation of the dispersed phase from the continuous phase and viscosity, determining the flow of suspension. The mentioned parameters are dependent on the susceptibility of coal for production of aqueous suspensions (slurrability, conditioned by natural properties of coal, such as: coalification degree, petrographic composition and surface properties. They are also dependent on the slurry fuel preparation process: particle size, solid phase concentration, used additives (stabilizing and dispersion agents and modification of primary coal properties (ash removal, change of surface properties. Preparation of sustainable, high concentrated CWS fuel coal is promoted by the hydrophobic nature of the coal surface, characteristic for coals of higher coalification. A great technological problem is to obtain a highly concentrated coal slurry fuel from less coalified hydrophilic steam coals. The paper presents the results of lab scale research on the CWS prepared from Polish steam coal by wet grinding in mill drum and vibrating. The milling

  6. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  7. Coal sector profile

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  8. Fine Arts Database (FAD)

    Data.gov (United States)

    General Services Administration — The Fine Arts Database records information on federally owned art in the control of the GSA; this includes the location, current condition and information on artists.

  9. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Sabloff, J.A.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  10. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  11. Coal, culture and community

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    16 papers are presented with the following titles: the miners; municipalisation and the millenium - Bolton-upon-Dearne Urban District Council 1899-1914; the traditional working class community revisited; the cultural capital of coal mining communities; activities, strike-breakers and coal communities; the limits of protest - media coverage of the Orgreave picket during the miners` strike; in defence of home and hearth? Families, friendships and feminism in mining communities; young people`s attitudes to the police in mining communities; the determinants of productivity growth in the British coal mining industry, 1976-1989; strategic responses to flexibility - a case study in coal; no coal turned in Yorkshire?; the North-South divide in the Central Coalfields; the psychological effects of redundancy and worklessness - a case study from the coalfields; the Dearne Valley initiative; the future under labour: and coal, culture and the community.

  12. Coal tar in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Roelofzen, J.H.J.; Aben, K.K.H.; Van Der Valk, P.G.M.; Van Houtum, J.L.M.; Van De Kerkhof, P.C.M.; Kiemeney, L.A.L.M. [Radboud University Nijmegen Medical Center, Nijmegen (Netherlands). Dept. of Dermatology

    2007-07-01

    Coal tar is one of the oldest treatments for psoriasis and eczema. It has anti-inflammatory, antibacterial, antipruritic and antimitotic effects. The short-term side effects are folliculitis, irritation and contact allergy. Coal tar contains carcinogens. The carcinogenicity of coal tar has been shown in animal studies and studies in occupational settings. There is no clear evidence of an increased risk of skin tumors or internal tumors. Until now, most studies have been fairly small and they did not investigate the risk of coal tar alone, but the risk of coal tar combined with other therapies. New, well-designed, epidemiological studies are necessary to assess the risk of skin tumors and other malignancies after dermatological use of coal tar.

  13. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, Jr., G. A.

    1983-01-01

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  14. Coal contract cost reduction through resale of coal

    International Nuclear Information System (INIS)

    Simon, R.

    1990-01-01

    The weak coal market of the 1980's has enabled utilities and other users of coal to enjoy stable or falling prices for coal supplies. Falling prices for coal stimulated the renegotiation of numerous coal contracts in recent years, as buyers look to take advantage of lower fuel prices available in the marketplace. This paper examines the use of coal resale transactions as a means of reducing fuel costs, and analyzes the benefits and risks associated with such transactions

  15. Coal and our environment

    International Nuclear Information System (INIS)

    1992-01-01

    This booklet describes how coal is important for economic development and how it can be used without environmental damage. Aspects covered include: improved air quality; Clean Air Act; controlling emissions from coal; flue gas desulfurization; acid rain; the greenhouse effect and climatic change; the cost of clean air; surface coal mining and land reclamation; underground mining and subsidence; and mining and water pollution including acid mine drainage

  16. Coal export facilitation

    International Nuclear Information System (INIS)

    Eeles, L.

    1998-01-01

    There is a wide range of trade barriers, particularly tariffs, in current and potential coal market. Commonwealth departments in Australia play a crucial role in supporting government industry policies. This article summarises some of more recent activities of the Department of Primary Industries and Energy (DPIE) in facilitating the export of Australian Coals. Coal export facilitation activities are designed to assist the Australian coal industry by directing Commonwealth Government resources towards issues which would be inappropriate or difficult for the industry to address itself

  17. Developing Queensland coal

    Energy Technology Data Exchange (ETDEWEB)

    Philp, A. [Australian QTherm (Australia)

    1998-11-01

    Despite regional economic woes and falling coal prices, there have been exciting developments in Queensland`s coal industry with the announcement of three new coal mines, four mine expansions and two mine feasibility studies being undertaken. The article describes new projects being undertaken in Coppabella, Morahbah North and Hall Creek all in the Northern Bowen Basin, and mine expansions underway at Burton, Enshan, Newlands and Oaky North. Feasibility studies are the progress in the Millmerran and Acland deposits in The Moreton Basin. However, a number of proposed expansions at some major mines, such as Moura, Saraji and Peak Downs, have been postponed due to falling international coal prices. 2 figs., 2 photos.

  18. Pyrolysis of Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2006-07-01

    Full Text Available The paper presents a review of relevant literature on coal pyrolysis.Pyrolysis, as a process technology, has received considerable attention from many researchers because it is an important intermediate stage in coal conversion.Reactions parameters as the temperature, pressure, coal particle size, heating rate, soak time, type of reactor, etc. determine the total carbon conversion and the transport of volatiles and therebythe product distribution. Part of the possible environmental pollutants could be removed by optimising the pyrolysis conditions. Therefore, this process will be subsequently interesting for coal utilization in the future

  19. Coal combustion technology in China

    International Nuclear Information System (INIS)

    Huang, Z.X.

    1994-01-01

    Coal is the most important energy source in China, the environmental pollution problem derived from coal burning is rather serious in China. The present author discusses coal burning technologies both in boilers and industrial furnaces and their relations with environmental protection problems in China. The technological situations of Circulating Fluidized Bed Coal Combustor, Pulverized Coal Combustor with Aerodynamic Flame Holder and Coal Water Slurry Combustion have been discussed here as some of the interesting problems in China only. (author). 3 refs

  20. The Indonesian coal industry

    International Nuclear Information System (INIS)

    Cook, A.; Daulay, B.

    2000-01-01

    In this comprehensive article the authors describe the origins and progress of the Indonesian coal industry and the role it plays, and will play, in the domestic energy scene and world coal trade. In the '80s, the Indonesian coal industry laid the basis for major expansion such that coal production rose from under a million tonnes in 1983 to 10.6 million tonnes in 1990, 50.9 million tonnes by 1996 and 61.2 million tonnes in 1992. At the same time, exports have increased from 0.4 million tonnes to 44.8 million tonnes. Current export levels are higher than originally expected, due in part to a slow down in the construction of electric power stations and a partial switch to natural gas. This has slowed the rate at which domestic coal demand has built up. The majority of coals currently exported are low rank steam coals, but some of the higher rank and very low ash coals are used for blast furnace injection, and a very small proportion may even be used within coking blends, even though they have poor coking properties. The Indonesian coal industry has developed very rapidly over the last six years to become a significant exporter, especially within the ASEAN context. The resources base appears to be large enough to support further increases in production above those already planned. It is probable that resources and reserves can be increased above the current levels. It is likely that some reserves of high value coals can be found, but it is also probable that the majority of additions to reserves will be lower in rank (and therefore quality) compared with the average of coals currently being mined. Reserves of qualities suitable for export will support that industry for a considerable period of time. However, in the longer term, the emphasis of production will increasingly swing to the domestic market

  1. Coals of Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.; Fodor, B.; Gombar, G.; Sebestyen, I.

    1999-07-01

    As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and one surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.

  2. Clean coal technologies and future prospects for coal

    International Nuclear Information System (INIS)

    Rose, A.; Torries, T.; Labys, W.

    1991-01-01

    The purpose of this paper is to analyze the future potential of coal in the US economy during the next 25 years in light of clean coal technologies. According to official US Department of Energy (DOE) designations, these technologies pertain only to the beneficiation, transformation, combustion, and postcombustion clean-up stages of the coal cycle; no coal mining or coal transport technologies are included. In general, clean coal technologies offer the prospect of mitigating environmental side-effects of coal utilization, primarily through improved operating efficiencies and lowered costs of air emission controls. If they prove successful, coal users will be able to meet more stringent environmental regulations at little or no additional cost. In assessing the influence of clean coal technologies on coal demand, we focus on the economics of three crucial areas: their development, their deployment, and coal utilization implications of their operation

  3. Ignition of an organic water-coal fuel droplet floating in a heated-air flow

    Science.gov (United States)

    Valiullin, T. R.; Strizhak, P. A.; Shevyrev, S. A.; Bogomolov, A. R.

    2017-01-01

    Ignition of an organic water-coal fuel (CWSP) droplet floating in a heated-air flow has been studied experimentally. Rank B2 brown-coal particles with a size of 100 μm, used crankcase Total oil, water, and a plasticizer were used as the main CWSP components. A dedicated quartz-glass chamber has been designed with inlet and outlet elements made as truncated cones connected via a cylindrical ring. The cones were used to shape an oxidizer flow with a temperature of 500-830 K and a flow velocity of 0.5-5.0 m/s. A technique that uses a coordinate-positioning gear, a nichrome thread, and a cutter element has been developed for discharging CWSP droplets into the working zone of the chamber. Droplets with an initial size of 0.4 to 2.0 mm were used. Conditions have been determined for a droplet to float in the oxidizer flow long enough for the sustainable droplet burning to be initiated. Typical stages and integral ignition characteristics have been established. The integral parameters (ignition-delay times) of the examined processes have been compared to the results of experiments with CWSP droplets suspended on the junction of a quick-response thermocouple. It has been shown that floating fuel droplets ignite much quicker than the ones that sit still on the thermocouple due to rotation of an CWSP droplet in the oxidizer flow, more uniform heating of the droplet, and lack of heat drainage towards the droplet center. High-speed video recording of the peculiarities of floatation of a burning fuel droplet makes it possible to complement the existing models of water-coal fuel burning. The results can be used for a more substantiated modeling of furnace CWSP burning with the ANSYS, Fluent, and Sigma-Flow software packages.

  4. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    Energy Technology Data Exchange (ETDEWEB)

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

  5. Impacts of Natural Surfactant Soybean Phospholipid on Wettability of High-rank Coal Reservoir

    Science.gov (United States)

    Lyu, S.; Xiao, Y.; Yuan, M.; Wang, S.

    2017-12-01

    It is significant to change the surface wettability of coal rock with the surfactant in coal mining and coalbed methane exploitation. Soybean phospholipid (SP) is a kind of natural zwitterionic surfactant which is non-toxic and degradable. In order to study the effects of soybean phospholipid on wettability of high-rank coal in Qinshui Basin, some experiments including surface tension test, contact angle measurement on the coal surface, coal fines imbibition, observation of dispersion effect and gas permeability test were carried out, and water locking mechanism of fracturing fluid in micro fractures of coal reservoir was analyzed. The results show that the surface of high-rank coal was negatively charged in solution and of weak hydrophilicity. The soybean phospholipid with the mass fraction of 0.1% reduced the surface tension of water by 69%, and increased the wettability of coal. Meanwhile, the soybean phospholipid helped coal fines to disperse by observation of the filter cake with the scanning electron microscope. The rising rate of soybean phospholipid solution in the pipe filled with coal fines was lower than that of anionic and cationic surfactant, higher than that of clean water and non-ionic surfactant. Composite surfactant made up of soybean phospholipid and OP-10 at the ratio of 1:3 having a low surface tension and large contact angle, reduced the capillary force effectively, which could be conducive to discharge of fracturing fluid from coal reservoir micro fracture and improve the migration channels of gas. Therefore it has a broad application prospect.

  6. India clamours for coal

    Energy Technology Data Exchange (ETDEWEB)

    Nadkarni, S.

    2000-10-01

    The steadily deteriorating quality of coal provided by government-owned companies in India has persuaded coal users to follow the lead of the World Bank and call for deregulation of the sector to allow quality coal to be procured at competitive prices from the global market.Some 24 opencast mines belonging to Coal India Limited subsidiaries were to be expanded to produce 112 mta of coal but the World Bank terminated a loan of 507 million dollars from the total sanctioned loan of 1.06 bn. CIL refuses to accept that the loan was terminated because the government failed to meet the terms and conditions imposed at the time of the loan sanction. In addition to slow demand from the power sector, the state-owned coal companies have found the World Bank terms impossible to meet. The favourable debt market in India has come to their aid but even this will not enable the quality of coal to be improved for use in many power plants. The Maharashtra State Electricity Board has called for the formation of a joint venture with the private sector to explore for and supply quality coal. 1 photo.

  7. Imported coal remains flexible

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, F.

    1982-01-01

    The new law on coal tariff quotas is one year old. During this period hard coal imports increased by 1 million tons, in spite of the slowed down economic activities and the wait-and-see attitude of consumers. The author gives a first survey.

  8. Development of coal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    It is an important issue to expand stable coal supply areas for Japan, especially to assure stable supply of overseas coals. The investigations on geological structures in foreign countries perform surveys on geological structures in overseas coal producing countries and basic feasibility studies. The investigations select areas with greater business risks in coal producing countries and among private business entities. The geological structure investigations were carried out on China, Indonesia and Malaysia and the basic feasibility studies on Indonesia during fiscal 1994. The basic coal resource development investigations refer to the results of previous physical explorations and drilling tests to develop practical exploration technologies for coal resources in foreign countries. The development feasibility studies on overseas coals conduct technological consultation, surface surveys, physical explorations, and trial drilling operations, and provide fund assistance to activities related thereto. Fiscal 1994 has provided fund assistance to two projects in Indonesia and America. Fund loans are provided on investigations for development and import of overseas coals and other related activities. Liability guarantee for development fund is also described.

  9. Mechanochemical hydrogenation of coal

    Science.gov (United States)

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  10. COAL USE REPORT

    Science.gov (United States)

    The world's coal reserves have been estimated to be about one exagram accessible with current extraction technology. The energy content has been valued at 290 zettajourles. Using a value of 15 terawatt as the current global energy consumption, the coal supply could global needs f...

  11. Fine art of coking

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, S.

    1984-01-01

    The art and science of coking are discussed. Coke is the solid carbon made from the heavy, viscous residue left after the more useful products such as gasoline and diesel fuel have been refined out of the crude oil. Fuel grade coke can be a substitute for steam coal in many applications. Low-sulfur fuel coke is used in blast furnaces for steelmaking. The operations of Conoco's refineries for producing coke is described.

  12. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  13. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  14. The renaissance of coal

    International Nuclear Information System (INIS)

    Schernikau, Lars

    2013-01-01

    There is hardly another energy resource where public opinion and reality lie as far apart as they do for coal. Many think of coal as an inefficient relic from the era of industrialisation. However, such views underestimate the significance of this energy resource both nationally and globally. In terms of global primary energy consumption coal ranks second behind crude oil, which plays a central role in the energy sector. Since global electricity use is due to rise further, coal, being the only energy resource that can meet a growing electricity demand over decades, stands at the beginning of a renaissance, and does so also in the minds of the political leadership. Coal is indispensable as a bridging technology until the electricity demand of the world population can be met primarily through renewable resources.

  15. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  16. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Oats, W.J.; Ozdemir, O.; Nguyen, A.V. [University of Queensland, Brisbane, Qld. (Australia). School of Chemical Engineering

    2010-04-15

    Fine minerals, mostly clays, are known to have a detrimental effect on coal flotation. This paper focuses on the effect of mechanical and chemical removals of fine minerals by hydrocyclone and dispersants on coal flotation. The experimental results showed that the flotation recovery slightly increased from medium acidic to medium alkaline ranges. The flotation experiments carried out with dispersants at different dosages showed that the dispersants did not enhance the flotation recovery significantly. However, the removal of the fine fraction from the feed using a hydrocyclone significantly increased the flotation recovery. The bubble-particle attachment tests also indicated that the attachment time between an air bubble and the coal particles increased in the presence of clay particles. These attachment time results clearly showed that the clay particles adversely affected the flotation of coal particles by covering the coal surfaces which reduced the efficiency of bubble-coal attachment. An analysis based on the colloid stability theory showed that the clay coating was governed by the van der Waals attraction and that the double-layer interaction played a secondary role. It was also concluded that the best way to increase the flotation recovery in the presence of clays was to remove these fine minerals by mechanical means such as hydrocylones.

  17. Imeilus Fine 5

    Index Scriptorium Estoniae

    2017-01-01

    Vaba Lava teatrikeskuse laval esineb Fine 5 oma lavastusega "Imeilus". Tiina Ollesk ja Renee Nõmmik, tantsulavastuse autorid on koreograafid, õppejõud, lavastajad ja kogemustega tantsijad. 29. jaanuaril korraldavad Tiina Ollesk ja Renee Nõmmik Tallinna Ülikoolis kaasaegse liikumismõtlemise töötoa, mis on pühendatud lavastusele "Imeilus"

  18. The Fine Dutch Tradition

    NARCIS (Netherlands)

    Hooimeijer, F.L.

    2012-01-01

    Publication of the exhibition and symposium on water adaptive urban planning and architecture in Bangkok. The Urban Fine Dutch Tradition is a dynamic tradition of making urban designs using the parameters of the natural system – incorperating in an efficient way the hydrological cycle, the soil and

  19. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...

  20. Fine 5 lavastab Venemaal

    Index Scriptorium Estoniae

    2013-01-01

    Tantsuteatru Fine 5 koreograafid Tiina Ollesk ja Rene Nõmmik toovad Jekaterinburgis välja lavastuse "... and Red", esitajaks Venemaa nimekas nüüdistantsutrupp Provintsialnõje Tantsõ. Lavastuses kõlab Taavo Remmeli kontrabassiimprovisatsioon "12.12.2006"

  1. NMR imaging studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.R.; Zhang, P.Z.; Ding, G.L.; Li, L.Y.; Ye, C.H. [University of Science and Technology, Beijing (China). Dept. of Chemistry

    1996-06-01

    The permeation transportation and swelling behavior of solvents into coal are investigated by NMR imaging using pyridine-d{sub 5} and acetone-d{sub 6}. Images of coal swollen with deuterated solvents illuminate proton distributions of mobile phases within the coal macromolecular networks. More information about the chemical and physical structure of coal can be obtained using NMR imaging techniques.

  2. Coal: Less than lackluster

    International Nuclear Information System (INIS)

    Doerell, P.

    1994-01-01

    Not many in the world coal industry will remember 1993 as a good year. The reasons for the poor state of affairs were first the weak economic climate, and second, the energy glut. For the first time after expanding steadily since the 70s, seaborne trade in hard coal fell by about 4% to 350M mt. Steam coal accounted for a good half of this volume. While demand continued to rise in the newly industrialized countries of the Pacific area, imports into Europe of both coking coal and steam coal fell sharply. The United States, CIS, and Canada had to accept substantial losses of export volume. Australia, as well as South Africa, Colombia, and Indonesia consolidated their market positions and Poland, too, recorded high volumes available for export. The positive news came from Australia, where in mid-December the New South Wales coal industry reported an increase in the net profit after tax from $A83M (about $55M) to $A98M (about $126M) in 1992/1993. This success was however ascribed less to an improvement in the fundamental mining indicators than to the fall in the Australian dollar and the lowering of corporate tax. The reduction in capital investment by 26% down to $A330M (after the previous year when it had also been cut by 25%) is seen by the chairman of the NSW Coal Assoc. as not auguring well for the industry's ability to meet the forecast growth in demand to the year 2000

  3. Recycling the slagheap of an old coal mine (Morocco)

    Energy Technology Data Exchange (ETDEWEB)

    Darmane, Y.; Alaoui, A.; Kitane, S.; Bennajah, M.; Daramy, A.; Cherkaoui, M. [ENIM, Rabat (Morocco)

    2009-06-15

    A slagheap of the Jarada coal mine (Morocco) was recycled using the following ore processing operations: sifting, gravimetry and flotation. This abandoned coal mine has greatly evolved over the years. The oxidation of its pyrite content is the most remarkable change. The only remains are iron oxides which are concentrated within the fine particles of the slagheap. This study shows that the recovery efficiency of iron(III) oxide depends on the particle size, pH and the collector concentration. When recycled under optimum conditions, a commercial product containing 35% iron(III) oxide (Fe{sub 2}O{sub 3}) used in paint and enamelling was obtained.

  4. Coal potential of Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Rose, G.; McElroy, C.T.

    1987-01-01

    This report attempts to bring together available information on the coal deposits of Antarctica and discuss factors that would be involved if these deposits were to be explored and mined. Most of the reported principal coal deposits in Antarctica lie generally within the Transantarctic Mountains: the majority are of Permian age and are present in the Victoria Group of the Beacon Supergroup. Several other deposits have been recorded in East Antarctica and in the Antarctic Peninsula, including minor occurrences of Mesozoic and Tertiary coal and carbonaceous shale.

  5. Extreme coal handling

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, S; Homleid, D. [Air Control Science Inc. (United States)

    2004-04-01

    Within the journals 'Focus on O & M' is a short article describing modifications to coal handling systems at Eielson Air Force Base near Fairbanks, Alaska, which is supplied with power and heat from a subbituminous coal-fired central plant. Measures to reduce dust include addition of an enclosed recirculation chamber at each transfer point and new chute designs to reduce coal velocity, turbulence, and induced air. The modifications were developed by Air Control Science (ACS). 7 figs., 1 tab.

  6. Coal-fired generation

    CERN Document Server

    Breeze, Paul

    2015-01-01

    Coal-Fired Generation is a concise, up-to-date and readable guide providing an introduction to this traditional power generation technology. It includes detailed descriptions of coal fired generation systems, demystifies the coal fired technology functions in practice as well as exploring the economic and environmental risk factors. Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide, to help establish a reliable power supply address social and economic objectives. Focuses on the evolution of the traditio

  7. Microbial desulfurization of coal

    International Nuclear Information System (INIS)

    Bos, P.; Boogerd, F.C.; Kuenen, J.G.

    1992-01-01

    In recent years, studies have been initiated to explore the possibilities of the use of biological systems in coal technology. This chapter discusses the principles behind the bioprocessing of coal, the advantages and disadvantages, and the economic feasibility of the process. For large-scale, coal-using, energy-producing plants, stack gas cleaning should be the treatment of choice. Biodesulfurization is preferable with industrial, small-scale, energy-producing plants. Treatment of the stack gases of these plants is not advisable because of high investment costs. Finally, it should be realized that biodesulfurization produces a waste stream that needs further treatment. 91 refs

  8. Application of Coal Ash to Postmine Land for Prevention of Soil Erosion in Coal Mine in Indonesia: Utilization of Fly Ash and Bottom Ash

    Directory of Open Access Journals (Sweden)

    Shinji Matsumoto

    2016-01-01

    Full Text Available The increase in the number of coal-fired power plants with the increase in coal production and its consumption has caused the problem of the treatment of a large amount of coal ash in Indonesia. In the past studies, coal ash was applied to postmine land with the aim of improving soil conditions for plant growth; however, heavy rain in the tropical climate may cause soil erosion with the change in soil conditions. This study presents the effects of application of coal ash to postmine land on soil erosion by performing the artificial rainfall test as well as physical testing. The results indicate that the risk of soil erosion can be reduced significantly by applying the coal ash which consists of more than 85% of sand to topsoil in the postmine land at the mixing ratio of over 30%. Additionally, they reveal that not only fine fractions but also microporous structures in coal ash enhance water retention capacity by retaining water in the structure, leading to the prevention of soil erosion. Thus, the risk of soil erosion can be reduced by applying coal ash to topsoil in consideration of soil composition and microporous structure of coal ash.

  9. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  10. Clean utilization of coal

    International Nuclear Information System (INIS)

    Yueruem, Y.

    1992-01-01

    This volume contains 23 lectures presented at the Advanced Study Institute on 'Chemistry and Chemical Engineering of Catalytic Solid Fuel Conversion for the Production of Clean Synthetic Fuels', which was held at Akcay, Edremit, Turkey, between 21 July and August 3, 1991. Three main subjects: structure and reactivity of coal; cleaning of coal and its products, and factors affecting the environmental balance of energy usage and solutions for the future, were discussed in the Institute and these are presented under six groups in the book: Part 1. Structure and reactivity of coal; Part 2. Factors affecting environmental balance; Part 3. Pre-usage cleaning operations and processes; Part 4. Upgrading of coal liquids and gases; Part 5. Oxygen enriched processes; and Part 6. Probable future solution for energy and pollution problems. Separate abstracts have been prepared for all the lectures

  11. Quarterly coal report

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.

    1996-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  12. Coal Mine Permit Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — ESRI ArcView shapefile depicting New Mexico coal mines permitted under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), by either the NM Mining these...

  13. Coal exports still growing

    International Nuclear Information System (INIS)

    Blain, M.

    1998-01-01

    It is shown that the swings and roundabouts of the Asian economic shake out and Australian dollar devaluation are starting to work their way through the Australian export coal market. Perhaps somewhat surprisingly, at this stage the results are not proving to be as bad as were at first predicted by some market watchers. Export revenue and tonnages are up 12% for the year to July 98. Coal exports totaling $9.5 billion left Australia's shores in the 12 months confirming coal as Australia's single largest export revenue earner. Sales volumes in the present financial year are still increasing, the market being driven by steadily increasing Asian demand for steaming coal from places like Korea, Malaysia, Thailand and the Philippines

  14. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Viterbo, J.

    2011-09-15

    As the energy demand grows, coal is more and more exported and its trade is very flourishing. Asian countries produce 61% of the world production and Japan is the biggest coal importer: 27% of the world exports. The world reserves are huge: 860 billions tonnes which represents 130 years of today's production. The use of coal is very polluting and the quest of a clean coal is a challenge for the next decade. Different ways of improvement are currently developed: -) the use of more efficient filters to block polluting releases, -) the recovery of the energy of the smokes, -) a higher thermal yield through the use of supercritical cycles, or the addition of a gasification step to a combined cycle, or the simultaneous production of power, heat and chemical by-products, and -) the storage of CO{sub 2} produced in deep geological reservoirs. (A.C.)

  15. Uranium in coal

    International Nuclear Information System (INIS)

    Facer, J.F. Jr.

    1979-05-01

    United States production of coal in 1977 was 695 million short tons of which 477 million tons were burned in power plants. The ash from these power plants was about 67 million tons containing an estimated 900 tons U 3 O 8 , assuming 14 percent ash from the type of coal used by utilities and 12 ppM U contained in ash. Perhaps 1 to 3 percent of the domestic uranium requirement could be met from coal ash, provided processing technology could be developed for uranium recovery at acceptable costs. However, the environmental problems for disposal of the slimy leached ash would be enormous. The average uranium grade of coal in the United States is less than half of that of the Earth's crust. Burning the coal concentrates the contained uranium in the ash from 2 to 20 times. However, even at 20 times concentration, the percent uranium in coal ash is less than 1/100 of the grade of the uranium ore being processed today from conventional deposits. Although it is conceivable that some coal ash might contain enough uranium to make the ash an economic source of uranium, this is not now the case for ash from any major coal-fired power plant in the United States. During 1963 to 67, about 180,000 tons of uranium-bearing carbonaceous rock from the southwestern part of the Williston Basin were mined and processed to recover about 1 million pounds of U 3 O 8 . None of this material has been mined since 1967. The uranium reserves of the area are small, and the environmental problems with calcining the lignitic material may be prohibitive. Some other uraniferous coal and lignite could be mined and processed as a uranium ore, but less than half of one percent of the domestic $30 reserves are in coal. A few samples of mid-continent coal have been reported to contain about 100 ppM U but little is known about the size of such deposits or the likelihood that they will be mined and used for power plant fuel to produce a high-uranium ash

  16. Gondwana basins and their coal resources in Bangladesh

    International Nuclear Information System (INIS)

    Nehaluddin, M.; Sultan-ul-Islam, M.

    1994-01-01

    Fault bounded five Gondwana basins have been discovered in the north western Bangladesh. Among these basins show considerable amount of coal deposits. The Gondwana rocks are highly formed during the Permo-carboniferous diastrophism and later on acquired dynamic characters. In almost all basins, the Permian rocks overlie the Precambrian basement and underlie either the Tertiary or the Cretaceous sediments, structural, stratigraphic, and depositional history of these basins is more or less similar. The sedimentary sequences are composed of light to dark gray, fine to very coarse grained, sub angular to sub rounded felspathic sandstone, dark grey carbonaceous shale and sandstone, variegated conglomerate and thick coal seams (single seam max. 42.38m). The rocks are often alternated and bear the characteristics of cyclic sedimentation. The depositional environments varied from restricted drainage to open fluvial dominated low to moderate sinuous drainage system. The coal bearing basins were flanked by vegetated and swampy over bank. Age of these coals is suggested to be the late permian. Proved and probable reserves of coal in Jamalganj-Paharpur basin are 670 and 1,460 million metric tons, in Barapukuria basin 303 and 3899 million metric tons; in Barapukuria basin 303 and 389 million metric tons; and in Khalaspir basin 143 and 685 million metric tons respectively. The coal is high volatile, low sulphur, bituminous type. It can be used for different forms of thermal conversion. (author)

  17. Nanometre-sized pores in coal: Variations between coal basins and coal origin

    Science.gov (United States)

    Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.

    2018-01-01

    We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.

  18. Coal utilization and environment

    International Nuclear Information System (INIS)

    Sanchez, J.C.D.; Formoso, M.L.L.

    1990-01-01

    This paper attempts at presenting a database on environmental pollution due to coal-fired power plants and coal-mining, according to regional and national bibliography available to the authors. Data on air, water and soil pollution in Rio Grande do Sul and Pollution due to mining in Santa Catarina are presented. The paper consists of a bibliographic compilation, with the quantification of polluting factors. (author)

  19. Coal pillar design procedures

    CSIR Research Space (South Africa)

    York, G

    2000-03-01

    Full Text Available ). ..................................................................................................................25 Figure 1-3 Stress in coal pillar versus pillar compression. After Wagner (1980).......................27 Figure 1-4 Frequency of pillar collapse versus the design safety factor. ..................................38 Figure 1-5 Frequency... ......................................................................................57 Table 2-6 Calculation of factor of safety of pillars at collapsed sites in Klip River coal field.......................................................................................................................58 Table 2-7 Summary...

  20. Coal transporting systems

    International Nuclear Information System (INIS)

    Vasilevski, Goce; Sazdov, Dushko; Tasevski, Apostol

    1999-01-01

    Installation of transporting systems in coal open pits in Macedonia was connected with construction and purchasing of the equipment from foreign companies. During 1998 Electric Power Company of Macedonia in connection with needs of the Oslomej Thermal Power Plant and delivery conditions,decided to give this task to domestic companies. This paper presents the planning activities an the implementation of the new coal transporting system. (Author)

  1. Improvements in monitoring coal

    International Nuclear Information System (INIS)

    Wright, H.R.C.; Tulloch, A.T.; Basterfield, A.

    1984-01-01

    An instrument for determining a first characteristic of a material, eg ash in coal, by X-radiation comprises a turntable with material feeding means. An X-radiation source and detector unit determines the first characteristic, and a microwave source and detector unit, determine a second characteristic of the material, eg moisture in coal. The turntable is transparent to microwaves in at least the region traversed by the microwaves. (author)

  2. Oil from coal

    Energy Technology Data Exchange (ETDEWEB)

    Thurlow, G.G.

    1978-10-01

    Our great-grandchildren will view the petroleum age as a brief perturbation in the life-style of mankind, less than a hundred years in which we discovered, exploited, squandered and exhausted the natural resource of liquid petroelum laid down over many million years of pre-history. What the sources of energy in common use in our great-grandchildren's day will be is something we cannot know. By then, the need for liquid hydrocarbon fuels may have passed. What is more sure, however, is that for a while, man will want to continue to use the equipment and the methods familiar to him from this petroleum-product dominated age beyond the time when natural petroleum sources become scarce. During these decades there will be a need to produce liquid hydrocarbons from other sources and one of these sources, abundantly available at this time, will be coal. Converting coal to liquid basically entails accomplishing two steps: (1) the separation of the coal substance from the ash and impurities associated with the coal, and (2) breaking down the complex coal molecules into simpler molecules and increasing the hydrogen-to-carbon ratio. It is also necessary, of course, to develop processes which will lead to the production of a range of liquid products to meet the demands of the commerical market, whether as fuels or as chemical feedstocks. Converting coal to a liquid needs energy, both heat and power, and hydrogen; if all these have to be generated starting from coal, their production may use approaching half of the Btu value of the coal fed to the plant. The economic advantage of one process over another will be mainly dependent on the products required and the price assigned to them and on the effectiveness with which the plant can be engineered to minimize energy loss and to operate effectively.

  3. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  4. Coal market outlook in China

    International Nuclear Information System (INIS)

    Yu Zhufeng; Zheng Xingzhou

    2005-01-01

    Coal is the major primary energy source in China. It is forecast that coal will account for over 60% of the primary energy consumption mix, and the total coal demand will reach 2.3-2.9 billion tons in 2020. However, ensuring the coal supply will be faced with a lot of obstacles in fields such as the degree of detailed exploration of coal reserves, the level of mining technology and mine safety, the production capacity building of mines, transport conditions, and ecological and environmental impacts. More comprehensive measures should be adopted, including improvements in energy efficiency, strengthening coal production and transportation capacity, to rationalise coal mine disposition and the coal production structure, and to raise the levels of coal mining technologies and mine safety management, etc. (author)

  5. The future resources for eco-building materials: II. Fly ash and coal waste

    Energy Technology Data Exchange (ETDEWEB)

    Hui Li; Delong Xu [Xi' an University of Architecture & Technology, Xi' an (China). China State key Laboratory of Western Architecture & Technology

    2009-08-15

    To use fly ash and coal waste effectively, the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed, such as utilizing fly ash as the component of fly ash cement and low heat cement after the processes of separation, removal of carbon remains and fine comminution, calcining coal waste into kaolin and meta-kaolin with suspension technology, and preparing clinkerless alkali-activated geopolymer materials with fly ash and meta-kaolin.

  6. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  7. Coal recovery from a coal waste dump

    Directory of Open Access Journals (Sweden)

    Rozanski Zenon

    2016-01-01

    Full Text Available The possibilities and efficiency of coal recovery from the waste material located at the Central Coal Waste Dump in Poland were presented in this paper. The waste material includes significant amount of fly ash. Research conducted into determination of energetic properties of such wastes showed that the average ash content was 75.75% and the average gross calorific value was 7.81 MJ/kg. Coal was gravitationally separated from the waste material in a pulsatory jig and in a spiral washer including size fractions: 30-5 and 8-0 mm (this was crushed to a size <3.2 mm, respectively. The application of the pulsatory jig (pulse classifier allowed to obtain a high-quality energetic concentrate with the ash content lower than 12% and the gross calorific value higher than 26 MJ/kg (with average yield 7.8%. The spiral separator gave much worse results. The average gross calorific value for the concentrate was 11.6 MJ/kg, with the high ash content 56.5% and yield approximately 26%.

  8. Effects of fly ash fineness on the mechanical properties of concrete

    Indian Academy of Sciences (India)

    ing the pulverized coal in the thermal power plants. In the construction sector, the fly ash is used in the production of cement as an additive-material, in production of concrete instead of some of the cement or instead of some of the fine aggregate, as a base and sub-base material in high- way construction, as a filling material ...

  9. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  10. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  11. EIA projections of coal supply and demand

    International Nuclear Information System (INIS)

    Klein, D.E.

    1989-01-01

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion

  12. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    Science.gov (United States)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  13. 11th annual conference on clean coal technology, proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Topics covered at the conference include coal combustion technology, multi-purpose coal conversion technology (including entrained-bed coal flash pyrolysis process (CPX), hydrogen production from coal and coal liquefaction), coal ash utilization technology, next general technology (including dry coal cleaning technologies and coal conversion by supercritical water) and basic coal utilization technology (including ash behaviour during coal gasification).

  14. Coal: geology, resources and reserves. Political economy of mineral coal

    International Nuclear Information System (INIS)

    Allegre, Maurice; Martin-Amouroux, Jean-Marie

    2014-04-01

    A first article indicates the different types of coal (lignite, coking coal, thermal coal) and their calorific power. The author discusses the geology and genesis of coal, and then evokes the various extraction techniques. He comments the definition used regarding resources and reserves, comments various resource assessments, and discusses the future evolution of resources and reserves. He comments the consequences of coal geology for perspectives and costs of production. The second article comments the strong increase of World coal consumption since 1980 (a table is given with data for each continent), outlines that thermoelectricity is the engine of coal demand, that extraction costs and transport costs remained limited (when extraction costs become too high, the mining site is generally closed). The author comments the development of international trade on very competitive markets, and outlines that national coal policies are much different among countries

  15. What component of coal causes coal workers' pneumoconiosis?

    Science.gov (United States)

    McCunney, Robert J; Morfeld, Peter; Payne, Stephen

    2009-04-01

    To evaluate the component of coal responsible for coal workers' pneumoconiosis (CWP). A literature search of PubMED was conducted to address studies that have evaluated the risk of CWP based on the components of coal. The risk of CWP (CWP) depends on the concentration and duration of exposure to coal dust. Epidemiology studies have shown inverse links between CWP and quartz content. Coal from the USA and Germany has demonstrated links between iron content and CWP; these same studies indicate virtually no role for quartz. In vitro studies indicate strong mechanistic links between iron content in coal and reactive oxygen species, which play a major role in the inflammatory response associated with CWP. The active agent within coal appears to be iron, not quartz. By identifying components of coal before mining activities, the risk of developing CWP may be reduced.

  16. Leachability of trace elements in coal and coal combustion wastes

    International Nuclear Information System (INIS)

    Rice, C.A.; Breit, G.N.; Fishman, N.S.; Bullock, J.H. Jr.

    1999-01-01

    Leaching of trace elements from coal and coal combustion waste (CCW) products from a coal-fired power plant, burning coal from the Appalachian and Illinois basins, was studied using deionized (DI) water as a lixiviant to resemble natural conditions in waste disposal sites exposed to dilute meteoric water infiltration. Samples of bottom ash, fly ash, and feed coal were collected from two combustion units at monthly intervals, along with a bulk sample of wastes deposited in an on-site disposal pond. The units burn different coals, one a high-sulfur coal (2.65 to 3.5 weight percent S) and the other, a low-sulfur coal (0.6--0.9 eight percent S). Short-term batch leaches with DI water were performed for times varying from a few minutes to 18 hours. Select fly ash samples were also placed in long-term (> 1 year) flow-through columns

  17. R D for the storage, transport, and handling of coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The product of several advanced physical coal cleaning processes is a dry ultra-fine coal (DC), in the order of 10 microns mean mass diameter. To utilize this fuel commercially, cost-effective, environmentally safe systems must be provided for the storage, transport, and handling of this finely divided form of fuel. The objective of the project described herein is the development of total logistics systems for DC, including experimental verification of key features. The systems to be developed will provide for safe, economic, and environmentally protective storage and delivery of DC for residential, commercial, and industrial uses. (VC)

  18. Fine target of deuterium

    International Nuclear Information System (INIS)

    Diaz Diaz, J.; Granados Gonzalez, C. E.; Gutierrez Bernal, R.

    1959-01-01

    A fine target of deuterium on a tantalum plate by the absorption method is obtained. In order to obtain the de gasification temperature an induction generator of high frequency is used and the deuterium pass is regulated by means of a palladium valve. Two vacuum measures are available, one to measure the high vacuum in the de gasification process of the tantalum plate and the other, for low vacuum, to measure the deuterium inlet in the installation and the deuterium pressure change in the installation after the absorption in the tantalum plate. A target of 48 μ gr/cm 2 thick is obtained. (Author) 1 refs

  19. Mill performance of coal blends

    Energy Technology Data Exchange (ETDEWEB)

    P.A. Bennett; G. O' Brien; D. Holcombe [CoalTech Pty Ltd. (Australia)

    2005-07-01

    Evaluating the potential performance of coal blends for use as pulverised fuel (PF) in power plants and pulverised coal injection (PCI) into blast furnaces requires knowledge of the size distribution of the organic and mineral matter components of a blend, especially when there are significant differences in the Hardgrove Grindability Index (HGI) of the component coals. The size distribution of the organic matter impacts on combustibility of thermal and PCI coal blends and handleability of PCI coal blends. Petrography techniques were used to examine four size fractions from the PF of single coals and blends to measure the size distribution of maceral groups. For most coals, a good estimate of a blend's size distribution can be made assuming that the size distribution of the individual coals, milled under the same conditions, are added together in the proportions of the blend. The exception is when a very soft coal (HGI 90) is blended with a very hard coal (HGI 35). In this case preferential milling (more reporting to the smaller size fractions) of the softer coal occurred. All coals studied in this project show some sign of preferential grinding of the softer maceral group when the coal was milled individually or in a blend. It is only when there is a large difference in the relative strength of the maceral groups of the coals blended that the preferential milling of a coal in a blend is observed in the size distribution of the blend. The results indicate that the breakage characteristics (change in size reduction per unit of energy) of maceral groups in individual coals do not change when they are blended with other coals. 12 refs., 5 figs., 2 tabs.

  20. Global thermal coal trade outlook

    International Nuclear Information System (INIS)

    Ewart, E.

    2008-01-01

    Wood Mackenzie operates coal consulting offices in several cities around the world and is the number one consulting company in terms of global coal coverage. The company offers a unique mine-by-mine research methodology, and owns a proprietary modeling system for coal and power market forecasting. This presentation provided an overview of global thermal markets as well as recent market trends. Seaborne markets have an impact on price far greater than the volume of trade would imply. Research has also demonstrated that the global thermal coal market is divided between the Pacific and Atlantic Basins. The current status of several major coal exporting countries such as Canada, the United States, Venezuela, Colombia, Indonesia, Australia, China, South Africa, and Russia was displayed in an illustration. The presentation included several graphs indicating that the seaborne thermal coal market is highly concentrated; traditional coal flow and pricing trends shift as Asian demand growth and supply constraints lead to chronic under supply; coal prices have risen to historic highs in recent times; and, the Asian power sector demand is a major driver of future growth. The correlation between oil and gas markets to thermal coal was illustrated along with two scenarios of coal use in the United States in a carbon-constrained world. The impact of carbon legislation on coal demand from selected coal regions in the United States was also discussed. Wood Mackenzie forecasts a very strong growth in global thermal coal demand, driven largely by emerging Asian economies. tabs., figs

  1. Effect of Crusher Type and Crusher Discharge Setting On Washability Characteristics of Coal

    Science.gov (United States)

    Ahila, P.; Battacharya, S.

    2018-02-01

    Natural resources have been serving the life of many civilizations, among these coals are of prime importance. Coal is the most important and abundant fossil fuel in India. It accounts for 55% of the country’s energy need. Coal will continue as the mainstay fuel for power generation. Previous researches has been made about the coal feed size and coal type had great influence on the crushing performance of the same jaw crusher and amount of fines generated from a particular coal depends not only upon coal friability but also on crusher type. Therefore, it necessitates crushing and grinding the coal for downstream process. In this paper the effect of crusher type and crusher discharge setting on washability characteristics of same crushed non-coking coal has been studied. Thus four different crushers were investigated at variable parameters like discharge settings, different capacities and feed openings. The experimental work conducted for all crushers with same feed size and HGI (Hardgrove Grindability Index). Based on the investigation the results indicate that the four crushers which has been involved for the experimental work shows that the variation in not only the product size distribution and also reduction ratio. Maximum breakage has been occurred at coarsest size fraction of irrespective of crusher type and discharge setting.

  2. Bright outlook for coal

    International Nuclear Information System (INIS)

    Anon

    2001-01-01

    After enduring contract price cuts over the past two years of almost 17% for thermal coal and 23% for hard coking coal, the New South Wales coal industry is looking forward to a reversal of fortune for 2001. Increased export demand, improved prices, significant improvements in mine site productivity, a weak Australian dollar and the probability of a number of new projects or extensions progressing to development are likely to result in an increase in NSW saleable production to around 110 million tonnes (Mt) in 2000-01. Sharply weaker coal prices over the past two years, intensified international competition and the Asian economic downturn had a negative impact on profitability, investment, exports and employment in the NSW coal industry. As a result, the industry has undergone substantial restructuring. The restructuring process has led to a consolidation in ownership, reduced production costs and improved operational efficiency. The outcome is an industry well positioned to take advantage of the positive market conditions and one likely to experience levels of profitability not achieved over the past few years

  3. Coal processing plants

    Science.gov (United States)

    Bitterlich, W.; Bohn, T.; Eickhoff, H. G.; Geldmacher, H.; Mengis, W.; Oomatia, H.; Stroppel, K. G.

    1980-08-01

    The efficient design of processing plants which combine various coal based technologies in order to maximize the effectiveness of coal utilization is considered. The technical, economical and ecological virtues which compound plants for coal conversion offer are assayed. Twenty-two typical processes of coal conversion and product refinement are selected and described by a standardized method of characterization. An analysis of product market and a qualitative assessment of plant design support six different compound plant propositions. The incorporation of such coal conversion schemes into future energy supply systems was simulated by model calculations. The analysis shows that byproducts and nonconverted materials from individual processes can be processed in a compound plant in a profitable manner. This leads to an improvement in efficiencies. The product spectrum can be adapted to a certain degree to demand variations. Furthermore, the integration of fluidized bed combustion can provide an efficient method of desulfurization. Compound plants are expected to become economic in the 1990's. A necessary condition to compound technologies is high reliability in the functioning of all individual processes.

  4. Coal production, 1991

    International Nuclear Information System (INIS)

    1992-10-01

    Coal production in the United States in 1991 declined to a total of 996 million short tons, ending the 6-year upward trend in coal production that began in 1985. The 1991 figure is 33 million short tons below the record level of 1.029 billion short tons produced in 1990 (Table 1). Tables 2 through 33 in this report include data from mining operations that produced, prepared, and processed 10,000 or more short tons during the year. These mines yielded 993 million short tons, or 99.7 percent of the total coal production in 1991, and their summary statistics are discussed below. The majority of US coal (587 million short tons) was produced by surface mining (Table 2). Over half of all US surface mine production occurred in the Western Region, though the 60 surface mines in this area accounted for only 5 percent of the total US surface mines. The high share of production was due to the very large surface mines in Wyoming, Texas and Montana. Nearly three quarters of underground production was in the Appalachian Region, which accounted for 92 percent of underground mines. Continuous mining methods produced the most coal among those underground operations that responded. Of the 406 million short tons, 59 percent (239 million short tons) was produced by continuous mining methods, followed by longwall (29 percent, or 119 million short tons), and conventional methods (11 percent, or 46 million short tons)

  5. Clean coal technology

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1990-01-01

    One of the major technology challenges in the next decade will be to develop means of using coal imaginatively as a source of chemicals and in a more energy-efficient manner. The Clean Air Act will help to diminish the acid rain but will not reduce CO 2 emissions. The Department of Energy (DOE) is fostering many innovations that are likely to have a positive effect on coal usage. Of the different innovations in the use of coal fostered by DOE, two are of particular interest. One is the new pressurized fluid bed combustion (PFBC) combined-cycle demonstration. The PFBC plant now becoming operational can reduce SO 2 emissions by more than 90% and NO x emissions by 50-70%. A second new technology co-sponsored by DOE is the Encoal mild coal gasification project that will convert a sub-bituminous low-BTU coal into a useful higher BTU solid while producing significant amounts of a liquid fuel

  6. Coal liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Baker, N.R.; Blazek, C.F.; Tison, R.R.

    1979-07-01

    Coal liquefaction is an emerging technology receiving great attention as a possible liquid fuel source. Currently, four general methods of converting coal to liquid fuel are under active development: direct hydrogenation; pyrolysis/hydrocarbonization; solvent extraction; and indirect liquefaction. This work is being conducted at the pilot plant stage, usually with a coal feed rate of several tons per day. Several conceptual design studies have been published recently for large (measured in tens of thousands of tons per day coal feed rate) commercial liquefaction plants, and these reports form the data base for this evaluation. Products from a liquefaction facility depend on the particular method and plant design selected, and these products range from synthetic crude oils up through the lighter hydrocarbon gases, and, in some cases, electricity. Various processes are evaluated with respect to product compositions, thermal efficiency, environmental effects, operating and maintenance requirements, and cost. Because of the large plant capacities of current conceptual designs, it is not clear as to how, and on what scale, coal liquefaction may be considered appropriate as an energy source for Integrated Community Energy Systems (CES). Development work, both currently under way and planned for the future, should help to clarify and quantify the question of applicability.

  7. Coal fire interferometry

    International Nuclear Information System (INIS)

    Van Genderen, J.L.; Prakash, A.; Gens, R.; Van Veen, B.; Liding, Chen; Tao, Tang Xiao; Feng, Guan

    2000-07-01

    This BCRS project demonstrates the use of SAR interferometry for measuring and monitoring land subsidence caused by underground coal fires and underground mining in a remote area of north west China. China is the largest producer and consumer of coal in the world. Throughout the N.W., N. and N.E. of China, the coal-seams are very susceptible to spontaneous combustion, causing underground coal fires. As the thick coal seams are burned out, the overburden collapses, causing land subsidence, and producing new cracks and fissures, which allow more air to penetrate and continue the fire to spread. SAR interferometry, especially differential interferometry has been shown to be able to measure small differences in surface height caused by such land subsidence. This report describes the problems, the test area, the procedures and techniques used and the results obtained. It concludes with a description of some of the problems encountered during the project plus provides some general conclusions and recommendations. 127 refs

  8. Coal briquetting at the presence of humates as the binding substance

    Directory of Open Access Journals (Sweden)

    Zh. Arziev

    2013-09-01

    Full Text Available The results of coal briquetting at the presence of humates derived from coal at the stage of its chemical preparation by the extraction method are resulted in the paper. The conditions of briquetting and strength characteristics of the received briquettes are optimized. It is demonstrated that briquettes with the durability reaching 3 MPa can be derived from a coal fines using sodium, ammonium and silicate humates as binding substance. Water solutions of ammonium, sodium and silicate humates with concentration from 0,1-2% can be recommended for practical purposes. It is recommended to expose coal briquettes on a basis of ammonium humate to the thermal treatment at temperature 200°C as necessary of long storage (more than a year. The technological scheme of briquetting and the working project of creation of briquette factory with productivity of 40 000 tons of coal per year are developed.

  9. Viscosity Depressants for Coal Liquefaction

    Science.gov (United States)

    Kalfayan, S. H.

    1983-01-01

    Proposed process modification incorporates viscosity depressants to prevent coal from solidifying during liquefaction. Depressants reduce amount of heat needed to liquefy coal. Possible depressants are metallic soaps, such as stearate, and amides, such as stearamide and dimer acid amides.

  10. Distribution of chlorine in coal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Fenghua; Ren Deyi; Zhang Shuangquan [China Univ. of Mining and Technology, Beijing (China). Dept. of Resource and Engineering; Zhang Wang [Antaibao Opencast Mine, Pingshuo, Shanxi (China)

    1998-12-31

    The current advance of study on chlorine in coal is reviewed. The concentrations of chlorine in 45 Chinese coal samples are determined on whole coal basis using instrumental neutron activation analysis (INAA). The sequential chemical extraction method is put forward to determine the occurrence modes of chlorine in coal. The research shows that Chinese coals are not chlorine-rich ones compared with those from other countries. In coal from Pingshuo Antaibao Opencast Mine, 46.70%--91.78% of chlorine is in a water-soluble state, 5.20%--48.38% of it is organic chlorine bonded to coal molecules, and only 4.92%--18.78% is an organic one in an ion-exchange state; the proportions of organic chlorine increase with the decrease in ash of coal.

  11. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review.

    Science.gov (United States)

    Dmitrienko, Margarita A; Strizhak, Pavel A

    2018-02-01

    This introductory study presents the analysis of the environmental, economic and energy performance indicators of burning high-potential coal water slurries containing petrochemicals (CWSP) instead of coal, fuel oil, and natural gas at typical thermal power stations (TPS) and a boiler plant. We focus on the most hazardous anthropogenic emissions of coal power industry: sulfur and nitrogen oxides. The research findings show that these emissions may be several times lower if coal and oil processing wastes are mixed with water as compared to the combustion of traditional pulverized coal, even of high grades. The study focuses on wastes, such as filter cakes, oil sludge, waste industrial oils, heavy coal-tar products, resins, etc., that are produced and stored in abundance. Their deep conversion is very rare due to low economic benefit. Effective ways are necessary to recover such industrial wastes. We present the cost assessment of the changes to the heat and power generation technologies that are required from typical power plants for switching from coal, fuel oil and natural gas to CWSPs based on coal and oil processing wastes. The corresponding technological changes pay off after a short time, ranging from several months to several years. The most promising components for CWSP production have been identified, which provide payback within a year. Among these are filter cakes (coal processing wastes), which are produced as a ready-made coal-water slurry fuel (a mixture of flocculants, water, and fine coal dust). These fuels have the least impact on the environment in terms of the emissions of sulfur and nitrogen oxides as well as fly ash. An important conclusion of the study is that using CWSPs based on filter cakes is worthwhile both as the main fuel for thermal power stations and boiler plants and as starting fuel. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. TEKO returns to coal

    International Nuclear Information System (INIS)

    TREND

    2003-01-01

    Slovak government will not grant state long-term credit guarantee sized about 1 billion Slovak crowns, which Geoterm, a.s., Kosice company would like to get from World bank. Loan should be used as for construction of geothermal source in village Durkov near Kosice, which would be connected in Kosice thermal plant TEKO, a.s. Geothermal sources capacity after realization of planned investments should reach half of present output of plant. The nearest TEKO investments should head to changes in plant production process. Plant wants to redirect in heat and thermal energy production from existing dominant gas consumption to black coal incineration. Black coal incineration is more advantageous than natural gas exploitation in spite of ecologic loads. TEKO also will lower gas consumption for at least 30 per cent and rise up present black coal consumption almost twice

  13. Pyrolysis of coal

    Science.gov (United States)

    Babu, Suresh P.; Bair, Wilford G.

    1992-01-01

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  14. Coal: the dinosaur wakes up

    International Nuclear Information System (INIS)

    Rousseau, Y.; Cosnard, D.

    2005-01-01

    In western countries, coal is considered as an industry of the past, but at the Earth's scale the situation is radically the opposite. Since three years, coal is the faster developing energy source, in particular thanks to China expansion and to the oil crisis which makes coal more competitive. This short paper presents the situation of coal mining in China: projects, working conditions and environmental impact. (J.S.)

  15. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  16. The fine particle emissions of energy production in Finland

    International Nuclear Information System (INIS)

    Ohlstroem, M.

    1998-01-01

    as big influence. In pulverised coal combustion, at least an electrostatic precipitator is used as a fly ash collector and therefore particle emission is composed mainly of particles under 10 μm in diameter. About half of the total mass of particle emission is fine particles (PM2.5). Depending on boiler size category and particle separation devices, the specific emission factor for fine particles is 1-30 mg/MJ. For pulverised combustion of peat, ca. 20-25 % of the total mass of particle emission is fine particles, and then the specific emission factor is between 5-8 mg/MJ. For recovery boilers, the fine particle portion of the total particle emission is 50-60 % (by mass) and the specific emission factor for fine particles varies considerably according to the boiler size category, being between 12 and 77 mg/MJ. For oil burners, grate boilers and fluidized bed combustion processes, the fine particle portion of the total particle emission could not be determined, because there were no applicable measurement results to hand. For these combustion techniques, more public measurements would be needed in order to clarify the amount and composition of fine particles with different fuel varieties. Also small-scale combustion should be studied and measured more, because the fine particle exposure which it causes can be significant (due to the low emission height and absent dust separation devices), for example in densely populated areas, where the dominant heating form is individual wood or oil burning. Due to the low emission height traffic has clearly a larger influence on the fine particle concentration of urban air than the local energy production. Diesel-driven vehicles, especially heavy duty traffic (buses, trucks), have the biggest specific emissions. (orig.) 75 refs

  17. Petrographic characterization of Kentucky coals. Final report. Part IV. A petrographic and chemical model for the evolution of the Tradewater Formation coals in Western Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Graese, A.M.; Hower, J.C.; Ferm, J.C.

    1984-01-01

    A depositional model for the coals of the Tradewater Formation and associated rock units was constructed as a predictive device for the occurrence of economically important low sulfur coal. Twenty-one cores were examined and ninety-eight coal samples were analyzed for maceral, ash, and sulfur contents. These data were then analyzed to determine regional variation as well as vertical variation in single coal columns. Core data indicate that the majority of the Tradewater rocks consist of irregularly distributed, coarsening-upward, fine-grained detrital material which was deposited in shallow bodies of water. Minor fossiliferous shales and limestones suggest a marine influence. Less common coarse-grained, fining-upward sequences appear to be deposits of meandering channels. Like the detrital rocks, the coal seams are also irregularly distributed and exhibit variable petrographic and chemical properties reflecting changes in the Eh and pH of the coal swamp waters as well as detrital influx into the swamps. These swamps were relatively limited in extent and probably occupied the upper reaches of the tidal zone. The lack of significant stratigraphic and geographic trends in the regional data suggests that this mode of deposition was widespread and continued for a long period of time. 42 references, 19 figures, 9 tables.

  18. The new deal of coal

    International Nuclear Information System (INIS)

    Kalaydjian, F.; Cornot-Gandolphe, S.

    2008-01-01

    While coal appears as an inescapable resource to answer the energy needs of the 21. century, its highly CO 2 emitting combustion represents a major risk with respect to the requirements of the fight against climate change. In the first part of this book, the basic aspects of energy markets are explained and in particular the role that coal is going to play in the world's energy supplies. In the second part, the new coal usages are presented, which, combined with CO 2 capture and sequestration techniques, should allow to conciliate a massive use of coal and the respect of environmental constraints. This book is based on the works presented in February 2008 by the French institute of petroleum (IFP) about the new outlets of coal and the risks for climate change. Content: 1 - coal, energy of the 21. century: abundant and well distributed reserves; growing up world production; exponential world demand; international trade: still limited but in full expansion; 2 - Technologies for a CO 2 -free coal: CO 2 capture and sequestration technologies; towards poly-generation; production of coal-derived liquid fuels; 3 - Appendices: coals formation; coal in China: status and perspectives; coal in the USA: status and perspectives; coal in India: status and perspectives; COACH: an ambitious European project; CBM - E-CBM, status and perspectives. (J.S.)

  19. Coal terminal developments

    Energy Technology Data Exchange (ETDEWEB)

    Venter, J.

    2008-02-15

    The article reports developments at many coal terminals worldwide. These include Bulgaria's Port of Bourgas Temrinal 2A, Spain's Tarragona Port Services (TPS) terminal, New Zealand's Lyttleton Port of Christchurch (LPC), Kinder Morgan's terminals in the USA (the International Marine terminal, Cora terminal, Grand Rivers terminal and Fairless Hills terminal) and Croatia's Port of Ploce. Developments at coal terminals in France and Belgium are also summarized. Global transportation services offered by Rhenus are described. 12 photos.

  20. Energy and environmental research emphasizing low-rank coal. Semi-annual report, January--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    Summaries of progress on the following tasks are presented: Mixed waste treatment; Hot water extraction of nonpolar organic pollutant from soils; Aqueous phase thermal oxidation wastewater treatment; Review of results from comprehensive characterization of air toxic emissions from coal-fired power plants; Air toxic fine particulate control; Effectiveness of sorbents for trace elements; Catalyst for utilization of methane in selective catalytic reduction of NOx; Fuel utilization properties; Hot gas cleaning; PFBC; catalytic tar cracking; sulfur forms in coal; resid and bitumen desulfurization; biodesulfurization; diesel fuel desulfurization; stability issues; Sorbent carbon development; Evaluation of carbon products; Stable and supercritical chars; Briquette binders; Carbon molecular sieves; Coal char fuel evaporation canister sorbent; Development of a coal by-product classification protocol for utilization; Use of coal ash in recycled plastics and composite materials; Corrosion of advanced structural materials; Joining of advanced structural materials; Resource data evaluation; and the Usti and Labem (Czech Republic) coal-upgrading program.

  1. Coal blending preparation for non-carbonized coal briquettes

    Science.gov (United States)

    Widodo; Fatimah, D.; Estiaty, L. M.

    2018-02-01

    Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at <12% (adb). The formation of coal deposits depends on the origin of the coal-forming materials (plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.

  2. Bio-coal briquettes using low-grade coal

    Science.gov (United States)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  3. Coking coal outlook from a coal producer's perspective

    International Nuclear Information System (INIS)

    Thrasher, E.

    2008-01-01

    Australian mine production is recovering from massive flooding while Canadian coal shipments are limited by mine and rail capacity. Polish, Czech, and Russian coking coal shipments have been reduced and United States coking coal shipments are reaching their maximum capacity. On the demand side, the Chinese government has increased export taxes on metallurgical coal, coking coal, and thermal coal. Customers seem to be purchasing in waves and steel prices are declining. This presentation addressed the global outlook for coal as well as the challenges ahead in terms of supply and demand. Supply challenges include regulatory uncertainty; environmental permitting; labor; and geology of remaining reserves. Demand challenges include global economic uncertainty; foreign exchange values; the effect of customers making direct investments in mining operations; and freight rates. Consolidation of the coal industry continued and several examples were provided. The presentation also discussed other topics such as coking coal production issues; delayed mining permits and environmental issues; coking coal contract negotiations; and stock values of coking coal producers in the United States. It was concluded that consolidation will continue throughout the natural resource sector. tabs., figs

  4. Granulation of fine powder

    Science.gov (United States)

    Chen, Ching-Fong

    2016-08-09

    A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to form a dense compact with a higher density and more uniform pore size distribution.

  5. Radiology and fine art.

    Science.gov (United States)

    Marinković, Slobodan; Stošić-Opinćal, Tatjana; Tomić, Oliver

    2012-07-01

    The radiologic aesthetics of some body parts and internal organs have inspired certain artists to create specific works of art. Our aim was to describe the link between radiology and fine art. We explored 13,625 artworks in the literature produced by 2049 artists and found several thousand photographs in an online image search. The examination revealed 271 radiologic artworks (1.99%) created by 59 artists (2.88%) who mainly applied radiography, sonography, CT, and MRI. Some authors produced radiologic artistic photographs, and others used radiologic images to create artful compositions, specific sculptures, or digital works. Many radiologic artworks have symbolic, metaphoric, or conceptual connotations. Radiology is clearly becoming an original and important field of modern art.

  6. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    For coal-fired power plants information of the moisture content in the coal is important to determine and control the dynamical behavior of the power plants. E.g. a high moisture content in the coal can result in a decreased maximum load gradient of the plant. In this paper a method for estimating...... the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...... estimator is verified on a couple of sets of measurement data, from which it is concluded that the designed estimator estimates the real coal moisture content....

  7. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, B.

    For coal-fired power plants information of the moisture content in the coal is important to determine and control the dynamical behavior of the power plants. E.g. a high moisture content in the coal can result in a decreased maximum load gradient of the plant. In this paper a method for estimating...... the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...... estimator is verified on a couple sets of measurement data, from which it is concluded that the designed estimator estimates the real coal moisture content....

  8. Impregnation alternatives for Fe-based coal liquefaction catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.K.; Armstong, B.T.; Givens, E.N. [Univ. of Kentucky, Lexington, KY (United States)

    1994-12-31

    Because of the cost effective and environmentally compatible nature of Fe, attention has been directed towards improving the utilization of this metal in direct coal liquefaction. Among the several factors thought to affect catalyst activity, much of this work has focused on dispersion. Weller and Pelipetz reported the importance of catalyst dispersion, based on experiments with a wide variety of catalysts in solvent-free liquefaction studies. And in the presence of solvent, other studies have demonstrated the advantages of adding the precursor by impregnation over its addition in the form of particulates. In general, a high surface/volume ratio, along with intimate contact between the active catalyst and coal, are thought to be the controlling factors. Dispersion, as normally inferred from changes in catalyst activity, may be affected by the mode of addition, the presence of solvent, and the initial composition of the precursor (e.g., soluble organometallics); and for coal-impregnated catalyst precursors, the choice of impregnation solvent and impregnation conditions. A variety of innovative strategies have been developed to introduce catalyst precursors to the liquefaction reaction while seeking to maintain particle size and distribution. These have included the use of emulsions and colloids, direct addition of ultra-fine particles to the slurry`s addition of oil soluble organometallics and carbonyls, ion exchange and impregnating the coal. This paper describes the results of liquefaction experiments carried out with the impregnation of subbituminous coal with iron.

  9. Coal: Demand up - prices down

    International Nuclear Information System (INIS)

    Prior, M.

    1993-01-01

    1992 was a year in which demand for traded coal moved upward in the steam-coal sector though it remained stagnant for metallurgical coal. Both Australia and South Africa exported record volumes and new extrants to the market came from Indonesia and Venezuela. Despite this upward movement in demand, coal prices slipped relentlessly downward to the point where at the year-end, significant mine closures were occurring throughout the world. The main question for 1993 is how long can the producers go on hurting before the prices start to move up? The overall world demand for steam coal is discussed

  10. World coking coal markets

    International Nuclear Information System (INIS)

    McCloskey, G.

    2010-01-01

    This article discussed conditions in world coking coal markets. There is increased demand from Asia for metallurgical coal imports. World iron production was up 22 percent in first 7 months of 2010. Supply is up in Australia, the United States, Canada, New Zealand, Russia, and Mongolia, but the unexpected surge in supply caused prices to drop following a robust start to the year. Coking coal exports are up for the United States and Australia, but a delay in expanded production is expected until 2014. There is increased demand from Brazil, India, Taiwan, South Korea, and Japan as well as new plants in Thailand, Indonesia, and Brazil. Unexpectedly, Australia is backing out of the Chinese market but increasing exports to Japan and South Korea. India is seeing flat performance in iron production and imports, and the United States has surged back into Asia. A considerable increase is expected in the seaborne import requirement by 2020. Prices are expected to fall and then rise. This presentation also discussed whether coking coal index pricing is impossible or inevitable. 3 tabs., 5 figs.

  11. Kinetics of coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. (United Technologies Research Center, East Hartford, CT (USA)); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Jenkins, R.; Mallin, J.; Espindola-Merin, B. (Pennsylvania State Univ., University Park, PA (USA)); Essenhigh, R.; Misra, M.K. (Ohio State Univ., Columbus, OH (USA))

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  12. Methanol from coal

    Science.gov (United States)

    Miller, D. R.

    1978-01-01

    Economic feasibility of methanol or methyl fuel produced from coal using existing technology is discussed. Other factors considered include environmental, safety, toxicity, transportation, so storage, ease of burning, and retrofitting of present boilers. Demonstrations of its uses as a boiler fuel and as a turbine fuel are cited.

  13. Underground Coal Mining

    Science.gov (United States)

    Hill, G. M.

    1980-01-01

    Computer program models coal-mining production, equipment failure and equipment repair. Underground mine is represented as collection of work stations requiring service by production and repair crews alternately. Model projects equipment availability and productivity, and indicates proper balance of labor and equipment. Program is in FORTRAN IV for batch execution; it has been implemented on UNIVAC 1108.

  14. Proximate Analysis of Coal

    Science.gov (United States)

    Donahue, Craig J.; Rais, Elizabeth A.

    2009-01-01

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter,…

  15. China's coal export and inspection

    International Nuclear Information System (INIS)

    Xiaodong Li

    1993-01-01

    With the development of world's business and trade, coal has become a large part of the import and export goods in the international market. The total amount of coal trade has risen a lot. China is rich in coal resources. According to the estimate made by some experts, the reserve which has been explored recently could be exploited hundreds of years. China's output of raw coal has risen a lot during the past forty years. China coal industry has developed rapidly since the 1980s. It is possible for China to become a big coal export country since it has rich resources and increasing output. The paper suggests four steps which must be taken to expand coal exports in China: improve the level of management and administration of coal mines so as to raise the economic benefit; the follow-up production capacity of the present mines must be enhanced rapidly; step up construction of new large-scale mines; and China's coal washing capacity must be improved speedily since the low capacity has seriously influenced the improvement of coal quality. The paper describes the inspection bureaus and companies that have developed to perform inspection of exports in order to guarantee the quality of export coal

  16. National Coal Quality Inventory (NACQI)

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  17. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  18. Hydrothermal pretreatment of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  19. Coal resources availability in Botswana

    International Nuclear Information System (INIS)

    Modisi, M.P.

    1990-01-01

    This paper reports that Southern Africa, and Botswana in particular, is well-endowed with relatively large reserves of coal. The existence of coal in Botswana has been known since the end of the last century. Exploration activities by the Geological Survey and the private sector led to the discovery of major deposits and by the late 1960s reserves capable of supporting a mine at Morupule for the domestic market has been confirmed. The oil crises of 1973-74 and 1978-79 stimulated increased interest in coal exploration the world over and Botswana attracted several private sector companies looking for coal that could be traded on the international market. As a result vast resources and reserves of low to medium quality bituminous coal, suitable for the export market, were proved. Resources amounting to 21,680 million tonnes of in situ coal had been revealed by 1987. Reserves of possible economic exploitation are estimated at 10,180 million tonnes in two coal field areas, namely the Morupule Coal Field and the Mmamabula Coal Field. Since the collapse of oil prices and consequently coal prices in the mid-1980s, enthusiasm for coal exploration has plummeted and relatively little prospecting has taken place. The coal occurs within the Upper Carboniferous to Jurassic Karoo Supergroup which underlies some 60 percent of the country's land surface. The western part of the country is mantled by the Kalahari beds, a top layer of unconsolidated sands masking bedrock geology. Although coal seams have been intersected in boreholes in this western area, most exploration activity has taken place in the eastern part of the country where the Morupule and Mmamabula coal fields are located. It is in the east that most of the population is concentrated and infrastructure has been developed

  20. Buckets of money for coal

    International Nuclear Information System (INIS)

    Anon

    2001-01-01

    The revival of coal prices is providing record profits for Australian coal producers. As the world's largest coal exporter, any move in coal prices has significant ramifications for the Australian economy. The coal boom of the mid-1980s resulted in a massive increase in mine capacity and subsequently excess supply. This resulted in the decade between 1990 and 2000 seeing benchmark prices for coking coal in Japan plummeting to $US 39 a tonne (down from around the $US 52 mark) and a price of $US 28 for a tonne of steaming coal. Asia's financial problems, late in the decade coupled with a rapid fall in Asian steel making, also added to our coal export woes. As a result for most of the 1990s, Australia's coal sector delivered inadequate returns, was seen as over-capitalised and suffered from a profound investor indifference. But the sector is now seeing a definite turnaround in fortunes. Prices for thermal coal are on the rise and the benchmark coking coal prices to Asia have also jumped. Market analysts reported the price for contract deliveries of thermal coal in April this year were $US 34.50 ($AUD 69.35) up by $US 5.75 from the same time last year. The increased production is expected on the back of a continued rise in export demand, further improvement in prices, significant improvements in mine productivity, a weak Australian dollar and the probability of new projects and mine extensions going into operation. The improved returns have also flowed into rising valuations for listed coal miners. Over the last year, coal miners such as MIM and Gympie Gold, have delighted in share price gains of 12 per cent and 55 per cent respectively. These sort of performances are being repeated across the Australian industry

  1. Changes in pore structure of coal caused by coal-to-gas bioconversion.

    Science.gov (United States)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; Elsworth, Derek; Wang, Yi; Hu, Guanglong; Liang, Yanna

    2017-06-19

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show that the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.

  2. Off-gas dust in an experimental blast furnace:Part 1: Characterization of flue dust, sludge and shaft fines

    OpenAIRE

    Leimalm, Ulrika; Lundgren, Maria; Sundqvist Ökvist, Lena; Björkman, Bo

    2010-01-01

    In blast furnace (BF) ironmaking, efforts are made to decrease coke consumption, which can be done by increasing the pulverized coal injection rate (PCR). This will cause changes in in-furnace reduction conditions, burden distribution, demands on raw material strength, etc. In order to maintain stable operation, but also to obtain low amounts of material losses through the off-gas, it is important to understand fines generation and behaviour in the BF. Off-gas dust and shaft fines generated i...

  3. Studies for the stabilization of coal-oil mixtures. Final report, August 1978-May 1981

    Energy Technology Data Exchange (ETDEWEB)

    Botsaris, G.D.; Glazman, Y.M.; Adams-Viola, M.

    1981-01-01

    A fundamental understanding of the stabilization of coal-oil mixtures (COM) was developed. Aggregation of the coal particles was determined to control both the sedimentation and rheological properties of the COM. Sedimentation stability of COM prepared with coal, 80% < 200 mesh, is achieved by particle aggregation, which leads to the formation of a network of particles throughout the oil. The wettability of coal powders was evaluated by the Pickering emulsion test and a spherical agglomeration test to assess its effect on the stability of various COM formulations. Sedimentation stability of hydrophilic coal-oil-water mixtures (COWM) involves the formation of water bridges between the coal particles, while less stabilization of oleophilic COWM is achieved by the formation of an emulsion. Anionic SAA were least sensitive to the coal type and enhanced the aggregation stability of the suspension. The effect of cationic SAA, nonionic SAA and polymer additives depended upon the specific chemical structure of the SAA, the water content of the COM and the type of coal. The sedimentation stability of ultrafine COM was not directly due to the fineness of the powder but due to the formation of a network of flocculated particles.

  4. Main characteristics of the radioactive enrichment in ashes produced in coal-fired power stations

    International Nuclear Information System (INIS)

    Baeza, Antonio; Corbacho, Jose A.; Cancio, David; Robles, Beatriz; Mora, Juan C.

    2008-01-01

    Under contract with the Spain's 'Nuclear Safety Council', a study is being conducted of the nation's largest nominal output coal-fired power stations. Its purpose is to assess the radiological impact on workers and local populations due to this source of NORM activity. One of the aspects of particular interest is the study of the radioactive enrichment in the combustion wastes relative to the different coals used as fuel (usually local bituminous coal or lignite, or imported coal). These wastes consist of fly ash (mostly fine particles collected in electrostatic precipitators), and bottom ash (larger in size, and collected wet or dry in hoppers below the boilers). In general terms, the enrichment factors measured were between 2 and 18 for the radionuclides 40 K, 226 Ra, 232 Th, and 210 Po. The magnitude of this enrichment factor depended mainly on the ash content of each coal, and hence on the type of coal used as fuel and the specific operation cycle in the different power stations. For the radionuclides 40 K, 226 Ra, and 232 Th, the enrichment was relatively similar in value in the fly and bottom ashes produced by the different types of coal used in the power stations studied. For 210 Po, however, as was expected, the enrichment was much greater in the fly ash than in the bottom ash for each coal analyzed. (author)

  5. Optimisation of coal blend and bulk density for coke ovens by vibrocompacting technique non-recovery ovens

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.P.; Vinoo, D.S.; Yadav, U.S.; Ghosh, S.; Lal, J.P.N. [J.S.W. Steel Ltd, Bellary (India)

    2007-09-15

    The quality of coke produced in a coke oven depends on the coal blend characteristics and carbonisation conditions. Scarcity of good quality coking coal made it necessary to look for techniques capable of producing superior coke from inferior coals. Precarbonisation techniques improve the bulk density of the coal charge and produce good quality coke from inferior coals. The stamp charging technique, the most effective among them requires finer crushing of coal and higher moisture as binder, both requiring additional energy. JSW Steel has adopted vibrocompaction along with non-recovery ovens for its 1.2 Mtpa coke production. This is a highly ecofriendly coke making process producing excellent quality coke from inferior coals. It increases the bulk density of cake, similar to stamp charging, using compaction in place of stamping. A cake density of 1.10 t m{sup -3} has been achieved using the vibrocompacting technique with optimum moisture and crushing fineness. Coal blend containing up to 35% soft coal and coking coal, having 32% volatile matter have been successfully used to produce a coke with coke strength after reaction >65%, coke reactivity index <25% and M10 <6%. The paper discusses the experience of operating vibrocompaction non-recovery coke ovens.

  6. Fiscal 1997 feasibility survey of an environment friendly type coal utilization system. Feasibility survey of the environment friendly type coal utilization system in Malaysia and Vietnam (case of Vietnam); 1997 nendo chosa hokokusho. Kankyo chowagata sekitan riyo system kanosei chosa (Malaysia oyobi Vietnam ni okeru kankyo chowagata sekitan riyo system kanosei chosa (Vietnam ban))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper grasped the state of coal utilization by coal consumption field, the state of coal physical flow in Vietnam, etc., surveyed/studied a possibility of introducing the environment friendly type coal utilization system, and assessed the possibility. As to energy resources, the north is abundant in hydroelectric and coal (mainly anthracite) resources, and the south in oil and natural gas resources. Coal production in fiscal 1997 is planned to be 10 million tons. Coal preparation technique presently available is only grain size sieving. Accordingly, it is necessary to study for heightening efficiency of facilities and modernizing facilities in accordance with the introduction of the environment friendly type coal utilization technology. During the study, it is possible to propose improvement on coal processing technology (coal preparation technology). Assessment and study are made especially of the coal selection system, fine coal recovery system and waste water treatment system. For the plan on new coal-fired power plants (300MWtimes4), there is left much necessity of proposing studying models considered of the anthracite combustion technology and environmental improvement and of assessing/studying them. 60 figs., 117 tabs.

  7. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    Science.gov (United States)

    Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming

    2014-01-01

    The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes coal. The nanopore structure (coal. PMID:25126601

  8. Micrinite maceral evidence of hydrocarbon generation in cretaceous coal measures of the middle Benue trough, Nigeria

    International Nuclear Information System (INIS)

    Obaje, N. G.; Ukpabio, E. J.; Funtua, I. I.

    1999-01-01

    Maceral analysis on samples from the coal and coal-bearing strata of the Awgu Formation in the Middle Benue Trough of Nigeria allows the subdivision of the coal beds and inter seam sediments into three different petrographic/coal facies, namely: a vitrinite-fusinite coal facies which is rich in vitrinite, poor in liptinite, with variable amounts of inertinite and low mineral matter content; a trimaceritic coal facies which is rich in vitrinite, liptinite and inertinite with low mineral matter content; and a shaley coal facies which, expectedly, is dominated by mineral matter and has variable amounts of vitrinite, liptinite and inertinite. Micrinite macerals constitute 8.2% and 4.5 on mineral matter-counted basis in samples from the trimaceritic and shaley coal facies respectively. These amounts, in both cases, are considered to be very high. They occur as finely particulate, rounded grains approximately I um in diameter. Most of the micrinite are closely associated with highly reflecting, almost unrecognizable liptinite. The nature and origin of micrinite and its significance to oil and gas generation have been studied extensively. As secondary macerals, they are generally believed to be relics of oil generation from oil-prone macerals, mainly liptinitic and vitrinitic macerals with which they are closely associated. Reflectance measurements on the associated vitrinite macerals indicate a thermal maturity range of 0.74 - 1.25 % Rm. This range corresponds to the zone of oil generation in most minerogenic oil source rocks. In the study area, however, only the trimaceritic coal facies and some parts of the shaley coal facies that are rich in liptinite alongside the associated micrinite macerals are considered to have generated oil. The vitrinite-fusinite coal facies with its high content of humic organic matter (vitrinite + Inertinite) can only generate gas (wet + dry) within the given thermal maturity range

  9. Ninth annual coal preparation, utilization, and environmental control contractors conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Papers are grouped under the following sessions: compliance technology; high-efficiency preparation; characterization; advanced technologies; alternative fuels; coal utilization; industrial/commercial combustor development; combustion; superclean emission systems; carbon dioxide recovery and reuse; air toxics and fine particulates; air toxics sampling and analysis workshop; and combined poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  10. Meditation on the construction of exemplar plant for briquetted coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Kuiyi [China National Coal Industry Import and Export Corporation, Beijing (China)

    1997-12-31

    China uses a considerable amount of anthracite, but the fines from anthracite mining are not sufficiently used. This project involved the construction of a plant for the manufacture of anthracite briquettes under high pressure, for use in gasification plants. The characteristics of the coals used and the types of briquette formed are described. 2 tabs.

  11. Geomorphology of coal seam fires

    Science.gov (United States)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires

  12. The Charfuel coal refining process

    International Nuclear Information System (INIS)

    Meyer, L.G.

    1991-01-01

    The patented Charfuel coal refining process employs fluidized hydrocracking to produce char and liquid products from virtually all types of volatile-containing coals, including low rank coal and lignite. It is not gasification or liquefaction which require the addition of expensive oxygen or hydrogen or the use of extreme heat or pressure. It is not the German pyrolysis process that merely 'cooks' the coal, producing coke and tar-like liquids. Rather, the Charfuel coal refining process involves thermal hydrocracking which results in the rearrangement of hydrogen within the coal molecule to produce a slate of co-products. In the Charfuel process, pulverized coal is rapidly heated in a reducing atmosphere in the presence of internally generated process hydrogen. This hydrogen rearrangement allows refinement of various ranks of coals to produce a pipeline transportable, slurry-type, environmentally clean boiler fuel and a slate of value-added traditional fuel and chemical feedstock co-products. Using coal and oxygen as the only feedstocks, the Charfuel hydrocracking technology economically removes much of the fuel nitrogen, sulfur, and potential air toxics (such as chlorine, mercury, beryllium, etc.) from the coal, resulting in a high heating value, clean burning fuel which can increase power plant efficiency while reducing operating costs. The paper describes the process, its thermal efficiency, its use in power plants, its pipeline transport, co-products, environmental and energy benefits, and economics

  13. Controls on coal cleat spacing

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, G.K.W.; Esterle, J.S. [School of Earth Sciences, The University of Queensland, Brisbane, Queensland 4072 (Australia)

    2010-06-01

    This study was undertaken to determine the relationship between cleat spacing, cleat height and coal banding texture for Queensland Permian age coals of different rank, four of which are presented here. Whereas relationships between cleat frequency and rank, and with coal type or grade, have been reported in the past, relationships between the spacing and height among the different kinds of cleats are not quantitatively established. For other layered sedimentary rocks, joint or fracture spacing relates directly to both bed thickness and rock strength. Coal is similar to other layered rocks. Four major classes of cleats were distinguished, which were separate data populations when cleat spacing was plotted against cleat height; master cleats, single vitrain layer cleats, multiple vitrain layer package cleats, and durain (dull coal) cleats. Understanding the relationship between cleat height and spacing for specific coals, and the specific kinds of cleats within those coals, will lead to more accurate predictions of cleat density and hence coal permeability. This can improve modelling and prediction of methane gas deliverability in coal seams. In the Australian Permian coals studied, narrowly spaced cleats exist at all ranks, but the distribution of cleat spacing with cleat height is what varies for specific cleat classes. Cleat spacing was found to be directly proportional to cleat height in most cases. (author)

  14. Utilisation of chemically treated coal

    Directory of Open Access Journals (Sweden)

    Bežovská Mária

    2002-03-01

    Full Text Available The numerous application of coal with high content of humic substances are known. They are used in many branches of industry. The complex study of the composition of coal from upper Nitra mines has directed research to its application in the field of ecology and agriculture. The effective sorption layers of this coal and their humic acids can to trap a broad spectrum of toxic harmful substances present in industrial wastes, particularly heavy metals. A major source of humic acids is coal - the most abundant and predominant product of plant residue coalification. All ranks of coal containt humic acids but lignite from Nováky deposit represents the most easily available and concentrated form of humic acids. Deep oxidation of coal by HNO3 oxidation - degradation has been performed to produce water-soluble-organic acids. The possibilities of utilisation of oxidised coal and humic acids to remove heavy metals from waste waters was studied. The residual concentrations of the investigated metals in the aqueous phase were determined by AAs. From the results follows that the samples of oxidised coal and theirs humic acids can be used for the heavy metal removal from metal solutions and the real acid mine water.Oxidised coal with a high content of humic acids and nitrogen is used in agriculture a fertilizer. Humic acids are active component in coal and help to utilize almost quantitatively nitrogen in soil. The humic substances block and stabiliz toxic metal residues already present in soil.

  15. Compressive and tensile strength for concrete containing coal bottom ash

    Science.gov (United States)

    Maliki, A. I. F. Ahmad; Shahidan, S.; Ali, N.; Ramzi Hannan, N. I. R.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Azmi, M. A. Mohammad; Rahim, M. Abdul

    2017-11-01

    The increasing demand in the construction industry will lead to the depletion of materials used in construction sites such as sand. Due to this situation, coal bottom ash (CBA) was selected as a replacement for sand. CBA is a by-product of coal combustion from power plants. CBA has particles which are angular, irregular and porous with a rough surface texture. CBA also has the appearance and particle size distribution similar to river sand. Therefore, these properties of CBA make it attractive to be used as fine aggregate replacement in concrete. The objectives of this study were to determine the properties of CBA concrete and to evaluate the optimum percentage of CBA to be used in concrete as fine aggregate replacement. The CBA was collected at Tanjung Bin power plant. The mechanical experiment (compressive and tensile strength test) was conducted on CBA concrete. Before starting the mechanical experiment, cubic and cylindrical specimens with dimensions measuring 100 × 100 × 100 mm and 150 × 300 mm were produced based on the percentage of coal bottom ash in this study which is 0% as the control specimen. Meanwhile 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of CBA were used to replace the fine aggregates. The CBA concrete samples were cured for 7 days and 28 days respectively to maintain the rate of hydration and moisture. After the experimental work was done, it can be concluded that the optimum percentage of CBA as fine aggregate is 60% for a curing period of both 7 days and 28 days with the total compressive strength of 36.4 Mpa and 46.2 Mpa respectively. However, the optimum percentage for tensile strength is at 70% CBA for a curing period of both 7 days and 28 days with a tensile strength of 3.03 MPa and 3.63 MPa respectively.

  16. Utilization of coal rejects and coal washery tailings in Yong Rong Power Plant

    International Nuclear Information System (INIS)

    Tao, T.; Kefa, C.; Mingjiang, N.; Guoguan, H.; Yong, C.; Xiang, Z.

    1991-01-01

    The coal rejects and coal washery tailings discharged by coal washery not only occupies farmland but also causes environmental pollution. With the development of coal industry, the problem becomes more serious. In this paper, the properties of coal rejects and coal washery tailings are analyzed. The technology that burn coal rejects and coal washery tailings in boilers to produce electric power is reported. It has been shown the technology is feasible and successful. It saves energy as well as protects the environment

  17. Exploratory research on solvent refined coal liquefaction. Annual technical progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during 1979. In a series of experiments with varying feed gas composition, low levels (5 to 10 mole %) of carbon monoxide had little effect on the SRC II processing of Pittsburgh Seam coal (Powhatan No. 5 Mine) while higher levels (20 to 40 mole %) resulted in a general degradation of operability and reduced oil yields. Addition of finely divided (approx. 1 ..mu..m) pyrite to the reactive Powhatan coal had little effect on oil yields although the molecular weight of the distillation residue was apparently decreased. When finely divided pyrite and magnetite were added to the less reactive coals from the Loveridge and Blacksville No. 1 Mines (also Pittsburgh Seam), however, substantial increases in oil yields and product quality were obtained. In a comparison of upflow and downflow dissolver configurations with Powhatan coal in the SRC II mode, there was no difference in yields or product quality. A study characterizing specific reactors revealed a significantly higher conversion in the SRC I mode with a reactor approximating plug flow conditions compared to a completely backmixed reactor. In the SRC II mode there was only a slightly higher oil yield with the plug flow reactor.

  18. Desulfurizing Coal By Chlorinolysis and Hydrogenation

    Science.gov (United States)

    Kalvinskas, J. J.; Rohatgi, N. K.

    1983-01-01

    85 percent of organic and pyritic sulfur in coal removed by combination of chlorinolysis and hydrogeneration. Coal is fed to hydrogenator after chlorination. Coal flows against hydrogen current increasing mixing and reducing hydrogen consumption. Excess hydrogen is recovered from gaseous reaction products. Product coal contained 62.5 percent less total sulfur than same coal after chlorination.

  19. Bulk analysis of coal

    International Nuclear Information System (INIS)

    Sowerby, B.D.

    1982-01-01

    Nuclear techniques used in the coal industry to determine specific energy, ash and moisture are outlined. Ash analysis by radioisotope X-ray techniques include a single X-ray measurement using a transmission or backscatter geometry and techniques with compensation for iron variations. Neutron techniques can be used to measure the concentration of some specific elements in coal. The measurement of specific energy, ash and moisture then depends on the correlation of the particular parameter with the measured elemental composition. Carbon can be determined by a combination of a measurement of 4.43 MeV 12 C gamma-rays from neutron inelastic scattering with a separate 60 Co gamma-ray scattering measurement. Sulphur meters are based on the measurement of 5.42 MeV neutron capture of gamma rays

  20. Coal mine subsidence

    International Nuclear Information System (INIS)

    Rahall, N.J.

    1991-05-01

    This paper examines the efficacy of the Department of the Interior's Office of Surface Mining Reclamation and Enforcement's (OSMRE) efforts to implement the federally assisted coal mine subsidence insurance program. Coal mine subsidence, a gradual settling of the earth's surface above an underground mine, can damage nearby land and property. To help protect property owners from subsidence-related damage, the Congress passed legislation in 1984 authorizing OSMRE to make grants of up to $3 million to each state to help the states establish self-sustaining, state-administered insurance programs. Of the 21 eligible states, six Colorado, Indiana, Kentucky, Ohio, West Virginia, and Wyoming applied for grants. This paper reviews the efforts of these six states to develop self-sustaining insurance programs and assessed OSMRE's oversight of those efforts

  1. Flotation and flocculation chemistry of coal and oxidized coals

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, P.

    1990-01-01

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniques capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.

  2. Health impacts of coal and coal use: Possible solutions

    Science.gov (United States)

    Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L.

    2002-01-01

    Coal will be a dominant energy source in both developed and developing countries for at least the first half of the 21st century. Environmental problems associated with coal, before mining, during mining, in storage, during combustion, and postcombustion waste products are well known and are being addressed by ongoing research. The connection between potential environmental problems with human health is a fairly new field and requires the cooperation of both the geoscience and medical disciplines. Three research programs that illustrate this collaboration are described and used to present a range of human health problems that are potentially caused by coal. Domestic combustion of coal in China has, in some cases, severely affected human health. Both on a local and regional scale, human health has been adversely affected by coals containing arsenic, fluorine, selenium, and possibly, mercury. Balkan endemic nephropathy (BEN), an irreversible kidney disease of unknown origin, has been related to the proximity of Pliocene lignite deposits. The working hypothesis is that groundwater is leaching toxic organic compounds as it passes through the lignites and that these organics are then ingested by the local population contributing to this health problem. Human disease associated with coal mining mainly results from inhalation of particulate matter during the mining process. The disease is Coal Worker's Pneumoconiosis characterized by coal dust-induced lesions in the gas exchange regions of the lung; the coal worker's "black lung disease". ?? 2002 Elsevier Science B.V. All rights reserved.

  3. New Hope Coal Australia: leaders in thin seam coal mining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    New Hope Corporation Ltd.'s coal activities in Queensland are conducted under the business name of New Hope Coal Australia and comprise open-cut mines in the West Moreton coal fields, 40 km west of Brisbane. The company gained an award for its reject co-disposal system and another for its organic overburden conditioning programme. Walloon coal from the Jeebropilly and New Oakleigh open-cut mines has characteristics which are making it increasingly popular as power plant fuel. The article describes operations at these mines and also at Swanbank and Acland. Other projects with which New Hope is involved are mentioned. 4 photos.

  4. Phenanthrene sorption to Chinese coal: Importance of coal's geochemical properties

    International Nuclear Information System (INIS)

    Yan Caixia; Yang Yi; Liu Min; Nie Minghua; Zhou, John L.

    2011-01-01

    Highlights: → Phen was chosen as the probe compound for determining the sorption of PAHs to a series of different Chinese coal samples. → The combined partition and adsorption model yielded a better fit than the Freundlich isotherm. → Compared to total carbon, BC might play more important role in the sorption of Phen to coal samples. → Relationships between aromatic and aliphatic carbon contents and sorption parameters indicated the significance of aromatic and aliphatic carbon in the coal sorption behavior. - Abstract: Phenanthrene (Phen) was chosen as the probe compound for determining the sorption of PAHs to a series of different coal samples from China. Based on elemental analysis and nuclear magnetic resonance (NMR) spectra analysis, coal samples were characterized with different metamorphic evolutional degrees. The experimental sorption data were fitted well by the Freundlich model, suggesting enhanced sorption capacity and strong nonlinearity of coal samples. The combined partition and adsorption model yielded a better fit than the Freundlich isotherm, indicating that adsorption dominated the sorption at low aqueous concentrations. Correlations between coal properties and sorption capacity values indicated that C%, H/C and O/C atomic ratios were the key factors controlling the sorption behavior. Compared to total carbon, BC might play more important role in the sorption of Phen to coal samples. Moreover, there existed nonlinear relationships between combined carbon, aromatic and aliphatic carbon contents and log K Fr and n values, respectively, indicating the significance of aromatic and aliphatic carbon in the coal sorption behavior.

  5. The preparation of sorbents from black coals

    Energy Technology Data Exchange (ETDEWEB)

    Rojak, A.; Roubicek, V.; Kaloc, M.; Lacny, Z. [Univ. of Mining and Metallurgy, Ostrava (Czechoslovakia)

    1994-12-31

    In this research project, different types of activated carbons were studied. The activated carbons were used as sorbents for phenol-ammonia waste water treatment. The basic parameters of coal, including specific surfaces, are shown in a table. The coals underwent carbonization under temperatures ranging from 500 C to 1,000 C. After cooling, the char was treated to achieve fineness ranging from 1.5 to 3.0 mm and was activated by a water stream. The active carbon was then used for biological-sorptional cleaning of waste water on model equipment. Results led to the following conclusions: (1) The sorption-biological refining process for phenol-ammonia waste waters from coking plants was suitable; (2) An activated coke has to be used as an input filter to acquire the highest efficiency during this biological process; and (3) During the sorption-biological refining of phenol-ammonia waters, phenol content was reduced significantly (90%), and chemical oxygen consumption was reduced (10%) in comparison with the unrefined phenol-ammonia water.

  6. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  7. Coal liquefaction and hydrogenation

    Science.gov (United States)

    Schindler, Harvey D.

    1985-01-01

    The coal liquefaction process disclosed uses three stages. The first stage is a liquefaction. The second and third stages are hydrogenation stages at different temperatures and in parallel or in series. One stage is within 650.degree.-795.degree. F. and optimizes solvent production. The other stage is within 800.degree.-840.degree. F. and optimizes the C.sub.5 -850.degree. F. product.

  8. Coal - testing methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-04-01

    This Standard specifies the method for the particle-size analysis, the method for determination of the float and sink characteristics, the method for determination of Hardgrove grindability indices, the method for determination of the crucible swelling number, the method for determination of the swelling properties, the method for determination of the fluidity properties, the method for determination of the coking properties, the method for determination of the fusibility of ash, and the method for determination of Roga indices of coal.

  9. Predicted coal production trends in Kentucky: The results of available coal resources, coal quality demands, and regulatory factors

    International Nuclear Information System (INIS)

    Watson, W.D.

    1993-01-01

    Many factors affect the viability of regional coal production markets including (1) coal quality and recoverable tonnage, (2) coal mining cost, (3) the regional and time varying patterns of coal demand growth, (4) regulations and other institutional constraints that affect coal demand and utilization, and (5) the regional array of coal transport modes and rates. This analysis integrates these factors into an assessment of coal production prospects (separately) for eastern and western Kentucky coal producing counties for the decade of the 90's. The integration indicates that eastern Kentucky coal production will peak and begin to decline by the end of the decade whereas western Kentucky coal production will continue to grow. No single factor explains these trends. There is plenty of available minable coal. The combination of changes in environmental regulations, some increase in coal mining costs, and the mining-out of low sulfur reserves are the main factors that account for the production trends

  10. Coal: a human history

    Energy Technology Data Exchange (ETDEWEB)

    Freese, B.

    2002-12-01

    Prized as 'the best stone in Britain' by Roman invaders who carved jewellery out of it, coal has transformed societies, powered navies, fueled economies, and expanded frontiers. It made China a twelfth-century superpower, inspired the writing of the Communist Manifesto, and helped the northern states win the American Civil War. Yet the mundane mineral that built our global economy - and even today powers our electrical plants - has also caused death, disease, and environmental destruction. As early as 1306, King Edward I tried to ban coal (unsuccessfully) because its smoke became so obnoxious. Its recent identification as a primary cause of global warming has made it a cause celebre of a new kind. In this book, Barbara Freese takes us on an historical journey that begins three hundred million years ago and spans the globe. From the 'Great Stinking Fogs' of London to the rat-infested coal mines of Pennsylvania, from the impoverished slums of Manchester to the toxic city streets of Beijing, this book describes an ordinary substance that has done extraordinary things.

  11. Coal slurry observed as habitat for semiaquatic beetle Lanternarius brunneus (Coleoptera: Heteroceridae), with notes on water quality conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vinikour, W.S.

    1979-10-01

    The variegated beetle, Lanternarius brunneus (Melsh.), was found inhabiting a slurry area at an orphaned coal mine site in Illinois. Water quality analyses indicated the beetle lived in coal fines and mud saturated with water indicative of acid mine drainage i.e., pH < 4.0 and elevated sulfate and heavy metal concentrations. This is the first report of Heteroceridae occurring in this type of habitat and in conditions normally toxic to other aquatic or semiaquatic insects.

  12. Source apportionment of fine organic aerosols in Beijing

    Directory of Open Access Journals (Sweden)

    S. Guo

    2009-11-01

    Full Text Available Fine particles (PM2.5, i.e., particles with an aerodynamic diameter of ≤2.5 μm were collected from the air in August 2005, August–September 2006, and January–February 2007, in Beijing, China. The chemical compositions of particulate organic matter in the ambient samples were quantified by gas chromatography/mass spectrometry. The dominant compounds identified in summertime were n-alkanoic acids, followed by dicarboxylic acids and sugars, while sugars became the most abundant species in winter, followed by polycyclic aromatic hydrocarbons, n-alkanes, and n-alkanoic acids. The contributions of seven emission sources (i.e., gasoline/diesel vehicles, coal burning, wood/straw burning, cooking, and vegetative detritus to particulate organic matter in PM2.5 were estimated using a chemical mass balance receptor model. The model results present the seasonal trends of source contributions to organic aerosols. Biomass burning (straw and wood had the highest contribution in winter, followed by coal burning, vehicle exhaust, and cooking. The contribution of cooking was the highest in summer, followed by vehicle exhaust and biomass burning, while coal smoke showed only a minor contribution to ambient organic carbon.

  13. CVFA: Coal vendor financial advisor

    International Nuclear Information System (INIS)

    Goote, W.G.; Andersen, S.

    1992-01-01

    An expert system for determining coal vendor financial viability in fuel purchasing contracts at an electric utility is described. The system blends rules, data objects, and financial knowledge to provide a rational basis for accepting or rejecting coal contracts given the financial capability of the coal vendor. The discussion concludes with a critique of managerial issues in the development of the system and its use in decision making. 3 refs., 1 fig

  14. Coal resources of Indiana

    Science.gov (United States)

    Spencer, Frank Darwyn

    1953-01-01

    The Indiana coal field forms the eastern edge of the eastern interior coal basin, which is near some of the most densely populated and highly productive manufacturing areas of the United States. (See fig. 1. ) For this reason Indiana coal reserves are an important State and National asset. In dollar value the coal mining industry is the largest of Indiana's natural-resource-producing industries. The total value of coil production for the year 1950 was more than 100 million dollars, or more than that of all other natural-resource industries in the State combined. As estimated herein, the original coal reserves of Indiana total 37,293 million tons, of which 27,320 million tons is contained in beds more than 42 inches thick; 7,632 million tons in beds 28 to 49. inches thick; and 2,341 million tons in beds 14 to 28 inches thick. The remaining reserves as of January 1951, total 35,806 million tons, of which 18,779 million tons is believed to be recoverable. The distribution of the reserves in these several categories is summarized by counties in table 1. Of the total original reserves of 37,293 million tons, 6,355 million tons can be classified as measured; 8,657 million tons as indicated; and 22,281 million tons as inferred. Strippable reserves constitute 3,524 million tons, or 9.5 percent of the total original reserves. The distribution of the strippable and nonstrippable original reserves is summarized in tables 2 and 3 by counties and by several categories, according to the thickness of the beds and the relative abundance and reliability of the information available for preparing the estimates. The distribution of the estimated 18,779 million tons of recoverable strippable and nonstrippable reserves in Indiana is further summarized by counties in table 4, and the information is presented graphically in figures 2 and 3. The tables i to 4 and figures 2 and 3 include beds in the 14- to 28-inch category, because thin beds have been mined in many places. However, many

  15. Coal: More than silver linings

    International Nuclear Information System (INIS)

    Doerell, P.E.

    1995-01-01

    While last year's coal survey was subtitled open-quotes Less than lacklusterclose quotes because of overproduction and depressed prices, the end of 1994 showed a definitely brighter picture. An indication was the recent attendance and the mood at the CoalTrans '94 Conference in Hamburg, the trade's biggest meeting. This atmosphere was described by many of the 1,300 delegates as open-quotes bullishclose quotes, with coal traders and consumers actually chasing suppliers-a rare occurrence in recent years. The reason for optimism is, of course, the end of the worldwide recession, resulting in increasing coal demand which stabilizes prices

  16. The Global Value of Coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal plays an essential role in our global energy mix, particularly for power generation; and through that to the alleviation of energy poverty. The use of coal continues to grow rapidly and will continue, together with other fuels, to support world economic and social development particularly in rapidly developing world economies such as China and India. The purpose of this paper is to highlight for policy makers the value of coal to world economic and social development and so encourage development of a policy environment that will allow the coal and electricity industries to make the necessary investments in production capacity and CO2 emissions reduction technologies.

  17. World coal perspectives to 2030

    International Nuclear Information System (INIS)

    Brendow, Klaus

    2004-01-01

    In Summer 2004, The World Energy Council published a Study on 'Sustainable Global Energy Development: the Case of Coal'. The Study aims at developing an internationally consistent reply to the question whether and to what extent coal use could be economic and sustainable in meeting global energy demand to 2030 and beyond. It covers markets, trade and demand, mining and combustion technologies, restructuring and international policies, and perspectives. It considers both, the contribution that coal could make to economic development as well as the need for coal adapt to the exigencies of security of supply, local environmental protection and mitigation of climate change. (Author)

  18. Gaseous emissions from coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Stockpiled coal undergoes atmospheric oxidation and desorption processes during open air storage. These processes release gases to the environment which may effect health and safety by their toxicity and flammability. In extreme cases, this could lead to a fire. This report discusses gaseous emissions from coal stockpiles. It covers gas emission mechanisms, and gas sampling and testing methods, before examining in more detail the principal gases that have been emitted. It concludes that there is limited research in this area and more data are needed to evaluate the risks of gaseous emissions. Some methods used to prevent coal self-heating and spontaneous combustion can be applied to reduce emissions from coal stockpiles.

  19. Chemical analyses of coal, coal-associated rocks and coal combustion products collected for the National Coal Quality Inventory

    Science.gov (United States)

    Hatch, Joseph R.; Bullock, John H.; Finkelman, Robert B.

    2006-01-01

    In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).

  20. Awakening a sleeping coal giant

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, B.

    2007-08-15

    Botswana, a southern African country that in the 1980s could not economically land a tonne of coal at the closest export terminal and even today mines no more than 1 million tpa, is to increase production to beyond 30 million tpa. A first ever coal conference in Gaborone called it the awakening of a coal giant. The alarm call for the coal giant is the realisation that without more generating capacity than its power utility Eskom can itself build in time, South Africa will in four to five years face a severe shortage of power. 1 ref., 5 figs., 2 tabs.

  1. Carbonization heat of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    H. Ueda; V. Zymla; F. Honnart [Nippon Steel (Japan)

    2005-07-01

    The heat of carbonization is an important element of the coke oven heat balance. It is therefore important to know its absolute value or, at least, its relative variation when coal properties and process parameters change, in order for it to be taken into account by automatic heating control systems. An experimental procedure was thus developed, enabling the heat flow over the whole carbonization temperature range (25-1100{sup o}C) to be measured by DTA. Five coals of different ranks (from 18 to 34% volatile matter) were tested. Results show that all of them exhibit similar behaviour: an endothermic effect below 500{sup o}C and an exothermic effect at higher temperatures. It was established that the heat of carbonization varies with coal rank. The highest exothermic peak was measured for medium volatile hard coking coal. Having ascertained the right measurement procedure, the influence of coal weathering and plastic addition to coal blends on carbonisation heat were studied as well. It was found that the weight loss of oxidized coals during a heating in nitrogen was reduced (coke yield increased) and the heat of carbonization dramatically decreased, especially for medium and high volatile coals. The copyrolysis of coals and plastics (PE, PP, PS, PET) showed also a notable decrease of exothermic heat of carbonization, even for relatively low percentage plastic addition (less then 2%). 6 refs., 5 figs.

  2. Coal, energy and environment: Proceedings

    International Nuclear Information System (INIS)

    Mead, J.S.; Hawse, M.L.

    1994-01-01

    This international conference held in Czechoslovakia was a bold attempt to establish working relationships among scientists and engineers from three world areas: Taiwan, the United States of America, and Czechoslovakia. The magic words unifying this gathering were ''clean coal utilization.'' For the ten nationalities represented, the common elements were the clean use of coal as a domestic fuel and as a source of carbon, the efficient and clean use of coal in power generation, and other uses of coal in environmentally acceptable processes. These three world areas have serious environmental problems, differing in extent and nature, but sufficiently close to create a working community for discussions. Beyond this, Czechoslovakia is emerging from the isolation imposed by control from Moscow. The need for each of these nations to meet and know one another was imperative. The environmental problems in Czechoslovakia are extensive and deep-seated. These proceedings contain 63 papers grouped into the following sections: The research university and its relationship with accrediting associations, government and private industry; Recent advances in coal utilization research; New methods of mining and reclamation; Coal-derived waste disposal and utilization; New applications of coal and environmental technologies; Mineral and trace elements in coal; Human and environmental impacts of coal production and utilization in the Silesian/Moravian region; and The interrelationships between fossil energy use and environmental objectives. Most papers have been processed separately for inclusion on the data base

  3. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Boyer, C.M.; Kelafant, J.R.; Kuuskraa, V.A.; Manger, K.C.; Kruger, D.

    1990-09-01

    The report estimates global methane emissions from coal mining on a country specific basis, evaluates the technologies available to degasify coal seams and assesses the economics of recovering methane liberated during mining. 33 to 64 million tonnes were liberated in 1987 from coal mining, 75 per cent of which came from China, the USSR, Poland and the USA. Methane emissions from coal mining are likely to increase. Emission levels vary between surface and underground mines. The methane currently removed from underground mines for safety reasons could be used in a number of ways, which may be economically attractive. 55 refs., 19 figs., 24 tabs

  4. Interrelating the breakage and composition of mined and drill core coal

    Science.gov (United States)

    Wilson, Terril Edward

    Particle size distribution of coal is important if the coal is to be beneficiated, or if a coal sales contract includes particle size specifications. An exploration bore core sample of coal ought to be reduced from its original cylindrical form to a particle size distribution and particle composition that reflects, insofar as possible, a process stream of raw coal it represents. Often, coal cores are reduced with a laboratory crushing machine, the product of which does not match the raw coal size distribution. This study proceeds from work in coal bore core reduction by Australian investigators. In this study, as differentiated from the Australian work, drop-shatter impact breakage followed by dry batch tumbling in steel cylinder rotated about its transverse axis are employed to characterize the core material in terms of first-order and zeroth-order breakage rate constants, which are indices of the propensity of the coal to degrade during excavation and handling. Initial drop-shatter and dry tumbling calibrations were done with synthetic cores composed of controlled low-strength concrete incorporating fly ash (as a partial substitute for Portland cement) in order to reduce material variables and conserve difficult-to-obtain coal cores. Cores of three different coalbeds--Illinois No. 6, Upper Freeport, and Pocahontas No. 5 were subjected to drop-shatter and dry batch tumbling tests to determine breakage response. First-order breakage, characterized by a first-order breakage index for each coal, occurred in the drop-shatter tests. First- and zeroth-order breakage occurred in dry batch tumbling; disappearance of coarse particles and creation of fine particles occurred in a systematic way that could be represented mathematically. Certain of the coal cores available for testing were dry and friable. Comparison of coal preparation plant feed with a crushed bore core and a bore core prepared by drop-shatter and tumbling (all from the same Illinois No.6 coal mining

  5. Hydrotreating of coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lott, S.E.; Stohl, F.V.; Diegert, K.V. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1995-12-31

    To develop a database relating hydrotreating parameters to feed and product quality by experimentally evaluating options for hydrotreating whole coal liquids, distillate cuts of coal liquids, petroleum, and blends of coal liquids with petroleum.

  6. Coal Mining-Related Respiratory Diseases

    Science.gov (United States)

    ... Topics Publications and Products Programs Contact NIOSH NIOSH COAL WORKERS' HEALTH SURVEILLANCE PROGRAM Recommend on Facebook Tweet Share Compartir Coal Mining-Related Respiratory Diseases Coal mining-related respiratory ...

  7. Southern Coal Corporation Clean Water Settlement

    Science.gov (United States)

    Southern Coal Corporation is a coal mining and processing company headquartered in Roanoke, VA. Southern Coal Corporation and the following 26 affiliated entities are located in Alabama, Kentucky, Tennessee, Virginia and West Virginia

  8. Some Challenges Posed by Coal Bed Methane Regional Assessment Modeling.

    Science.gov (United States)

    Moore, Catherine R; Doherty, John; Howell, Stephen; Erriah, Leon

    2015-01-01

    Coal measures (coal bearing rock strata) can contain large reserves of methane. These reserves are being exploited at a rapidly increasing rate in many parts of the world. To extract coal seam gas, thousands of wells are drilled at relatively small spacing to depressurize coal seams to induce desorption and allow subsequent capture of the gas. To manage this process effectively, the effect of coal bed methane (CBM) extraction on regional aquifer systems must be properly understood and managed. Groundwater modeling is an integral part of this management process. However, modeling of CBM impacts presents some unique challenges, as processes that are operative at two very different scales must be adequately represented in the models. The impacts of large-scale gas extraction may be felt over a large area, yet despite the significant upscaling that accompanies construction of a regional model, near-well conditions and processes cannot be ignored. These include the highly heterogeneous nature of many coal measures, and the dual-phase flow of water and gas that is induced by coal seam depressurization. To understand these challenges, a fine-scale model was constructed incorporating a detailed representation of lithological heterogeneity to ensure that near-well processes and conditions could be examined. The detail of this heterogeneity was at a level not previously employed in models built to assess groundwater impacts arising from CBM extraction. A dual-phase reservoir simulator was used to examine depressurization and water desaturation processes in the vicinity of an extractive wellfield within this fine-scale model. A single-phase simulator was then employed so that depressurization errors incurred by neglecting near-well, dual-phase flow could be explored. Two models with fewer lithological details were then constructed in order to examine the nature of depressurization errors incurred by upscaling and to assess the interaction of the upscaling process with the

  9. Pelletizing/reslurrying as a means of distributing and firing clean coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conkle, H.N.

    1992-09-29

    Battelle-Columbus and Amax Research & Development conducted a program to develop a process to transport, handle, store, and utilize ultra-fine, ultra-clean (UFUC) coals. The primary objective was to devise a cost-effective method, based on conventional pelletization techniques, to transform the sludge-like filter cake produced in advanced flotation cleaning processes into a product which could be used like lump coal. A secondary objective was the production of a pellet which could be readily converted into a coal water fuel (CWF) because the UFUC coal would ultimately be used as CWF. The resulting product would be a hard, waterproof pellet which could be easily reduced to small particle sizes and formulated with water into a liquid fuel.

  10. Pelletizing/reslurrying as a means of distributing and firing clean coal

    Energy Technology Data Exchange (ETDEWEB)

    Conkle, H.N.

    1992-09-29

    Battelle-Columbus and Amax Research Development conducted a program to develop a process to transport, handle, store, and utilize ultra-fine, ultra-clean (UFUC) coals. The primary objective was to devise a cost-effective method, based on conventional pelletization techniques, to transform the sludge-like filter cake produced in advanced flotation cleaning processes into a product which could be used like lump coal. A secondary objective was the production of a pellet which could be readily converted into a coal water fuel (CWF) because the UFUC coal would ultimately be used as CWF. The resulting product would be a hard, waterproof pellet which could be easily reduced to small particle sizes and formulated with water into a liquid fuel.

  11. Firing a sub-bituminous coal in pulverized coal boilers configured for bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    N. Spitz; R. Saveliev; M. Perelman; E. Korytni; B. Chudnovsky; A. Talanker; E. Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2008-07-15

    It is important to adapt utility boilers to sub-bituminous coals to take advantage of their environmental benefits while limiting operation risks. We discuss the performance impact that Adaro, an Indonesian sub-bituminous coal with high moisture content, has on opposite-wall and tangentially-fired utility boilers which were designed for bituminous coals. Numerical simulations were made with GLACIER, a computational-fluid-dynamic code, to depict combustion behavior. The predictions were verified with full-scale test results. For analysis of the operational parameters for firing Adaro coal in both boilers, we used EXPERT system, an on-line supervision system developed by Israel Electric Corporation. It was concluded that firing Adaro coal, compared to a typical bituminous coal, lowers NOx and SO{sub 2} emissions, lowers LOI content and improves fouling behavior but can cause load limitation which impacts flexible operation. 21 refs., 7 figs., 3 tabs.

  12. Too Much Coal, Too Little Oil

    OpenAIRE

    Frederick van der Ploeg; Cees Withagen

    2011-01-01

    Optimal climate policy is studied. Coal, the abundant resource, contributes more CO2 per unit of energy than the exhaustible resource, oil. We characterize the optimal sequencing oil and coal and departures from the Herfindahl rule. "Preference reversal" can take place. If coal is very dirty compared to oil, there is no simultaneous use. Else, the optimal outcome starts with oil, before using oil and coal together, and finally coal on its own, The "laissez-faire" outcome uses coal forever or ...

  13. Fine 5 kolib Kumu lavale

    Index Scriptorium Estoniae

    2006-01-01

    Kumu kunstimuuseumi auditooriumis toimub 21. veebruaril Fine 5 kaasaegse tantsu etendus "Panus". Esinevad Tiina Ollesk, Irina Pähn, žonglöör Dimitri Kruus, disainer Rain Saukas ja muusik Mattias Siitan

  14. Nitramine Drying & Fine Grinding Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nitramine Drying and Fine Grinding Facility provides TACOM-ARDEC with a state-of-the-art facility capable of drying and grinding high explosives (e.g., RDX and...

  15. Finely divided, irradiated tetrafluorethylene polymers

    International Nuclear Information System (INIS)

    Brown, M.T.; Rodway, W.G.

    1977-01-01

    Dry non-sticky fine lubricant powders are made by γ-irradiation of unsintered coagulated dispersion grade tetrafluoroethylene polymers. These powders may also be dispersed in an organic medium for lubricating purposes

  16. Navajo Coal Combustion and Respiratory Health Near Shiprock, New Mexico

    Directory of Open Access Journals (Sweden)

    Joseph E. Bunnell

    2010-01-01

    Full Text Available Indoor air pollution has been identified as a major risk factor for acute and chronic respiratory diseases throughout the world. In the sovereign Navajo Nation, an American Indian reservation located in the Four Corners area of the USA, people burn coal in their homes for heat. To explore whether/how indoor coal combustion might contribute to poor respiratory health of residents, this study examined respiratory health data, identified household risk factors such as fuel and stove type and use, analyzed samples of locally used coal, and measured and characterized fine particulate airborne matter inside selected homes. In twenty-five percent of homes surveyed coal was burned in stoves not designed for that fuel, and indoor air quality was frequently found to be of a level to raise concerns. The average winter 24-hour PM2.5 concentration in 20 homes was 36.0 μg/m3. This is the first time that PM2.5 has been quantified and characterized inside Navajo reservation residents' homes.

  17. Chronic interstitial pneumonia with honeycombing in coal workers

    Energy Technology Data Exchange (ETDEWEB)

    Brichet, A.; Tonnel, A.B.; Brambilla, E.; Devouassoux, G.; Remy-Jardin, M.; Copin, M.C.; Wallaert, B. [A. Calmette Hospital, Lille (France)

    2002-10-01

    Coal worker's pneumoconiosis (CWP) results from coal mine dust inhalation. The paper reports the presence of a chronic interstitial pneumonia (CIP) with honeycombing in 38 cases of coal miners, with or without CWP. The 38 patients were selected on the basis of clinical criteria which are unusual in CWP, i.e. fine inspiratory crackles and severe dyspnea. There were 37 men and one woman; mean age was 67.5 {+-} 9.1 years. Thirty-two were smokers. Duration of exposure was 26.7 {+-} 9.9 years. All the patients had clinical examination, chest radiography, computed tomography (CT), lung function, laboratory investigations, wedged fiberoptic bronchoscopy with bronchoalveolar lavage (BAL). In eight cases, lung specimens were obtained. Seventeen out of 38 had finger clubbing. 17 had radiological signs of CWP limited to the upper lobes or diffusely distributed. CT showed honeycombing (36 cases), and/or ground glass opacities (30 cases) with traction bronchiectasis (8 cases) predominant in the lower lobes. BAL analysis demonstrated an increased percentage of neutrophils (9.4% {+-} 6). Lung function showed a restrictive pattern associated with a decreased DLCO and hypoxemia. Lung specimens demonstrated in 2 cases a homogenous interstitial fibrosis of intra-alveolar septum with an accumulation of immune and inflammatory cells without temporal variation and with obvious honeycombing. The 6 other cases showed features of usual interstitial pneumonia. These cases, should alert other clinicians to a possible association between CIP with honeycombing and coal dust exposure, with or without associated CWP.

  18. Flotation and flocculation chemistry of coal and oxidized coals

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, P.; Ramesh, R.

    1989-01-01

    This project is designed to develop an understanding of the fundamentals involved in flotation and flocculation of coal, and of coal in various states of oxidation. The main objective of this study is to accurately characterize the coal surface and elucidate mechanisms by which surface interactions between coal and various reagents enhance beneficiation of coals. Effects of oxidation on the modification of surface characteristics of coal by various reagents will also be studied. This quarter, the following studies were conducted in order to further develop our understanding of the role of heterogeneity in interfacial phenomena. (1) Since surface characterization is an important aspect in this project, ESCA (Electron Spectroscopy for Chemical Analysis) study of the coal surface was conducted. Surface derivatization, a technique often used in the preparation of organic compounds for gas-liquid chromatography, uses site specific molecular tags'' that bond to key chemical groups on the surface. Application of derivatization in conjunction with ESCA is a relatively new technique for quantifying functional groups on the surface which has not been possible till now. (2) A distribution of contact angles on the surface of coal (pseudo theta map) is presented based on our earlier results and other published information. The role of heterogeneity in contact angle studies is also examined. 14 refs., 2 tabs.

  19. Integrated coal preparation and CWF processing plant: Conceptual design and costing

    Energy Technology Data Exchange (ETDEWEB)

    McHale, E.T.; Paul, A.D.; Bartis, J.T. (Science Applications International Corp., McLean, VA (United States)); Korkmaz, M. (Roberts and Schaefer Co., Salt Lake City, UT (United States))

    1992-12-01

    At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m[mu] for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

  20. Integrated coal preparation and CWF processing plant: Conceptual design and costing. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    McHale, E.T.; Paul, A.D.; Bartis, J.T. [Science Applications International Corp., McLean, VA (United States); Korkmaz, M. [Roberts and Schaefer Co., Salt Lake City, UT (United States)

    1992-12-01

    At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m{mu} for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

  1. Enhancement of Operating Efficiency Of The Central Coal-Preparation Plant of "MMK - UGOL" Ltd. Under Current Conditions

    Science.gov (United States)

    Basarygin, Maksim

    2017-11-01

    In this article the subject of enhancement of operating efficiency of the central coal-preparation plant of OOO "MMK-UGOL" is encompassed. Modern trends in the development of technologies and equipment for coal beneficiation are due to the following requirements: improving competitiveness of coal products, improvement of quality of marketable products, reduction of coal production cost, environmental requirements: polluting emission abatement, prepared coal saving, improvement of the effectiveness of resource conservation; complex mechanization and beneficiation process automation. In the article the contemporary problems of raw coal benefication under current conditions of the increased dilution of withdrawable coals with rock fractions are considered. Comparative analysis of efficiency of application of modern concentrating equipment under the conditions of the CCPP of OOO "MMK-UGOL" is carried out on the basis of research works. Particular attention is paid to dehydration of produced coal concentrate with content of volatile agents of more than 35.0% and content of fine-dispersed particles in flotation concentrate of more than 50.0%. Comparative analysis of the coal concentrate dehydration technologies is conducted.

  2. Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    M. Ian Gilmour; Silvia O' Connor; Colin A.J. Dick; C. Andrew Miller; William P. Linak [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). National Health and Environmental Effects Research Laboratory

    2004-03-01

    Exposure to airborne particulate matter (PM) has been associated with adverse health effects in humans. Pulmonary inflammatory responses were examined in CD1 mice after intratracheal instillation of 25 or 100 {mu}g of ultrafine ({lt}0.2 {mu}m), fine ({lt}2.5 {mu}m), and coarse ({gt}2.5 {mu}m) coal fly ash from a combusted Montana subbituminous coal, and of fine and coarse fractions from a combusted western Kentucky bituminous coal. After 18 hr, the lungs were lavaged and the bronchoalveolar fluid was assessed for cellular influx, biochemical markers, and pro-inflammatory cytokines. The responses were compared with saline and endotoxin as negative and positive controls, respectively. On an equal mass basis, the ultrafine particles from combusted Montana coal induced a higher degree of neutrophil inflammation and cytokine levels than did the fine or coarse PM. The western Kentucky fine PM caused a moderate degree of inflammation and protein levels in bronchoalveolar fluid that were higher than the Montana fine PM. Coarse PM did not produce any significant effects. In vitro experiments with rat alveolar macrophages showed that of the particles tested, only the Montana ultrafine displayed significant cytotoxicity. It is concluded that fly ash toxicity is inversely related with particle size and is associated with increased sulfur and trace element content. 42 refs., 5 figs., 3 tabs.

  3. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  4. Determination of inorganic elements in coal and coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Koklu, U.; Akman, S.; Ruppert, L.F. [Istanbul Technical University, Istanbul (Turkey)

    1994-12-31

    Many different methods are applicable to the analysis of inorganic elements in coal and other geological materials. There are only a few elements, namely Cl, F, and P, that are still routinely determined by chemical methods; the majority of elements are determined by instrumental methods. The instrumental techniques commonly employed by coal analysts which will be briefly reviewed here include: instrumental neutron activation analysis (INAA), atomic emission spectroscopy (AES), atomic absorption spectroscopy (AAS), mass spectroscopy (MS), electron microscopy, and X-ray fluorescence (XRF). All of these methods, with the possible exception of electron microscopy, offer rapid and accurate multielement results for the bulk analyses of coal and coal products. There is no single method that can be used to determine all of the elements found in coal. However, nowadays AAS may be the most commonly used instrumental technique. For example, in 1983 about 70% of the geochemical exploration samples collected annually were analyzed with AAS. 105 refs., 1 tab.

  5. COAL SLAGGING AND REACTIVITY TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

    2003-10-01

    Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion

  6. WATER- AND COAL GASIFICATION

    Directory of Open Access Journals (Sweden)

    N. S. Nazarov

    2006-01-01

    Full Text Available According to the results of gas analysis it has been established that water- and coal gasification is rather satisfactorily described by three thermo-chemical equations. One of these equations is basic and independent and the other two equations depend on the first one.The proposed process scheme makes it possible to explain the known data and also permits to carry out the gasification process and obtain high-quality hydrogen carbon-monoxide which is applicable for practical use.

  7. The revolutionary importance of coal

    OpenAIRE

    Macfarlane, Alan

    2004-01-01

    Alan Macfarlane discusses the coal revolution, the change from energy harvested from the sun through plants and animals, to the stored carbon energy of millions of years of sunlight. Filmed on a coal heap in Coalbrookdale, where the industrial revolution in England began.

  8. Coal: Energy for the future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  9. Power Generation from Coal 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report focuses mainly on developments to improve the performance of coal-based power generation technologies, which should be a priority -- particularly if carbon capture and storage takes longer to become established than currently projected. A close look is taken of the major ongoing developments in process technology, plant equipment, instrumentation and control. Coal is an important source of energy for the world, particularly for power generation. To meet the growth in demand for energy over the past decade, the contribution from coal has exceeded that of any other energy source. Additionally, coal has contributed almost half of total growth in electricity over the past decade. As a result, CO2 emissions from coal-fired power generation have increased markedly and continue to rise. More than 70% of CO2 emissions that arise from power generation are attributed to coal. To play its role in a sustainable energy future, its environmental footprint must be reduced; using coal more efficiently is an important first step. Beyond efficiency improvement, carbon capture and storage (CCS) must be deployed to make deep cuts in CO2 emissions. The need for energy and the economics of producing and supplying it to the end-user are central considerations in power plant construction and operation. Economic and regulatory conditions must be made consistent with the ambition to achieve higher efficiencies and lower emissions. In essence, clean coal technologies must be more widely deployed.

  10. Coal Mine Methane in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  11. Brown coal gasification made easy

    International Nuclear Information System (INIS)

    Hamilton, Chris

    2006-01-01

    Few Victorians will be aware that gas derived from coal was first used in 1849 to provide lighting in a baker's shop in Swanston Street, long before electric lighting came to the State. The first commercial 'gas works' came on stream in 1856 and Melbourne then had street lighting run on gas. By 1892 there were 50 such gas works across the State. Virtually all were fed with black coal imported from New South Wales. Brown coal was first discovered west of Melbourne in 1857, and the Latrobe Valley deposits were identified in the early 1870s. Unfortunately, such wet brown coal did not suit the gas works. Various attempts to commercialise Victorian brown coal met with mixed success as it struggled to compete with imported New South Wales black coal. In June 1924 Yallourn A transmitted the first electric power to Melbourne, and thus began the Latrobe Valley's long association with generating electric power from brown coal. Around 1950, the Metropolitan Gas Company applied for financial assistance to build a towns gas plant using imported German gasification technology which had been originally designed for a brown coal briquette feed. The State Government promptly acquired the company and formed the Gas and Fuel Corporation. The Morwell Gasification Plant was opened on 9 December 1956 and began supplying Melbourne with medium heating value towns gas

  12. Uranium content of Philippine coals

    International Nuclear Information System (INIS)

    De la Rosa, A.M.; Sombrito, E.Z.; Nuguid, Z.S.; Bulos, A.M.; Bucoy, B.M.; De la Cruz, M.

    1984-01-01

    Uranium content of coal samples from seven areas in the Philippines, i.e. Cebu, Semirara, Bislig, Albay, Samar, Malangas and Polilio Is. was found to contain trace quantities of uranium. The mean value of 0.401 ppm U is lower than reported mean uranium contents for coal from other countries. (ELC)

  13. Nuclear energy, coal, and environment

    International Nuclear Information System (INIS)

    Yang Yin; Pan Ziqiang.

    1989-01-01

    From the view point of environmental protection, nuclear plants are superior to coal-fired ones. Coal-fired plants and other uses of burning create serious environmental problems, whereas no noticeable impacts are identified for nuclear plants. Even with respect to radiation risk, with equal energy output, a coal-fired plant is one order of magnitude higher than a nuclear station. Energy is a prerequisite for the development of a national economy and the improvement of living standards. Economic growth must be coordinated with the exploitation of energy resources. The worsening shortage of energy has made it imperative that China step up its energy development and pay full attention to the development of nuclear energy. Among direct energy sources, about 70% came from coal in the past. The public has been greatly concerned over the pollution caused by coal-fired power stations and/or other industrial and domestic use of coal burning. With increasing mining of coal, the issues related to pollution from the use of coal will become more serious and prominent. 17 refs., 3 tabs

  14. Impacts of Coal Seam Gas (Coal Bed Methane) and Coal Mining on Water Resources in Australia

    Science.gov (United States)

    Post, D. A.

    2013-12-01

    Mining of coal bed methane deposits (termed ';coal seam gas' in Australia) is a rapidly growing source of natural gas in Australia. Indeed, expansion of the industry is occurring so quickly that in some cases, legislation is struggling to keep up with this expansion. Perhaps because of this, community concern about the impacts of coal seam gas development is very strong. Responding to these concerns, the Australian Government has recently established an Independent Expert Scientific Committee (IESC) to provide advice to the Commonwealth and state regulators on potential water-related impacts of coal seam gas and large coal mining developments. In order to provide the underlying science to the IESC, a program of ';bioregional assessments' has been implemented. One aim of these bioregional assessments is to improve our understanding of the connectivity between the impacts of coal seam gas extraction and groundwater aquifers, as well as their connection to surface water. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. This presentation will provide an overview of the issues related to the impacts of coal seam gas and coal mining on water resources in Australia. The methodology of undertaking bioregional assessments will be described, and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Preliminary results of the program of research to date will be assessed in light of the requirements of the IESC to provide independent advice to the Commonwealth and State governments. Finally, parallels between the expansion of the industry in Australia with that

  15. Coal-fired water pump

    Energy Technology Data Exchange (ETDEWEB)

    Zeilinger, J.E.; Kawa, W.; Lewis, P.S.; Hiteshue, R.W.

    1966-01-01

    The technical feasibility of using energy from explosive ignitions of coal dust to pump water was demonstrated in an exploratory investigation. Ignition of small amounts of pulverized coal that were dispersed in air over columns of water pumped 5.3 gallons of water per cycle when operated against a head of 30.75 feet. Water displacement was accomplished by either manual or automatic operation through a single cycle and by automatic operation through a continuous series of cycles of 1-minute duration. Operating through single cycles, slurries containing up to 3 pounds of coal and 4.6 gallons of water were also pumped. Possible uses of an efficient coal-fired pump would include pumping water for irrigation purposes, removing water from mines, transporting coal from mines in the form of a slurry, and pumping water to elevated reservoirs at electric power-plants so that it could be used to generate electricity during peak periods of demand.

  16. Indian coal industry: Growth perspective

    International Nuclear Information System (INIS)

    Sachdev, R.K.

    1993-01-01

    Growth perspective of Indian coal industry and their environmental aspects, are discussed. The complete coal chain comprises of mining including preparation and processing, transport, usage and disposal of solid, liquid and gaseous wastes. Proper environmental protection measures are therefore, required to be integrated at every stage. At mining stage, land reclamation, restoration of surface damaged by subsidence and proper treatment of effluents are the minimum requirement for effective environmental protection. Since coal will continue to be the major source of commercial energy in coming decades initiative will have to be taken in making coal a clean fuel from the point of view of its usage in different industries. Washing of high ash coals for reducing the ash content will go a long way in reducing the atmospheric pollution through better plant performance and reduced environmental pollution at the power plants. (author)

  17. Preparation of slightly hydrogenated coal

    Energy Technology Data Exchange (ETDEWEB)

    Rank, V.

    1943-05-03

    Processes serving as producers of slightly hydrogenated coal are discussed. It was established that the working process of an extracting hydrogenation from coal alone did not present optimal conditions for production of slightly hydrogenated coal, and therefore led to unfavorably high costs. More favorable operating costs were expected with the use of larger amounts of gas or with simultaneous production of asphalt-free oils in larger quantity. The addition of coal into the hydrogenation of low temperature carbonization tars made it possible to produce additional briquetting material (slightly hydrogenated coal) in the same reaction space without impairment of the tar hydrogenation. This was to lower the cost still more. For reasons of heat exchange, the process with a cold separator was unfavorable, and consideration of the residue quality made it necessary to investigate how high the separator temperature could be raised. 3 tables.

  18. Surfactant-Assisted Coal Liquefaction

    Science.gov (United States)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    Obtaining liquid fuels from coal which are economically competitive with those obtained from petroleum based sources is a significant challenge for the researcher as well as the chemical industry. Presently, the economics of coal liquefaction are not favorable because of relatively intense processing conditions (temperatures of 430 degrees C and pressures of 2200 psig), use of a costly catalyst, and a low quality product slate of relatively high boiling fractions. The economics could be made more favorable by achieving adequate coal conversions at less intense processing conditions and improving the product slate. A study has been carried out to examine the effect of a surfactant in reducing particle agglomeration and improving hydrodynamics in the coal liquefaction reactor to increase coal conversions...

  19. Coal liquids -- Who needs them?

    International Nuclear Information System (INIS)

    Gray, D.; Tomlinson, G.

    1995-01-01

    The paper discusses the global energy demand situation as presented at the last World Energy Congress. The total energy demand was calculated for each country and projected to 2100. The paper then discusses the energy situation in the United States, especially the forecasted demand for crude oil and natural gas liquids. Imports will be needed to make up the shortfall in domestic production. The shortfall in conventional petroleum could be supplied by converting coal into liquid fuels. Currently the cost of high quality coal liquids is too high to compete with petroleum, but trends suggest that the price will be competitive in the year 2030 using current technology. Continuing research on coal liquefaction will reduce the price of coal liquids so that coal liquids could play a significant role sooner

  20. Coal: a revival for France?

    International Nuclear Information System (INIS)

    Brones, W.

    2007-01-01

    All energy consumption forecasts indicate a world production peak of fossil fuels around 2030 followed by a rapid decline. The oil peak should probably occur earlier. In this context the huge worldwide reserves of coal represent a fantastic opportunity to meet the world power demand which should double between 2002 and 2030 with in particular a huge growth in China and India. If promising alternate technologies (coal liquefaction..) exist which would allow to replace petroleum by coal, the main question remains the management of CO 2 . Capture and sequestration techniques are already implemented and tested and the search for new coal deposits is going on, in particular in France in the Nievre area. Economic studies about the profitability of coal exploitation in France stress on the socio-economical advantage that a revival of this activity would represent, in particular in terms of employment. (J.S.)

  1. Memorandum on coal hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Struss

    1942-10-27

    The first test facility was built in Ludwigshafen in Building 35 in 1924. During the Technical Committee meeting of February 4, 1926, Carl Bosch reported briefly for the first time on the status of coal hydrogenation and promised a comprehensive report to follow. Next, in connection with the Technical Committee meeting of July 13, 1926, Bosch arranged for the Committee to tour the test facility. Subsequently, the first industrial facility, for a yearly output of 100,000 tons, was built in Leuna with great speed and began production in April 1927. For this facility RM 26.6 million in credit was appropriated during 1926 and 1927 (the costs, including associated units, were estimated at RM 46 million; the RM 26.6 million covered only erection of the plant). A further RM 264 million was written off to hydrogenation in the years 1926 to 1931 on tests in new areas. At the end of 1929 the large scale tests at Merseburg were interrupted. On April 7, 1932, in the Nitrogen Branch discussion at Ludwigshafen, Dr. Schneider reported on the improvement in coal decomposition percentage which had meanwhile been achieved: from 60% to 95%. He proposed a last large-scale test, which was to require RM 375,000 up to the starting point and RM 170,000 per month during the six-month test period. This last test then led to definitive success in 1933.

  2. Coal pile leachate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E C; Kimmitt, R R

    1982-09-01

    The steam plant located at the Oak Ridge National Laboratory was converted from oil- to coal-fired boilers. In the process, a diked, 1.6-ha coal storage yard was constructed. The purpose of this report is to describe the treatment system designed to neutralize the estimated 18,000 m/sup 3/ of acidic runoff that will be produced each year. A literature review and laboratory treatability study were conducted which identified two treatment systems that will be employed to neutralize the acidic runoff. The first, a manually operated system, will be constructed at a cost of $200,000 and will operate for an interim period of four years. This system will provide for leachate neutralization until a more automated system can be brought on-line. The second, a fully automated system, is described and will be constructed at an estimated cost of $650,000. This automated runoff treatment system will ensure that drainage from the storage yard meets current National Pollutant Discharge Elimination System Standards for pH and total suspended solids, as well as future standards, which are likely to include several metals along with selected trace elements.

  3. Making of polymer fine particles

    International Nuclear Information System (INIS)

    Ono, Isamu

    1990-01-01

    The polymer particles having spherical shape and uniform grain diameter are applied to various fields such as powder coating, cosmetics, medicines, foods and others. These polymer fine particles are synthesized from monomers at the temperature higher than room temperature by emulsifying polymerization, suspension polymerization or dispersion polymerization, using polymerization initiator. The diameter of such synthesized fine particles is from 0.1 to 10 μm. In this study, the method of synthesizing polymer fine particles by dispersion radiation polymerization process without using polymerization initiator and emulsifying agent was examined. Monomers are dissolved in the solvent, in which monomers are soluble but polymers are insoluble, and by polymerizing with radiation, polymer fine particles are synthesized. It has the merits that additive agents are not contained, and the synthesis can be done at room temperature. The method and the results are reported. As the mechanism of forming fine particles, the reaction of beginning polymerization and the precipitation of polymers are explained. By controlling reaction temperature and monomer concentration, particle diameter can be adjusted. The monomers used were styrene, methyl metacrylate and vinyl acetate. (K.I.)

  4. Fresh Properties and Flexural Strength of Self-Compacting Concrete Integrating Coal Bottom Ash

    Directory of Open Access Journals (Sweden)

    Jamaluddin Norwati

    2016-01-01

    Full Text Available This paper presents the effect of using coal bottom ash as a partial replacement of fine aggregates in self-compacting concrete (SCC on its fresh properties and flexural strength. A comparison between SCC with various replacements of fine aggregates with coal bottom ash showed that SCC obtained flexural strength decrease on increase of water cement ratio from 0.35 to 0.45. The natural sand was replaced with coal bottom ash up to 30% volumetrically. The fresh properties were investigated by slump flow, T500 spread time, L-box test and sieve segregation resistance in order to evaluate its self-compatibility by compared to control samples embed with natural sand. The results revealed that the flowability and passing ability of SCC mixtures are decreased with higher content of coal bottom ash replacement. The results also showed that the flexural strength is affected by the presence of coal bottom ash in the concrete. In addition, the water cement ratios are influence significantly with higher binder content in concrete.

  5. Asia's coal and clean coal technology market potential

    International Nuclear Information System (INIS)

    Johnson, C.J.; Binsheng Li

    1992-01-01

    The Asian region is unique in the world in having the highest economic growth rate, the highest share of coal in total primary energy consumption and the highest growth rate in electricity generation capacity. The outlook for the next two decades is for accelerated efforts to control coal related emissions of particulates and SO 2 and to a lessor extent NO x and CO 2 . Only Japan has widespread use of Clean Coal Technologies (CCTs) however a number of economies have plans to install CCTs in future power plants. Only CCTs for electricity generation are discussed, and are defined for the purpose of this paper as technologies that substantially reduce SO 2 and/or NO x emissions from coal-fired power plants. The main theses of this paper are that major increases in coal consumption will occur over the 1990-2010 period, and this will be caccompanied by major increases in coal related pollution in some Asian economies. Coal fired electricity generation is projected to grow at a high rate of about 6.9 percent per year over the 1990-2010 period. CCTs are projected to account for about 150 GW of new coal-fired capacity over the 1990-2010 period of about one-third of all new coal-fired capacity. A speculative conclusion is that China will account for the largest share of CCT additions over the 1990-2010 period. Both the US and Japan have comparative advantages that might be combined through cooperation and joint ventures to gain a larger share of the evolving CCT market in Asia. 5 refs., 7 figs., 4 tabs

  6. Australia's export coal industry: a project of the Coal Australia Promotion Program. 2. ed.

    International Nuclear Information System (INIS)

    1995-01-01

    This booklet presents an overview of the Australian coal industry, emphasises the advantages of using Australian coal and outlines government policies, both Commonwealth and State, which impact on coal mine development, mine ownership and coal exports. It also provides information on the operations and products of each producer supplying coal and coke to export markets and gives contact details for each. The emphasis is on black coal, but information on coal briquettes and coke is also provided. Basic information on the rail networks used for the haulage of export coal and on each of the bulk coal loading terminals is also included.(Author). 3 figs., photos

  7. Fate of alkali elements during pyrolysis and combustion of Chinese coals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Ito, M.; Sato, A.; Ninomiya, Y. [Chubu University, Aichi (Japan). College for Engineering

    2003-07-01

    The distribution of alkali elements in coal is of the utmost importance for determining their transformation during combustion. Several advanced techniques were used in this study to investigate the evolution of alkali elements during combustion of two Chinese coals at 1200{sup o}C. The contents of alkali elements were analyzed using Inductively Coupled Plasma (ICP) spectroscopy; their distribution in raw coals and the combustion residues were analyzed by computer controlled SEM (CCSEM); moreover, the particulate matters in the emission gas were collected by a Low Pressure Impactor (LPI) to study the vaporization of these elements in combustion. The results indicate that the organically bound alkali-based compounds totally vaporized during coal pyrolysis; meanwhile, the included ones fragmented into ultra-fine particles with a size of about 1.0 {mu}m, a portion of which entered into a gas atmosphere and changed into particulate matters. On the other hand, the excluded alkali elements have bimodal distribution in raw coals, in which the fine particles fragmented and changed into particulate matters, the large portion having a size of about 20.0 {mu}m kept unchanged till the carbon had burnt out. For the vaporized alkali elements in the particulate matters, they had a bimodal sized-distribution; fine particles of about 0.4 {mu}m were formed from combination of fine Na/Al-Si, NaCl, Na{sub 2}SO{sub 4} and Na{sub 3}PO{sub 4} less than 0.1 {mu}m in size. They could capture the trace elements, too, and a portion of them coagulated into large particles in the particulate matters. The different vaporization behavior of sodium and potassium was also addressed using XPS analysis.

  8. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    Directory of Open Access Journals (Sweden)

    Xiaoshi Li

    2014-01-01

    Full Text Available The enrichment of coalbed methane (CBM and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation are studied using a scanning electron microscope (SEM and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm and supermicropores (4 m2/g, with pore sizes <5 nm in ductile deformed coal. The nanopore structure (<100 nm and its distribution could be affected by macromolecular structure in two ways. Interconversion will occur among the different size nanopores especially in ductile deformed coal.

  9. Coal resources, production, and quality in the Eastern kentucky coal field: Perspectives on the future of steam coal production

    Science.gov (United States)

    Hower, J.C.; Hiett, J.K.; Wild, G.D.; Eble, C.F.

    1994-01-01

    The Eastern Kentucky coal field, along with adjacent portions of Virginia and southern West Virginia, is part of the greatest production concentration of high-heating-value, low-sulfur coal in the United States, accounting for over 27% of the 1993 U.S. production of coal of all ranks. Eastern Kentucky's production is spread among many coal beds but is particularly concentrated in a limited number of highquality coals, notably the Pond Creek coal bed and its correlatives, and the Fire Clay coal bed and its correlatives. Both coals are relatively low ash and low sulfur through the areas of the heaviest concentration of mining activity. We discuss production trends, resources, and the quality of in-place and clean coal for those and other major coals in the region. ?? 1994 Oxford University Press.

  10. Underground coal gasification technology impact on coal reserves in Colombia

    OpenAIRE

    John William Rosso Murillo

    2013-01-01

    In situ coal gasification technology (Underground Coal Gasification–UCG–) is an alternative to the traditional exploitation, due to it allows to reach the today’s inaccessible coal reserves’ recovery, to conventional mining technologies. In this article I answer the question on how the today’s reserves available volume, can be increased, given the possibility to exploit further and better the same resources. Mining is an important wealth resource in Colombia as a contributor to the national G...

  11. COAL OF THE FUTURE (Supply Prospects for Thermal Coal by 2030-2050)

    OpenAIRE

    2007-01-01

    The report, produced by Messrs. Energy Edge Ltd. (the U.K.) for the JRC Institute for Energy, aims at making a techno-economic analysis of novel extraction technologies for coal and their potential contribution to the global coal supply. These novel extraction technologies include: advanced coal mapping techniques, improved underground coal mining, underground coal gasification and utilisation of coalmine methane gas.

  12. The care of fine books

    CERN Document Server

    Greenfield, Jane; Basbanes, Nicholas A

    2014-01-01

    The Care of Fine Books is a thorough, readable guide to caring for books of value. From a discussion of the various techniques and materials used in bookbinding to advice on handling and storage, Jane Greenfield has created a succinct yet complete resource for anyone who wants to preserve and protect their fine books. Whether you are a collector, a librarian, or a conservation professional, you will benefit from this expert advice. Learn about appropriate levels of light, temperature, relative humidity, and pollution; how to secure a collection against fire, insect infestation, flood, and theft; and methods for cleaning and repairing books that have already been damaged. Always practical and amply illustrated, this is a must-have reference for anyone who loves fine books.

  13. Formation and retention of methane in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  14. Geochemistry of vanadium (V) in Chinese coals.

    Science.gov (United States)

    Liu, Yuan; Liu, Guijian; Qu, Qinyuan; Qi, Cuicui; Sun, Ruoyu; Liu, Houqi

    2017-10-01

    Vanadium in coals may have potential environmental and economic impacts. However, comprehensive knowledge of the geochemistry of V in coals is lacking. In this study, abundances, distribution and modes of occurrence of V are reviewed by compiling >2900 reported Chinese coal samples. With coal reserves in individual provinces as the weighting factors, V in Chinese coals is estimated to have an average abundance of 35.81 μg/g. Large variation of V concentration is observed in Chinese coals of different regions, coal-forming periods, and maturation ranks. According to the concentration coefficient of V in coals from individual provinces, three regions are divided across Chinese coal deposits. Vanadium in Chinese coals is probably influenced by sediment source and sedimentary environment, supplemented by late-stage hydrothermal fluids. Specifically, hydrothermal fluids have relatively more significant effect on the enrichment of V in local coal seams. Vanadium in coals is commonly associated with aluminosilicate minerals and organic matter, and the modes of V occurrence in coal depend on coal-forming environment and coal rank. The Chinese V emission inventory during coal combustion is estimated to be 4906 mt in 2014, accounting for 50.55 % of global emission. Vanadium emissions by electric power plants are the largest contributor.

  15. Mechanism of instantaneous coal outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Guan, P.; Wang, H.Y.; Zhang, Y.X. [Peking University, Beijing (China). School of Earth & Space Science

    2009-10-15

    Thousands of mine workers die every year from mining accidents, and instantaneous coal outbursts in underground coal mines are one of the major killers. Various models for these outbursts have been proposed, but the precise mechanism is still unknown. We hypothesize that the mechanism of coal outbursts is similar to magma fragmentation during explosive volcanic eruptions; i.e., it is caused by high gas pressure inside coal but low ambient pressure on it, breaking coal into pieces and releasing the high-pressure gas in a shock wave. Hence, coal outbursts may be regarded as another type of gas-driven eruption, in addition to explosive volcanic, lake, and possible ocean eruptions. We verify the hypothesis by experiments using a shock-tube apparatus. Knowing the mechanism of coal outbursts is the first step in developing prediction and mitigation measures. The new concept of gas-driven solid eruption is also important to a better understanding of salt-gas outbursts, rock-gas outbursts, and mud volcano eruptions.

  16. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kutz, K.; Yoon, Roe-Hoan [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  17. Clean Coal Initiatives in India

    Directory of Open Access Journals (Sweden)

    Sribas Goswami

    2014-08-01

    Full Text Available Availability of, and access to, coal is a crucial element of modern economies and it helps pave the way for human development. Accordingly, the thermal power sector and steel industries have been given a high priority in the national planning processes in India and a concerted focus on enhancing these sectors have resulted in significant gain in generation and availability of electricity and steel in the years since independence. To meet the need of huge demand of power coal is excavated. The process of excavation to the use of coal is potential enough to degrade the environment. Coal Mining is a development activity, which is bound to damage the natural ecosystem by all its activities directly and ancillary, starting from land acquisition to coal beneficiation and use of the products. Huge areas in the Raniganj and Jharia coal field in India have become derelict due to abandoned and active opencast and underground mines. The study is pursued to illustrate the facts which show the urgent need to clean coal mining in India.

  18. Economy of bituminous coal hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    von Hochstetter, H.

    1944-05-11

    The influence of various factors on the production cost of (Janina) bituminous coal hydrogenation is analyzed briefly. The initial reckoning yielded a production cost of 188 marks per metric ton of gasoline and middle oils. The savings concomitant to changes of one percent in gasification, one percent in utilization of purified coal, one percent raising of space/time yield, one percent increase in throughput, one percent in coal concentration in the paste, and one percent in low temperature carbonization yield are listed. Factors affecting hydrogen consumption are listed in a table. Investigations showed the carbon-richest coal to produce a deviation in the effect of gasification upon the working costs by only 10 percent when compared with the Janina coal. Thus, the values listed were considered as guidelines for all kinds of bituminous coal. The calculations admitted the following conclusions: a maximum concentration of coal in the paste is desirable; one can assume a 2 percent reduction in the utilization with a 10 percent increase in throughput, as long as no changes in low temperature carbonization yield take place by changing the distribution in oil production; this configuration would change if the major concern were gas production instead of working costs, or if hydrogen production were the bottleneck. 1 table.

  19. Natural gas in coal beds

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, A.I.; Voytov, G.I.

    1983-01-01

    The special importance is noted of the problem of computing and careful use of the energy raw material, coal, oil and natural gases. An examination is made of the mechanism for the formation of carboniferous gases in the beds with the use of the model of coal macromolecule. A schematic section is presented for the coal field and plan for vertical gas zonality. The change in chemical composition of the natural gases with depth is governed by the countermovement of the natural gases: from top to bottom the gases of the earth's atmosphere move, mainly oxygenand nitrogen, from bottom to top, the gases of metamorphic and deep origin. Constant isotope composition of the carbon in the fossil coals is noted. The distribution of the quanitity deltaC/sup 13/ of carbon in the fossil coals of the Donets basin is illustrated. The gas content of the coal beds and gas reserves are discussed. The flowsheet is shown for the unit for degasification of the coal bed before the cleaning face.

  20. Comparision of Fine Needle Aspiration Cytology and Fine Needle ...

    African Journals Online (AJOL)

    Background: Open biopsy of the breast used to be the main traditional method of diagnosis of breast lumps. Fine Needle Aspiration Cytology (FNAC) was later introduced which depends on suction and thus yields hemorrhagic material for cytological study.This study was undertaken to find out if there is a difference in ...

  1. Capacity mapping for optimum utilization of pulverizers for coal fired boilers - article no. 032201

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, C. [National Power Training Institute, Durgapur (India)

    2008-09-15

    Capacity mapping is a process of comparison of standard inputs with actual fired inputs to assess the available standard output capacity of a pulverizer. The base capacity is a function of grindability; fineness requirement may vary depending on the volatile matter (VM) content of the coal and the input coal size. The quantity and the inlet will change depending on the quality of raw coal and output requirement. It should be sufficient to dry pulverized coal (PC). Drying capacity is also limited by utmost PA fan power to supply air. The PA temperature is limited by air preheater (APH) inlet flue gas temperature; an increase in this will result in efficiency loss of the boiler. The higher PA inlet temperature can be attained through the economizer gas bypass, the steam coiled APH, and the partial flue gas recirculation. The PS/coal ratioincreases with a decrease in grindability or pulverizer output and decreases with a decrease in VM. The flammability of mixture has to be monitored on explosion limit. Through calibration, the PA flow and efficiency of conveyance can be verified. The velocities of coal/air mixture to prevent fallout or to avoid erosion in the coal carrier pipe are dependent on the PC particle size distribution. Metal loss of grinding elements inversely depends on the YGP index of coal. Variations of dynamic loading and wearing of grinding elements affect the available milling capacity and percentage rejects. Therefore, capacity mapping in necessary to ensure the available pulverizer capacity to avoid overcapacity or undercapacity running of the pulverizing system, optimizing auxiliary power consumption. This will provide a guideline on the distribution of raw coal feeding in different pulverizers of a boiler to maximize system efficiency and control, resulting in a more cost effective heat rate.

  2. Clean coal technologies: A business report

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R ampersand D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base

  3. Bioprocessing of lignite coals using reductive microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  4. Thermophysical properties of composite fuel based on T grade coal (Alardinskoe deposit) and timber industry wastes

    Science.gov (United States)

    Yankovsky, S. A.; Tolokolnikov, A. A.; Gubin, V. E.; Slyusarskiy, K. V.; Zenkov, A. V.

    2017-09-01

    Results of experimental studies of composite fuel thermal decomposition processes based on T grade coal (Alardinskoe deposit) and timber industry wastes (fine wood) are presented. C, H, N, S weight percentage of each component of composite fuel was determined experimentally. It has been established that with an increase in wood concentration up to 50% in composite fuel, its energy characteristics decrease by less than 3.6%, while the yield of fly ash is 39.7%. An effective composite fuel composition has been defined as 50%/50%. Results of performed experimental studies suggest that it is possible to use composite fuels based on coal and wood at thermal power plants.

  5. Shelter effect on a row of coal piles to prevent wind erosion

    Energy Technology Data Exchange (ETDEWEB)

    Borges, A.R.; Viergas, D.X.

    1988-08-01

    The shelter effect of porous wind breakers over a row of coal piles was studied in a wind tunnel. Two sets of tests are described, one performed in two dimensional configuration in which the shelter effect of several barriers with different heights and porosities is evaluated. The effect of wind direction is considered using a tridimensional model. Wall shear stress measurements performed with a hot film sensor allowed the characterization of the transport properties of fine particles of coal. By integration of the local wind properties the rates of pollutant emission were determined leading to the conclusion of an effective shelter action of the porous wind breakers.

  6. Australian coal industry continues expansion

    International Nuclear Information System (INIS)

    Edwards, G.E.

    1991-01-01

    Recent saleable Australian black coal production figures are given along with trends in development of new operations and new technology aiming to provide a sound basis for the continuing expansion of the Australian coal industry. Export prices from 1982 to 1991 to Japan (Australia's major export market) are provided, together with Australian dollar return to exporters at the exchange rate prevailing at the start of each contract year. An increased demand for steaming coal is expected, thus maintaining Australia's position as the world's larger exporter. 4 tabs

  7. Clean coal technology: coal's link to the future

    International Nuclear Information System (INIS)

    Siegel, J.S.

    1992-01-01

    Coal, the world's most abundant fossil fuel, is very important to the world's economy. It represents about 70% of the world's fossil energy reserves. It produces about 27% of the world's primary energy, 33% of the world's electricity, and it is responsible for about $21 billion in coal trade - in 1990, 424 million tons were traded on the international market. And, most importantly, because of its wide and even distribution throughout the world, and because of its availability, coal is not subject to the monopolistic practices of other energy options. How coal can meet future fuel demand in an economical, efficient and environmentally responsive fashion, with particular reference to the new technologies and their US applications is discussed. (author). 6 figs

  8. Nuclear energy versus coal

    International Nuclear Information System (INIS)

    Storm van Leeuwen, J.W.

    1980-01-01

    An analysis is given of the consequences resulting from the Dutch government's decision to use both coal and uranium for electricity production. The energy yields are calculated for the total conversion processes, from the mine to the processing of waste and the demolition of the installations. The ecological aspects considered include the nature and quantity of the waste produced and its effect on the biosphere. The processing of waste is also considered here. Attention is given to the safety aspects of nuclear energy and the certainties and uncertainties attached to nuclear energy provision, including the value of risk-analyses. Employment opportunities, the economy, nuclear serfdom and other social aspects are discussed. The author concludes that both sources have grave disadvantages and that neither can become the energy carrier of the future. (C.F.)

  9. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V. (DynaGen, Inc., Cambridge, MA (United States)); Marquis, J.K. (Boston Univ., MA (United States). School of Medicine)

    1989-11-07

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds. In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to selectively catalyze oxidation at sulfur.

  10. Coal mine site reclamation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Coal mine sites can have significant effects on local environments. In addition to the physical disruption of land forms and ecosystems, mining can also leave behind a legacy of secondary detrimental effects due to leaching of acid and trace elements from discarded materials. This report looks at the remediation of both deep mine and opencast mine sites, covering reclamation methods, back-filling issues, drainage and restoration. Examples of national variations in the applicable legislation and in the definition of rehabilitation are compared. Ultimately, mine site rehabilitation should return sites to conditions where land forms, soils, hydrology, and flora and fauna are self-sustaining and compatible with surrounding land uses. Case studies are given to show what can be achieved and how some landscapes can actually be improved as a result of mining activity.

  11. Coal transportation road damage

    International Nuclear Information System (INIS)

    Burtraw, D.; Harrison, K.; Pawlowski, J.A.

    1994-01-01

    Heavy trucks are primarily responsible for pavement damage to the nation's highways. In this paper we evaluate the pavement damage caused by coal trucks. We analyze the chief source of pavement damage (vehicle weight per axle, not total vehicle weight) and the chief cost involved (the periodic overlay that is required when a road's surface becomes worn). This analysis is presented in two stages. In the first section we present a synopsis of current economic theory including simple versions of the formulas that can be: used to calculate costs of pavement wear. In the second section we apply this theory to a specific example proximate to the reference environment for the Fuel Cycle Study in New Mexico in order to provide a numerical measure of the magnitude of the costs

  12. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1989-12-14

    Our experimental approach focuses on the use of enzymes which catalyze the addition of oxygen to organic compounds., In tailoring the application of these enzymes to coal processing, we are particularly interested in ensuring that oxidation occurs at sulfur and not at carbon-carbon bonds. Previous studies with DBT have shown that the reaction most frequently observed in microbial oxidative pathways is one in which DBT is oxidized at ring carbons. These reactions, as we have said, are accompanied by a considerable decrease in the energy content of the compound. In addition, microbial pathways have been identified in which the sulfur atom is sequentially oxidized to sulfoxide, to sulfone, to sulfonate, and finally to sulfuric acid. In this case, the fuel value of the desulfurized compounds is largely retained. We are evaluating the potential of commercially available enzymes to perform this function.

  13. Coal conversion wastewater technology

    Energy Technology Data Exchange (ETDEWEB)

    Hrudy, S.E.; Fedorak, P.M.

    1984-01-01

    A serum bottle technique has been developed and used to study the anaerobic degradation of various phenolic substrates relevant to coal conversion wastewaters. A method for measuring absolute quantities of methane produced has been refined and applied to cultures maintained on both phenol and p-cresol. Oxidative treatment studies have demonstrated that such schemes do not offer useful application prior to anaerobic processes. Long-term experiments conclusively demonstrated the capability of anaerobic cultures to degrade m-cresol; presence of phenol and p-cresol was found to enhance this capability by shortening acclimation. Other long-term experiments indicated that the anaerobic degradability of o-cresol remains in doubt. The kinetics of phenol degradation in batch cultures containing various initial concentrations was also studied; at 43-199 mg/l levels, the final removal rates followed first order kinetics. Molecular hydrogen was identified as a possible limiting factor to the initiation of phenol degradation, and findings suggested phenol degraders prefer propionate over phenol as a substrate. A most probable number method, used for enumerating phenol degraders, estimated numbers too low to account for observed degradation rates, consistent with the hypothesis that phenol degradation depends on a consortium of organisms. Batch cultures could selectively degrade fermentable phenolics (mixed with non-fermentable ones) if the total phenolic concentration was near or below 700 mg/l. As other work has shown that fermentables comprise the majority of coal wastewater phenolics, such waters would be amenable to anaerobic biological treatment. 27 refs., 23 figs., 10 tabs.

  14. Thallium in coal: Analysis and environmental implications

    OpenAIRE

    López Antón, María Antonia; Spears, D. Alan; Díaz Somoano, Mercedes; Martínez Tarazona, María Rosa

    2013-01-01

    The ecotoxicological importance of thallium stems from its acute toxicity, the effects of which are as harmful to living organisms as those of lead and mercury. The main anthropogenic sources of thallium are the emissions from coal combustion processes, underlining the need to control this element in coal and coal by-products. Despite the threat posed by thallium, very little information has been published on its behaviour in coal-fired power plants or on its modes of occurrence in coal, its ...

  15. Coal distribution, January--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-17

    The Coal Distribution report provides information on coal production, distribution, and stocks in the United States to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. This issue presents information for January through June 1990. Coal distribution data are shown (in tables 1--34) by coal-producing state of origin, consumer use, method of transportation, and state of destination. 6 figs., 34 tabs.

  16. Coal competition: prospects for the 1980s

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

  17. Gene-expression profiling of buccal epithelium among non-smoking women exposed to household air pollution from smoky coal.

    Science.gov (United States)

    Wang, Teresa W; Vermeulen, Roel C H; Hu, Wei; Liu, Gang; Xiao, Xiaohui; Alekseyev, Yuriy; Xu, Jun; Reiss, Boris; Steiling, Katrina; Downward, George S; Silverman, Debra T; Wei, Fusheng; Wu, Guoping; Li, Jihua; Lenburg, Marc E; Rothman, Nathaniel; Spira, Avrum; Lan, Qing

    2015-12-01

    In China's rural counties of Xuanwei and Fuyuan, lung cancer rates are among the highest in the world. While the elevated disease risk in this population has been linked to the usage of smoky (bituminous) coal as compared to smokeless (anthracite) coal, the underlying molecular changes associated with this exposure remains unclear. To understand the physiologic effects of smoky coal exposure, we analyzed the genome-wide gene-expression profiles in buccal epithelial cells collected from healthy, non-smoking female residents of Xuanwei and Fuyuan who burn smoky (n = 26) and smokeless (n = 9) coal. Gene-expression was profiled via microarrays, and changes associated with coal type were correlated to household levels of fine particulate matter (PM2.5) and polycyclic aromatic hydrocarbons (PAHs). Expression levels of 282 genes were altered with smoky versus smokeless coal exposure (P coal exposure were concordantly enriched with tobacco exposure in previously profiled buccal biopsies of smokers and non-smokers (GSEA, q coal exposure, which in part is similar to the molecular response to tobacco smoke, thereby lending biologic plausibility to prior epidemiological studies that have linked this exposure to lung cancer risk. Published by Oxford University Press 2015.

  18. Nigerian bituminous coal as a fuel-coal. | OGUGBUAJA | Global ...

    African Journals Online (AJOL)

    Nigerian bituminous coal as a fuel-coal. V O OGUGBUAJA, C L NDIOKWERE, G A DIMARI. http://dx.doi.org/10.4314/gjpas.v6i2.16113 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL ...

  19. Prospects For Coal And Clean Coal Technologies In Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    The coal sector in Kazakhstan is said to have enough reserves to last over 100 years, but the forecasted reserves are expected to last several hundreds of years. This makes investing in the fuel and energy sector of the country an attractive option for many international and private organisations. The proven on-shore reserves will ensure extraction for over 30 years for oil and 75 years for gas. The future development of the domestic oil sector depends mainly on developing the Kazakh sector of the Caspian Sea. The coal sector, while not a top priority for the Kazakh government, puts the country among the world's top ten coal-rich countries. Kazakhstan contains Central Asia's largest recoverable coal reserves. In future, the development of the raw materials base will be achieved through enriching and improving the quality of the coal and the deep processing of coal to obtain fluid fuel and synthetic substances. Developing shale is also topical. The high concentration of methane in coal layers makes it possible to extract it and utilise it on a large scale. However, today the country's energy sector, which was largely established in the Soviet times, has reached its potential. Kazakhstan has about 18 GW of installed electricity capacity, of which about 80% is coal fired, most of it built before 1990. Being alert to the impending problems, the government is planning to undertake large-scale modernisation of the existing facilities and construct new ones during 2015-30. The project to modernise the national electricity grid aims to upgrade the power substations to ensure energy efficiency and security of operation. The project will result in installation of modern high-voltage equipment, automation and relay protection facilities, a dispatch control system, monitoring and data processing and energy management systems, automated electricity metering system, as well as a digital corporate telecommunication network.

  20. Stratified Sampling to Define Levels of Petrographic Variation in Coal Beds: Examples from Indonesia and New Zealand

    Directory of Open Access Journals (Sweden)

    Tim A. Moore

    2016-01-01

    Full Text Available DOI: 10.17014/ijog.3.1.29-51Stratified sampling of coal seams for petrographic analysis using block samples is a viable alternative to standard methods of channel sampling and particulate pellet mounts. Although petrographic analysis of particulate pellets is employed widely, it is both time consuming and does not allow variation within sampling units to be assessed - an important measure in any study whether it be for paleoenvironmental reconstruction or in obtaining estimates of industrial attributes. Also, samples taken as intact blocks provide additional information, such as texture and botanical affinity that cannot be gained using particulate pellets. Stratified sampling can be employed both on ‘fine’ and ‘coarse’ grained coal units. Fine-grained coals are defined as those coal intervals that do not contain vitrain bands greater than approximately 1 mm in thickness (as measured perpendicular to bedding. In fine-grained coal seams, a reasonable sized block sample (with a polished surface area of ~3 cm2 can be taken that encapsulates the macroscopic variability. However, for coarse-grained coals (vitrain bands >1 mm a different system has to be employed in order to accurately account for the larger particles. Macroscopic point counting of vitrain bands can accurately account for those particles>1 mm within a coal interval. This point counting method is conducted using something as simple as string on a coal face with marked intervals greater than the largest particle expected to be encountered (although new technologies are being developed to capture this type of information digitally. Comparative analyses of particulate pellets and blocks on the same interval show less than 6% variation between the two sample types when blocks are recalculated to include macroscopic counts of vitrain. Therefore even in coarse-grained coals, stratified sampling can be used effectively and representatively.

  1. Clean coal technology and advanced coal-based power plants

    International Nuclear Information System (INIS)

    Alpert, S.B.

    1991-01-01

    Clean Coal Technology is an arbitrary terminology that has gained increased use since the 1980s when the debate over acid raid issues intensified over emissions of sulfur dioxide and nitrogen oxides. In response to political discussions between Prime Minister Brian Mulroney of Canada and President Ronald Reagan in 1985, the US government initiated a demonstration program by the Department of Energy (DOE) on Clean Coal Technologies, which can be categorized as: 1. precombustion technologies wherein sulfur and nitrogen are removed before combustion, combustion technologies that prevent or lower emissions as coal is burned, and postcombustion technologies wherein flue gas from a boiler is treated to remove pollutants, usually transforming them into solids that are disposed of. The DOE Clean Coal Technology (CCT) program is being carried out with $2.5 billion of federal funds and additional private sector funds. By the end of 1989, 38 projects were under way or in negotiation. These projects were solicited in three rounds, known as Clean Coal I, II, and III, and two additional solicitations are planned by DOE. Worldwide about 100 clean coal demonstration projects are being carried out. This paper lists important requirements of demonstration plants based on experience with such plants. These requirements need to be met to allow a technology to proceed to commercial application with ordinary risk, and represent the principal reasons that a demonstration project is necessary when introducing new technology

  2. U.S. coal outlook in Asia

    International Nuclear Information System (INIS)

    Johnson, C.J.

    1997-02-01

    Coal exports from the US to Asia are declining over time as a result of (1) increased competition from coal suppliers within the Asia-Pacific region, (2) changing steel making technologies, (3) decreased emphasis on security of coal supplies, and (4) deregulation of the energy industry--particularly electric utilities. There are no major changes on the horizon that are likely to alter the role of the US as a modest coal supplier to the Asia-Pacific region. The downward trend in US coal exports to Asia is expected to continue over the 1997--2010 period. But economic and policy changes underway in Asia are likely to result in periodic coal shortages, lasting a few months to a year, and short term increased export opportunities for US coal. US coal exports to Asia are projected to fluctuate within the following ranges over the 2000--2010 period: 10--17 million tons in total exports, 6--12 million tons in thermal coal exports, and 4--9 million tons in coking coal exports. The most important role for US coal, from the perspective of Asian coal importing countries, is to ensure a major alternative source of coal supplies that can be turned to in the event of unforeseen disruptions in coal supplies from the Asia-Pacific region or South Africa. However, the willingness of consumers to pay a premium to ensure US export capacity is declining, with increased emphasis on obtaining the lowest cost coal supplies

  3. Australia's coal industry bottoms out

    International Nuclear Information System (INIS)

    Edwards, G.E.

    2000-01-01

    The last decade has been a tough period for the Australian coal industry, despite increases in production, productivity and exports. Profitability has fallen, mines have closed and ownerships have changed hands. The start of the new millennium seems to be heralding in a welcome change of fortune for the Australian coal industry, with signs that a recovery is finally arriving. Coal provides around 26% of global primary energy needs (compared with oil at 40%, gas at 24%, nuclear at 7% and renewables at 3%) and generates about 37% of the world's electricity (compared with renewables at 21%, nuclear at 17%, gas at 16% and oil at 9%). This is in spite of the adverse publicity that coal has been receiving regarding its contribution to the Greenhouse Effect, even relative to other fossil fuels, principally natural gas

  4. Process for low mercury coal

    Science.gov (United States)

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  5. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  6. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  7. Coal waste slurries as a fuel for integrated gasification combined cycle plants

    Directory of Open Access Journals (Sweden)

    Lutynski Marcin A.

    2016-01-01

    Full Text Available The article summarizes recent development in integrated gasification combined cycle technology and lists existing and planned IGCC plants. A brief outlook on the IGCC gasification technology is given with focus on entrained-flow gasifiers where the low-quality coal waste slurry fuel can be used. Desired properties of coal and ash for entrained-flow gasifiers are listed. The coal waste slurries, which were deposited at impoundments in Upper Silesian Coal Basin, were considered as a direct feed for such gasifiers. The average ash content, moisture content and lower heating value were analysed and presented as an average values. Entrained-flow commercial gasifiers can be considered as suitable for the coal slurry feed, however the ash content of coal slurries deposited in impoundments is too high for the direct use as the feed for the gasifiers. The moisture content of slurries calculated on as received basis meets the requirements of entrained-flow slurry feed gasifiers. The content of fines is relatively high which allow to use the slurries in entrained-flow gasifiers.

  8. Effect of particle size distribution on the rheology of oil-coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Hao, L.; Wang, Y.; Xiong, C. [China University of Mining and Technology, Beijing (China)

    2007-02-15

    The rheological behaviour of Shenhua coal-oil slurry was studied as a function of solids concentration, particle size and size distribution. At a certain particle size distribution the apparent viscosity of coal slurry increases with the increase of solid concentration. Coal slurries were found to exhibit a wide spectrum of flow behaviour ranging from Newtonian at low concentrations to shear-thinning and pseudoplastic with a yield stress at higher concentrations. By adding a narrow-sized coarse coal fraction to the finer coal slurry, a flow characteristics optimum coarse-to-fine particle ratio of 40:60 exists at which the slurry is Newtonian. The significant improvement in the rheological behavior with changing the particle size distribution may be explained in terms of spatial rearrangement of the particles and apparent dilution effect. The results indicate that, with a careful control of the particle size distribution, it is possible to prepare an optimum oil-coal slurry which has a low viscosity but with high solids loadings. 10 refs., 4 figs., 3 tabs.

  9. Effect of reaction temperature on the PM10 features during coal combustion

    International Nuclear Information System (INIS)

    Sui, J.C.; Du, Y.G.; Liu, Q.C.

    2008-01-01

    Coal-fired power plants produce fine fly ash consisting of particulate matter (PM). Particulate matter less than 10 micrometers in aerodynamic diameter (PM 1 0) is of significant concern because of its adverse environmental and health impacts. This paper studied the effect of reaction temperature on particulate matter (PM 1 0) emission and its chemical composition. The emission characteristics and elemental partition of PM 1 0 from coal combustion were investigated in a drop tube furnace. The paper discussed the experimental apparatus and conditions as well as the coal properties and sample analysis. Liupanshui (LPS) bituminous coal from China was used for the study. The fuel composition of LPS coal and the composition of low temperature ash of Chinese LPS coal were described. The paper also presented the results of the study with reference to particle size distribution and emission characteristic of PM 1 0; elemental partition within PM 1 0; and effect of the reaction temperature on elemental partition within PM 1 0. The PM mass size distribution was found to be bimodal. 14 refs., 2 tabs., 6 figs

  10. Black coal. Annual report 1997

    International Nuclear Information System (INIS)

    1997-01-01

    An overview is given of the situation of the world energy industry with regard to all energy carriers. Then energy-political conclusions are drawn for German black coal and the resulting prospects are detailed. Finally, some socio-political aspects are considered with regard to German black-coal mining: Workforce policy, tariff policy, social security and social safeguards for the adaptation process. (orig.) [de

  11. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Williams, A.; Mitchell, C.

    1993-01-01

    This paper outlines some of the problems associated with the prediction of levels of methane emission from underground and surface coal mines. Current knowledge of coal mining emissions sources is outlined. On the basis of this information the methodology proposed by the IPCC/OECD Programme on National Inventories is critically examined and alternatives considered. Finally, the technical options for emissions control are examined together with their feasibility. 8 refs., 6 figs., 2 tabs

  12. Summary of coal production data

    International Nuclear Information System (INIS)

    Kuhn, E.A.

    1992-01-01

    The paper contains two tables which give data on coal production for both 1990 and 1991. The states included are: Arizona, Colorado, Montana, New Mexico, North Dakota, Texas, Utah, and Wyoming. Data on the following are given: number of active mines (total, underground, surface, and auger mines), average number of men working, man hours, total production, number of fatalities, and average value per ton of coal

  13. Apparatus for entrained coal pyrolysis

    Science.gov (United States)

    Durai-Swamy, Kandaswamy

    1982-11-16

    This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

  14. Critical paths to coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hill, G.R.

    1977-01-01

    The present dilemma of energy producers, converters, and policy decision makers is presented. The consequences of environmental control regulations, coupled with the need for conservation and energy, and of energy resources on the increased utilization of coal, are discussed. Several recent technical accomplishments that make possible increased utilization of coal for power generation are described. Groundwork is laid for discussion of the technical development that must occur if the United States is to retain its energy viability.

  15. Geology in coal resource utilization

    International Nuclear Information System (INIS)

    Peters, D.C.

    1991-01-01

    The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base

  16. Environmental protection during coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, N.G.; Vavilin, V.P.; Reznikov, I.G.; Perel' , Eh.P.; Kirilenko, V.M.

    1983-03-01

    The paper evaluates effects of surfactants used in underground coal mining for dust suppression on efficiency of water treatment and on mine water pollution. Two surfactant types are compared: conventional surfactants such as BD, OP-7 or OP-10 and a new generation of soft surfactants which do not have a negative influence on water treatment systems (active sludge, nitrification process, etc.). The results of tests carried out by the KGMI Institute and the VNIIPAV Institute are discussed. About 100 surfactants of both types were evaluated. Coal samples of the following coal types were used: PZh, Zh, G, K, A, T and D coal. Coal samples with grain size from 0.315 mm to 0.4 mm were wet by surfactant solutions in water. The following surfactant concentrations were used: 0.001, 0.005, 0.01, 0.05, 0.1 and 0.5 g/l. Fresh water and mine water with increased mineral content was used. Selected results of the experiments aimed at determining the optimum surfactants for use in underground coal mining are shown in a table. The following surfactants are described: secondary alkyl sulfates (of the 'Progress' type), diethanolamides, monoethanolamides, alkyl sulfonates, Avirol', Savo, Sintanol DC-10, etc.

  17. Power Generation from Coal 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Coal is the biggest single source of energy for electricity production and its share is growing. The efficiency of converting coal into electricity matters: more efficient power plants use less fuel and emit less climate-damaging carbon dioxide. This book explores how efficiency is measured and reported at coal-fired power plants. With many different methods used to express efficiency performance, it is often difficult to compare plants, even before accounting for any fixed constraints such as coal quality and cooling-water temperature. Practical guidelines are presented that allow the efficiency and emissions of any plant to be reported on a common basis and compared against best practice. A global database of plant performance is proposed that would allow under-performing plants to be identified for improvement. Armed with this information, policy makers would be in a better position to monitor and, if necessary, regulate how coal is used for power generation. The tools and techniques described will be of value to anyone with an interest in the more sustainable use of coal.

  18. Mesoporous materials as fining agents in variety Cabernet Sauvignon wines

    Directory of Open Access Journals (Sweden)

    Dumitriu Georgiana-Diana

    2016-01-01

    Full Text Available Innovative oenological products and techniques constantly need to be optimized in order to produce high quality wines that are able to fulfill the demanding consumers, with a pleasant colour, astringency, bitterness and a balanced organoleptic profile. New mesoporous materials with viability and environmental safety characteristics, might be a feasible alternative to the use of bentonite, while nowadays in the winemaking there is a major challenge caused by wastes derivate mainly from wine clarification stages. This study was aimed at investigating the influence of conventional (bentonite and activated coal and alternative (MCM-41, SBA-15, KIT-6 fining agents on enological parameters, colour, as well as on the antioxidant activity of a Cabernet Sauvignon wines. Our results show that mesoporous materials, KIT-6 and SBA-15 (6 g/L present the highest reduction on antioxidant activity with 23.08% and 24.41%, while bentonite and activated coal (1.5 g/L reduced with 20.72%, respectively 33.18%. Cluster analysis performed with the values of antioxidant activity differentiated wines treated with activated carbon from other wines.

  19. Ten questions on the future of coal

    International Nuclear Information System (INIS)

    Ruelle, G.

    2005-01-01

    The author comments data and information on the main uses of coal, the evolution of the coal share in the world energy consumption, the amounts and locations of coal reserves in comparison with oil and gas, the coal reserves left in the European Union, the world coal market characteristics with respect to those of oil and gas, the reason of the bad environmental reputation of coal, the internal cost of a KWh produced by a coal power station, the external cost resulting from its environmental pollution, the possibility of reducing those defects by 2020, 2040, 2060, the way of transforming coal into oil and to which cost, in order to expand its use to modern transports, the role of coal during the 21. century and the possibilities of CO 2 sequestration

  20. NSW coal industry overview and outlook

    International Nuclear Information System (INIS)

    Hughes, W.

    2003-01-01

    Australia is the fourth-largest coal producer in the world, after China, the USA and India. In 2001, Australia produced some 257 Million tonnes (Mt) of hard coal, with almost 45% of this coming from NSW. Australia is the world's largest exporter of hard coal. In 2001, Australia exported some 193 Mt of hard coal, well ahead of its nearest rival, China, at 91 Mt and South Africa and Indonesia at 69 and 66 Mt respectively. Of the total coal exports from Australia in 2001, nearly 40% came from NSW. Trade in coal is forecast to continue its growth, particularly for thermal coal. Substantial growth in Asian demand for thermal coal is forecast over the next decade. Asian demand is expected to increase from 193 Mt in 2000 to 333 Mt in 2020. By 2020, Asian demand is expected to make up 62% of world seaborne thermal coal trade

  1. Residual coal exploitation and its impact on sustainable development of the coal industry in China

    International Nuclear Information System (INIS)

    Zhang, Yujiang; Feng, Guorui; Zhang, Min; Ren, Hongrui; Bai, Jinwen; Guo, Yuxia; Jiang, Haina; Kang, Lixun

    2016-01-01

    Although China owns large coal reserves, it now faces the problem of depletion of its coal resources in advance. The coal-based energy mix in China will not change in the short term, and a means of delaying the coal resources depletion is therefore urgently required. The residual coal was exploited first with a lower recovery percentage and was evaluated as commercially valuable damaged coal. This approach is in comparison to past evaluations when the residual coal was allocated as exploitation losses. Coal recovery rates, the calculation method of residual coal reserves and statistics of its mines in China were given. On this basis, a discussion concerning the impacts on the delay of China's coal depletion, development of coal exploitation and sustainable developments, as well as technologies and relevant policies, were presented. It is considered that the exploitation of residual coal can effectively delay China's coal depletion, inhibit the construction of new mines, redress the imbalance between supply and demand of coal in eastern China, improve the mining area environment and guarantee social stability. The Chinese government supports the exploitation technologies of residual coal. Hence, exploiting residual coal is of considerable importance in sustainable development of the coal industry in China. - Highlights: •Pay attention to residual coal under changing energy-mix environment in China. •Estimate residual coal reserves and investigate its exploitation mines. •Discuss impacts of residual coal exploitation on delay of coal depletion in China. •Discuss impacts on coal mining industry and residual coal exploitation technology. •Give corresponding policy prescriptions.

  2. Effect of drilling fluids on coal permeability: Impact on horizontal wellbore stability

    Energy Technology Data Exchange (ETDEWEB)

    Gentzis, Thomas [Petron Resources, L.P., 3000 Internet Boulevard, Suite 400, Frisco, TX 75034 (United States); Deisman, Nathan; Chalaturnyk, Richard J. [University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB (Canada)

    2009-05-01

    The objective of this study was to evaluate a series of mud systems and additives typically used in coalbed methane drilling in terms of formation of an instantaneous filter cake, ability of the coal reservoir to rid itself of the filter cake during production, and overall impact on coal permeability. To achieve this, a series of laboratory tests were conducted initially using artificially cleated gypstone rock (to simulate coal). This was followed by the use of large-diameter coal cores, which, unfortunately, did not allow for the tests to be done under in-situ confining stress conditions. The three mud systems tested against coal (Xantham Gum, HEC and Na-CMC) did not have a negative impact on coal permeability, in contrast to previous laboratory data that showed large decreases. Two fluid loss control additives, which have been used successfully in drilling clastic and carbonate rocks, were also tested using a non-ionic polymer mud system. During simulated drilling, these additives (FLC 2000 trademark and Q-Stop) were very effective in building a thin filter cake on the coal surface almost instantaneously, to the point that no solids were detected in the downstream fluid accumulator. During simulated production, a small pressure drop was sufficient to remove the filter cake. Coal permeability (to water) returned to its original (pre-test) value, which suggested that there was no permanent permeability damage caused by the two additives. When coal-derived fines were added to the drilling mud in another experiment using the same coal, the near wellbore coal permeability was reduced by 87.5%, indicating severe damage to the cleat system and in agreement with previously reported laboratory data. Following the very good performance of FLC 2000 trademark and Q-Stop in the laboratory tests, these two additives were then used in field applications. Their presence in the drilling fluid resulted in the successful drilling of 953 m and 1400 m of total horizontal length in

  3. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  4. The development of coal-based technologies for Department of Defense facilities. Volume 1, Technical report. Semiannual technical progress report, September 28, 1994--March 27, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Bartley, D.A.; Hatcher, P. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1996-10-15

    This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.

  5. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  6. Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Joana [Centro de Geologia, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Flores, Deolinda [Centro de Geologia, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Departamento de Geociencias, Ambiente e Ordenamento do Territorio, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Ward, Colin R. [School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 (Australia); Silva, Luis F.O., E-mail: felipeqma@yahoo.com.br [Catarinense Institute of Environmental Research and Human Development, IPADHC, Capivari de Baixo, Santa Catarina (Brazil)

    2010-11-01

    A range of carbon nanoparticles, agglomerates and mineral phases have been identified in burning coal waste pile materials from the Douro Coalfield of Portugal, as a basis for identifying their potential environmental and human health impacts. The fragile nature and fine particle size of these materials required novel characterization methods, including energy-dispersive X-ray spectrometry (EDS), field-emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM) techniques. The chemical composition and possible correlations with morphology of the nanominerals and associated ultra-fine particles have been evaluated in the context of human health exposure, as well as in relation to management of such components in coal-fire environments.

  7. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    Science.gov (United States)

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  8. Coal conversion wastewater technology

    Energy Technology Data Exchange (ETDEWEB)

    Hrudey, S.E.; Fedorak, P.M.

    1983-01-01

    A serum bottle technique has been developed and used to study the anaerobic degradation of various phenolic substrates relevant to coal conversion wastewaters. Previous work indicating that only phenol and p-cresol are readily fermented to methane has been confirmed along with the evidence of highly selective removal of these substrate mixtures. A quantitative method for measuring absolute quantities of methane produced has been refined and applied to draw and feed cultures maintained on phenol and p-cresol. Ultimate production stoichiometry from batch cultures has been measured and applied to draw and feed experiments to provide a valuable basis for predicting methane generation potential for these substrates. Oxidative pretreatment studies with peroxide and ozone have demonstrated that such schemes do not offer useful application prior to anaerobic processes. Evaluation of alternate sources of anaerobic sources of anaerobic bacteria has not yet provided phenolic degradation potential beyond that available from the municipal digester sludge being used. Although mixed cultures of anaerobic bacteria have been sustained in draw and feed culture for over 15 months with phenol as sole carbon source, it has not been possible to isolate the phenol degraders in pure culture. 3 refs., 12 refs., 3 tabs.

  9. Coal gasification in Europe

    International Nuclear Information System (INIS)

    Furfari, S.

    1992-01-01

    This paper first analyzes European energy consumption and supply dynamics within the framework of the European Communities energy and environmental policies calling for the increased use of natural gas, reduced energy consumption, promotion of innovative renewable energy technologies, and the reduction of carbon dioxide emissions. This analysis evidences that, while, at present, the increased use of natural gas is an economically and environmentally advantageous policy, as well as, being strategically sound (in view of Middle East political instability), fuel interchangeability, in particular, the option to use coal, is vital to ensure stability of the currently favourable natural gas prices and offer a locally available energy alternative to foreign supplied sources. Citing the advantages to industry offered by the use of flexible, efficient and clean gaseous fuels, with interchangeability, the paper then illustrates the cost and environmental benefits to be had through the use of high efficiency, low polluting integrated gasification combined-cycle power plants equipped to run on a variety of fuels. In the assessment of technological innovations in this sector, a review is made of some of the commercially most promising gasification processes, e.g., the British Gas-Lurgi (BGL) slagging gasifier, the high-temperature Winkler (HTW) Rheinbraun, and the Krupp Koppers (PRENFLO) moving bed gasifier processes

  10. Generator of fine polydisperse aerosol

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel

    2004-01-01

    Roč. 69, č. 7 (2004), s. 1453-1463 ISSN 0010-0765 R&D Projects: GA AV ČR IAA4031105; GA ČR GA203/98/0943 Grant - others:INCO COPERNICUS(BE) SUB AERO-EVK2-CT-1999-0052 Institutional research plan: CEZ:AV0Z4031919 Keywords : aerosol generator * polydisperse aerosol * fine aerosol Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.062, year: 2004

  11. Enhancement of surface properties for coal beneficiation

    Energy Technology Data Exchange (ETDEWEB)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  12. A new light for coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Nadkarni, S.

    2001-09-01

    Recent moves by the Indian government look set to offer unrestricted entry into India for private coal players. The Coal and Mines Nationalisation Act will be amended to allow unrestricted entry to private players in exploration and production of coal. The move will be followed by winding up the regional officers of the coal controller of Coal India Limited (CIL) in order to give greater autonomy to its subsidiaries and prospective entrepreneurs. A centralized office will have the task of facilitating smooth functioning of new entrants, regulating distribution of coal and granting permission for opening and reopening mines and seams. CIL has already closed several sales offices. 1 photo.

  13. Recent trend in coal utilization technology. Coal utilization workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chon Ho; Son, Ja Ek; Lee, In Chul; Jin, Kyung Tae; Kim, Seong Soo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The 11th Korea-U.S.A. joint workshop on coal utilization technology was held in somerset, Pennsylvania, U.S.A. from october 2 to 3, 1995. In the opening ceremony, Dr.C. Low-el Miller, associate deputy assistant secretary of office of clean coal technology, U.S.DOE, gave congratulatory remarks and Dr. Young Mok Son, president of KIER, made a keynote address. In this workshop, 30 papers were presented in the fields of emission control technology, advanced power generation systems, and advanced coal cleaning and liquid fuels. Especially, from the Korean side, not only KIER but also other private research institutes and major engineering companies including KEPCO, Daewoo Institute of Construction Technology, Jindo Engineering and Construction Co. Daewoo Institute for Advanced Engineering and universities participated in this workshop, reflecting their great interests. Attendants actively discussed about various coal utilization technologies and exchanged scientific and technical information on the state-of-art clean coal technologies under development. (author)

  14. Quantitative detection of settled coal dust over green canopy

    Science.gov (United States)

    Brook, Anna; Sahar, Nir

    2017-04-01

    The main task of environmental and geoscience applications are efficient and accurate quantitative classification of earth surfaces and spatial phenomena. In the past decade, there has been a significant interest in employing spectral unmixing in order to retrieve accurate quantitative information latent in in situ data. Recently, the ground-truth and laboratory measured spectral signatures promoted by advanced algorithms are proposed as a new path toward solving the unmixing problem in semi-supervised fashion. This study presents a practical implementation of field spectroscopy as a quantitative tool to detect settled coal dust over green canopy in free/open environment. Coal dust is a fine powdered form of coal, which is created by the crushing, grinding, and pulverizing of coal. Since the inelastic nature of coal, coal dust can be created during transportation, or by mechanically handling coal. Coal dust, categorized at silt-clay particle size, of particular concern due to heavy metals (lead, mercury, nickel, tin, cadmium, mercury, antimony, arsenic, isotopes of thorium and strontium) which are toxic also at low concentrations. This hazard exposes risk on both environment and public health. It has been identified by medical scientist around the world as causing a range of diseases and health problems, mainly heart and respiratory diseases like asthma and lung cancer. It is due to the fact that the fine invisible coal dust particles (less than 2.5 microns) long lodge in the lungs and are not naturally expelled, so long-term exposure increases the risk of health problems. Numerus studies reported that data to conduct study of geographic distribution of the very fine coal dust (smaller than PM 2.5) and related health impacts from coal exports, is not being collected. Sediment dust load in an indoor environment can be spectrally assessed using reflectance spectroscopy (Chudnovsky and Ben-Dor, 2009). Small amounts of particulate pollution that may carry a signature

  15. Observations of substorm fine structure

    Directory of Open Access Journals (Sweden)

    L. L. Lazutin

    1998-07-01

    Full Text Available Particle and magnetic field measurements on the CRRES satellite were used, together with geosynchronous satellites and ground-based observations, to investigate the fine structure of a magnetospheric substorm on February 9, 1991. Using the variations in the electron fluxes, the substorm activity was divided into several intensifications lasting about 3–15 minutes each. The two main features of the data were: (1 the intensifications showed internal fine structure in the time scale of about 2 minutes or less. We call these shorter periods activations. Energetic electrons and protons at the closest geosynchronous spacecraft (1990 095 were found to have comparable activation structure. (2 The energetic (>69 keV proton injections were delayed with respect to electron injections, and actually coincided in time with the end of the intensifications and partial returns to locally more stretched field line configuration. We propose that the energetic protons could be able to control the dynamics of the system locally be quenching the ongoing intensification and possibly preparing the final large-scale poleward movement of the activity. It was also shown that these protons originated from the same intensification as the preceeding electrons. Therefore, the substorm instability responsible for the intensifications could introduce a negative feedback loop into the system, creating the observed fine structure with the intensification time scales.Key words. Magnetospheric Physics (Storms and substorms.

  16. Heating plant overcomes coal crisis

    International Nuclear Information System (INIS)

    Sobinkovic, B.

    2006-01-01

    At the last moment Kosice managed to overcome the threat of a more than 30-percent heating price increase. The biggest local heat producer, Teplaren Kosice, is running out of coal supplies. The only alternative would be gas, which is far more expensive. The reason for this situation was a dispute of the heating plant with one of its suppliers, Kimex. Some days ago, the dispute was settled and the heating plant is now expecting the first wagon loads of coal to arrive. These are eagerly awaited, as its supplies will not last for more than a month. It all started with a public tender for a coal supplier. Teplaren Kosice (TEKO) announced the tender for the delivery of 120,000 tons of coal in June. Kimex, one of the traditional and biggest suppliers, was disqualified in the course of the tender. The winners of the tender were Slovenergo, Bratislava and S-Plus Trade, Vranov nad Toplou. TEKO signed contracts with them but a district court in Kosice prohibited the company from purchasing coal from these contractors. Kimex filed a complaint claiming that it was disqualified unlawfully. Based on this the court issued a preliminary ruling prohibiting the purchase of coal from the winners of the tender. The heating plant had to wait for the final verdict. The problem was then solved by the company's new Board of Directors, who were appointed in mid October who managed to sign new contracts with the two winners and Kimex. The new contracts cover the purchase of 150-thousand tons of coal, which is 30,000 more than in the original tender specification. Each company will supply one third. (authors)

  17. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  18. R&D for the storage, transport, and handling of coal-based fuels. Quarterly progress report, January 1, 1990--March 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The product of several advanced physical coal cleaning processes is a dry ultra-fine coal (DC), in the order of 10 microns mean mass diameter. To utilize this fuel commercially, cost-effective, environmentally safe systems must be provided for the storage, transport, and handling of this finely divided form of fuel. The objective of the project described herein is the development of total logistics systems for DC, including experimental verification of key features. The systems to be developed will provide for safe, economic, and environmentally protective storage and delivery of DC for residential, commercial, and industrial uses. (VC)

  19. The world behind electricity from coal. The dubious origin of coal for Dutch coal-fired power plants

    International Nuclear Information System (INIS)

    2008-01-01

    Five energy companies in the Netherlands want to build additional coal-fired power plants: Essent and Nuon, the German company RWE and E.ON and the Belgian company Electrabel. Coal-fired power plants emit 70 percent more CO2 than gas-fired power plants. Especially because of the threat to the climate Greenpeace believes that no more coal-fired power plants should be built. In this publication Greenpeace explores the pollution, the working conditions and human rights with regard to the exploitation of coal. That has been elaborated for the three countries from which Dutch energy companies import coal: South Africa, Colombia and Indonesia. In addition to information about the origin of coal also insight is given into the coal market (stocks and use), the enormous coal transport and the world trade [nl

  20. Advanced clean coal technology international symposium 2001. Current status of high efficiency coal utilization technology and coal ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Papers are presented under the following session headings: current status of coal utilization technology; movement for environmental control in the USA, EU and Japan; and coal combustion products utilization technologies.

  1. Outline for the establishment of an orderly coal trade market

    International Nuclear Information System (INIS)

    Murai, S.

    1988-01-01

    This paper reports on the present situation of the coal trade market. It discusses the changes in the coal trade market, the present situation of the coal trade in Japan, supply trends, demand trends and fluctuation of exchange rates. This paper also reports on the problems associated with establishing an orderly coal trade market by the examination of contract form, development of coal technology to expand coal use, cooperation with developing countries and creating a new coal market by establishing a coal complex

  2. The World Coal Quality Inventory: South America

    Science.gov (United States)

    Karlsen, Alex W.; Tewalt, Susan J.; Bragg, Linda J.; Finkelman, Robert B.

    2006-01-01

    Executive Summary-Introduction: The concepts of a global environment and economy are strongly and irrevocably linked to global energy issues. Worldwide coal production and international coal trade are projected to increase during the next several decades in an international energy mix that is still strongly dependent on fossil fuels. Therefore, worldwide coal use will play an increasingly visible role in global environmental, economic, and energy forums. Policy makers require information on coal, including coal quality data, to make informed decisions regarding domestic coal resource allocation, import needs and export opportunities, foreign policy objectives, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. The development of a worldwide, reliable, coal quality database would help ensure the most economically and environmentally efficient global use of coal. The U.S. Geological Survey (USGS), in cooperation with many agencies and scientists from the world's coal producing countries, originally undertook a project to obtain representative samples of coal from most of the world's producing coal provinces during a limited period of time (roughly 1998-2005), which is called the World Coal Quality Inventory (WoCQI). The multitude of producing coal mines, coal occurrences, or limited accessibility to sites in some countries can preclude collecting more than a single sample from a mine. In some areas, a single sample may represent an entire coal mining region or basin. Despite these limitations in sampling and uneven distribution of sample collection, the analytical results can still provide a general overview of world coal quality. The USGS intends to present the WoCQI data in reports and, when possible, in Geographic Information System (GIS) products that cover important coal bearing and producing regions.

  3. Drivers for the renaissance of coal

    Science.gov (United States)

    Steckel, Jan Christoph; Edenhofer, Ottmar; Jakob, Michael

    2015-01-01

    Coal was central to the industrial revolution, but in the 20th century it increasingly was superseded by oil and gas. However, in recent years coal again has become the predominant source of global carbon emissions. We show that this trend of rapidly increasing coal-based emissions is not restricted to a few individual countries such as China. Rather, we are witnessing a global renaissance of coal majorly driven by poor, fast-growing countries that increasingly rely on coal to satisfy their growing energy demand. The low price of coal relative to gas and oil has played an important role in accelerating coal consumption since the end of the 1990s. In this article, we show that in the increasingly integrated global coal market the availability of a domestic coal resource does not have a statistically significant impact on the use of coal and related emissions. These findings have important implications for climate change mitigation: If future economic growth of poor countries is fueled mainly by coal, ambitious mitigation targets very likely will become infeasible. Building new coal power plant capacities will lead to lock-in effects for the next few decades. If that lock-in is to be avoided, international climate policy must find ways to offer viable alternatives to coal for developing countries. PMID:26150491

  4. Drivers for the renaissance of coal.

    Science.gov (United States)

    Steckel, Jan Christoph; Edenhofer, Ottmar; Jakob, Michael

    2015-07-21

    Coal was central to the industrial revolution, but in the 20th century it increasingly was superseded by oil and gas. However, in recent years coal again has become the predominant source of global carbon emissions. We show that this trend of rapidly increasing coal-based emissions is not restricted to a few individual countries such as China. Rather, we are witnessing a global renaissance of coal majorly driven by poor, fast-growing countries that increasingly rely on coal to satisfy their growing energy demand. The low price of coal relative to gas and oil has played an important role in accelerating coal consumption since the end of the 1990s. In this article, we show that in the increasingly integrated global coal market the availability of a domestic coal resource does not have a statistically significant impact on the use of coal and related emissions. These findings have important implications for climate change mitigation: If future economic growth of poor countries is fueled mainly by coal, ambitious mitigation targets very likely will become infeasible. Building new coal power plant capacities will lead to lock-in effects for the next few decades. If that lock-in is to be avoided, international climate policy must find ways to offer viable alternatives to coal for developing countries.

  5. Coal: an economic source of energy

    International Nuclear Information System (INIS)

    Ali, I.; Ali, M.M.

    2001-01-01

    Coal, in spite its abundance availability in Pakistan, is a neglected source of energy. Its role as fuel is not more than five percent for the last four decades. Some of the coal, mined, in used as space heating in cold areas of Pakistan but more than 90% is being used in brick kilns. There are 185 billion tonnes of coal reserves in the country and hardly 3 million tonnes of coal is, annually, mined. Lakhra coal field is, presently, major source of coal and is considered the largest productive/operative coal field of Pakistan. It is cheaper coal compared to other coals available in Pakistan. As an average analysis of colas of the country, it shows that most of the coals are lignitic in nature with high ash and sulfur content. The energy potential is roughly the same but the cost/ton of coal is quite different. It may be due to methods of mining. There should be some criteria for fixing the cost of the coal. It should be based on energy potential of unit mass of coal. (author)

  6. A Comprehensive Review on the Properties of Coal Bottom Ash in Concrete as Sound Absorption Material

    Directory of Open Access Journals (Sweden)

    Ramzi Hannan Nurul Izzati Raihan

    2017-01-01

    Full Text Available The government is currently implementing policies to increase the usage of coal as fuel for electricity generation. At the same time, the dependency on gas will be reduced. In addition, coal power plants in Malaysia produce large amounts of industrial waste such as bottom ash which is collected in impoundment ponds (ash pond. However, millions of tons of coal ash (bottom ash waste are collected in ponds near power plant stations. Since bottom ash has been classified as hazardous material that threatens the health and safety of human life, an innovative and sustainable solution has been introduced to reuse or recycle industrial waste such as coal bottom ash in concrete mixtures to create a greener and more sustainable world. Bottom ash has the potential to be used as concrete material to replace fine aggregates, coarse aggregates or both. Hence, this paper provides an overview of previous research which used bottom ash as fine aggregate replacement in conventional concrete. The workability, compressive strength, flexural strength, and sound absorption of bottom ash in concrete are reviewed.

  7. Considering Fine Art and Picture Books

    Science.gov (United States)

    Serafini, Frank

    2015-01-01

    There has been a close association between picturebook illustrations and works of fine art since the picturebook was first conceived, and many ways these associations among works of fine art and picturebook illustrations and design play out. To make sense of all the various ways picturebook illustrations are associated with works of fine art,…

  8. 36 CFR 910.35 - Fine arts.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Fine arts. 910.35 Section 910... DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.35 Fine arts. Fine arts... of art which are appropriate for the development. For information and guidance, a reasonable...

  9. Clean Coal Program Research Activities

    Energy Technology Data Exchange (ETDEWEB)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  10. The coal sector in Colombia

    International Nuclear Information System (INIS)

    Anon

    1998-01-01

    Inside the plan of development of the sub-sector coal, implemented by the Ministry of Mines and Energy, has like one of the objectives to achieve that in the year 2001, this is the energy second in order of importance for the consumption of the country, overcome alone for the petroleum and their derived. The consumption of this energy in Colombia has shown a stable behavior in the last 15 years, period in which incursions of the coal have not been observed in new markets of the national economy, having a growth of so single 2.1% a year. Inside the plan of development of the sub-sector coal, implemented by the Ministry of Mines and Energy, the coal is had as one of the objectives to achieve that in the year 2001, this it is the energy second in order of importance for the consumption of the country, overcome alone for the petroleum and their derived. The author also refers to the role of the state; the coal in the national economy and it shows charts related with the exports and demand, among other items

  11. PM1 particles at coal- and gas-fired power plant work areas.

    Science.gov (United States)

    Hicks, Jeffrey B; McCarthy, Sheila A; Mezei, Gabor; Sayes, Christie M

    2012-03-01

    With the increased interest in the possible adverse health effects attributed to inhalation of fine particle matter, this study was conducted to gather preliminary information about workplace exposures at coal- and gas-fired power plants to fine particles (PM(1); i.e. <1 μm) and ultrafine particles (i.e. <0.1 μm). Combustion of fossil fuel is known to produce fine particles, and due to their proximity and durations of exposure, power plant workers could be a group of individuals who experience high chronic exposures to these types of particles. The results of a series of real-time instrument measurements showed that concentrations of PM(1) were elevated in some locations in power plants. The highest concentrations were in locations near combustion sources, indicating that combustion materials were leaking from conventional fossil fuel-fired boilers or it was associated with emission plume downwash. Concentrations were the lowest inside air-conditioned control rooms where PM(1) were present at levels similar to or lower than upwind concentrations. Microscopic examinations indicate that PM(1) at the coal-fired plants are dominated by vitrified spheres, although there were also unusual elongated particles. Most of the PM(1) were attached to larger coal fly ash particles that may affect where and how they could be deposited in the lung.

  12. Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant

    Science.gov (United States)

    Izzati Raihan Ramzi, Nurul; Shahidan, Shahiron; Zulkhairi Maarof, Mohamad; Ali, Noorwirdawati

    2016-11-01

    The objective of this study is to determine the physical and chemical characteristics of Coal Bottom Ash (CBA) obtained from Tanjung Bin Power Plant Station and compare them with the characteristics of natural river sand (as a replacement of fine aggregates). Bottom ash is the by-product of coal combustion during the electricity generating process. However, excess bottom ash production due to the high production of electricity in Malaysia has caused several environmental problems. Therefore, several tests have been conducted in order to determine the physical and chemical properties of bottom ash such as specific gravity, density, particle size distribution, Scanning Electron Microscopic (SEM) and X- Ray Fluorescence (XRF) in the attempt to produce sustainable material from waste. The results indicated that the natural fine aggregate and coal bottom ash have very different physical and chemical properties. Bottom ash was classified as Class C ash. The porous structure, angular and rough texture of bottom ash affected its specific gravity and particle density. From the tests, it was found that bottom ash is recommended to be used in concrete as a replacement for fine aggregates.

  13. Safety Research and Experimental Coal Mines

    Data.gov (United States)

    Federal Laboratory Consortium — Safety Research and Experimental Coal MinesLocation: Pittsburgh SiteThe Safety Research Coal Mine and Experimental Mine complex is a multi-purpose underground mine...

  14. Quarterly coal report, January--March 1992

    International Nuclear Information System (INIS)

    Young, P.

    1992-01-01

    The United States produced 257 million short tons of coal in the first quarter of 1992. This was the second highest quarterly production level ever recorded. US coal exports in January through March of 1992 were 25 million short tons, the highest first quarter since 1982. The leading destinations for US coal exports were Japan, Italy, France, and the Netherlands, together receiving 46 percent of the total. Coal exports for the first quarter of 1992 were valued at $1 billion, based on an average price of $42.28 per short ton. Steam coal exports totaled 10 million short tons, an increase of 34 percent over the level a year earlier. Metallurgical coal exports amounted to 15 million short tons, about the same as a year earlier. US coal consumption for January through March 1992 was 221 million short tons, 2 million short tons more than a year earlier (Table 45). All sectors but the residential and commercial sector reported increased coal consumption

  15. 78 FR 60866 - National Coal Council Meeting

    Science.gov (United States)

    2013-10-02

    ...: Washington Court Hotel, 525 New Jersey Avenue NW., Washington, DC 20001-1527. FOR FURTHER INFORMATION CONTACT... general policy matters relating to coal and the coal industry Purpose of Meeting: The November 2013...

  16. Unconventional geomechanical testing on coal for coalbed reservoir well design: The Alberta foothills and plains

    Energy Technology Data Exchange (ETDEWEB)

    Deisman, Nathan; Chalaturnyk, Richard J. [University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta T6G 2G (Canada); Gentzis, Thomas [Petron Resources LP, 3000 Internet Boulevard, Suite 400, Frisco, Texas 75034 (United States)

    2008-06-13

    One unconfined compressive strength (UCS) test and four high-pressure triaxial stress tests were conducted on coal cores in order to best emulate the key issues regarding horizontal wellbore stability, coal strength, permeability change, and coal fines generation during the life cycle of a coalbed methane reservoir. The four non-trivial stress paths were: loading compression (LC), where the axial stress is increased while the confining stress is held constant; loading extension (LE), where the axial stress is held constant while the confining stress is increased; unloading compression (ULC), in which the axial stress is held constant while the confining stress is decreased; and unloading extension (ULE), during which the confining stress is held constant while the axial stress is decreased. The UCS test showed the expected fractured response of initial non-linearity due to fracture closure, followed by a linear portion at a certain axial stress, and, finally, by brittle failure of the coal. Along each of the extension stress, and also along the combined compression-extension stress paths, the coal did not show any visual signs of failure. No coal fines were detected in the downstream accumulator subsequent to the permeability tests. Particle size distribution analysis, following loading compression, provided an estimate of the optimum diameter of the liner perforations. Test results showed that, as the mean effective confining stress increased permeability decreased due to closure of cleats. As the coal was loaded, unloaded, and reloaded along the same stress path, a decrease in permeability below the original measured value (permeability hysteresis) was noted. This could be attributed to one or a combination of two mechanisms: deformation due to creep and/or cleat damage from previous loading. Using the best-fit approach, a compressive Hoek-Brown (HB) failure envelope was fit with 'intact' parameters of: geological strength index or GSI=85, D=1.0, {sigma

  17. Coal and nuclear electricity fuels

    International Nuclear Information System (INIS)

    Rahnama, F.

    1982-06-01

    Comparative economic analysis is used to contrast the economic advantages of nuclear and coal-fired electric generating stations for Canadian regions. A simplified cash flow method is used with present value techniques to yield a single levelized total unit energy cost over the lifetime of a generating station. Sensitivity analysis illustrates the effects of significant changes in some of the cost data. The analysis indicates that in Quebec, Ontario, Manitoba and British Columbia nuclear energy is less costly than coal for electric power generation. In the base case scenario the nuclear advantage is 24 percent in Quebec, 29 percent in Ontario, 34 percent in Manitoba, and 16 percent in British Columbia. Total unit energy cost is sensitive to variations in both capital and fuel costs for both nuclear and coal-fuelled power stations, but are not very sensitive to operating and maintenance costs

  18. Coal mine subsidence and structures

    International Nuclear Information System (INIS)

    Gray, R.E.

    1988-01-01

    Underground coal mining has occurred beneath 32 x 10 9 m 2 (8 million acres) of land in the United States and will eventually extend beneath 162 x 10 9 m 2 (40 million acres). Most of this mining has taken place and will take place in the eastern half of the United States. In areas of abandoned mines where total extraction was not achieved, roof collapse, crushing of coal pillars, or punching of coal pillars into softer mine floor or roof rock is now resulting in sinkhole or trough subsidence tens or even hundreds of years after mining. Difference in geology, in mining, and building construction practice between Europe and the United States preclude direct transfer of European subsidence engineering experience. Building damage cannot be related simply to tensile and compressive strains at the ground surface. Recognition of the subsidence damage role played by ground-structure interaction and by structural details is needed

  19. Fibre Optics In Coal Mining

    Science.gov (United States)

    Cooper, Paul

    1984-08-01

    Coal mines have a number of unique problems which affect the use of fibre optic technology. These include a potentially explosive atmosphere due to the evolution of methane from coal, and a dirty environment with no cleaning facilities readily available. Equipment being developed by MRDE to allow the exploitation of optical fibres underground includes: A hybrid electrical/fibre optic connector for the flexible power trailing cable of the coal-face shearer; An Intrinsically Safe (IS) pulsed laser transmitter using Frequency Shift Key (FSK) data modulation; An IS Avalanche Photo Diode Receiver suitable for pulsed & continuous wave optical signals; A mine shaft and roadway cable/ connector system incorporating low loss butt-splices and preterminated demountable connectors.

  20. World coal prices and future energy demand

    International Nuclear Information System (INIS)

    Bennett, J.

    1992-01-01

    The Clean Air Act Amendments will create some important changes in the US domestic steam coal market, including price increases for compliance coal by the year 2000 and price decreases for high-sulfur coal. In the international market, there is likely to be a continuing oversupply which will put a damper on price increases. The paper examines several forecasts for domestic and international coal prices and notes a range of predictions for future oil prices

  1. Industry at odds over export coal prices

    International Nuclear Information System (INIS)

    Yarwood, Ken.

    1993-01-01

    The United Mine Workers' Union claims that Australia is not getting enough for its coal. Moreover, coal company executives argue that the open market policy was failing the industry and that the export customers were manipulating Australian producers. Consequently, the unions are calling for Federal Government intervention and support the establishment of a national coal authority to co-ordinate the marketing of coal and investment in the industry. ills

  2. Germanium content in Polish hard coals

    Directory of Open Access Journals (Sweden)

    Makowska Dorota

    2016-01-01

    Full Text Available Due to the policy of the European Union, it is necessary to search for new sources of scarce raw materials. One of these materials is germanium, listed as a critical element. This semi-metal is widely used in the electronics industry, for example in the production of semiconductors, fibre optics and solar cells. Coal and fly ash from its combustion and gasification for a long time have been considered as a potential source of many critical elements, particularly germanium. The paper presents the results of germanium content determination in the Polish hard coal. 23 coal samples of various coal ranks were analysed. The samples were collected from 15 mines of the Upper Silesian Coal Basin and from one mine of the Lublin Coal Basin. The determination of germanium content was performed with the use of Atomic Absorption Spectrometry with Electrothermal Atomization (GFAAS. The investigation showed that germanium content in the analysed samples was at least twice lower than the average content of this element in the hard coals analysed so far and was in the range of 0.08 ÷ 1.28 mg/kg. Moreover, the content of Ge in the ashes from the studied coals does not exceed 15 mg/kg, which is lower than the average value of Ge content in the coal ashes. The highest content of this element characterizes coals of the Lublin Coal Basin and young coals type 31 from the Vistula region. The results indicate a low utility of the analysed coal ashes as a source of the recovery of germanium. On the basis of the analyses, the lack of the relationship between the content of the element and the ash content in the tested coals was noted. For coals of the Upper Silesian Coal Basin, the relationship between the content of germanium in the ashes and the depth of the seam was observed.

  3. The clean coal technologies for lignitic coal power generation in Pakistan

    International Nuclear Information System (INIS)

    Mir, S.; Raza, Z.; Aziz-ur-Rehman, A.

    1995-01-01

    Pakistan contains huge reserves of lignitic coals. These are high sulphur, high ash coals. In spite of this unfortunate situation, the heavy demand for energy production, requires the development utilization of these indigenous coal reserves to enhance energy production. The central of the environmental pollution caused by the combustion of these coals has been a major hindrance in their utilization. Recently a substantial reduction in coal combustion emissions have been achieved through the development of clean coal technologies. Pakistan through the transfer and adaptation of the advanced clean coal technologies can utilize incurring the high sulphur coals for energy production without incurring the environmental effects that the developed countries have experienced in the past. The author discusses the recently developed clean coal utilization technologies, their applications economies and feasibility of utilization with specific reference to Pakistan''s coal. (author)

  4. Liquid fuels from Canadian coals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G.W.

    1979-06-15

    In Canadian energy planning, the central issue of security of supply must be addressed by developing flexible energy systems that make the best possible use of available resources. For liquid fuel production, oil sands and heavy oil currently appear more attractive than coal or biomass as alternatives to conventional crude oil, but the magnitude of their economic advantage is uncertain. The existence of large resources of oil sands, heavy oils, natural gas and low-sulfur coals in Western Canada creates a unique opportunity for Canadians to optimize the yield from these resources and develop new technology. Many variations on the three basic liquefaction routes - hydroliquefaction, pyrolysis and synthesis - are under investigation around the world, and the technology is advancing rapidly. Each process has merit under certain circumstances. Surface-mineable subbituminous and lignite coals of Alberta and Saskatchewan appear to offer the best combination of favorable properties, deposit size and mining cost, but other deposits in Alberta, Nova Scotia and British Columbia should not be ruled out. The research effort in Canada is small by world standards, but it is unlikely that technology could be imported that is ideally suited to Canadian conditions. Importing technology is undesirable: innovation or process modification to suit Canadian coals and markets is preferred; coprocessing of coal liquids with bitumen or heavy oils would be a uniquely Canadian, exportable technology. The cost of synthetic crude from coal in Canada is uncertain, estimates ranging from $113 to $220/m/sup 3/ ($18 to $35/bbl). Existing economic evaluations vary widely depending on assumptions, and can be misleading. Product quality is an important consideration.

  5. Selected results of the slovak coal research

    Directory of Open Access Journals (Sweden)

    Hredzák Slavomír

    1997-09-01

    Full Text Available The contribution gives the review of Slovak brown coal research in the last 10 years. The state and development trends of the coal research in Slovakia from the point of view of the clean coal technologies application are described. Some selected results which have been obtained at the Institute of Geotechnics of the Slovak Academy of Sciences are also introduced.

  6. Nucleonic coal detector with independent, hydropneumatic suspension

    Science.gov (United States)

    Jones, E. W.; Handy, K.

    1977-01-01

    The design of a nucleonic, coal interface detector which measures the depth of coal on the roof and floor of a coal mine is presented. The nucleonic source and the nucleonic detector are on independent hydropneumatic suspensions to reduce the measurement errors due to air gap.

  7. Improved nucleonic coal-thickness monitor

    Science.gov (United States)

    Crouch, C. E.; Rose, S. D.; Jones, E. W.

    1979-01-01

    Design for coal-thickness-sensing instrument features independent hydropneumatic suspension of radiation source and detector. Monitor uses source and detector which are independently mounted, to follow contour of coal surface more closely and to eliminate errors caused by variations in airgap along radiation path. Device may help to bring fully-automated coal mining closer to reality.

  8. Quality aspects of thermal coal marketing

    International Nuclear Information System (INIS)

    Dunstone, D.

    1998-01-01

    Australia's thermal coal industry is under increasing competition. A successful marketing strategy must distinguish the product from that of Australian competitors, leaving the buyer in no doubt as to its value. The marketing of thermal coal is a very different experience and encompasses an interesting commercial and technical mix. The technical merits of a coal may be effectively used to prepare the way for a sale. However, once the technical hurdle is passed (i.e. the coal is classified as acceptable), the three factors which influence the sale are price, price and price. The other aspect of marketing is that marketing, especially technical market support, must realize that the buyer often has no experience in using the coals purchased. This is particularly true with thermal coals. Virtually no thought is given as to how the coal performs or how much is used. Consequently, it is not uncommon for cheap, low quality coals to be purchased, even though it is not the choice that will result in the lowest power generation cost when all other factors are taken into consideration. The author has developed a model which allows to differentiate between coals for a range of properties relative to the use of the coal, so that a coal company can calculate the break-even price in term of cost per kWh of electricity generated and enable a more valid cost comparison between coals to be made

  9. The single electron chemistry of coals

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Flowers, R.A. II.

    1991-04-22

    The simplest explanation for these shifts in the infrared spectra is there exists in coal single electron donors which are capable of transferring an electron to TCNQ in the ground state. All of the TCNQ placed in the coal appears to be converted to the radical anion as displayed in the IR spectrum for all of the coals except for the 100% loading.

  10. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  11. Review of a Proposed Quarterly Coal Publication

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  12. Second annual clean coal technology conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains paper on the following topics: coal combustion/coal processing; advanced electric power generation systems; combined nitrogen oxide/sulfur dioxide control technologies; and emerging clean coal issues and environmental concerns. These paper have been cataloged separately elsewhere

  13. Indaba 2009. Clean coal technologies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Topics covered include coal reserves/mining beneficiation, combustion and power generation, underground coal gasification, coalbed methane, coal gasification and conversion, coke, and emission reduction. The presentations (overheads/viewgraphs) are included on the CD-ROM, along with 12 of the papers, and a delegates list.

  14. The environment, public relations and coal

    Energy Technology Data Exchange (ETDEWEB)

    Wood, W.J. (Coal Association of Canada, Calgary, AB (Canada))

    1990-09-01

    Information is presented in note format. The presentation covers world environmental issues such as the greenhouse effect, an overview of the coal industry's role in atmospheric emissions of CO{sub 2}, and finally, the need for the coal industry to make the public aware of coal's current and future role in our economic and energy future.

  15. Connect the Spheres with the Coal Cycle

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2010-01-01

    Coal fueled the Industrial Revolution and, as a result, changed the course of human history. However, the geologic history of coal is much, much longer than that which is recorded by humans. In your classroom, the coal cycle can be used to trace the formation of this important economic resource from its plant origins, through its lithification, or…

  16. 48 CFR 908.7110 - Coal.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Coal. 908.7110 Section 908... REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7110 Coal. DOE offices and authorized contractors may participate in the Defense Fuel Supply Center (DFSC) coal contracting program for...

  17. Cost of mining Eastern coal

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper, Chapter 7.2.3 of the 'surface mining' reference book, gives an example of how the cost of mining a ton of coal is calculated. Conditions set down are for a coal tract of 50.6 ha in West Virginia, USA to be mined by the contour surface method, the seam being 101.6cm thick. Elements of the costing are: permitting and bonding costs, engineering and construction costs, equipment and other operating expenses (such as hauling and wheeling), royalties, direct taxes and fees, costs of revegetation, and employment costs (payroll and medical expenses). 5 tabs

  18. Coal conversion wastewater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Kindzierski, W.B.; Hrudey, S.E.; Fedorak, P.M. (University of Alberta, Edmonton, AB (Canada))

    1988-12-01

    Phenolic compounds are one of the major components of coal conversion wastewaters, and their deleterious impact on the environment, particularly in natural water systems, is well documented. Phenols, at higher concentrations, have been shown to inhibit the activity of anaerobic bacteria used to degrade organic compounds. This study examines combined treatment requirements for an authentic, high strength phenolic coal conversion wastewater using both batch and semi- continuous anaerobic methanogenic bioassays. Solvent extraction pretreatment and in situ addition of activated carbon during anaerobic treatment were also examined, and proved effective in removing phenol. 61 refs., 34 tabs., 30 figs., 7 append.

  19. Coal liquefaction with preasphaltene recycle

    Science.gov (United States)

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  20. Impact of spiral separator geometrical parameters on the density separation of various fine-grained materials

    Directory of Open Access Journals (Sweden)

    Szpyrka Jan

    2017-01-01

    Full Text Available The study aims at the assessment of the impact of geometrical parameters of spiral separators on the efficiency of density separation of fine-grained materials. Experiments were carried out on three spiral separators: Krebs 2.85, Reichert LD-4 and Reichert LG-7. Three materials were used for the tests: raw coal, coal waste and mix of sand and magnetite as the model material. Results of raw coal and coal waste upgrading showed that density separation was most efficient in Reichert LD-4 spiral. This is due to the fact that this device had the highest amount of coils, height of sluice as well as was equipped with additional dense product collector and additional water sluice for transport water. The lower slope of sluice and larger height made separation even more efficient. Analysis of separation of model material, that is the mix of sand and magnetite, showed that in this case the existence of additional water sluice does not have an impact on product separation and best results were obtained in the Reichert LG-7 spiral separator. The shape and width of sluices did not have a significant impact on the separation process.

  1. Capacity modelling of the coal value chain at Sasol Coal Supply

    CSIR Research Space (South Africa)

    Harmse, M

    2007-05-01

    Full Text Available , chemical and related manufacturing and marketing operations, complemented by interests in technology development, oil and gas exploration, and production. At Secunda, petrochemicals are produced from coal which is mined in the area and transported... via a complex conveyor system from the mine bunkers to stockpiles at the two gas production plants. Coal stackers are used to build the stockpiles while coal reclaimers remove the coal from the stockpiles and feed the plants. Since the coal...

  2. ANALYSIS OF COAL TAR COMPOSITIONS PRODUCED FROM SUB-BITUMINOUS KALIMANTAN COAL TAR

    OpenAIRE

    Dewi Selvia Fardhyanti; Astrilia Damayanti

    2016-01-01

    Coal tar is a liquid by-product of coal pyrolysis processes. This liquid oil mixture contains various kinds of useful compounds such as benzoic aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. The coal tar was collected by pyrolysis process of coal obtained from PT Kaltim Prima Coal and Arutmin-Kalimantan. The experiments typically occurred at the atmo...

  3. Contribution of Fineness Level of Fly Ash to the Compressive Strength of Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    Firdaus

    2017-01-01

    Full Text Available The development of geopolymers has allowed the flash as the substitution of cement in the application of concrete. Therefore, this will be very useful considering the quite abundant by-product materials from power plants burning coal in South Sumatera. However, the untreated fly ash from the source caused its fineness level unpredictable, whereas the fineness of binder in cementitious material significantly affects the mechanical properties of the harden. Therefore, this study aims to determine the contribution of the fineness level of fly ash to the compressive strength of geopolymer mortar, as well as its excellent composition. Type F fly ash from Tanjung Enim Power Plant was treated by filtering to obtain different fineness levels based on the fall zones of the ash. Activators used in geopolymer mixing were sodium hydroxide (NaOH and sodium silicate (Na2SiO3 with three activator/fly ash ratios which was 0.25, 0.35 and 0.45. The results showed that the fineness level based on fall zone as well as the activator to fly ash ratio significantly influenced the compressive strength of the geopolymer mortar. The compressive strength of the F4-P4 specimen of geopolymer mortar with zone-4 fly ash and an activator ratio of 0.45 achieved 28.2 MPa at 28 days.

  4. Automated mineralogical logging of coal and coal measure core

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Fraser; Joan Esterle; Colin Ward; Ruth Henwood; Peter Mason; Jon Huntington; Phil Connor; Reneta Sliwa; Dave Coward; Lew Whitbourn [CSIRO Exploration & Mining (Australia)

    2006-06-15

    A mineralogical core logging system based on spectral reflectance (HyLogger{trademark}) has been used to detect and quantify mineralogies in coal and coal measure sediments. The HyLogger{trademark} system, as tested, operates in the visible-to-shortwave infrared spectral region, where iron oxides, sulphates, hydroxyl-bearing and carbonate minerals have characteristic spectral responses. Specialized software assists with mineral identification and data display. Three Phases of activity were undertaken. In Phase I, carbonates (siderite, ankerite, calcite) and clays (halloysite, dickite) were successfully detected and mapped in coal. Repeat measurements taken from one of the cores after three months demonstrated the reproducibility of the spectral approach, with some spectral differences being attributed to variations in moisture content and oxidation. Also, investigated was HyLogger{trademark} ability to create a 'brightness-profile' on coal materials, and these results were encouraging. In Phase II, geotechnically significant smectitic clays (montmorillonite) were detected and mapped in cores of clastic roof and floor materials. Such knowledge would be useful for mine planning and design purposes. In Phase III, our attempts at determining whether phosphorus-bearing minerals such as apatite could be spectrally detected were less than conclusive. A spectral index could only be created for apatite, and the relationships between the spectrally-derived apatite-index, the XRD results and the analytically-derived phosphorus measurements were ambiguous.

  5. Underground coal gasification technology impact on coal reserves in Colombia

    Directory of Open Access Journals (Sweden)

    John William Rosso Murillo

    2013-12-01

    Full Text Available In situ coal gasification technology (Underground Coal Gasification–UCG– is an alternative to the traditional exploitation, due to it allows to reach the today’s inaccessible coal reserves’ recovery, to conventional mining technologies. In this article I answer the question on how the today’s reserves available volume, can be increased, given the possibility to exploit further and better the same resources. Mining is an important wealth resource in Colombia as a contributor to the national GDP. According with the Energy Ministry (Ministerio de Minas y Energía [1] mining has been around 5% of total GDP in the last years. This is a significant fact due to the existence of a considerable volume of reserves not accounted for (proved reserves at year 2010 were 6.700 million of tons. Source: INGEOMINAS and UPME, and the coal future role’s prospect, in the world energy production.

  6. Clean coal technology: gasification of South African coals - IFSA 2008

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2008-11-01

    Full Text Available Electricity demand in South Africa is increasing at a rate of 1000 MW per year. Whilst there is increasing pressure to adopt non-fossil fuel electricity generating technologies, the abundant reserves and low cost of coal make it the preferred energy...

  7. The international fine aerosol networks

    International Nuclear Information System (INIS)

    Cahill, T.A.

    1993-01-01

    The adoption by the United States of a PIXE-based protocol for its fine aerosol network, after open competitions involving numerous laboratories and methods, has encouraged cooperation with other countries possessing similar capabilities and similar needs. These informal cooperative programs, involving about a dozen countries at the end of 1991, almost all use PIXE as a major component of the analytical protocols. The University of California, Davis, Air Quality Group assisted such programs through indefinite loans of a quality assurance sampler, the IMPROVE Channel A, and analyses at no cost of a small fraction of the samples taken in a side-by-side configuration. In December 1991, the World Meteorological Organization chose a protocol essentially identical to IMPROVE for the Global Atmospheric Watch (GAW) network and began deploying units, the IMPROVE Channel A, to sites around the world. Preferred analyses include fine (less than about 2.5 μm) mass, ions by ion chromatography, and elements by PIXE-PESA (or, lacking that, XRF). This paper will describe progress in both programs, giving examples of the utility of the data, and projecting the future expansion of the network to about 20 GAW sites by 1994. (orig.)

  8. Processing of converter sludges on the basis of thermal-oxidative coking with coals

    Science.gov (United States)

    Kuznetsov, S. N.; Shkoller, M. B.; Protopopov, E. V.; Kazimirov, S. A.; Temlyantsev, M. V.

    2017-09-01

    The paper deals with the solution of an important problem related to the recycling of converter sludge. High moisture and fine fractional composition of waste causes the application of their deep dehydration and lumping. To reduce environmental emissions the non-thermal method of dehydration is considered - adsorption-contact drying. As a sorbent, the pyrolysis product of coals from the Kansko-Achinsky basin - brown coal semi-coke (BSC) obtained by the technology “Thermokoks”. Experimental data on the dehydration of high-moisture wastes with the help of BSC showed high efficiency of the selected material. The lumping of the dried converter dust was carried out by thermo-chemical coking with coals of grades GZh (gas fat coal) and Zh (fat coal). As a result, an iron-containing product was obtained - ferrocoke, which is characterized by almost complete reduction of iron oxides, as well as zinc transition into a vapor state, and is removed with gaseous process products. Based on the results of the experimental data a process basic diagram of the utilization of converter sludge to produce ferrocoke was, which can be effectively used in various metallurgical aggregates, for example, blast furnaces, converters and electric arc furnaces. In the basic technological scheme heat generated by ferrocoke cooling and the energy of the combustion products after the separation of zinc in the gas turbine plant will be used.

  9. Nanomineralogy in the real world: A perspective on nanoparticles in the environmental impacts of coal fire.

    Science.gov (United States)

    Sehn, Janaína L; de Leão, Felipe B; da Boit, Kátia; Oliveira, Marcos L S; Hidalgo, Gelsa E; Sampaio, Carlos H; Silva, Luis F O

    2016-03-01

    Detailed geochemistry similarities between the burning coal cleaning rejects (BCCRs) and non-anthropogenic geological environments are outlined here. While no visible flames were detected, this research revealed that auto-combustion existed in the studied area for many years. The occurrence of several amorphous phases, mullite, hematite and many other Al/Fe-minerals formed by high temperature was found. Bad disposal of coal-dump wastes represents significant environmental concerns due to their potential influence on atmosphere, river sediments, soils and as well as on the surface and groundwater in the surroundings of these areas. The present work using multi-analytical techniques were performed to provide an improved understanding of the complex processes related with sulphide-rich coal waste oxidation, spontaneous combustion and newmineral creation. It recording huge numbers of rare minerals with alunite, montmorillonite, szmolnockite, halotrichite, coquimbite and copiapite at the BCCRs. The information presented the presence of abundant amorphous Si-Al-Fe-Ti as (oxy-)hydroxides and Fe-hydro/oxides with goethite and hematite with various degrees of crystallinity, containing potential hazardous elements (PHEs), such as Cu, Cr, Hf, Hg, Mo, Ni, Se, Pb, Th, U, Zr, and others. Most of the nano-particles and ultra-fine particles found in the burned coal-dump wastes are the same as those commonly associated with coal cleaning rejects, in which oxidation of sulphides plays an important impact to environment and subsequently animal and human health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Coal bed sequestration of carbon dioxide

    Science.gov (United States)

    Stanton, Robert; Flores, Romeo M.; Warwick, Peter D.; Gluskoter, Harold J.; Stricker, Gary D.

    2001-01-01

    Geologic sequestration of CO2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO2 in coal beds has several advantages. For example, CO2 injection can enhance methane production from coal beds; coal can trap CO2 for long periods of time; and potential major coal basins that contain ideal beds for sequestration are near many emitting sources of CO2.One mission of the Energy Resources Program of the U.S. Geological Survey is to maintain assessment information of the Nation’s resources of coal, oil, and gas. The National Coal Resources Assessment Project is currently completing a periodic assessment of 5 major coal-producing regions of the US. These regions include the Powder River and Williston and other Northern Rocky Mountain basins (Fort Union Coal Assessment Team, 1999), Colorado Plateau area (Kirschbaum and others, 2000), Gulf Coast Region, Appalachian Basin, and Illinois Basin. The major objective of this assessment is to estimate available coal resources and quality for the major producing coal beds of the next 25 years and produce digital databases and maps. Although the focus of this work has been on coal beds with the greatest potential for mining, it serves as a basis for future assessments of the coal beds for other uses such as coal bed methane resources, in situ gasification, and sites for sequestration of CO2. Coal bed methane production combined with CO2 injection and storage expands the use of a coal resource and can provide multiple benefits including increased methane recovery, methane drainage of a resource area, and the long-term storage of CO2.

  11. Coal sector model: Source data on coal for the energy and power evaluation program (ENPEP)

    International Nuclear Information System (INIS)

    Suwala, W.

    1997-01-01

    Coal is the major primary energy source in Poland and this circumstances requires that the data on coal supply for use in energy planning models should be prepared properly. Economic sectors' development depends on many factors which are usually considered in energy planning models. Thus, data on the development of such sectors as coal mining should be consistent with the economic assumptions made in the energy planning model. Otherwise, coal data could bias the results of the energy planning model. The coal mining and coal distribution models which have been developed at the Polish Academy of Sciences could provide proper coal data of use in ENPEP and other energy planning models. The coal mining model optimizes the most important decisions related to coal productions, such as coal mines development, retirement of non-profitable mines, and construction of new mines. The model uses basic data forecasts of coal mine costs and coal production. Other factors such as demand for coal, world coal prices, etc., are parameters which constitute constraints and requirements for the coal mining development. The output of the model is the amount of coal produced and supply curves for different coal types. Such data are necessary for the coal distribution model and could also be used by ENPEP. This paper describes the model, its structure and how the results of the model could serve as coal-related data for ENPEP. Improvement of some input data forms of the BALANCE module of ENPEP are also suggested in order to facilitate data preparation. (author). 7 figs

  12. Coal industry defies recession with record exports

    International Nuclear Information System (INIS)

    Casey, Denis.

    1994-01-01

    Despite the worldwide recession which has adversely affected many commodities, the New South Wales coal industry achieved record production and exports during 1992-93. Although saleable coal production increased by only a modest 0.7%, experts rose by an impressive 7.1% to 57.4 million tonnes. Coking coal jumped by 14.6% to 23.6 million tonnes while thermal coal increased by 2.7% to 33.8 million tonnes. The value of coal experts amounted at $3.1 million. 1 tab

  13. Quarterly coal report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  14. Assessment of Research Needs for Coal Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1983-08-01

    The Coal Combustion and Applications Working Group (CCAWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on coal combustion and utilization. The important topical areas of coal gasification and coal liquefaction have been deliberately excluded because R and D needs for these technologies were reviewed previously by the DOE Fossil Energy Research Working Group. The CCAWG studies were performed in order to provide an independent assessment of research areas that affect prospects for augmented coal utilization. In this report, we summarize the findings and research recommendations of CCAWG.

  15. Energy recycling by co-combustion of coal and recovered paint solids from automobile paint operations.

    Science.gov (United States)

    Suriyawong, Achariya; Magee, Rogan; Peebles, Ken; Biswas, Pratim

    2009-05-01

    During the past decade, there has been substantial interest in recovering energy from many unwanted byproducts from industries and municipalities. Co-combustion of these products with coal seems to be the most cost-effective approach. The combustion process typically results in emissions of pollutants, especially fine particles and trace elements. This paper presents the results of an experimental study of particulate emission and the fate of 13 trace elements (arsenic [As], barium [Ba], cadmium [Cd], chromium [Cr], copper [Cu], cobalt [Co], manganese [Mn], molybdenum [Mo], nickel [Ni], lead [Pb], mercury [Hg], vanadium [V], and zinc [Zn]) during combustion tests of recovered paint solids (RPS) and coal. The emissions from combustions of coal or RPS alone were compared with those of co-combustion of RPS with subbituminous coal. The distribution/partitioning of these toxic elements between a coarse-mode ash (particle diameter [dp] > 0.5 microm), a submicrometer-mode ash (dp combustion of RPS alone were lower in concentration and smaller in size than that from combustion of coal. However, co-combustion of RPS and coal increased the formation of submicrometer-sized particles because of the higher reducing environment in the vicinity of burning particles and the higher volatile chlorine species. Hg was completely volatilized in all cases; however, the fraction in the oxidized state increased with co-combustion. Most trace elements, except Zn, were retained in ash during combustion of RPS alone. Mo was mostly retained in all samples. The behavior of elements, except Mn and Mo, varied depending on the fuel samples. As, Ba, Cr, Co, Cu, and Pb were vaporized to a greater extent from cocombustion of RPS and coal than from combustion of either fuel. Evidence of the enrichment of certain toxic elements in submicrometer particles has also been observed for As, Cd, Cr, Cu, and Ni during co-combustion.

  16. Coal-fired diesel generator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

  17. Summary of coal production data

    International Nuclear Information System (INIS)

    1998-01-01

    Data are presented on the productivity of surface and underground coal mining from Arizona, Colorado, Montana, New Mexico, North Dakota, Texas, Utah, and Wyoming, and remaining US states. Productivity data are given as tons per employee-hour as well as total tons for 1990 through 1997. The number of fatal accidents is also given

  18. Cooperative research in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Sendlein, L.V.A. (eds.)

    1991-05-28

    Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

  19. Land use and coal technology

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Arid Lands Ecology Reserve and the Hanford National Environmental Research Park were established to promote the use of the Hanford Site for ecological research, especially studies related to energy technologies and their potential for environmental impacts. Coal is currently regarded as the most dependable interim source of energy in the United States. To meet expected demands, coal needs to be mined in large quantities and may be mined predominantly in locations of sparse precipitation. Often the most economical way to extract coal is through surface mining. It is expected that following coal extraction the pits will be filled with overburden, graded to approximate original contour, native topsoil applied to prescribed depths and planted with climatically adapted herbs, shrubs or trees. Because primary productivity in dry regions is characteristically low, it is realistic to expect, if the above procedure is followed, that the revegetated surfaces will also produce little phytomass in the years following restoration. Appropriate data are needed for accurate estimation of the economic feasibility of a particular restoration practice or its alternative. Research programs are discussed briefly

  20. Coal fired air turbine cogeneration

    Science.gov (United States)

    Foster-Pegg, R. W.

    Fuel options and generator configurations for installation of cogenerator equipment are reviewed, noting that the use of oil or gas may be precluded by cost or legislation within the lifetime of any cogeneration equipment yet to be installed. A coal fueled air turbine cogenerator plant is described, which uses external combustion in a limestone bed at atmospheric pressure and in which air tubes are sunk to gain heat for a gas turbine. The limestone in the 26 MW unit absorbs sulfur from the coal, and can be replaced by other sorbents depending on types of coal available and stringency of local environmental regulations. Low temperature combustion reduces NOx formation and release of alkali salts and corrosion. The air heat is exhausted through a heat recovery boiler to produce process steam, then can be refed into the combustion chamber to satisfy preheat requirements. All parts of the cogenerator are designed to withstand full combustion temperature (1500 F) in the event of air flow stoppage. Costs are compared with those of a coal fired boiler and purchased power, and it is shown that the increased capital requirements for cogenerator apparatus will yield a 2.8 year payback. Detailed flow charts, diagrams and costs schedules are included.