WorldWideScience

Sample records for finding optimal two-qubit

  1. Geometric steering criterion for two-qubit states

    Science.gov (United States)

    Yu, Bai-Chu; Jia, Zhih-Ahn; Wu, Yu-Chun; Guo, Guang-Can

    2018-01-01

    According to the geometric characterization of measurement assemblages and local hidden state (LHS) models, we propose a steering criterion which is both necessary and sufficient for two-qubit states under arbitrary measurement sets. A quantity is introduced to describe the required local resources to reconstruct a measurement assemblage for two-qubit states. We show that the quantity can be regarded as a quantification of steerability and be used to find out optimal LHS models. Finally we propose a method to generate unsteerable states, and construct some two-qubit states which are entangled but unsteerable under all projective measurements.

  2. State tomography for two qubits using reduced densities

    International Nuclear Information System (INIS)

    Petz, D; Hangos, K M; Szanto, A; Szoellosi, F

    2006-01-01

    The optimal state determination (or tomography) is studied for a composite system of two qubits when measurements can be performed on one of the qubits and interactions of the two qubits can be implemented. The goal is to minimize the number of interactions to be implemented. The algebraic method used in the paper leads to an extension of the concept of mutually unbiased measurements

  3. Optimal estimate of a pure qubit state from Uhlmann-Josza fidelity

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Manuel Avila, E-mail: manvlk@yahoo.com [Centro Universitario UAEM Valle de Chalco, UAEMex, Edo. de Mexico (Mexico)

    2012-04-15

    In the framework of collective measurements, efforts have been made to reconstruct one-qubit states. Such schemes find an obstacle in the no-cloning theorem, which prevents full reconstruction of a quantum state. Quantum Mechanics thus restricts to obtain estimates of the reconstruction of a pure qubit. We discuss the optimal estimate on the basis of the Uhlmann-Josza fidelity, respecting the limitations imposed by the no-cloning theorem. We derive a realistic optimal expression for the average fidelity. Our formalism also introduces an optimization parameter L. Values close to zero imply full reconstruction of the qubit (i. e., the classical limit), while larger L's represent good quantum optimization of the qubit estimate. The parameter L is interpreted as the degree of quantumness of the average fidelity associated with the reconstruction. (author)

  4. Broken symmetry in a two-qubit quantum control landscape

    Science.gov (United States)

    Bukov, Marin; Day, Alexandre G. R.; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj; Sels, Dries

    2018-05-01

    We analyze the physics of optimal protocols to prepare a target state with high fidelity in a symmetrically coupled two-qubit system. By varying the protocol duration, we find a discontinuous phase transition, which is characterized by a spontaneous breaking of a Z2 symmetry in the functional form of the optimal protocol, and occurs below the quantum speed limit. We study in detail this phase and demonstrate that even though high-fidelity protocols come degenerate with respect to their fidelity, they lead to final states of different entanglement entropy shared between the qubits. Consequently, while globally both optimal protocols are equally far away from the target state, one is locally closer than the other. An approximate variational mean-field theory which captures the physics of the different phases is developed.

  5. Generic two-qubit photonic gates implemented by number-resolving photodetection

    International Nuclear Information System (INIS)

    Uskov, Dmitry B.; Smith, A. Matthew; Kaplan, Lev

    2010-01-01

    We combine numerical optimization techniques [Uskov et al., Phys. Rev. A 79, 042326 (2009)] with symmetries of the Weyl chamber to obtain optimal implementations of generic linear-optical Knill-Laflamme-Milburn-type two-qubit entangling gates. We find that while any two-qubit controlled-U gate, including controlled-NOT (CNOT) and controlled-sign gates, can be implemented using only two ancilla resources with a success probability S>0.05, a generic SU(4) operation requires three unentangled ancilla photons, with success S>0.0063. Specifically, we obtain a maximal success probability close to 0.0072 for the B gate. We show that single-shot implementation of a generic SU(4) gate offers more than an order of magnitude increase in the success probability and a two-fold reduction in overhead ancilla resources compared to standard triple-CNOT and double-B gate decompositions.

  6. Efficient one- and two-qubit pulsed gates for an oscillator-stabilized Josephson qubit

    International Nuclear Information System (INIS)

    Brito, Frederico; DiVincenzo, David P; Koch, Roger H; Steffen, Matthias

    2008-01-01

    We present theoretical schemes for performing high-fidelity one- and two-qubit pulsed gates for a superconducting flux qubit. The 'IBM qubit' consists of three Josephson junctions, three loops and a superconducting transmission line. Assuming a fixed inductive qubit-qubit coupling, we show that the effective qubit-qubit interaction is tunable by changing the applied fluxes, and can be made negligible, allowing one to perform high-fidelity single qubit gates. Our schemes are tailored to alleviate errors due to 1/f noise; we find gates with only 1% loss of fidelity due to this source, for pulse times in the range of 20-30 ns for one-qubit gates (Z rotations, Hadamard) and 60 ns for a two-qubit gate (controlled-Z). Our relaxation and dephasing time estimates indicate a comparable loss of fidelity from this source. The control of leakage plays an important role in the design of our shaped pulses, preventing shorter pulse times. However, we have found that imprecision in the control of the quantum phase plays a major role in the limitation of the fidelity of our gates

  7. Two-qubit logical operations in three quantum dots system.

    Science.gov (United States)

    Łuczak, Jakub; Bułka, Bogdan R

    2018-06-06

    We consider a model of two interacting always-on, exchange-only qubits for which controlled phase (CPHASE), controlled NOT (CNOT), quantum Fourier transform (QFT) and SWAP operations can be implemented only in a few electrical pulses in a nanosecond time scale. Each qubit is built of three quantum dots (TQD) in a triangular geometry with three electron spins which are always kept coupled by exchange interactions only. The qubit states are encoded in a doublet subspace and are fully electrically controlled by a voltage applied to gate electrodes. The two qubit quantum gates are realized by short electrical pulses which change the triangular symmetry of TQD and switch on exchange interaction between the qubits. We found an optimal configuration to implement the CPHASE gate by a single pulse of the order 2.3 ns. Using this gate, in combination with single qubit operations, we searched for optimal conditions to perform the other gates: CNOT, QFT and SWAP. Our studies take into account environment effects and leakage processes as well. The results suggest that the system can be implemented for fault tolerant quantum computations.

  8. Optimal cloning of qubits given by an arbitrary axisymmetric distribution on the Bloch sphere

    International Nuclear Information System (INIS)

    Bartkiewicz, Karol; Miranowicz, Adam

    2010-01-01

    We find an optimal quantum cloning machine, which clones qubits of arbitrary symmetrical distribution around the Bloch vector with the highest fidelity. The process is referred to as phase-independent cloning in contrast to the standard phase-covariant cloning for which an input qubit state is a priori better known. We assume that the information about the input state is encoded in an arbitrary axisymmetric distribution (phase function) on the Bloch sphere of the cloned qubits. We find analytical expressions describing the optimal cloning transformation and fidelity of the clones. As an illustration, we analyze cloning of qubit state described by the von Mises-Fisher and Brosseau distributions. Moreover, we show that the optimal phase-independent cloning machine can be implemented by modifying the mirror phase-covariant cloning machine for which quantum circuits are known.

  9. Optimization of Transmon Qubit Fabrication

    Science.gov (United States)

    Chang, Josephine; Rothwell, Mary; Keefe, George; IBM Quantum Computing Group Team

    2013-03-01

    Rapid advances in the field of superconducting transmon qubits have refined our understanding of the role that substrate and interfaces play in qubit decoherence. Here, we review strategies for enhancing coherence times in both 2D and 3D transmon qubits through substrate design, structural improvements, and process optimization. Results correlating processing techniques to decoherence times are presented, and some novel structures are proposed for further consideration. We acknowledge support from IARPA under contract W911NF-10-1-0324

  10. Optimal estimation of entanglement in optical qubit systems

    International Nuclear Information System (INIS)

    Brida, Giorgio; Degiovanni, Ivo P.; Florio, Angela; Genovese, Marco; Meda, Alice; Shurupov, Alexander P.; Giorda, Paolo; Paris, Matteo G. A.

    2011-01-01

    We address the experimental determination of entanglement for systems made of a pair of polarization qubits. We exploit quantum estimation theory to derive optimal estimators, which are then implemented to achieve ultimate bound to precision. In particular, we present a set of experiments aimed at measuring the amount of entanglement for states belonging to different families of pure and mixed two-qubit two-photon states. Our scheme is based on visibility measurements of quantum correlations and achieves the ultimate precision allowed by quantum mechanics in the limit of Poissonian distribution of coincidence counts. Although optimal estimation of entanglement does not require the full tomography of the states we have also performed state reconstruction using two different sets of tomographic projectors and explicitly shown that they provide a less precise determination of entanglement. The use of optimal estimators also allows us to compare and statistically assess the different noise models used to describe decoherence effects occurring in the generation of entanglement.

  11. Gatemon Benchmarking and Two-Qubit Operation

    Science.gov (United States)

    Casparis, Lucas; Larsen, Thorvald; Olsen, Michael; Petersson, Karl; Kuemmeth, Ferdinand; Krogstrup, Peter; Nygard, Jesper; Marcus, Charles

    Recent experiments have demonstrated superconducting transmon qubits with semiconductor nanowire Josephson junctions. These hybrid gatemon qubits utilize field effect tunability singular to semiconductors to allow complete qubit control using gate voltages, potentially a technological advantage over conventional flux-controlled transmons. Here, we present experiments with a two-qubit gatemon circuit. We characterize qubit coherence and stability and use randomized benchmarking to demonstrate single-qubit gate errors of ~0.5 % for all gates, including voltage-controlled Z rotations. We show coherent capacitive coupling between two gatemons and coherent SWAP operations. Finally, we perform a two-qubit controlled-phase gate with an estimated fidelity of ~91 %, demonstrating the potential of gatemon qubits for building scalable quantum processors. We acknowledge financial support from Microsoft Project Q and the Danish National Research Foundation.

  12. Generating stationary entangled states in superconducting qubits

    International Nuclear Information System (INIS)

    Zhang Jing; Liu Yuxi; Li Chunwen; Tarn, T.-J.; Nori, Franco

    2009-01-01

    When a two-qubit system is initially maximally entangled, two independent decoherence channels, one per qubit, would greatly reduce the entanglement of the two-qubit system when it reaches its stationary state. We propose a method on how to minimize such a loss of entanglement in open quantum systems. We find that the quantum entanglement of general two-qubit systems with controllable parameters can be controlled by tuning both the single-qubit parameters and the two-qubit coupling strengths. Indeed, the maximum fidelity F max between the stationary entangled state, ρ ∞ , and the maximally entangled state, ρ m , can be about 2/3≅max(tr(ρ ∞ ρ m ))=F max , corresponding to a maximum stationary concurrence, C max , of about 1/3≅C(ρ ∞ )=C max . This is significant because the quantum entanglement of the two-qubit system can be produced and kept, even for a long time. We apply our proposal to several types of two-qubit superconducting circuits and show how the entanglement of these two-qubit circuits can be optimized by varying experimentally controllable parameters.

  13. Searching for highly entangled multi-qubit states

    International Nuclear Information System (INIS)

    Brown, Iain D K; Stepney, Susan; Sudbery, Anthony; Braunstein, Samuel L

    2005-01-01

    We present a simple numerical optimization procedure to search for highly entangled states of 2, 3, 4 and 5 qubits. We develop a computationally tractable entanglement measure based on the negative partial transpose criterion, which can be applied to quantum systems of an arbitrary number of qubits. The search algorithm attempts to optimize this entanglement cost function to find the maximal entanglement in a quantum system. We present highly entangled 4-qubit and 5-qubit states discovered by this search. We show that the 4-qubit state is not quite as entangled, according to two separate measures, as the conjectured maximally entangled Higuchi-Sudbery state. Using this measure, these states are more highly entangled than the 4-qubit and 5-qubit GHZ states. We also present a conjecture about the NPT measure, inspired by some of our numerical results, that the single-qubit reduced states of maximally entangled states are all totally mixed

  14. Entanglement dynamics of two-qubit systems in different quantum noises

    International Nuclear Information System (INIS)

    Pan Chang-Ning; Fang Jian-Shu; Li-Fei; Fang Mao-Fa

    2011-01-01

    The entanglement dynamics of two-qubit systems in different quantum noises are investigated by means of the operator-sum representation method. We find that, except for the amplitude damping and phase damping quantum noise, the sudden death of entanglement is always observed in different two-qubit systems with generalized amplitude damping and depolarizing quantum noise. (general)

  15. Operator entanglement of two-qubit joint unitary operations revisited: Schmidt number approach

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui-Zhi; Li, Chao; Yang, Qing; Yang, Ming, E-mail: mingyang@ahu.edu.cn [Key Laboratory of Opto-electronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Material Science, Anhui University Hefei (China); Cao, Zhuo-Liang [School of Electronic Information Engineering, Hefei Normal University (China)

    2012-08-15

    The operator entanglement of two-qubit joint unitary operations is revisited. The Schmidt number, an important attribute of a two-qubit unitary operation, may have connection with the entanglement measure of the unitary operator. We find that the entanglement measure of a two-qubit unitary operators is classified by the Schmidt number of the unitary operators. We also discuss the exact relation between the operator entanglement and the parameters of the unitary operator. (author)

  16. Fungible dynamics: There are only two types of entangling multiple-qubit interactions

    International Nuclear Information System (INIS)

    Bremner, Michael J.; Dodd, Jennifer L.; Nielsen, Michael A.; Bacon, Dave

    2004-01-01

    What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? It has been shown that all two-body Hamiltonian evolutions can be simulated using any fixed two-body entangling n-qubit Hamiltonian and fast local unitaries. By entangling we mean that every qubit is coupled to every other qubit, if not directly, then indirectly via intermediate qubits. We extend this study to the case where interactions may involve more than two qubits at a time. We find necessary and sufficient conditions for an arbitrary n-qubit Hamiltonian to be dynamically universal, that is, able to simulate any other Hamiltonian acting on n qubits, possibly in an inefficient manner. We prove that an entangling Hamiltonian is dynamically universal if and only if it contains at least one coupling term involving an even number of interacting qubits. For odd entangling Hamiltonians, i.e., Hamiltonians with couplings that involve only an odd number of qubits, we prove that dynamic universality is possible on an encoded set of n-1 logical qubits. We further prove that an odd entangling Hamiltonian can simulate any other odd Hamiltonian and classify the algebras that such Hamiltonians generate. Thus, our results show that up to local unitary operations, there are only two fundamentally different types of entangling Hamiltonian on n qubits. We also demonstrate that, provided the number of qubits directly coupled by the Hamiltonian is bounded above by a constant, our techniques can be made efficient

  17. Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits

    Science.gov (United States)

    Machnes, Shai; Assémat, Elie; Tannor, David; Wilhelm, Frank K.

    2018-04-01

    Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific constraints. Superconducting qubits present the additional requirement that pulses must have simple parameterizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system parameters. Other quantum technologies, such as sensing, require extremely high fidelities. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control technique named gradient optimization of analytic controls (GOAT), which satisfies all the above requirements, unlike previous approaches. To demonstrate GOAT's capabilities, with emphasis on flexibility and ease of subsequent calibration, we optimize fast coherence-limited pulses for two leading superconducting qubits architectures—flux-tunable transmons and fixed-frequency transmons with tunable couplers.

  18. Optimal entanglement witnesses for qubits and qutrits

    Science.gov (United States)

    Bertlmann, Reinhold A.; Durstberger, Katharina; Hiesmayr, Beatrix C.; Krammer, Philipp

    2005-11-01

    We study the connection between the Hilbert-Schmidt measure of entanglement (that is the minimal distance of an entangled state to the set of separable states) and entanglement witness in terms of a generalized Bell inequality which distinguishes between entangled and separable states. A method for checking the nearest separable state to a given entangled one is presented. We illustrate the general results by considering isotropic states, in particular two-qubit and two-qutrit states—and their generalizations to arbitrary dimensions—where we calculate the optimal entanglement witnesses explicitly.

  19. Optimal entanglement witnesses for qubits and qutrits

    International Nuclear Information System (INIS)

    Bertlmann, Reinhold A.; Durstberger, Katharina; Hiesmayr, Beatrix C.; Krammer, Philipp

    2005-01-01

    We study the connection between the Hilbert-Schmidt measure of entanglement (that is the minimal distance of an entangled state to the set of separable states) and entanglement witness in terms of a generalized Bell inequality which distinguishes between entangled and separable states. A method for checking the nearest separable state to a given entangled one is presented. We illustrate the general results by considering isotropic states, in particular two-qubit and two-qutrit states--and their generalizations to arbitrary dimensions--where we calculate the optimal entanglement witnesses explicitly

  20. Quantum dynamics of a two-atom-qubit system

    International Nuclear Information System (INIS)

    Nguyen Van Hieu; Nguyen Bich Ha; Le Thi Ha Linh

    2009-01-01

    A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.

  1. Optimal strategy for a single-qubit gate and the trade-off between opposite types of decoherence

    International Nuclear Information System (INIS)

    Alicki, Robert; Horodecki, Michal; Horodecki, Ryszard; Horodecki, Pawel; Jacak, Lucjan; Machnikowski, Pawel

    2004-01-01

    We study reliable quantum-information processing (QIP) under two different types of environment. The first type is Markovian exponential decay, and the appropriate elementary strategy of protection of qubit is to apply fast gates. The second one is strongly non-Markovian and occurs solely during operations on the qubit. The best strategy is then to work with slow gates. If the two types are both present, one has to optimize the speed of gate. We show that such a trade-off is present for a single-qubit operation in a semiconductor quantum dot implementation of QIP, where recombination of exciton (qubit) is Markovian, while phonon dressing gives rise to the non-Markovian contribution

  2. Atomic Evolution and Entanglement of Two Qubits in Photon Superfluid

    Science.gov (United States)

    Yin, Miao; Zhang, Xiongfeng; Deng, Yunlong; Deng, Huaqiu

    2018-03-01

    By using reservoir theory, we investigate the evolution of an atom placed in photon superfluid and study the entanglement properties of two qubits interacting with photon superfluid. It is found that the atomic decay rate in photon superfluid changes periodically with position of the atom and the decay rate can be inhibited compared to that in usual electromagnetic environment without photon superfluid. It is also found that when two atoms are separately immersed in their own local photon-superfluid reservoir, the entanglement sudden death or birth occurs or not only depends on the initial state of the qubits. What is more, we find a possible case that the concurrence between two qubits can remain a constant value by choosing proper values of parameters of the system, which may provide a new way to preserve quantum entanglement.

  3. Teleportation of M-Qubit Unitary Operations

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 郭光灿

    2002-01-01

    We discuss teleportation of unitary operations on a two-qubit in detail, then generalize the bidirectional state teleportation scheme from one-qubit to M-qubit unitary operations. The resources required for the optimal implementation of teleportation of an M-qubit unitary operation using a bidirectional state teleportation scheme are given.

  4. Optimal Entanglement Witnesses for Qubits and Qutrits

    International Nuclear Information System (INIS)

    Bertlmann, R.A.; Durstberger, K.; Hiesmayr, B.C.; Krammer, P.

    2005-01-01

    Full text: We give a review of the connection between an optimal entanglement witness and the Hilbert-Schmidt measure of entanglement (that is the minimal distance of an entangled state to the set of separable states): a generalized Bell inequality is derived within the concept of entanglement witnesses, in the sense that a violation of the inequality detects entanglement and not non-locality liKEX usual Bell inequalities do. It can be seen that the maximal violation equals the Hilbert-Schmidt measure. Furthermore, since finding the nearest separable state to a given entangled state is rather difficult, a method for checking an estimated nearest separable state is presented. This is illustrated with isotropic qubit and qutrit states; the Hilbert-Schmidt measure, the optimal entanglement witness and the maximal violation of the GBI are calculated for those cases. Possible generalizations for arbitrary dimensions are discussed. (author)

  5. Energy localization in maximally entangled two- and three-qubit phase space

    International Nuclear Information System (INIS)

    Pashaev, Oktay K; Gurkan, Zeynep N

    2012-01-01

    Motivated by the Möbius transformation for symmetric points under the generalized circle in the complex plane, the system of symmetric spin coherent states corresponding to antipodal qubit states is introduced. In terms of these states, we construct the maximally entangled complete set of two-qubit coherent states, which in the limiting cases reduces to the Bell basis. A specific property of our symmetric coherent states is that they never become unentangled for any value of ψ from the complex plane. Entanglement quantifications of our states are given by the reduced density matrix and the concurrence determinant, and it is shown that our basis is maximally entangled. Universal one- and two-qubit gates in these new coherent state basis are calculated. As an application, we find the Q symbol of the XY Z model Hamiltonian operator H as an average energy function in maximally entangled two- and three-qubit phase space. It shows regular finite-energy localized structure with specific local extremum points. The concurrence and fidelity of quantum evolution with dimerization of double periodic patterns are given. (paper)

  6. A programmable two-qubit quantum processor in silicon.

    Science.gov (United States)

    Watson, T F; Philips, S G J; Kawakami, E; Ward, D R; Scarlino, P; Veldhorst, M; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K

    2018-03-29

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  7. A programmable two-qubit quantum processor in silicon

    Science.gov (United States)

    Watson, T. F.; Philips, S. G. J.; Kawakami, E.; Ward, D. R.; Scarlino, P.; Veldhorst, M.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.; Vandersypen, L. M. K.

    2018-03-01

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  8. Optimal attacks on qubit-based Quantum Key Recycling

    Science.gov (United States)

    Leermakers, Daan; Škorić, Boris

    2018-03-01

    Quantum Key Recycling (QKR) is a quantum cryptographic primitive that allows one to reuse keys in an unconditionally secure way. By removing the need to repeatedly generate new keys, it improves communication efficiency. Škorić and de Vries recently proposed a QKR scheme based on 8-state encoding (four bases). It does not require quantum computers for encryption/decryption but only single-qubit operations. We provide a missing ingredient in the security analysis of this scheme in the case of noisy channels: accurate upper bounds on the required amount of privacy amplification. We determine optimal attacks against the message and against the key, for 8-state encoding as well as 4-state and 6-state conjugate coding. We provide results in terms of min-entropy loss as well as accessible (Shannon) information. We show that the Shannon entropy analysis for 8-state encoding reduces to the analysis of quantum key distribution, whereas 4-state and 6-state suffer from additional leaks that make them less effective. From the optimal attacks we compute the required amount of privacy amplification and hence the achievable communication rate (useful information per qubit) of qubit-based QKR. Overall, 8-state encoding yields the highest communication rates.

  9. The two-qubit quantum Rabi model: inhomogeneous coupling

    International Nuclear Information System (INIS)

    Mao, Lijun; Huai, Sainan; Zhang, Yunbo

    2015-01-01

    We revisit the analytic solution of the two-qubit quantum Rabi model with inhomogeneous coupling and transition frequencies using a displaced oscillator basis. This approach enables us to apply the same truncation rules and techniques adopted in the Rabi model to the two qubits system. The derived analytical spectra match perfectly with the numerical solutions in the parameter regime where the qubits’ transition frequencies are far off-resonance with the field frequency and the interaction strengths reach the ultrastrong coupling regime. We further explore the dynamical behavior of the two qubits as well as the evolution of entanglement. The analytical methods provide unexpectedly accurate results in describing the dynamics of the two qubits in the present experimentally accessible coupling regime. The time evolutions of the probability for the qubits show that the collapse-revival phenomena emerge, survive and finally disappear when one coupling strength increases from weak to strong coupling regimes and the other coupling strength is well into the ultrastrong coupling regime. The inhomogeneous coupling system exhibits new dynamics, which are different from the homogeneous coupling case. (paper)

  10. Characterization of two-qubit perfect entanglers

    International Nuclear Information System (INIS)

    Rezakhani, A.T.

    2004-01-01

    Here we consider perfect entanglers from another perspective. It is shown that there are some special perfect entanglers which can maximally entangle a full product basis. We explicitly construct a one-parameter family of such entanglers together with the proper product basis that they maximally entangle. This special family of perfect entanglers contains some well-known operators such as controlled-NOT (CNOT) and double-CNOT, but not √(SWAP). In addition, it is shown that all perfect entanglers with entangling power equal to the maximal value (2/9) are also special perfect entanglers. It is proved that the one-parameter family is the only possible set of special perfect entanglers. Also we provide an analytic way to implement any arbitrary two-qubit gate, given a proper special perfect entangler supplemented with single-qubit gates. Such gates are shown to provide a minimum universal gate construction in that just two of them are necessary and sufficient in implementation of a generic two-qubit gate

  11. Entanglement, purity, and energy: Two qubits versus two modes

    International Nuclear Information System (INIS)

    McHugh, Derek; Ziman, Mario; Buzek, Vladimir

    2006-01-01

    We study the relationship between the entanglement, mixedness, and energy of two-qubit and two-mode Gaussian quantum states. We parametrize the set of allowed states of these two fundamentally different physical systems using measures of entanglement, mixedness, and energy that allow us to compare and contrast the two systems using a phase diagram. This phase diagram enables one to clearly identify not only the physically allowed states, but the set of states connected under an arbitrary quantum operation. We pay particular attention to the maximally entangled mixed states of each system. Following this we investigate how efficiently one may transfer entanglement from two-mode to two-qubit states

  12. Feedback-tuned, noise resilient gates for encoded spin qubits

    Science.gov (United States)

    Bluhm, Hendrik

    Spin 1/2 particles form native two level systems and thus lend themselves as a natural qubit implementation. However, encoding a single qubit in several spins entails benefits, such as reducing the resources necessary for qubit control and protection from certain decoherence channels. While several varieties of such encoded spin qubits have been implemented, accurate control remains challenging, and leakage out of the subspace of valid qubit states is a potential issue. Optimal performance typically requires large pulse amplitudes for fast control, which is prone to systematic errors and prohibits standard control approaches based on Rabi flopping. Furthermore, the exchange interaction typically used to electrically manipulate encoded spin qubits is inherently sensitive to charge noise. I will discuss all-electrical, high-fidelity single qubit operations for a spin qubit encoded in two electrons in a GaAs double quantum dot. Starting from a set of numerically optimized control pulses, we employ an iterative tuning procedure based on measured error syndromes to remove systematic errors.Randomized benchmarking yields an average gate fidelity exceeding 98 % and a leakage rate into invalid states of 0.2 %. These gates exhibit a certain degree of resilience to both slow charge and nuclear spin fluctuations due to dynamical correction analogous to a spin echo. Furthermore, the numerical optimization minimizes the impact of fast charge noise. Both types of noise make relevant contributions to gate errors. The general approach is also adaptable to other qubit encodings and exchange based two-qubit gates.

  13. Efficient amplification of photonic qubits by optimal quantum cloning

    Czech Academy of Sciences Publication Activity Database

    Bartkiewicz, K.; Černoch, A.; Lemr, K.; Soubusta, Jan; Stobińska, M.

    2014-01-01

    Roč. 89, č. 6 (2014), "062322-1"-"062322-10" ISSN 1050-2947 Institutional support: RVO:68378271 Keywords : optimal quantum cloning * cryptography * qubit * phase-independent quantum amplifier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.808, year: 2014

  14. Two-qubit gate operations in superconducting circuits with strong coupling and weak anharmonicity

    International Nuclear Information System (INIS)

    Lü Xinyou; Ashhab, S; Cui Wei; Wu Rebing; Nori, Franco

    2012-01-01

    We theoretically study the implementation of two-qubit gates in a system of two coupled superconducting qubits. In particular, we analyze two-qubit gate operations under the condition that the coupling strength is comparable with or even larger than the anharmonicity of the qubits. By numerically solving the time-dependent Schrödinger equation under the assumption of negligible decoherence, we obtain the dependence of the two-qubit gate fidelity on the system parameters in the case of both direct and indirect qubit-qubit coupling. Our numerical results can be used to identify the ‘safe’ parameter regime for experimentally implementing two-qubit gates with high fidelity in these systems. (paper)

  15. Spinor Slow Light and Two-Color Qubits

    Science.gov (United States)

    Yu, Ite; Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriasov, Viaceslav; Chang, Kao-Fang; Cho, Hung-Wen; Juzeliunas, Gediminas; Yu, Ite A.

    2015-05-01

    We report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. SSL can be used to achieve high conversion efficiencies in the sum frequency generation and is a better method than the widely-used double- Λ scheme. On the basis of the stored light, our data showed that the DT scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. Furthermore, the single-photon SSL can be considered as the qubit with the superposition state of two frequency modes or, simply, as the two-color qubit. We experimentally demonstrated a possible application of the DT scheme as quantum memory/rotator for the two-color qubit. This work opens up a new direction in the EIT/slow light research. yu@phys.nthu.edu.tw

  16. Geometric phases and quantum correlations of superconducting two-qubit system with dissipative effect

    International Nuclear Information System (INIS)

    Xue, Liyuan; Yu, Yanxia; Cai, Xiaoya; Pan, Hui; Wang, Zisheng

    2016-01-01

    Highlights: • We find that the Pancharatnam phases include the information of quantum correlations. • We show that the sudden died and alive phenomena of quantum entanglement is original in the transition of Pancharatnam phase. • We find that the faster the Pancharatnam phases change, the slower the quantum correlations decay. • We find that a subspace of quantum entanglement can exist in the Y-state. • Our results provide a useful approach experimentally to implement the time-dependent geometric quantum computation. - Abstract: We investigate time-dependent Pancharatnam phases and the relations between such geometric phases and quantum correlations, i.e., quantum discord and concurrence, of superconducting two-qubit coupling system in dissipative environment with the mixture effects of four different eigenstates of density matrix. We find that the time-dependent Pancharatnam phases not only keep the motion memory of such a two-qubit system, but also include the information of quantum correlations. We show that the sudden died and alive phenomena of quantum entanglement are intrinsic in the transition of Pancharatnam phase in the X-state and the complex oscillations of Pancharatnam phase in the Y-state. The faster the Pancharatnam phases change, the slower the quantum correlations decay. In particular, we find that a subspace of quantum entanglement can exist in the Y-state by choosing suitable coupling parameters between two-qubit system and its environment, or initial conditions.

  17. Integrability and solvability of the simplified two-qubit Rabi model

    International Nuclear Information System (INIS)

    Peng Jie; Ren Zhongzhou; Guo Guangjie; Ju Guoxing

    2012-01-01

    The simplified two-qubit Rabi model is proposed and its analytical solution is presented. There are no level crossings in the spectral graph of the model, which indicates that it is not integrable. The criterion of integrability for the Rabi model proposed by Braak (2011 Phys. Rev. Lett. 107 100401) is also used for the simplified two-qubit Rabi model and the same conclusion, consistent with what the spectral graph shows, can be drawn, which indicates that the criterion remains valid when applied to the two-qubit case. The simplified two-qubit Rabi model is another example of a non-integrable but exactly solvable system except for the generalized Rabi model. (paper)

  18. Deterministic Assisted Clone of an Arbitrary Two- and Three-qubit States via Multi-qubit Brown State

    Science.gov (United States)

    Hou, Kui; Zhu, Cheng-Jie; Yang, Ya-Ping

    2017-08-01

    We present two schemes for deterministic assisted clone(DAC) of an unknown two- and three-qubit entangled states with assistance via muti-qubit Brown state. In the schemes, the sender wish to teleport an unknown original entangled state which from the state preparer, and then create a perfect copy of the unknown state at her place. The DAC schemes include two stages. The first stage requires teleportation with Bell-state measurements via a five-qubit Brown state(or seven-qubit Brown state) as the quantum channel. In the second stage, to help the sender realize the quantum cloning, the state preparer performs projective measurements on their own particles which from the sender, then the sender can acquire a perfect copy of the unknown state by means of some appropriate unitary operations. Furthermore, the total success probability for assisted cloning a perfect copy of the unknown state can reach 1 in our schemes.

  19. Entanglement of two distant qubits driven by thermal environments

    International Nuclear Information System (INIS)

    Montenegro, Víctor; Eremeev, Vitalie; Orszag, Miguel

    2012-01-01

    A model of entanglement generation of two initially disentangled qubits, each coupled to a separate cavity with the cavities connected by a fiber, is considered. The creation and evolution of the atomic entanglement are studied in the framework of the microscopic master equation capable of describing an open quantum system. The cavities and fiber are coupled to their own thermal environment. In these conditions, we compute the concurrence as a measure of the atomic entanglement and study the contribution of the environments at finite temperature to the dynamics of entanglement. As a result, one finds interesting effects where the thermal baths stimulate the generation of the entanglement in a given range of temperatures and the effect could be seen especially at some stage of the entanglement evolution. The range of temperatures at which entanglement increases is limited by some optimal values, depending on the physical characteristics of the system, such as operating cavity/fiber frequencies, atom-field detuning and couplings, and loss rates.

  20. Nonlocality and entanglement in qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Batle, J [Departament de Fisica, Universitat de les Illes Balears, 07122 Palma de Mallorca (Spain); Casas, M, E-mail: vdfsjbv4@uib.es [Departament de Fisica and IFISC-CSIC, Universitat de les Illes Balears, 07122 Palma de Mallorca (Spain)

    2011-11-04

    Nonlocality and quantum entanglement constitute two special aspects of the quantum correlations existing in quantum systems, which are of paramount importance in quantum-information theory. Traditionally, they have been regarded as identical (equivalent, in fact, for pure two qubit states, that is, Gisin's Theorem), yet they constitute different resources. Describing nonlocality by means of the violation of several Bell inequalities, we obtain by direct optimization those states of two qubits that maximally violate a Bell inequality, in terms of their degree of mixture as measured by either their participation ratio R = 1/Tr({rho}{sup 2}) or their maximum eigenvalue {lambda}{sub max}. This optimum value is obtained as well, which coincides with previous results. Comparison with entanglement is performed too. An example of an application is given in the XY model. In this novel approximation, we also concentrate on the nonlocality for linear combinations of pure states of two qubits, providing a closed form for their maximal nonlocality measure. The case of Bell diagonal mixed states of two qubits is also extensively studied. Special attention concerning the connection between nonlocality and entanglement for mixed states of two qubits is paid to the so-called maximally entangled mixed states. Additional aspects for the case of two qubits are also described in detail. Since we deal with qubit systems, we will perform an analogous study for three qubits, employing similar tools. Relation between distillability and nonlocality is explored quantitatively for the whole space of states of three qubits. We finally extend our analysis to four-qubit systems, where nonlocality for generalized Greenberger-Horne-Zeilinger states of arbitrary number of parties is computed. (paper)

  1. Two Superconducting Charge Qubits Coupled by a Josephson Inductance

    Science.gov (United States)

    Watanabe, Michio; Yamamoto, Tsuyoshi; Pashkin, Yuri A.; Astafiev, Oleg; Nakamura, Yasunobu; Tsai, Jaw-Shen

    2007-03-01

    When the quantum oscillations [Pashkin et al., Nature 421, 823 (2003)] and the conditional gate operation [Yamamoto et al., Nature 425, 941 (2003)] were demonstrated using superconducting charge qubits, the charge qubits were coupled capacitively, where the coupling was always on and the coupling strength was not tunable. This fixed coupling, however, is not ideal because for example, it makes unconditional gate operations difficult. In this work, we aimed to tunably couple two charge qubits. We fabricated circuits based on the theoretical proposal by You, Tsai, and Nori [PRB 68, 024510 (2003)], where the inductance of a Josephson junction, which has a much larger junction area than the qubit junctions, couples the qubits and the coupling strength is controlled by the external magnetic flux. We confirmed by spectroscopy that the large Josephson junction was indeed coupled to the qubits and that the coupling was turned on and off by the external magnetic flux. In the talk, we will also discuss the quantum oscillations in the circuits.

  2. Complete characterization of the ground-space structure of two-body frustration-free Hamiltonians for qubits

    International Nuclear Information System (INIS)

    Ji Zhengfeng; Wei Zhaohui; Zeng Bei

    2011-01-01

    The problem of finding the ground state of a frustration-free Hamiltonian carrying only two-body interactions between qubits is known to be solvable in polynomial time. It is also shown recently that, for any such Hamiltonian, there is always a ground state that is a product of single- or two-qubit states. However, it remains unclear whether the whole ground space is of any succinct structure. Here, we give a complete characterization of the ground space of any two-body frustration-free Hamiltonian of qubits. Namely, it is a span of tree tensor network states of the same tree structure. This characterization allows us to show that the problem of determining the ground-state degeneracy is as hard as, but no harder than, its classical analog.

  3. Quantum discord for two-qubit X states

    International Nuclear Information System (INIS)

    Ali, Mazhar; Rau, A. R. P.; Alber, G.

    2010-01-01

    Quantum discord, a kind of quantum correlation, is defined as the difference between quantum mutual information and classical correlation in a bipartite system. In general, this correlation is different from entanglement, and quantum discord may be nonzero even for certain separable states. Even in the simple case of bipartite quantum systems, this different kind of quantum correlation has interesting and significant applications in quantum information processing. So far, quantum discord has been calculated explicitly only for a rather limited set of two-qubit quantum states and expressions for more general quantum states are not known. In this article, we derive explicit expressions for quantum discord for a larger class of two-qubit states, namely, a seven-parameter family of so called X states that have been of interest in a variety of contexts in the field. We also study the relation between quantum discord, classical correlation, and entanglement for a number of two-qubit states to demonstrate that they are independent measures of correlation with no simple relative ordering between them.

  4. Coherent Coupled Qubits for Quantum Annealing

    Science.gov (United States)

    Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.

    2017-07-01

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.

  5. Geometric picture of quantum discord for two-qubit quantum states

    International Nuclear Information System (INIS)

    Shi Mingjun; Jiang Fengjian; Sun Chunxiao; Du Jiangfeng

    2011-01-01

    Among various definitions of quantum correlations, quantum discord has attracted considerable attention. To find an analytical expression for quantum discord is an intractable task. Exact results are known only for very special states, namely two-qubit X-shaped states. We present in this paper a geometric viewpoint, from which two-qubit quantum discord can be described clearly. The known results on X state discord are restated in the directly perceivable geometric language. As a consequence, the dynamics of classical correlations and quantum discord for an X state in the presence of decoherence is endowed with geometric interpretation. More importantly, we extend the geometric method to the case of more general states, for which numerical as well as analytical results on quantum discord have not yet been obtained. Based on the support of numerical computations, some conjectures are proposed to help us establish the geometric picture. We find that the geometric picture for these states has an intimate relationship with that for X states. Thereby, in some cases, analytical expressions for classical correlations and quantum discord can be obtained.

  6. Experimental entanglement and nonlocality of a two-photon six-qubit cluster state.

    Science.gov (United States)

    Ceccarelli, Raino; Vallone, Giuseppe; De Martini, Francesco; Mataloni, Paolo; Cabello, Adán

    2009-10-16

    We create a six-qubit linear cluster state by transforming a two-photon hyperentangled state in which three qubits are encoded in each particle, one in the polarization and two in the linear momentum degrees of freedom. For this state, we demonstrate genuine six-qubit entanglement, persistency of entanglement against the loss of qubits, and higher violation than in previous experiments on Bell inequalities of the Mermin type.

  7. The two Josephson junction flux qubit with large tunneling amplitude

    International Nuclear Information System (INIS)

    Shnurkov, V.I.; Soroka, A.A.; Mel'nik, S.I.

    2008-01-01

    In this paper we discuss solid-state nanoelectronic realizations of Josephson flux qubits with large tunneling amplitude between the two macroscopic states. The latter can be controlled via the height and form of the potential barrier, which is determined by quantum-state engineering of the flux qubit circuit. The simplest circuit of the flux qubit is a superconducting loop interrupted by a Josephson nanoscale tunnel junction. The tunneling amplitude between two macroscopically different states can be increased substantially by engineering of the qubit circuit if the tunnel junction is replaced by a ScS contact. However, only Josephson tunnel junctions are particularly suitable for large-scale integration circuits and quantum detectors with present-day technology. To overcome this difficulty we consider here a flux qubit with high energy-level separation between the 'ground' and 'excited' states, consisting of a superconducting loop with two low-capacitance Josephson tunnel junctions in series. We demonstrate that for real parameters of resonant superposition between the two macroscopic states the tunneling amplitude can reach values greater than 1 K. Analytical results for the tunneling amplitude obtained within the semiclassical approximation by the instanton technique show good correlation with a numerical solution

  8. Observing pure effects of counter-rotating terms without ultrastrong coupling: A single photon can simultaneously excite two qubits

    Science.gov (United States)

    Wang, Xin; Miranowicz, Adam; Li, Hong-Rong; Nori, Franco

    2017-12-01

    The coherent process that a single photon simultaneously excites two qubits has recently been theoretically predicted by Garziano et al. [L. Garziano, V. Macrì, R. Stassi, O. Di Stefano, F. Nori, and S. Savasta, One Photon Can Simultaneously Excite two or More Atoms, Phys. Rev. Lett. 117, 043601 (2016), 10.1103/PhysRevLett.117.043601]. We propose a different approach to observe a similar dynamical process based on a superconducting quantum circuit, where two coupled flux qubits longitudinally interact with the same resonator. We show that this simultaneous excitation of two qubits (assuming that the sum of their transition frequencies is close to the cavity frequency) is related to the counter-rotating terms in the dipole-dipole coupling between two qubits, and the standard rotating-wave approximation is not valid here. By numerically simulating the adiabatic Landau-Zener transition and Rabi-oscillation effects, we clearly verify that the energy of a single photon can excite two qubits via higher-order transitions induced by the longitudinal couplings and the counter-rotating terms. Compared with previous studies, the coherent dynamics in our system only involves one intermediate state and, thus, exhibits a much faster rate. We also find transition paths which can interfere. Finally, by discussing how to control the two longitudinal-coupling strengths, we find a method to observe both constructive and destructive interference phenomena in our system.

  9. A fault-tolerant addressable spin qubit in a natural silicon quantum dot

    Science.gov (United States)

    Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro; Yoneda, Jun; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Allison, Giles; Kodera, Tetsuo; Oda, Shunri; Tarucha, Seigo

    2016-01-01

    Fault-tolerant quantum computing requires high-fidelity qubits. This has been achieved in various solid-state systems, including isotopically purified silicon, but is yet to be accomplished in industry-standard natural (unpurified) silicon, mainly as a result of the dephasing caused by residual nuclear spins. This high fidelity can be achieved by speeding up the qubit operation and/or prolonging the dephasing time, that is, increasing the Rabi oscillation quality factor Q (the Rabi oscillation decay time divided by the π rotation time). In isotopically purified silicon quantum dots, only the second approach has been used, leaving the qubit operation slow. We apply the first approach to demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet that is optimally designed for fast spin control. This optimized design allows access to Rabi frequencies up to 35 MHz, which is two orders of magnitude greater than that achieved in previous studies. We find the optimum Q = 140 in such high-frequency range at a Rabi frequency of 10 MHz. This leads to a qubit fidelity of 99.6% measured via randomized benchmarking, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum dot–based qubits. This result can inspire contributions to quantum computing from industrial communities. PMID:27536725

  10. Demonstration of two-qubit algorithms with a superconducting quantum processor.

    Science.gov (United States)

    DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J

    2009-07-09

    Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.

  11. Two forms for 3-uniform states of eight-qubits

    Science.gov (United States)

    Zha, Xinwei; Da, Zhang; Ahmed, Irfan; Zhang, Yanpeng

    2018-05-01

    In this paper, we study the relations between average bipartite entanglement and the n-tangle of eight-qubits. We have derived two forms for 3-uniform states of eight-qubits. One form has the n-tangle equal to zero; the other form has the n-tangle equal to unity.

  12. Non-Bell-pair quantum channel for teleporting an arbitrary two-qubit state

    International Nuclear Information System (INIS)

    Zha Xinwei; Song Haiyang

    2007-01-01

    Recently, Yeo and Chua [Y. Yeo, W.K. Chua, Phys. Rev. Lett. 96 (2006) 060502] gave a protocol for faithfully teleporting an arbitrary two-qubit state via a genuine four-qubit entangled state, which is not reducible to a pair of Bell state. Here, we present a 'transformation operator' to give a criterion for faithful teleportation of an arbitrary two-qubit state via a four-qubit entangled state. The theoretical explanations of some quantum channels are given in term of transformation operators. The relation between the transformation operators and the Bell base measurement is also obtained. Furthermore, a new four-qubit entangled state quantum channel is presented

  13. Quantum cloning machines for equatorial qubits

    International Nuclear Information System (INIS)

    Fan Heng; Matsumoto, Keiji; Wang Xiangbin; Wadati, Miki

    2002-01-01

    Quantum cloning machines for equatorial qubits are studied. For the case of a one to two phase-covariant quantum cloning machine, we present the networks consisting of quantum gates to realize the quantum cloning transformations. The copied equatorial qubits are shown to be separable by using Peres-Horodecki criterion. The optimal one to M phase-covariant quantum cloning transformations are given

  14. Metric Structure of the Space of Two-Qubit Gates, Perfect Entanglers and Quantum Control

    Directory of Open Access Journals (Sweden)

    Paul Watts

    2013-05-01

    Full Text Available We derive expressions for the invariant length element and measure for the simple compact Lie group SU(4 in a coordinate system particularly suitable for treating entanglement in quantum information processing. Using this metric, we compute the invariant volume of the space of two-qubit perfect entanglers. We find that this volume corresponds to more than 84% of the total invariant volume of the space of two-qubit gates. This same metric is also used to determine the effective target sizes that selected gates will present in any quantum-control procedure designed to implement them.

  15. Inversion of Qubit Energy Levels in Qubit-Oscillator Circuits in the Deep-Strong-Coupling Regime

    Science.gov (United States)

    Yoshihara, F.; Fuse, T.; Ao, Z.; Ashhab, S.; Kakuyanagi, K.; Saito, S.; Aoki, T.; Koshino, K.; Semba, K.

    2018-05-01

    We report on experimentally measured light shifts of superconducting flux qubits deep-strongly coupled to L C oscillators, where the coupling constants are comparable to the qubit and oscillator resonance frequencies. By using two-tone spectroscopy, the energies of the six lowest levels of each circuit are determined. We find huge Lamb shifts that exceed 90% of the bare qubit frequencies and inversions of the qubits' ground and excited states when there are a finite number of photons in the oscillator. Our experimental results agree with theoretical predictions based on the quantum Rabi model.

  16. Decoherence patterns of topological qubits from Majorana modes

    International Nuclear Information System (INIS)

    Ho, Shih-Hao; Chao, Sung-Po; Chou, Chung-Hsien; Lin, Feng-Li

    2014-01-01

    We investigate the decoherence patterns of topological qubits in contact with the environment using a novel way of deriving the open system dynamics, rather than using the Feynman–Vernon approach. Each topological qubit is made up of two Majorana modes of a 1D Kitaev chain. These two Majorana modes interact with the environment in an incoherent way which yields peculiar decoherence patterns of the topological qubit. More specifically, we consider the open system dynamics of topological qubits which are weakly coupled to fermionic/bosonic Ohmic-like environments. We find atypical patterns of quantum decoherence. In contrast to the case for non-topological qubits—which always decohere completely in all Ohmic-like environments—topological qubits decohere completely in Ohmic and sub-Ohmic environments but not in super-Ohmic ones. Moreover, we find that the fermion parities of the topological qubits, though they cannot prevent the qubit states from exhibiting decoherence in sub-Ohmic environments, can prevent thermalization turning the state into a Gibbs state. We also study the cases in which each Majorana mode can couple to different Ohmic-like environments, and the time dependence of concurrence for two topological qubits. (paper)

  17. Steady-state entanglement and thermalization of coupled qubits in two common heat baths

    Science.gov (United States)

    Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie

    2018-03-01

    In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.

  18. Four-level and two-qubit systems, subalgebras, and unitary integration

    International Nuclear Information System (INIS)

    Rau, A.R.P.; Selvaraj, G.; Uskov, D.

    2005-01-01

    Four-level systems in quantum optics, and for representing two qubits in quantum computing, are difficult to solve for general time-dependent Hamiltonians. A systematic procedure is presented which combines analytical handling of the algebraic operator aspects with simple solutions of classical, first-order differential equations. In particular, by exploiting su(2)+su(2) and su(2)+su(2)+u(1) subalgebras of the full SU(4) dynamical group of the system, the nontrivial part of the final calculation is reduced to a single Riccati (first-order, quadratically nonlinear) equation, itself simply solved. Examples are provided of two-qubit problems from the recent literature, including implementation of two-qubit gates with Josephson junctions

  19. Simultaneous deterministic control of distant qubits in two semiconductor quantum dots.

    Science.gov (United States)

    Gamouras, A; Mathew, R; Freisem, S; Deppe, D G; Hall, K C

    2013-10-09

    In optimal quantum control (OQC), a target quantum state of matter is achieved by tailoring the phase and amplitude of the control Hamiltonian through femtosecond pulse-shaping techniques and powerful adaptive feedback algorithms. Motivated by recent applications of OQC in quantum information science as an approach to optimizing quantum gates in atomic and molecular systems, here we report the experimental implementation of OQC in a solid-state system consisting of distinguishable semiconductor quantum dots. We demonstrate simultaneous high-fidelity π and 2π single qubit gates in two different quantum dots using a single engineered infrared femtosecond pulse. These experiments enhance the scalability of semiconductor-based quantum hardware and lay the foundation for applications of pulse shaping to optimize quantum gates in other solid-state systems.

  20. Scalable quantum computation via local control of only two qubits

    International Nuclear Information System (INIS)

    Burgarth, Daniel; Maruyama, Koji; Murphy, Michael; Montangero, Simone; Calarco, Tommaso; Nori, Franco; Plenio, Martin B.

    2010-01-01

    We apply quantum control techniques to a long spin chain by acting only on two qubits at one of its ends, thereby implementing universal quantum computation by a combination of quantum gates on these qubits and indirect swap operations across the chain. It is shown that the control sequences can be computed and implemented efficiently. We discuss the application of these ideas to physical systems such as superconducting qubits in which full control of long chains is challenging.

  1. A relevant two qubit Bell inequality inequivalent to the CHSH inequality

    International Nuclear Information System (INIS)

    Collins, Daniel; Gisin, Nicolas

    2004-01-01

    We computationally investigate the complete polytope of Bell inequalities for two particles with small numbers of possible measurements and outcomes. Our approach is limited by Pitowsky's connection of this problem to the computationally hard NP problem. Despite this, we find that there are very few relevant inequivalent inequalities for small numbers. For example, in the case with three possible 2-outcome measurements on each particle, there is just one new inequality. We describe mixed 2-qubit states which violate this inequality but not the CHSH. The new inequality also illustrates a sharing of bi-partite non-locality between three qubits: something not seen using the CHSH inequality. It also inspires us to discover a class of Bell inequalities with m possible n-outcome measurements on each particle

  2. Single-photon two-qubit entangled states: Preparation and measurement

    International Nuclear Information System (INIS)

    Kim, Yoon-Ho

    2003-01-01

    We implement experimentally a deterministic method to prepare and measure the so-called single-photon two-qubit entangled states or single-photon Bell states, in which the polarization and the spatial modes of a single photon each represent a quantum bit. All four single-photon Bell states can be easily prepared and measured deterministically using linear optical elements alone. We also discuss how this method can be used for the recently proposed single-photon two-qubit quantum cryptography scheme

  3. Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Xiu, Xiao-Ming, E-mail: xiuxiaomingdl@126.com [Dalian University of Technology, School of Physics and Optoelectronic Technology (China); Ren, Yuan-Peng [Bohai University, Higher Professional Technical Institute (China); Gao, Ya-Jun [Bohai University, College of Mathematics and Physics (China); Yi, X. X. [Dalian University of Technology, School of Physics and Optoelectronic Technology (China)

    2013-01-15

    We propose a protocol transferring an arbitrary unknown two-qubit state using the quantum channel of a four-qubit genuine entangled state. Simplifying the four-qubit joint measurement to the combination of Bell-state measurements, it can be realized more easily with currently available technologies.

  4. Restless Tuneup of High-Fidelity Qubit Gates

    Science.gov (United States)

    Rol, M. A.; Bultink, C. C.; O'Brien, T. E.; de Jong, S. R.; Theis, L. S.; Fu, X.; Luthi, F.; Vermeulen, R. F. L.; de Sterke, J. C.; Bruno, A.; Deurloo, D.; Schouten, R. N.; Wilhelm, F. K.; DiCarlo, L.

    2017-04-01

    We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time correlation of nondemolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate-set tomography. The adjustable sensitivity of the cost function allows the detection of fractional changes in the gate error with a nearly constant signal-to-noise ratio. The restless concept demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations.

  5. Decoherence dynamics of two charge qubits in vertically coupled quantum dots

    International Nuclear Information System (INIS)

    Ben Chouikha, W.; Bennaceur, R.; Jaziri, S.

    2007-01-01

    The decoherence dynamics of two charge qubits in a double quantum dot is investigated theoretically. We consider the quantum dynamics of two interacting electrons in a vertically coupled quantum dot driven by an external electric field. We derive the equations of motion for the density matrix, in which the presence of an electron confined in the double dot represents one qubit. A Markovian approach to the dynamical evolution of the reduced density matrix is adopted. We evaluate the concurrence of two qubits in order to study the effect of acoustic phonons on the entanglement. We also show that the disentanglement effect depends on the double dot parameters and increases with the temperature

  6. Rapid characterization of microscopic two-level systems using Landau-Zener transitions in a superconducting qubit

    International Nuclear Information System (INIS)

    Tan, Xinsheng; Yu, Haifeng; Yu, Yang; Han, Siyuan

    2015-01-01

    We demonstrate a fast method to detect microscopic two-level systems in a superconducting phase qubit. By monitoring the population leak after sweeping the qubit bias flux, we are able to measure the two-level systems that are coupled with the qubit. Compared with the traditional method that detects two-level systems by energy spectroscopy, our method is faster and more sensitive. This method supplies a useful tool to investigate two-level systems in solid-state qubits

  7. The tensor rank of tensor product of two three-qubit W states is eight

    OpenAIRE

    Chen, Lin; Friedland, Shmuel

    2017-01-01

    We show that the tensor rank of tensor product of two three-qubit W states is not less than eight. Combining this result with the recent result of M. Christandl, A. K. Jensen, and J. Zuiddam that the tensor rank of tensor product of two three-qubit W states is at most eight, we deduce that the tensor rank of tensor product of two three-qubit W states is eight. We also construct the upper bound of the tensor rank of tensor product of many three-qubit W states.

  8. Experimental reversion of the optimal quantum cloning and flipping processes

    International Nuclear Information System (INIS)

    Sciarrino, Fabio; Secondi, Veronica; De Martini, Francesco

    2006-01-01

    The quantum cloner machine maps an unknown arbitrary input qubit into two optimal clones and one optimal flipped qubit. By combining linear and nonlinear optical methods we experimentally implement a scheme that, after the cloning transformation, restores the original input qubit in one of the output channels, by using local measurements, classical communication, and feedforward. This nonlocal method demonstrates how the information on the input qubit can be restored after the cloning process. The realization of the reversion process is expected to find useful applications in the field of modern multipartite quantum cryptography

  9. Disentanglement of two qubits coupled to an XY spin chain: Role of quantum phase transition

    International Nuclear Information System (INIS)

    Yuan Zigang; Li Shushen; Zhang Ping

    2007-01-01

    We study the disentanglement evolution of two spin qubits which interact with a general XY spin-chain environment. The dynamical process of the disentanglement is numerically and analytically investigated in the vicinity of a quantum phase transition (QPT) of the spin chain in both weak and strong coupling cases. We find that the disentanglement of the two spin qubits may be greatly enhanced by the quantum critical behavior of the environmental spin chain. We give a detailed analysis to facilitate the understanding of the QPT-enhanced decaying behavior of the coherence factor. Furthermore, the scaling behavior in the disentanglement dynamics is also revealed and analyzed

  10. Tunable, Flexible and Efficient Optimization of Control Pulses for Superconducting Qubits, part II - Applications

    Science.gov (United States)

    AsséMat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank

    In part I, we presented the theoretic foundations of the GOAT algorithm for the optimal control of quantum systems. Here in part II, we focus on several applications of GOAT to superconducting qubits architecture. First, we consider a control-Z gate on Xmons qubits with an Erf parametrization of the optimal pulse. We show that a fast and accurate gate can be obtained with only 16 parameters, as compared to hundreds of parameters required in other algorithms. We present numerical evidences that such parametrization should allow an efficient in-situ calibration of the pulse. Next, we consider the flux-tunable coupler by IBM. We show optimization can be carried out in a more realistic model of the system than was employed in the original study, which is expected to further simplify the calibration process. Moreover, GOAT reduced the complexity of the optimal pulse to only 6 Fourier components, composed with analytic wrappers.

  11. Entanglement-assisted quantum parameter estimation from a noisy qubit pair: A Fisher information analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chapeau-Blondeau, François, E-mail: chapeau@univ-angers.fr

    2017-04-25

    Benefit from entanglement in quantum parameter estimation in the presence of noise or decoherence is investigated, with the quantum Fisher information to asses the performance. When an input probe experiences any (noisy) transformation introducing the parameter dependence, the performance is always maximized by a pure probe. As a generic estimation task, for estimating the phase of a unitary transformation on a qubit affected by depolarizing noise, the optimal separable probe and its performance are characterized as a function of the level of noise. By entangling qubits in pairs, enhancements of performance over that of the optimal separable probe are quantified, in various settings of the entangled pair. In particular, in the presence of the noise, enhancement over the performance of the one-qubit optimal probe can always be obtained with a second entangled qubit although never interacting with the process to be estimated. Also, enhancement over the performance of the two-qubit optimal separable probe can always be achieved by a two-qubit entangled probe, either partially or maximally entangled depending on the level of the depolarizing noise. - Highlights: • Quantum parameter estimation from a noisy qubit pair is investigated. • The quantum Fisher information is used to assess the ultimate best performance. • Theoretical expressions are established and analyzed for the Fisher information. • Enhanced performances are quantified with various entanglements of the pair. • Enhancement is shown even with one entangled qubit noninteracting with the process.

  12. Theory of the Quantum Dot Hybrid Qubit

    Science.gov (United States)

    Friesen, Mark

    2015-03-01

    The quantum dot hybrid qubit, formed from three electrons in two quantum dots, combines the desirable features of charge qubits (fast manipulation) and spin qubits (long coherence times). The hybridized spin and charge states yield a unique energy spectrum with several useful properties, including two different operating regimes that are relatively immune to charge noise due to the presence of optimal working points or ``sweet spots.'' In this talk, I will describe dc and ac-driven gate operations of the quantum dot hybrid qubit. I will analyze improvements in the dephasing that are enabled by the sweet spots, and I will discuss the outlook for quantum hybrid qubits in terms of scalability. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), the USDOD, and the Intelligence Community Postdoctoral Research Fellowship Program. The views and conclusions contained in this presentation are those of the authors and should not be interpreted as representing the official policies or endorsements, either expressed or implied, of the US government.

  13. Realization of Arbitrary Positive-Operator-Value Measurement of Single Atomic Qubit via Cavity QED

    International Nuclear Information System (INIS)

    Yang, Han; Wei, Wu; Chun-Wang, Wu; Hong-Yi, Dai; Cheng-Zu, Li

    2008-01-01

    Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given

  14. Realization of Arbitrary Positive-Operator-Value Measurement of Single Atomic Qubit via Cavity QED

    Science.gov (United States)

    Han, Yang; Wu, Wei; Wu, Chun-Wang; Dai, Hong-Yi; Li, Cheng-Zu

    2008-12-01

    Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given.

  15. Nonlinearities in the quantum measurement process of superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Serban, Ioana

    2008-05-15

    phase-space methods, a modified version of the WKB approximation and the Caldeira-Leggett approach. Returning to the application of the JBA as a qubit detector, chapter 7 describes the relaxation of the qubit in contact with its detector. The last chapter is concerned with optimal control of a qubit in the presence of a two level fluctuator. The two level fluctuator represents e. g. a resonator in the amorphous material of a Josephson junction. The theory of optimal control is applied to a qubit Z gate. The optimization takes into account the environment represented by the fluctuator and thus expands the limits of coherent control for solid state qubits. (orig.)

  16. Nonlinearities in the quantum measurement process of superconducting qubits

    International Nuclear Information System (INIS)

    Serban, Ioana

    2008-05-01

    phase-space methods, a modified version of the WKB approximation and the Caldeira-Leggett approach. Returning to the application of the JBA as a qubit detector, chapter 7 describes the relaxation of the qubit in contact with its detector. The last chapter is concerned with optimal control of a qubit in the presence of a two level fluctuator. The two level fluctuator represents e. g. a resonator in the amorphous material of a Josephson junction. The theory of optimal control is applied to a qubit Z gate. The optimization takes into account the environment represented by the fluctuator and thus expands the limits of coherent control for solid state qubits. (orig.)

  17. Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System

    Science.gov (United States)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2018-02-01

    We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

  18. Concurrence Measurement for the Two-Qubit Optical and Atomic States

    Directory of Open Access Journals (Sweden)

    Lan Zhou

    2015-06-01

    Full Text Available Concurrence provides us an effective approach to quantify entanglement, which is quite important in quantum information processing applications. In the paper, we mainly review some direct concurrence measurement protocols of the two-qubit optical or atomic system. We first introduce the concept of concurrence for a two-qubit system. Second, we explain the approaches of the concurrence measurement in both a linear and a nonlinear optical system. Third, we introduce some protocols for measuring the concurrence of the atomic entanglement system.

  19. State determination for composite systems of two spatial qubits

    International Nuclear Information System (INIS)

    Lima, G; Torres-Ruiz, F A; Neves, L; Delgado, A; Saavedra, C; Padua, S

    2007-01-01

    In a recent letter [Phys. Rev. Lett. 94, 100501 (2005)], we presented a scheme for generating pure entangled states of spatial qudits using transverse correlations of parametric down-converted photons. Here we show how the modication of this scheme can be used to generate mixed states and we investigate the state determination for composite systems of two spatial qubits, motivated by the fact that quantum information protocols may be easier to be implemented for this case. By means of local operations on the twin photons we were able to perform the quantum tomography process to reconstruct the density matrix of a mixed state of two spatial qubits

  20. Two-axis control of a coupled quantum dot - donor qubit in Si-MOS

    Science.gov (United States)

    Rudolph, Martin; Harvey-Collard, Patrick; Jacobson, Tobias; Wendt, Joel; Pluym, Tammy; Dominguez, Jason; Ten-Eyck, Greg; Lilly, Mike; Carroll, Malcolm

    Si-MOS based QD qubits are attractive due to their similarity to the current semiconductor industry. We introduce a highly tunable MOS foundry compatible qubit design that couples an electrostatic quantum dot (QD) with an implanted donor. We show for the first time coherent two-axis control of a two-electron spin logical qubit that evolves under the QD-donor exchange interaction and the hyperfine interaction with the donor nucleus. The two interactions are tuned electrically with surface gate voltages to provide control of both qubit axes. Qubit decoherence is influenced by charge noise, which is of similar strength as epitaxial systems like GaAs and Si/SiGe. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  1. Realization of arbitrary positive-operator-value measurement of single atomic qubit via cavity QED

    International Nuclear Information System (INIS)

    Han Yang; Wu Wei; Wu Chunwang; Dai Hongyi; Li Chengzu

    2008-01-01

    Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given. (authors)

  2. High-fidelity gates in quantum dot spin qubits.

    Science.gov (United States)

    Koh, Teck Seng; Coppersmith, S N; Friesen, Mark

    2013-12-03

    Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet-triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning [Symbol: see text], which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an f(opt)(g) that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound f(max) that is specific to the qubit-gate combination. We show that similar gate fidelities (~99:5%) should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins.

  3. Two-way and three-way negativities of three-qubit entangled states

    International Nuclear Information System (INIS)

    Sharma, S. Shelly; Sharma, N. K.

    2007-01-01

    We propose to quantify three-qubit entanglement using global negativity along with K-way negativities, where K=2 and 3. The principle underlying the definition of K-way negativity for pure and mixed states of N subsystems is a positive partial transpose sufficient condition. However, K-way partial transpose with respect to a subsystem is defined so as to shift the focus to K-way coherences instead of K subsystems of the composite system. A quantum state of a three-qubit system is characterized by the coherences measured by global, two-way, and three-way negativities. For a canonical state of three-qubit system, entanglement measures for genuine tripartite entanglement, W-like entanglement, and bipartite entanglement can be related to two-way and three-way negativities

  4. Entangling capabilities of symmetric two-qubit gates

    Indian Academy of Sciences (India)

    Com- putational investigation of entanglement of such ensembles is therefore impractical for ... the computational complexity. Pairs of spin-1 ... tensor operators which can also provide different symmetric logic gates for quantum pro- ... that five of the eight, two-qubit symmetric quantum gates expressed in terms of our newly.

  5. Optimal entangling operations between deterministic blocks of qubits encoded into single photons

    Science.gov (United States)

    Smith, Jake A.; Kaplan, Lev

    2018-01-01

    Here, we numerically simulate probabilistic elementary entangling operations between rail-encoded photons for the purpose of scalable universal quantum computation or communication. We propose grouping logical qubits into single-photon blocks wherein single-qubit rotations and the controlled-not (cnot) gate are fully deterministic and simple to implement. Interblock communication is then allowed through said probabilistic entangling operations. We find a promising trend in the increasing probability of successful interblock communication as we increase the number of optical modes operated on by our elementary entangling operations.

  6. Multi-qubit compensation sequences

    International Nuclear Information System (INIS)

    Tomita, Y; Merrill, J T; Brown, K R

    2010-01-01

    The Hamiltonian control of n qubits requires precision control of both the strength and timing of interactions. Compensation pulses relax the precision requirements by reducing unknown but systematic errors. Using composite pulse techniques designed for single qubits, we show that systematic errors for n-qubit systems can be corrected to arbitrary accuracy given either two non-commuting control Hamiltonians with identical systematic errors or one error-free control Hamiltonian. We also examine composite pulses in the context of quantum computers controlled by two-qubit interactions. For quantum computers based on the XY interaction, single-qubit composite pulse sequences naturally correct systematic errors. For quantum computers based on the Heisenberg or exchange interaction, the composite pulse sequences reduce the logical single-qubit gate errors but increase the errors for logical two-qubit gates.

  7. Thermal quantum and classical correlations in a two-qubit XX model in a nonuniform external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Ali Saif M [Department of Physics, University of Amran, Amran (Yemen); Lari, Behzad; Joag, Pramod S, E-mail: alisaif73@gmail.co, E-mail: behzadlari1979@yahoo.co, E-mail: pramod@physics.unipune.ac.i [Department of Physics, University of Pune, Pune 411007 (India)

    2010-12-03

    We investigate how thermal quantum discord (QD) and classical correlations (CC) of a two-qubit one-dimensional XX Heisenberg chain in thermal equilibrium depend on the temperature of the bath as well as on nonuniform external magnetic fields applied to two qubits and varied separately. We show that the behavior of QD differs in many unexpected ways from the thermal entanglement (EOF). For the nonuniform case (B{sub 1} = -B{sub 2}), we find that QD and CC are equal for all values of (B{sub 1} = -B{sub 2}) and for different temperatures. We show that, in this case, the thermal states of the system belong to a class of mixed states and satisfy certain conditions under which QD and CC are equal. The specification of this class and the corresponding conditions are completely general and apply to any quantum system in a state in this class satisfying these conditions. We further find that the relative contributions of QD and CC can be controlled easily by changing the relative magnitudes of B{sub 1} and B{sub 2}. Finally, we connect our results with the monogamy relations between the EOF, CC and the QD of two qubits and the environment.

  8. Fidelity estimation between two finite ensembles of unknown pure equatorial qubit states

    Energy Technology Data Exchange (ETDEWEB)

    Siomau, Michael, E-mail: siomau@physi.uni-heidelberg.de [Physikalisches Institut, Heidelberg Universitaet, D-69120 Heidelberg (Germany); Department of Theoretical Physics, Belarussian State University, 220030 Minsk (Belarus)

    2011-09-05

    Suppose, we are given two finite ensembles of pure qubit states, so that the qubits in each ensemble are prepared in identical (but unknown for us) states lying on the equator of the Bloch sphere. What is the best strategy to estimate fidelity between these two finite ensembles of qubit states? We discuss three possible strategies for the fidelity estimation. We show that the best strategy includes two stages: a specific unitary transformation on two ensembles and state estimation of the output states of this transformation. -- Highlights: → We search for the best strategy for the fidelity estimation. → A measurement-based, a cloning-based and a unified strategies are considered. → The last strategy includes a specific unitary transformation and state estimation. → The unified strategy is shown to be the best among the three.

  9. Coupled qubits as a quantum heat switch

    Science.gov (United States)

    Karimi, B.; Pekola, J. P.; Campisi, M.; Fazio, R.

    2017-12-01

    We present a quantum heat switch based on coupled superconducting qubits, connected to two LC resonators that are terminated by resistors providing two heat baths. To describe the system, we use a standard second order master equation with respect to coupling to the baths. We find that this system can act as an efficient heat switch controlled by the applied magnetic flux. The flux influences the energy level separations of the system, and under some conditions, the finite coupling of the qubits enhances the transmitted power between the two baths, by an order of magnitude under realistic conditions. At the same time, the bandwidth at maximum power of the switch formed of the coupled qubits is narrowed.

  10. Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state

    Science.gov (United States)

    Sisodia, Mitali; Shukla, Abhishek; Thapliyal, Kishore; Pathak, Anirban

    2017-12-01

    An explicit scheme (quantum circuit) is designed for the teleportation of an n-qubit quantum state. It is established that the proposed scheme requires an optimal amount of quantum resources, whereas larger amount of quantum resources have been used in a large number of recently reported teleportation schemes for the quantum states which can be viewed as special cases of the general n-qubit state considered here. A trade-off between our knowledge about the quantum state to be teleported and the amount of quantum resources required for the same is observed. A proof-of-principle experimental realization of the proposed scheme (for a 2-qubit state) is also performed using 5-qubit superconductivity-based IBM quantum computer. The experimental results show that the state has been teleported with high fidelity. Relevance of the proposed teleportation scheme has also been discussed in the context of controlled, bidirectional, and bidirectional controlled state teleportation.

  11. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    Energy Technology Data Exchange (ETDEWEB)

    Akibue, Seiseki [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)

    2014-12-04

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder.

  12. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    International Nuclear Information System (INIS)

    Akibue, Seiseki; Murao, Mio

    2014-01-01

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder

  13. Entanglement and Metrology with Singlet-Triplet Qubits

    Science.gov (United States)

    Shulman, Michael Dean

    Electron spins confined in semiconductor quantum dots are emerging as a promising system to study quantum information science and to perform sensitive metrology. Their weak interaction with the environment leads to long coherence times and robust storage for quantum information, and the intrinsic tunability of semiconductors allows for controllable operations, initialization, and readout of their quantum state. These spin qubits are also promising candidates for the building block for a scalable quantum information processor due to their prospects for scalability and miniaturization. However, several obstacles limit the performance of quantum information experiments in these systems. For example, the weak coupling to the environment makes inter-qubit operations challenging, and a fluctuating nuclear magnetic field limits the performance of single-qubit operations. The focus of this thesis will be several experiments which address some of the outstanding problems in semiconductor spin qubits, in particular, singlet-triplet (S-T0) qubits. We use these qubits to probe both the electric field and magnetic field noise that limit the performance of these qubits. The magnetic noise bath is probed with high bandwidth and precision using novel techniques borrowed from the field of Hamiltonian learning, which are effective due to the rapid control and readout available in S-T 0 qubits. These findings allow us to effectively undo the undesired effects of the fluctuating nuclear magnetic field by tracking them in real-time, and we demonstrate a 30-fold improvement in the coherence time T2*. We probe the voltage noise environment of the qubit using coherent qubit oscillations, which is partially enabled by control of the nuclear magnetic field. We find that the voltage noise bath is frequency-dependent, even at frequencies as high as 1MHz, and it shows surprising and, as of yet, unexplained temperature dependence. We leverage this knowledge of the voltage noise environment, the

  14. Quasiparticle-induced decoherence of microscopic two-level-systems in superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Bilmes, Alexander; Lisenfeld, Juergen; Zanker, Sebastian; Weiss, Georg; Ustinov, Alexey V. [PHI, KIT, Karlsruhe (Germany); Marthaler, Michael; Schoen, Gerd [TFP, KIT, Karlsruhe (Germany)

    2016-07-01

    Parasitic Two-Level-Systems (TLS) are one of the main sources of decoherence in superconducting nano-scale devices such as SQUIDs, resonators and quantum bits (qubits), although the TLS' microscopic nature remains unclear. We use a superconducting phase qubit to detect TLS contained within the tunnel barrier of the qubit's Al/AlOx/Al Josephson junction. If the TLS transition frequency lies within the 6-10 GHz range, we can coherently drive it by resonant microwave pulses and access its quantum state by utilizing the strong coupling to the qubit. Our previous measurements of TLS coherence in dependence of the temperature indicate that quasiparticles (QPs), which diffuse from the superconducting Al electrodes into the oxide layer, may give rise to TLS energy loss and dephasing. Here, we probe the TLS-QP interaction using a reliable method of in-situ QP injection via an on-chip dc-SQUID that is pulse-biased beyond its switching current. The QP density is calibrated by measuring associated characteristic changes to the qubit's energy relaxation rate. We will present experimental data which show the QP-induced TLS decoherence in good agreement to theoretical predictions.

  15. Discrete Wigner formalism for qubits and noncontextuality of Clifford gates on qubit stabilizer states

    Science.gov (United States)

    Kocia, Lucas; Love, Peter

    2017-12-01

    We show that qubit stabilizer states can be represented by non-negative quasiprobability distributions associated with a Wigner-Weyl-Moyal formalism where Clifford gates are positive state-independent maps. This is accomplished by generalizing the Wigner-Weyl-Moyal formalism to three generators instead of two—producing an exterior, or Grassmann, algebra—which results in Clifford group gates for qubits that act as a permutation on the finite Weyl phase space points naturally associated with stabilizer states. As a result, a non-negative probability distribution can be associated with each stabilizer state's three-generator Wigner function, and these distributions evolve deterministically to one another under Clifford gates. This corresponds to a hidden variable theory that is noncontextual and local for qubit Clifford gates while Clifford (Pauli) measurements have a context-dependent representation. Equivalently, we show that qubit Clifford gates can be expressed as propagators within the three-generator Wigner-Weyl-Moyal formalism whose semiclassical expansion is truncated at order ℏ0 with a finite number of terms. The T gate, which extends the Clifford gate set to one capable of universal quantum computation, requires a semiclassical expansion of the propagator to order ℏ1. We compare this approach to previous quasiprobability descriptions of qubits that relied on the two-generator Wigner-Weyl-Moyal formalism and find that the two-generator Weyl symbols of stabilizer states result in a description of evolution under Clifford gates that is state-dependent, in contrast to the three-generator formalism. We have thus extended Wigner non-negative quasiprobability distributions from the odd d -dimensional case to d =2 qubits, which describe the noncontextuality of Clifford gates and contextuality of Pauli measurements on qubit stabilizer states.

  16. One-way quantum computation via manipulation of polarization and momentum qubits in two-photon cluster states

    International Nuclear Information System (INIS)

    Vallone, G; Pomarico, E; De Martini, F; Mataloni, P

    2008-01-01

    Four-qubit cluster states of two photons entangled in polarization and linear momentum have been used to realize a complete set of single qubit rotations and the C-NOT gate for equatorial qubits with high values of fidelity. By the computational equivalence of the two degrees of freedom our result demonstrate the suitability of two photon cluster states for rapid and efficient one-way quantum computing

  17. Dynamics of Entanglement in Qubit-Qutrit with x-Component of DM Interaction

    International Nuclear Information System (INIS)

    Sharma, Kapil K.; Pandey, S.N.

    2016-01-01

    In this present paper, we study the entanglement dynamics in qubit A-qutrit B pair under x component of Dzyaloshinshkii–Moriya interaction (D x ) by taking an auxiliary qubit C. Here, we consider an entangled qubit-qutrit pair initially prepared in two parameter qubit-qutrit states and one auxiliary qubit prepared in pure state interacts with the qutrit of the pair through DM interaction. We trace away the auxiliary qubit and calculate the reduced dynamics in qubit A-qutrit B pair to study the influence of the state of auxiliary qubit C and D x on entanglement. We find that the state (probability amplitude) of auxiliary qubit does not influence the entanglement, only D x influences the same. The phenomenon of entanglement sudden death (ESD) induced by D x has also been observed. We also present the affected and unaffected two parameter qubit-qutrit states by D x . (paper)

  18. Protecting entanglement by adjusting the velocities of moving qubits inside non-Markovian environments

    Science.gov (United States)

    Mortezapour, Ali; Ahmadi Borji, Mahdi; Lo Franco, Rosario

    2017-05-01

    Efficient entanglement preservation in open quantum systems is a crucial scope towards a reliable exploitation of quantum resources. We address this issue by studying how two-qubit entanglement dynamically behaves when two atom qubits move inside two separated identical cavities. The moving qubits independently interact with their respective cavity. As a main general result, we find that under resonant qubit-cavity interaction the initial entanglement between two moving qubits remains closer to its initial value as time passes compared to the case of stationary qubits. In particular, we show that the initial entanglement can be strongly protected from decay by suitably adjusting the velocities of the qubits according to the non-Markovian features of the cavities. Our results supply a further way of preserving quantum correlations against noise with a natural implementation in cavity-QED scenarios and are straightforwardly extendable to many qubits for scalability.

  19. Optimizing qubit resources for quantum chemistry simulations in second quantization on a quantum computer

    International Nuclear Information System (INIS)

    Moll, Nikolaj; Fuhrer, Andreas; Staar, Peter; Tavernelli, Ivano

    2016-01-01

    Quantum chemistry simulations on a quantum computer suffer from the overhead needed for encoding the Fermionic problem in a system of qubits. By exploiting the block diagonality of a Fermionic Hamiltonian, we show that the number of required qubits can be reduced while the number of terms in the Hamiltonian will increase. All operations for this reduction can be performed in operator space. The scheme is conceived as a pre-computational step that would be performed prior to the actual quantum simulation. We apply this scheme to reduce the number of qubits necessary to simulate both the Hamiltonian of the two-site Fermi–Hubbard model and the hydrogen molecule. Both quantum systems can then be simulated with a two-qubit quantum computer. Despite the increase in the number of Hamiltonian terms, the scheme still remains a useful tool to reduce the dimensionality of specific quantum systems for quantum simulators with a limited number of resources. (paper)

  20. Temperature dependence of coherence in transmon qubits

    Energy Technology Data Exchange (ETDEWEB)

    Schloer, Steffen; Braumueller, Jochen; Lukashenko, Oleksandr; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V. [Physikalisches Institut, KIT, Karlsruhe (Germany); Sandberg, Martin; Vissers, Michael R.; Pappas, David P. [NIST, Boulder, CO (United States)

    2015-07-01

    Superconducting qubits are a promising field of research, not only with respect to quantum computing but also as highly sensitive detectors and due to the possibility of using them to study fundamental implications of quantum mechanics. The requirements for qubits that can be used as building blocks in a potential quantum computer are challenging. Modern superconducting qubits like the transmon are strong candidates for achieving these goals. The main challenge here is to increase the coherence of prepared quantum states. Here, we experimentally investigate the influence of temperature variation on relaxation and dephasing of a transmon qubit. Our goal is to understand decoherence mechanisms in material optimized circuits. Aiming at longer coherence, in this case peaking over 50 μs for T{sub 1} and T{sub 2}, our samples are fabricated at NIST using two different materials. Low-loss TiN was used for the shunt capacitance as well as the resonator, combined with shadow evaporated ultra-small Al-AlO{sub x}-Al Josephson junctions. We will present temperature-dependent data on qubit relaxation and dephasing times as well as power spectra. Our data will be compared to previously obtained temperature dependent data for other types of qubits.

  1. Quantum control of finite-time disentanglement in qubit-qubit and qubit-qutrit systems

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mazhar

    2009-07-13

    This thesis is a theoretical study of entanglement dynamics and its control of qubit-qubit and qubit-qutrit systems. In particular, we focus on the decay of entanglement of quantum states interacting with dissipative environments. Qubit-qubit entanglement may vanish suddenly while interacting with statistically independent vacuum reservoirs. Such finite- time disentanglement is called sudden death of entanglement (ESD). We investigate entanglement sudden death of qubit-qubit and qubit-qutrit systems interacting with statistically independent reservoirs at zero- and finite-temperature. It is shown that for zero-temperature reservoirs, some entangled states exhibit sudden death while others lose their entanglement only after infinite time. Thus, there are two possible routes of entanglement decay, namely sudden death and asymptotic decay. We demonstrate that starting with an initial condition which leads to finite-time disentanglement, we can alter the future course of entanglement by local unitary actions. In other words, it is possible to put the quantum states on other track of decay once they are on a particular route of decay. We show that one can accelerate or delay sudden death. However, there is a critical time such that if local actions are taken before that critical time then sudden death can be delayed to infinity. Any local unitary action taken after that critical time can only accelerate or delay sudden death. In finite-temperature reservoirs, we demonstrate that a whole class of entangled states exhibit sudden death. This conclusion is valid if at least one of the reservoirs is at finite-temperature. However, we show that we can still hasten or delay sudden death by local unitary transformations up to some finite time. We also study sudden death for qubit-qutrit systems. Similar to qubit-qubit systems, some states exhibit sudden death while others do not. However, the process of disentanglement can be effected due to existence of quantum interference

  2. Quantum control of finite-time disentanglement in qubit-qubit and qubit-qutrit systems

    International Nuclear Information System (INIS)

    Ali, Mazhar

    2009-01-01

    This thesis is a theoretical study of entanglement dynamics and its control of qubit-qubit and qubit-qutrit systems. In particular, we focus on the decay of entanglement of quantum states interacting with dissipative environments. Qubit-qubit entanglement may vanish suddenly while interacting with statistically independent vacuum reservoirs. Such finite- time disentanglement is called sudden death of entanglement (ESD). We investigate entanglement sudden death of qubit-qubit and qubit-qutrit systems interacting with statistically independent reservoirs at zero- and finite-temperature. It is shown that for zero-temperature reservoirs, some entangled states exhibit sudden death while others lose their entanglement only after infinite time. Thus, there are two possible routes of entanglement decay, namely sudden death and asymptotic decay. We demonstrate that starting with an initial condition which leads to finite-time disentanglement, we can alter the future course of entanglement by local unitary actions. In other words, it is possible to put the quantum states on other track of decay once they are on a particular route of decay. We show that one can accelerate or delay sudden death. However, there is a critical time such that if local actions are taken before that critical time then sudden death can be delayed to infinity. Any local unitary action taken after that critical time can only accelerate or delay sudden death. In finite-temperature reservoirs, we demonstrate that a whole class of entangled states exhibit sudden death. This conclusion is valid if at least one of the reservoirs is at finite-temperature. However, we show that we can still hasten or delay sudden death by local unitary transformations up to some finite time. We also study sudden death for qubit-qutrit systems. Similar to qubit-qubit systems, some states exhibit sudden death while others do not. However, the process of disentanglement can be effected due to existence of quantum interference

  3. Optimization of a Solid-State Electron Spin Qubit Using Gate Set Tomography (Open Access, Publisher’s Version)

    Science.gov (United States)

    2016-10-13

    and addressedwhen the qubit is usedwithin a fault-tolerant quantum computation scheme. 1. Introduction One of themain challenges in the physical...supplied in the supplementarymaterial. Additionally, we have supplied the datafiles constructed from the experiments, alongwith the Python notebook used to...New J. Phys. 18 (2016) 103018 doi:10.1088/1367-2630/18/10/103018 PAPER Optimization of a solid-state electron spin qubit using gate set tomography

  4. Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.-B.A., E-mail: abdelbastm@yahoo.com [College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Aflaj (Saudi Arabia); Faculty of Science, Assiut University, Assiut (Egypt); Joshi, A., E-mail: mcbamji@gmail.com [Physics Department, Adelphi University Garden City, NY 11530 (United States); Department of Physics and Optical Engineering, RHIT, Terra Haute IN 47803 (United States); Hassan, S.S., E-mail: shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2016-03-15

    Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlations of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.

  5. A model of magnetic impurities within the Josephson junction of a phase qubit

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, R P; Pappas, D P [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2010-02-15

    We consider a superconducting phase qubit consisting of a monocrystalline sapphire Josephson junction with its symmetry axis perpendicular to the junction interfaces. Via the London gauge, we present a theoretical model of Fe{sup 3+} magnetic impurities within the junction that describes the effect of a low concentration of such impurities on the operation of the qubit. Specifically, we derive an interaction Hamiltonian expressed in terms of angular momentum states of magnetic impurities and low-lying oscillator states of a current-biased phase qubit. We discuss the coupling between the qubit and impurities within the model near resonance. When the junction is biased at an optimal point for acting as a phase qubit, with a phase difference of {pi}/2 and impurity concentration no greater than 0.05%, we find only a slight decrease in the Q factor of less than 0.01%.

  6. Local correlations of mixed two-qubit states

    International Nuclear Information System (INIS)

    Zhang Fulin; Chen Jingling; Ren Changliang; Shi Mingjun

    2010-01-01

    The quantum probability distribution arising from single-copy von Neumann measurements on an arbitrary two-qubit state is decomposed into the local and nonlocal parts, in the approach of Elitzur, Popescu and Rohrlich [A. Elitzur, S. Popescu, D. Rohrlich, Phys. Lett. A 162 (1992) 25]. A lower bound of the local weight is proved being connected with the concurrence of the state p L max =1-C(ρ). The local probability distributions for two families of mixed states are constructed independently, which accord with the lower bound.

  7. Long-Distance Entanglement of Spin Qubits via Ferromagnet

    Directory of Open Access Journals (Sweden)

    Luka Trifunovic

    2013-12-01

    Full Text Available We propose a mechanism of coherent coupling between distant spin qubits interacting dipolarly with a ferromagnet. We derive an effective two-spin interaction Hamiltonian and find a regime where the dynamics is coherent. Finally, we present a sequence for the implementation of the entangling controlled-not gate and estimate the corresponding operation time to be a few tens of nanoseconds. A particularly promising application of our proposal is to atomistic spin qubits such as silicon-based qubits and nitrogen-vacancy centers in diamond to which existing coupling schemes do not apply.

  8. Flipping qubits

    International Nuclear Information System (INIS)

    Martini De, F.; Sciarrino, F.; Sias, C.; Buzek, V.

    2003-01-01

    On a classical level the information can be represented by bits, each of which can be either 0 or 1. Quantum information, on the other hand, consists of qubits which can be represented as two-level quantum systems with one level labeled |0> and the other |1>. Unlike bits, qubits cannot only be in one of the two levels, but in any superposition of them as well. This superposition principle makes quantum information fundamentally different from its classical counterpart. One of the most striking difference between the classical and quantum information is as follows: it is not a problem to flip a classical bit, i.e., to change the value of a bit, a 0 to a 1 and vice versa. This is accomplished by a NOT gate. Flipping a qubit, however, is another matter: there exists the fundamental bound which prohibits to flip a qubit prepared in an arbitrary state |Ψ>=α|0> and to obtain the state |Ψ T >=β*|0>-α*|1> which is orthogonal to it, i.e., T |Ψ>=0. We experimentally realize the best possible approximation of the qubit flipping that achieves bounds imposed by complete positivity of quantum mechanics

  9. Formulas for Rational-Valued Separability Probabilities of Random Induced Generalized Two-Qubit States

    Directory of Open Access Journals (Sweden)

    Paul B. Slater

    2015-01-01

    Full Text Available Previously, a formula, incorporating a 5F4 hypergeometric function, for the Hilbert-Schmidt-averaged determinantal moments ρPTnρk/ρk of 4×4 density-matrices (ρ and their partial transposes (|ρPT|, was applied with k=0 to the generalized two-qubit separability probability question. The formula can, furthermore, be viewed, as we note here, as an averaging over “induced measures in the space of mixed quantum states.” The associated induced-measure separability probabilities (k=1,2,… are found—via a high-precision density approximation procedure—to assume interesting, relatively simple rational values in the two-re[al]bit (α=1/2, (standard two-qubit (α=1, and two-quater[nionic]bit (α=2 cases. We deduce rather simple companion (rebit, qubit, quaterbit, … formulas that successfully reproduce the rational values assumed for general  k. These formulas are observed to share certain features, possibly allowing them to be incorporated into a single master formula.

  10. Trapped Ion Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm

    2017-04-01

    Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systems of 5 to 15 qubits [6–8].

  11. Reduced phase error through optimized control of a superconducting qubit

    International Nuclear Information System (INIS)

    Lucero, Erik; Kelly, Julian; Bialczak, Radoslaw C.; Lenander, Mike; Mariantoni, Matteo; Neeley, Matthew; O'Connell, A. D.; Sank, Daniel; Wang, H.; Weides, Martin; Wenner, James; Cleland, A. N.; Martinis, John M.; Yamamoto, Tsuyoshi

    2010-01-01

    Minimizing phase and other errors in experimental quantum gates allows higher fidelity quantum processing. To quantify and correct for phase errors, in particular, we have developed an experimental metrology - amplified phase error (APE) pulses - that amplifies and helps identify phase errors in general multilevel qubit architectures. In order to correct for both phase and amplitude errors specific to virtual transitions and leakage outside of the qubit manifold, we implement 'half derivative', an experimental simplification of derivative reduction by adiabatic gate (DRAG) control theory. The phase errors are lowered by about a factor of five using this method to ∼1.6 deg. per gate, and can be tuned to zero. Leakage outside the qubit manifold, to the qubit |2> state, is also reduced to ∼10 -4 for 20% faster gates.

  12. Restless Tuneup of High-Fidelity Qubit Gates

    NARCIS (Netherlands)

    Rol, M.A.; Bultink, C.C.; O'Brien, T.E.; Jong, S.R. de; Theis, L.S.; Fu, X.; Luthi, F.; Vermeulen, R.F.L.; Sterke, J.C. de; Bruno, A.; Deurloo, D.; Schouten, R.N.; Wilhelm, F.K.; Dicarlo, L.

    2017-01-01

    We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time correlation of nondemolition measurements interleaving

  13. Restless Tuneup of High-Fidelity Qubit Gates

    NARCIS (Netherlands)

    Rol, M.A.; Bultink, C.C.; O'Brien, T.E.; De Jong, S. R.; Theis, L. S.; Fu, X.; Lüthi, F.; Vermeulen, R.F.L.; de Sterke, J.C.; Bruno, A.; Deurloo, D.; Schouten, R.N.; Wilhelm, FK; Di Carlo, L.

    2017-01-01

    We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time correlation of nondemolition measurements

  14. Direct method for measuring and witnessing quantum entanglement of arbitrary two-qubit states through Hong-Ou-Mandel interference

    Science.gov (United States)

    Bartkiewicz, Karol; Chimczak, Grzegorz; Lemr, Karel

    2017-02-01

    We describe a direct method for experimental determination of the negativity of an arbitrary two-qubit state with 11 measurements performed on multiple copies of the two-qubit system. Our method is based on the experimentally accessible sequences of singlet projections performed on up to four qubit pairs. In particular, our method permits the application of the Peres-Horodecki separability criterion to an arbitrary two-qubit state. We explicitly demonstrate that measuring entanglement in terms of negativity requires three measurements more than detecting two-qubit entanglement. The reported minimal set of interferometric measurements provides a complete description of bipartite quantum entanglement in terms of two-photon interference. This set is smaller than the set of 15 measurements needed to perform a complete quantum state tomography of an arbitrary two-qubit system. Finally, we demonstrate that the set of nine Makhlin's invariants needed to express the negativity can be measured by performing 13 multicopy projections. We demonstrate both that these invariants are a useful theoretical concept for designing specialized quantum interferometers and that their direct measurement within the framework of linear optics does not require performing complete quantum state tomography.

  15. Multi-qubit parity measurement in circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    DiVincenzo, David P; Solgun, Firat

    2013-01-01

    We present a concept for performing direct parity measurements on three or more qubits in microwave structures with superconducting resonators coupled to Josephson-junction qubits. We write the quantum-eraser conditions that must be fulfilled for the parity measurements as requirements for the scattering phase shift of our microwave structure. We show that these conditions can be fulfilled with present-day devices. We present one particular scheme, implemented with two-dimensional cavity techniques, in which each qubit should be coupled equally to two different microwave cavities. The magnitudes of the couplings that are needed are in the range that has been achieved in current experiments. A quantum calculation indicates that the measurement is optimal if the scattering signal can be measured with near single-photon sensitivity. A comparison with an extension of a related proposal from cavity optics is presented. We present a second scheme, for which a scalable implementation of the four-qubit parities of the surface quantum error correction code can be envisioned. It uses three-dimensional cavity structures, using cavity symmetries to achieve the necessary multiple resonant modes within a single resonant structure. (paper)

  16. Geometric quantum discord and Berry phase between two charge qubits coupled by a quantum transmission line

    International Nuclear Information System (INIS)

    Zhu Han-Jie; Zhang Guo-Feng

    2014-01-01

    Geometric quantum discord (GQD) and Berry phase between two charge qubits coupled by a quantum transmission line are investigated. We show how GQDs evolve and investigate their dependencies on the parameters of the system. We also calculate the energy and the Berry phase and compare them with GQD, finding that there are close connections between them. (general)

  17. Note on the quantum correlations of two qubits coupled to photon baths

    International Nuclear Information System (INIS)

    Quintana, Claudia; Rosas-Ortiz, Oscar

    2015-01-01

    The time-evolution of the quantum correlations between two qubits that are coupled to a pair of photon baths is studied. We show that conditioned transitions occurring in the entire system have influence on the time-evolution of the subsystems. Then, we show that the study of the population inversion of each of the qubits is a measure of the correlations between them that is in agreement with the notion of concurrence. (paper)

  18. Implementation of a two-qubit controlled-rotation gate based on unconventional geometric phase with a constant gating time

    International Nuclear Information System (INIS)

    Yabu-uti, B.F.C.; Roversi, J.A.

    2011-01-01

    We propose an alternative scheme to implement a two-qubit controlled-R (rotation) gate in the hybrid atom-CCA (coupled cavities array) system. Our scheme results in a constant gating time and, with an adjustable qubit-bus coupling (atom-resonator), one can specify a particular rotation R on the target qubit. We believe that this proposal may open promising perspectives for networking quantum information processors and implementing distributed and scalable quantum computation. -- Highlights: → We propose an alternative two-qubit controlled-rotation gate implementation. → Our gate is realized in a constant gating time for any rotation. → A particular rotation on the target qubit can be specified by an adjustable qubit-bus coupling. → Our proposal may open promising perspectives for implementing distributed and scalable quantum computation.

  19. Two-qubit Bell inequality for which positive operator-valued measurements are relevant

    International Nuclear Information System (INIS)

    Vertesi, T.; Bene, E.

    2010-01-01

    A bipartite Bell inequality is derived which is maximally violated on the two-qubit state space if measurements describable by positive operator valued measure (POVM) elements are allowed, rather than restricting the possible measurements to projective ones. In particular, the presented Bell inequality requires POVMs in order to be maximally violated by a maximally entangled two-qubit state. This answers a question raised by N. Gisin [in Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle: Essays in Honour of Abner Shimony, edited by W. C. Myrvold and J. Christian (Springer, The Netherlands, 2009), pp. 125-138].

  20. Quantum learning: asymptotically optimal classification of qubit states

    International Nuclear Information System (INIS)

    Guta, Madalin; Kotlowski, Wojciech

    2010-01-01

    Pattern recognition is a central topic in learning theory, with numerous applications such as voice and text recognition, image analysis and computer diagnosis. The statistical setup in classification is the following: we are given an i.i.d. training set (X 1 , Y 1 ), ... , (X n , Y n ), where X i represents a feature and Y i in{0, 1} is a label attached to that feature. The underlying joint distribution of (X, Y) is unknown, but we can learn about it from the training set, and we aim at devising low error classifiers f: X→Y used to predict the label of new incoming features. In this paper, we solve a quantum analogue of this problem, namely the classification of two arbitrary unknown mixed qubit states. Given a number of 'training' copies from each of the states, we would like to 'learn' about them by performing a measurement on the training set. The outcome is then used to design measurements for the classification of future systems with unknown labels. We found the asymptotically optimal classification strategy and show that typically it performs strictly better than a plug-in strategy, which consists of estimating the states separately and then discriminating between them using the Helstrom measurement. The figure of merit is given by the excess risk equal to the difference between the probability of error and the probability of error of the optimal measurement for known states. We show that the excess risk scales as n -1 and compute the exact constant of the rate.

  1. Qubit-qubit entanglement dynamics control via external classical pumping and Kerr nonlinearity mediated by a single detuned cavity field powered by two-photon processes

    Science.gov (United States)

    Ateto, M. S.

    2017-11-01

    The nonlinear time-dependent two-photon Hamiltonian of a couple of classically pumped independent qubits is analytically solved, and the corresponding time evolution unitary operator, in an exact form, is derived. Using the concurrence, entanglement dynamics between the qubits under the influence of a wide range of effective parameters are examined and, in detail, analyzed. Observations analysis is documented with aid of the field phase-space distribution Wigner function. A couple of initial qubit states is considered, namely similar excited states and a Bell-like pure state. It is demonstrated that an initial Bell-like pure state is as well typical initial qubits setting for robust, regular and a high degree of entanglement. Moreover, it is established that high-constant Kerr media represent an effective tool for generating periodical entanglement at fixed time cycles of maxima reach unity forever when qubits are initially in a Bell-like pure state. Further, it is showed that the medium strength of the classical pumping stimulates efficiently qubits entanglement, specially, when the interaction occurs off resonantly. However, the high-intensity pumping thermalizes the coherent distribution of photons, thus, the least photons number is used and, hence, the least minimum degree of qubits entanglement could be created. Furthermore, when the cavity field and external pumping are detuned, the external pumping acts like an auxiliary effective frequency for the cavity, as a result, the field Gaussian distribution acquires linear chirps, and consequently, more entanglement revivals appear in the same cycle during timescale.

  2. Probabilistic Teleportation of Arbitrary Two-Qubit Quantum State via Non-Symmetric Quantum Channel

    Directory of Open Access Journals (Sweden)

    Kan Wang

    2018-03-01

    Full Text Available Quantum teleportation has significant meaning in quantum information. In particular, entangled states can also be used for perfectly teleporting the quantum state with some probability. This is more practical and efficient in practice. In this paper, we propose schemes to use non-symmetric quantum channel combinations for probabilistic teleportation of an arbitrary two-qubit quantum state from sender to receiver. The non-symmetric quantum channel is composed of a two-qubit partially entangled state and a three-qubit partially entangled state, where partially entangled Greenberger–Horne–Zeilinger (GHZ state and W state are considered, respectively. All schemes are presented in detail and the unitary operations required are given in concise formulas. Methods are provided for reducing classical communication cost and combining operations to simplify the manipulation. Moreover, our schemes are flexible and applicable in different situations.

  3. Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: +174Yb and +171Yb

    Science.gov (United States)

    Brown, Natalie C.; Brown, Kenneth R.

    2018-05-01

    Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here we compare a Zeeman qubit (+174Yb) to a hyperfine qubit (+171Yb) in the context of the surface code. We find that the number of physical qubits required to reach a specific logical qubit error can be reduced by using +174Yb if the magnetic field can be stabilized with fluctuations smaller than 10 μ G .

  4. Long-lived qubit from three spin-(1/2) atoms

    International Nuclear Information System (INIS)

    Han Rui; Loerch, Niels; Suzuki, Jun; Englert, Berthold-Georg

    2011-01-01

    A system of three spin-(1/2) atoms allows the construction of a reference-frame-free (RFF) qubit in the subspace with total angular momentum j=1/2. The RFF qubit stays coherent perfectly as long as the spins of the three atoms are affected homogeneously. The inhomogeneous evolution of the atoms causes decoherence, but this decoherence can be suppressed efficiently by applying a bias magnetic field of modest strength perpendicular to the plane of the atoms. The resulting lifetime of the RFF qubit can be many days, making RFF qubits of this kind promising candidates for quantum information storage units. Specifically, we examine the situation of three 6 Li atoms trapped in a CO 2 -laser-generated optical lattice and find that, with conservatively estimated parameters, a stored qubit maintains a fidelity of 0.9999 for two hours.

  5. The quantum dynamics of two qubits inside two distant microcavities connected via a single-mode optical fiber

    International Nuclear Information System (INIS)

    Nguyen, Van Hieu; Nguyen, Bich Ha; Duong, Hai Trieu

    2010-01-01

    For application to studying the transmission of quantum information, also called quantum communication, between two identical qubits placed inside two identical single-mode microcavities connected via a single-mode optical fiber, the time evolution of this system is investigated. In the Markovian approximation, the von Neumann equation for its reduced density matrix contains a completely positive linear operator called the Liouvillian operator describing the decoherence of this system due to its interaction with the environment. By using the Linblad formula for the Liouvillian operator, a system of rate equations can be derived. In the special case of resonance between the energy difference of two states in each qubit and the energy of the fiber mode, the rate equations for the system excited up to the first level are solved in first order approximation with respect to the decoherence constants. It is shown that when there is no decoherence, the perfect quantum state transmission between two qubits can take place if the physical parameters of the system satisfy definite conditions. A possible extension to studying the system excited to high energy states is also discussed

  6. Multihop teleportation of two-qubit state via the composite GHZ–Bell channel

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhen-Zhen [State Key Lab. of Millimeter Waves, Southeast University, Nanjing, 210096 (China); Yu, Xu-Tao, E-mail: yuxutao@seu.edu.cn [State Key Lab. of Millimeter Waves, Southeast University, Nanjing, 210096 (China); Gong, Yan-Xiao [Department of Physics, Southeast University, Nanjing, 211189 (China); Zhang, Zai-Chen [National Mobile Communications Research Lab, Southeast University, Nanjing, 210096 (China)

    2017-01-15

    A multihop teleportation protocol in quantum communication network is introduced to teleport an arbitrary two-qubit state, between two nodes without directly sharing entanglement pairs. Quantum channels are built among neighbor nodes based on a five-qubit entangled system composed of GHZ and Bell pairs. The von Neumann measurements in all intermediate nodes and the source node are implemented, and then the measurement outcomes are sent to the destination node independently. After collecting all the measurement outcomes at the destination node, an efficient method is proposed to calculate the unitary operations for transforming the receiver's states to the state teleported. Therefore, only adopting the proper unitary operations at the destination node, the desired quantum state can be recovered perfectly. The transmission flexibility and efficiency of quantum network with composite GHZ–Bell channel are improved by transmitting measurement outcomes of all nodes in parallelism and reducing hop-by-hop teleportation delay. - Highlights: • A multihop teleportation protocol is introduced to teleport two-qubit state. • Quantum channels are built by composite of GHZ and Bell pairs. • Measurement outcomes are sent to the destination node independently. • Destination node calculates and adopts unitary operations to recover initial state.

  7. Three-electron spin qubits

    Science.gov (United States)

    Russ, Maximilian; Burkard, Guido

    2017-10-01

    The goal of this article is to review the progress of three-electron spin qubits from their inception to the state of the art. We direct the main focus towards the exchange-only qubit (Bacon et al 2000 Phys. Rev. Lett. 85 1758-61, DiVincenzo et al 2000 Nature 408 339) and its derived versions, e.g. the resonant exchange (RX) qubit, but we also discuss other qubit implementations using three electron spins. For each three-spin qubit we describe the qubit model, the envisioned physical realization, the implementations of single-qubit operations, as well as the read-out and initialization schemes. Two-qubit gates and decoherence properties are discussed for the RX qubit and the exchange-only qubit, thereby completing the list of requirements for quantum computation for a viable candidate qubit implementation. We start by describing the full system of three electrons in a triple quantum dot, then discuss the charge-stability diagram, restricting ourselves to the relevant subsystem, introduce the qubit states, and discuss important transitions to other charge states (Russ et al 2016 Phys. Rev. B 94 165411). Introducing the various qubit implementations, we begin with the exchange-only qubit (DiVincenzo et al 2000 Nature 408 339, Laird et al 2010 Phys. Rev. B 82 075403), followed by the RX qubit (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502), the spin-charge qubit (Kyriakidis and Burkard 2007 Phys. Rev. B 75 115324), and the hybrid qubit (Shi et al 2012 Phys. Rev. Lett. 108 140503, Koh et al 2012 Phys. Rev. Lett. 109 250503, Cao et al 2016 Phys. Rev. Lett. 116 086801, Thorgrimsson et al 2016 arXiv:1611.04945). The main focus will be on the exchange-only qubit and its modification, the RX qubit, whose single-qubit operations are realized by driving the qubit at its resonant frequency in the microwave range similar to electron spin resonance. Two different types of two-qubit operations are presented for the exchange

  8. Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences

    International Nuclear Information System (INIS)

    Mukhtar, Musawwadah; Soh, Wee Tee; Saw, Thuan Beng; Gong, Jiangbin

    2010-01-01

    Future quantum technologies rely heavily on good protection of quantum entanglement against environment-induced decoherence. A recent study showed that an extension of Uhrig's dynamical decoupling (UDD) sequence can (in theory) lock an arbitrary but known two-qubit entangled state to the Nth order using a sequence of N control pulses [Mukhtar et al., Phys. Rev. A 81, 012331 (2010)]. By nesting three layers of explicitly constructed UDD sequences, here we first consider the protection of unknown two-qubit states as superposition of two known basis states, without making assumptions of the system-environment coupling. It is found that the obtained decoherence suppression can be highly sensitive to the ordering of the three UDD layers and can be remarkably effective with the correct ordering. The detailed theoretical results are useful for general understanding of the nature of controlled quantum dynamics under nested UDD. As an extension of our three-layer UDD, it is finally pointed out that a completely unknown two-qubit state can be protected by nesting four layers of UDD sequences. This work indicates that when UDD is applicable (e.g., when the environment has a sharp frequency cutoff and when control pulses can be taken as instantaneous pulses), dynamical decoupling using nested UDD sequences is a powerful approach for entanglement protection.

  9. Flux qubit to a transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Haeberlein, Max; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Xie, Edwar; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    Within the last decade, superconducting qubits coupled to microwave resonators have been extensively studied within the framework of quantum electrodynamics. Ultimately, quantum computing seems within reach in such architectures. However, error correction schemes are necessary to achieve the required fidelity in multi-qubit operations, drastically increasing the number of qubits involved. In this work, we couple a flux qubit to a transmission line where it interacts with itinerant microwave photons granting access to all-optical quantum computing. In this approach, travelling photons generate entanglement between two waveguides, containing the qubit information. In this presentation, we show experimental data on flux qubits coupled to transmission lines. Furthermore, we will discuss entanglement generation between two separate paths.

  10. Coupled Qubits for Next Generation Quantum Annealing: Improving Coherence

    Science.gov (United States)

    Weber, Steven; Samach, Gabriel; Hover, David; Rosenberg, Danna; Yoder, Jonilyn; Kim, David K.; Kerman, Andrew; Oliver, William D.

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times, limited primarily by the use of large persistent currents. Here, we examine an alternative approach, using flux qubits with smaller persistent currents and longer coherence times. We demonstrate tunable coupling, a basic building-block for quantum annealing, between two such qubits. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  11. Quantum teleportation via a two-qubit Heisenberg XY chain-effects of anisotropy and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yeo Ye [Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB (United Kingdom); Liu Tongqi [Department of Engineering, Trumpington Street, Cambridge CB3 1PZ (United Kingdom); Lu Yuen [Computer Laboratory, William Gates Building, 15 J J Thomson Avenue, Cambridge CB3 0FD (United Kingdom); Yang Qizhong [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2005-04-08

    In this paper we study the influence of anisotropy on the usefulness of the entanglement in a two-qubit Heisenberg XY chain at thermal equilibrium in the presence of an external magnetic field, as a resource for quantum teleportation via the standard teleportation protocol. We show that the nonzero thermal entanglement produced by adjusting the external magnetic field beyond some critical strength is a useful resource. We also consider entanglement teleportation via two two-qubit Heisenberg XY chains.

  12. Quantum teleportation via a two-qubit Heisenberg XY chain-effects of anisotropy and magnetic field

    International Nuclear Information System (INIS)

    Yeo Ye; Liu Tongqi; Lu Yuen; Yang Qizhong

    2005-01-01

    In this paper we study the influence of anisotropy on the usefulness of the entanglement in a two-qubit Heisenberg XY chain at thermal equilibrium in the presence of an external magnetic field, as a resource for quantum teleportation via the standard teleportation protocol. We show that the nonzero thermal entanglement produced by adjusting the external magnetic field beyond some critical strength is a useful resource. We also consider entanglement teleportation via two two-qubit Heisenberg XY chains

  13. Two-qubit quantum computing in a projected subspace

    International Nuclear Information System (INIS)

    Bi Qiao; Ruda, H.E.; Zhan, M.S.

    2002-01-01

    A formulation for performing quantum computing in a projected subspace is presented, based on the subdynamical kinetic equation (SKE) for an open quantum system. The eigenvectors of the kinetic equation are shown to remain invariant before and after interaction with the environment. However, the eigenvalues in the projected subspace exhibit a type of phase shift to the evolutionary states. This phase shift does not destroy the decoherence-free (DF) property of the subspace because the associated fidelity is 1. This permits a universal formalism to be presented--the eigenprojectors of the free part of the Hamiltonian for the system and bath may be used to construct a DF projected subspace based on the SKE. To eliminate possible phase or unitary errors induced by the change in the eigenvalues, a cancellation technique is proposed, using the adjustment of the coupling time, and applied to a two-qubit computing system. A general criteria for constructing a DF-projected subspace from the SKE is discussed. Finally, a proposal for using triangulation to realize a decoherence-free subsystem based on SKE is presented. The concrete formulation for a two-qubit model is given exactly. Our approach is general and appears to be applicable to any type of decoherence

  14. Electrical Manipulation of Donor Spin Qubits in Silicon and Germanium

    Science.gov (United States)

    Sigillito, Anthony James

    Many proposals for quantum information devices rely on electronic or nuclear spins in semiconductors because of their long coherence times and compatibility with industrial fabrication processes. One of the most notable qubits is the electron spin bound to phosphorus donors in silicon, which offers coherence times exceeding seconds at low temperatures. These donors are naturally isolated from their environments to the extent that silicon has been coined a "semiconductor vacuum". While this makes for ultra-coherent qubits, it is difficult to couple two remote donors so quantum information proposals rely on high density arrays of qubits. Here, single qubit addressability becomes an issue. Ideally one would address individual qubits using electric fields which can be easily confined. Typically these schemes rely on tuning a donor spin qubit onto and off of resonance with a magnetic driving field. In this thesis, we measure the electrical tunability of phosphorus donors in silicon and use the extracted parameters to estimate the effects of electric-field noise on qubit coherence times. Our measurements show that donor ionization may set in before electron spins can be sufficiently tuned. We therefore explore two alternative options for qubit addressability. First, we demonstrate that nuclear spin qubits can be directly driven using electric fields instead of magnetic fields and show that this approach offers several advantages over magnetically driven spin resonance. In particular, spin transitions can occur at half the spin resonance frequency and double quantum transitions (magnetic-dipole forbidden) can occur. In a second approach to realizing tunable qubits in semiconductors, we explore the option of replacing silicon with germanium. We first measure the coherence and relaxation times for shallow donor spin qubits in natural and isotopically enriched germanium. We find that in isotopically enriched material, coherence times can exceed 1 ms and are limited by a

  15. Adiabatic quantum computing with spin qubits hosted by molecules.

    Science.gov (United States)

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  16. A CMOS silicon spin qubit

    Science.gov (United States)

    Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; de Franceschi, S.

    2016-11-01

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.

  17. Quantum discord for a central two-qubit system coupled to an XY-spin-chain environment

    International Nuclear Information System (INIS)

    Liu Benqiong; Shao Bin; Zou Jian

    2010-01-01

    We investigate the dynamic behaviors of quantum discord for a central two-qubit system coupled to an XY-spin-chain environment. In the weak-coupling regime, we show that the quantum discord for the two central qubits can become minimized rapidly close to the critical point of a quantum phase transition. By considering the two qubits that are initially prepared in the Werner state, we study the evolution of the quantum discord and that of entanglement under the same conditions. Our results imply that entanglement can disappear completely after a finite time, while the quantum discord decreases and tends to be a stable value according to the initial-state parameter for a very-long-time interval. In this sense, the quantum discord is more robust than entanglement for the quantum system exposed to the environment. The relation between the quantum correlations and the classical correlation is also shown for two particular cases.

  18. Definition and evolution of quantum cellular automata with two qubits per cell

    International Nuclear Information System (INIS)

    Karafyllidis, Ioannis G.

    2004-01-01

    Studies of quantum computer implementations suggest cellular quantum computer architectures. These architectures can simulate the evolution of quantum cellular automata, which can possibly simulate both quantum and classical physical systems and processes. It is however known that except for the trivial case, unitary evolution of one-dimensional homogeneous quantum cellular automata with one qubit per cell is not possible. Quantum cellular automata that comprise two qubits per cell are defined and their evolution is studied using a quantum computer simulator. The evolution is unitary and its linearity manifests itself as a periodic structure in the probability distribution patterns

  19. Characterization of classical static noise via qubit as probe

    Science.gov (United States)

    Javed, Muhammad; Khan, Salman; Ullah, Sayed Arif

    2018-03-01

    The dynamics of quantum Fisher information (QFI) of a single qubit coupled to classical static noise is investigated. The analytical relation for QFI fixes the optimal initial state of the qubit that maximizes it. An approximate limit for the time of coupling that leads to physically useful results is identified. Moreover, using the approach of quantum estimation theory and the analytical relation for QFI, the qubit is used as a probe to precisely estimate the disordered parameter of the environment. Relation for optimal interaction time with the environment is obtained, and condition for the optimal measurement of the noise parameter of the environment is given. It is shown that all values, in the mentioned range, of the noise parameter are estimable with equal precision. A comparison of our results with the previous studies in different classical environments is made.

  20. Entanglement Teleportation via a Two-Qubit System with Anisotropic Couplings under a Different Nonuniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    QIN Meng

    2013-01-01

    We examine entanglement teleportation,characterized by average fidelity,of two-qubit XY Z spin chain under different nonuniform magnetic field.The entanglement teleportation and the fidelity of entanglement teleportation are investigated separately.We show explicitly that the fidelity of entanglement teleportation can be enhanced by changing the direction of the magnetic field.This means that we can always get optimal fidelity by choosing the directions of magnetic field in the process of quantum teleportation.Moreover,the results show that in some cases the ferromagnetic chain aiso is a quaiified candidate in the process of teleportation protocol.

  1. Speed of quantum evolution of entangled two qubits states: Local vs. global evolution

    International Nuclear Information System (INIS)

    Curilef, S; Zander, C; Plastino, A R

    2008-01-01

    There is a lower bound for the 'speed' of quantum evolution as measured by the time needed to reach an orthogonal state. We show that, for two-qubits systems, states saturating the quantum speed limit tend to exhibit a small amount of local evolution, as measured by the fidelity between the initial and final single qubit states after the time τ required by the composite system to reach an orthogonal state. Consequently, a trade-off between the speed of global evolution and the amount of local evolution seems to be at work.

  2. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....

  3. Generation of concurrence between two qubits locally coupled to a one-dimensional spin chain

    Science.gov (United States)

    Nag, Tanay; Dutta, Amit

    2016-08-01

    We consider a generalized central spin model, consisting of two central qubits and an environmental spin chain (with periodic boundary condition) to which these central qubits are locally and weakly connected either at the same site or at two different sites separated by a distance d . Our purpose is to study the subsequent temporal generation of entanglement, quantified by concurrence, when initially the qubits are in an unentangled state. In the equilibrium situation, we show that the concurrence survives for a larger value of d when the environmental spin chain is critical. Importantly, a common feature observed both in the equilibrium and the nonequilibrium situations while the latter is created by a sudden but global change of the environmental transverse field is that the two qubits become maximally entangled for the critical quenching. Following a nonequilibrium evolution of the spin chain, our study for d ≠0 indicates that there exists a threshold time above which concurrence attains a finite value. Additionally, we show that the number of independent decohering channels (DCs) is determined by d as well as the local difference of the transverse field of the two underlying Hamiltonians governing the time evolution; the concurrence can be enhanced by a higher number of independent channels. The qualitatively similar behavior displayed by the concurrence for critical and off-critical quenches, as reported here, is characterized by analyzing the nonequilibrium evolution of these channels. The concurrence is maximum when the decoherence factor or the echo associated with the most rapidly DC decays to zero; on the contrary, the condition when the concurrence vanishes is determined nontrivially by the associated decay of one of the intermediate DCs. Analyzing the reduced density of a single qubit, we also explain the observation that the dephasing rate is always slower than the unentanglement rate. We further establish that the maximally and minimally decohering

  4. Negativity of Two-Qubit System Through Spin Coherent States

    International Nuclear Information System (INIS)

    Berrada, K.; El Baz, M.; Hassouni, Y.; Eleuch, H.

    2009-12-01

    Using the negativity, we express and analyze the entanglement of two-qubit nonorthogonal pure states through the spin coherent states. We formulate this measure in terms of the amplitudes of coherent states and we give the conditions for the minimal and the maximal entanglement. We generalize this formalism to the case of a class of mixed states and show that the negativity is also a function of probabilities. (author)

  5. Non-Markovian dynamics of a qubit due to single-photon scattering in a waveguide

    Science.gov (United States)

    Fang, Yao-Lung L.; Ciccarello, Francesco; Baranger, Harold U.

    2018-04-01

    We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to show the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit and the end of the semi-infinite waveguide.

  6. Amplitude damping for single-qubit system with single-qubit mixed-state environment

    International Nuclear Information System (INIS)

    Jung, Eylee; Hwang, Mi-Ra; Ju, You Hwan; Park, D K; Kim, Hungsoo; Kim, Min-Soo; Son, Jin-Woo

    2008-01-01

    We study a generalized amplitude damping channel when environment is initially in the single-qubit mixed state. Representing the affine transformation of the generalized amplitude damping by a three-dimensional volume, we plot explicitly the volume occupied by the channels simulatable by a single-qubit mixed-state environment. As expected, this volume is embedded in the total volume by the channels which is simulated by a two-qubit enviroment. The volume ratio is approximately 0.08 which is much smaller than 3/8, the volume ratio for generalized depolarizing channels

  7. Two local observables are sufficient to characterize maximally entangled states of N qubits

    Science.gov (United States)

    Yan, Fengli; Gao, Ting; Chitambar, Eric

    2011-02-01

    Maximally entangled states (MES) represent a valuable resource in quantum information processing. In N-qubit systems the MES are N-GHZ states [i.e., the collection of |GHZN>=(1)/(2)(|00…0>+|11…1>)] and its local unitary (LU) equivalences. While it is well known that such states are uniquely stabilized by N commuting observables, in this article we consider the minimum number of noncommuting observables needed to characterize an N-qubit MES as the unique common eigenstate. Here, we prove, rather surprisingly, that in this general case any N-GHZ state can be uniquely stabilized by only two observables. Thus, for the task of MES certification, only two correlated measurements are required with each party observing the spin of his or her system along one of two directions.

  8. Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force

    Science.gov (United States)

    Leung, Pak Hong; Landsman, Kevin A.; Figgatt, Caroline; Linke, Norbert M.; Monroe, Christopher; Brown, Kenneth R.

    2018-01-01

    In an ion trap quantum computer, collective motional modes are used to entangle two or more qubits in order to execute multiqubit logical gates. Any residual entanglement between the internal and motional states of the ions results in loss of fidelity, especially when there are many spectator ions in the crystal. We propose using a frequency-modulated driving force to minimize such errors. In simulation, we obtained an optimized frequency-modulated 2-qubit gate that can suppress errors to less than 0.01% and is robust against frequency drifts over ±1 kHz . Experimentally, we have obtained a 2-qubit gate fidelity of 98.3(4)%, a state-of-the-art result for 2-qubit gates with five ions.

  9. The Quantum Socket: Wiring for Superconducting Qubits - Part 1

    Science.gov (United States)

    McConkey, T. G.; Bejanin, J. H.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum systems with ten superconducting quantum bits (qubits) have been realized, making it possible to show basic quantum error correction (QEC) algorithms. However, a truly scalable architecture has not been developed yet. QEC requires a two-dimensional array of qubits, restricting any interconnection to external classical systems to the third axis. In this talk, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket employs three-dimensional wires and makes it possible to connect classical electronics with quantum circuits more densely and accurately than methods based on wire bonding. The three-dimensional wires are based on spring-loaded pins engineered to insure compatibility with quantum computing applications. Extensive design work and machining was required, with focus on material quality to prevent magnetic impurities. Microwave simulations were undertaken to optimize the design, focusing on the interface between the micro-connector and an on-chip coplanar waveguide pad. Simulations revealed good performance from DC to 10 GHz and were later confirmed against experimental measurements.

  10. Generation of cluster states with Josephson charge qubits

    International Nuclear Information System (INIS)

    Zheng, Xiao-Hu; Dong, Ping; Xue, Zheng-Yuan; Cao, Zhuo-Liang

    2007-01-01

    A scheme for the generation of the cluster states based on the Josephson charge qubits is proposed. The two-qubit generation case is introduced first, and then generalized to multi-qubit case. The successful probability and fidelity of current multi-qubit cluster state are both 1.0. The scheme is simple and can be easily manipulated, because any two charge qubits can be selectively and effectively coupled by a common inductance. More manipulations can be realized before decoherence sets in. All the devices in the scheme are well within the current technology

  11. Genetic algorithm based on qubits and quantum gates

    International Nuclear Information System (INIS)

    Silva, Joao Batista Rosa; Ramos, Rubens Viana

    2003-01-01

    Full text: Genetic algorithm, a computational technique based on the evolution of the species, in which a possible solution of the problem is coded in a binary string, called chromosome, has been used successfully in several kinds of problems, where the search of a minimal or a maximal value is necessary, even when local minima are present. A natural generalization of a binary string is a qubit string. Hence, it is possible to use the structure of a genetic algorithm having a sequence of qubits as a chromosome and using quantum operations in the reproduction in order to find the best solution in some problems of quantum information. For example, given a unitary matrix U what is the pair of qubits that, when applied at the input, provides the output state with maximal entanglement? In order to solve this problem, a population of chromosomes of two qubits was created. The crossover was performed applying the quantum gates CNOT and SWAP at the pair of qubits, while the mutation was performed applying the quantum gates Hadamard, Z and Not in a single qubit. The result was compared with a classical genetic algorithm used to solve the same problem. A hundred simulations using the same U matrix was performed. Both algorithms, hereafter named by CGA (classical) and QGA (using qu bits), reached good results close to 1 however, the number of generations needed to find the best result was lower for the QGA. Another problem where the QGA can be useful is in the calculation of the relative entropy of entanglement. We have tested our algorithm using 100 pure states chosen randomly. The stop criterion used was the error lower than 0.01. The main advantages of QGA are its good precision, robustness and very easy implementation. The main disadvantage is its low velocity, as happen for all kind of genetic algorithms. (author)

  12. Spin-orbit mediated control of spin qubits

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A.S; Flensberg, Karsten

    2006-01-01

    We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is bas...... on a combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random electrical fluctuations in the electrodes defining the quantum dots....

  13. Phonon-assisted relaxation and decoherence of singlet-triplet qubits in Si/SiGe quantum dots

    Directory of Open Access Journals (Sweden)

    Viktoriia Kornich

    2018-05-01

    Full Text Available We study theoretically the phonon-induced relaxation and decoherence of spin states of two electrons in a lateral double quantum dot in a SiGe/Si/SiGe heterostructure. We consider two types of singlet-triplet spin qubits and calculate their relaxation and decoherence times, in particular as a function of level hybridization, temperature, magnetic field, spin orbit interaction, and detuning between the quantum dots, using Bloch-Redfield theory. We show that the magnetic field gradient, which is usually applied to operate the spin qubit, may reduce the relaxation time by more than an order of magnitude. Using this insight, we identify an optimal regime where the magnetic field gradient does not affect the relaxation time significantly, and we propose regimes of longest decay times. We take into account the effects of one-phonon and two-phonon processes and suggest how our theory can be tested experimentally. The spin lifetimes we find here for Si-based quantum dots are significantly longer than the ones reported for their GaAs counterparts.

  14. Autonomous calibration of single spin qubit operations

    Science.gov (United States)

    Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor

    2017-12-01

    Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.

  15. Hybrid quantum systems: Outsourcing superconducting qubits

    Science.gov (United States)

    Cleland, Andrew

    Superconducting qubits offer excellent prospects for manipulating quantum information, with good qubit lifetimes, high fidelity single- and two-qubit gates, and straightforward scalability (admittedly with multi-dimensional interconnect challenges). One interesting route for experimental development is the exploration of hybrid systems, i.e. coupling superconducting qubits to other systems. I will report on our group's efforts to develop approaches that will allow interfacing superconducting qubits in a quantum-coherent fashion to spin defects in solids, to optomechanical devices, and to resonant nanomechanical structures. The longer term goals of these efforts include transferring quantum states between different qubit systems; generating and receiving ``flying'' acoustic phonon-based as well as optical photon-based qubits; and ultimately developing systems that can be used for quantum memory, quantum computation and quantum communication, the last in both the microwave and fiber telecommunications bands. Work is supported by Grants from AFOSR, ARO, DOE and NSF.

  16. Controllable gaussian-qubit interface for extremal quantum state engineering.

    Science.gov (United States)

    Adesso, Gerardo; Campbell, Steve; Illuminati, Fabrizio; Paternostro, Mauro

    2010-06-18

    We study state engineering through bilinear interactions between two remote qubits and two-mode gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.

  17. Silicon based quantum dot hybrid qubits

    Science.gov (United States)

    Kim, Dohun

    2015-03-01

    The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields π rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories

  18. Non-local correlations via Wigner-Yanase skew information in two SC-qubit having mutual interaction under phase decoherence

    Science.gov (United States)

    Mohamed, Abdel-Baset A.

    2017-10-01

    An analytical solution of the master equation that describes a superconducting cavity containing two coupled superconducting charge qubits is obtained. Quantum-mechanical correlations based on Wigner-Yanase skew information, as local quantum uncertainty and uncertainty-induced quantum non-locality, are compared to the concurrence under the effects of the phase decoherence. Local quantum uncertainty exhibits sudden changes during its time evolution and revival process. Sudden death and sudden birth occur only for entanglement, depending on the initial state of the two coupled charge qubits, while the correlations of skew information does not vanish. The quantum correlations of skew information are found to be sensitive to the dephasing rate, the photons number in the cavity, the interaction strength between the two qubits, and the qubit distribution angle of the initial state. With a proper initial state, the stationary correlation of the skew information has a non-zero stationary value for a long time interval under the phase decoherence, that it may be useful in quantum information and computation processes.

  19. Decoherence of Topological Qubit in Linear Motions: Decoherence Impedance, Anti-Unruh and Information Backflow

    Science.gov (United States)

    Liu, Pei-Hua; Lin, Feng-Li

    2017-08-01

    In this work we study the decoherence of topological qubits in linear motions. The topological qubit is made of two spatially-separated Majorana zero modes which are the edge excitations of Kitaev chain [1]. In a previous work [2], it was shown by one of us and his collaborators that the decoherence of topological qubit is exactly solvable, moreover, topological qubit is robust against decoherence in the super-Ohmic environments. We extend the setup of [2] to consider the effect of motions on the decoherence of the topological qubits. Our results show the thermalization as expected by Unruh effect. Besides, we also find the so-called “anti-Unruh” phenomena which shows the rate of decoherence is anti-correlated with the acceleration in short-time scale. Moreover, we modulate the motion patterns of each Majorana modes and find information backflow and the preservation of coherence even with nonzero accelerations. This is the characteristics of the underlying non-Markovian reduced dynamics. We conclude that he topological qubit is in general more robust against decoherence than the usual qubits, and can be take into serious consideration for realistic implementation to have robust quantum computation and communication. This talk is based on our work in [3].

  20. How to implement a quantum algorithm on a large number of qubits by controlling one central qubit

    Science.gov (United States)

    Zagoskin, Alexander; Ashhab, Sahel; Johansson, J. R.; Nori, Franco

    2010-03-01

    It is desirable to minimize the number of control parameters needed to perform a quantum algorithm. We show that, under certain conditions, an entire quantum algorithm can be efficiently implemented by controlling a single central qubit in a quantum computer. We also show that the different system parameters do not need to be designed accurately during fabrication. They can be determined through the response of the central qubit to external driving. Our proposal is well suited for hybrid architectures that combine microscopic and macroscopic qubits. More details can be found in: A.M. Zagoskin, S. Ashhab, J.R. Johansson, F. Nori, Quantum two-level systems in Josephson junctions as naturally formed qubits, Phys. Rev. Lett. 97, 077001 (2006); and S. Ashhab, J.R. Johansson, F. Nori, Rabi oscillations in a qubit coupled to a quantum two-level system, New J. Phys. 8, 103 (2006).

  1. Optimal control of hybrid qubits: Implementing the quantum permutation algorithm

    Science.gov (United States)

    Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.

    2018-03-01

    The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.

  2. Optimal control of multi-level quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Robert M.

    2010-12-02

    This thesis is concerned with the control of quantum systems. Given a Hamiltonian model of a quantum system, we are interested in finding controls - typically shaped electromagnetic pulses - that steer the evolution of the system toward a desired target operation. For this we employ a numerical optimisation method known as the GRAPE algorithm. For particular experimental systems, we design control schemes that respect constraints of robustness and addressability, and are within the reach of the experimental hardware. A general procedure is given for specifying a Hamiltonian model of a driven N-level system and converting it to an appropriate rotating frame. This is then applied together with the numerical algorithm to design improved schemes for two different systems, where laser fields manipulate orbital and hyperfine states of Pr{sup 3+} and Rb. The generation of cluster states in Ising-coupled systems is also studied. We find that, in the ideal case, the solution of evolving only under the coupling Hamiltonian is not time-optimal. This surprising result is in contrast to the known cases for unitary gates. For a symmetrised three-qubit example, we provide a geometrical interpretation of this. Numerically optimised control schemes are then developed for a nonideal coupling topology, modelling an experimental configuration of trapped ions. Controls for the implementation of the two-qubit Deutsch and Grover algorithms are designed for a pair of {sup 13}C nuclear spins at a nitrogen vacancy center in diamond. These implementations are robust to experimental errors, and found to be reproduced with high accuracy on a VFG-150 pulse generator. We also consider two-qubit gate synthesis in a system of superconducting qubits coupled by microwave resonators known as the cavity grid. We find that the optimised schemes allow two-qubit operations to be performed between an arbitrary qubit pair on the grid with only a small time overhead, with speedups of 2-4 over the existing

  3. Optimal control of multi-level quantum systems

    International Nuclear Information System (INIS)

    Fisher, Robert M.

    2010-01-01

    This thesis is concerned with the control of quantum systems. Given a Hamiltonian model of a quantum system, we are interested in finding controls - typically shaped electromagnetic pulses - that steer the evolution of the system toward a desired target operation. For this we employ a numerical optimisation method known as the GRAPE algorithm. For particular experimental systems, we design control schemes that respect constraints of robustness and addressability, and are within the reach of the experimental hardware. A general procedure is given for specifying a Hamiltonian model of a driven N-level system and converting it to an appropriate rotating frame. This is then applied together with the numerical algorithm to design improved schemes for two different systems, where laser fields manipulate orbital and hyperfine states of Pr 3+ and Rb. The generation of cluster states in Ising-coupled systems is also studied. We find that, in the ideal case, the solution of evolving only under the coupling Hamiltonian is not time-optimal. This surprising result is in contrast to the known cases for unitary gates. For a symmetrised three-qubit example, we provide a geometrical interpretation of this. Numerically optimised control schemes are then developed for a nonideal coupling topology, modelling an experimental configuration of trapped ions. Controls for the implementation of the two-qubit Deutsch and Grover algorithms are designed for a pair of 13 C nuclear spins at a nitrogen vacancy center in diamond. These implementations are robust to experimental errors, and found to be reproduced with high accuracy on a VFG-150 pulse generator. We also consider two-qubit gate synthesis in a system of superconducting qubits coupled by microwave resonators known as the cavity grid. We find that the optimised schemes allow two-qubit operations to be performed between an arbitrary qubit pair on the grid with only a small time overhead, with speedups of 2-4 over the existing schemes

  4. Single-photon three-qubit quantum logic using spatial light modulators.

    Science.gov (United States)

    Kagalwala, Kumel H; Di Giuseppe, Giovanni; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-09-29

    The information-carrying capacity of a single photon can be vastly expanded by exploiting its multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can be encoded per photon, to date only two-qubit single-photon quantum operations have been realized. Here, we report an experimental demonstration of three-qubit single-photon, linear, deterministic quantum gates that exploit photon polarization and the two-dimensional spatial-parity-symmetry of the transverse single-photon field. These gates are implemented using a polarization-sensitive spatial light modulator that provides a robust, non-interferometric, versatile platform for implementing controlled unitary gates. Polarization here represents the control qubit for either separable or entangling unitary operations on the two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit Greenberger-Horne-Zeilinger and W states, which is confirmed by tomographical reconstruction of single-photon density matrices. This strategy provides access to a wide range of three-qubit states and operations for use in few-qubit quantum information processing protocols.Photons are essential for quantum information processing, but to date only two-qubit single-photon operations have been realized. Here the authors demonstrate experimentally a three-qubit single-photon linear deterministic quantum gate by exploiting polarization along with spatial-parity symmetry.

  5. A Criterion to Identify Maximally Entangled Four-Qubit State

    International Nuclear Information System (INIS)

    Zha Xinwei; Song Haiyang; Feng Feng

    2011-01-01

    Paolo Facchi, et al. [Phys. Rev. A 77 (2008) 060304(R)] presented a maximally multipartite entangled state (MMES). Here, we give a criterion for the identification of maximally entangled four-qubit states. Using this criterion, we not only identify some existing maximally entangled four-qubit states in the literature, but also find several new maximally entangled four-qubit states as well. (general)

  6. Controlled Quantum Operations of a Semiconductor Three-Qubit System

    Science.gov (United States)

    Li, Hai-Ou; Cao, Gang; Yu, Guo-Dong; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2018-02-01

    In a specially designed semiconductor device consisting of three capacitively coupled double quantum dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We demonstrate how to completely switch on and off the target qubit's coherent rotations by presetting two control qubits' states. A Toffoli gate is, therefore, possible based on these control effects. This research paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.

  7. Qubit rotation and Berry phase

    International Nuclear Information System (INIS)

    Banerjee, D.; Bandyopadhyay, P.

    2005-11-01

    A quantized fermion is represented by a scalar particle encircling a magnetic flux line. It has the spinor structure which can be constructed from quantum gates and qubits. We have studied here the role of Berry phase in removing dynamical phase during one qubit rotation of a quantized fermion. The entanglement of two qubits inserting spin-echo to one of them results the trapped Berry phase to measure entanglement. Some effort is given to study the effect of noise on the Berry phase of spinors and their entangled states. (author)

  8. Qubit rotation and Berry phase

    International Nuclear Information System (INIS)

    Banerjee, Dipti; Bandyopadhyay, Pratul

    2006-01-01

    A quantized fermion is represented by a scalar particle encircling a magnetic flux line. It has a spinor structure which can be constructed from quantum gates and qubits. We have studied here the role of Berry phase in removing dynamical phase during one qubit rotation of a quantized fermion. The entanglement of two qubits inserting spin-echo to one of them allows the trapped Berry phase to measure entanglement. Some effort is given to study the effect of noise on the Berry phase of spinors and their entangled states

  9. Subspace confinement: how good is your qubit?

    International Nuclear Information System (INIS)

    Devitt, Simon J; Schirmer, Sonia G; Oi, Daniel K L; Cole, Jared H; Hollenberg, Lloyd C L

    2007-01-01

    The basic operating element of standard quantum computation is the qubit, an isolated two-level system that can be accurately controlled, initialized and measured. However, the majority of proposed physical architectures for quantum computation are built from systems that contain much more complicated Hilbert space structures. Hence, defining a qubit requires the identification of an appropriate controllable two-dimensional sub-system. This prompts the obvious question of how well a qubit, thus defined, is confined to this subspace, and whether we can experimentally quantify the potential leakage into states outside the qubit subspace. We demonstrate how subspace leakage can be characterized using minimal theoretical assumptions by examining the Fourier spectrum of the oscillation experiment

  10. rf SQUID system as tunable flux qubit

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, B. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy)]. E-mail: b.ruggiero@cib.na.cnr.it; Granata, C. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Vettoliere, A. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Rombetto, S. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Russo, R. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Russo, M. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Corato, V. [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-81031 Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Silvestrini, P. [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-81031 Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy)

    2006-08-21

    We present a fully integrated rf SQUID-based system as flux qubit with a high control of the flux transfer function of the superconducting transformer modulating the coupling between the flux qubit and the readout system. The control of the system is possible by including into the superconducting flux transformer a vertical two-Josephson-junctions interferometer (VJI) in which the Josephson current is precisely modulated from a maximum to zero by a transversal magnetic field parallel to the flux transformer plane. The proposed system can be also used in a more general configuration to control the off-diagonal terms in the Hamiltonian of the flux qubit and to turn on and off the coupling between two or more qubits.

  11. Error-Transparent Quantum Gates for Small Logical Qubit Architectures

    Science.gov (United States)

    Kapit, Eliot

    2018-02-01

    One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.

  12. Measurement and Quantum State Transfer in Superconducting Qubits

    Science.gov (United States)

    Mlinar, Eric

    The potential of superconducting qubits as the medium for a scalable quantum computer has motivated the pursuit of improved interactions within this system. Two challenges for the field of superconducting qubits are measurement fidelity, to accurately determine the state of the qubit, and the efficient transfer of quantum states. In measurement, the current state-of-the-art method employs dispersive readout, by coupling the qubit to a cavity and reading the resulting shift in cavity frequency to infer the qubit's state; however, this is vulnerable to Purcell relaxation, as well as being modeled off a simplified two-level abstraction of the qubit. In state transfer, the existing proposal for moving quantum states is mostly untested against non-idealities that will likely be present in an experiment. In this dissertation, we examine three problems within these two areas. We first describe a new scheme for fast and high-fidelity dispersive measurement specifically designed to circumvent the Purcell Effect. To do this, the qubit-resonator interaction is turned on only when the resonator is decoupled from the environment; then, after the resonator state has shifted enough to infer the qubit state, the qubit-resonator interaction is turned off before the resonator and environment are recoupled. We also show that the effectiveness of this "Catch-Disperse-Release'' procedure partly originates from quadrature squeezing of the resonator state induced by the Jaynes-Cummings nonlinearity. The Catch-Disperse-Release measurement scheme treats the qubit as a two-level system, which is a common simplification used in theoretical works. However, the most promising physical candidate for a superconducting qubit, the transmon, is a multi-level system. In the second work, we examine the effects of including the higher energy levels of the transmon. Specifically, we expand the eigenstate picture developed in the first work to encompass multiple qubit levels, and examine the resulting

  13. Designing Kerr interactions using multiple superconducting qubit types in a single circuit

    Science.gov (United States)

    Elliott, Matthew; Joo, Jaewoo; Ginossar, Eran

    2018-02-01

    The engineering of Kerr interactions is of great interest for processing quantum information in multipartite quantum systems and for investigating many-body physics in a complex cavity-qubit network. We study how coupling multiple different types of superconducting qubits to the same cavity modes can be used to modify the self- and cross-Kerr effects acting on the cavities and demonstrate that this type of architecture could be of significant benefit for quantum technologies. Using both analytical perturbation theory results and numerical simulations, we first show that coupling two superconducting qubits with opposite anharmonicities to a single cavity enables the effective self-Kerr interaction to be diminished, while retaining the number splitting effect that enables control and measurement of the cavity field. We demonstrate that this reduction of the self-Kerr effect can maintain the fidelity of coherent states and generalised Schrödinger cat states for much longer than typical coherence times in realistic devices. Next, we find that the cross-Kerr interaction between two cavities can be modified by coupling them both to the same pair of qubit devices. When one of the qubits is tunable in frequency, the strength of entangling interactions between the cavities can be varied on demand, forming the basis for logic operations on the two modes. Finally, we discuss the feasibility of producing an array of cavities and qubits where intermediary and on-site qubits can tune the strength of self- and cross-Kerr interactions across the whole system. This architecture could provide a way to engineer interesting many-body Hamiltonians and be a useful platform for quantum simulation in circuit quantum electrodynamics.

  14. Implementation of fault-tolerant quantum logic gates via optimal control

    International Nuclear Information System (INIS)

    Nigmatullin, R; Schirmer, S G

    2009-01-01

    The implementation of fault-tolerant quantum gates on encoded logic qubits is considered. It is shown that transversal implementation of logic gates based on simple geometric control ideas is problematic for realistic physical systems suffering from imperfections such as qubit inhomogeneity or uncontrollable interactions between qubits. However, this problem can be overcome by formulating the task as an optimal control problem and designing efficient algorithms to solve it. In particular, we can find solutions that implement all of the elementary logic gates in a fixed amount of time with limited control resources for the five-qubit stabilizer code. Most importantly, logic gates that are extremely difficult to implement using conventional techniques even for ideal systems, such as the T-gate for the five-qubit stabilizer code, do not appear to pose a problem for optimal control.

  15. Teleportation via thermally entangled states of a two-qubit Heisenberg XXZ chain

    Institute of Scientific and Technical Information of China (English)

    QIN Meng; TAO Ying-Juan; TIAN Dong-Ping

    2008-01-01

    We investigate quantum teleportation as a tool to study the thermally entangled state of a twoqubit Heisenberg XXZ chain.Our work is mainly to investigate the characteristics of a Heisenberg XXZ chain and get some analytical results of the fully entangled fraction.We also consider the entanglement teleportation via a two-qubit Heisenberg XXZ chain.

  16. Entanglement of flux qubits through a joint detection of photons

    International Nuclear Information System (INIS)

    Kurpas, Marcin; Zipper, Elzbieta

    2009-01-01

    We study the entanglement creation between two flux qubits interacting with electromagnetic field modes. No direct interaction between the qubits exists. Entanglement is reached using the entanglement swapping method by an interference measurement performed on photons. We discuss the influence of off-resonance and multi-photon initial states on the qubit-qubit entanglement. The presented scheme is able to drive an initially separable state of two qubits into an highly entangled state suitable for quantum information processing (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Three-Party Quantum State Sharing of an Arbitrary Unknown Two-Qubit State Based on Entanglement Swapping and Bell-State Measurements

    International Nuclear Information System (INIS)

    Yuan Hao; Song Jun; Hou Kui; Hu Xiaoyuan; Shi Shouhua; Han Lianfang

    2009-01-01

    We propose a scheme for sharing an arbitrary unknown two-qubit state among three parties by using a four-qubit cluster-class state and a Bell state as a quantum channel. With a quantum controlled phase gate (QCPG) operation and a local unitary operation, any one of the two agents has the access to reconstruct the original state if he/she collaborates with the other one, whilst individual agent obtains no information. As all quantum resource can be used to carry the useful information, the intrinsic efficiency of qubits approaches the maximal value. Moreover, the present scheme is more feasible with present-day technique.

  18. Optimal simulation of a perfect entangler

    International Nuclear Information System (INIS)

    Yu Nengkun; Duan Runyao; Ying Mingsheng

    2010-01-01

    A 2 x 2 unitary operation is called a perfect entangler if it can generate a maximally entangled state from some unentangled input. We study the following question: How many runs of a given two-qubit entangling unitary operation are required to simulate some perfect entangler with one-qubit unitary operations as free resources? We completely solve this problem by presenting an analytical formula for the optimal number of runs of the entangling operation. Our result reveals an entanglement strength of two-qubit unitary operations.

  19. Multi-qubit controlled-NOT gates and Greenberger-Horne-Zeilinger state generation using one qubit simultaneously controlling n qubits

    Energy Technology Data Exchange (ETDEWEB)

    Song Kehui, E-mail: hhkhsong@vip.sina.com [Department of Physics Science and Information Engineering, Huaihua University, Huaihua, Hunan 418008 (China); Shi Zhengang; Xiang Shaohua; Chen Xiongwen [Department of Physics Science and Information Engineering, Huaihua University, Huaihua, Hunan 418008 (China)

    2012-09-01

    Based on superconducting flux qubits coupled to a superconducting resonator. We propose a scheme for implementing multi-qubit controlled-NOT (C-NOT) gates and Greenberger-Horne-Zeilinger (GHZ) state with one flux qubit simultaneously controlling on n qubits. It is shown that the resonator mode is initially in the vacuum state, a high fidelity for operation procedure can be obtained. In addition, the gate operation time is independent of the number of the qubits, and can be controlled by adjusting detuning and coupling strengths. We also analyze the experimental feasibility that the conditions of the large detuning can be achieved by adjusting frequencies of the resonator and pulses.

  20. Multi-qubit controlled-NOT gates and Greenberger-Horne-Zeilinger state generation using one qubit simultaneously controlling n qubits

    International Nuclear Information System (INIS)

    Song Kehui; Shi Zhengang; Xiang Shaohua; Chen Xiongwen

    2012-01-01

    Based on superconducting flux qubits coupled to a superconducting resonator. We propose a scheme for implementing multi-qubit controlled-NOT (C-NOT) gates and Greenberger-Horne-Zeilinger (GHZ) state with one flux qubit simultaneously controlling on n qubits. It is shown that the resonator mode is initially in the vacuum state, a high fidelity for operation procedure can be obtained. In addition, the gate operation time is independent of the number of the qubits, and can be controlled by adjusting detuning and coupling strengths. We also analyze the experimental feasibility that the conditions of the large detuning can be achieved by adjusting frequencies of the resonator and pulses.

  1. Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model

    Science.gov (United States)

    Xu, Hui-Yun; Yang, Guo-Hui

    2017-09-01

    By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.

  2. Tunable coupling between fixed-frequency superconducting transmon qubits

    Energy Technology Data Exchange (ETDEWEB)

    Filipp, Stefan [IBM Research Zurich, 8803 Rueschlikon (Switzerland); McKay, David C.; Magesan, Easwar; Mezzacapo, Antonio; Chow, Jerry M.; Gambetta, Jay M. [IBM TJ Watson Research Center, Yorktown Heights, NY (United States)

    2016-07-01

    The controlled realization of qubit-qubit interactions is essential for both the physical implementation of quantum error-correction codes and for reliable quantum simulations. Ideally, the fidelity and speed of corresponding two-qubit gate operations is comparable to those of single qubit operations. In particular, in a scalable superconducting qubit architecture coherence must not be compromised by the presence of additional coupling elements mediating the interaction between qubits. Here we present a coupling method between fixed-frequency transmon qubits based on the frequency modulation of an auxiliary circuit coupling to the individual transmons. Since the coupler remains in its ground state at all times, its coherence does not significantly influence the fidelity of consequent entangling operations. Moreover, with the possibility to create interactions along different directions, our method is suited to engineer Hamiltonians with adjustable coupling terms. This property can be utilized for quantum simulations of spins or fermions in transmon arrays, in which pairwise couplings between adjacent qubits can be activated on demand.

  3. Fully connected network of superconducting qubits in a cavity

    International Nuclear Information System (INIS)

    Tsomokos, Dimitris I; Ashhab, Sahel; Nori, Franco

    2008-01-01

    A fully connected qubit network is considered, where every qubit interacts with every other one. When the interactions between the qubits are homogeneous, the system is a special case of the finite Lipkin-Meshkov-Glick (LMG) model. We propose a natural implementation of this model using superconducting qubits in state-of-the-art circuit QED. The ground state, the low-lying energy spectrum and the dynamical evolution are investigated. We find that, under realistic conditions, highly entangled states of Greenberger-Horne-Zeilinger (GHZ) and W types can be generated. We also comment on the influence of disorder on the system and discuss the possibility of simulating complex quantum systems, such as Sherrington-Kirkpatrick (SK) spin glasses, with superconducting qubit networks.

  4. Demonstration of Multisetting One-Way Einstein-Podolsky-Rosen Steering in Two-Qubit Systems

    Science.gov (United States)

    Xiao, Ya; Ye, Xiang-Jun; Sun, Kai; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can

    2017-04-01

    Einstein-Podolsky-Rosen (EPR) steering describes the ability of one party to remotely affect another's state through local measurements. One of the most distinguishable properties of EPR steering is its asymmetric aspect. Steering can work in one direction but fail in the opposite direction. This type of one-way steering, which is different from the symmetry concepts of entanglement and Bell nonlocality, has garnered much interest. However, an experimental demonstration of genuine one-way EPR steering in the simplest scenario, i.e., one that employs two-qubit systems, is still lacking. In this Letter, we experimentally demonstrate one-way EPR steering with multimeasurement settings for a class of two-qubit states, which are still one-way steerable even with infinite settings. The steerability is quantified by the steering radius, which represents a necessary and sufficient steering criterion. The demonstrated one-way steering in the simplest bipartite quantum system is of fundamental interest and may provide potential applications in one-way quantum information tasks.

  5. Sudden transitions and scaling behavior of geometric quantum correlation for two qubits in quantum critical environments at finite temperature

    International Nuclear Information System (INIS)

    Luo, Da-Wei; Xu, Jing-Bo

    2014-01-01

    We investigate the phenomenon of sudden transitions in geometric quantum correlation of two qubits in spin chain environments at finite temperature. It is shown that when only one qubit is coupled to the spin environment, the geometric discord exhibits a double sudden transition behavior, which is closely related to the quantum criticality of the spin chain environment. When two qubits are uniformly coupled to a common spin chain environment, the geometric discord is found to display a sudden transition behavior whereby the system transits from pure classical decoherence to pure quantum decoherence. Moreover, an interesting scaling behavior is revealed for the frozen time, and we also present a scheme to prolong the time during which the discord remains constant by applying bang–bang pulses. (paper)

  6. Manipulating the sudden death of entanglement in two-qubit atomic systems

    International Nuclear Information System (INIS)

    Hussain, Mahmood Irtiza; Tahira, Rabia; Ikram, Manzoor

    2011-01-01

    We investigate the entanglement dynamics of a general two-qubit system in a noisy environment presenting analytical descriptions of the time evolution of entanglement having some unitary operations after its evolution in dissipative environments. We show that quantum gates (unitary operators) and bath switching can change the subsequent dynamics of entanglement. For this purpose, we consider σ x and bath switching operations that change the disentanglement time from finite to infinite.

  7. Experimental investigation of a four-qubit linear-optical quantum logic circuit.

    Science.gov (United States)

    Stárek, R; Mičuda, M; Miková, M; Straka, I; Dušek, M; Ježek, M; Fiurášek, J

    2016-09-20

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C(3)Z gate and several two-qubit and single-qubit gates. The C(3)Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.

  8. Optimal classical-communication-assisted local model of n-qubit Greenberger-Horne-Zeilinger correlations

    International Nuclear Information System (INIS)

    Tessier, Tracey E.; Caves, Carlton M.; Deutsch, Ivan H.; Eastin, Bryan; Bacon, Dave

    2005-01-01

    We present a model, motivated by the criterion of reality put forward by Einstein, Podolsky, and Rosen and supplemented by classical communication, which correctly reproduces the quantum-mechanical predictions for measurements of all products of Pauli operators on an n-qubit GHZ state (or 'cat state'). The n-2 bits employed by our model are shown to be optimal for the allowed set of measurements, demonstrating that the required communication overhead scales linearly with n. We formulate a connection between the generation of the local values utilized by our model and the stabilizer formalism, which leads us to conjecture that a generalization of this method will shed light on the content of the Gottesman-Knill theorem

  9. Electromagnetically induced interference in a superconducting flux qubit

    International Nuclear Information System (INIS)

    Du lingjie; Yu Yang; Lan Dong

    2013-01-01

    Interaction between quantum two-level systems (qubits) and electromagnetic fields can provide additional coupling channels to qubit states. In particular, the interwell relaxation or Rabi oscillations, resulting, respectively, from the multi- or single-mode interaction, can produce effective crossovers, leading to electromagnetically induced interference in microwave driven qubits. The environment is modeled by a multimode thermal bath, generating the interwell relaxation. Relaxation induced interference, independent of the tunnel coupling, provides deeper understanding to the interaction between the qubits and their environment. It also supplies a useful tool to characterize the relaxation strength as well as the characteristic frequency of the bath. In addition, we demonstrate the relaxation can generate population inversion in a strongly driving two-level system. On the other hand, different from Rabi oscillations, Rabi-oscillation-induced interference involves more complicated and modulated photon exchange thus offers an alternative means to manipulate the qubit, with more controllable parameters including the strength and position of the tunnel coupling. It also provides a testing ground for exploring nonlinear quantum phenomena and quantum state manipulation in qubits either with or without crossover structure.

  10. Optimizing Teleportation Cost in Distributed Quantum Circuits

    Science.gov (United States)

    Zomorodi-Moghadam, Mariam; Houshmand, Mahboobeh; Houshmand, Monireh

    2018-03-01

    The presented work provides a procedure for optimizing the communication cost of a distributed quantum circuit (DQC) in terms of the number of qubit teleportations. Because of technology limitations which do not allow large quantum computers to work as a single processing element, distributed quantum computation is an appropriate solution to overcome this difficulty. Previous studies have applied ad-hoc solutions to distribute a quantum system for special cases and applications. In this study, a general approach is proposed to optimize the number of teleportations for a DQC consisting of two spatially separated and long-distance quantum subsystems. To this end, different configurations of locations for executing gates whose qubits are in distinct subsystems are considered and for each of these configurations, the proposed algorithm is run to find the minimum number of required teleportations. Finally, the configuration which leads to the minimum number of teleportations is reported. The proposed method can be used as an automated procedure to find the configuration with the optimal communication cost for the DQC. This cost can be used as a basic measure of the communication cost for future works in the distributed quantum circuits.

  11. Controlling bi-partite entanglement in multi-qubit systems

    International Nuclear Information System (INIS)

    Plesch, Martin; Novotny, Jaroslav; Dzurakova, Zuzana; Buzek, VladimIr

    2004-01-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N 2 ) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits

  12. Controlling bi-partite entanglement in multi-qubit systems

    Science.gov (United States)

    Plesch, Martin; Novotný, Jaroslav; Dzuráková, Zuzana; Buzek, Vladimír

    2004-02-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N2) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits.

  13. Equivalence of qubit-environment entanglement and discord generation via pure dephasing interactions and the resulting consequences

    Science.gov (United States)

    Roszak, Katarzyna; Cywiński, Łukasz

    2018-01-01

    We find that when a qubit initialized in a pure state experiences pure dephasing due to interaction with an environment, separable qubit-environment states generated during the evolution also have zero quantum discord with respect to the environment. What follows is that the set of separable states which can be reached during the evolution has zero volume, and hence, such effects as sudden death of qubit-environment entanglement are very unlikely. In the case of the discord with respect to the qubit, a vast majority of qubit-environment separable states is discordant, but in specific situations zero-discord states are possible. This is conceptually important since there is a connection between the discordance with respect to a given subsystem and the possibility of describing the evolution of this subsystem using completely positive maps. Finally, we use the formalism to find an exemplary evolution of an entangled state of two qubits that is completely positive, and occurs solely due to interaction of only one of the qubits with its environment (so one could guess that it corresponds to a local operation, since it is local in a physical sense), but which nevertheless causes the enhancement of entanglement between the qubits. While this simply means that the considered evolution is completely positive, but does not belong to local operations and classical communication, it shows how much caution has to be exercised when identifying evolution channels that belong to that class.

  14. Characterizing a four-qubit planar lattice for arbitrary error detection

    Science.gov (United States)

    Chow, Jerry M.; Srinivasan, Srikanth J.; Magesan, Easwar; Córcoles, A. D.; Abraham, David W.; Gambetta, Jay M.; Steffen, Matthias

    2015-05-01

    Quantum error correction will be a necessary component towards realizing scalable quantum computers with physical qubits. Theoretically, it is possible to perform arbitrarily long computations if the error rate is below a threshold value. The two-dimensional surface code permits relatively high fault-tolerant thresholds at the ~1% level, and only requires a latticed network of qubits with nearest-neighbor interactions. Superconducting qubits have continued to steadily improve in coherence, gate, and readout fidelities, to become a leading candidate for implementation into larger quantum networks. Here we describe characterization experiments and calibration of a system of four superconducting qubits arranged in a planar lattice, amenable to the surface code. Insights into the particular qubit design and comparison between simulated parameters and experimentally determined parameters are given. Single- and two-qubit gate tune-up procedures are described and results for simultaneously benchmarking pairs of two-qubit gates are given. All controls are eventually used for an arbitrary error detection protocol described in separate work [Corcoles et al., Nature Communications, 6, 2015].

  15. Qubit absorption refrigerator at strong coupling

    Science.gov (United States)

    Mu, Anqi; Agarwalla, Bijay Kumar; Schaller, Gernot; Segal, Dvira

    2017-12-01

    We demonstrate that a quantum absorption refrigerator (QAR) can be realized from the smallest quantum system, a qubit, by coupling it in a non-additive (strong) manner to three heat baths. This function is un-attainable for the qubit model under the weak system-bath coupling limit, when the dissipation is additive. In an optimal design, the reservoirs are engineered and characterized by a single frequency component. We then obtain closed expressions for the cooling window and refrigeration efficiency, as well as bounds for the maximal cooling efficiency and the efficiency at maximal power. Our results agree with macroscopic designs and with three-level models for QARs, which are based on the weak system-bath coupling assumption. Beyond the optimal limit, we show with analytical calculations and numerical simulations that the cooling efficiency varies in a non-universal manner with model parameters. Our work demonstrates that strongly-coupled quantum machines can exhibit function that is un-attainable under the weak system-bath coupling assumption.

  16. Progress toward coupled flux qubits with high connectivity and long coherence times

    Science.gov (United States)

    Weber, Steven; Hover, David; Rosenberg, Danna; Samach, Gabriel; Yoder, Jonilyn; Kerman, Andrew; Oliver, William

    The ability to engineer interactions between qubits is essential to all areas of quantum information science. The capability to tune qubit-qubit couplings in situ is desirable for gate-based quantum computing and analog quantum simulation and necessary for quantum annealing. Consequently, tunable coupling has been the subject of several experimental efforts using both transmon qubits and flux qubits. Recently, our group has demonstrated robust and long-lived capacitively shunted (C-shunt) flux qubits. Here, we discuss our efforts to develop architectures for tunably coupling these qubits. In particular, we focus on optimizing the RF SQUID coupler to achieve high connectivity. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  17. Dissipative dynamics of superconducting hybrid qubit systems

    International Nuclear Information System (INIS)

    Montes, Enrique; Calero, Jesus M; Reina, John H

    2009-01-01

    We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a σ x x σ z interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.

  18. Dissipative dynamics of superconducting hybrid qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Enrique; Calero, Jesus M; Reina, John H, E-mail: enriquem@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)

    2009-05-01

    We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a sigma{sub x} x sigma{sub z} interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.

  19. Memory coherence of a sympathetically cooled trapped-ion qubit

    International Nuclear Information System (INIS)

    Home, J. P.; McDonnell, M. J.; Szwer, D. J.; Keitch, B. C.; Lucas, D. M.; Stacey, D. N.; Steane, A. M.

    2009-01-01

    We demonstrate sympathetic cooling of a 43 Ca + trapped-ion 'memory' qubit by a 40 Ca + 'coolant' ion sufficiently near the ground state of motion for fault-tolerant quantum logic, while maintaining coherence of the qubit. This is an essential ingredient in trapped-ion quantum computers. The isotope shifts are sufficient to suppress decoherence and phase shifts of the memory qubit due to the cooling light which illuminates both ions. We measure the qubit coherence during ten cycles of sideband cooling, finding a coherence loss of 3.3% per cooling cycle. The natural limit of the method is O(10 -4 ) infidelity per cooling cycle.

  20. Manipulating the sudden death of entanglement in two-qubit atomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Mahmood Irtiza; Tahira, Rabia; Ikram, Manzoor [COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2011-10-15

    We investigate the entanglement dynamics of a general two-qubit system in a noisy environment presenting analytical descriptions of the time evolution of entanglement having some unitary operations after its evolution in dissipative environments. We show that quantum gates (unitary operators) and bath switching can change the subsequent dynamics of entanglement. For this purpose, we consider {sigma}{sub x} and bath switching operations that change the disentanglement time from finite to infinite.

  1. Reduction of multipartite qubit density matrixes to bipartite qubit density matrixes and criteria of partial separability of multipartite qubit density matrixes

    OpenAIRE

    Zhong, Zai-Zhe

    2004-01-01

    The partial separability of multipartite qubit density matrixes is strictly defined. We give a reduction way from N-partite qubit density matrixes to bipartite qubit density matrixes, and prove a necessary condition that a N-partite qubit density matrix to be partially separable is its reduced density matrix to satisfy PPT condition.

  2. Electrically protected resonant exchange qubits in triple quantum dots.

    Science.gov (United States)

    Taylor, J M; Srinivasa, V; Medford, J

    2013-08-02

    We present a modulated microwave approach for quantum computing with qubits comprising three spins in a triple quantum dot. This approach includes single- and two-qubit gates that are protected against low-frequency electrical noise, due to an operating point with a narrowband response to high frequency electric fields. Furthermore, existing double quantum dot advances, including robust preparation and measurement via spin-to-charge conversion, are immediately applicable to the new qubit. Finally, the electric dipole terms implicit in the high frequency coupling enable strong coupling with superconducting microwave resonators, leading to more robust two-qubit gates.

  3. Decoherence in qubits due to low-frequency noise

    International Nuclear Information System (INIS)

    Bergli, J; Galperin, Y M; Altshuler, B L

    2009-01-01

    The efficiency of the future devices for quantum information processing will be limited mostly by the finite decoherence rates of the qubits. Recently, substantial progress was achieved in enhancing the time within which a solid-state qubit demonstrates coherent dynamics. This progress is based mostly on a successful isolation of the qubits from external decoherence sources. Under these conditions, the material-inherent sources of noise start to play a crucial role. In most cases, the noise that the quantum device demonstrates has a 1/f spectrum. This suggests that the environment that destroys the phase coherence of the qubit can be thought of as a system of two-state fluctuators, which experience random hops between their states. In this short review, the current state of the theory of the decoherence due to the qubit interaction with the fluctuators is discussed. The effect of such an environment on two different protocols of the qubit manipulations, free induction and echo signal, is described. It turns out that in many important cases the noise produced by the fluctuators is non-Gaussian. Consequently, the results of the interaction of the qubit with the fluctuators are not determined by the pair correlation function alone. We describe the effect of the fluctuators using the so-called spin-fluctuator model. Being quite realistic, this model allows one to exactly evaluate the qubit dynamics in the presence of one fluctuator. This solution is found, and its features, including non-Gaussian effects, are analyzed in detail. We extend this consideration to systems of large numbers of fluctuators, which interact with the qubit and lead to the 1/f noise. We discuss existing experiments on the Josephson qubit manipulation and try to identify non-Gaussian behavior.

  4. Robust quantum optimizer with full connectivity.

    Science.gov (United States)

    Nigg, Simon E; Lörch, Niels; Tiwari, Rakesh P

    2017-04-01

    Quantum phenomena have the potential to speed up the solution of hard optimization problems. For example, quantum annealing, based on the quantum tunneling effect, has recently been shown to scale exponentially better with system size than classical simulated annealing. However, current realizations of quantum annealers with superconducting qubits face two major challenges. First, the connectivity between the qubits is limited, excluding many optimization problems from a direct implementation. Second, decoherence degrades the success probability of the optimization. We address both of these shortcomings and propose an architecture in which the qubits are robustly encoded in continuous variable degrees of freedom. By leveraging the phenomenon of flux quantization, all-to-all connectivity with sufficient tunability to implement many relevant optimization problems is obtained without overhead. Furthermore, we demonstrate the robustness of this architecture by simulating the optimal solution of a small instance of the nondeterministic polynomial-time hard (NP-hard) and fully connected number partitioning problem in the presence of dissipation.

  5. Quantum Privacy Amplification for a Sequence of Single Qubits

    International Nuclear Information System (INIS)

    Deng Fuguo; Long Guilu

    2006-01-01

    We present a scheme for quantum privacy amplification (QPA) for a sequence of single qubits. The QPA procedure uses a unitary operation with two controlled-not gates and a Hadamard gate. Every two qubits are performed with the unitary gate operation, and a measurement is made on one photon and the other one is retained. The retained qubit carries the state information of the discarded one. In this way, the information leakage is reduced. The procedure can be performed repeatedly so that the information leakage is reduced to any arbitrarily low level. With this QPA scheme, the quantum secure direct communication with single qubits can be implemented with arbitrarily high security. We also exploit this scheme to do privacy amplification on the single qubits in quantum information sharing for long-distance communication with quantum repeaters.

  6. Circuit quantum electrodynamics with a spin qubit.

    Science.gov (United States)

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  7. Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity

    Science.gov (United States)

    Waseem, Muhammad; Irfan, Muhammad; Qamar, Shahid

    2015-06-01

    We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch-Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.

  8. Bayesian view of single-qubit clocks, and an energy versus accuracy tradeoff

    Science.gov (United States)

    Gopalkrishnan, Manoj; Kandula, Varshith; Sriram, Praveen; Deshpande, Abhishek; Muralidharan, Bhaskaran

    2017-09-01

    We bring a Bayesian approach to the analysis of clocks. Using exponential distributions as priors for clocks, we analyze how well one can keep time with a single qubit freely precessing under a magnetic field. We find that, at least with a single qubit, quantum mechanics does not allow exact timekeeping, in contrast to classical mechanics, which does. We find the design of the single-qubit clock that leads to maximum accuracy. Further, we find an energy versus accuracy tradeoff—the energy cost is at least kBT times the improvement in accuracy as measured by the entropy reduction in going from the prior distribution to the posterior distribution. We propose a physical realization of the single-qubit clock using charge transport across a capacitively coupled quantum dot.

  9. Efficient controlled-phase gate for single-spin qubits in quantum dots

    NARCIS (Netherlands)

    Meunier, T.; Calado, V.E.; Vandersypen, L.M.K.

    2011-01-01

    Two-qubit interactions are at the heart of quantum information processing. For single-spin qubits in semiconductor quantum dots, the exchange gate has always been considered the natural two-qubit gate. The recent integration of a magnetic field or g-factor gradients in coupled quantum dot systems

  10. Experimental linear-optical implementation of a multifunctional optimal qubit cloner

    Czech Academy of Sciences Publication Activity Database

    Lemr, K.; Bartkiewicz, K.; Černoch, A.; Soubusta, Jan; Miranowicz, A.

    2012-01-01

    Roč. 85, č. 5 (2012), "050307-1"-"050307-4" ISSN 1050-2947 Institutional research plan: CEZ:AV0Z10100522 Keywords : quantum cloning * qubit cloner Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.042, year: 2012

  11. Ruthenates: simple superconducting qubits

    International Nuclear Information System (INIS)

    Gulian, Armen M.; Wood, Kent S.

    2004-01-01

    We propose triplet superconductors, such as ruthenates, as a prospective material for qubit construction. The vectorial nature of the order parameter in triplet superconductors makes it conceptually very easy to imagine the performance of the qubits. The Cooper condensate of pairs in triplet superconductors has all the attributes of the Bose-Einstein condensates and should facilitate long decoherence times of these qubits versus other 'vectorial' schemes for qubits, such as small ferromagnets. There are other benefits, which the superconducting state provides for a requirement like entanglement between qubits via the proximity effect

  12. Teleportation of a two-mode entangled coherent state encoded with two-qubit information

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Manoj K; Prakash, Hari, E-mail: manoj.qit@gmail.co, E-mail: prakash_hari123@rediffmail.co [Department of physics, University of Allahabad, Allahabad (India)

    2010-09-28

    We propose a scheme to teleport a two-mode entangled coherent state encoded with two-qubit information, which is better than the two schemes recently proposed by Liao and Kuang (2007 J. Phys. B: At. Mol. Opt. Phys. 40 1183) and by Phien and Nguyen (2008 Phys. Lett. A 372 2825) in that our scheme gives higher value of minimum assured fidelity and minimum average fidelity without using any nonlinear interactions. For involved coherent states | {+-} {alpha}), minimum average fidelity in our case is {>=}0.99 for |{alpha}| {>=} 1.6 (i.e. |{alpha}|{sup 2} {>=} 2.6), while previously proposed schemes referred above report the same for |{alpha}| {>=} 5 (i.e. |{alpha}|{sup 2} {>=} 25). Since it is very challenging to produce superposed coherent states of high coherent amplitude (|{alpha}|), our teleportation scheme is at the reach of modern technology.

  13. Fisher information of a single qubit interacts with a spin-qubit in the presence of a magnetic field

    Science.gov (United States)

    Metwally, N.

    2018-06-01

    In this contribution, quantum Fisher information is utilized to estimate the parameters of a central qubit interacting with a single-spin qubit. The effect of the longitudinal, transverse and the rotating strengths of the magnetic field on the estimation degree is discussed. It is shown that, in the resonance case, the number of peaks and consequently the size of the estimation regions increase as the rotating magnetic field strength increases. The precision estimation of the central qubit parameters depends on the initial state settings of the central and the spin-qubit, either encode classical or quantum information. It is displayed that, the upper bounds of the estimation degree are large if the two qubits encode classical information. In the non-resonance case, the estimation degree depends on which of the longitudinal/transverse strength is larger. The coupling constant between the central qubit and the spin-qubit has a different effect on the estimation degree of the weight and the phase parameters, where the possibility of estimating the weight parameter decreases as the coupling constant increases, while it increases for the phase parameter. For large number of spin-particles, namely, we have a spin-bath particles, the upper bounds of the Fisher information with respect to the weight parameter of the central qubit decreases as the number of the spin particle increases. As the interaction time increases, the upper bounds appear at different initial values of the weight parameter.

  14. Secret key distillation from shielded two-qubit states

    International Nuclear Information System (INIS)

    Bae, Joonwoo

    2010-01-01

    The quantum states corresponding to a secret key are characterized using the so-called private states, where the key part consisting of a secret key is shielded by the additional systems. Based on the construction, it was shown that a secret key can be distilled from bound entangled states. In this work, I consider the shielded two-qubit states in a key-distillation scenario and derive the conditions under which a secret key can be distilled using the recurrence protocol or the two-way classical distillation, advantage distillation together with one-way postprocessing. From the security conditions, it is shown that a secret key can be distilled from bound entangled states in a much wider range. In addition, I consider the case that in which white noise is added to quantum states and show that the classical distillation protocol still works despite a certain amount of noise although the recurrence protocol does not.

  15. Quantum discord dynamics of two qubits in single-mode cavities

    International Nuclear Information System (INIS)

    Wang Chen; Chen Qing-Hu

    2013-01-01

    The dynamics of quantum discord for two identical qubits in two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behavior in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord. (general)

  16. Entanglement of two-qubit photon beam by magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Levin, A.D.; Castro, R.A. [University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo (Brazil); Gitman, D.M. [University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo (Brazil); P.N. Lebedev Physical Institute, Moscow (Russian Federation); Tomsk State University, Tomsk (Russian Federation)

    2014-09-15

    We study the possibility of affecting the entanglement in a two-qubit system consisting of two photons with different fixed frequencies but with two arbitrary linear polarizations, moving in the same direction, with the help of an applied external magnetic field. The interaction between the magnetic field and the photons in our model is achieved through intermediate electrons that interact both with the photons and the magnetic field. The possibility of an exact theoretical analysis of this scheme is based on well-known exact solutions that describe the interaction of an electron subjected to an external magnetic field (or a medium of electrons not interacting with each other) with a quantized field of two photons. We adapt these exact solutions to the case under consideration. Using explicit wave functions for the resulting electromagnetic field, we calculate the entanglement measures (the information and the Schmidt ones) of the photon beam as functions of the applied magnetic field and the parameters of the electron medium. (orig.)

  17. Leakage and sweet spots in triple-quantum-dot spin qubits: A molecular-orbital study

    Science.gov (United States)

    Zhang, Chengxian; Yang, Xu-Chen; Wang, Xin

    2018-04-01

    A triple-quantum-dot system can be operated as either an exchange-only qubit or a resonant-exchange qubit. While it is generally believed that the decisive advantage of the resonant-exchange qubit is the suppression of charge noise because it is operated at a sweet spot, we show that the leakage is also an important factor. Through molecular-orbital-theoretic calculations, we show that when the system is operated in the exchange-only scheme, the leakage to states with double electron occupancy in quantum dots is severe when rotations around the axis 120∘ from z ̂ is performed. While this leakage can be reduced by either shrinking the dots or separating them further, the exchange interactions are also suppressed at the same time, making the gate operations unfavorably slow. When the system is operated as a resonant-exchange qubit, the leakage is three to five orders of magnitude smaller. We have also calculated the optimal detuning point which minimizes the leakage for the resonant-exchange qubit, and have found that although it does not coincide with the double sweet spot for the charge noise, they are rather close. Our results suggest that the resonant-exchange qubit has another advantage, that leakage can be greatly suppressed compared to the exchange-only qubit, and operating at the double sweet spot point should be optimal both for reducing charge noise and suppressing leakage.

  18. Ultracoherent operation of spin qubits with superexchange coupling

    Science.gov (United States)

    Rančić, Marko J.; Burkard, Guido

    2017-11-01

    With the use of nuclear-spin-free materials such as silicon and germanium, spin-based quantum bits (qubits) have evolved to become among the most coherent systems for quantum information processing. The new frontier for spin qubits has therefore shifted to the ubiquitous charge noise and spin-orbit interaction, which are limiting the coherence times and gate fidelities of solid-state qubits. In this paper we investigate superexchange, as a means of indirect exchange interaction between two single electron spin qubits, each embedded in a single semiconductor quantum dot (QD), mediated by an intermediate, empty QD. Our results suggest the existence of "supersweet spots", in which the qubit operations implemented by superexchange interaction are simultaneously first-order-insensitive to charge noise and to errors due to spin-orbit interaction. The proposed spin-qubit architecture is scalable and within the manufacturing capabilities of semiconductor industry.

  19. Quantum logic gates generated by SC-charge qubits coupled to a resonator

    International Nuclear Information System (INIS)

    Obada, A-S F; Hessian, H A; Mohamed, A-B A; Homid, Ali H

    2012-01-01

    We propose some quantum logic gates by using SC-charge qubits coupled to a resonator to study two types of quantum operation. By applying a classical magnetic field with the flux, a simple rotation on the target qubit is generated. Single and two-qubit gates of quantum logic gates are realized. Two-qubit joint operations are firstly generated by applying a classical magnetic field with the flux, and secondly by applying a classical magnetic field with the flux when qubits are placed a quarter of the distance along the resonator. A short discussion of fidelity is given to prove the success of the operations in implementing these gates. (paper)

  20. Finding two-dimensional peaks

    International Nuclear Information System (INIS)

    Silagadze, Z.K.

    2007-01-01

    Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems

  1. Towards long lived tunable transmon qubit in microstrip geometry

    Energy Technology Data Exchange (ETDEWEB)

    Braumueller, Jochen; Radtke, Lucas; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V. [Karlsruhe Institute of Technology (KIT), Physikalisches Institut, 76131 Karlsruhe (Germany)

    2013-07-01

    Qubits constitute the main building blocks of a prospective quantum computer. One main challenge is given by short decoherence times. In this work we investigate a transmon qubit based on a superconducting charge qubit with reduced sensitivity to charge noise. This is achieved by operating the qubit at a Josephson to charging energy ratio of about 100. At the same time, a sufficiently large anharmonicity of the energy levels is preserved. The qubit is realized in a 2D geometry based on large capacitor pads being connected by two Josephson junctions in parallel. This split Josephson junction allows the qubit to be tunable in Josephson energy and therefore in resonance frequency. The large area capacitor pads mainly coupled through the substrate and a backside metalization reduce the surface loss contribution. Manipulation and readout of the qubit is mediated by a microstrip resonator coupled to a feedline. We present resonator and qubit designs together with respective microwave simulations. Preliminary results on circuit fabrication and low temperature measurements are also discussed.

  2. Optimal controlled teleportation via several kinds of three-qubit states

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The probability of successful controlled teleportation of an unknown qubit using a general three-particle state is investigated. The analytic expressions of maximal probabilities via several kinds of tripartite states are given, including a tripartite Greenberger-Horne-Zeilinger state and a tripartite W-state.

  3. Dissipation and entanglement dynamics for two interacting qubits coupled to independent reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Scala, M [Departamento de Optica, Facultad de Fisica, Universidad Complutense de Madrid, 28040 (Spain); Migliore, R [CNR-INFM, CNISM and Dipartimento di Scienze Fisiche ed Astronomiche dell' Universita di Palermo, via Archirafi 36, I-90123 Palermo (Italy); Messina, A [MIUR and Dipartimento di Scienze Fisiche ed Astronomiche dell' Universita di Palermo, via Archirafi 36, I-90123 Palermo (Italy)], E-mail: matteo.scala@fisica.unipa.it, E-mail: rosanna@fisica.unipa.it, E-mail: messina@fisica.unipa.it

    2008-10-31

    We derive the master equation of a system of two coupled qubits by taking into account their interaction with two independent bosonic baths. Important features of the dynamics are brought to light, such as the structure of the stationary state at general temperatures and the behaviour of the entanglement at zero temperature, showing the phenomena of sudden death and sudden birth as well as the presence of stationary entanglement for long times. The model presented here is quite versatile and can be of interest in the study of both Josephson junction architectures and cavity-QED.

  4. Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach

    Science.gov (United States)

    Chen, Yusui; You, J. Q.; Yu, Ting

    2014-11-01

    A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.

  5. Computing prime factors with a Josephson phase qubit quantum processor

    Science.gov (United States)

    Lucero, Erik; Barends, R.; Chen, Y.; Kelly, J.; Mariantoni, M.; Megrant, A.; O'Malley, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Yin, Y.; Cleland, A. N.; Martinis, John M.

    2012-10-01

    A quantum processor can be used to exploit quantum mechanics to find the prime factors of composite numbers. Compiled versions of Shor's algorithm and Gauss sum factorizations have been demonstrated on ensemble quantum systems, photonic systems and trapped ions. Although proposed, these algorithms have yet to be shown using solid-state quantum bits. Using a number of recent qubit control and hardware advances, here we demonstrate a nine-quantum-element solid-state quantum processor and show three experiments to highlight its capabilities. We begin by characterizing the device with spectroscopy. Next, we produce coherent interactions between five qubits and verify bi- and tripartite entanglement through quantum state tomography. In the final experiment, we run a three-qubit compiled version of Shor's algorithm to factor the number 15, and successfully find the prime factors 48% of the time. Improvements in the superconducting qubit coherence times and more complex circuits should provide the resources necessary to factor larger composite numbers and run more intricate quantum algorithms.

  6. Attacking quantum key distribution with single-photon two-qubit quantum logic

    International Nuclear Information System (INIS)

    Shapiro, Jeffrey H.; Wong, Franco N. C.

    2006-01-01

    The Fuchs-Peres-Brandt (FPB) probe realizes the most powerful individual attack on Bennett-Brassard 1984 quantum key distribution (BB84 QKD) by means of a single controlled-NOT (CNOT) gate. This paper describes a complete physical simulation of the FPB-probe attack on polarization-based BB84 QKD using a deterministic CNOT constructed from single-photon two-qubit quantum logic. Adding polarization-preserving quantum nondemolition measurements of photon number to this configuration converts the physical simulation into a true deterministic realization of the FPB attack

  7. Multi-target-qubit unconventional geometric phase gate in a multi-cavity system.

    Science.gov (United States)

    Liu, Tong; Cao, Xiao-Zhi; Su, Qi-Ping; Xiong, Shao-Jie; Yang, Chui-Ping

    2016-02-22

    Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits.

  8. Silicon Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, Thaddeus D. [HRL Laboratories, LLC, Malibu, CA (United States); Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of a single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.

  9. Optimal quantum violation of Clauser–Horne–Shimony–Holt like steering inequality

    International Nuclear Information System (INIS)

    Roy, Arup; Sankar Bhattacharya, Some; Mukherjee, Amit; Banik, Manik

    2015-01-01

    We study a recently proposed Einstein–Podolsky–Rosen steering inequality (Cavalcanti et al 2015 J. Opt. Soc. Am. B 32 A74–A81). Analogous to Clauser–Horne–Shimony–Holt (CHSH) inequality for Bell nonlocality, in the simplest scenario, i.e., two parties, two measurements per party and two outcomes per measurement, this newly proposed inequality has been proved to be necessary and sufficient for steering. In this article we find the optimal violation amount of this inequality in quantum theory. Interestingly, the optimal violation amount matches with optimal quantum violation of CHSH inequality, i.e., Cirel’son quantity. We further study the optimal violation of this inequality for different classes of 2-qubit quantum states. (paper)

  10. Logical Qubit in a Linear Array of Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Cody Jones

    2018-06-01

    Full Text Available We design a logical qubit consisting of a linear array of quantum dots, we analyze error correction for this linear architecture, and we propose a sequence of experiments to demonstrate components of the logical qubit on near-term devices. To avoid the difficulty of fully controlling a two-dimensional array of dots, we adapt spin control and error correction to a one-dimensional line of silicon quantum dots. Control speed and efficiency are maintained via a scheme in which electron spin states are controlled globally using broadband microwave pulses for magnetic resonance, while two-qubit gates are provided by local electrical control of the exchange interaction between neighboring dots. Error correction with two-, three-, and four-qubit codes is adapted to a linear chain of qubits with nearest-neighbor gates. We estimate an error correction threshold of 10^{-4}. Furthermore, we describe a sequence of experiments to validate the methods on near-term devices starting from four coupled dots.

  11. High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits.

    Science.gov (United States)

    Ballance, C J; Harty, T P; Linke, N M; Sepiol, M A; Lucas, D M

    2016-08-05

    We demonstrate laser-driven two-qubit and single-qubit logic gates with respective fidelities 99.9(1)% and 99.9934(3)%, significantly above the ≈99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed-fidelity trade-off for the two-qubit gate, for gate times between 3.8  μs and 520  μs, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.

  12. Comment on 'Two-way protocols for quantum cryptography with a nonmaximally entangled qubit pair'

    International Nuclear Information System (INIS)

    Qin Sujuan; Gao Fei; Wen Qiaoyan; Guo Fenzhuo

    2010-01-01

    Three protocols of quantum cryptography with a nonmaximally entangled qubit pair [Phys. Rev. A 80, 022323 (2009)] were recently proposed by Shimizu, Tamaki, and Fukasaka. The security of these protocols is based on the quantum-mechanical constraint for a state transformation between nonmaximally entangled states. However, we find that the second protocol is vulnerable under the correlation-elicitation attack. An eavesdropper can obtain the encoded bit M although she has no knowledge about the random bit R.

  13. Coherence properties in superconducting flux qubits

    Energy Technology Data Exchange (ETDEWEB)

    Spilla, Samuele

    2015-02-16

    The research work discussed in this thesis deals with the study of superconducting Josephson qubits. Superconducting qubits are solid-state artificial atoms which are based on lithographically defined Josephson tunnel junctions properties. When sufficiently cooled, these superconducting devices exhibit quantized states of charge, flux or junction phase depending on their design parameters. This allows to observe coherent evolutions of their states. The results presented can be divided into two parts. In a first part we investigate operations of superconducting qubits based on the quantum coherence in superconducting quantum interference devices (SQUID). We explain experimental data which has been observed in a SQUID subjected to fast, large-amplitude modifications of its effective potential shape. The motivations for this work come from the fact that in the past few years there have been attempts to interpret the supposed quantum behavior of physical systems, such as Josephson devices, within a classical framework. Moreover, we analyze the possibility of generating GHZ states, namely maximally entangled states, in a quantum system made out of three Josephson qubits. In particular, we investigate the possible limitations of the GHZ state generation due to coupling to bosonic baths. In the second part of the thesis we address a particular cause of decoherence of flux qubits which has been disregarded until now: thermal gradients, which can arise due to accidental non equilibrium quasiparticle distributions. The reason for these detrimental effects is that heat currents flowing through Josephson tunnel junctions in response to a temperature gradient are periodic functions of the phase difference between the electrodes. The phase dependence of the heat current comes from Andreev reflection, namely an interplay between the quasiparticles which carry heat and the superconducting condensate which is sensitive to the superconducting phase difference. Generally speaking

  14. Controllable conditional quantum oscillations and quantum gate operations in superconducting flux qubits

    International Nuclear Information System (INIS)

    Chen Aimin; Cho Samyoung

    2011-01-01

    Conditional quantum oscillations are investigated for quantum gate operations in superconducting flux qubits. We present an effective Hamiltonian which describes a conditional quantum oscillation in two-qubit systems. Rabi-type quantum oscillations are discussed in implementing conditional quantum oscillations to quantum gate operations. Two conditional quantum oscillations depending on the states of control qubit can be synchronized to perform controlled-gate operations by varying system parameters. It is shown that the conditional quantum oscillations with their frequency synchronization make it possible to operate the controlled-NOT and -U gates with a very accurate gate performance rate in interacting qubit systems. Further, this scheme can be applicable to realize a controlled multi-qubit operation in various solid-state qubit systems. (author)

  15. 3D integrated superconducting qubits

    Science.gov (United States)

    Rosenberg, D.; Kim, D.; Das, R.; Yost, D.; Gustavsson, S.; Hover, D.; Krantz, P.; Melville, A.; Racz, L.; Samach, G. O.; Weber, S. J.; Yan, F.; Yoder, J. L.; Kerman, A. J.; Oliver, W. D.

    2017-10-01

    As the field of quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1, T2,echo > 20 μs) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips.

  16. Ultrafast optical control of individual quantum dot spin qubits.

    Science.gov (United States)

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled

  17. High coherence plane breaking packaging for superconducting qubits

    Science.gov (United States)

    Bronn, Nicholas T.; Adiga, Vivekananda P.; Olivadese, Salvatore B.; Wu, Xian; Chow, Jerry M.; Pappas, David P.

    2018-04-01

    We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking, exhibiting similar error rates as in standard packages, opening the possibility of integrating pogo pin packaging with extensible qubit architectures.

  18. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.

    Science.gov (United States)

    Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A

    2014-07-03

    The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

  19. Analytic Expression of Geometric Discord in Arbitrary Mixture of any Two Bi-qubit Product Pure States

    International Nuclear Information System (INIS)

    Xie Chuan-Mei; Xing Hang; Zhang Zhan-Jun; Liu Yi-Min

    2015-01-01

    Quantum correlations in a family of states comprising any mixture of a pair of arbitrary bi-qubit product pure states are studied by employing geometric discord [Phys. Rev. Lett. 105 (2010) 190502] as the quantifier. First, the inherent symmetry in the family of states about local unitary transformations is revealed. Then, the analytic expression of geometric discords in the states is worked out. Some concrete discussions and analyses on the captured geometric discords are made so that their distinct features are exposed. It is found that, the more averagely the two bi-qubit product states are mixed, the bigger geometric discord the mixed state owns. Moreover, the monotonic relationships of geometric discord with different parameters are revealed. (paper)

  20. Genuine three-qubit entanglement from coupling to a heat bath

    Energy Technology Data Exchange (ETDEWEB)

    Eltschka, Christopher [Institut fuer Theoretische Physik, Regensburg Univ. (Germany); Braun, Daniel [Universite de Toulouse, Laboratoire de Physique Theorique (IRSAMC), Toulouse (France); CNRS, LPT (IRSAMC), Toulouse (France); Siewert, Jens [Departamento de Quimica Fisica, Universidad del Pais Vasco UPV/EHU, Bilbao (Spain); Ikerbasque, Basque Foundation for Science, Bilbao (Spain)

    2013-07-01

    Initially unentangled qubits which do not interact which each other can become entangled by interacting with a common heat bath. But with more than two qubits, there exist several inequivalent types of entanglement. Therefore it is an important question which types of entanglement can be generated. While exactly determining and quantifying the entanglement for mixed states of more than two qubits is an unsolved problem, recent advancements based on the Greenberger-Horne-Zeilinger symmetry allow to determine a good lower bound for the entanglement. By using those methods we show that for three qubits coupled to the same heat bath indeed all types of entanglement can be generated for almost all separable initial states.

  1. Role of initial coherence on entanglement dynamics of two qubit X states

    Science.gov (United States)

    V, Namitha C.; Satyanarayana, S. V. M.

    2018-02-01

    Bipartite entanglement is a necessary resource in most processes in quantum information science. Decoherence resulting from the interaction of the bipartite system with environment not only degrades the entanglement, but can result in abrupt disentanglement, known as entanglement sudden death (ESD). In some cases, a subsequent revival of entanglement is also possible. ESD is an undesirable feature for the state to be used as a resource in applications. In order to delay or avoid ESD, it is necessary to understand its origin. In this work we investigate the role of initial coherence on entanglement dynamics of a spatially separated two qubit system in a common vacuum reservoir with dipolar interaction. We construct two classes of X states, namely, states with one photon coherence (X 1) and states with two photon coherence (X 2). Considering them as initial states, we study entanglement dynamics under Markov approximation. We find for states in X 1, ESD time, revival time and time over which the state remains disentangled increase with increase in coherence. On the other hand for states in X 2, with increase in coherence ESD time increases, revival time remains same and time of disentanglement decreases. Thus, states with two photon coherence are better resources for applications since their entanglement is robust against decoherence compared to states with one photon coherence.

  2. Quantum memory for superconducting qubits

    International Nuclear Information System (INIS)

    Pritchett, Emily J.; Geller, Michael R.

    2005-01-01

    Many protocols for quantum computation require a memory element to store qubits. We discuss the speed and accuracy with which quantum states prepared in a superconducting qubit can be stored in and later retrieved from an attached high-Q resonator. The memory fidelity depends on both the qubit-resonator coupling strength and the location of the state on the Bloch sphere. Our results show that a quantum memory demonstration should be possible with existing superconducting qubit designs, which would be an important milestone in solid-state quantum information processing. Although we specifically focus on a large-area, current-biased Josesphson-junction phase qubit coupled to the dilatational mode of a piezoelectric nanoelectromechanical disk resonator, many of our results will apply to other qubit-oscillator models

  3. Entanglement Capacity of Two-Qubit Unitary Operator with the Help of Auxiliary System

    International Nuclear Information System (INIS)

    Hu Baolin; Di Yaomin

    2007-01-01

    The entanglement capacity of general two-qubit unitary operators is studied when auxiliary systems are allowed, and the analytical results based on linear entropy when input states are disentangled are given. From the results the condition for perfect entangler, α 1 = α 2 = π/4, is obtained. Contrary to the case without auxiliary system, the parameter α 3 may play active role to the entanglement capacity when auxiliary systems are allowed.

  4. Characterization of double-loop four-Josephson-junction flux qubit

    International Nuclear Information System (INIS)

    Shimazu, Y.; Saito, Y.; Wada, Z.

    2009-01-01

    An advantage of a double-loop four-Josephson-junction (4-JJ) flux qubit is the tunability of the energy gap at a symmetry point, i.e., the point at which the double-well potential of the qubit is symmetric. The energy gap is controlled via the magnetic flux in a DC superconducting quantum interference device (DC-SQUID) loop incorporated in a 4-JJ qubit. We investigate the locus of the symmetry point in the plane of two control fluxes of the qubit, taking into account the asymmetry in the DC-SQUID, which is inevitable in practical cases. The observed positions of the qubit steps are in reasonable agreement with the calculated locus of the symmetry point. We estimate the asymmetry parameter of the DC-SQUID from this analysis.

  5. How many invariant polynomials are needed to decide local unitary equivalence of qubit states?

    International Nuclear Information System (INIS)

    Maciążek, Tomasz; Oszmaniec, Michał; Sawicki, Adam

    2013-01-01

    Given L-qubit states with the fixed spectra of reduced one-qubit density matrices, we find a formula for the minimal number of invariant polynomials needed for solving local unitary (LU) equivalence problem, that is, problem of deciding if two states can be connected by local unitary operations. Interestingly, this number is not the same for every collection of the spectra. Some spectra require less polynomials to solve LU equivalence problem than others. The result is obtained using geometric methods, i.e., by calculating the dimensions of reduced spaces, stemming from the symplectic reduction procedure

  6. Logical operations realized on the Ising chain of N qubits

    International Nuclear Information System (INIS)

    Asano, Masanari; Tateda, Norihiro; Ishii, Chikara

    2004-01-01

    Multiqubit logical gates are proposed as implementations of logical operations on N qubits realized physically by the local manipulation of qubits before and after the one-time evolution of an Ising chain. This construction avoids complicated tuning of the interactions between qubits. The general rules of the action of multiqubit logical gates are derived by decomposing the process into the product of two-qubit logical operations. The formalism is demonstrated by the construction of a special type of multiqubit logical gate that is simulated by a quantum circuit composed of controlled-NOT gates

  7. Controlled Remote State Preparation via General Pure Three-Qubit State

    Directory of Open Access Journals (Sweden)

    Yuebo Zha

    2015-07-01

    Full Text Available The protocols for controlled remote state preparation of a single qubit and a general two-qubit state are presented in this paper. The general pure three-qubit states are chosen as shared quantum channel, which are not Local operations and classical communication (LOCC equivalent to the mostly used GHz state. This is the first time that general pure three-qubit states have been introduced to complete remote state preparation. The probability of successful preparation is presented. Moreover, in some special cases, the successful probability could reach a unit value.

  8. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.

    Science.gov (United States)

    Ivić, Z; Lazarides, N; Tsironis, G P

    2016-07-12

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  9. Circuit QED with transmon qubits

    Energy Technology Data Exchange (ETDEWEB)

    Wulschner, Karl Friedrich; Puertas, Javier; Baust, Alexander; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Marx, Achim; Menzel, Edwin; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Weides, Martin [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2015-07-01

    Superconducting quantum bits are basic building blocks for circuit QED systems. Applications in the fields of quantum computation and quantum simulation require long coherence times. We have fabricated and characterized superconducting transmon qubits which are designed to operate at a high ratio of Josephson energy and charging energy. Due to their low sensitivity to charge noise transmon qubits show good coherence properties. We couple transmon qubits to coplanar waveguide resonators and coplanar slotline resonators and characterize the devices at mK-temperatures. From the experimental data we derive the qubit-resonator coupling strength, the qubit relaxation time and calibrate the photon number in the resonator via Stark shifts.

  10. Robust Concurrent Remote Entanglement Between Two Superconducting Qubits

    Directory of Open Access Journals (Sweden)

    A. Narla

    2016-09-01

    Full Text Available Entangling two remote quantum systems that never interact directly is an essential primitive in quantum information science and forms the basis for the modular architecture of quantum computing. When protocols to generate these remote entangled pairs rely on using traveling single-photon states as carriers of quantum information, they can be made robust to photon losses, unlike schemes that rely on continuous variable states. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a robust form of concurrent remote entanglement based on a novel microwave photon detector implemented in the superconducting circuit quantum electrodynamics platform of quantum information. Remote entangled pairs with a fidelity of 0.57±0.01 are generated at 200 Hz. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.

  11. Experimental realization of quantum cheque using a five-qubit quantum computer

    Science.gov (United States)

    Behera, Bikash K.; Banerjee, Anindita; Panigrahi, Prasanta K.

    2017-12-01

    Quantum cheques could be a forgery-free way to make transaction in a quantum networked banking system with perfect security against any no-signalling adversary. Here, we demonstrate the implementation of quantum cheque, proposed by Moulick and Panigrahi (Quantum Inf Process 15:2475-2486, 2016), using the five-qubit IBM quantum computer. Appropriate single qubit, CNOT and Fredkin gates are used in an optimized configuration. The accuracy of implementation is checked and verified through quantum state tomography by comparing results from the theoretical and experimental density matrices.

  12. Genuinely high-dimensional nonlocality optimized by complementary measurements

    International Nuclear Information System (INIS)

    Lim, James; Ryu, Junghee; Yoo, Seokwon; Lee, Changhyoup; Bang, Jeongho; Lee, Jinhyoung

    2010-01-01

    Qubits exhibit extreme nonlocality when their state is maximally entangled and this is observed by mutually unbiased local measurements. This criterion does not hold for the Bell inequalities of high-dimensional systems (qudits), recently proposed by Collins-Gisin-Linden-Massar-Popescu and Son-Lee-Kim. Taking an alternative approach, called the quantum-to-classical approach, we derive a series of Bell inequalities for qudits that satisfy the criterion as for the qubits. In the derivation each d-dimensional subsystem is assumed to be measured by one of d possible measurements with d being a prime integer. By applying to two qubits (d=2), we find that a derived inequality is reduced to the Clauser-Horne-Shimony-Holt inequality when the degree of nonlocality is optimized over all the possible states and local observables. Further applying to two and three qutrits (d=3), we find Bell inequalities that are violated for the three-dimensionally entangled states but are not violated by any two-dimensionally entangled states. In other words, the inequalities discriminate three-dimensional (3D) entanglement from two-dimensional (2D) entanglement and in this sense they are genuinely 3D. In addition, for the two qutrits we give a quantitative description of the relations among the three degrees of complementarity, entanglement and nonlocality. It is shown that the degree of complementarity jumps abruptly to very close to its maximum as nonlocality starts appearing. These characteristics imply that complementarity plays a more significant role in the present inequality compared with the previously proposed inequality.

  13. Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming

    Science.gov (United States)

    Devra, Amit; Prabhu, Prithviraj; Singh, Harpreet; Arvind; Dorai, Kavita

    2018-03-01

    We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled-NOT) and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates thus obtained were experimentally implemented on a three-qubit NMR quantum information processor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard gates form a universal gate set for quantum computing and are an essential component of several quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of natural selection and biological genetics and have been widely used for quantum information processing applications. We devised a new selection mechanism within the genetic algorithm framework to select individuals from a population. We call this mechanism the "Luck-Choose" mechanism and were able to achieve faster convergence to a solution using this mechanism, as compared to existing selection mechanisms. The optimization was performed under the constraint that the experimentally implemented pulses are of short duration and can be implemented with high fidelity. We demonstrate the advantage of our pulse sequences by comparing our results with existing experimental schemes and other numerical optimization methods.

  14. Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum-state-diffusion approach

    International Nuclear Information System (INIS)

    Zhao Xinyu; Jing Jun; Corn, Brittany; Yu Ting

    2011-01-01

    Non-Markovian dynamics is studied for two interacting qubits strongly coupled to a dissipative bosonic environment. We derive a non-Markovian quantum-state-diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we study residual entanglement in the steady state by analyzing the steady-state solution of the QSD equation. Finally, we discuss an approximate QSD equation.

  15. Hybrid spin and valley quantum computing with singlet-triplet qubits.

    Science.gov (United States)

    Rohling, Niklas; Russ, Maximilian; Burkard, Guido

    2014-10-24

    The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.

  16. Al transmon qubits on silicon-on-insulator for quantum device integration

    Science.gov (United States)

    Keller, Andrew J.; Dieterle, Paul B.; Fang, Michael; Berger, Brett; Fink, Johannes M.; Painter, Oskar

    2017-07-01

    We present the fabrication and characterization of an aluminum transmon qubit on a silicon-on-insulator substrate. Key to the qubit fabrication is the use of an anhydrous hydrofluoric vapor process which selectively removes the lossy silicon oxide buried underneath the silicon device layer. For a 5.6 GHz qubit measured dispersively by a 7.1 GHz resonator, we find T1 = 3.5 μs and T2* = 2.2 μs. This process in principle permits the co-fabrication of silicon photonic and mechanical elements, providing a route towards chip-scale integration of electro-opto-mechanical transducers for quantum networking of superconducting microwave quantum circuits. The additional processing steps are compatible with established fabrication techniques for aluminum transmon qubits on silicon.

  17. Dynamics and quantum Zeno effect for a qubit in either a low- or high-frequency bath beyond the rotating-wave approximation

    International Nuclear Information System (INIS)

    Cao Xiufeng; You, J. Q.; Zheng, H.; Kofman, A. G.; Nori, Franco

    2010-01-01

    We use a non-Markovian approach to study the decoherence dynamics of a qubit in either a low- or high-frequency bath modeling the qubit environment. This is done for two separate cases: either with measurements or without them. This approach is based on a unitary transformation and does not require the rotating-wave approximation. In the case without measurement, we show that, for low-frequency noise, the bath shifts the qubit energy toward higher energies (blue shift), while the ordinary high-frequency cutoff Ohmic bath shifts the qubit energy toward lower energies (red shift). In order to preserve the coherence of the qubit, we also investigate the dynamics of the qubit subject to measurements (quantum Zeno regime) in two cases: low- and high-frequency baths. For very frequent projective measurements, the low-frequency bath gives rise to the quantum anti-Zeno effect on the qubit. The quantum Zeno effect only occurs in the high-frequency-cutoff Ohmic bath, after counterrotating terms are considered. In the condition that the decay rate due to the two kinds of baths are equal under the Wigner-Weisskopf approximation, we find that without the approximation, for a high-frequency environment, the decay rate should be faster (without measurements) or slower (with frequent measurements, in the Zeno regime), compared to the low-frequency bath case. The experimental implementation of our results here could distinguish the type of bath (either a low- or high-frequency one) and protect the coherence of the qubit by modulating the dominant frequency of its environment.

  18. Bell's inequalities for three-qubit entangled states with white noise

    International Nuclear Information System (INIS)

    Chang, Jinho; Kwon, Younghun

    2009-01-01

    We consider three-qubit entangled states classified by Acin et al. and evaluate Bell's inequalities for them when the white noise exists, which may be a real situation for the experiment of the Bells inequality to three-qubit entangled states. We obtain the maximum violation for the Bell inequality in each case and find the condition for exceeding the classical limit. And we observe that even when there would exist quite amount of white noise, some of three-qubit entangled states(for example 2b, 3a, 3b-I, 3b-II and 3b-III types) might show the violation of the Bell inequality.

  19. Qubit authentication

    International Nuclear Information System (INIS)

    Curty, Marcos; Santos, David J.; Perez, Esther; Garcia-Fernandez, Priscila

    2002-01-01

    Secure communication requires message authentication. In this paper we address the problem of how to authenticate quantum information sent through a quantum channel between two communicating parties with the minimum amount of resources. Specifically, our objective is to determine whether one elementary quantum message (a qubit) can be authenticated with a key of minimum length. We show that, unlike the case of classical-message quantum authentication, this is not possible

  20. Dissipation, dephasing and quantum Darwinism in qubit systems with random unitary interactions

    Science.gov (United States)

    Balaneskovic, Nenad; Mendler, Marc

    2016-09-01

    We investigate the influence of dissipation and decoherence on quantum Darwinism by generalizing Zurek's original qubit model of decoherence and the establishment of pointer states [W.H. Zurek, Nat. Phys. 5, 181 (2009); see also arXiv: quant-ph/0707.2832v1, pp. 14-19.]. Our model allows for repeated multiple qubit-qubit couplings between system and environment which are described by randomly applied two-qubit quantum operations inducing entanglement, dissipation and dephasing. The resulting stationary qubit states of system and environment are investigated. They exhibit the intricate influence of entanglement generation, dissipation and dephasing on this characteristic quantum phenomenon.

  1. Kraus Operators for a Pair of Interacting Qubits: a Case Study

    Science.gov (United States)

    Arsenijević, M.; Jeknić-Dugić, J.; Dugić, M.

    2018-04-01

    The Kraus form of the completely positive dynamical maps is appealing from the mathematical and the point of the diverse applications of the open quantum systems theory. Unfortunately, the Kraus operators are poorly known for the two-qubit processes. In this paper, we derive the Kraus operators for a pair of interacting qubits, while the strength of the interaction is arbitrary. One of the qubits is subjected to the x-projection spin measurement. The obtained results are applied to calculate the dynamics of the entanglement in the qubits system. We obtain the loss of the correlations in the finite time interval; the stronger the inter-qubit interaction, the longer lasting entanglement in the system.

  2. Genuine Four Tangle for Four Qubit States

    OpenAIRE

    Sharma, S. Shelly; Sharma, N. K.

    2013-01-01

    We report a four qubit polynomial invariant that quantifies genuine four-body correlations. The four qubit invariants are obtained from transformation properties of three qubit invariants under a local unitary on the fourth qubit.

  3. Coherence properties of the 0-π qubit

    Science.gov (United States)

    Groszkowski, Peter; Di Paolo, A.; Grimsmo, A. L.; Blais, A.; Schuster, D. I.; Houck, A. A.; Koch, Jens

    2018-04-01

    Superconducting circuits rank among some of the most interesting architectures for the implementation of quantum information processing devices. The recently proposed 0-π qubit (Brooks et al 2013 Phys. Rev. A 87 52306) promises increased protection from spontaneous relaxation and dephasing. In this paper we present a detailed theoretical study of the coherence properties of the 0-π device, investigate relevant decoherence channels, and show estimates for achievable coherence times in multiple parameter regimes. In our analysis, we include disorder in circuit parameters, which results in the coupling of the qubit to a low-energy, spurious harmonic mode. We analyze the effects of such coupling on decoherence, in particular dephasing due to photon shot noise, and outline how such a noise channel can be mitigated by appropriate parameter choices. In the end we find that the 0-π qubit performs well and may become an attractive candidate for the implementation of the next-generation superconducting devices for uses in quantum computing and information.

  4. Tuning decoherence in superconducting transmon qubits by mechanical strain

    Energy Technology Data Exchange (ETDEWEB)

    Brehm, Jan; Bilmes, Alexander; Weiss, Georg; Ustinov, Alexey; Lisenfeld, Juergen [Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2016-07-01

    Two-level tunneling systems (TLS) are formed by structural defects in disordered materials. They gained recent attention as an important decoherence source in superconducting qubits, where they appear on surface oxides and at film interfaces. Although the most advanced qubits do not show avoided level crossings arising from a strong coupling to individual TLS, they commonly display a pronounced frequency dependence of relaxation rates, with distinguishable peaks that may point towards weak resonant coupling to single TLS. Previously, we have shown that TLS are tunable via an applied mechanical strain. Here, we employ this method to test whether the characteristic decoherence spectrum of a transmon qubit sample responds to changes in the applied strain, as it can be expected when the decohering bath is formed of atomic TLS. In our experiment, we will employ a highly coherent X-mon qubit sample and tune the strain by bending the qubit chip via a piezo actuator. Our latest results will be presented.

  5. Three qubit entanglement within graphical Z/X-calculus

    Directory of Open Access Journals (Sweden)

    Bob Coecke

    2011-03-01

    Full Text Available The compositional techniques of categorical quantum mechanics are applied to analyse 3-qubit quantum entanglement. In particular the graphical calculus of complementary observables and corresponding phases due to Duncan and one of the authors is used to construct representative members of the two genuinely tripartite SLOCC classes of 3-qubit entangled states, GHZ and W. This nicely illustrates the respectively pairwise and global tripartite entanglement found in the W- and GHZ-class states. A new concept of supplementarity allows us to characterise inhabitants of the W class within the abstract diagrammatic calculus; these method extends to more general multipartite qubit states.

  6. Collapse and revival of entanglement between qubits coupled to a spin coherent state

    Science.gov (United States)

    Bahari, Iskandar; Spiller, Timothy P.; Dooley, Shane; Hayes, Anthony; McCrossan, Francis

    We extend the study of the Jayne-Cummings (JC) model involving a pair of identical two-level atoms (or qubits) interacting with a single mode quantized field. We investigate the effects of replacing the radiation field mode with a composite spin, comprising N qubits, or spin-1/2 particles. This model is relevant for physical implementations in superconducting circuit QED, ion trap and molecular systems. For the case of the composite spin prepared in a spin coherent state, we demonstrate the similarities of this set-up to the qubits-field model in terms of the time evolution, attractor states and in particular the collapse and revival of the entanglement between the two qubits. We extend our analysis by taking into account an effect due to qubit imperfections. We consider a difference (or “mismatch”) in the dipole interaction strengths of the two qubits, for both the field mode and composite spin cases. To address decoherence due to this mismatch, we then average over this coupling strength difference with distributions of varying width. We demonstrate in both the field mode and the composite spin scenarios that increasing the width of the “error” distribution increases suppression of the coherent dynamics of the coupled system, including the collapse and revival of the entanglement between the qubits.

  7. Characterizing Ensembles of Superconducting Qubits

    Science.gov (United States)

    Sears, Adam; Birenbaum, Jeff; Hover, David; Rosenberg, Danna; Weber, Steven; Yoder, Jonilyn L.; Kerman, Jamie; Gustavsson, Simon; Kamal, Archana; Yan, Fei; Oliver, William

    We investigate ensembles of up to 48 superconducting qubits embedded within a superconducting cavity. Such arrays of qubits have been proposed for the experimental study of Ising Hamiltonians, and efficient methods to characterize and calibrate these types of systems are still under development. Here we leverage high qubit coherence (> 70 μs) to characterize individual devices as well as qubit-qubit interactions, utilizing the common resonator mode for a joint readout. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  8. Optical generation of matter qubit graph states

    International Nuclear Information System (INIS)

    Benjamin, S C; Eisert, J; Stace, T M

    2005-01-01

    We present a scheme for rapidly entangling matter qubits in order to create graph states for one-way quantum computing. The qubits can be simple three-level systems in separate cavities. Coupling involves only local fields and a static (unswitched) linear optics network. Fusion of graph-state sections occurs with, in principle, zero probability of damaging the nascent graph state. We avoid the finite thresholds of other schemes by operating on two entangled pairs, so that each generates exactly one photon. We do not require the relatively slow single qubit local flips to be applied during the growth phase: growth of the graph state can then become a purely optical process. The scheme naturally generates graph states with vertices of high degree and so is easily able to construct minimal graph states, with consequent resource savings. The most efficient approach will be to create new graph-state edges even as qubits elsewhere are measured, in a 'just in time' approach. An error analysis indicates that the scheme is relatively robust against imperfections in the apparatus

  9. Hierarchically controlled remote preparation of an arbitrary single-qubit state by using a four-qubit |χ > entangled state

    Science.gov (United States)

    Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2018-05-01

    In this paper, we present a scheme for Hierarchically controlled remote preparation of an arbitrary single-qubit state via a four-qubit |χ > state as the quantum channel. In this scheme, a sender wishes to help three agents to remotely prepare a quantum state, respectively. The three agents are divided into two grades, that is, an agent is in the upper grade and other two agents are in the lower grade. It is shown that the agent of the upper grade only needs the assistance of any one of the other two agents for recovering the sender's original state, while an agent of the lower grade needs the collaboration of all the other two agents. In other words, the agents of two grades have different authorities to recover sender's original state.

  10. Entangling distant resonant exchange qubits via circuit quantum electrodynamics

    Science.gov (United States)

    Srinivasa, V.; Taylor, J. M.; Tahan, Charles

    2016-11-01

    We investigate a hybrid quantum system consisting of spatially separated resonant exchange qubits, defined in three-electron semiconductor triple quantum dots, that are coupled via a superconducting transmission line resonator. Drawing on methods from circuit quantum electrodynamics and Hartmann-Hahn double resonance techniques, we analyze three specific approaches for implementing resonator-mediated two-qubit entangling gates in both dispersive and resonant regimes of interaction. We calculate entangling gate fidelities as well as the rate of relaxation via phonons for resonant exchange qubits in silicon triple dots and show that such an implementation is particularly well suited to achieving the strong coupling regime. Our approach combines the favorable coherence properties of encoded spin qubits in silicon with the rapid and robust long-range entanglement provided by circuit QED systems.

  11. Thermodynamics of a periodically driven qubit

    Science.gov (United States)

    Donvil, Brecht

    2018-04-01

    We present a new approach to the open system dynamics of a periodically driven qubit in contact with a temperature bath. We are specifically interested in the thermodynamics of the qubit. It is well known that by combining the Markovian approximation with Floquet theory it is possible to derive a stochastic Schrödinger equation in for the state of the qubit. We follow here a different approach. We use Floquet theory to embed the time-non autonomous qubit dynamics into time-autonomous yet infinite dimensional dynamics. We refer to the resulting infinite dimensional system as the dressed-qubit. Using the Markovian approximation we derive the stochastic Schrödinger equation for the dressed-qubit. The advantage of our approach is that the jump operators are ladder operators of the Hamiltonian. This simplifies the formulation of the thermodynamics. We use the thermodynamics of the infinite dimensional system to recover the thermodynamical description for the driven qubit. We compare our results with the existing literature and recover the known results.

  12. Qubit dephasing due to quasiparticle tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Zanker, Sebastian; Marthaler, Michael; Schoen, Gerd [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany)

    2015-07-01

    We study dephasing of a superconducting qubit due to quasiparticle tunneling through a Josephson junction. While qubit decay due to tunneling processes is well understood within a golden rule approximation, pure dephasing due to BCS quasiparticles gives rise to a divergent golden rule rate. We calculate qubit dephasing due to quasiparticle tunneling beyond lowest order approximation in coupling between qubit and quasiparticles. Summing up a certain class of diagrams we show that qubit dephasing due to purely longitudinal coupling to quasiparticles leads to dephasing ∝ exp(-x(t)) where x(t) ∝ t{sup 3/2} for short time scales and x(t) ∝ tlog(t) for long time scales.

  13. The Quantum Socket: Wiring for Superconducting Qubits - Part 2

    Science.gov (United States)

    Bejanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum computing research has reached a level of maturity where quantum error correction (QEC) codes can be executed on linear arrays of superconducting quantum bits (qubits). A truly scalable quantum computing architecture, however, based on practical QEC algorithms, requires nearest neighbor interaction between qubits on a two-dimensional array. Such an arrangement is not possible with techniques that rely on wire bonding. To address this issue, we have developed the quantum socket, a device based on three-dimensional wires that enables the control of superconducting qubits on a two-dimensional grid. In this talk, we present experimental results characterizing this type of wiring. We will show that the quantum socket performs exceptionally well for the transmission and reflection of microwave signals up to 10 GHz, while minimizing crosstalk between adjacent wires. Under realistic conditions, we measured an S21 of -5 dB at 6 GHz and an average crosstalk of -60 dB. We also describe time domain reflectometry results and arbitrary pulse transmission tests, showing that the quantum socket can be used to control superconducting qubits.

  14. Implementation of the Grover search algorithm with Josephson charge qubits

    International Nuclear Information System (INIS)

    Zheng Xiaohu; Dong Ping; Xue Zhengyuan; Cao Zhuoliang

    2007-01-01

    A scheme of implementing the Grover search algorithm based on Josephson charge qubits has been proposed, which would be a key step to scale more complex quantum algorithms and very important for constructing a real quantum computer via Josephson charge qubits. The present scheme is simple but fairly efficient, and easily manipulated because any two-charge-qubit can be selectively and effectively coupled by a common inductance. More manipulations can be carried out before decoherence sets in. Our scheme can be realized within the current technology

  15. Entanglement of three-qubit Greenberger-Horne-Zeilinger-symmetric states.

    Science.gov (United States)

    Eltschka, Christopher; Siewert, Jens

    2012-01-13

    The first characterization of mixed-state entanglement was achieved for two-qubit states in Werner's seminal work [Phys. Rev. A 40, 4277 (1989)]. A physically important extension concerns mixtures of a pure entangled state [such as the Greenberger-Horne-Zeilinger (GHZ) state] and the unpolarized state. These mixed states serve as benchmark for the robustness of multipartite entanglement. They share the symmetries of the GHZ state. We call such states GHZ symmetric. Here we give a complete description of the entanglement in the family of three-qubit GHZ-symmetric states and, in particular, of the three-qubit generalized Werner states. Our method relies on the appropriate parametrization of the states and on the invariance of entanglement properties under general local operations. An application is the definition of a symmetrization witness for the entanglement class of arbitrary three-qubit states.

  16. Probing low noise at the MOS interface with a spin-orbit qubit.

    Energy Technology Data Exchange (ETDEWEB)

    Jock, Ryan Michael; Jacobson, Noah Tobias; Harvey-Collard, Patrick; Mounce, Andrew; Srinivasa, Vanita; Ward, Daniel Robert; Anderson, John Moses; Manginell, Ronald P.; Wendt, Joel R.; Rudolph, Martin; Pluym, Tammy; Gamble, John King,; Baczewski, Andrew David; Witzel, Wayne; Carroll, Malcolm S.

    2017-07-01

    The silicon metal-oxide-semiconductor (MOS) material system is technologically important for the implementation of electron spin-based quantum information technologies. Researchers predict the need for an integrated platform in order to implement useful computation, and decades of advancements in silicon microelectronics fabrication lends itself to this challenge. However, fundamental concerns have been raised about the MOS interface (e.g. trap noise, variations in electron g-factor and practical implementation of multi-QDs). Furthermore, two-axis control of silicon qubits has, to date, required the integration of non-ideal components (e.g. microwave strip-lines, micro-magnets, triple quantum dots, or introduction of donor atoms). In this paper, we introduce a spin-orbit (SO) driven singlet- triplet (ST) qubit in silicon, demonstrating all-electrical two-axis control that requires no additional integrated elements and exhibits charge noise properties equivalent to other more model, but less commercially mature, semiconductor systems. We demonstrate the ability to tune an intrinsic spin-orbit interface effect, which is consistent with Rashba and Dresselhaus contributions that are remarkably strong for a low spin-orbit material such as silicon. The qubit maintains the advantages of using isotopically enriched silicon for producing a quiet magnetic environment, measuring spin dephasing times of 1.6 μs using 99.95% 28Si epitaxy for the qubit, comparable to results from other isotopically enhanced silicon ST qubit systems. This work, therefore, demonstrates that the interface inherently provides properties for two-axis control, and the technologically important MOS interface does not add additional detrimental qubit noise. isotopically enhanced silicon ST qubit systems

  17. Microwave potentials and optimal control for robust quantum gates on an atom chip

    International Nuclear Information System (INIS)

    Treutlein, Philipp; Haensch, Theodor W.; Reichel, Jakob; Negretti, Antonio; Cirone, Markus A.; Calarco, Tommaso

    2006-01-01

    We propose a two-qubit collisional phase gate that can be implemented with available atom chip technology and present a detailed theoretical analysis of its performance. The gate is based on earlier phase gate schemes, but uses a qubit state pair with an experimentally demonstrated, very long coherence lifetime. Microwave near fields play a key role in our implementation as a means to realize the state-dependent potentials required for conditional dynamics. Quantum control algorithms are used to optimize gate performance. We employ circuit configurations that can be built with current fabrication processes and extensively discuss the impact of technical noise and imperfections that characterize an actual atom chip. We find an overall infidelity compatible with requirements for fault-tolerant quantum computation

  18. Optimal cloning of arbitrary mirror-symmetric distributions on the Bloch sphere: a proposal for practical photonic realization

    International Nuclear Information System (INIS)

    Bartkiewicz, Karol; Miranowicz, Adam

    2012-01-01

    We study state-dependent quantum cloning that can outperform universal cloning (UC). This is possible by using some a priori information on a given quantum state to be cloned. Specifically, we propose a generalization and optical implementation of quantum optimal mirror phase-covariant cloning, which refers to optimal cloning of sets of qubits of known modulus of the expectation value of Pauli's Z operator. Our results can be applied to cloning of an arbitrary mirror-symmetric distribution of qubits on the Bloch sphere including in special cases UC and phase-covariant cloning. We show that the cloning is optimal by adapting our former optimality proof for axisymmetric cloning (Bartkiewicz and Miranowicz 2010 Phys. Rev. A 82 042330). Moreover, we propose an optical realization of the optimal mirror phase-covariant 1→2 cloning of a qubit, for which the mean probability of successful cloning varies from 1/6 to 1/3 depending on prior information on the set of qubits to be cloned. The qubits are represented by polarization states of photons generated by the type-I spontaneous parametric down-conversion. The scheme is based on the interference of two photons on an unbalanced polarization-dependent beam splitter with different splitting ratios for vertical and horizontal polarization components and the additional application of feedforward by means of Pockels cells. The experimental feasibility of the proposed setup is carefully studied including various kinds of imperfections and losses. Moreover, we briefly describe two possible cryptographic applications of the optimal mirror phase-covariant cloning corresponding to state discrimination (or estimation) and secure quantum teleportation.

  19. Controlled phase gate for solid-state charge-qubit architectures

    International Nuclear Information System (INIS)

    Schirmer, S.G.; Oi, D.K.L.; Greentree, Andrew D.

    2005-01-01

    We describe a mechanism for realizing a controlled phase gate for solid-state charge qubits. By augmenting the positionally defined qubit with an auxiliary state, and changing the charge distribution in the three-dot system, we are able to effectively switch the Coulombic interaction, effecting an entangling gate. We consider two architectures, and numerically investigate their robustness to gate noise

  20. Inverse Landau-Zener-Stuckelberg interferometry for the measurement of a resonator's state using a qubit

    Science.gov (United States)

    Shevchenko, Sergey; Ashhab, Sahel; Nori, Franco

    2013-03-01

    We consider theoretically a superconducting qubit - nanomechanical resonator system, which was realized recently by LaHaye et al. [Nature 459, 960 (2009)]. We formulate and solve the inverse Landau-Zener-Stuckelberg problem, where we assume the driven qubit's state to be known (i.e. measured by some other device) and aim to find the parameters of the qubit's Hamiltonian. In particular, for our system the qubit's bias is defined by the nanomechanical resonator's displacement. This may provide a tool for monitoring the nanomechanical resonator 's position. [S. N. Shevchenko, S. Ashhab, and F. Nori, Phys. Rev. B 85, 094502 (2012).

  1. Quantum information storage using tunable flux qubits

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Matthias; Brito, Frederico; DiVincenzo, David; Farinelli, Matthew; Keefe, George; Ketchen, Mark; Kumar, Shwetank; Milliken, Frank; Rothwell, Mary Beth; Rozen, Jim; Koch, Roger H, E-mail: msteffe@us.ibm.co [IBM Watson Research Center, Yorktown Heights, NY 10598 (United States)

    2010-02-10

    We present details and results for a superconducting quantum bit (qubit) design in which a tunable flux qubit is coupled strongly to a transmission line. Quantum information storage in the transmission line is demonstrated with a dephasing time of T{sub 2}approx2.5 mus. However, energy lifetimes of the qubit are found to be short (approx10 ns) and not consistent with predictions. Several design and material changes do not affect qubit coherence times. In order to determine the cause of these short coherence times, we fabricated standard flux qubits based on a design which was previously successfully used by others. Initial results show significantly improved coherence times, possibly implicating losses associated with the large size of our qubit. (topical review)

  2. Quantum state transfer via a two-qubit Heisenberg XXZ spin model

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jia; Zhang Guofeng [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Chen Ziyu [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)], E-mail: chenzy@buaa.edu.cn

    2008-04-14

    Transfer of quantum states through a two-qubit Heisenberg XXZ spin model with a nonuniform magnetic field b is investigated by means of quantum theory. The influences of b, the spin exchange coupling J and the effective transfer time T=Jt on the fidelity have been studied for some different initial states. Results show that fidelity of the transferred state is determined not only by J, T and b but also by the initial state of this quantum system. Ideal information transfer can be realized for some kinds of initial states. We also found that the interactions of the z-component J{sub z} and uniform magnetic field B do not have any contribution to the fidelity. These results may be useful for quantum information processing.

  3. Quantum state transfer via a two-qubit Heisenberg XXZ spin model

    International Nuclear Information System (INIS)

    Liu Jia; Zhang Guofeng; Chen Ziyu

    2008-01-01

    Transfer of quantum states through a two-qubit Heisenberg XXZ spin model with a nonuniform magnetic field b is investigated by means of quantum theory. The influences of b, the spin exchange coupling J and the effective transfer time T=Jt on the fidelity have been studied for some different initial states. Results show that fidelity of the transferred state is determined not only by J, T and b but also by the initial state of this quantum system. Ideal information transfer can be realized for some kinds of initial states. We also found that the interactions of the z-component J z and uniform magnetic field B do not have any contribution to the fidelity. These results may be useful for quantum information processing

  4. Spin-orbit qubit in a semiconductor nanowire.

    Science.gov (United States)

    Nadj-Perge, S; Frolov, S M; Bakkers, E P A M; Kouwenhoven, L P

    2010-12-23

    Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.

  5. Universal set of quantum gates for double-dot exchange-only spin qubits with intradot coupling

    International Nuclear Information System (INIS)

    Michielis, M De; Ferraro, E; Fanciulli, M; Prati, E

    2015-01-01

    We present a universal set of quantum gate operations based on exchange-only spin qubits in a double quantum dot, where each qubit is obtained by three electrons in the (2,1) filling. Gate operations are addressed by modulating electrostatically the tunneling barrier and the energy offset between the two dots, singly and doubly occupied respectively. We propose explicit gate sequences of single qubit operations for arbitrary rotations, and the two-qubit controlled NOT gate, to complete the universal set. The unswitchable interaction between the two electrons of the doubly occupied quantum dot is taken into account. Short gate times are obtained by employing spin density functional theory simulations. (paper)

  6. Frequency multiplexing for readout of spin qubits

    Energy Technology Data Exchange (ETDEWEB)

    Hornibrook, J. M.; Colless, J. I.; Mahoney, A. C.; Croot, X. G.; Blanvillain, S.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Lu, H.; Gossard, A. C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-03-10

    We demonstrate a low loss, chip-level frequency multiplexing scheme for readout of scaled-up spin qubit devices. By integrating separate bias tees and resonator circuits on-chip for each readout channel, we realise dispersive gate-sensing in combination with charge detection based on two radio frequency quantum point contacts. We apply this approach to perform multiplexed readout of a double quantum dot in the few-electron regime and further demonstrate operation of a 10-channel multiplexing device. Limitations for scaling spin qubit readout to large numbers of multiplexed channels are discussed.

  7. Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits

    Science.gov (United States)

    Buterakos, Donovan; Throckmorton, Robert E.; Das Sarma, S.

    2018-01-01

    In addition to magnetic field and electric charge noise adversely affecting spin-qubit operations, performing single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge: crosstalk, which is inevitable (and must be minimized) in any multiqubit quantum computing architecture. We develop a set of dynamically corrected pulse sequences that are designed to cancel the effects of both types of noise (i.e., field and charge) as well as crosstalk to leading order, and provide parameters for these corrected sequences for all 24 of the single-qubit Clifford gates. We then provide an estimate of the error as a function of the noise and capacitive coupling to compare the fidelity of our corrected gates to their uncorrected versions. Dynamical error correction protocols presented in this work are important for the next generation of singlet-triplet qubit devices where coupling among many qubits will become relevant.

  8. Volume of the space of qubit-qubit channels and state transformations under random quantum channels

    OpenAIRE

    Lovas, Attila; Andai, Attila

    2017-01-01

    The simplest building blocks for quantum computations are the qubit-qubit quantum channels. In this paper, we analyze the structure of these channels via their Choi representation. The restriction of a quantum channel to the space of classical states (i.e. probability distributions) is called the underlying classical channel. The structure of quantum channels over a fixed classical channel is studied, the volume of general and unital qubit channels with respect to the Lebesgue measure is comp...

  9. Classical-processing and quantum-processing signal separation methods for qubit uncoupling

    Science.gov (United States)

    Deville, Yannick; Deville, Alain

    2012-12-01

    The Blind Source Separation problem consists in estimating a set of unknown source signals from their measured combinations. It was only investigated in a non-quantum framework up to now. We propose its first quantum extensions. We thus introduce the Quantum Source Separation field, investigating both its blind and non-blind configurations. More precisely, we show how to retrieve individual quantum bits (qubits) only from the global state resulting from their undesired coupling. We consider cylindrical-symmetry Heisenberg coupling, which e.g. occurs when two electron spins interact through exchange. We first propose several qubit uncoupling methods which typically measure repeatedly the coupled quantum states resulting from individual qubits preparations, and which then statistically process the classical data provided by these measurements. Numerical tests prove the effectiveness of these methods. We then derive a combination of quantum gates for performing qubit uncoupling, thus avoiding repeated qubit preparations and irreversible measurements.

  10. Preparation of n-qubit Greenberger-Horne-Zeilinger entangled states in cavity QED: An approach with tolerance to nonidentical qubit-cavity coupling constants

    International Nuclear Information System (INIS)

    Yang Chuiping

    2011-01-01

    We propose a way for generating n-qubit Greenberger-Horne-Zeilinger (GHZ) entangled states with a three-level qubit system and (n-1) four-level qubit systems in a cavity. This proposal does not require identical qubit-cavity coupling constants and thus is tolerant to qubit-system parameter nonuniformity and nonexact placement of qubits in a cavity. The proposal does not require adjustment of the qubit-system level spacings during the entire operation. Moreover, it is shown that entanglement can be deterministically generated using this method and the operation time is independent of the number of qubits. The present proposal is quite general, which can be applied to physical systems such as various types of superconducting devices coupled to a resonator or atoms trapped in a cavity.

  11. Spin Relaxation and Manipulation in Spin-orbit Qubits

    Science.gov (United States)

    Borhani, Massoud; Hu, Xuedong

    2012-02-01

    We derive a generalized form of the Electric Dipole Spin Resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g-tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD). Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  12. Adiabatic approximation in the ultrastrong-coupling regime of an oscillator and two qubits

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping; Zou, Ping [Laboratory of Nanophotonic Functional Materials and Devices, SIPSE and LQIT, South China Normal University, Guangzhou 510006 (China); Zhang, Zhi-Ming, E-mail: zmzhang@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, SIPSE and LQIT, South China Normal University, Guangzhou 510006 (China)

    2012-10-01

    We present a system composed of two flux qubits and a transmission-line resonator. Instead of using the rotating wave approximation (RWA), we analyze the system by the adiabatic approximation methods under two opposite extreme conditions. Basic properties of the system are calculated and compared under these two different conditions. Relative energy-level spectrum of the system in the adiabatic displaced oscillator basis is shown, and the theoretical result is compared with the numerical solution. -- Highlights: ► Our work shows that the adiabatic approximations may work also in the ultrastrong coupling limit. ► Both of the approximation methods are valid in a large range of coupling strength, including the ultrastrong coupling regime. ► The results of the approximate formula meet well the exact numerical solution.

  13. Topological networks for quantum communication between distant qubits

    Science.gov (United States)

    Lang, Nicolai; Büchler, Hans Peter

    2017-11-01

    Efficient communication between qubits relies on robust networks, which allow for fast and coherent transfer of quantum information. It seems natural to harvest the remarkable properties of systems characterized by topological invariants to perform this task. Here, we show that a linear network of coupled bosonic degrees of freedom, characterized by topological bands, can be employed for the efficient exchange of quantum information over large distances. Important features of our setup are that it is robust against quenched disorder, all relevant operations can be performed by global variations of parameters, and the time required for communication between distant qubits approaches linear scaling with their distance. We demonstrate that our concept can be extended to an ensemble of qubits embedded in a two-dimensional network to allow for communication between all of them.

  14. Framework for Flux Qubit Design

    Science.gov (United States)

    Yan, Fei; Kamal, Archana; Krantz, Philip; Campbell, Daniel; Kim, David; Yoder, Jonilyn; Orlando, Terry; Gustavsson, Simon; Oliver, William; Engineering Quantum Systems Team

    A qubit design for higher performance relies on the understanding of how various qubit properties are related to design parameters. We construct a framework for understanding the qubit design in the flux regime. We explore different parameter regimes, looking for features desirable for certain purpose in the context of quantum computing. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002.

  15. On the validity of non-Markovian master equation approaches for the entanglement dynamics of two-qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, E; Scala, M; Napoli, A [CNISM and Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo, via Archirafi 36, 90123 Palermo (Italy); Migliore, R, E-mail: ferraro@fisica.unipa.i, E-mail: matteo.scala@fisica.unipa.i [CNR-INFM, Research Unit CNISM of Palermo, via Archirafi 36, 90123 Palermo (Italy)

    2010-09-01

    In the framework of the dissipative dynamics of coupled qubits interacting with independent reservoirs, a comparison between non-Markovian master equation techniques and an exact solution is presented here. We study various regimes in order to find the limits of validity of the Nakajima-Zwanzig and the time-convolutionless master equations in the description of the entanglement dynamics. A comparison between the performances of the concurrence and the negativity as entanglement measures for the system under study is also presented.

  16. Majorana box qubits

    International Nuclear Information System (INIS)

    Plugge, Stephan; Rasmussen, Asbjørn; Flensberg, Karsten; Egger, Reinhold

    2017-01-01

    Quantum information protected by the topology of the storage medium is expected to exhibit long coherence times. Another feature is topologically protected gates generated through braiding of Majorana bound states (MBSs). However, braiding requires structures with branched topological segments which have inherent difficulties in the semiconductor–superconductor heterostructures now believed to host MBSs. In this paper, we construct quantum bits taking advantage of the topological protection and non-local properties of MBSs in a network of parallel wires, but without relying on braiding for quantum gates. The elementary unit is made from three topological wires, two wires coupled by a trivial superconductor and the third acting as an interference arm. Coulomb blockade of the combined wires spawns a fractionalized spin, non-locally addressable by quantum dots used for single-qubit readout, initialization, and manipulation. We describe how the same tools allow for measurement-based implementation of the Clifford gates, in total making the architecture universal. Proof-of-principle demonstration of topologically protected qubits using existing techniques is therefore within reach. (fast track communication)

  17. Master Lovas-Andai and equivalent formulas verifying the 8/33 two-qubit Hilbert-Schmidt separability probability and companion rational-valued conjectures

    Science.gov (United States)

    Slater, Paul B.

    2018-04-01

    We begin by investigating relationships between two forms of Hilbert-Schmidt two-rebit and two-qubit "separability functions"—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas-Andai framework, the independent variable ɛ \\in [0,1] is the ratio σ (V) of the singular values of the 2 × 2 matrix V=D_2^{1/2} D_1^{-1/2} formed from the two 2 × 2 diagonal blocks (D_1, D_2) of a 4 × 4 density matrix D= ||ρ _{ij}||. In the Slater setting, the independent variable μ is the diagonal-entry ratio √{ρ _{11} ρ _ {44}/ρ _ {22 ρ _ {33}}}—with, of central importance, μ =ɛ or μ =1/ɛ when both D_1 and D_2 are themselves diagonal. Lovas and Andai established that their two-rebit "separability function" \\tilde{χ }_1 (ɛ ) (≈ ɛ ) yields the previously conjectured Hilbert-Schmidt separability probability of 29/64. We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and "two-octo[nionic]-bit" counterparts, \\tilde{χ _2}(ɛ ) =1/3 ɛ ^2 ( 4-ɛ ^2) , \\tilde{χ _4}(ɛ ) =1/35 ɛ ^4 ( 15 ɛ ^4-64 ɛ ^2+84) and \\tilde{χ _8} (ɛ )= 1/1287ɛ ^8 ( 1155 ɛ ^8-7680 ɛ ^6+20160 ɛ ^4-25088 ɛ ^2+12740) . These immediately lead to predictions of Hilbert-Schmidt separability/PPT-probabilities of 8/33, 26/323 and 44482/4091349, in full agreement with those of the "concise formula" (Slater in J Phys A 46:445302, 2013), and, additionally, of a "specialized induced measure" formula. Then, we find a Lovas-Andai "master formula," \\tilde{χ _d}(ɛ )= ɛ ^d Γ (d+1)^3 _3\\tilde{F}_2( -{d/2,d/2,d;d/2+1,3 d/2+1;ɛ ^2) }/{Γ ( d/2+1) ^2}, encompassing both even and odd values of d. Remarkably, we are able to obtain the \\tilde{χ _d}(ɛ ) formulas, d=1,2,4, applicable to full (9-, 15-, 27-) dimensional sets of

  18. Quantum Discord in Two-Qubit System Constructed from the Yang—Baxter Equation

    International Nuclear Information System (INIS)

    Gou Li-Dan; Wang Xiao-Qian; Sun Yuan-Yuan; Xu Yu-Mei

    2014-01-01

    Quantum correlations among parts of a composite quantum system are a fundamental resource for several applications in quantum information. In general, quantum discord can measure quantum correlations. In that way, we investigate the quantum discord of the two-qubit system constructed from the Yang—Baxter Equation. The density matrix of this system is generated through the unitary Yang—Baxter matrix R. The analytical expression and numerical result of quantum discord and geometric measure of quantum discord are obtained for the Yang—Baxter system. These results show that quantum discord and geometric measure of quantum discord are only connect with the parameter θ, which is the important spectral parameter in Yang—Baxter equation. (general)

  19. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    International Nuclear Information System (INIS)

    Metwally, N

    2014-01-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol. (paper)

  20. Stationary states of two-level open quantum systems

    International Nuclear Information System (INIS)

    Gardas, Bartlomiej; Puchala, Zbigniew

    2011-01-01

    A problem of finding stationary states of open quantum systems is addressed. We focus our attention on a generic type of open system: a qubit coupled to its environment. We apply the theory of block operator matrices and find stationary states of two-level open quantum systems under certain conditions applied on both the qubit and the surrounding.

  1. A quick and easy test for deciding entanglement status of an N-qubit pure quantum state

    International Nuclear Information System (INIS)

    Mehendale, D.P.; Joag, P.S.

    2018-01-01

    We develop a simple criterion in terms of a necessary-sufficient condition (NS condition) for deciding separability of an arbitrary n-qubit pure quantum state. This NS condition provides a quick and easy test procedure to determine the entanglement status of a pure quantum state. We normalize the given quantum state and using this normalized state we can easily build a simplest system of equations containing trigonometric functions by making use of the well known Bloch Sphere representation for single qubit states and check whether or not this system of equations is consistent. According to proposed NS condition the given pure quantum state is separable (entangled) if and only if the above mentioned system of equations is consistent (inconsistent). We build this system of equations by equating the coefficients of computational basis states in the superposition representing the given pure quantum state with certain products of trigonometric functions obtained using standard Bloch Sphere representation for single qubit states. To establish separability of given state one requires to find a valid solution of the above mentioned system of equations but entanglement on the other hand follows when any two equations in this system of equations are mutually inconsistent. Thus, entanglement of the state can follow easily if one succeeds in finding any two mutually inconsistent equations in the above mentioned system of equations.

  2. Dynamically protected cat-qubits: a new paradigm for universal quantum computation

    International Nuclear Information System (INIS)

    Mirrahimi, Mazyar; Leghtas, Zaki; Albert, Victor V; Touzard, Steven; Schoelkopf, Robert J; Jiang, Liang; Devoret, Michel H

    2014-01-01

    We present a new hardware-efficient paradigm for universal quantum computation which is based on encoding, protecting and manipulating quantum information in a quantum harmonic oscillator. This proposal exploits multi-photon driven dissipative processes to encode quantum information in logical bases composed of Schrödinger cat states. More precisely, we consider two schemes. In a first scheme, a two-photon driven dissipative process is used to stabilize a logical qubit basis of two-component Schrödinger cat states. While such a scheme ensures a protection of the logical qubit against the photon dephasing errors, the prominent error channel of single-photon loss induces bit-flip type errors that cannot be corrected. Therefore, we consider a second scheme based on a four-photon driven dissipative process which leads to the choice of four-component Schrödinger cat states as the logical qubit. Such a logical qubit can be protected against single-photon loss by continuous photon number parity measurements. Next, applying some specific Hamiltonians, we provide a set of universal quantum gates on the encoded qubits of each of the two schemes. In particular, we illustrate how these operations can be rendered fault-tolerant with respect to various decoherence channels of participating quantum systems. Finally, we also propose experimental schemes based on quantum superconducting circuits and inspired by methods used in Josephson parametric amplification, which should allow one to achieve these driven dissipative processes along with the Hamiltonians ensuring the universal operations in an efficient manner

  3. Dynamically protected cat-qubits: a new paradigm for universal quantum computation

    Science.gov (United States)

    Mirrahimi, Mazyar; Leghtas, Zaki; Albert, Victor V.; Touzard, Steven; Schoelkopf, Robert J.; Jiang, Liang; Devoret, Michel H.

    2014-04-01

    We present a new hardware-efficient paradigm for universal quantum computation which is based on encoding, protecting and manipulating quantum information in a quantum harmonic oscillator. This proposal exploits multi-photon driven dissipative processes to encode quantum information in logical bases composed of Schrödinger cat states. More precisely, we consider two schemes. In a first scheme, a two-photon driven dissipative process is used to stabilize a logical qubit basis of two-component Schrödinger cat states. While such a scheme ensures a protection of the logical qubit against the photon dephasing errors, the prominent error channel of single-photon loss induces bit-flip type errors that cannot be corrected. Therefore, we consider a second scheme based on a four-photon driven dissipative process which leads to the choice of four-component Schrödinger cat states as the logical qubit. Such a logical qubit can be protected against single-photon loss by continuous photon number parity measurements. Next, applying some specific Hamiltonians, we provide a set of universal quantum gates on the encoded qubits of each of the two schemes. In particular, we illustrate how these operations can be rendered fault-tolerant with respect to various decoherence channels of participating quantum systems. Finally, we also propose experimental schemes based on quantum superconducting circuits and inspired by methods used in Josephson parametric amplification, which should allow one to achieve these driven dissipative processes along with the Hamiltonians ensuring the universal operations in an efficient manner.

  4. Synthetic Elucidation of Design Principles for Molecular Qubits

    Science.gov (United States)

    Graham, Michael James

    Quantum information processing (QIP) is an emerging computational paradigm with the potential to enable a vast increase in computational power, fundamentally transforming fields from structural biology to finance. QIP employs qubits, or quantum bits, as its fundamental units of information, which can exist in not just the classical states of 0 or 1, but in a superposition of the two. In order to successfully perform QIP, this superposition state must be sufficiently long-lived. One promising paradigm for the implementation of QIP involves employing unpaired electrons in coordination complexes as qubits. This architecture is highly tunable and scalable, however coordination complexes frequently suffer from short superposition lifetimes, or T2. In order to capitalize on the promise of molecular qubits, it is necessary to develop a set of design principles that allow the rational synthesis of complexes with sufficiently long values of T2. In this dissertation, I report efforts to use the synthesis of series of complexes to elucidate design principles for molecular qubits. Chapter 1 details previous work by our group and others in the field. Chapter 2 details the first efforts of our group to determine the impact of varying spin and spin-orbit coupling on T2. Chapter 3 examines the effect of removing nuclear spins on coherence time, and reports a series of vanadyl bis(dithiolene) complexes which exhibit extremely long coherence lifetimes, in excess of the 100 mus threshold for qubit viability. Chapters 4 and 5 form two complimentary halves of a study to determine the exact relationship between electronic spin-nuclear spin distance and the effect of the nuclear spins on T2. Finally, chapter 6 suggests next directions for the field as a whole, including the potential for work in this field to impact the development of other technologies as diverse as quantum sensors and magnetic resonance imaging contrast agents.

  5. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.

    Science.gov (United States)

    Yu, Leo; Natarajan, Chandra M; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S; Tanner, Michael G; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H; Fejer, Martin M; Yamamoto, Yoshihisa

    2015-11-24

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  6. Quantum Gate Operations in Decoherence-Free Subspace with Superconducting Charge Qubits inside a Cavity

    International Nuclear Information System (INIS)

    Yi-Min, Wang; Yan-Li, Zhou; Lin-Mei, Liang; Cheng-Zu, Li

    2009-01-01

    We propose a feasible scheme to achieve universal quantum gate operations in decoherence-free subspace with superconducting charge qubits placed in a microwave cavity. Single-logic-qubit gates can be realized with cavity assisted interaction, which possesses the advantages of unconventional geometric gate operation. The two-logic-qubit controlled-phase gate between subsystems can be constructed with the help of a variable electrostatic transformer. The collective decoherence can be successfully avoided in our well-designed system. Moreover, GHZ state for logical qubits can also be easily produced in this system

  7. Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry

    Science.gov (United States)

    Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand

    Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.

  8. The Quantum Socket: Wiring for Superconducting Qubits - Part 3

    Science.gov (United States)

    Mariantoni, M.; Bejianin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    The implementation of a quantum computer requires quantum error correction codes, which allow to correct errors occurring on physical quantum bits (qubits). Ensemble of physical qubits will be grouped to form a logical qubit with a lower error rate. Reaching low error rates will necessitate a large number of physical qubits. Thus, a scalable qubit architecture must be developed. Superconducting qubits have been used to realize error correction. However, a truly scalable qubit architecture has yet to be demonstrated. A critical step towards scalability is the realization of a wiring method that allows to address qubits densely and accurately. A quantum socket that serves this purpose has been designed and tested at microwave frequencies. In this talk, we show results where the socket is used at millikelvin temperatures to measure an on-chip superconducting resonator. The control electronics is another fundamental element for scalability. We will present a proposal based on the quantum socket to interconnect a classical control hardware to a superconducting qubit hardware, where both are operated at millikelvin temperatures.

  9. Decoherence and disentanglement of qubits detecting scalar fields in an expanded spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yujie; Dai, Yue [Fudan University, Department of Physics and State Key Laboratory of Surface Physics, Shanghai (China); Shi, Yu [Fudan University, Department of Physics and State Key Laboratory of Surface Physics, Shanghai (China); Fudan University, Collaborative Innovation Center of Advanced Microstructures, Shanghai (China)

    2017-09-15

    We consider Unruh-Wald qubit detector model adopted for the far future region of an exactly solvable 1 + 1 dimensional scalar field theory in a toy model of Robertson-Walker expanding spacetime. It is shown that the expansion of the spacetime in its history enhances the decoherence of the qubit coupled with a scalar field. Moreover, we consider two entangled qubits, each locally coupled with a scalar field. The expansion of the spacetime in its history degrades the entanglement between the qubits, and it can lead to entanglement's sudden death if the initial entanglement is small enough. The details depend on the parameters characterizing the expansion of the spacetime. This work, on a toy model, suggests that the history of the spacetime might be probed through the coherent and entanglement behavior of the future detectors of quantum fields. In the present toy model, the two cosmological parameters can be determined from the quantum informational quantities of the detectors. (orig.)

  10. Decoherence and disentanglement of qubits detecting scalar fields in an expanded spacetime

    International Nuclear Information System (INIS)

    Li, Yujie; Dai, Yue; Shi, Yu

    2017-01-01

    We consider Unruh-Wald qubit detector model adopted for the far future region of an exactly solvable 1 + 1 dimensional scalar field theory in a toy model of Robertson-Walker expanding spacetime. It is shown that the expansion of the spacetime in its history enhances the decoherence of the qubit coupled with a scalar field. Moreover, we consider two entangled qubits, each locally coupled with a scalar field. The expansion of the spacetime in its history degrades the entanglement between the qubits, and it can lead to entanglement's sudden death if the initial entanglement is small enough. The details depend on the parameters characterizing the expansion of the spacetime. This work, on a toy model, suggests that the history of the spacetime might be probed through the coherent and entanglement behavior of the future detectors of quantum fields. In the present toy model, the two cosmological parameters can be determined from the quantum informational quantities of the detectors. (orig.)

  11. One-Step Generation of Multi-Qubit GHZ and W States in Superconducting Transmon Qubit System

    International Nuclear Information System (INIS)

    Gao Guilong; Huang Shousheng; Wang Mingfeng; Jiang Nianquan; Cai Genchang

    2012-01-01

    We propose a one-step method to prepare multi-qubit GHZ and W states with transmon qubits capacitively coupled to a superconducting transmission line resonator (TLR). Compared with the scheme firstly introduced by Wang et al. [Phys. Rev. B 81 (2010) 104524], our schemes have longer dephasing time and much shorter operation time because the transmon qubits we used are not only more robust to the decoherence and the unavoidable parameter variations, but also have much stronger coupling constant with TLR. Based on the favourable properties of transmons and TLR, our method is more feasible in experiment. (general)

  12. Quantum correlations of coupled superconducting two-qubit system in various cavity environments

    International Nuclear Information System (INIS)

    Yu, Yanxia; Fu, Guolan; Guo, L.P.; Pan, Hui; Wang, Z.S.

    2013-01-01

    Highlights: •We investigate dynamic evolutions of quantum and classical correlations for coupled superconducting system with various cavity environments. •We show that the quantum discord continues to reflect quantum information. •A transition of quantum discord is founded between classical loss and quantum increasing of correlations for a purely dephasing mode. •We show that the environment-dependent models can delay the loss of quantum discord. •We find that the results depend strongly on the initial angle. -- Abstract: Dynamic evolutions of quantum discord, concurrence, and classical correlation are investigated in coupled superconducting system with various cavity environments, focusing on the two-qubit system at an initially entangling X-state and Y-state. We find that for a smaller photon number, the quantum discord, concurrence and classical correlation show damped oscillations for all different decay modes. Differently from the sudden death or the dark and bright periods emerging in evolving processing of the concurrence and classical correlation, however, the quantum discord decreases gradually to zero. The results reveal that the quantum entanglement and classical correlation are lost, but the quantum discord continues to reflect quantum information in the same evolving period. For a larger photon number, the oscillations disappear. It is surprised that there exists a transition of quantum discord between classical loss and quantum increasing of correlations for a purely dephasing mode. For a larger photon number in the Y-state, the transition disappears. Moreover, we show that the environment-dependent models can delay the loss of quantum discord. The results depend strongly on the initial angle, which provide a clue to control the quantum gate of superconducting circuit

  13. High Fidelity, Numerical Investigation of Cross Talk in a Multi-Qubit Xmon Processor

    Science.gov (United States)

    Najafi-Yazdi, Alireza; Kelly, Julian; Martinis, John

    Unwanted electromagnetic interference between qubits, transmission lines, flux lines and other elements of a superconducting quantum processor poses a challenge in engineering such devices. This problem is exacerbated with scaling up the number of qubits. High fidelity, massively parallel computational toolkits, which can simulate the 3D electromagnetic environment and all features of the device, are instrumental in addressing this challenge. In this work, we numerically investigated the crosstalk between various elements of a multi-qubit quantum processor designed and tested by the Google team. The processor consists of 6 superconducting Xmon qubits with flux lines and gatelines. The device also consists of a Purcell filter for readout. The simulations are carried out with a high fidelity, massively parallel EM solver. We will present our findings regarding the sources of crosstalk in the device, as well as numerical model setup, and a comparison with available experimental data.

  14. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  15. Demonstration of analyzers for multimode photonic time-bin qubits

    Science.gov (United States)

    Jin, Jeongwan; Agne, Sascha; Bourgoin, Jean-Philippe; Zhang, Yanbao; Lütkenhaus, Norbert; Jennewein, Thomas

    2018-04-01

    We demonstrate two approaches for unbalanced interferometers as time-bin qubit analyzers for quantum communication, robust against mode distortions and polarization effects as expected from free-space quantum communication systems including wavefront deformations, path fluctuations, pointing errors, and optical elements. Despite strong spatial and temporal distortions of the optical mode of a time-bin qubit, entangled with a separate polarization qubit, we verify entanglement using the Negative Partial Transpose, with the measured visibility of up to 0.85 ±0.01 . The robustness of the analyzers is further demonstrated for various angles of incidence up to 0 .2∘ . The output of the interferometers is coupled into multimode fiber yielding a high system throughput of 0.74. Therefore, these analyzers are suitable and efficient for quantum communication over multimode optical channels.

  16. Superconducting Qubits as Mechanical Quantum Engines.

    Science.gov (United States)

    Sachtleben, Kewin; Mazon, Kahio T; Rego, Luis G C

    2017-09-01

    We propose the equivalence of superconducting qubits with a pistonlike mechanical quantum engine. The work reports a study on the nature of the nonequilibrium work exchanged with the quantum-nonadiabatic working medium, which is modeled as a multilevel coupled quantum well system subject to an external control parameter. The quantum dynamics is solved for arbitrary control protocols. It is shown that the work output has two components: one that depends instantaneously on the level populations and another that is due to the quantum coherences built in the system. The nonadiabatic coherent dynamics of the quantum engine gives rise to a resistance (friction) force that decreases the work output. We consider the functional equivalence of such a device and a rf-SQUID flux qubit.

  17. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.

    Science.gov (United States)

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-10-21

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.

  18. Device-Independent Certification of a Nonprojective Qubit Measurement

    Science.gov (United States)

    Gómez, Esteban S.; Gómez, Santiago; González, Pablo; Cañas, Gustavo; Barra, Johanna F.; Delgado, Aldo; Xavier, Guilherme B.; Cabello, Adán; Kleinmann, Matthias; Vértesi, Tamás; Lima, Gustavo

    2016-12-01

    Quantum measurements on a two-level system can have more than two independent outcomes, and in this case, the measurement cannot be projective. Measurements of this general type are essential to an operational approach to quantum theory, but so far, the nonprojective character of a measurement can only be verified experimentally by already assuming a specific quantum model of parts of the experimental setup. Here, we overcome this restriction by using a device-independent approach. In an experiment on pairs of polarization-entangled photonic qubits we violate by more than 8 standard deviations a Bell-like correlation inequality that is valid for all sets of two-outcome measurements in any dimension. We combine this with a device-independent verification that the system is best described by two qubits, which therefore constitutes the first device-independent certification of a nonprojective quantum measurement.

  19. First-Principles Study of Charge Diffusion between Proximate Solid-State Qubits and Its Implications on Sensor Applications

    Science.gov (United States)

    Chou, Jyh-Pin; Bodrog, Zoltán; Gali, Adam

    2018-03-01

    Solid-state qubits from paramagnetic point defects in solids are promising platforms to realize quantum networks and novel nanoscale sensors. Recent advances in materials engineering make it possible to create proximate qubits in solids that might interact with each other, leading to electron spin or charge fluctuation. Here we develop a method to calculate the tunneling-mediated charge diffusion between point defects from first principles and apply it to nitrogen-vacancy (NV) qubits in diamond. The calculated tunneling rates are in quantitative agreement with previous experimental data. Our results suggest that proximate neutral and negatively charged NV defect pairs can form a NV-NV molecule. A tunneling-mediated model for the source of decoherence of the near-surface NV qubits is developed based on our findings on the interacting qubits in diamond.

  20. Quantum Correlation Properties in Two Qubits One-axis Spin Squeezing Model

    Science.gov (United States)

    Guo-Hui, Yang

    2017-02-01

    Using the concurrence (C) and quantum discord (QD) criterions, the quantum correlation properties in two qubits one-axis spin squeezing model with an external magnetic field are investigated. It is found that one obvious difference in the limit case T → 0 (ground state) is the sudden disappearance phenomenon (SDP) occured in the behavior of C, while not in QD. In order to further explain the SDP, we obtain the analytic expressions of ground state C and QD which reveal that the SDP is not really "entanglement sudden disappeared", it is decayed to zero very quickly. Proper tuning the parameters μ(the spin squeezing interaction in x direction) and Ω(the external magnetic field in z direction) not only can obviously broaden the scope of ground state C exists but also can enhance the value of ground state QD. For the finite temperature case, one evident difference is that the sudden birth phenomenon (SBP) is appeared in the evolution of C, while not in QD, and decreasing the coupling parameters μ or Ω can obviously prolong the time interval before entanglement sudden birth. The value of C and QD are both enhanced by increasing the parameters μ or Ω in finite temperature case. In addition, through investigating the effects of temperature T on the quantum correlation properties with the variation of Ω and μ, one can find that the temperature scope of C and QD exists are broadened with increasing the parameters μ or Ω, and one can obtain the quantum correlation at higher temperature through changing these parameters.

  1. Entanglement polygon inequality in qubit systems

    Science.gov (United States)

    Qian, Xiao-Feng; Alonso, Miguel A.; Eberly, J. H.

    2018-06-01

    We prove a set of tight entanglement inequalities for arbitrary N-qubit pure states. By focusing on all bi-partite marginal entanglements between each single qubit and its remaining partners, we show that the inequalities provide an upper bound for each marginal entanglement, while the known monogamy relation establishes the lower bound. The restrictions and sharing properties associated with the inequalities are further analyzed with a geometric polytope approach, and examples of three-qubit GHZ-class and W-class entangled states are presented to illustrate the results.

  2. Spectroscopy and coherent manipulation of single and coupled flux qubits

    International Nuclear Information System (INIS)

    Wu Yu-Lin; Deng Hui; Huang Ke-Qiang; Tian Ye; Yu Hai-Feng; Xue Guang-Ming; Jin Yi-Rong; Li Jie; Zhao Shi-Ping; Zheng Dong-Ning

    2013-01-01

    Measurements of three-junction flux qubits, both single flux qubits and coupled flux qubits, using a coupled direct current superconducting quantum interference device (dc-SQUID) for readout are reported. The measurement procedure is described in detail. We performed spectroscopy measurements and coherent manipulations of the qubit states on a single flux qubit, demonstrating quantum energy levels and Rabi oscillations, with Rabi oscillation decay time T Rabi = 78 ns and energy relaxation time T 1 = 315 ns. We found that the value of T Rabi depends strongly on the mutual inductance between the qubit and the magnetic coil. We also performed spectroscopy measurements on inductively coupled flux qubits. (general)

  3. Coherence in a transmon qubit with epitaxial tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Weides, Martin [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Karlsruhe Institute of Technology (Germany); Kline, Jeffrey; Vissers, Michael; Sandberg, Martin; Pappas, David [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Wisbey, David [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Saint Louis University, St. Louis, Missouri 63103 (United States); Johnson, Blake; Ohki, Thomas [Raytheon BBN Technologies, Cambridge, Massachusetts 02138 (United States)

    2012-07-01

    Transmon qubits based on epitaxial tunnel junctions and interdigitated capacitors were developed. This multileveled qubit, patterned by use of all-optical lithography, is a step towards scalable qubits with a high integration density. The relaxation time T{sub 1} is.72-.86 {mu} sec and the ensemble dephasing time T{sub 2}{sup *} is slightly larger than T{sub 1}. The dephasing time T{sub 2} (1.36 {mu} sec) is nearly energy-relaxation-limited. Qubit spectroscopy yields weaker level splitting than observed in qubits with amorphous barriers in equivalent-size junctions. The qubit's inferred microwave loss closely matches the weighted losses of the individual elements (junction, wiring dielectric, and interdigitated capacitor), determined by independent resonator measurements.

  4. Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation

    Science.gov (United States)

    Blencowe, M. P.; Armour, A. D.

    2008-09-01

    We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.

  5. Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation

    International Nuclear Information System (INIS)

    Blencowe, M P; Armour, A D

    2008-01-01

    We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.

  6. Repetition code of 15 qubits

    Science.gov (United States)

    Wootton, James R.; Loss, Daniel

    2018-05-01

    The repetition code is an important primitive for the techniques of quantum error correction. Here we implement repetition codes of at most 15 qubits on the 16 qubit ibmqx3 device. Each experiment is run for a single round of syndrome measurements, achieved using the standard quantum technique of using ancilla qubits and controlled operations. The size of the final syndrome is small enough to allow for lookup table decoding using experimentally obtained data. The results show strong evidence that the logical error rate decays exponentially with code distance, as is expected and required for the development of fault-tolerant quantum computers. The results also give insight into the nature of noise in the device.

  7. 3D Integration for Superconducting Qubits

    Science.gov (United States)

    Rosenberg, Danna; Kim, David; Yost, Donna-Ruth; Mallek, Justin; Yoder, Jonilyn; Das, Rabindra; Racz, Livia; Hover, David; Weber, Steven; Kerman, Andrew; Oliver, William

    Superconducting qubits are a prime candidate for constructing a large-scale quantum processor due to their lithographic scalability, speed, and relatively long coherence times. Moving beyond the few qubit level, however, requires the use of a three-dimensional approach for routing control and readout lines. 3D integration techniques can be used to construct a structure where the sensitive qubits are shielded from a potentially-lossy readout and interconnect chip by an intermediate chip with through-substrate vias, with indium bump bonds providing structural support and electrical conductivity. We will discuss our work developing 3D-integrated coupled qubits, focusing on the characterization of 3D integration components and the effects on qubit performance and design. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  8. Spin manipulation and relaxation in spin-orbit qubits

    Science.gov (United States)

    Borhani, Massoud; Hu, Xuedong

    2012-03-01

    We derive a generalized form of the electric dipole spin resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD), where coherent Rabi oscillations between the singlet and triplet states are induced by jittering the inter-dot distance at the resonance frequency. Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  9. Joint Remote State Preparation of a Single-Atom Qubit State via a GHZ Entangled State

    Science.gov (United States)

    Xiao, Xiao-Qi; Yao, Fengwei; Lin, Xiaochen; Gong, Lihua

    2018-04-01

    We proposed a physical protocol for the joint remote preparation of a single-atom qubit state via a three-atom entangled GHZ-type state previously shared by the two senders and one receiver. Only rotation operations of single-atom, which can be achieved though the resonant interaction between the two-level atom and the classical field, are required in the scheme. It shows that the splitting way of the classical information of the secret qubit not only determines the success of reconstruction of the secret qubit, but also influences the operations of the senders.

  10. Negative inductance SQUID qubit operating in a quantum regime

    Science.gov (United States)

    Liu, W. Y.; Su, F. F.; Xu, H. K.; Li, Z. Y.; Tian, Ye; Zhu, X. B.; Lu, Li; Han, Siyuan; Zhao, S. P.

    2018-04-01

    Two-junction SQUIDs with negative mutual inductance between their two arms, called nSQUIDs, have been proposed for significantly improving quantum information transfer but their quantum nature has not been experimentally demonstrated. We have designed, fabricated, and characterized superconducting nSQUID qubits. Our results provide clear evidence of the quantum coherence of the device, whose properties are well described by theoretical calculations using parameters determined from spectroscopic measurement. In addition to their future application for fast quantum information transfer, the nSQUID qubits exhibit rich characteristics in their tunable two-dimensional (2D) potentials, energy levels, wave function symmetries, and dipole matrix elements, which are essential to the study of a wide variety of macroscopic quantum phenomena such as tunneling in 2D potential landscapes.

  11. Generation of three-qubit Greenberger-Horne-Zeilinger state of superconducting qubits via transitionless quantum driving

    Science.gov (United States)

    Zhang, Xu; Chen, Ye-Hong; Wu, Qi-Cheng; Shi, Zhi-Cheng; Song, Jie; Xia, Yan

    2017-01-01

    We present an efficient scheme to quickly generate three-qubit Greenberger-Horne-Zeilinger (GHZ) states by using three superconducting qubits (SQs) separated by two coplanar waveguide resonators (CPWRs) capacitively. The scheme is based on quantum Zeno dynamics and the approach of transitionless quantum driving to construct shortcuts to adiabatic passage. In order to highlight the advantages, we compare the present scheme with the traditional one with adiabatic passage. The comparison result shows the shortcut scheme is closely related to the adiabatic scheme but is better than it. Moreover, we discuss the influence of various decoherences with numerical simulation. The result proves that the present scheme is less sensitive to the energy relaxation, the decay of CPWRs and the deviations of the experimental parameters the same as the adiabatic passage. However, the shortcut scheme is effective and robust against the dephasing of SQs in comparison with the adiabatic scheme.

  12. Collision-model approach to steering of an open driven qubit

    Science.gov (United States)

    Beyer, Konstantin; Luoma, Kimmo; Strunz, Walter T.

    2018-03-01

    We investigate quantum steering of an open quantum system by measurements on its environment in the framework of collision models. As an example we consider a coherently driven qubit dissipatively coupled to a bath. We construct local nonadaptive and adaptive as well as nonlocal measurement scenarios specifying explicitly the measured observable on the environment. Our approach shows transparently how the conditional evolution of the open system depends on the type of the measurement scenario and the measured observables. These can then be optimized for steering. The nonlocal measurement scenario leads to maximal violation of the used steering inequality at zero temperature. Further, we investigate the robustness of the constructed scenarios against thermal noise. We find generally that steering becomes harder at higher temperatures. Surprisingly, the system can be steered even when bipartite entanglement between the system and individual subenvironments vanishes.

  13. D-Wave's Approach to Quantum Computing: 1000-qubits and Counting!

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    In this talk I will describe D-Wave's approach to quantum computing, including the system architecture of our 1000-qubit D-Wave 2X, its programming model, and performance benchmarks. Furthermore, I will describe how the native optimization and sampling capabilities of the quantum processor can be exploited to tackle problems in a variety of fields including medicine, machine learning, physics, and computational finance.

  14. Black holes, qubits and octonions

    International Nuclear Information System (INIS)

    Borsten, L.; Dahanayake, D.; Duff, M.J.; Ebrahim, H.; Rubens, W.

    2009-01-01

    We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)] 3 invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T 6 provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E 7 contains [SL(2)] 7 invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E 7 has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of three qutrits (3-state systems

  15. Dynamical evolution of entanglement of a three-qubit system driven by a classical environmental colored noise

    Science.gov (United States)

    Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fouokeng, Georges Collince; Fai, Lukong Cornelius

    2018-04-01

    The effects of 1/f^{α } (α =1,2) noise stemming from one or a collection of random bistable fluctuators (RBFs), on the evolution of entanglement, of three non-interacting qubits are investigated. Three different initial configurations of the qubits are analyzed in detail: the Greenberger-Horne-Zeilinger (GHZ)-type states, W-type states and mixed states composed of a GHZ state and a W state (GHZ-W). For each initial configuration, the evolution of entanglement is investigated for three different qubit-environment (Q-E) coupling setups, namely independent environments, mixed environments and common environment coupling. With the help of tripartite negativity and suitable entanglement witnesses, we show that the evolution of entanglement is extremely influenced not only by the initial configuration of the qubits, the spectrum of the environment and the Q-E coupling setup considered, but also by the number of RBF modeling the environment. Indeed, we find that the decay of entanglement is accelerated when the number of fluctuators modeling the environment is increased. Furthermore, we find that entanglement can survive indefinitely to the detrimental effects of noise even for increasingly larger numbers of RBFs. On the other hand, we find that the proficiency of the tripartite entanglement witnesses to detect entanglement is weaker than that of the tripartite negativity and that the symmetry of the initial states is broken when the qubits are coupled to the noise in mixed environments. Finally, we find that the 1 / f noise is more harmful to the survival of entanglement than the 1/f2 noise and that the mixed GHZ-W states followed by the GHZ-type states preserve better entanglement than the W-type ones.

  16. Thermal microwave states acting on a superconducting qubit

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Mueting, Miriam; Haeberlein, Max; Wulschner, Friedrich; Fischer, Michael; Deppe, Frank; Fedorov, Kirill; Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Xie, Edwar; Eder, Peter; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstrasse 4, 80799 Muenchen (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-07-01

    We analyze the influence of broadband thermal states in the microwave regime on the coherence properties of a superconducting (transmon) qubit coupled to a transmission line resonator. We generate the thermal states inside the resonator by heating a 30 dB attenuator to emit blackbody radiation into a transmission line. In the absence of thermal fluctuations, the qubit coherence time is limited by relaxation. We find that the relaxation rate is almost unaffected by the presence of a thermal field inside the resonator. However, such states induce significant dephasing which increases quadratically with the number of thermal photons, whereas for a coherent population of the resonator, the increase shows a linear behavior. These results confirm the different photon statistics, being Poissonian for a coherent population and super-Poissonian for a thermal population of the resonator.

  17. Additional Quantum Properties of Entangled Bipartite Qubit Systems Coupled to Photon Baths

    International Nuclear Information System (INIS)

    Quintana, C

    2016-01-01

    The time evolution of an entangled bi-partite qubit interacting with two independent photon baths in isolated cavities is not unitary. It is shown that the bi-partite qubit oscillates between pure and mixed states, and that the initial entanglement is lost and recovered in time by time as a consequence of its interaction with the baths. (paper)

  18. Multiqubit nonlocality in families of 3- and 4-qubit entangled states

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, S; Debnath, S; Sinclair, N; Kabra, A [Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Stock, R, E-mail: sghose@wlu.c [Department of Physics, University of Toronto, Ontario M5S 1A7 (Canada)

    2010-11-07

    We investigate genuine multiqubit nonlocality in families of entangled 3- and 4-qubit pure states by analyzing a Bell-type inequality that is violated only if all qubits are nonlocally correlated. We present detailed numerical studies of the relationship between entanglement and violation of the Svetlichny Bell-type inequality in an experimentally accessible set of 3-qubit pure states, and identify the special nonlocality property of the maximal slice states in the space of all 3-qubit pure states. We also analyze nonlocal correlations in 3-qubit generalized Greenberger-Horne-Zeilinger (GHZ) states and extend our analysis to the case of 4-qubit generalized GHZ states. We show that like the 3-qubit case, some 4-qubit generalized GHZ states do not violate a Bell inequality that tests for genuine 4-qubit nonlocality. Furthermore, the location of the boundary between the states that do violate the inequality and those that do not is the same for the 3- and 4-qubit generalized GHZ states.

  19. Probing the interaction of microscopic material defects with quasiparticles using a superconducting qubit

    Energy Technology Data Exchange (ETDEWEB)

    Bilmes, Alexander; Lisenfeld, Juergen; Weiss, Georg; Ustinov, Alexey V. [PI, Fakultaet fuer Physik, KIT, Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe (Germany); Heimes, Andreas; Zanker, Sebastian; Schoen, Gerd [TFP, Fakultaet fuer Physik, KIT, Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe (Germany)

    2015-07-01

    Two-Level-Systems (TLS) are one of the main sources of decoherence in superconducting nano-scale devices such as SQUIDs, photon detectors, resonators and quantum bits (qubits), although the TLS' microscopic nature remains unclear. We use a superconducting phase qubit to detect TLS contained within the tunnel barrier of the qubit's Josephson junction. We coherently operate individual TLS by resonant microwave pulses and access their quantum state by utilizing their strong coupling to the qubit. Our previous measurements of TLS coherence in dependence of the temperature indicate that quasiparticles may give rise to TLS energy loss and dephasing. Here, we probe the TLS-quasiparticle interaction using a reliable method of in-situ quasiparticle injection via an on-chip dc-SQUID that is pulse-biased beyond its critical current. The quasiparticle density is calibrated by measuring associated characteristic changes to the qubit's resonance frequency and energy relaxation rate. We will present experimental data that clearly show the influence of quasiparticles on TLS coherence.

  20. Optimal and efficient decoding of concatenated quantum block codes

    International Nuclear Information System (INIS)

    Poulin, David

    2006-01-01

    We consider the problem of optimally decoding a quantum error correction code--that is, to find the optimal recovery procedure given the outcomes of partial ''check'' measurements on the system. In general, this problem is NP hard. However, we demonstrate that for concatenated block codes, the optimal decoding can be efficiently computed using a message-passing algorithm. We compare the performance of the message-passing algorithm to that of the widespread blockwise hard decoding technique. Our Monte Carlo results using the five-qubit and Steane's code on a depolarizing channel demonstrate significant advantages of the message-passing algorithms in two respects: (i) Optimal decoding increases by as much as 94% the error threshold below which the error correction procedure can be used to reliably send information over a noisy channel; and (ii) for noise levels below these thresholds, the probability of error after optimal decoding is suppressed at a significantly higher rate, leading to a substantial reduction of the error correction overhead

  1. Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal

    International Nuclear Information System (INIS)

    Rippe, Lars; Nilsson, Mattias; Kroell, Stefan; Klieber, Robert; Suter, Dieter

    2005-01-01

    In optically controlled quantum computers it may be favorable to address different qubits using light with different frequencies, since the optical diffraction does not then limit the distance between qubits. Using qubits that are close to each other enables qubit-qubit interactions and gate operations that are strong and fast in comparison to qubit-environment interactions and decoherence rates. However, as qubits are addressed in frequency space, great care has to be taken when designing the laser pulses, so that they perform the desired operation on one qubit, without affecting other qubits. Complex hyperbolic secant pulses have theoretically been shown to be excellent for such frequency-addressed quantum computing [I. Roos and K. Molmer, Phys. Rev. A 69, 022321 (2004)] - e.g., for use in quantum computers based on optical interactions in rare-earth-metal-ion-doped crystals. The optical transition lines of the rare-earth-metal-ions are inhomogeneously broadened and therefore the frequency of the excitation pulses can be used to selectively address qubit ions that are spatially separated by a distance much less than a wavelength. Here, frequency-selective transfer of qubit ions between qubit states using complex hyperbolic secant pulses is experimentally demonstrated. Transfer efficiencies better than 90% were obtained. Using the complex hyperbolic secant pulses it was also possible to create two groups of ions, absorbing at specific frequencies, where 85% of the ions at one of the frequencies was shifted out of resonance with the field when ions in the other frequency group were excited. This procedure of selecting interacting ions, called qubit distillation, was carried out in preparation for two-qubit gate operations in the rare-earth-metal-ion-doped crystals. The techniques for frequency-selective state-to-state transfer developed here may be also useful also for other quantum optics and quantum information experiments in these long-coherence-time solid

  2. Dynamical decoupling sequences for multi-qubit dephasing suppression and long-time quantum memory

    International Nuclear Information System (INIS)

    Paz-Silva, Gerardo A; Lee, Seung-Woo; Green, Todd J; Viola, Lorenza

    2016-01-01

    We consider a class of multi-qubit dephasing models that combine classical noise sources and linear coupling to a bosonic environment, and are controlled by arbitrary sequences of dynamical decoupling pulses. Building on a general transfer filter-function framework for open-loop control, we provide an exact representation of the controlled dynamics for arbitrary stationary non-Gaussian classical and quantum noise statistics, with analytical expressions emerging when all dephasing sources are Gaussian. This exact characterization is used to establish two main results. First, we construct multi-qubit sequences that ensure maximum high-order error suppression in both the time and frequency domain and that can be exponentially more efficient than existing ones in terms of total pulse number. Next, we show how long-time multi-qubit storage may be achieved by meeting appropriate conditions for the emergence of a fidelity plateau under sequence repetition, thereby generalizing recent results for single-qubit memory under Gaussian dephasing. In both scenarios, the key step is to endow multi-qubit sequences with a suitable displacement anti-symmetry property, which is of independent interest for applications ranging from environment-assisted entanglement generation to multi-qubit noise spectroscopy protocols. (paper)

  3. Optimal control of quantum rings by terahertz laser pulses.

    Science.gov (United States)

    Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U

    2007-04-13

    Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.

  4. Using qubits to reveal quantum signatures of an oscillator

    Science.gov (United States)

    Agarwal, Shantanu

    In this thesis, we seek to study the qubit-oscillator system with the aim to identify and quantify inherent quantum features of the oscillator. We show that the quantum signatures of the oscillator get imprinted on the dynamics of the joint system. The two key features which we explore are the quantized energy spectrum of the oscillator and the non-classicality of the oscillator's wave function. To investigate the consequences of the oscillator's discrete energy spectrum, we consider the qubit to be coupled to the oscillator through the Rabi Hamiltonian. Recent developments in fabrication technology have opened up the possibility to explore parameter regimes which were conventionally inaccessible. Motivated by these advancements, we investigate in this thesis a parameter space where the qubit frequency is much smaller than the oscillator frequency and the Rabi frequency is allowed to be an appreciable fraction of the bare frequency of the oscillator. We use the adiabatic approximation to understand the dynamics in this quasi-degenerate qubit regime. By deriving a dressed master equation, we systematically investigate the effects of the environment on the system dynamics. We develop a spectroscopic technique, using which one can probe the steady state response of the driven and damped system. The spectroscopic signal clearly reveals the quantized nature of the oscillator's energy spectrum. We extend the adiabatic approximation, earlier developed only for the single qubit case, to a scenario where multiple qubits interact with the oscillator. Using the extended adiabatic approximation, we study the collapse and revival of multi-qubit observables. We develop analytic expressions for the revival signals which are in good agreement with the numerically evaluated results. Within the quantum restriction imposed by Heisenberg's uncertainty principle, the uncertainty in the position and momentum of an oscillator is minimum and shared equally when the oscillator is prepared

  5. A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005 (China); You, J Q; Nori, F [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Zheng, H, E-mail: xfcao@xmu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-07-15

    We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit-cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit-cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit-cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit-cavity coupling and the type of intrinsic noise experienced by the qubit.

  6. Encoding qubits into oscillators with atomic ensembles and squeezed light

    Science.gov (United States)

    Motes, Keith R.; Baragiola, Ben Q.; Gilchrist, Alexei; Menicucci, Nicolas C.

    2017-05-01

    The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit within an oscillator provides a number of advantages when used in a fault-tolerant architecture for quantum computing, most notably that Gaussian operations suffice to implement all single- and two-qubit Clifford gates. The main drawback of the encoding is that the logical states themselves are challenging to produce. Here we present a method for generating optical GKP-encoded qubits by coupling an atomic ensemble to a squeezed state of light. Particular outcomes of a subsequent spin measurement of the ensemble herald successful generation of the resource state in the optical mode. We analyze the method in terms of the resources required (total spin and amount of squeezing) and the probability of success. We propose a physical implementation using a Faraday-based quantum nondemolition interaction.

  7. Remote interactions on two distributed quantum systems: nonlocal unambiguous quantum-state discrimination

    International Nuclear Information System (INIS)

    Chen Libing; Jin Ruibo; Lu Hong

    2008-01-01

    Remote quantum-state discrimination is a critical step for the implementation of quantum communication network and distributed quantum computation. We present a protocol for remotely implementing the unambiguous discrimination between nonorthogonal states using quantum entanglements, local operations, and classical communications. This protocol consists of a remote generalized measurement described by a positive operator valued measurement (POVM). We explicitly construct the required remote POVM. The remote POVM can be realized by performing a nonlocal controlled-rotation operation on two spatially separated qubits, one is an ancillary qubit and the other is the qubit which is encoded by two nonorthogonal states to be distinguished, and a conventional local Von Neumann orthogonal measurement on the ancilla. The particular pair of states that can be remotely and unambiguously distinguished is specified by the state of the ancilla. The probability of successful discrimination is not optimal for all admissible pairs. However, for some subset it can be very close to an optimal value in an ordinary local POVM

  8. Decoherence of topological qubit in linear and circular motions: decoherence impedance, anti-Unruh and information backflow

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei-Hua; Lin, Feng-Li [Department of Physics, National Taiwan Normal University,No. 88, Sec. 4, Ting-Chou Rd., Taipei 116, Taiwan (China)

    2016-07-18

    In this paper, we consider the decoherence patterns of a topological qubit made of two Majorana zero modes in the generic linear and circular motions in the Minkowski spacetime. We show that the reduced dynamics is exact without Markov approximation. Our results imply that the acceleration will cause thermalization as expected by Unruh effect. However, for the short-time scale, we find the rate of decoherence is anti-correlated with the acceleration, as kind of decoherence impedance. This is in fact related to the “anti-Unruh' phenomenon previously found by studying the transition probability of Unruh-DeWitt detector. We also obtain the information backflow by some time modulations of coupling constant or acceleration, which is a characteristic of the underlying non-Markovian reduced dynamics. Moreover, by exploiting the nonlocal nature of the topological qubit, we find that some incoherent accelerations of the constituent Majorana zero modes can preserve the coherence instead of thermalizing it.

  9. High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states

    Science.gov (United States)

    Wu, FangZhou; Yang, GuoJian; Wang, HaiBo; Xiong, Jun; Alzahrani, Faris; Hobiny, Aatef; Deng, FuGuo

    2017-12-01

    This study proposes the first high-capacity quantum secure direct communication (QSDC) with two-photon six-qubit hyper-entangled Bell states in two longitudinal momentum and polarization degrees of freedom (DOFs) of photon pairs, which can be generated using two 0.5 mm-thick type-I β barium borate crystal slabs aligned one behind the other and an eight-hole screen. The secret message can be independently encoded on the photon pairs with 64 unitary operations in all three DOFs. This protocol has a higher capacity than previous QSDC protocols because each photon pair can carry 6 bits of information, not just 2 or 4 bits. Our QSDC protocol decreases the influence of decoherence from environment noise by exploiting the decoy photons to check the security of the transmission of the first photon sequence. Compared with two-way QSDC protocols, our QSDC protocol is immune to an attack by an eavesdropper using Trojan horse attack strategies because it is a one-way quantum communication. The QSDC protocol has good applications in the future quantum communication because of all these features.

  10. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits

    Science.gov (United States)

    Zeuner, Jonas; Sharma, Aditya N.; Tillmann, Max; Heilmann, René; Gräfe, Markus; Moqanaki, Amir; Szameit, Alexander; Walther, Philip

    2018-03-01

    Recent progress in integrated-optics technology has made photonics a promising platform for quantum networks and quantum computation protocols. Integrated optical circuits are characterized by small device footprints and unrivalled intrinsic interferometric stability. Here, we take advantage of femtosecond-laser-written waveguides' ability to process polarization-encoded qubits and present an implementation of a heralded controlled-NOT gate on chip. We evaluate the gate performance in the computational basis and a superposition basis, showing that the gate can create polarization entanglement between two photons. Transmission through the integrated device is optimized using thermally expanded core fibers and adiabatically reduced mode-field diameters at the waveguide facets. This demonstration underlines the feasibility of integrated quantum gates for all-optical quantum networks and quantum repeaters.

  11. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A.A. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Shapiro, D.S., E-mail: shapiro.dima@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); National University of Science and Technology MISIS, 119049 Moscow (Russian Federation); Remizov, S.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Pogosov, W.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Lozovik, Yu.E. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute of Spectroscopy, Russian Academy of Sciences, 142190 Moscow Region, Troitsk (Russian Federation)

    2017-02-12

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation. - Highlights: • Coupled qubit-resonator system under the modulation of a resonator frequency is considered. • Counterrotating terms of the Hamiltonian are of importance even in the resonance. • Qubit excited state population is highest if driving frequency matches dressed-state energy.

  12. Entanglement-based linear-optical qubit amplifier

    Czech Academy of Sciences Publication Activity Database

    Meyer-Scott, E.; Bula, M.; Bartkiewicz, K.; Černoch, Antonín; Soubusta, Jan; Jennewein, T.; Lemr, Karel

    2013-01-01

    Roč. 87, č. 1 (2013), "012327-1"-"012327-7" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : quantum physics * photonics qubits * qubit amplifier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013

  13. Methodology for bus layout for topological quantum error correcting codes

    Energy Technology Data Exchange (ETDEWEB)

    Wosnitzka, Martin; Pedrocchi, Fabio L.; DiVincenzo, David P. [RWTH Aachen University, JARA Institute for Quantum Information, Aachen (Germany)

    2016-12-15

    Most quantum computing architectures can be realized as two-dimensional lattices of qubits that interact with each other. We take transmon qubits and transmission line resonators as promising candidates for qubits and couplers; we use them as basic building elements of a quantum code. We then propose a simple framework to determine the optimal experimental layout to realize quantum codes. We show that this engineering optimization problem can be reduced to the solution of standard binary linear programs. While solving such programs is a NP-hard problem, we propose a way to find scalable optimal architectures that require solving the linear program for a restricted number of qubits and couplers. We apply our methods to two celebrated quantum codes, namely the surface code and the Fibonacci code. (orig.)

  14. Optimal processing of reversible quantum channels

    Energy Technology Data Exchange (ETDEWEB)

    Bisio, Alessandro, E-mail: alessandro.bisio@unipv.it [QUIT Group, Dipartimento di Fisica, INFN Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); D' Ariano, Giacomo Mauro; Perinotti, Paolo [QUIT Group, Dipartimento di Fisica, INFN Sezione di Pavia, via Bassi 6, 27100 Pavia (Italy); Sedlák, Michal [Department of Optics, Palacký University, 17. Listopadu 1192/12, CZ-771 46 Olomouc (Czech Republic); Institute of Physics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 11 Bratislava (Slovakia)

    2014-05-01

    We consider the general problem of the optimal transformation of N uses of (possibly different) unitary channels to a single use of another unitary channel in any finite dimension. We show how the optimal transformation can be fully parallelized, consisting in a preprocessing channel followed by a parallel action of all the N unitaries and a final postprocessing channel. Our techniques allow to achieve an exponential reduction in the number of the free parameters of the optimization problem making it amenable to an efficient numerical treatment. Finally, we apply our general results to find the analytical solution for special cases of interest like the cloning of qubit phase gates.

  15. Universal gate-set for trapped-ion qubits using a narrow linewidth diode laser

    International Nuclear Information System (INIS)

    Akerman, Nitzan; Navon, Nir; Kotler, Shlomi; Glickman, Yinnon; Ozeri, Roee

    2015-01-01

    We report on the implementation of a high fidelity universal gate-set on optical qubits based on trapped 88 Sr + ions for the purpose of quantum information processing. All coherent operations were performed using a narrow linewidth diode laser. We employed a master-slave configuration for the laser, where an ultra low expansion glass Fabry–Perot cavity is used as a stable reference as well as a spectral filter. We characterized the laser spectrum using the ions with a modified Ramsey sequence which eliminated the affect of the magnetic field noise. We demonstrated high fidelity single qubit gates with individual addressing, based on inhomogeneous micromotion, on a two-ion chain as well as the Mølmer–Sørensen two-qubit entangling gate. (paper)

  16. Preservation of Quantum Fisher Information and Geometric Phase of a Single Qubit System in a Dissipative Reservoir Through the Addition of Qubits

    Science.gov (United States)

    Guo, Y. N.; Tian, Q. L.; Mo, Y. F.; Zhang, G. L.; Zeng, K.

    2018-04-01

    In this paper, we have investigated the preservation of quantum Fisher information (QFI) of a single-qubit system coupled to a common zero temperature reservoir through the addition of noninteracting qubits. The results show that, the QFI is completely protected in both Markovian and non-Markovian regimes by increasing the number of additional qubits. Besides, the phenomena of QFI display monotonic decay or non-monotonic with revival oscillations depending on the number of additional qubits N - 1 in a common dissipative reservoir. If N revival oscillations. Moreover, we extend this model to investigate the effect of additional qubits and the initial conditions of the system on the geometric phase (GP). It is found that, the robustness of GP against the dissipative reservoir has been demonstrated by increasing gradually the number of additional qubits N - 1. Besides, the GP is sensitive to the initial parameter 𝜃, and possesses symmetric in a range regime [0,2 π].

  17. PREFACE: Nobel Symposium 141: Qubits for Future Quantum Information Nobel Symposium 141: Qubits for Future Quantum Information

    Science.gov (United States)

    Claeson, Tord; Delsing, Per; Wendin, Göran

    2009-12-01

    Quantum mechanics is the most ground-breaking and fascinating theoretical concept developed in physics during the past century. Much of our present understanding of the microscopic world and its extension into the macroscopic world, including modern technical applications, is based upon quantum mechanics. We have experienced a remarkable development of information and communication technology during the past two decades, to a large extent depending upon successful fabrication of smaller and smaller components and circuits. However, we are finally approaching the physical limits of component miniaturization as we enter a microscopic world ruled by quantum mechanics. Present technology is mainly based upon classical physics such as mechanics and electromagnetism. We now face a similar paradigm shift as was experienced two hundred years ago, at the time of the industrial revolution. Engineered construction of systems is currently increasingly based on quantum physics instead of classical physics, and quantum information is replacing much of classical communication. Quantum computing is one of the most exciting sub-fields of this revolution. Individual quantum systems can be used to store and process information. They are called quantum bits, or qubits for short. A quantum computer could eventually be constructed by combining a number of qubits that act coherently. Important computations can be performed much more quickly than by classical computers. However, while we control and measure a qubit, it must be sufficiently isolated from its environment to avoid noise that causes decoherence at the same time. Currently, low temperature is generally needed to obtain sufficiently long decoherence times. Single qubits of many different kinds can be built and manipulated; some research groups have managed to successfully couple qubits and perform rudimentary logic operations. However, the fundamental problems, such as decoherence, entanglement, quantum measurements and error

  18. Measurement strategy for spatially encoded photonic qubits

    International Nuclear Information System (INIS)

    Solis-Prosser, M. A.; Neves, L.

    2010-01-01

    We propose a measurement strategy which can, probabilistically, reproduce the statistics of any observable for spatially encoded photonic qubits. It comprises the implementation of a two-outcome positive operator-valued measure followed by a detection in a fixed transverse position, making the displacement of the detection system unnecessary, unlike previous methods. This strategy generalizes a scheme recently demonstrated by one of us and co-workers, restricted to measurement of observables with equatorial eigenvectors only. The method presented here can be implemented with the current technology of programmable multipixel liquid-crystal displays. In addition, it can be straightforwardly extended to high-dimensional qudits and may be a valuable tool in optical implementations of quantum information protocols with spatial qubits and qudits.

  19. Analytical results for entanglement in the five-qubit anisotropic Heisenberg model

    International Nuclear Information System (INIS)

    Wang Xiaoguang

    2004-01-01

    We solve the eigenvalue problem of the five-qubit anisotropic Heisenberg model, without use of Bethe's ansatz, and give analytical results for entanglement and mixedness of two nearest-neighbor qubits. The entanglement takes its maximum at Δ=1 (Δ>1) for the case of zero (finite) temperature with Δ being the anisotropic parameter. In contrast, the mixedness takes its minimum at Δ=1 (Δ>1) for the case of zero (finite) temperature

  20. Direct measurement of the concurrence for two-qubit electron spin entangled pure state based on charge detection

    International Nuclear Information System (INIS)

    Liu Jiong; Zhou Lan; Sheng Yu-Bo

    2015-01-01

    We propose a protocol for directly measuring the concurrence of a two-qubit electronic pure entangled state. To complete this task, we first design a parity-check measurement (PCM) which is constructed by two polarization beam splitters (PBSs) and a charge detector. By using the PCM for three rounds, we can achieve the concurrence by calculating the total probability of picking up the odd parity states from the initial states. Since the conduction electron may be a good candidate for the realization of quantum computation, this protocol may be useful in future solid quantum computation. (paper)

  1. On a formulation of qubits in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Jacques, E-mail: calmet@ira.uka.de [Karlsruhe Institute of Technology (KIT), Institute for Cryptography and Security, Am Fasanengarten 5, 76131 Karlsruhe (Germany); Calmet, Xavier, E-mail: x.calmet@sussex.ac.uk [Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom)

    2012-01-30

    Qubits have been designed in the framework of quantum mechanics. Attempts to formulate the problem in the language of quantum field theory have been proposed already. In this short Letter we refine the meaning of qubits within the framework of quantum field theory. We show that the notion of gauge invariance naturally leads to a generalization of qubits to QFTbits which are then the fundamental carriers of information from the quantum field theoretical point of view. The goal of this Letter is to stress the availability of such a generalized concept of QFTbits. -- Highlights: ► Gauge invariant qubits are proposed. ► Non-linear QFT effects are discussed. ► Entanglement of qubits in QFT.

  2. Generation of three-qubit Greenberger-Horne-Zeilinger states of superconducting qubits by using dressed states

    Science.gov (United States)

    Zhang, Xu; Chen, Ye-Hong; Shi, Zhi-Cheng; Shan, Wu-Jiang; Song, Jie; Xia, Yan

    2017-12-01

    Combining the advantages of the dressed states and superconducting quantum interference device (SQUID) qubits, we propose an efficient scheme to generate Greenberger-Horne-Zeilinger (GHZ) states for three SQUID qubits. Firstly, we elaborate how to generate GHZ states of three SQUID qubits by choosing a set of dressed states suitably. Then, we compare the scheme by using dressed states with that via the adiabatic passage. Lastly, the influence of various decoherence factors, such as cavity decay, spontaneous emission and dephasing, is analyzed numerically. All of the results show that the GHZ state can be obtained fast and with high fidelity and that the present scheme is robust against the cavity decay and spontaneous emission. In addition, our scheme is more stable against the dephasing than the adiabatic scheme.

  3. High threshold distributed quantum computing with three-qubit nodes

    International Nuclear Information System (INIS)

    Li Ying; Benjamin, Simon C

    2012-01-01

    In the distributed quantum computing paradigm, well-controlled few-qubit ‘nodes’ are networked together by connections which are relatively noisy and failure prone. A practical scheme must offer high tolerance to errors while requiring only simple (i.e. few-qubit) nodes. Here we show that relatively modest, three-qubit nodes can support advanced purification techniques and so offer robust scalability: the infidelity in the entanglement channel may be permitted to approach 10% if the infidelity in local operations is of order 0.1%. Our tolerance of network noise is therefore an order of magnitude beyond prior schemes, and our architecture remains robust even in the presence of considerable decoherence rates (memory errors). We compare the performance with that of schemes involving nodes of lower and higher complexity. Ion traps, and NV-centres in diamond, are two highly relevant emerging technologies: they possess the requisite properties of good local control, rapid and reliable readout, and methods for entanglement-at-a-distance. (paper)

  4. Silicon quantum processor with robust long-distance qubit couplings

    Energy Technology Data Exchange (ETDEWEB)

    Tosi, Guilherme; Mohiyaddin, Fahd A.; Schmitt, Vivien; Tenberg, Stefanie; Rahman, Rajib; Klimeck, Gerhard; Morello, Andrea

    2017-09-06

    Practical quantum computers require a large network of highly coherent qubits, interconnected in a design robust against errors. Donor spins in silicon provide state-of-the-art coherence and quantum gate fidelities, in a platform adapted from industrial semiconductor processing. Here we present a scalable design for a silicon quantum processor that does not require precise donor placement and leaves ample space for the routing of interconnects and readout devices. We introduce the flip-flop qubit, a combination of the electron-nuclear spin states of a phosphorus donor that can be controlled by microwave electric fields. Two-qubit gates exploit a second-order electric dipole-dipole interaction, allowing selective coupling beyond the nearest-neighbor, at separations of hundreds of nanometers, while microwave resonators can extend the entanglement to macroscopic distances. We predict gate fidelities within fault-tolerance thresholds using realistic noise models. This design provides a realizable blueprint for scalable spin-based quantum computers in silicon.

  5. Electrical Manipulation of Spin Qubits in Li-doped Si

    Science.gov (United States)

    Petukhov, Andre; Pendo, Luke; Handberg, Erin; Smelyanskiy, Vadim

    2011-03-01

    We propose a complete quantum computing scheme based on Li donors in Si under external biaxial stress. The qubits are encoded on the ground state Zeeman doublets and coupled via long-range spin-spin interaction mediated by acoustic phonons. This interaction is unique for Li donors in Si due to their inverted electronic structure. Our scheme takes advantage of the fact that the energy level spacing in 1 s Li-donor manifold is comparable with the magnitude of the spin-orbit interaction. As a result the Li spin qubits can be placed 100 nm apart and manipulated by a combination of external electric field and microwave field impulses. We present a specially-designed sequence of the electric field impulses which allows for a typical time of a two-qubit gate ~ ~1~ μ s and a quality factor ~10-6 . These estimates are derived from detailed microscopic calculations of the quadratic Stark effect and electron-phonon decoherence times.

  6. Weak coupling polaron and Landau-Zener scenario: Qubits modeling

    Science.gov (United States)

    Jipdi, M. N.; Tchoffo, M.; Fokou, I. F.; Fai, L. C.; Ateuafack, M. E.

    2017-06-01

    The paper presents a weak coupling polaron in a spherical dot with magnetic impurities and investigates conditions for which the system mimics a qubit. Particularly, the work focuses on the Landau-Zener (LZ) scenario undergone by the polaron and derives transition coefficients (transition probabilities) as well as selection rules for polaron's transitions. It is proven that, the magnetic impurities drive the polaron to a two-state superposition leading to a qubit structure. We also showed that the symmetry deficiency induced by the magnetic impurities (strong magnetic field) yields to the banishment of transition coefficients with non-stacking states. However, the transition coefficients revived for large confinement frequency (or weak magnetic field) with the orbital quantum numbers escorting transitions. The polaron is then shown to map a qubit independently of the number of relevant states with the transition coefficients lifted as LZ probabilities and given as a function of the electron-phonon coupling constant (Fröhlich constant).

  7. Dynamics of Entanglement in Jaynes–Cummings Nodes with Nonidentical Qubit-Field Coupling Strengths

    Directory of Open Access Journals (Sweden)

    Li-Tuo Shen

    2017-07-01

    Full Text Available How to analytically deal with the general entanglement dynamics of separate Jaynes–Cummings nodes with continuous-variable fields is still an open question, and few analytical approaches can be used to solve their general entanglement dynamics. Entanglement dynamics between two separate Jaynes–Cummings nodes are examined in this article. Both vacuum state and coherent state in the initial fields are considered through the numerical and analytical methods. The gap between two nonidentical qubit-field coupling strengths shifts the revival period and changes the revival amplitude of two-qubit entanglement. For vacuum-state fields, the maximal entanglement is fully revived after a gap-dependence period, within which the entanglement nonsmoothly decreases to zero and partly recovers without exhibiting sudden death phenomenon. For strong coherent-state fields, the two-qubit entanglement decays exponentially as the evolution time increases, exhibiting sudden death phenomenon, and the increasing gap accelerates the revival period and amplitude decay of the entanglement, where the numerical and analytical results have an excellent coincidence.

  8. Optimal control of a qubit in an optical cavity

    International Nuclear Information System (INIS)

    Deffner, Sebastian

    2014-01-01

    We study quantum information processing by means of optimal control theory. To this end, we analyze the damped Jaynes–Cummings model, and derive optimal control protocols that minimize the heating or energy dispersion rates, and controls that drive the system at the quantum speed limit. Special emphasis is put on analyzing the subtleties of optimal control theory for our system. In particular, it is shown how two fundamentally different approaches to the quantum speed limit can be reconciled by carefully formulating the problem. (paper)

  9. Realization of deterministic quantum teleportation with solid state qubits

    International Nuclear Information System (INIS)

    Andreas Wallfraff

    2014-01-01

    Using modern micro and nano-fabrication techniques combined with superconducting materials we realize electronic circuits the dynamics of which are governed by the laws of quantum mechanics. Making use of the strong interaction of photons with superconducting quantum two-level systems realized in these circuits we investigate both fundamental quantum effects of light and applications in quantum information processing. In this talk I will discuss the deterministic teleportation of a quantum state in a macroscopic quantum system. Teleportation may be used for distributing entanglement between distant qubits in a quantum network and for realizing universal and fault-tolerant quantum computation. Previously, we have demonstrated the implementation of a teleportation protocol, up to the single-shot measurement step, with three superconducting qubits coupled to a single microwave resonator. Using full quantum state tomography and calculating the projection of the measured density matrix onto the basis of two qubits has allowed us to reconstruct the teleported state with an average output state fidelity of 86%. Now we have realized a new device in which four qubits are coupled pair-wise to three resonators. Making use of parametric amplifiers coupled to the output of two of the resonators we are able to perform high-fidelity single-shot read-out. This has allowed us to demonstrate teleportation by individually post-selecting on any Bell-state and by deterministically distinguishing between all four Bell states measured by the sender. In addition, we have recently implemented fast feed-forward to complete the teleportation process. In all instances, we demonstrate that the fidelity of the teleported states are above the threshold imposed by classical physics. The presented experiments are expected to contribute towards realizing quantum communication with microwave photons in the foreseeable future. (author)

  10. Beating the Clauser-Horne-Shimony-Holt and the Svetlichny games with optimal states

    Science.gov (United States)

    Su, Hong-Yi; Ren, Changliang; Chen, Jing-Ling; Zhang, Fu-Lin; Wu, Chunfeng; Xu, Zhen-Peng; Gu, Mile; Vinjanampathy, Sai; Kwek, L. C.

    2016-02-01

    We study the relation between the maximal violation of Svetlichny's inequality and the mixedness of quantum states and obtain the optimal state (i.e., maximally nonlocal mixed states, or MNMS, for each value of linear entropy) to beat the Clauser-Horne-Shimony-Holt and the Svetlichny games. For the two-qubit and three-qubit MNMS, we showed that these states are also the most tolerant state against white noise, and thus serve as valuable quantum resources for such games. In particular, the quantum prediction of the MNMS decreases as the linear entropy increases, and then ceases to be nonlocal when the linear entropy reaches the critical points 2 /3 and 9 /14 for the two- and three-qubit cases, respectively. The MNMS are related to classical errors in experimental preparation of maximally entangled states.

  11. Method for universal detection of two-photon polarization entanglement

    Science.gov (United States)

    Bartkiewicz, Karol; Horodecki, Paweł; Lemr, Karel; Miranowicz, Adam; Życzkowski, Karol

    2015-03-01

    Detecting and quantifying quantum entanglement of a given unknown state poses problems that are fundamentally important for quantum information processing. Surprisingly, no direct (i.e., without quantum tomography) universal experimental implementation of a necessary and sufficient test of entanglement has been designed even for a general two-qubit state. Here we propose an experimental method for detecting a collective universal witness, which is a necessary and sufficient test of two-photon polarization entanglement. It allows us to detect entanglement for any two-qubit mixed state and to establish tight upper and lower bounds on its amount. A different element of this method is the sequential character of its main components, which allows us to obtain relatively complicated information about quantum correlations with the help of simple linear-optical elements. As such, this proposal realizes a universal two-qubit entanglement test within the present state of the art of quantum optics. We show the optimality of our setup with respect to the minimal number of measured quantities.

  12. Entanglement and Quantum Error Correction with Superconducting Qubits

    Science.gov (United States)

    Reed, Matthew

    2015-03-01

    Quantum information science seeks to take advantage of the properties of quantum mechanics to manipulate information in ways that are not otherwise possible. Quantum computation, for example, promises to solve certain problems in days that would take a conventional supercomputer the age of the universe to decipher. This power does not come without a cost however, as quantum bits are inherently more susceptible to errors than their classical counterparts. Fortunately, it is possible to redundantly encode information in several entangled qubits, making it robust to decoherence and control imprecision with quantum error correction. I studied one possible physical implementation for quantum computing, employing the ground and first excited quantum states of a superconducting electrical circuit as a quantum bit. These ``transmon'' qubits are dispersively coupled to a superconducting resonator used for readout, control, and qubit-qubit coupling in the cavity quantum electrodynamics (cQED) architecture. In this talk I will give an general introduction to quantum computation and the superconducting technology that seeks to achieve it before explaining some of the specific results reported in my thesis. One major component is that of the first realization of three-qubit quantum error correction in a solid state device, where we encode one logical quantum bit in three entangled physical qubits and detect and correct phase- or bit-flip errors using a three-qubit Toffoli gate. My thesis is available at arXiv:1311.6759.

  13. Entanglement backflow under the composite effect of two non-Markovian reservoirs

    International Nuclear Information System (INIS)

    Li, Jun-Gang; Zou, Jian; Shao, Bin

    2012-01-01

    The entanglement backflow of two qubits coupled to two independent reservoirs is investigated. It is found that under the collective effects of the two independent reservoirs, the entanglement backflow of the qubits does not always increase with the increase of the non-Markovianity of one of the reservoirs but demonstrates an intricate behavior. Interestingly, the action of one reservoir can affect the other reservoir's contribution to the entanglement backflow even when the two reservoirs are independent. -- Highlights: ► We study entanglement backflow of two qubits coupled to two independent reservoirs. ► We find that the entanglement backflow demonstrates an intricate behavior. ► The action of one reservoir can affect the contribution of the other reservoir.

  14. Six-qubit two-photon hyperentangled cluster states: Characterization and application to quantum computation

    International Nuclear Information System (INIS)

    Vallone, Giuseppe; Donati, Gaia; Ceccarelli, Raino; Mataloni, Paolo

    2010-01-01

    Six-qubit cluster states built on the simultaneous entanglement of two photons in three independent degrees of freedom, that is, polarization and a double longitudinal momentum, have been recently demonstrated. We present here the peculiar entanglement properties of the linear cluster state |L-tildeC 6 > related to the three degrees of freedom. This state has been adopted to realize various kinds of controlled not (cnot) gates, obtaining high values of the fidelity of the expected output states for all considered cases. Our results demonstrate that these states may represent a promising approach toward scalable quantum computation in a medium-term time scale. The future perspectives of a hybrid approach to one-way quantum computing based on multiple degrees of freedom and multiphoton cluster states are also discussed in the conclusion of this article.

  15. Weight-4 Parity Checks on a Surface Code Sublattice with Superconducting Qubits

    Science.gov (United States)

    Takita, Maika; Corcoles, Antonio; Magesan, Easwar; Bronn, Nicholas; Hertzberg, Jared; Gambetta, Jay; Steffen, Matthias; Chow, Jerry

    We present a superconducting qubit quantum processor design amenable to the surface code architecture. In such architecture, parity checks on the data qubits, performed by measuring their X- and Z- syndrome qubits, constitute a critical aspect. Here we show fidelities and outcomes of X- and Z-parity measurements done on a syndrome qubit in a full plaquette consisting of one syndrome qubit coupled via bus resonators to four code qubits. Parities are measured after four code qubits are prepared into sixteen initial states in each basis. Results show strong dependence on ZZ between qubits on the same bus resonators. This work is supported by IARPA under Contract W911NF-10-1-0324.

  16. 10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit

    Science.gov (United States)

    Song, Chao; Xu, Kai; Liu, Wuxin; Yang, Chui-ping; Zheng, Shi-Biao; Deng, Hui; Xie, Qiwei; Huang, Keqiang; Guo, Qiujiang; Zhang, Libo; Zhang, Pengfei; Xu, Da; Zheng, Dongning; Zhu, Xiaobo; Wang, H.; Chen, Y.-A.; Lu, C.-Y.; Han, Siyuan; Pan, Jian-Wei

    2017-11-01

    Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to ten qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is probed by quantum state tomography, with a fidelity of 0.668 ±0.025 . Our results demonstrate the largest entanglement created so far in solid-state architectures and pave the way to large-scale quantum computation.

  17. Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect

    Science.gov (United States)

    Li, Chang-Hao; Li, Peng-Bo

    2018-05-01

    We propose an efficient scheme for transferring quantum states and generating entangled states between two qubits of different nature. The hybrid system consists of a single nitrogen-vacancy (NV) center and a superconducting (SC) qubit, which couple to an optical cavity and a microwave resonator, respectively. Meanwhile, the optical cavity and the microwave resonator are coupled via the electro-optic effect. By adjusting the relative parameters, we can achieve high-fidelity quantum state transfer as well as highly entangled states between the NV center and the SC qubit. This protocol is within the reach of currently available techniques, and may provide interesting applications in quantum communication and computation with single NV centers and SC qubits.

  18. Memory-keeping effects and forgetfulness in the dynamics of a qubit coupled to a spin chain

    International Nuclear Information System (INIS)

    Apollaro, Tony J. G.; Di Franco, Carlo; Plastina, Francesco; Paternostro, Mauro

    2011-01-01

    Using recently proposed measures for non-Markovianity [H.-P. Breuer, E. M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)], we study the dynamics of a qubit coupled to a spin environment via an energy-exchange mechanism. We show the existence of a point, in the parameter space of the system, where the qubit dynamics is effectively Markovian and that such a point separates two regions with completely different dynamical behaviors. Indeed, our study demonstrates that the qubit evolution can in principle be tuned from a perfectly forgetful one to a deep non-Markovian regime where the qubit is strongly affected by the dynamical backaction of the environmental spins. By means of a theoretical quantum process tomography analysis, we provide a complete and intuitive characterization of the qubit channel.

  19. Modular cryogenic interconnects for multi-qubit devices

    Energy Technology Data Exchange (ETDEWEB)

    Colless, J. I.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-11-15

    We have developed a modular interconnect platform for the control and readout of multiple solid-state qubits at cryogenic temperatures. The setup provides 74 filtered dc-bias connections, 32 control and readout connections with −3 dB frequency above 5 GHz, and 4 microwave feed lines that allow low loss (less than 3 dB) transmission 10 GHz. The incorporation of a radio-frequency interposer enables the platform to be separated into two printed circuit boards, decoupling the simple board that is bonded to the qubit chip from the multilayer board that incorporates expensive connectors and components. This modular approach lifts the burden of duplicating complex interconnect circuits for every prototype device. We report the performance of this platform at milli-Kelvin temperatures, including signal transmission and crosstalk measurements.

  20. Quantum-information approach to the Ising model: Entanglement in chains of qubits

    International Nuclear Information System (INIS)

    Stelmachovic, Peter; Buzek, Vladimir

    2004-01-01

    Simple physical interactions between spin-1/2 particles may result in quantum states that exhibit exotic correlations that are difficult to find if one simply explores state spaces of multipartite systems. In particular, we present a detailed investigation of the well-known Ising model of a chain (ring) of spin-1/2 particles (qubits) in a transverse magnetic field. We present explicit expressions for eigenstates of the model Hamiltonian for arbitrary number of spin-1/2 particles in the chain in the standard (computer) basis, and we investigate quantum entanglement between individual qubits. We analyze bipartite as well as multipartite entanglement in the ground state of the model. In particular, we show that bipartite entanglement between pairs of qubits of the Ising chain (measured in terms of a concurrence) as a function of the parameter λ has a maximum around the point λ=1, and it monotonically decreases for large values of λ. We prove that in the limit λ→∞ this state is locally unitary equivalent to an N-partite Greenberger-Horn-Zeilinger state. We also analyze a very specific eigenstate of the Ising Hamiltonian with a zero eigenenergy (we denote this eigenstate as the X-state). This X-state exhibits the 'extreme' entanglement in a sense that an arbitrary subset A of k≤n qubits in the Ising chain composed of N=2n+1 qubits is maximally entangled with the remaining qubits (set B) in the chain. In addition, we prove that by performing a local operation just on the subset B, one can transform the X-state into a direct product of k singlets shared by the parties A and B. This property of the X-state can be utilized for new secure multipartite communication protocols

  1. Orbital hyperfine interaction and qubit dephasing in carbon nanotube quantum dots

    Science.gov (United States)

    Palyi, Andras; Csiszar, Gabor

    2015-03-01

    Hyperfine interaction (HF) is of key importance for the functionality of solid-state quantum information processing, as it affects qubit coherence and enables nuclear-spin quantum memories. In this work, we complete the theory of the basic hyperfine interaction mechanisms (Fermi contact, dipolar, orbital) in carbon nanotube quantum dots by providing a theoretical description of the orbital HF. We find that orbital HF induces an interaction between the nuclear spins of the nanotube lattice and the valley degree of freedom of the electrons confined in the quantum dot. We show that the resulting nuclear-spin-electron-valley interaction (i) is approximately of Ising type, (ii) is essentially local, in the sense that an effective atomic interaction strength can be defined, and (iii) has a strength that is comparable to the combined strength of Fermi contact and dipolar interactions. We argue that orbital HF provides a new decoherence mechanism for single-electron valley qubits and spin-valley qubits in a range of multi-valley materials. We explicitly evaluate the corresponding inhomogeneous dephasing time T2* for a nanotube-based valley qubit. We acknowledge funding from the EU Marie Curie CIG-293834, OTKA Grant PD 100373, and EU ERC Starting Grant CooPairEnt 258789. AP is supported by the Janos Bolyai Scholarship of the Hungarian Academy of Sciences.

  2. Unconditional polarization qubit quantum memory at room temperature

    Science.gov (United States)

    Namazi, Mehdi; Kupchak, Connor; Jordaan, Bertus; Shahrokhshahi, Reihaneh; Figueroa, Eden

    2016-05-01

    The creation of global quantum key distribution and quantum communication networks requires multiple operational quantum memories. Achieving a considerable reduction in experimental and cost overhead in these implementations is thus a major challenge. Here we present a polarization qubit quantum memory fully-operational at 330K, an unheard frontier in the development of useful qubit quantum technology. This result is achieved through extensive study of how optical response of cold atomic medium is transformed by the motion of atoms at room temperature leading to an optimal characterization of room temperature quantum light-matter interfaces. Our quantum memory shows an average fidelity of 86.6 +/- 0.6% for optical pulses containing on average 1 photon per pulse, thereby defeating any classical strategy exploiting the non-unitary character of the memory efficiency. Our system significantly decreases the technological overhead required to achieve quantum memory operation and will serve as a building block for scalable and technologically simpler many-memory quantum machines. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180. B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  3. Single qubit manipulation in a microfabricated surface electrode ion trap

    Science.gov (United States)

    Mount, Emily; Baek, So-Young; Blain, Matthew; Stick, Daniel; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang

    2013-09-01

    We trap individual 171Yb+ ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms-1, indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps.

  4. Single qubit manipulation in a microfabricated surface electrode ion trap

    International Nuclear Information System (INIS)

    Mount, Emily; Baek, So-Young; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang; Blain, Matthew; Stick, Daniel

    2013-01-01

    We trap individual 171 Yb + ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms −1 , indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps. (paper)

  5. Experimental quantum multimeter and one-qubit fingerprinting

    International Nuclear Information System (INIS)

    Du Jiangfeng; Zou Ping; Peng Xinhua; Oi, Daniel K. L.; Ekert, Artur; Kwek, L. C.; Oh, C. H.

    2006-01-01

    There has been much recent effort to realize quantum devices in many different physical systems. Among them, nuclear magnetic resonance (NMR) has been the first to demonstrate nontrivial quantum algorithms with small numbers of qubits and hence is a prototype for the key ingredients needed to build quantum computers. An important building block in many quantum applications is the scattering circuit, which can be used as a quantum multimeter to perform various quantum information processing tasks directly without recourse to quantum tomography. We implement in NMR a three-qubit version of the multimeter and also demonstrate a single-qubit fingerprinting

  6. Quantum information density scaling and qubit operation time constraints of CMOS silicon-based quantum computer architectures

    Science.gov (United States)

    Rotta, Davide; Sebastiano, Fabio; Charbon, Edoardo; Prati, Enrico

    2017-06-01

    Even the quantum simulation of an apparently simple molecule such as Fe2S2 requires a considerable number of qubits of the order of 106, while more complex molecules such as alanine (C3H7NO2) require about a hundred times more. In order to assess such a multimillion scale of identical qubits and control lines, the silicon platform seems to be one of the most indicated routes as it naturally provides, together with qubit functionalities, the capability of nanometric, serial, and industrial-quality fabrication. The scaling trend of microelectronic devices predicting that computing power would double every 2 years, known as Moore's law, according to the new slope set after the 32-nm node of 2009, suggests that the technology roadmap will achieve the 3-nm manufacturability limit proposed by Kelly around 2020. Today, circuital quantum information processing architectures are predicted to take advantage from the scalability ensured by silicon technology. However, the maximum amount of quantum information per unit surface that can be stored in silicon-based qubits and the consequent space constraints on qubit operations have never been addressed so far. This represents one of the key parameters toward the implementation of quantum error correction for fault-tolerant quantum information processing and its dependence on the features of the technology node. The maximum quantum information per unit surface virtually storable and controllable in the compact exchange-only silicon double quantum dot qubit architecture is expressed as a function of the complementary metal-oxide-semiconductor technology node, so the size scale optimizing both physical qubit operation time and quantum error correction requirements is assessed by reviewing the physical and technological constraints. According to the requirements imposed by the quantum error correction method and the constraints given by the typical strength of the exchange coupling, we determine the workable operation frequency

  7. Flying spin-qubit gates implemented through Dresselhaus and Rashba spin-orbit couplings

    International Nuclear Information System (INIS)

    Gong, S.J.; Yang, Z.Q.

    2007-01-01

    A theoretical scheme is proposed to implement flying spin-qubit gates based on two semiconductor wires with Dresselhaus and Rashba spin-orbit couplings (SOCs), respectively. It is found that under the manipulation of the Dresselhaus/Rashba SOC, spin rotates around x/y axis in the three-dimensional spin space. By combining the two kinds of manipulations, i.e. connecting the two kinds of semiconductor wires in series, we obtain a universal set of losses flying single-qubit gates including Hadamard, phase, and π/8 gates. A ballistic switching effect of electronic flow is also found in the investigation. Our results may be useful in future spin or nanoscale electronics

  8. Superconducting qubits can be coupled and addressed as trapped ions

    Science.gov (United States)

    Liu, Y. X.; Wei, L. F.; Johansson, J. R.; Tsai, J. S.; Nori, F.

    2009-03-01

    Exploiting the intrinsic nonlinearity of superconducting Josephson junctions, we propose a scalable circuit with superconducting qubits (SCQs) which is very similar to the successful one now being used for trapped ions. The SCQs are coupled to the ``vibrational'' mode provided by a superconducting LC circuit or its equivalent (e.g., a superconducting quantum interference device). Both single-qubit rotations and qubit-LC-circuit couplings and/or decouplings can be controlled by the frequencies of the time-dependent magnetic fluxes. The circuit is scalable since the qubit-qubit interactions, mediated by the LC circuit, can be selectively performed, and the information transfer can be realized in a controllable way. [4pt] Y.X. Liu, L.F. Wei, J.R. Johansson, J.S. Tsai, F. Nori, Superconducting qubits can be coupled and addressed as trapped ions, Phys. Rev. B 76, 144518 (2007). URL: http://link.aps.org/abstract/PRB/v76/e144518

  9. Preparation and tomographic reconstruction of an arbitrary single-photon path qubit

    International Nuclear Information System (INIS)

    Baek, So-Young; Kim, Yoon-Ho

    2011-01-01

    We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. The arbitrary single-photon path qubit is prepared losslessly by passing the heralded single-photon state from spontaneous parametric down-conversion through variable beam splitter. Quantum state tomography of the single-photon path qubit is implemented by introducing path-projection measurements based on the first-order single-photon quantum interference. Using the state preparation and path-projection measurements methods for the single-photon path qubit, we demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity. -- Highlights: → We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. → We implement path-projection measurements based on the first-order single-photon quantum interference. → We demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity.

  10. Coherencia y entrelazamiento en dinámica no Markoviana de qubits

    Directory of Open Access Journals (Sweden)

    Cristian Edwin Susa Quintero

    2013-06-01

    Full Text Available We provide a thorough analysis of the entanglement dynamics of an interacting two-qubit systemin the non-Markovian regime. In such a regime, the time scale on which the reservoir degrees offreedom evolve is either of the same order of magnitude or less than that on which the systemevolves.We used an exact numerical method; the Quasi-Adiabatic Path Integral (QUAPI technique,to describe the corresponding qubit dissipative dynamics in such a non-Markovian regime. Wecomputed the time evolution of the density operator for the quibits, from which we quantified thecoherences and population dynamics, as well as the qubit-bath coupling effects. Using negativityas a metric, we calculated the dynamics of non-local quantum correlations (entanglement, andindentified a non-Markovian quantum phenomena in terms of early stage disentanglement, and thecollapse and revival of entanglement.

  11. Silicon Hard-Stop Mesas for 3D Integration of Superconducting Qubits

    Science.gov (United States)

    Kim, David; Rosenberg, Danna; Osadchy, Brenda; Calusine, Greg; Das, Rabindra; Melville, Alexander; Yoder, Jonilyn; Yost, Donna-Ruth; Racz, Livia; Oliver, William

    As quantum computing with superconducting qubits advances past the few-qubit stage, implementing 3D packaging/integration to route readout/control lines will become increasingly important. One approach is to bond chips that perform different functions using indium bump bonds. Because indium is malleable, however, achieving the desired spacing and tilt between two chips can be challenging. We present an approach based on etching several microns into the silicon substrate to produce hard stop silicon posts. Since this process involves etching into a pristine substrate, it is essential to evaluate its impact on qubit performance. We report the etched surface's effect on the resonator quality factor and qubit coherence time, as well as the improvement in planarity and tilt. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  12. Realization of universal optimal quantum machines by projective operators and stochastic maps

    International Nuclear Information System (INIS)

    Sciarrino, F.; Sias, C.; Ricci, M.; De Martini, F.

    2004-01-01

    Optimal quantum machines can be implemented by linear projective operations. In the present work a general qubit symmetrization theory is presented by investigating the close links to the qubit purification process and to the programmable teleportation of any generic optimal antiunitary map. In addition, the contextual realization of the N→M cloning map and of the teleportation of the N→(M-N) universal-NOT (UNOT) gate is analyzed by a very general angular momentum theory. An extended set of experimental realizations by state symmetrization linear optical procedures is reported. These include the 1→2 cloning process, the UNOT gate and the quantum tomographic characterization of the optimal partial transpose map of polarization encoded qubits

  13. Fast reconstruction of high-qubit-number quantum states via low-rate measurements

    Science.gov (United States)

    Li, K.; Zhang, J.; Cong, S.

    2017-07-01

    Due to the exponential complexity of the resources required by quantum state tomography (QST), people are interested in approaches towards identifying quantum states which require less effort and time. In this paper, we provide a tailored and efficient method for reconstructing mixed quantum states up to 12 (or even more) qubits from an incomplete set of observables subject to noises. Our method is applicable to any pure or nearly pure state ρ and can be extended to many states of interest in quantum information processing, such as a multiparticle entangled W state, Greenberger-Horne-Zeilinger states, and cluster states that are matrix product operators of low dimensions. The method applies the quantum density matrix constraints to a quantum compressive sensing optimization problem and exploits a modified quantum alternating direction multiplier method (quantum-ADMM) to accelerate the convergence. Our algorithm takes 8 ,35 , and 226 seconds, respectively, to reconstruct superposition state density matrices of 10 ,11 ,and12 qubits with acceptable fidelity using less than 1 % of measurements of expectation. To our knowledge it is the fastest realization that people can achieve using a normal desktop. We further discuss applications of this method using experimental data of mixed states obtained in an ion trap experiment of up to 8 qubits.

  14. Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels

    Science.gov (United States)

    Ruan, Liangzhong; Dai, Wenhan; Win, Moe Z.

    2018-05-01

    Quantum entanglement serves as a valuable resource for many important quantum operations. A pair of entangled qubits can be shared between two agents by first preparing a maximally entangled qubit pair at one agent, and then sending one of the qubits to the other agent through a quantum channel. In this process, the deterioration of entanglement is inevitable since the noise inherent in the channel contaminates the qubit. To address this challenge, various quantum entanglement distillation (QED) algorithms have been developed. Among them, recurrence algorithms have advantages in terms of implementability and robustness. However, the efficiency of recurrence QED algorithms has not been investigated thoroughly in the literature. This paper puts forth two recurrence QED algorithms that adapt to the quantum channel to tackle the efficiency issue. The proposed algorithms have guaranteed convergence for quantum channels with two Kraus operators, which include phase-damping and amplitude-damping channels. Analytical results show that the convergence speed of these algorithms is improved from linear to quadratic and one of the algorithms achieves the optimal speed. Numerical results confirm that the proposed algorithms significantly improve the efficiency of QED.

  15. Multiplexing Superconducting Qubit Circuit for Single Microwave Photon Generation

    Science.gov (United States)

    George, R. E.; Senior, J.; Saira, O.-P.; Pekola, J. P.; de Graaf, S. E.; Lindström, T.; Pashkin, Yu A.

    2017-10-01

    We report on a device that integrates eight superconducting transmon qubits in λ /4 superconducting coplanar waveguide resonators fed from a common feedline. Using this multiplexing architecture, each resonator and qubit can be addressed individually, thus reducing the required hardware resources and allowing their individual characterisation by spectroscopic methods. The measured device parameters agree with the designed values, and the resonators and qubits exhibit excellent coherence properties and strong coupling, with the qubit relaxation rate dominated by the Purcell effect when brought in resonance with the resonator. Our analysis shows that the circuit is suitable for generation of single microwave photons on demand with an efficiency exceeding 80%.

  16. Entanglement dynamics of two electron-spin qubits in a strongly detuned and dissipative quantum-dot-cavity system

    International Nuclear Information System (INIS)

    Xiang Shaohua; Deng Xiaopeng; Song Kehui; Wen Wei; Shi Zhengang

    2011-01-01

    We investigate the entanglement dynamics of two electron-spin qubits in the quantum-dot (QD)-microcavity system in the large-detuning limit and subjected to two different noise sources: electron-spin dephasing and relaxation. We show that when one of the two dots is prepared initially in the excited state, the created entanglement exhibits oscillatory behavior at the beginning of evolution and then completely disappears over time. For two QDs that are initially in either the Einstein-Podolsky-Rosen-Bell states or the Werner states, their entanglement evolution exhibits the same behavior in the presence of pure dephasing, but is completely different under the relaxation process. We also show that the interdot interaction induced by a single-mode cavity field does not contribute to the dynamics of entanglement for these Bell states and Werner states.

  17. Quantum Key Distribution Using Four-Qubit W State

    International Nuclear Information System (INIS)

    Cai Haijing; Song Heshan

    2006-01-01

    A new theoretical quantum key distribution scheme based on entanglement swapping is proposed, where four-qubit symmetric W state functions as quantum channel. It is shown that two legitimate users can secretly share a series of key bits by using Bell-state measurements and classical communication.

  18. Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles

    International Nuclear Information System (INIS)

    Grace, Matthew; Brif, Constantin; Rabitz, Herschel; Walmsley, Ian A; Kosut, Robert L; Lidar, Daniel A

    2007-01-01

    Methods of optimal control are applied to a model system of interacting two-level particles (e.g., spin-half atomic nuclei or electrons or two-level atoms) to produce high-fidelity quantum gates while simultaneously negating the detrimental effect of decoherence. One set of particles functions as the quantum information processor, whose evolution is controlled by a time-dependent external field. The other particles are not directly controlled and serve as an effective environment, coupling to which is the source of decoherence. The control objective is to generate target one- and two-qubit unitary gates in the presence of strong environmentally-induced decoherence and under physically motivated restrictions on the control field. The quantum-gate fidelity, expressed in terms of a novel state-independent distance measure, is maximized with respect to the control field using combined genetic and gradient algorithms. The resulting high-fidelity gates demonstrate the feasibility of precisely guiding the quantum evolution via optimal control, even when the system complexity is exacerbated by environmental coupling. It is found that the gate duration has an important effect on the control mechanism and resulting fidelity. An analysis of the sensitivity of the gate performance to random variations in the system parameters reveals a significant degree of robustness attained by the optimal control solutions

  19. Multi-party quantum key agreement with five-qubit brown states

    Science.gov (United States)

    Cai, Tao; Jiang, Min; Cao, Gang

    2018-05-01

    In this paper, we propose a multi-party quantum key agreement protocol with five-qubit brown states and single-qubit measurements. Our multi-party protocol ensures each participant to contribute equally to the agreement key. Each party performs three single-qubit unitary operations on three qubits of each brown state. Finally, by measuring brown states and decoding the measurement results, all participants can negotiate a shared secret key without classical bits exchange between them. With the analysis of security, our protocol demonstrates that it can resist against both outsider and participant attacks. Compared with other schemes, it also possesses a higher information efficiency. In terms of physical operation, it requires single-qubit measurements only which weakens the hardware requirements of participant and has a better operating flexibility.

  20. Faithful qubit transmission in a quantum communication network with heterogeneous channels

    Science.gov (United States)

    Chen, Na; Zhang, Lin Xi; Pei, Chang Xing

    2018-04-01

    Quantum communication networks enable long-distance qubit transmission and distributed quantum computation. In this paper, a quantum communication network with heterogeneous quantum channels is constructed. A faithful qubit transmission scheme is presented. Detailed calculations and performance analyses show that even in a low-quality quantum channel with serious decoherence, only modest number of locally prepared target qubits are required to achieve near-deterministic qubit transmission.

  1. Fault-tolerant computing with biased-noise superconducting qubits: a case study

    International Nuclear Information System (INIS)

    Aliferis, P; Brito, F; DiVincenzo, D P; Steffen, M; Terhal, B M; Preskill, J

    2009-01-01

    We present a universal scheme of pulsed operations suitable for the IBM oscillator-stabilized flux qubit comprising the controlled-σ z (cphase) gate, single-qubit preparations and measurements. Based on numerical simulations, we argue that the error rates for these operations can be as low as about 0.5% and that noise is highly biased, with phase errors being stronger than all other types of errors by a factor of nearly 10 3 . In contrast, the design of a controlled-σ x (cnot) gate for this system with an error rate of less than about 1.2% seems extremely challenging. We propose a special encoding that exploits the noise bias allowing us to implement a logicalcnot gate where phase errors and all other types of errors have nearly balanced rates of about 0.4%. Our results illustrate how the design of an encoding scheme can be adjusted and optimized according to the available physical operations and the particular noise characteristics of experimental devices.

  2. Visualization of the Invisible: The Qubit as Key to Quantum Physics

    Science.gov (United States)

    Dür, Wolfgang; Heusler, Stefan

    2014-11-01

    Quantum mechanics is one of the pillars of modern physics, however rather difficult to teach at the introductory level due to the conceptual difficulties and the required advanced mathematics. Nevertheless, attempts to identify relevant features of quantum mechanics and to put forward concepts of how to teach it have been proposed.1-8 Here we present an approach to quantum physics based on the simplest quantum mechanical system—the quantum bit (qubit).1 Like its classical counterpart—the bit—a qubit corresponds to a two-level system, i.e., some system with a physical property that can admit two possible values. While typically a physical system has more than just one property or the property can admit more than just two values, in many situations most degrees of freedom can be considered to be fixed or frozen. Hence a variety of systems can be effectively described as a qubit. For instance, one may consider the spin of an electron or atom, with spin up and spin down as two possible values, and where other properties of the particle such as its mass or its position are fixed. Further examples include the polarization degree of freedom of a photon (horizontal and vertical polarization), two electronic degrees of freedom (i.e., two energy levels) of an atom, or the position of an atom in a double well potential (atom in left or right well). In all cases, only two states are relevant to describe the system.

  3. Entanglement capacity of nonlocal Hamiltonians: A geometric approach

    International Nuclear Information System (INIS)

    Lari, Behzad; Hassan, Ali Saif M.; Joag, Pramod S.

    2009-01-01

    We develop a geometric approach to quantify the capability of creating entanglement for a general physical interaction acting on two qubits. We use the entanglement measure proposed by us for N-qubit pure states [Ali Saif M. Hassan and Pramod S. Joag, Phys. Rev. A 77, 062334 (2008)]. This geometric method has the distinct advantage that it gives the experimentally implementable criteria to ensure the optimal entanglement production rate without requiring a detailed knowledge of the state of the two qubit system. For the production of entanglement in practice, we need criteria for optimal entanglement production, which can be checked in situ without any need to know the state, as experimentally finding out the state of a quantum system is generally a formidable task. Further, we use our method to quantify the entanglement capacity in higher level and multipartite systems. We quantify the entanglement capacity for two qutrits and find the maximal entanglement generation rate and the corresponding state for the general isotropic interaction between qutrits, using the entanglement measure of N-qudit pure states proposed by us [Ali Saif M. Hassan and Pramod S. Joag, Phys. Rev. A 80, 042302 (2009)]. Next we quantify the genuine three qubit entanglement capacity for a general interaction between qubits. We obtain the maximum entanglement generation rate and the corresponding three qubit state for a general isotropic interaction between qubits. The state maximizing the entanglement generation rate is of the Greenberger-Horne-Zeilinger class. To the best of our knowledge, the entanglement capacities for two qutrit and three qubit systems have not been reported earlier.

  4. Experimental implementation of optimal linear-optical controlled-unitary gates

    Czech Academy of Sciences Publication Activity Database

    Lemr, K.; Bartkiewicz, K.; Černoch, Antonín; Dušek, M.; Soubusta, Jan

    2015-01-01

    Roč. 114, č. 15 (2015), "153602-1"-"153602-5" ISSN 0031-9007 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : two-qubit gates * optimal linear-optical controlled-unitary gates * quantum computing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.645, year: 2015

  5. Individual addressing of trapped {sup 171}Yb{sup +} ion qubits using a microelectromechanical systems-based beam steering system

    Energy Technology Data Exchange (ETDEWEB)

    Crain, S.; Mount, E.; Baek, S.; Kim, J., E-mail: jungsang@duke.edu [Electrical and Computer Engineering Department, Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina 27708 (United States)

    2014-11-03

    The ability to individually manipulate the increasing number of qubits is one of the many challenges towards scalable quantum information processing with trapped ions. Using micro-mirrors fabricated with micro-electromechanical systems technology, we focus laser beams on individual ions in a linear chain and steer the focal point in two dimensions. We demonstrate sequential single qubit gates on multiple {sup 171}Yb{sup +} qubits and characterize the gate performance using quantum state tomography. Our system features negligible crosstalk to neighboring ions (<3×10{sup −4}), and switching speed comparable to typical single qubit gate times (<2 μs)

  6. Novel Approaches to Quantum Computation Using Solid State Qubits

    National Research Council Canada - National Science Library

    Averin, D. V; Han, S; Likharev, K. K; Lukens, J. E; Semenov, V. K

    2007-01-01

    ...: the design of sophisticated instrumentation for the control and measurements of superconductor flux qubits, the refinement of qubit fabrication technology, the demonstration of coherent operation...

  7. Filter-design perspective applied to dynamical decoupling of a multi-qubit system

    International Nuclear Information System (INIS)

    Su Zhikun; Jiang Shaoji

    2012-01-01

    We employ the filter-design perspective and derive the filter functions according to nested Uhrig dynamical decoupling (NUDD) and symmetric dynamical decoupling (SDD) in the pure-dephasing spin-boson model with N qubits. The performances of NUDD and SDD are discussed in detail for a two-qubit system. The analysis shows that (i) SDD outperforms NUDD for the bath with a soft cutoff while NUDD approaches SDD as the cutoff becomes harder; (ii) if the qubits are coupled to a common reservoir, SDD helps to protect the decoherence-free subspace while NUDD destroys it; (iii) when the imperfect control pulses with finite width are considered, NUDD is affected in both the high-fidelity regime and coherence time regime while SDD is affected in the coherence time regime only. (paper)

  8. Simulations of defect spin qubits in piezoelectric semiconductors

    Science.gov (United States)

    Seo, Hosung

    In recent years, remarkable advances have been reported in the development of defect spin qubits in semiconductors for solid-state quantum information science and quantum metrology. Promising spin qubits include the nitrogen-vacancy center in diamond, dopants in silicon, and the silicon vacancy and divacancy spins in silicon carbide. In this talk, I will highlight some of our recent efforts devoted to defect spin qubits in piezoelectric wide-gap semiconductors for potential applications in mechanical hybrid quantum systems. In particular, I will describe our recent combined theoretical and experimental study on remarkably robust quantum coherence found in the divancancy qubits in silicon carbide. We used a quantum bath model combined with a cluster expansion method to identify the microscopic mechanisms behind the unusually long coherence times of the divacancy spins in SiC. Our study indicates that developing spin qubits in complex crystals with multiple types of atom is a promising route to realize strongly coherent hybrid quantum systems. I will also discuss progress and challenges in computational design of new spin defects for use as qubits in piezoelectric crystals such as AlN and SiC, including a new defect design concept using large metal ion - vacancy complexes. Our first principles calculations include DFT computations using recently developed self-consistent hybrid density functional theory and large-scale many-body GW theory. This work was supported by the National Science Foundation (NSF) through the University of Chicago MRSEC under Award Number DMR-1420709.

  9. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits

    DEFF Research Database (Denmark)

    Marcos, D.; Wubs, Martijn; Taylor, J.M.

    2010-01-01

    We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore......, the magnetic coupling can be used to achieve a coherent transfer of quantum information between the flux qubit and an ensemble of NV centers. This enables a long-term memory for a SC quantum processor and possibly an interface between SC qubits and light....

  10. Suppression of error in qubit rotations due to Bloch-Siegert oscillation via the use of off-resonant Raman excitation

    International Nuclear Information System (INIS)

    Pradhan, Prabhakar; Cardoso, George C; Shahriar, M S

    2009-01-01

    The rotation of a quantum bit (qubit) is an important step in quantum computation. The rotation is generally performed using a Rabi oscillation. In a direct two-level qubit system, if the Rabi frequency is comparable to its resonance frequency, the rotating wave approximation is not valid, and the Rabi oscillation is accompanied by the so-called Bloch-Siegert oscillation (BSO) that occurs at twice the frequency of the driving field. One implication of the BSO is that for a given interaction time and Rabi frequency, the degree of rotation experienced by the qubit depends explicitly on the initial phase of the driving field. If this effect is not controlled, it leads to an apparent fluctuation in the rotation of the qubit. Here we show that when an off-resonant lambda system is used to realize a two-level qubit, the BSO is inherently negligible, thus eliminating this source of potential error.

  11. Model for an irreversible bias current in the superconducting qubit measurement process

    International Nuclear Information System (INIS)

    Hutchinson, G. D.; Williams, D. A.; Holmes, C. A.; Stace, T. M.; Spiller, T. P.; Barrett, S. D.; Milburn, G. J.; Hasko, D. G.

    2006-01-01

    The superconducting charge-phase ''quantronium'' qubit is considered in order to develop a model for the measurement process used in the experiment of Vion et al. [Science 296, 886 (2002)]. For this model we propose a method for including the bias current in the readout process in a fundamentally irreversible way, which to first order is approximated by the Josephson junction tilted-washboard potential phenomenology. The decohering bias current is introduced in the form of a Lindblad operator and the Wigner function for the current-biased readout Josephson junction is derived and analyzed. During the readout current pulse used in the quantronium experiment we find that the coherence of the qubit initially prepared in a symmetric superposition state is lost at a time of 0.2 ns after the bias current pulse has been applied, a time scale that is much shorter than the experimental readout time. Additionally we look at the effect of Johnson-Nyquist noise with zero mean from the current source during the qubit manipulation and show that the decoherence due to the irreversible bias current description is an order of magnitude smaller than that found through adding noise to the reversible tilted-washboard potential model. Our irreversible bias current model is also applicable to persistent-current-based qubits where the state is measured according to its flux via a small-inductance direct-current superconducting quantum interference device

  12. Adaptive homodyne phase discrimination and qubit measurement

    International Nuclear Information System (INIS)

    Sarovar, Mohan; Whaley, K. Birgitta

    2007-01-01

    Fast and accurate measurement is a highly desirable, if not vital, feature of quantum computing architectures. In this work we investigate the usefulness of adaptive measurements in improving the speed and accuracy of qubit measurement. We examine a particular class of quantum computing architectures, ones based on qubits coupled to well-controlled harmonic oscillator modes (reminiscent of cavity QED), where adaptive schemes for measurement are particularly appropriate. In such architectures, qubit measurement is equivalent to phase discrimination for a mode of the electromagnetic field, and we examine adaptive techniques for doing this. In the final section we present a concrete example of applying adaptive measurement to the particularly well-developed circuit-QED architecture

  13. Hierarchical Controlled Remote State Preparation by Using a Four-Qubit Cluster State

    Science.gov (United States)

    Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2018-02-01

    We propose a scheme for hierarchical controlled remote preparation of an arbitrary single-qubit state via a four-qubit cluster state as the quantum channel. In this scheme, a sender wishes to help three agents to remotely prepare a quantum state, respectively. The three agents are divided into two grades, that is, an agent is in the upper grade and other two agents are in the lower grade. In this process of remote state preparation, the agent of the upper grade only needs the assistance of any one of the other two agents for recovering the sender's original state, while an agent of the lower grade needs the collaboration of all the other two agents. In other words, the agents of two grades have different authorities to reconstruct sender's original state.

  14. Hierarchical Controlled Remote State Preparation by Using a Four-Qubit Cluster State

    Science.gov (United States)

    Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2018-06-01

    We propose a scheme for hierarchical controlled remote preparation of an arbitrary single-qubit state via a four-qubit cluster state as the quantum channel. In this scheme, a sender wishes to help three agents to remotely prepare a quantum state, respectively. The three agents are divided into two grades, that is, an agent is in the upper grade and other two agents are in the lower grade. In this process of remote state preparation, the agent of the upper grade only needs the assistance of any one of the other two agents for recovering the sender's original state, while an agent of the lower grade needs the collaboration of all the other two agents. In other words, the agents of two grades have different authorities to reconstruct sender's original state.

  15. Rovibrational controlled-NOT gates using optimized stimulated Raman adiabatic passage techniques and optimal control theory

    International Nuclear Information System (INIS)

    Sugny, D.; Bomble, L.; Ribeyre, T.; Dulieu, O.; Desouter-Lecomte, M.

    2009-01-01

    Implementation of quantum controlled-NOT (CNOT) gates in realistic molecular systems is studied using stimulated Raman adiabatic passage (STIRAP) techniques optimized in the time domain by genetic algorithms or coupled with optimal control theory. In the first case, with an adiabatic solution (a series of STIRAP processes) as starting point, we optimize in the time domain different parameters of the pulses to obtain a high fidelity in two realistic cases under consideration. A two-qubit CNOT gate constructed from different assignments in rovibrational states is considered in diatomic (NaCs) or polyatomic (SCCl 2 ) molecules. The difficulty of encoding logical states in pure rotational states with STIRAP processes is illustrated. In such circumstances, the gate can be implemented by optimal control theory and the STIRAP sequence can then be used as an interesting trial field. We discuss the relative merits of the two methods for rovibrational computing (structure of the control field, duration of the control, and efficiency of the optimization).

  16. Quantum measurement of a rapidly rotating spin qubit in diamond.

    Science.gov (United States)

    Wood, Alexander A; Lilette, Emmanuel; Fein, Yaakov Y; Tomek, Nikolas; McGuinness, Liam P; Hollenberg, Lloyd C L; Scholten, Robert E; Martin, Andy M

    2018-05-01

    A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T 2 . We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors.

  17. Simultaneous qubit-loss-free fusion of three multiple W states

    Science.gov (United States)

    Wang, Meiyu; Hao, Quanzhi; Yan, Fengli; Gao, Ting

    2018-05-01

    Qubit-loss-free fusion for two W states introduced by Li K et al (2016 Phys. Rev. A 94 062315) clearly increases the final size of the obtained W state and greatly reduces the number of fusion steps to achieve a W state of a target size. Motivated by this idea, we propose a qubit-loss-free fusion scheme for fusing three polarization entangled W states simultaneously. The elements of a two-outcome positive-operator valued measurement and the appropriate joint unitary operation for realizing a positive-operator valued measurement measurement are given. As an example, with the assistance of weak cross-Kerr nonlinearities, an optical setup for fusing three W states is proposed. We analyze the success probability of the scheme and the resource cost of the present scheme, as compared to previous work.

  18. Ultrafast geometric control of a single qubit using chirped pulses

    International Nuclear Information System (INIS)

    Hawkins, Patrick E; Malinovskaya, Svetlana A; Malinovsky, Vladimir S

    2012-01-01

    We propose a control strategy to perform arbitrary unitary operations on a single qubit based solely on the geometrical phase that the qubit state acquires after cyclic evolution in the parameter space. The scheme uses ultrafast linearly chirped pulses and provides the possibility of reducing the duration of a single-qubit operation to a few picoseconds.

  19. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-18

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  20. Decoherence of Flux Qubits Coupled to Electronic Circuits

    NARCIS (Netherlands)

    Wilhelm, F.K.; Storcz, M.J.; van der Wal, C.H.; Harmans, C.J.P.M.; Mooij, J.E.

    2003-01-01

    On the way to solid-state quantum computing, overcoming decoherence is the central issue. In this contribution, we discuss the modeling of decoherence of a superonducting flux qubit coupled to dissipative electronic circuitry. We discuss its impact on single qubit decoherence rates and on the

  1. Superconducting flux qubits with π-junctions

    International Nuclear Information System (INIS)

    Shcherbakova, Anastasia

    2014-01-01

    In this thesis, we present a fabrication technology of Al/AlO x /Al Josephson junctions on Nb pads. The described technology gives the possibility of combining a variety of Nb-based superconducting circuits, like pi-junction phase-shifters with sub-micron Al/AlO x /Al junctions. Using this approach, we fabricated hybrid Nb/Al flux qubits with and without the SFS-junctions and studied dispersive magnetic field response of these qubits as well as their spectroscopy characteristics.

  2. Multi-qubit circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Viehmann, Oliver

    2013-01-01

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a

  3. Multi-qubit circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Viehmann, Oliver

    2013-09-03

    Circuit QED systems are macroscopic, man-made quantum systems in which superconducting artificial atoms, also called Josephson qubits, interact with a quantized electromagnetic field. These systems have been devised to mimic the physics of elementary quantum optical systems with real atoms in a scalable and more flexible framework. This opens up a variety of possible applications of circuit QED systems. For instance, they provide a promising platform for processing quantum information. Recent years have seen rapid experimental progress on these systems, and experiments with multi-component circuit QED architectures are currently starting to come within reach. In this thesis, circuit QED systems with multiple Josephson qubits are studied theoretically. We focus on simple and experimentally realistic extensions of the currently operated circuit QED setups and pursue investigations in two main directions. First, we consider the equilibrium behavior of circuit QED systems containing a large number of mutually noninteracting Josephson charge qubits. The currently accepted standard description of circuit QED predicts the possibility of superradiant phase transitions in such systems. However, a full microscopic treatment shows that a no-go theorem for superradiant phase transitions known from atomic physics applies to circuit QED systems as well. This reveals previously unknown limitations of the applicability of the standard theory of circuit QED to multi-qubit systems. Second, we explore the potential of circuit QED for quantum simulations of interacting quantum many-body systems. We propose and analyze a circuit QED architecture that implements the quantum Ising chain in a time-dependent transverse magnetic field. Our setup can be used to study quench dynamics, the propagation of localized excitations, and other non-equilibrium features in this paradigmatic model in the theory of non-equilibrium thermodynamics and quantumcritical phenomena. The setup is based on a

  4. Interface effects on acceptor qubits in silicon and germanium

    International Nuclear Information System (INIS)

    Abadillo-Uriel, J C; Calderón, M J

    2016-01-01

    Dopant-based quantum computing implementations often require the dopants to be situated close to an interface to facilitate qubit manipulation with local gates. Interfaces not only modify the energies of the bound states but also affect their symmetry. Making use of the successful effective mass theory we study the energy spectra of acceptors in Si or Ge taking into account the quantum confinement, the dielectric mismatch and the central cell effects. The presence of an interface puts constraints to the allowed symmetries and leads to the splitting of the ground state in two Kramers doublets (Mol et al 2015 Appl. Phys. Lett. 106 203110). Inversion symmetry breaking also implies parity mixing which affects the allowed optical transitions. Consequences for acceptor qubits are discussed. (paper)

  5. Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps

    Energy Technology Data Exchange (ETDEWEB)

    Highstrete, Clark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Quantum Information Sciences Dept.; Scott, Sean Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). RF/Optoelectronics Dept.; Nordquist, Christopher D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). RF/Optoelectronics Dept.; Sterk, Jonathan David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Tigges, Christopher P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Blain, Matthew Glenn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photonic Microsystem Technologies Dept.; Heller, Edwin J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Microsystems Integration Dept.; Stevens, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). MESAFab Operations 2 Dept.

    2013-11-01

    Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb+ hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ion traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.

  6. Design of a gap tunable flux qubit with FastHenry

    Science.gov (United States)

    Akhtar, Naheed; Zheng, Yarui; Nazir, Mudassar; Wu, Yulin; Deng, Hui; Zheng, Dongning; Zhu, Xiaobo

    2016-12-01

    In the preparations of superconducting qubits, circuit design is a vital process because the parameters and layout of the circuit not only determine the way we address the qubits, but also strongly affect the qubit coherence properties. One of the most important circuit parameters, which needs to be carefully designed, is the mutual inductance among different parts of a superconducting circuit. In this paper we demonstrate how to design a gap-tunable flux qubit by layout design and inductance extraction using a fast field solver FastHenry. The energy spectrum of the gap-tunable flux qubit shows that the measured parameters are close to the design values. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374344, 11404386, and 91321208), the National Basic Research Program of China (Grant No. 2014CB921401), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07010300).

  7. An approach for quantitatively analyzing the genuine tripartite nonlocality of general three-qubit states

    Science.gov (United States)

    Su, Zhaofeng; Li, Lvzhou; Ling, Jie

    2018-04-01

    Nonlocality is an important resource for quantum information processing. Genuine tripartite nonlocality, which is sufficiently confirmed by the violation of Svetlichny inequality, is a kind of more precious resource than the standard one. The genuine tripartite nonlocality is usually quantified by the amount of maximal violation of Svetlichny inequality. The problem of detecting and quantifying the genuine tripartite nonlocality of quantum states is of practical significance but still open for the case of general three-qubit quantum states. In this paper, we quantitatively investigate the genuine nonlocality of three-qubit states, which not only include pure states but also include mixed states. Firstly, we derive a simplified formula for the genuine nonlocality of a general three-qubit state, which is a function of the corresponding three correlation matrices. Secondly, we develop three properties of the genuine nonlocality which can help us to analyze the genuine nonlocality of complex states and understand the nature of quantum nonlocality. Further, we get analytical results of genuine nonlocality for two classes of three-qubit states which have special correlation matrices. In particular, the genuine nonlocality of generalized three-qubit GHZ states, which is derived by Ghose et al. (Phys. Rev. Lett. 102, 250404, 2009), and that of three-qubit GHZ-symmetric states, which is derived by Paul et al. (Phys. Rev. A 94, 032101, 2016), can be easily derived by applying the strategy and properties developed in this paper.

  8. Single flux pulses affecting the ensemble of superconducting qubits

    Science.gov (United States)

    Denisenko, M. V.; Klenov, N. V.; Satanin, A. M.

    2018-02-01

    The present study is devoted to development of a technique for numerical simulation of the wave function dynamics the single Josephson qubits and arrays of noninteracting qubits controlled by ultra-short pulses. We wish to demonstrate the feasibility of a new principle of basic logical operations on the picosecond timescale. The influence of the unipolar pulse ("fluxon") form on the evolution of the state during the execution of the quantum one-qubit operations - "NOT", "READ" and " √{N O T } " - is investigated in the presence of decoherence. In the array of non interacting qubits, the question of the influence of the spread of their energy parameters (tunnel constants) is studied. It is shown that a single unipolar pulse can control a huge array of artificial atoms with 10% spread of geometric parameters in the array.

  9. A blueprint for demonstrating quantum supremacy with superconducting qubits

    Science.gov (United States)

    Neill, C.; Roushan, P.; Kechedzhi, K.; Boixo, S.; Isakov, S. V.; Smelyanskiy, V.; Megrant, A.; Chiaro, B.; Dunsworth, A.; Arya, K.; Barends, R.; Burkett, B.; Chen, Y.; Chen, Z.; Fowler, A.; Foxen, B.; Giustina, M.; Graff, R.; Jeffrey, E.; Huang, T.; Kelly, J.; Klimov, P.; Lucero, E.; Mutus, J.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Neven, H.; Martinis, J. M.

    2018-04-01

    A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer.

  10. Optimal Quantum Spatial Search on Random Temporal Networks

    Science.gov (United States)

    Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser

    2017-12-01

    To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G (n ,p ), where p is the probability that any two given nodes are connected: After every time interval τ , a new graph G (n ,p ) replaces the previous one. We prove analytically that, for any given p , there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O (√{n }), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.

  11. Optimal Quantum Spatial Search on Random Temporal Networks.

    Science.gov (United States)

    Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser

    2017-12-01

    To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G(n,p), where p is the probability that any two given nodes are connected: After every time interval τ, a new graph G(n,p) replaces the previous one. We prove analytically that, for any given p, there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O(sqrt[n]), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.

  12. Time-optimal control with finite bandwidth

    Science.gov (United States)

    Hirose, M.; Cappellaro, P.

    2018-04-01

    Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.

  13. Quantum acoustics with superconducting qubits

    Science.gov (United States)

    Chu, Yiwen

    2017-04-01

    The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects. These mechanical objects have important applications as quantum memories or transducers for measuring and connecting different types of quantum systems. In particular, there have been a few experiments that couple motion to nonlinear quantum objects such as superconducting qubits. This opens up the possibility of creating, storing, and manipulating non-Gaussian quantum states in mechanical degrees of freedom. However, before sophisticated quantum control of mechanical motion can be achieved, we must realize systems with long coherence times while maintaining a sufficient interaction strength. These systems should be implemented in a simple and robust manner that allows for increasing complexity and scalability in the future. In this talk, I will describe our recent experiments demonstrating a high frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction. In contrast to previous experiments with qubit-mechanical systems, our device requires only simple fabrication methods, extends coherence times to many microseconds, and provides controllable access to a multitude of phonon modes. We use this system to demonstrate basic quantum operations on the coupled qubit-phonon system. Straightforward improvements to the current device will allow for advanced protocols analogous to what has been shown in optical and microwave resonators, resulting in a novel resource for implementing hybrid quantum technologies.

  14. All-versus-nothing proofs with n qubits distributed between m parties

    International Nuclear Information System (INIS)

    Cabello, Adan; Moreno, Pilar

    2010-01-01

    All-versus-nothing (AVN) proofs show the conflict between Einstein, Podolsky, and Rosen's elements of reality and the perfect correlations of some quantum states. Given an n-qubit state distributed between m parties, we provide a method with which to decide whether this distribution allows an m-partite AVN proof specific for this state using only single-qubit measurements. We apply this method to some recently obtained n-qubit m-particle states. In addition, we provide all inequivalent AVN proofs with less than nine qubits and a minimum number of parties.

  15. All-versus-nothing proofs with n qubits distributed between m parties

    Science.gov (United States)

    Cabello, Adán; Moreno, Pilar

    2010-04-01

    All-versus-nothing (AVN) proofs show the conflict between Einstein, Podolsky, and Rosen’s elements of reality and the perfect correlations of some quantum states. Given an n-qubit state distributed between m parties, we provide a method with which to decide whether this distribution allows an m-partite AVN proof specific for this state using only single-qubit measurements. We apply this method to some recently obtained n-qubit m-particle states. In addition, we provide all inequivalent AVN proofs with less than nine qubits and a minimum number of parties.

  16. Greenberger-Horne-Zeilinger state protocols for fully connected qubit networks

    International Nuclear Information System (INIS)

    Galiautdinov, Andrei; Coffey, Mark W.; Deiotte, Ron

    2009-01-01

    We generalize the recently proposed Greenberger-Horne-Zeilinger tripartite protocol [A. Galiautdinov and J. M. Martinis, Phys. Rev. A 78, 010305(R) (2008)] to fully connected networks of weakly coupled qubits interacting by way of anisotropic Heisenberg exchange g(XX+YY)+g-tildeZZ. Our model differs from the more familiar Ising-Heisenberg chain in that here every qubit interacts with every other qubit in the circuit. The assumption of identical couplings on all qubit pairs allows an elegant proof of the protocol for arbitrary N. In order to further make contact with experiment, we study fidelity degradation due to coupling imperfections by numerically simulating the N=3 and 4 cases. Our simulations indicate that the best fidelity at unequal couplings is achieved when (a) the system is initially prepared in the uniform superposition state (similarly to how it is done in the ideal case) and (b) the entangling time and the final rotations on each of the qubits are appropriately adjusted.

  17. Rotations of a logical qubit using the quantum Zeno effect extended to a manifold

    Science.gov (United States)

    Touzard, S.; Grimm, A.; Leghtas, Z.; Mundhada, S. O.; Reinhold, P.; Heeres, R.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    Encoding Quantum Information in the large Hilbert space of a harmonic oscillator has proven to have advantages over encoding in a register of physical qubits, but has also provided new challenges. While recent experiments have demonstrated quantum error correction using such an encoding based on superpositions of coherent states, these codes are still susceptible to non-corrected errors and lack controllability: compared to physical qubits it is hard to make arbitrary states and to perform operations on them. Our approach is to engineer the dynamics and the dissipation of a microwave cavity to implement a continuous dissipative measurement yielding two degenerate outcomes. This extends the quantum Zeno effect to a manifold, which in our case is spanned by two coherent states of opposite phases. In this second talk we present the result and analysis of an experiment that performs rotations on a logical qubit encoded in this protected manifold. Work supported by: ARO, ONR, AFOSR and YINQE.

  18. Enhancing the performance of exchange-only qubits in triple-quantum-dots

    Science.gov (United States)

    Fei, Jianjia; Hung, Jo-Tzu; Koh, Teck Seng; Shim, Yun-Pil; Coppersmith, Susan; Hu, Xuedong; Friesen, Mark

    2014-03-01

    The exchange-only qubit has several potential advantages for quantum computation: all-electrical control, fast gate operations, and robustness against global magnetic noise. Such a device has recently been implemented in a GaAs triple-quantum-dot. In this talk, we discuss theoretical simulations of the fidelity of pulsed gate operations of the exchange-only qubit, based on a master equation approach. Our model accounts for several different dephasing mechanisms, including hyperfine interactions and charge noise arising from double-occupation errors and fluctuations of the detuning parameter. Our investigations indicate the optimal working regimes and maximum gate fidelities for these devices, in terms of experimentally tunable parameters. This work was supported by the Army Research Office, the National Science Foundation, and the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. This work was supported by the Army Research Office, the National Science Foundation, and the United States Department of Defense.

  19. Remote state preparation of spatial qubits

    Energy Technology Data Exchange (ETDEWEB)

    Solis-Prosser, M. A.; Neves, L. [Center for Optics and Photonics, Universidad de Concepcion, Casilla 4016, Concepcion (Chile) and Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

    2011-07-15

    We study the quantum communication protocol of remote state preparation (RSP) for pure states of qubits encoded in single photons transmitted through a double slit, the so-called spatial qubits. Two measurement strategies that one can adopt to remotely prepare the states are discussed. The first strategy is the well-known spatial postselection, where a single-pixel detector measures the transverse position of the photon between the focal and the image plane of a lens. The second strategy, proposed by ourselves, is a generalized measurement divided into two steps: the implementation of a two-outcome positive operator-valued measurement (POVM) followed by the spatial postselection at the focal plane of the lens by a two-pixel detector in each output of the POVM. In both cases we analyze the effects of the finite spatial resolution of the detectors over three figures of merit of the protocol, namely, the probability of preparation, the fidelity, and purity of the remotely prepared states. It is shown that our strategy improves these figures compared with spatial postselection, at the expense of increasing the classical communication cost as well as the required experimental resources. In addition, we present a modified version of our strategy for RSP of spatial qudits which is able to prepare arbitrary pure states, unlike spatial postselection alone. We expect that our study may also be extended for RSP of the angular spectrum of a single-photon field as an alternative for quantum teleportation which requires very inefficient nonlinear interactions.

  20. Remote state preparation of spatial qubits

    International Nuclear Information System (INIS)

    Solis-Prosser, M. A.; Neves, L.

    2011-01-01

    We study the quantum communication protocol of remote state preparation (RSP) for pure states of qubits encoded in single photons transmitted through a double slit, the so-called spatial qubits. Two measurement strategies that one can adopt to remotely prepare the states are discussed. The first strategy is the well-known spatial postselection, where a single-pixel detector measures the transverse position of the photon between the focal and the image plane of a lens. The second strategy, proposed by ourselves, is a generalized measurement divided into two steps: the implementation of a two-outcome positive operator-valued measurement (POVM) followed by the spatial postselection at the focal plane of the lens by a two-pixel detector in each output of the POVM. In both cases we analyze the effects of the finite spatial resolution of the detectors over three figures of merit of the protocol, namely, the probability of preparation, the fidelity, and purity of the remotely prepared states. It is shown that our strategy improves these figures compared with spatial postselection, at the expense of increasing the classical communication cost as well as the required experimental resources. In addition, we present a modified version of our strategy for RSP of spatial qudits which is able to prepare arbitrary pure states, unlike spatial postselection alone. We expect that our study may also be extended for RSP of the angular spectrum of a single-photon field as an alternative for quantum teleportation which requires very inefficient nonlinear interactions.

  1. Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, M., E-mail: bminakshi@yahoo.com [Department of Physics, Asansol Girls’ College, Asansol 713304 (India); Sen, S. [Department of Physics, Triveni Devi Bhalotia College, Raniganj 713347 (India)

    2015-08-15

    Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A{sup 2+}. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A{sup 2+}. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion.

  2. Noisy teleportation of qubit states via the Greenberger–Horne–Zeilinger state or the W state

    International Nuclear Information System (INIS)

    Yan-Ling, Li; Mao-Fa, Fang; Xing, Xiao; Chao, Wu; Li-Zhen, Hou

    2010-01-01

    The effects of distributing entanglement through the amplitude damping channel or the phase damping channel on the teleportation of a single-qubit state via the Greenberger–Horne–Zeilinger state and the W state are discussed. It is found that the average fidelity of teleportation depends on the type and rate of the damping in the channel. For the one-qubit affected case, the Greenberger–Horne–Zeilinger state is as robust as the W state, i.e., the same quantum information is preserved through teleportation. For the two-qubit affected case, the W state is more robust when the entanglement is distributed via the amplitude damping channel; if the entanglement is distributed via the phase damping channel, the W state is more robust when the noisy parameter is small while the Greenberger–Horne–Zeilinger state becomes more robust when it is large. For the three-qubit affected case, the Greenberger–Horne–Zeilinger state is more robust than the W state. (general)

  3. Rotation gate for a three-level superconducting quantum interference device qubit with resonant interaction

    International Nuclear Information System (INIS)

    Yang, C.-P.; Han Siyuan

    2006-01-01

    We show a way to realize an arbitrary rotation gate in a three-level superconducting quantum interference device (SQUID) qubit using resonant interaction. In this approach, the two logical states of the qubit are represented by the two lowest levels of the SQUID and a higher-energy intermediate level is utilized for the gate manipulation. By considering spontaneous decay from the intermediate level during the gate operation, we present a formula for calculating average fidelity over all possible initial states. Finally, based on realistic system parameters, we show that an arbitrary rotation gate can be achieved with a high fidelity in a SQUID

  4. The transition from quantum Zeno to anti-Zeno effects for a qubit in a cavity by varying the cavity frequency

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiufeng, E-mail: xfcao@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Ai, Qing; Sun, Chang-Pu [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2012-01-09

    We propose a strategy to demonstrate the transition from the quantum Zeno effect (QZE) to the anti-Zeno effect (AZE) using a superconducting qubit coupled to a transmission line cavity, by varying the central frequency of the cavity mode. Our results are obtained without the rotating wave approximation (RWA), and the initial state (a dressed state) is easy to prepare. Moreover, we find that in the presence of both qubit's intrinsic bath and the cavity bath, the emergence of the QZE and the AZE behaviors relies not only on the match between the qubit energy-level-spacing and the central frequency of the cavity mode, but also on the coupling strength between the qubit and the cavity mode. -- Highlights: ► We propose how to demonstrate the transition from Zeno effect to anti-Zeno effect. ► Our results are beyond the RWA, and the initial state is easy to prepare. ► The case of both qubit's intrinsic bath and cavity bath coexist is also studied.

  5. Tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger-Horne-Zeilinger-class states.

    Science.gov (United States)

    Ghose, S; Sinclair, N; Debnath, S; Rungta, P; Stock, R

    2009-06-26

    We analyze the relationship between tripartite entanglement and genuine tripartite nonlocality for three-qubit pure states in the Greenberger-Horne-Zeilinger class. We consider a family of states known as the generalized Greenberger-Horne-Zeilinger states and derive an analytical expression relating the three-tangle, which quantifies tripartite entanglement, to the Svetlichny inequality, which is a Bell-type inequality that is violated only when all three qubits are nonlocally correlated. We show that states with three-tangle less than 1/2 do not violate the Svetlichny inequality. On the other hand, a set of states known as the maximal slice states does violate the Svetlichny inequality, and exactly analogous to the two-qubit case, the amount of violation is directly related to the degree of tripartite entanglement. We discuss further interesting properties of the generalized Greenberger-Horne-Zeilinger and maximal slice states.

  6. Quantum-dot cluster-state computing with encoded qubits

    International Nuclear Information System (INIS)

    Weinstein, Yaakov S.; Hellberg, C. Stephen; Levy, Jeremy

    2005-01-01

    A class of architectures is advanced for cluster-state quantum computation using quantum dots. These architectures include using single and multiple dots as logical qubits. Special attention is given to supercoherent qubits introduced by Bacon et al. [Phys. Rev. Lett. 87, 247902 (2001)] for which we discuss the effects of various errors and present a means of error protection

  7. Generalized Remote Preparation of Arbitrary m-qubit Entangled States via Genuine Entanglements

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-03-01

    Full Text Available Herein, we present a feasible, general protocol for quantum communication within a network via generalized remote preparation of an arbitrary m-qubit entangled state designed with genuine tripartite Greenberger–Horne–Zeilinger-type entangled resources. During the implementations, we construct novel collective unitary operations; these operations are tasked with performing the necessary phase transfers during remote state preparations. We have distilled our implementation methods into a five-step procedure, which can be used to faithfully recover the desired state during transfer. Compared to previous existing schemes, our methodology features a greatly increased success probability. After the consumption of auxiliary qubits and the performance of collective unitary operations, the probability of successful state transfer is increased four-fold and eight-fold for arbitrary two- and three-qubit entanglements when compared to other methods within the literature, respectively. We conclude this paper with a discussion of the presented scheme for state preparation, including: success probabilities, reducibility and generalizability.

  8. Emulating the 1-dimensional Fermi-Hubbard model with superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, Jan-Michael; Marthaler, Michael; Schoen, Gerd [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany)

    2016-07-01

    A chain of qubits with both ZZ and XX couplings is described by a Hamiltonian which coincides with the Fermi-Hubbard model in one dimension. The qubit system can thus be used to study the quantum properties of this model. We investigate the specific implementation of such an analog quantum simulator by a chain of tunable Transmon qubits, where the ZZ interaction arises due to an inductive coupling and the XX interaction due to a capacitive coupling.

  9. Signifying quantum benchmarks for qubit teleportation and secure quantum communication using Einstein-Podolsky-Rosen steering inequalities

    Science.gov (United States)

    Reid, M. D.

    2013-12-01

    The demonstration of quantum teleportation of a photonic qubit from Alice to Bob usually relies on data conditioned on detection at Bob's location. I show that Bohm's Einstein-Podolsky-Rosen (EPR) paradox can be used to verify that the quantum benchmark for qubit teleportation has been reached, without postselection. This is possible for scenarios insensitive to losses at the generation station, and with efficiencies of ηB>1/3 for the teleportation process. The benchmark is obtained if it is shown that Bob can “steer” Alice's record of the qubit as stored by Charlie. EPR steering inequalities involving m measurement settings can also be used to confirm quantum teleportation, for efficiencies ηB>1/m, if one assumes trusted detectors for Charlie and Alice. Using proofs of monogamy, I show that two-setting EPR steering inequalities can signify secure teleportation of the qubit state.

  10. Influence of an anisotropic parabolic potential on the quantum dot qubit

    International Nuclear Information System (INIS)

    Zhao Cuilan; Cai Chunyu; Xiao Jingling

    2013-01-01

    To study the influence of an anisotropic parabolic potential (APP) on the properties of a quantum dot (QD) qubit, we obtain the eigenenergies and eigenfunctions of the ground and first excited state of an electron, which is strongly coupled to the bulk longitudinal optical (LO) phonons, in a QD under the influence of an APP by the celebrated Lee—Low—Pines (LLP) unitary transformation and the Pekar type variational (PTV) methods. Then, this kind of two-level quantum system can be excogitated to constitute a single qubit. When the electron locates at the superposition state of its related eigenfunctions, we get the time evolution of the electron's probability density. Finally, the influence of an APP on the QD qubit is investigated. The numerical calculations indicate that the probability density will oscillate periodically and it is a decreasing function of the effective confinement lengths of the APP in different directions. Whereas its oscillatory period is an increasing one and will diminish with enhancing the electron—phonon (EP) coupling strength. (semiconductor physics)

  11. Separability of three qubit Greenberger-Horne-Zeilinger diagonal states

    Science.gov (United States)

    Han, Kyung Hoon; Kye, Seung-Hyeok

    2017-04-01

    We characterize the separability of three qubit GHZ diagonal states in terms of entries. This enables us to check separability of GHZ diagonal states without decomposition into the sum of pure product states. In the course of discussion, we show that the necessary criterion of Gühne (2011 Entanglement criteria and full separability of multi-qubit quantum states Phys. Lett. A 375 406-10) for (full) separability of three qubit GHZ diagonal states is sufficient with a simpler formula. The main tool is to use entanglement witnesses which are tri-partite Choi matrices of positive bi-linear maps.

  12. Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction

    International Nuclear Information System (INIS)

    Zhang, Guo-Feng

    2007-01-01

    Thermal entanglement of a two-qubit Heisenberg chain in the presence of the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction and entanglement teleportation when using two independent Heisenberg chains as the quantum channel are investigated. It is found that the DM interaction can excite entanglement and teleportation fidelity. The output entanglement increases linearly with increasing value of the input; its dependences on the temperature, DM interaction, and spin coupling constant are given in detail. Entanglement teleportation will be better realized via an antiferromagnetic spin chain when the DM interaction is turned off and the temperature is low. However, the introduction of the DM interaction can cause the ferromagnetic spin chain to be a better quantum channel for teleportation. A minimal entanglement of the thermal state in the model is needed to realize the entanglement teleportation regardless of whether the spin chains are antiferromagnetic or ferromagnetic

  13. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    International Nuclear Information System (INIS)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R

    2011-01-01

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88 Sr + ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  14. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    Energy Technology Data Exchange (ETDEWEB)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R, E-mail: ozeri@weizmann.ac.il [Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2011-07-15

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped {sup 88}Sr{sup +} ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  15. Vertical Josephson Interferometer for Tunable Flux Qubit

    Energy Technology Data Exchange (ETDEWEB)

    Granata, C [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Vettoliere, A [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Lisitskiy, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Rombetto, S [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Russo, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Ruggiero, B [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Corato, V [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Russo, R [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy)

    2006-06-01

    We present a niobium-based Josephson device as prototype for quantum computation with flux qubits. The most interesting feature of this device is the use of a Josephson vertical interferometer to tune the flux qubit allowing the control of the off-diagonal Hamiltonian terms of the system. In the vertical interferometer, the Josephson current is precisely modulated from a maximum to zero with fine control by a small transversal magnetic field parallel to the rf superconducting loop plane.

  16. Teleportation of the one-qubit state in decoherence environments

    Energy Technology Data Exchange (ETDEWEB)

    Hu Mingliang, E-mail: mingliang0301@xupt.edu.cn, E-mail: mingliang0301@163.com [School of Science, Xi' an University of Posts and Telecommunications, Xi' an 710061 (China)

    2011-01-28

    We study standard quantum teleportation of a one-qubit state for the situation in which the channel is subject to decoherence, and where the evolution of the channel state is ruled by a master equation in the Lindblad form. A detailed calculation reveals that the quality of teleportation is determined by both the entanglement and the purity of the channel state, and only the optimal matching of them ensures the highest fidelity of standard quantum teleportation. Also our results demonstrated that the decoherence induces distortion of the Bloch sphere for the output state with different rates in different directions, which implies that different input states will be teleported with different fidelities.

  17. A blueprint for demonstrating quantum supremacy with superconducting qubits.

    Science.gov (United States)

    Neill, C; Roushan, P; Kechedzhi, K; Boixo, S; Isakov, S V; Smelyanskiy, V; Megrant, A; Chiaro, B; Dunsworth, A; Arya, K; Barends, R; Burkett, B; Chen, Y; Chen, Z; Fowler, A; Foxen, B; Giustina, M; Graff, R; Jeffrey, E; Huang, T; Kelly, J; Klimov, P; Lucero, E; Mutus, J; Neeley, M; Quintana, C; Sank, D; Vainsencher, A; Wenner, J; White, T C; Neven, H; Martinis, J M

    2018-04-13

    A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Efficient Atomic One-Qubit Phase Gate Realized by a Cavity QED and Identical Atoms System

    International Nuclear Information System (INIS)

    He Yong; Jiang Nianquan

    2010-01-01

    We present a scheme to implement a one-qubit phase gate with a two-level atom crossing an optical cavity in which some identical atoms are trapped. One can conveniently acquire an arbitrary phase shift of the gate by properly choosing the number of atoms trapped in the cavity and the velocity of the atom crossing the cavity. The present scheme provides a very simple and efficient way for implementing one-qubit phase gate. (general)

  19. Error rates and resource overheads of encoded three-qubit gates

    Science.gov (United States)

    Takagi, Ryuji; Yoder, Theodore J.; Chuang, Isaac L.

    2017-10-01

    A non-Clifford gate is required for universal quantum computation, and, typically, this is the most error-prone and resource-intensive logical operation on an error-correcting code. Small, single-qubit rotations are popular choices for this non-Clifford gate, but certain three-qubit gates, such as Toffoli or controlled-controlled-Z (ccz), are equivalent options that are also more suited for implementing some quantum algorithms, for instance, those with coherent classical subroutines. Here, we calculate error rates and resource overheads for implementing logical ccz with pieceable fault tolerance, a nontransversal method for implementing logical gates. We provide a comparison with a nonlocal magic-state scheme on a concatenated code and a local magic-state scheme on the surface code. We find the pieceable fault-tolerance scheme particularly advantaged over magic states on concatenated codes and in certain regimes over magic states on the surface code. Our results suggest that pieceable fault tolerance is a promising candidate for fault tolerance in a near-future quantum computer.

  20. Experimental system design for the integration of trapped-ion and superconducting qubit systems

    Science.gov (United States)

    De Motte, D.; Grounds, A. R.; Rehák, M.; Rodriguez Blanco, A.; Lekitsch, B.; Giri, G. S.; Neilinger, P.; Oelsner, G.; Il'ichev, E.; Grajcar, M.; Hensinger, W. K.

    2016-12-01

    We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi: 10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.

  1. Topological Qubits from Valence Bond Solids

    Science.gov (United States)

    Wang, Dong-Sheng; Affleck, Ian; Raussendorf, Robert

    2018-05-01

    Topological qubits based on S U (N )-symmetric valence-bond solid models are constructed. A logical topological qubit is the ground subspace with twofold degeneracy, which is due to the spontaneous breaking of a global parity symmetry. A logical Z rotation by an angle 2 π /N , for any integer N >2 , is provided by a global twist operation, which is of a topological nature and protected by the energy gap. A general concatenation scheme with standard quantum error-correction codes is also proposed, which can lead to better codes. Generic error-correction properties of symmetry-protected topological order are also demonstrated.

  2. Factoring 51 and 85 with 8 qubits.

    Science.gov (United States)

    Geller, Michael R; Zhou, Zhongyuan

    2013-10-28

    We construct simplified quantum circuits for Shor's order-finding algorithm for composites N given by products of the Fermat primes 3, 5, 17, 257, and 65537. Such composites, including the previously studied case of 15, as well as 51, 85, 771, 1285, 4369, … have the simplifying property that the order of a modulo N for every base a coprime to N is a power of 2, significantly reducing the usual phase estimation precision requirement. Prime factorization of 51 and 85 can be demonstrated with only 8 qubits and a modular exponentiation circuit consisting of no more than four CNOT gates.

  3. Factoring 51 and 85 with 8 qubits

    Science.gov (United States)

    Geller, Michael R.; Zhou, Zhongyuan

    2013-10-01

    We construct simplified quantum circuits for Shor's order-finding algorithm for composites N given by products of the Fermat primes 3, 5, 17, 257, and 65537. Such composites, including the previously studied case of 15, as well as 51, 85, 771, 1285, 4369, … have the simplifying property that the order of a modulo N for every base a coprime to N is a power of 2, significantly reducing the usual phase estimation precision requirement. Prime factorization of 51 and 85 can be demonstrated with only 8 qubits and a modular exponentiation circuit consisting of no more than four CNOT gates.

  4. Optimal experiment design for quantum state tomography: Fair, precise, and minimal tomography

    International Nuclear Information System (INIS)

    Nunn, J.; Smith, B. J.; Puentes, G.; Walmsley, I. A.; Lundeen, J. S.

    2010-01-01

    Given an experimental setup and a fixed number of measurements, how should one take data to optimally reconstruct the state of a quantum system? The problem of optimal experiment design (OED) for quantum state tomography was first broached by Kosut et al.[R. Kosut, I. Walmsley, and H. Rabitz, e-print arXiv:quant-ph/0411093 (2004)]. Here we provide efficient numerical algorithms for finding the optimal design, and analytic results for the case of 'minimal tomography'. We also introduce the average OED, which is independent of the state to be reconstructed, and the optimal design for tomography (ODT), which minimizes tomographic bias. Monte Carlo simulations confirm the utility of our results for qubits. Finally, we adapt our approach to deal with constrained techniques such as maximum-likelihood estimation. We find that these are less amenable to optimization than cruder reconstruction methods, such as linear inversion.

  5. Accidental cloning of a single-photon qubit in two-channel continuous-variable quantum teleportation

    International Nuclear Information System (INIS)

    Ide, Toshiki; Hofmann, Holger F.

    2007-01-01

    The information encoded in the polarization of a single photon can be transferred to a remote location by two-channel continuous-variable quantum teleportation. However, the finite entanglement used in the teleportation causes random changes in photon number. If more than one photon appears in the output, the continuous-variable teleportation accidentally produces clones of the original input photon. In this paper, we derive the polarization statistics of the N-photon output components and show that they can be decomposed into an optimal cloning term and completely unpolarized noise. We find that the accidental cloning of the input photon is nearly optimal at experimentally feasible squeezing levels, indicating that the loss of polarization information is partially compensated by the availability of clones

  6. Flux qubits on semiconducting quantum ring

    International Nuclear Information System (INIS)

    Szopa, M; Zipper, E

    2010-01-01

    The ability to control the quantum state of a single electrons in a quantum ring made of a semiconductor is at the heart of recent developments towards a scalable quantum computer. A peculiar dispersion relation of quantum rings allows to steer the ground state properties by the magnetic flux and offers spin and orbital degrees of freedom for quantum manipulations. We show that such ring can be effectively reduced to the two-state system forming a qubit on orbital or spin degrees of freedom.

  7. Quantum gambling using mesoscopic ring qubits

    Energy Technology Data Exchange (ETDEWEB)

    Pakula, Ireneusz [University of Silesia, Institute of Physics, ul. Uniwersytecka 4, 40-007 Katowice (Poland)

    2007-07-15

    Quantum Game Theory provides us with new tools for practising games and some other risk related enterprices like, for example, gambling. The two party gambling protocol presented by Goldenberg et al. is one of the simplest yet still hard to implementapplications of Quantum Game Theory. We propose potential physical realisation of the quantum gambling protocol with use of three mesoscopic ring qubits. We point out problems in implementation of such game. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Quantum gambling using mesoscopic ring qubits

    International Nuclear Information System (INIS)

    Pakula, Ireneusz

    2007-01-01

    Quantum Game Theory provides us with new tools for practising games and some other risk related enterprices like, for example, gambling. The two party gambling protocol presented by Goldenberg et al. is one of the simplest yet still hard to implementapplications of Quantum Game Theory. We propose potential physical realisation of the quantum gambling protocol with use of three mesoscopic ring qubits. We point out problems in implementation of such game. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Fast quantum logic gates with trapped-ion qubits

    Science.gov (United States)

    Schäfer, V. M.; Ballance, C. J.; Thirumalai, K.; Stephenson, L. J.; Ballance, T. G.; Steane, A. M.; Lucas, D. M.

    2018-03-01

    Quantum bits (qubits) based on individual trapped atomic ions are a promising technology for building a quantum computer. The elementary operations necessary to do so have been achieved with the required precision for some error-correction schemes. However, the essential two-qubit logic gate that is used to generate quantum entanglement has hitherto always been performed in an adiabatic regime (in which the gate is slow compared with the characteristic motional frequencies of the ions in the trap), resulting in logic speeds of the order of 10 kilohertz. There have been numerous proposals of methods for performing gates faster than this natural ‘speed limit’ of the trap. Here we implement one such method, which uses amplitude-shaped laser pulses to drive the motion of the ions along trajectories designed so that the gate operation is insensitive to the optical phase of the pulses. This enables fast (megahertz-rate) quantum logic that is robust to fluctuations in the optical phase, which would otherwise be an important source of experimental error. We demonstrate entanglement generation for gate times as short as 480 nanoseconds—less than a single oscillation period of an ion in the trap and eight orders of magnitude shorter than the memory coherence time measured in similar calcium-43 hyperfine qubits. The power of the method is most evident at intermediate timescales, at which it yields a gate error more than ten times lower than can be attained using conventional techniques; for example, we achieve a 1.6-microsecond-duration gate with a fidelity of 99.8 per cent. Faster and higher-fidelity gates are possible at the cost of greater laser intensity. The method requires only a single amplitude-shaped pulse and one pair of beams derived from a continuous-wave laser. It offers the prospect of combining the unrivalled coherence properties, operation fidelities and optical connectivity of trapped-ion qubits with the submicrosecond logic speeds that are usually

  10. Experimental test of the irreducible four-qubit Greenberger-Horne-Zeilinger paradox

    Science.gov (United States)

    Su, Zu-En; Tang, Wei-Dong; Wu, Dian; Cai, Xin-Dong; Yang, Tao; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Żukowski, Marek; Pan, Jian-Wei

    2017-03-01

    The paradox of Greenberger-Horne-Zeilinger (GHZ) disproves directly the concept of EPR elements of reality, based on the EPR correlations, in an all-versus-nothing way. A three-qubit experimental demonstration of the GHZ paradox was achieved nearly 20 years ago, followed by demonstrations for more qubits. Still, the GHZ contradictions underlying the tests can be reduced to a three-qubit one. We show an irreducible four-qubit GHZ paradox, and report its experimental demonstration. The bound of a three-setting-per-party Bell-GHZ inequality is violated by 7 σ . The fidelity of the GHZ state was around 81 % , and an entanglement witness reveals a violation of the separability threshold by 19 σ .

  11. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent

    Science.gov (United States)

    Vandersypen, L. M. K.; Bluhm, H.; Clarke, J. S.; Dzurak, A. S.; Ishihara, R.; Morello, A.; Reilly, D. J.; Schreiber, L. R.; Veldhorst, M.

    2017-09-01

    Semiconductor spins are one of the few qubit realizations that remain a serious candidate for the implementation of large-scale quantum circuits. Excellent scalability is often argued for spin qubits defined by lithography and controlled via electrical signals, based on the success of conventional semiconductor integrated circuits. However, the wiring and interconnect requirements for quantum circuits are completely different from those for classical circuits, as individual direct current, pulsed and in some cases microwave control signals need to be routed from external sources to every qubit. This is further complicated by the requirement that these spin qubits currently operate at temperatures below 100 mK. Here, we review several strategies that are considered to address this crucial challenge in scaling quantum circuits based on electron spin qubits. Key assets of spin qubits include the potential to operate at 1 to 4 K, the high density of quantum dots or donors combined with possibilities to space them apart as needed, the extremely long-spin coherence times, and the rich options for integration with classical electronics based on the same technology.

  12. Finding Multiple Optimal Solutions to Optimal Load Distribution Problem in Hydropower Plant

    Directory of Open Access Journals (Sweden)

    Xinhao Jiang

    2012-05-01

    Full Text Available Optimal load distribution (OLD among generator units of a hydropower plant is a vital task for hydropower generation scheduling and management. Traditional optimization methods for solving this problem focus on finding a single optimal solution. However, many practical constraints on hydropower plant operation are very difficult, if not impossible, to be modeled, and the optimal solution found by those models might be of limited practical uses. This motivates us to find multiple optimal solutions to the OLD problem, which can provide more flexible choices for decision-making. Based on a special dynamic programming model, we use a modified shortest path algorithm to produce multiple solutions to the problem. It is shown that multiple optimal solutions exist for the case study of China’s Geheyan hydropower plant, and they are valuable for assessing the stability of generator units, showing the potential of reducing occurrence times of units across vibration areas.

  13. Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing

    International Nuclear Information System (INIS)

    Ryan, C A; Laforest, M; Laflamme, R

    2009-01-01

    Being able to quantify the level of coherent control in a proposed device implementing a quantum information processor (QIP) is an important task for both comparing different devices and assessing a device's prospects with regards to achieving fault-tolerant quantum control. We implement in a liquid-state nuclear magnetic resonance QIP the randomized benchmarking protocol presented by Knill et al (2008 Phys. Rev. A 77 012307). We report an error per randomized π/2 pulse of 1.3±0.1x10 -4 with a single-qubit QIP and show an experimentally relevant error model where the randomized benchmarking gives a signature fidelity decay which is not possible to interpret as a single error per gate. We explore and experimentally investigate multi-qubit extensions of this protocol and report an average error rate for one- and two-qubit gates of 4.7±0.3x10 -3 for a three-qubit QIP. We estimate that these error rates are still not decoherence limited and thus can be improved with modifications to the control hardware and software.

  14. Finding optimal exact reducts

    KAUST Repository

    AbouEisha, Hassan M.

    2014-01-01

    The problem of attribute reduction is an important problem related to feature selection and knowledge discovery. The problem of finding reducts with minimum cardinality is NP-hard. This paper suggests a new algorithm for finding exact reducts with minimum cardinality. This algorithm transforms the initial table to a decision table of a special kind, apply a set of simplification steps to this table, and use a dynamic programming algorithm to finish the construction of an optimal reduct. I present results of computer experiments for a collection of decision tables from UCIML Repository. For many of the experimented tables, the simplification steps solved the problem.

  15. Efficient gate set tomography on a multi-qubit superconducting processor

    Science.gov (United States)

    Nielsen, Erik; Rudinger, Kenneth; Blume-Kohout, Robin; Bestwick, Andrew; Bloom, Benjamin; Block, Maxwell; Caldwell, Shane; Curtis, Michael; Hudson, Alex; Orgiazzi, Jean-Luc; Papageorge, Alexander; Polloreno, Anthony; Reagor, Matt; Rubin, Nicholas; Scheer, Michael; Selvanayagam, Michael; Sete, Eyob; Sinclair, Rodney; Smith, Robert; Vahidpour, Mehrnoosh; Villiers, Marius; Zeng, William; Rigetti, Chad

    Quantum information processors with five or more qubits are becoming common. Complete, predictive characterization of such devices e.g. via any form of tomography, including gate set tomography appears impossible because the parameter space is intractably large. Randomized benchmarking scales well, but cannot predict device behavior or diagnose failure modes. We introduce a new type of gate set tomography that uses an efficient ansatz to model physically plausible errors, but scales polynomially with the number of qubits. We will describe the theory behind this multi-qubit tomography and present experimental results from using it to characterize a multi-qubit processor made by Rigetti Quantum Computing. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidary of Lockheed Martin Corporation, for the US Department of Energy's NNSA under contract DE-AC04-94AL85000.

  16. Analysis and synthesis of multi-qubit, multi-mode quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Solgun, Firat

    2015-03-27

    In this thesis we propose new methods in multi-qubit multi-mode circuit quantum electrodynamics (circuit-QED) architectures. First we describe a direct parity measurement method for three qubits, which can be realized in 2D circuit-QED with a possible extension to four qubits in a 3D circuit-QED setup for the implementation of the surface code. In Chapter 3 we show how to derive Hamiltonians and compute relaxation rates of the multi-mode superconducting microwave circuits consisting of single Josephson junctions using an exact impedance synthesis technique (the Brune synthesis) and applying previous formalisms for lumped element circuit quantization. In the rest of the thesis we extend our method to multi-junction (multi-qubit) multi-mode circuits through the use of state-space descriptions which allows us to quantize any multiport microwave superconducting circuit with a reciprocal lossy impedance response.

  17. Suppressing relaxation in superconducting qubits by quasiparticle pumping.

    Science.gov (United States)

    Gustavsson, Simon; Yan, Fei; Catelani, Gianluigi; Bylander, Jonas; Kamal, Archana; Birenbaum, Jeffrey; Hover, David; Rosenberg, Danna; Samach, Gabriel; Sears, Adam P; Weber, Steven J; Yoder, Jonilyn L; Clarke, John; Kerman, Andrew J; Yoshihara, Fumiki; Nakamura, Yasunobu; Orlando, Terry P; Oliver, William D

    2016-12-23

    Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. We investigate a complementary, stochastic approach to reducing errors: Instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. A 70% reduction in the quasiparticle density results in a threefold enhancement in qubit relaxation times and a comparable reduction in coherence variability. Copyright © 2016, American Association for the Advancement of Science.

  18. Hybrid quantum circuit with a superconducting qubit coupled to an electron spin ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Yuimaru; Grezes, Cecile; Vion, Denis; Esteve, Daniel; Bertet, Patrice [Quantronics Group, SPEC (CNRS URA 2464), CEA-Saclay, 91191 Gif-sur-Yvette (France); Diniz, Igor; Auffeves, Alexia [Institut Neel, CNRS, BP 166, 38042 Grenoble (France); Isoya, Jun-ichi [Research Center for Knowledge Communities, University of Tsukuba, 305-8550 Tsukuba (Japan); Jacques, Vincent; Dreau, Anais; Roch, Jean-Francois [LPQM (CNRS, UMR 8537), Ecole Normale Superieure de Cachan, 94235 Cachan (France)

    2013-07-01

    We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV) centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare arbitrary superpositions of the qubit states that we store into collective excitations of the spin ensemble and retrieve back into the qubit. We also report a new method for detecting the magnetic resonance of electronic spins at low temperature with a qubit using the hybrid quantum circuit, as well as our recent progress on spin echo experiments.

  19. Scheme for secure swapping two unknown states of a photonic qubit and an electron-spin qubit using simultaneous quantum transmission and teleportation via quantum dots inside single-sided optical cavities

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jino [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Kang, Min-Sung [Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul, 136-791 (Korea, Republic of); Hong, Chang-Ho [National Security Research Institute, P.O.Box 1, Yuseong, Daejeon, 34188 (Korea, Republic of); Choi, Seong-Gon [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Hong, Jong-Phil, E-mail: jongph@cbnu.ac.kr [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of)

    2017-06-15

    We propose a scheme for swapping two unknown states of a photon and electron spin confined to a charged quantum dot (QD) between two users by transferring a single photon. This scheme simultaneously transfers and teleports an unknown state (electron spin) between two users. For this bidirectional quantum communication, we utilize the interactions between a photonic and an electron-spin qubits of a QD located inside a single-sided optical cavity. Thus, our proposal using QD-cavity systems can obtain a certain success probability with high fidelity. Furthermore, compared to a previous scheme using cross-Kerr nonlinearities and homodyne detections, our scheme (using QD-cavity systems) can improve the feasibility under the decoherence effect in practice. - Highlights: • Design of Simultaneous quantum transmission and teleportation scheme via quantum dots and cavities. • We have developed the experimental feasibility of this scheme compared with the existing scheme. • Analysis of some benefits when our scheme is experimentally implemented using quantum dots and single-sided cavities.

  20. Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Braumueller, Jochen; Schneider, Andre; Schloer, Steffen; Gruenhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Sandberg, Martin; Vissers, Michael R.; Pappas, David P. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Ustinov, Alexey V. [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); National University of Science and Technology MISIS, Moscow 119049 (Russian Federation); Weides, Martin [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Johannes Gutenberg University, Mainz, 55128 Mainz (Germany)

    2016-07-01

    We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μs. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive direct Z coupling between neighboring qubits, being a pending quest in the field of quantum simulation.

  1. Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment

    Science.gov (United States)

    Braumüller, Jochen; Sandberg, Martin; Vissers, Michael R.; Schneider, Andre; Schlör, Steffen; Grünhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey V.; Weides, Martin; Pappas, David P.

    2016-01-01

    We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μ s . We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive direct Z ̂ coupling between neighboring qubits, being a pending quest in the field of quantum simulation.

  2. Environment-assisted error correction of single-qubit phase damping

    International Nuclear Information System (INIS)

    Trendelkamp-Schroer, Benjamin; Helm, Julius; Strunz, Walter T.

    2011-01-01

    Open quantum system dynamics of random unitary type may in principle be fully undone. Closely following the scheme of environment-assisted error correction proposed by Gregoratti and Werner [J. Mod. Opt. 50, 915 (2003)], we explicitly carry out all steps needed to invert a phase-damping error on a single qubit. Furthermore, we extend the scheme to a mixed-state environment. Surprisingly, we find cases for which the uncorrected state is closer to the desired state than any of the corrected ones.

  3. Quantum routing of single optical photons with a superconducting flux qubit

    Science.gov (United States)

    Xia, Keyu; Jelezko, Fedor; Twamley, Jason

    2018-05-01

    Interconnecting optical photons with superconducting circuits is a challenging problem but essential for building long-range superconducting quantum networks. We propose a hybrid quantum interface between the microwave and optical domains where the propagation of a single-photon pulse along a nanowaveguide is controlled in a coherent way by tuning the electromagnetically induced transparency window with the quantum state of a flux qubit mediated by the spin in a nanodiamond. The qubit can route a single-photon pulse using the nanodiamond into a quantum superposition of paths without the aid of an optical cavity—simplifying the setup. By preparing the flux qubit in a superposition state our cavityless scheme creates a hybrid state-path entanglement between a flying single optical photon and a static superconducting qubit.

  4. A note on the correspondence between qubit quantum operations and special relativity

    Energy Technology Data Exchange (ETDEWEB)

    Arrighi, Pablo [Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD (United Kingdom); Patricot, Christophe [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2003-05-23

    We exploit a well-known isomorphism between complex Hermitian 2 x 2 matrices and R{sup 4}, which yields a convenient real vector representation of qubit states. Because these do not need to be normalized we find that they map onto a Minkowskian future cone in E{sup 1,3}, whose vertical cross-sections are nothing but Bloch spheres. Pure states are represented by light-like vectors, unitary operations correspond to special orthogonal transforms about the axis of the cone, positive operations correspond to pure Lorentz boosts. We formalize the equivalence between the generalized measurement formalism on qubit states and the Lorentz transformations of special relativity, or more precisely elements of the restricted Lorentz group together with future-directed null boosts. The note ends with a discussion of the equivalence and some of its possible consequences. (letter to the editor)

  5. A note on the correspondence between qubit quantum operations and special relativity

    International Nuclear Information System (INIS)

    Arrighi, Pablo; Patricot, Christophe

    2003-01-01

    We exploit a well-known isomorphism between complex Hermitian 2 x 2 matrices and R 4 , which yields a convenient real vector representation of qubit states. Because these do not need to be normalized we find that they map onto a Minkowskian future cone in E 1,3 , whose vertical cross-sections are nothing but Bloch spheres. Pure states are represented by light-like vectors, unitary operations correspond to special orthogonal transforms about the axis of the cone, positive operations correspond to pure Lorentz boosts. We formalize the equivalence between the generalized measurement formalism on qubit states and the Lorentz transformations of special relativity, or more precisely elements of the restricted Lorentz group together with future-directed null boosts. The note ends with a discussion of the equivalence and some of its possible consequences. (letter to the editor)

  6. LTS junction technology for RSFQ and qubit circuit applications

    International Nuclear Information System (INIS)

    Buchholz, F.-Im.; Balashov, D.V.; Dolata, R.; Hagedorn, D.; Khabipov, M.I.; Kohlmann, J.; Zorin, A.B.; Niemeyer, J.

    2006-01-01

    The potentials of LTS junction technology and electronics offer innovative solutions for the processing of quantum information in RSFQ and qubit circuits. We discuss forthcoming approaches based on standard SIS technology and addressed to the development of new superconducting device concepts. The challenging problem of reducing back action noise of the RSFQ circuits deteriorating coherent properties of the qubit is currently solved by implementing Josephson junctions with non-linear shunts based on LTS SIS-SIN technology. Upgraded NbAlO x trilayer technology enables the fabrication of high-quality mesoscopic Josephson junction transistors down to the nanometer range suitable for a qubit-operation regime. As applications, circuit concepts are presented which combine superconducting devices of different nature

  7. Theory of control of the dynamics of the interface between stationary and flying qubits

    International Nuclear Information System (INIS)

    Yao Wang; Liu Renbao; Sham, L J

    2005-01-01

    We present a scheme of control for the arbitrary interplay between a stationary qubit and a flying qubit (carried by a single-photon wavepacket) at a quantum interface composed of a three-level system coupled to a continuum through a cavity. It can be used for generation or reception of an arbitrarily shaped single-photon wavepacket. The generation process can also be controlled to create entanglement between the stationary qubit and flying qubit. The generation and reception operation can be combined to perform quantum network operations such as transfer, swap and entanglement creation for qubits at distant nodes

  8. Qubit transport model for unitary black hole evaporation without firewalls*

    Science.gov (United States)

    Osuga, Kento; Page, Don N.

    2018-03-01

    We give an explicit toy qubit transport model for transferring information from the gravitational field of a black hole to the Hawking radiation by a continuous unitary transformation of the outgoing radiation and the black hole gravitational field. The model has no firewalls or other drama at the event horizon, and it avoids a counterargument that has been raised for subsystem transfer models as resolutions of the firewall paradox. Furthermore, it fits the set of six physical constraints that Giddings has proposed for models of black hole evaporation. It does utilize nonlocal qubits for the gravitational field but assumes that the radiation interacts locally with these nonlocal qubits, so in some sense the nonlocality is confined to the gravitational sector. Although the qubit model is too crude to be quantitatively correct for the detailed spectrum of Hawking radiation, it fits qualitatively with what is expected.

  9. Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid

    Science.gov (United States)

    Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-01-01

    Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa. PMID:27922087

  10. Qubit Complexity of Continuous Problems

    National Research Council Canada - National Science Library

    Papageorgiou, A; Traub, J. F

    2005-01-01

    .... The authors show how to obtain the classical query complexity for continuous problems. They then establish a simple formula for a lower bound on the qubit complexity in terms of the classical query complexity...

  11. Nonlocality proof without inequalities for N-qubit W and Greenberger-Horne-Zeilinger states

    International Nuclear Information System (INIS)

    Li Jian; Guo Guangcan

    2003-01-01

    The proof of nonlocality without inequalities for three-qubit W and Greenberger-Horne-Zeilinger (GHZ) states is generalized to N-qubit states. The violations for quantum mechanics against local realism is found near to 100% for W states with the increasement of qubits, while to 0 for GHZ states

  12. Rate of tunneling nonequilibrium quasiparticles in superconducting qubits

    International Nuclear Information System (INIS)

    Ansari, Mohammad H

    2015-01-01

    In superconducting qubits the lifetime of quantum states cannot be prolonged arbitrarily by decreasing temperature. At low temperature quasiparticles tunneling between the electromagnetic environment and superconducting islands takes the condensate state out of equilibrium due to charge imbalance. We obtain the tunneling rate from a phenomenological model of non-equilibrium, where nonequilibrium quasiparticle tunnelling stimulates a temperature-dependent chemical potential shift in the superconductor. As a result we obtain a non-monotonic behavior for relaxation rate as a function of temperature. Depending on the fabrication parameters for some qubits, the lowest tunneling rate of nonequilibrium quasiparticles can take place only near the onset temperature below which nonequilibrium quasiparticles dominate over equilibrium one. Our theory also indicates that such tunnelings can influence the probability of transitions in qubits through a coupling to the zero-point energy of phase fluctuations. (paper)

  13. Robust and optimal control a two-port framework approach

    CERN Document Server

    Tsai, Mi-Ching

    2014-01-01

    A Two-port Framework for Robust and Optimal Control introduces an alternative approach to robust and optimal controller synthesis procedures for linear, time-invariant systems, based on the two-port system widespread in electrical engineering. The novel use of the two-port system in this context allows straightforward engineering-oriented solution-finding procedures to be developed, requiring no mathematics beyond linear algebra. A chain-scattering description provides a unified framework for constructing the stabilizing controller set and for synthesizing H2 optimal and H∞ sub-optimal controllers. Simple yet illustrative examples explain each step. A Two-port Framework for Robust and Optimal Control  features: ·         a hands-on, tutorial-style presentation giving the reader the opportunity to repeat the designs presented and easily to modify them for their own programs; ·         an abundance of examples illustrating the most important steps in robust and optimal design; and ·   �...

  14. Rotations of a logical qubit using the quantum Zeno effect extended to a manifold - Part 1

    Science.gov (United States)

    Grimm, A.; Touzard, S.; Leghtas, Z.; Mundhada, S. O.; Reinhold, P.; Heeres, R.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    Encoding Quantum Information in the large Hilbert space of a harmonic oscillator has proven to have advantages over encoding in a register of physical qubits, but has also provided new challenges. While recent experiments have demonstrated quantum error correction using such an encoding based on superpositions of coherent states, these codes are still susceptible to non-corrected errors and lack controllability: compared to physical qubits it is hard to make arbitrary states and to perform operations on them. Our approach is to engineer the dynamics and the dissipation of a microwave cavity to implement a continuous dissipative measurement yielding two degenerate outcomes. This extends the quantum Zeno effect to a manifold, which in our case is spanned by two coherent states of opposite phases. In this first talk we present the concept and architecture of an experiment that performs rotations on a logical qubit encoded in this protected manifold. Work supported by: ARO, ONR, AFOSR and YINQE.

  15. Impossibility of Classically Simulating One-Clean-Qubit Model with Multiplicative Error

    Science.gov (United States)

    Fujii, Keisuke; Kobayashi, Hirotada; Morimae, Tomoyuki; Nishimura, Harumichi; Tamate, Shuhei; Tani, Seiichiro

    2018-05-01

    The one-clean-qubit model (or the deterministic quantum computation with one quantum bit model) is a restricted model of quantum computing where all but a single input qubits are maximally mixed. It is known that the probability distribution of measurement results on three output qubits of the one-clean-qubit model cannot be classically efficiently sampled within a constant multiplicative error unless the polynomial-time hierarchy collapses to the third level [T. Morimae, K. Fujii, and J. F. Fitzsimons, Phys. Rev. Lett. 112, 130502 (2014), 10.1103/PhysRevLett.112.130502]. It was open whether we can keep the no-go result while reducing the number of output qubits from three to one. Here, we solve the open problem affirmatively. We also show that the third-level collapse of the polynomial-time hierarchy can be strengthened to the second-level one. The strengthening of the collapse level from the third to the second also holds for other subuniversal models such as the instantaneous quantum polynomial model [M. Bremner, R. Jozsa, and D. J. Shepherd, Proc. R. Soc. A 467, 459 (2011), 10.1098/rspa.2010.0301] and the boson sampling model [S. Aaronson and A. Arkhipov, STOC 2011, p. 333]. We additionally study the classical simulatability of the one-clean-qubit model with further restrictions on the circuit depth or the gate types.

  16. The top-transmon: a hybrid superconducting qubit for parity-protected quantum computation

    International Nuclear Information System (INIS)

    Hassler, F; Akhmerov, A R; Beenakker, C W J

    2011-01-01

    Qubits constructed from uncoupled Majorana fermions are protected from decoherence, but to perform a quantum computation this topological protection needs to be broken. Parity-protected quantum computation breaks the protection in a minimally invasive way, by coupling directly to the fermion parity of the system-irrespective of any quasiparticle excitations. Here, we propose to use a superconducting charge qubit in a transmission line resonator (the so-called transmon) to perform parity-protected rotations and read-out of a topological (top) qubit. The advantage over an earlier proposal using a flux qubit is that the coupling can be switched on and off with exponential accuracy, promising a reduced sensitivity to charge noise.

  17. Charge qubit coupled to an intense microwave electromagnetic field in a superconducting Nb device: evidence for photon-assisted quasiparticle tunneling.

    Science.gov (United States)

    de Graaf, S E; Leppäkangas, J; Adamyan, A; Danilov, A V; Lindström, T; Fogelström, M; Bauch, T; Johansson, G; Kubatkin, S E

    2013-09-27

    We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stückelberg interference structure of a longitudinally driven two-level system. For even stronger drives, we observe a significant change in the Landau-Zener-Stückelberg pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning, and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.

  18. Two-Phase Algorithm for Optimal Camera Placement

    Directory of Open Access Journals (Sweden)

    Jun-Woo Ahn

    2016-01-01

    Full Text Available As markers for visual sensor networks have become larger, interest in the optimal camera placement problem has continued to increase. The most featured solution for the optimal camera placement problem is based on binary integer programming (BIP. Due to the NP-hard characteristic of the optimal camera placement problem, however, it is difficult to find a solution for a complex, real-world problem using BIP. Many approximation algorithms have been developed to solve this problem. In this paper, a two-phase algorithm is proposed as an approximation algorithm based on BIP that can solve the optimal camera placement problem for a placement space larger than in current studies. This study solves the problem in three-dimensional space for a real-world structure.

  19. Experimental evaluation of quantum computing elements (qubits) made of electrons trapped over a liquid helium film; Evaluation experimentale d'elements de calcul quantique (qubit) formes d'electrons pieges sur l'helium liquide

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, E

    2006-12-15

    An electron on helium presents a quantized energy spectrum. The interaction with the environment is considered sufficiently weak in order to allow the realization of a quantum bit (qubit) by using the first two energy levels. The first stage in the realization of this qubit was to trap and control a single electron. This is carried out thanks to a set of micro-fabricated electrodes defining a well of potential in which the electron is trapped. We are able with such a sample to trap and detect a variables number of electrons varying between one and around twenty. This then allowed us to study the static behaviour of a small number of electrons in a trap. They are supposed to crystallize and form structures called Wigner molecules. Such molecules have not yet been observed yet with electrons above helium. Our results bring circumstantial evidence for of Wigner crystallization. We then sought to characterize the qubit more precisely. We sought to carry out a projective reading (depending on the state of the qubit) and a measurement of the relaxation time. The results were obtained by exciting the electron with an incoherent electric field. A clean measurement of the relaxation time would require a coherent electric field. The conclusion cannot thus be final but it would seem that the relaxation time is shorter than calculated theoretically. That is perhaps due to a measurement of the relaxation between the oscillating states in the trap and not between the states of the qubit. (author)

  20. Loschmidt echo of a two-level qubit coupled to nonuniform anisotropic XY chains in a transverse field

    International Nuclear Information System (INIS)

    Zhong Ming; Tong Peiqing

    2011-01-01

    The Loschmidt echo (LE) of a central two-level qubit coupled to nonuniform anisotropic XY chains in a transverse field is studied. A general formula for LE is derived, which we use to discuss the influence of the criticality of the environment on LE. It is found that for the periodic XY chain the behaviors of LE in the vicinity of the critical points are similar to those of the uniform case. It is different for the disordered transverse Ising chains. For the aperiodic chains, if the surrounding systems are bounded chains, the behaviors of LE are similar to those of the uniform case, while if the surrounding systems are unbounded chains, they are similar to those of the disordered case.