WorldWideScience

Sample records for final remedial investigation

  1. Chaos and remedial investigations

    International Nuclear Information System (INIS)

    Galbraith, R.M.

    1991-01-01

    Current research into the nature of chaos indicates that even for systems that are well known and easily modeled, slight changes in the scale used to measure the input have unpredictable results in the model output. The conduct of a remedial investigation (RI) is dictated by well-established rules of investigation and management, yet small changes in project orientation, regulatory environment, or site conditions have unpredictable consequences to the project. The consequences can lead to either brilliant success or utter failure. The chaotic effect of a change in scale is most often illustrated by an exercise in measuring the length of the coast of Great Britain. If a straight ruler 10-kilometers long is used, the sum of the 10-kilometer increments gives the length of the coast. If the ruler is changed to five kilometers long and the exercise is repeated, the sum of the five-kilometer increments will not be the same as the sum of the 10-kilometer increments. Nor is there a way to predict what the length of the coast will be using any other scale. Several examples from the Fernald Project RI are used to illustrate open-quotes changes in scaleclose quotes in both technical and management situations. Given that there is no way to predict the outcome of scale changes in a RI, technical and project management must be alert to the fact that a scale has changed and the investigation is no longer on the path it was thought to be on. The key to success, therefore, is to develop specific units of measure for a number of activities, in addition to cost and schedule, and track them regularly. An example for tracking a portion of the field investigation is presented. The determination of effective units of measure is perhaps the most difficult aspect of any project. Changes in scale sometimes go unnoticed until suddenly the budget is expended and only a portion of the work is completed. Remedial investigations on large facilities provide new and complex challenges

  2. Salmon Site Remedial Investigation Report

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  3. IAEA Remediation Mission Issues Final Report

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: A team of international experts today completed their assessment of the strategy and plans being considered by the Japanese authorities to remediate the areas off-site TEPCO's Fukushima Daiichi Nuclear Power Plant (NPP). Their Final Report, delivered to the Japanese authorities, is available here. ''A lot of good work, done at all levels, is on-going in Japan in the area of environmental remediation,'' said Juan Carlos Lentijo, Team Leader and General Director for Radiation Protection at Spain's nuclear regulatory authority. In the report, Japan is encouraged to continue its remediation efforts, taking into account the advice provided by the Mission. ''In the early phases of the Fukushima Daiichi accident, a very cautious approach was adopted by the Japanese authorities in terms of dealing with the handling of residue materials. It is considered right to do so,'' Lentijo said. ''However, at this point in time, we see that there is room to take a more balanced approach, focussing on the real priority areas, classifying residue materials and adopting appropriate remediation measures on the basis of the results of safety assessments for each specific situation.'' The IAEA stands ready to support Japan as it continues its efforts to remediate the environment in the area off-site the Fukushima Daiichi NPP. The IAEA sent the mission to Japan from 7 to 15 October 2011 following a request from the country's government. The mission, comprising 12 international and IAEA experts from several countries, visited numerous locations in the Fukushima Prefecture and conducted meetings in Tokyo and Fukushima with Japanese officials from several ministries and institutions. A Preliminary Summary Report was issued on 14 October. Background The accident at the Fukushima Daiichi NPP has led to elevated levels of radiation over large areas. The Government of Japan has been formulating a strategy and plans to implement countermeasures to remediate these areas. The IAEA

  4. Investigation of Novel Electrode Materials for Electrochemically-Based Remediation of High- and Low-Level Mixed Wastes in the DOE Complex - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N.S.; Anderson, M.

    2000-12-01

    New materials are investigated, based on degenerately-doped titanias, for use in the electrochemical degradation of organics and nitrogen-containing compounds in sites of concern to the DOE remediation effort. The data collected in this project appear to provide a rational approach for design of more efficient nanoporous electrodes. Also, osmium complexes appear to be promising candidates for further optimization in operating photo electrochemical cells for solar energy conversion applications.

  5. Investigation of Novel Electrode Materials for Electrochemically-Based Remediation of High- and Low-Level Mixed Wastes in the DOE Complex - Final Report

    International Nuclear Information System (INIS)

    Lewis, N.S.; Anderson, M.

    2000-01-01

    New materials are investigated, based on degenerately-doped titanias, for use in the electrochemical degradation of organics and nitrogen-containing compounds in sites of concern to the DOE remediation effort. The data collected in this project appear to provide a rational approach for design of more efficient nanoporous electrodes. Also, osmium complexes appear to be promising candidates for further optimization in operating photo electrochemical cells for solar energy conversion applications

  6. Feasibility study report for Operable Unit 4: Fernald Environmental Management Project, Fernald, Ohio: Remedial investigation and feasibility study: Volume 3: Final report

    International Nuclear Information System (INIS)

    1994-02-01

    This report documents the Feasibility Study (FS) phase of the Fernald Environmental Management Project (FEMP) Operable Unit 4 Remedial Investigation/Feasibility Study (RI/FS) Program. The FEMP, formerly known as the Feed Materials Production Center (FMPC), is a US Department of Energy (DOE) facility that operated from 1952 to 1989. The facility's primarily function was to provide high purity uranium metal products to support United States defense programs. Production operations were suspended in 1989 to focus on environmental restoration and waste management activities at the facility. The RI/FS is being conducted pursuant to the terms of a Consent Agreement between DOE and the US Environmental Protection Agency (EPA) under Sections 120 and 106(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. The Ohio Environmental Protection Agency (OEPA) is also participating in the RI/FS process at the FEMP through direct involvement in program review meetings and technical review of project documentation. The objective of the RI/FS process is to gather information to support an informed risk management decision regarding which remedy appears to be the most appropriate action for addressing the environmental concerns identified at the FEMP. This volume contains appendices F--J

  7. Remedial Investigation of Hanford Site Releases to the Columbia River

    International Nuclear Information System (INIS)

    Lerch, J.A.

    2009-01-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts of Hanford Site hazardous substance releases to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The impacts are now being assessed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 via a remedial investigation. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River has been developed and issued to initiate the remedial investigation. The work plan establishes a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities began in October 2008 and are anticipated to continue into Fall 2009 over a 120 mile stretch of the Columbia River. Information gained from performing this remedial investigation will ultimately be used to help make final regulatory decisions for cleaning up Hanford Site contamination that exists in and along the Columbia River. (authors)

  8. Preliminary Investigations Of Effectiveness Of Herbal Remedies ...

    African Journals Online (AJOL)

    This study analysed some of the widely publicised herbal remedies in use for HIV infection in Nigeria, and investigated their efficacy scientifically. Those found to be efficacious will be subjected to further analysis to identify their active chemical components. The research deals directly with patients living with HIV/AIDS that ...

  9. Cavitational Hydrothermal Oxidation: A New Remediation Process - Final Report; FINAL

    International Nuclear Information System (INIS)

    Suslick, K. S.

    2001-01-01

    During the past year, we have continued to make substantial scientific progress on our understanding of cavitation phenomena in aqueous media and applications of cavitation to remediation processes. Our efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions

  10. Salmon Site Remedial Investigation Report, Appendix D

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  11. Salmon Site Remediation Investigation Report, Appendix A

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  12. Salmon Site Remedial Investigation Report, Appendix C

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  13. Salmon Site Remedial Investigation Report, Exhibit 2

    Energy Technology Data Exchange (ETDEWEB)

    USDOE NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  14. Salmon Site Remedial Investigation Report, Exhibit 5

    Energy Technology Data Exchange (ETDEWEB)

    USDOE/NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  15. Salmon Site Remedial Investigation Report, Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    US DOE/NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  16. Salmon Site Remedial Investigation Report, Exhibit 2

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  17. Salmon Site Remedial Investigation Report, Main Body

    Energy Technology Data Exchange (ETDEWEB)

    US DOE/NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  18. Salmon Site Remedial Investigation Report, Exhibit 5

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  19. Petroleum hydrocarbon contaminated sites: a review of investigation and remediation regulations and processes

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, Michel; Claudio, Jair R. [Bureau Veritas do Brasil Sociedade Classificadora e Certificadora Ltda., Sao Paulo, SP (Brazil)

    1993-12-31

    This paper discusses alternatives on remediation of petroleum hydrocarbon contaminated sites which include groundwater remediation techniques and soil remediation techniques. Finally, the work points out some trends of sites remediation in Brazil and abroad. 6 refs., 1 fig., 7 tabs.

  20. Petroleum hydrocarbon contaminated sites: a review of investigation and remediation regulations and processes

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, Michel; Claudio, Jair R [Bureau Veritas do Brasil Sociedade Classificadora e Certificadora Ltda., Sao Paulo, SP (Brazil)

    1994-12-31

    This paper discusses alternatives on remediation of petroleum hydrocarbon contaminated sites which include groundwater remediation techniques and soil remediation techniques. Finally, the work points out some trends of sites remediation in Brazil and abroad. 6 refs., 1 fig., 7 tabs.

  1. Final audit report of remedial action construction at the UMTRA project site Rifle, Colorado. Rev. 1

    International Nuclear Information System (INIS)

    1997-01-01

    This final audit report summarizes the assessments performed by the U.S. Department of Energy (DOE) Environmental Restoration Division (ERD) and its Technical Assistance Contractor (TAC) of remedial action compliance with approved plans, specifications, standards, and 40 CFR Part 192 at the Rifle, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. Remedial action construction was directed by the Remedial Action Contractor (RAC)

  2. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    International Nuclear Information System (INIS)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-01-01

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field

  3. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    Energy Technology Data Exchange (ETDEWEB)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  4. Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program -12184

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Christopher [U.S Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S Department of Energy Office of Legacy Management, Westminster, Colorado; Widdop, Michael; Gillespie, Joey [SM Stoller Corporation, Grand Junction, Colorado

    2012-02-26

    The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS&M) program: Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. DOE must continue to maintain constructive relationships with the U

  5. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  6. Final remediation of the provisional storage near Zavratec

    International Nuclear Information System (INIS)

    Zeleznik, N.; Mele, I.

    2000-01-01

    In the Western part of Slovenia near the village of Zavratec radioactive waste from the decontamination of the Oncological Institute has been stored in an old abandoned military barracks for many decades. The ARAO Agency had been assigned to remediate this provisional storage. In 1996 the first phase of the remediation was concluded, in which the measurements, inventorying and repacking of radioactive waste were carried out. At the end of this phase the waste was restored. After three years of suspension, the remedial work continued in autumn 1999 with the separation of radioactive from non-radioactive waste and transportation of all radioactive waste to the Slovenian central storage for small producers near Ljubljana. At the beginning of the year 2000 the old storage near Zavratec was completely decontaminated to be released for unrestricted use. The preparation for and the implementation of remedial actions are presented in the paper. (author)

  7. Green Remediation Best Management Practices: Site Investigation

    Science.gov (United States)

    The U.S. EPA Principles for Greener Cleanups outline the Agency's policy for evaluating and minimizing the environmental 'footprint' of activities undertaken when cleaning up a contaminated site and conducting site investigation.

  8. Cavitational Hydrothermal Oxidation: A New Remediation Process - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Suslick, K. S.

    2001-07-05

    During the past year, we have continued to make substantial scientific progress on our understanding of cavitation phenomena in aqueous media and applications of cavitation to remediation processes. Our efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions.

  9. Oak Ridge National Laboratory remedial investigation/feasibility study

    International Nuclear Information System (INIS)

    Glenn, R.D.; Hoffman, J.M.; Hyde, L.D.

    1988-01-01

    The Oak Ridge National Laboratory (ORNL) Remedial Investigation/ Feasibility Study (RI/FS) began in June 1987 to evaluate 13 contaminated waste area groupings (WAGs) to determine the feasibility and benefits of potential remedial action. The RI/FS and any future remedial action at ORNL will be of national significance and will likely lead to developments that will become models for environmental investigations and cleanups. Bechtel National, Inc. and a team of subcontractors will be working with Martin Marietta Energy systems to conduct intensive field investigations to obtain data required to evaluate the WAGs. The RI/F project continued in FY 1988 with project planning and preparation for field activities. Remedial Investigation (RI) Plans were prepared for 10 of the 13 WAGs. These plans were developed with sufficient information to ensure compliance with regulatory requirements, with intensive attention given to environmental, safety, and health protection; waste management; data management; and quality assurance. This paper reports on the progress made during FY 1988 and discusses activities planned for FY 1989

  10. RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E.

    1998-10-02

    This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina.

  11. RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)

    International Nuclear Information System (INIS)

    Palmer, E.

    1998-01-01

    This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina

  12. Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the process.

    Science.gov (United States)

    Dias-Ferreira, Celia; Kirkelund, Gunvor M; Ottosen, Lisbeth M

    2015-01-01

    Seven electrodialytic experiments were conducted using ammonium citrate as enhancing agent to remediate copper and chromium-contaminated soil from a wood-preservation site. The purpose was to investigate the effect of current density (0.2, 1.0 and 1.5 mA cm(-2)), concentration of enhancing agent (0.25, 0.5 and 1.0 M) and remediation times (21, 42 and 117 d) for the removal of Cu and Cr from a calcareous soil. To gain insight on metal behavior, soil solution was periodically collected using suction cups. It was seen that current densities higher than 1.0 mA cm(-2) did not increase removal and thus using too high current densities can be a waste of energy. Desorption rate is important and both remediation time and ammonium citrate concentration are relevant parameters. It was possible to collect soil solution samples following an adaptation of the experimental set-up to ensure continuous supply of ammonium citrate to the soil in order to keep it saturated during the remediation. Monitoring soil solution gives valuable information on the evolution of remediation and helps deciding when the soil is remediated. Final concentrations in the soil ranged from 220 to 360 mg Cu kg(-1) (removals: 78-86%) and 440-590 mg Cr kg(-1) (removals: 35-51%), being within the 500 mg kg(-1) limit for a clean soil only for Cu. While further optimization is still required for Cr, the removal percentages are the highest achieved so far, for a real Cu and Cr-contaminated, calcareous soil. The results highlight EDR potential to remediate metal polluted soils at neutral to alkaline pH by choosing a good enhancement solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Final 2014 Remedial Action Report Project Chariot, Cape Thompson, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-01

    This report was prepared to document remedial action (RA) work performed at the former Project Chariot site located near Cape Thompson, Alaska during 2014. The work was managed by the U.S. Army Corps of Engineers (USACE) Alaska District for the U.S. Department of Energy (DOE) Office of Legacy Management (LM). Due to the short field season and the tight barge schedule, all field work was conducted at the site July 6 through September 12, 2014. Excavation activities occurred between July 16 and August 26, 2014. A temporary field camp was constructed at the site prior to excavation activities to accommodate the workers at the remote, uninhabited location. A total of 785.6 tons of petroleum, oil, and lubricants (POL)-contaminated soil was excavated from four former drill sites associated with test holes installed circa 1960. Diesel was used in the drilling process during test hole installations and resulted in impacts to surface and subsurface soils at four of the five sites (no contamination was identified at Test Hole Able). Historic information is not definitive as to the usage for Test Hole X-1; it may have actually been a dump site and not a drill site. In addition to the contaminated soil, the steel test hole casings were decommissioned and associated debris was removed as part of the remedial effort.

  14. Salmon Site Remedial Investigation Report, Appendix B (Part 2)

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  15. Salmon Site Remedial Investigation Report, Appendix B (Part 1)

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  16. Superfund record of decision (EPA Region 6): Oklahoma Refining Company, Cyril, OK. (First remedial action), June 1992. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    The 160-acre Oklahoma Refining site is a petroleum refinery located on the eastern edge of Cyril, Oklahoma, in Caddo County. The facility included refinery process areas, bulk storage tanks, waste pits, wastewater treatment ponds, and a land treatment area. During the mid-1980's, EPA investigations revealed large-scale organic and heavy metal contamination of onsite soil and ground water. In 1990, EPA conducted a removal action, which included characterization and removal of drums, plugging wells, and wildlife protection measures. The ROD addresses the remediation of onsite contaminated soil, sediment, surface water, and ground water as a final remedy. The primary contaminants of concern affecting the soil, sediment, ground water, and surface water are VOCs, including benzene, toluene, and xylenes; other organics, including PAHs and phenols; and metals, including arsenic, chromium, and lead. The selected remedial action for the site is included

  17. Remedial action selection report Maybell, Colorado, site. Final report

    International Nuclear Information System (INIS)

    1996-12-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The site is 2.5 mi (4 km) northeast of the Yampa River on relatively flat terrain broken by low, flat-topped mesas. U.S. Highway 40 runs east-west 2 mi (3.2 km) south of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. The site is situated between Johnson Wash to the east and Rob Pit Mine to the west. Numerous reclaimed and unreclaimed mines are in the immediate vicinity. Aerial photographs (included at the end of this executive summary) show evidence of mining activity around the Maybell site. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [ml]) and contains 2.8 million cubic yards (yd 3 ) (2.1 million cubic meters [m 3 ]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m 3 ) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd 3 (420,000 m 3 ). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd 3 (2.58 million m 3 )

  18. The Aftermath of Remedial Math: Investigating the Low Rate of Certificate Completion among Remedial Math Students

    Science.gov (United States)

    Bahr, Peter Riley

    2013-01-01

    Nationally, a majority of community college students require remedial assistance with mathematics, but comparatively few students who begin the remedial math sequence ultimately complete it and achieve college-level math competency. The academic outcomes of students who begin the sequence but do not complete it are disproportionately unfavorable:…

  19. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume IV

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 4, describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington

  20. Wearable Cameras Are Useful Tools to Investigate and Remediate Autobiographical Memory Impairment: A Systematic PRISMA Review.

    Science.gov (United States)

    Allé, Mélissa C; Manning, Liliann; Potheegadoo, Jevita; Coutelle, Romain; Danion, Jean-Marie; Berna, Fabrice

    2017-03-01

    Autobiographical memory, central in human cognition and every day functioning, enables past experienced events to be remembered. A variety of disorders affecting autobiographical memory are characterized by the difficulty of retrieving specific detailed memories of past personal events. Owing to the impact of autobiographical memory impairment on patients' daily life, it is necessary to better understand these deficits and develop relevant methods to improve autobiographical memory. The primary objective of the present systematic PRISMA review was to give an overview of the first empirical evidence of the potential of wearable cameras in autobiographical memory investigation in remediating autobiographical memory impairments. The peer-reviewed literature published since 2004 on the usefulness of wearable cameras in research protocols was explored in 3 databases (PUBMED, PsycINFO, and Google Scholar). Twenty-eight published studies that used a protocol involving wearable camera, either to explore wearable camera functioning and impact on daily life, or to investigate autobiographical memory processing or remediate autobiographical memory impairment, were included. This review analyzed the potential of wearable cameras for 1) investigating autobiographical memory processes in healthy volunteers without memory impairment and in clinical populations, and 2) remediating autobiographical memory in patients with various kinds of memory disorder. Mechanisms to account for the efficacy of wearable cameras are also discussed. The review concludes by discussing certain limitations inherent to using cameras, and new research perspectives. Finally, ethical issues raised by this new technology are considered.

  1. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    International Nuclear Information System (INIS)

    1995-10-01

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites

  2. Remedial Investigation/Feasibility Study (RI/FS) process, elements and techniques guidance

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This manual provides detailed guidance on Remedial Investigation/Feasibility Studies (RI/FSs) conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at Department of Energy (DOE) facilities. The purpose of the RI/FS, to assess the risk posed by a hazardous waste site and to determine the best way to reduce that risk, and its structure (site characterization, risk assessment, screening and detailed analysis of alternatives, etc.) is defined in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) and further explained in the Environmental Protection Agency`s (EPA`s) Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (Interim Final) 540/G-89/004, OSWER Directive 9355.3-01, October 1988. Though issued in 1988, the EPA guidance remains an excellent source of information on the conduct and structure of an RI/FS. This document makes use of supplemental RI/FS-related guidance that EPA has developed since its initial document was issued in 1988, incorporates practical lessons learned in more than 12 years of experience in CERCLA hazardous site remediation, and drawing on those lessons, introduces the Streamlined Approach For Environmental Restoration (SAFER), developed by DOE as a way to proceed quickly and efficiently through the RI/FS process at DOE facilities. Thus as its title implies, this guidance is intended to describe in detail the process and component elements of an RI/FS, as well as techniques to manage the RI/FS effectively.

  3. Investigating biochar as a tool for environmental remediation

    Science.gov (United States)

    Biochar is being proposed as a cost-effective, carbon negative soil amendment for environmental remediation. Research has demonstrated the efficacy of biochar to sorb heavy metals and agricultural chemicals from contaminated soils, thus effectively reducing the potential for met...

  4. The innovative application of surface geophysical techniques for remedial investigations

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, W.R. [OYO Geospace, Fort Myers, FL (United States); Smith, S. [ICF Kaiser Engineers, Boston, MA (United States); Gilmore, P. [Fishbeck, Thomson, Carr and Huber, Aida, MI (United States); Cox, S. [Blasland, Bouck, and Lee, Edison, NJ (United States)

    1993-03-01

    When researchers are investigating potential subsurface contamination at hazardous waste landfills, the surface geophysical techniques they may use are often limited. Many geophysical surveys are concerned with areas next to and not directly within the landfill units. The highly variable properties of the materials within the landfill may result in geophysical data that are either difficult or impossible to interpret. Therefore, contamination at these sites may not be detected until substantial lateral migration away from the unit has occurred. In addition, because of the poor resolution of some techniques, the landfill as a whole must be considered as a source, where discrete disposal areas within landfill units may be the actual point sources of contaminants. In theory, if specific sources within the landfill are identified and isolated, then reduced time, effort, and expenditures will be required for remediation activities. In the summer of 1989, the Idaho National Engineering Laboratory (INEL) investigated a small potentially hazardous waste landfill to determine if contaminant hot spots could be identified within the landfill and to determine if significant vertical and lateral migration of contaminants was occurring away from these locations. Based on the present hydrogeologic conditions, researchers anticipated that subsurface flow would be primarily vertical, with the zone of saturation at a depth greater than 150 meters. This necessitated that the survey be performed, for the most part, directly on the capped portion of the landfill. Focused geophysical surveys conducted off the landfill would not have provided useful information concerning conditions directly beneath the landfill. This paper discusses the planning, application, and analysis of four combined sensing methods: two methods of electromagnetic induction [low induction (Em) and time domain (TEM)], ground penetrating radar (GPR), and soil gas.

  5. SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.; Breshears, Andrew T.; Devary, Brooks J.; Fredrickson, Herbert L.; Thompson, Karen T.

    2009-09-30

    This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenase enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.

  6. Lab-scale investigation on remediation of diesel-contaminated aquifer using microwave energy.

    Science.gov (United States)

    Falciglia, Pietro P; Maddalena, Riccardo; Mancuso, Giuseppe; Messina, Valeria; Vagliasindi, Federico G A

    2016-02-01

    Aquifer contamination with diesel fuel is a worldwide environmental problem, and related available remediation technologies may not be adequately efficient, especially for the simultaneous treatment of both solid and water phases. In this paper, a lab-scale 2.45 GHz microwave (MW) treatment of an artificially diesel-contaminated aquifer was applied to investigate the effects of operating power (160, 350 and 500 W) and time on temperature profiles and contaminant removal from both solid and water phases. Results suggest that in diesel-contaminated aquifer MW remediation, power significantly influences the final reachable temperature and, consequently, contaminant removal kinetics. A maximum temperature of about 120 °C was reached at 500 W. Observed temperature values depended on the simultaneous irradiation of both aquifer grains and groundwater. In this case, solid phase heating is limited by the maximum temperature that interstitial water can reach before evaporation. A minimal residual diesel concentration of about 100 mg kg(-1) or 100 mg L(-1) was achieved by applying a power of 500 W for a time of 60 min for the solid or water phase, respectively. Measured residual TPH fractions showed that MW heating resulted in preferential effects of the removal of different TPH molecular weight fractions and that the evaporation-stripping phenomena plays a major role in final contaminant removal processes. The power low kinetic equation shows an excellent fit (r(2) > 0.993) with the solid phase residual concentration observed for all the powers investigated. A maximum diesel removal of 88 or 80% was observed for the MW treatment of the solid or water phase, respectively, highlighting the possibility to successfully and simultaneously remediate both the aquifer phases. Consequently, MW, compared to other biological or chemical-physical treatments, appears to be a better choice for the fast remediation of diesel-contaminated aquifers. Copyright © 2015 Elsevier

  7. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume I

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 1 of the Final Environmental Impact Statement, analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  8. Final audit report of remedial action construction at the UMTRA Project Falls City, Texas, site

    International Nuclear Information System (INIS)

    1995-05-01

    This final audit report for the Falls City, Texas, Uranium Mill Tailings Remedial Action Project site summarizes the radiological audits and the quality assurance (QA) in-process surveillances, audits, and final close-out inspection performed by the U.S. Department of Energy (DOE) and Technical Assistance Contractor (TAC). It also summarizes U.S. Nuclear Regulatory Commission (NRC) surveillances. One radiological audit and three radiological surveillances were performed at the Falls City site. These surveillances and audit, which resulted in 31 observations, focused primarily on processing site activities and were performed on the following dates: 3-6 August 1992, 29-30 October 1992, 22-26 March 1993, and 1-3 November 1993. All outstanding radiological issues were closed out at the completion of the construction activities. Six QA in-process surveillances, which resulted in 71 observations, were performed at the Falls City site on the following dates: 22-24 July 1992, 23-25 November 1992, 17-19 May 1993, 16-18 August 1993, 13-15 October 1993, and 2-4 February 1994. All outstanding issues were closed out with the February surveillance on 3 March 1994. The DOE/TAC remedial action close-out inspections of the Falls City site, which resulted in 56 observations, were conducted 9-10 June 1994 and 26 July 1994. The inspections were closed out on 26 January 1995. The NRC performed three on-site construction reviews (OSCR), resulting in seven observations of remedial action construction activities that occurred during site visits. The OSCRs were performed 9 December 1992, 12 May 1993, and 25 October 1993. Since all audit and surveillance observations and recommendations have been closed out, this final audit report segment of the site certification process is complete

  9. Final audit report of remedial action construction at the UMTRA Project Ambrosia Lake, New Mexico, site

    International Nuclear Information System (INIS)

    1995-09-01

    The final audit report for remedial action at the Ambrosia Lake, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project site consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and a QA final closeout inspection performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC). One radiological surveillance and three radiological audits were performed at the Ambrosia Lake site. The surveillance was performed on 12--16 April 1993 (DOE, 1993d). The audits were performed on 26--29 July 1993 (DOE, 1993b); 21--23 March 1994 (DOE, 1994d); and 1--2 August 1994 (DOE, 1994d). The surveillance and audits resulted in 47 observations. Twelve of the observations raised DOE concerns that were resolved on site or through subsequent corrective action. All outstanding issues were satisfactorily closed out on 28 December 1994. The radiological surveillance and audits are discussed in this report. A total of seven QA in-process surveillances were performed at the Ambrosia Lake UMTRA site are discussed. The DOE/TAC Ambrosia Lake final remedial action close-out inspection was conducted on 26 July 1995 (DOE, 1995a). To summarize, a total of 155 observations were noted during DOE/TAC audit and surveillance activities. Follow-up to responses required from the RAC for the DOE/TAC surveillance and audit observations indicated that all issues related to the Ambrosia Lake site were resolved and closed to the satisfaction of the DOE

  10. Final audit report of remedial action construction at the UMTRA Project Site, Gunnison, Colorado. Revision 0

    International Nuclear Information System (INIS)

    1996-01-01

    The final audit report for remedial action at the Gunnison, Colorado Uranium Mill Tailings Remedial Action (UMTRA) Project site consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the U.S. Department of Energy (DOE) and the Technical Assistance Contractor (TAC); and on-site construction reviews (OSCR) performed by the U.S. Nuclear Regulatory Commission (NRC). Two radiological surveillances and four radiological audits were performed at the Gunnison site. The surveillances were performed on 16 to 19 September 1992 and 28 June to 1 July 1993. The radiological audits were performed on 4 to 7 October 1993; 13 to 16 June 1994; 19 to 22 September 1994 and 10 to 12 July 1995. The surveillances and audits resulted in 79 observations. Thirty-four of the observations raised DOE concerns that were resolved on the site or through subsequent corrective action. All outstanding issues were closed on 12 July 1995. The radiological surveillances and audits are discussed in Section 2.0 of this report. Ten QA in-process surveillances were performed at the Gunnison UMTRA Project site. The surveillances were performed on 24 to 25 September 1992, 7 to 9 July 1993, 29 October 1993, 27 to 28 June 1994, 31 October to 1 November 1994, 19 to 20 June 1 995, 20 to 21 July 1995, 17 to 18 August 1995, 20 September 1995, and 11 to 13 October 1995. The surveillances resulted in 100 observations. Six observations contained recommendations that required responses from the Remedial Action Contractor (RAC). Ninety-five observations contained a recommendation that required no response. All outstanding issues were closed on 8 January 1996. The QA in-process surveillances are discussed in Section 3.0 of this report

  11. Final audit report of remedial action construction at the UMTRA Project, Grand Junction, Colorado, processing site

    International Nuclear Information System (INIS)

    1995-02-01

    This final audit report (FAR) for remedial action at the Grand Junction, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project processing site consists of a summary of the radiological surveillances/ audits, the quality assurance (QA) in-process surveillances, and the QA final close-out inspection performed by the US Department of Energy (DOE) and Technical Assistance Contractor (TAC). The FAR also summarizes other surveillances performed by the US Nuclear Regulatory Commission (NRC). To summarize, a total of one finding and 127 observations were noted during DOE/TAC audit and surveillance activities. The NRC noted general site-related observations during the OSCRs. Follow-up to responses required from MK-Ferguson for the DOE/TAC finding and observations indicated that all issues related to the Grand Junction processing site were resolved and closed out to the DOE's satisfaction. The NRC OSCRs resulted in no issues related to the Grand Junction processing site requiring a response from MK-Ferguson

  12. Laboratory open-quotes proof of principleclose quotes investigation for the acoustically enhanced remediation technology

    International Nuclear Information System (INIS)

    Iovenitti, J.L.; Spencer, J.W.; Hill, D.G.

    1995-01-01

    This document describes a three phase program of Weiss Associates which investigates the systematics of using acoustic excitation fields (AEFs) to enhance the in-situ remediation of contaminated soil and ground water under both saturated and unsaturated conditions. The focus in this particular paper is a laboratory proof of principle investigation. The field deployment and engineering viability of acoustically enhanced remediation technology is also examined

  13. Final report on Phase II remedial action at the former Middlesex Sampling Plant and associated properties. Volume 2

    International Nuclear Information System (INIS)

    1985-04-01

    Volume 2 presents the radiological measurement data taken after remedial action on properties surrounding the former Middlesex Sampling Plant during Phase II of the DOE Middlesex Remedial Action Program. Also included are analyses of the confirmatory radiological survey data for each parcel with respect to the remedial action criteria established by DOE for the Phase II cleanup and a discussion of the final status of each property. Engineering details of this project and a description of the associated health physics and environmental monitoring activities are presented in Volume 1

  14. Remedial investigation/feasibility study for the David Witherspoon, Inc., 901 Site, Knoxville, Tennessee: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This remedial investigation (RI)/feasibility study (FS) supports the selection of remedial actions for the David Witherspoon, Inc. 901 Maryville Pike Site in Knoxville, Tennessee. Operations at the site, used as a recycling center, have resulted in past, present, and potential future releases of hazardous substances in to the environment. This Site is a Tennessee Superfund site. A phased approach was planned to (1) gather existing data from previous investigations managed by the Tenn. Dept. of Environment and Conservation; (2) perform a preliminary RI, including risk assessments, and an FS with existing data to identify areas where remedial action may be necessary; (3) gather additional field data to adequately define the nature and extent of risk-based contaminants that present identifiable threats to human and/or ecological receptors; and (4) develop remedial action alternatives to reduce risks to acceptable levels.

  15. Remedial investigation/feasibility study for the David Witherspoon, Inc., 901 Site, Knoxville, Tennessee: Volume 1

    International Nuclear Information System (INIS)

    1996-10-01

    This remedial investigation (RI)/feasibility study (FS) supports the selection of remedial actions for the David Witherspoon, Inc. 901 Maryville Pike Site in Knoxville, Tennessee. Operations at the site, used as a recycling center, have resulted in past, present, and potential future releases of hazardous substances in to the environment. This Site is a Tennessee Superfund site. A phased approach was planned to (1) gather existing data from previous investigations managed by the Tenn. Dept. of Environment and Conservation; (2) perform a preliminary RI, including risk assessments, and an FS with existing data to identify areas where remedial action may be necessary; (3) gather additional field data to adequately define the nature and extent of risk-based contaminants that present identifiable threats to human and/or ecological receptors; and (4) develop remedial action alternatives to reduce risks to acceptable levels

  16. Microbial Assisted Phyto remediation Of Palm Oil Mill Final Discharge (POMFD) Wastewater

    International Nuclear Information System (INIS)

    Mohd Faizal Hamzah; Norjan Yusof; Hasimah Alimon

    2016-01-01

    This study assesses microbial assisted phyto remediation of palm oil mill final discharge (POMFD) wastewater using three local macrophyte species: Leersia oryzoides, Pistia stratiotes and Ludwigia peploides. It was found respectively that BOD 5 , COD, NH 3 -N removal efficiencies of 84.7 %, 22.3 %, and 73.5 % were achieved for P. stratiotes; 88.1 %, 18 % and 69.2 % for L. peploides; and 86.1 %, 11.7 % and 69.3 % for L. oryzoides. The level of C, H and N in the tissue were influenced by macrophyte species and organs (p < 0.05). The bioconcentration factors (BCF) of various metals such as Mg, Ca, K, Na, Fe and Zn of the three macrophyte were 10 -1 to 10 0 with Fe being highly accumulated in roots of all the macrophyte (BCF=10 2 ). The translocation factors (TF) of most metals from root to shoot tissues were in a range of 10 -3 to 10 0 . In comparison with other metals, K was capable to be efficiently translocated from root to shoots in all the macrophyte species (TF=10 0 ). In this study, Bacillus megaterium, Pseudomonas spp. and Bacillus cereus that are usually involved in denitrification were identified in P. stratiotes, L. pepoides and L. oryzoides roots respectively. This confirms the macrophyte-microorganism interaction in remediation of POMFD wastewater. (author)

  17. Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the process

    DEFF Research Database (Denmark)

    Dias-Ferreira, Celia; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2015-01-01

    Seven electrodialytic experiments were conducted using ammonium citrate as enhancing agent to remediate copper and chromium-contaminated soil from a wood-preservation site. The purpose was to investigate the effect of current density (0.2, 1.0 and 1.5 mA cm−2), concentration of enhancing agent (0...... to remediate metal polluted soils at neutral to alkaline pH by choosing a good enhancement solution....

  18. Superfund Record of Decision (EPA region 5): Fultz Landfill, Byesville, OH. (First remedial action), September 1991. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    The 30-acre Fultz Landfill site is a privately owned inactive sanitary landfill on the north slope of a ridge that overlies abandoned coal mines in Jackson Township, Guernsey County, Ohio. The site lies within the drainage basin of Wills Creek, which flows north adjacent to the site and is used by the city of Cambridge as the municipal water supply. The northern half of the landfill lies in an unreclaimed strip mine where surface mine spoil and natural soil form a shallow aquifer. During the 1970's, the landfill operator was cited for various violations. Investigations in 1988 by EPA indicated that ground water and leachate contaminants emanating from the site have contaminated the shallow aquifer and, to a lesser extent, the deep mine aquifer. The Record of Decision (ROD) addresses all contaminated media, and provides a final remedy for the site. The primary contaminants of concern affecting the soil, sediment, debris, ground water, and surface water are VOCs including benzene, PCE, TCE, toluene, and xylenes; other organics including PAHs and phenols; metals including arsenic, chromium, and lead; and other inorganics. The selected remedial action for this site is included

  19. Remedial investigation for the chemical plant area of the Weldon Spring Site

    International Nuclear Information System (INIS)

    1992-11-01

    The US Department of Energy (DOE) is responsible for management of the Weldon Spring Site Remedial Action Project (WSSRAP) under its Environmental Restoration and Waste Management Program. Major goals include eliminating potential public and environmental hazards due to site contamination and releasing the property for alternate uses to the maximum extent practicable. The purpose of the remedial investigation described in this report was to determine the extent of contamination associated with the portion of the Weldon Spring site known as the chemical plant and raffinate pit area. The DOE has assumed responsibility for investigating and remediating all on-site soil contamination and off-site soil which is radiologically contaminated as a result of uranium and thorium processing operations. The DOE has also assumed the responsibility for radiologically contaminated groundwater on and off site. The Weldon Spring site remedial investigation also involved the evaluation of the sources, nature and extent, and environmental fate and transport of contaminants to provide a basis for defining the risks that the contaminants may pose to human health and the environment. Data are included in this report to support the screening of remedial technologies and to permit the development and detailed analysis of alternatives for remedial action at the site during the feasibility study process

  20. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume VI

    International Nuclear Information System (INIS)

    1996-08-01

    The U.S. Department Of Energy and the Washington State Department of Ecology added Appendix L (Volume 6), Response to Public Comments, to the Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington, to fully address and respond to public comments on the Draft EIS. In addition, DOE considered public comments, along with other factors such as programmatic need, short- and long-term impacts, technical feasibility, and cost, in arriving at DOE's preferred alternative. During the public comment period for the Draft EIS, more than 350 individuals, agencies, Tribal Nations, and organizations provided comments. This volume represents a broad spectrum of private citizens; businesses; local, State, and Federal officials; Tribal Nations; and public interest groups

  1. Proceedings of the remedial investigation/feasibility study workshop

    International Nuclear Information System (INIS)

    1988-12-01

    The objective of this workshop was to familiarize Department of Energy (DOE) personnel and contractors with all aspects of developing, managing, and conducting an RI/FS, based on HAZWRAP SCO experience in similar activities as part of the Installation Restoration program (IRP). The HAZWRAP SCO participation in Department of Defense (DOD) restoration activities provides an opportunity to develop capability and experience which are transferable to DOE activities. Paul Franco, Program Manager for the IRP, provided an overview of the IRP experience in conducting an RI/FS for a National Priorities List (NPL) site and a non-NPL site. A non-NPL site does not require an RI/FS by regulation; however, the RI/FS process can be used to determine whether to proceed with a feasibility study or terminate the action with a decision document. Al Porell, Program Manager for ICP, discussed the use of decision documents to remove non-NPL sites from regulatory consideration. DOE-Idaho has used similar documentation to remove numerous sites from their list of potential remedial action sites. Mr. Porell also discussed the use of the Technical Review Committee (TRC), which is established to coordinate activities during the RI/FS process. The TRC includes state, local, and federal authorities, and Air Force installation personnel

  2. Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-01-01

    This work plan identifies the objectives, tasks, and schedule for conducting a Remedial Investigation/Feasibility Study for the 200-UP-1 Groundwater Operable Unit in the southern portion of the 200 West Groundwater Aggregate Area of the Hanford Site. The 200-UP-1 Groundwater Operable Unit addresses contamination identified in the aquifer soils and groundwater within its boundary, as determined in the 200 West Groundwater Aggregate Area Management Study Report (AAMSR) (DOE/RL 1992b). The objectives of this work plan are to develop a program to investigate groundwater contaminants in the southern portion of the 200 West Groundwater Aggregate Area that were designated for Limited Field Investigations (LFIs) and to implement Interim Remedial Measures (IRMs) recommended in the 200 West Groundwater AAMSR. The purpose of an LFI is to evaluate high priority groundwater contaminants where existing data are insufficient to determine whether an IRM is warranted and collect sufficient data to justify and implement an IRM, if needed. A Qualitative Risk Assessment (QRA) will be performed as part of the LFI. The purpose of an IRM is to develop and implement activities, such as contaminant source removal and groundwater treatment, that will ameliorate some of the more severe potential risks of groundwater contaminants prior to the RI and baseline Risk Assessment (RA) to be conducted under the Final Remedy Selection (FRS) at a later date. This work plan addresses needs of a Treatability Study to support the design and implementation of an interim remedial action for the Uranium- 99 T c -Nitrate multi-contaminant IRM plume identified beneath U Plant

  3. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume II

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 2, provides the inventory of waste addressed in this Final Environmental Impact Statement (EIS) for the Tank Waste Remediation System, Hanford Site, Richland, Washington. The inventories consist of waste from the following four groups: (1) Tank waste; (2) Cesium (Cs) and Strontium (Sr) capsules; (3) Inactive miscellaneous underground storage tanks (MUSTs); and (4) Anticipated future tank waste additions. The major component by volume of the overall waste is the tank waste inventory (including future tank waste additions). This component accounts for more than 99 percent of the total waste volume and approximately 70 percent of the radiological activity of the four waste groups identified previously. Tank waste data are available on a tank-by-tank basis, but the accuracy of these data is suspect because they primarily are based on historical records of transfers between tanks rather than statistically based sampling and analyses programs. However, while the inventory of any specific tank may be suspect, the overall inventory for all of the tanks combined is considered more accurate. The tank waste inventory data are provided as the estimated overall chemical masses and radioactivity levels for the single-shell tanks (SSTs) and double-shell tanks (DSTs). The tank waste inventory data are broken down into tank groupings or source areas that were developed for analyzing groundwater impacts

  4. Remedial action at the Acid/Pueblo Canyon site, Los Alamos, New Mexico. Final report

    International Nuclear Information System (INIS)

    1984-10-01

    The Acid/Pueblo Canyon site (TA-45) was designated in 1976 for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). During the period 1943 to 1964 untreated and treated liquid wastes generated by nuclear weapons research activities at the Los Alamos Scientific Laboratory (LASL) were discharged into the two canyons. A survey of the site conducted by LASL in 1976 to 1977 identified two areas where radiological contamination exceeded criteria levels. The selected remedial action was based on extensive radiological characterization and comprehensive engineering assessments and comprised the excavation and disposal of 390 yd 3 of contaminated soil and rock. This document describes the background to the remedial action, the parties involved in administering and executing it, the chronology of the work, verification of the adequacy of the remedial action, and the cost incurred. 14 references, 5 figures, 5 tables

  5. Waste Management Plan for the Oak Ridge National Remedial Investigation/Feasibility Study

    International Nuclear Information System (INIS)

    1988-04-01

    In accordance with the requirements of the Remedial Investigation/Feasibility Study (RI/FS) Project Quality Assurance Plan, this Waste Management Plan establishes clear lines of responsibility and authority, documentation requirements, and operational guidance for the collection, identification, segregation, classification, packaging, certification, and storage/disposal of wastes. These subjects are discussed in the subsequent sections of this document

  6. Waste Management Plan for the Oak Ridge National Remedial Investigation/Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    In accordance with the requirements of the Remedial Investigation/Feasibility Study (RI/FS) Project Quality Assurance Plan, this Waste Management Plan establishes clear lines of responsibility and authority, documentation requirements, and operational guidance for the collection, identification, segregation, classification, packaging, certification, and storage/disposal of wastes. These subjects are discussed in the subsequent sections of this document.

  7. Incorporating ecological risk assessment into remedial investigation/feasibility study work plans

    International Nuclear Information System (INIS)

    1994-06-01

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and RI/FS work plan will have to be developed as part of the site-remediation scoping process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites

  8. Remedial Investigation Work Plan for J-Field, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, P.; Biang, R.; Dolak, D.; Dunn, C.; Haffenden, R.; Martino, L.; Patton, T.; Wang, Y.; Yuen, C.

    1995-03-01

    The purpose of an RI/FS is to characterize the nature and extent of the risks posed by contaminants present at a site and to develop and evaluate options for remedial actions. The overall objective of the RI is to provide a comprehensive evaluation of site conditions, types and quantities of contaminants present, release mechanisms and migration pathways, target populations, and risks to human health and the environment. The information developed during the RI provides the basis for the design and implementation of remedial actions during the FS. The purpose of this RI Work Plan is to define the tasks that will direct the remedial investigation of the J-Field site at APG.

  9. Incorporating ecological risk assessment into remedial investigation/feasibility study work plans

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and RI/FS work plan will have to be developed as part of the site-remediation scoping process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites.

  10. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION. FINAL REPORT

    International Nuclear Information System (INIS)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-01-01

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology

  11. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary final

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.

  12. Waste area Grouping 2 Phase I remedial investigation: Sediment and Cesium-137 transport modeling report

    International Nuclear Information System (INIS)

    Clapp, R.B.; Bao, Y.S.; Moore, T.D.; Brenkert, A.L.; Purucker, S.T.; Reece, D.K.; Burgoa, B.B.

    1996-06-01

    This report is one of five reports issued in 1996 that provide follow-up information to the Phase I Remedial Investigation (RI) Report for Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL). The five reports address areas of concern that may present immediate risk to public health at the Clinch River and ecological risk within WAG 2 at ORNL. A sixth report, on groundwater, in the series documenting WAG 2 RI Phase I results were part of project activities conducted in FY 1996. The five reports that complete activities conducted as part of Phase I of the Remedial Investigation (RI) for WAG 2 are as follows: (1) Waste Area Grouping 2, Phase I Task Data Report: Seep Data Assessment, (2) Waste Area Grouping 2, Phase I Task Data Report: Tributaries Data Assessment, (3) Waste Area Grouping 2, Phase I Task Data Report: Ecological Risk Assessment, (4) Waste Area Grouping 2, Phase I Task Data Report: Human Health Risk Assessment, (5) Waste Area Grouping 2, Phase I Task Data Report: Sediment and 137 Cs Transport Modeling In December 1990, the Remedial Investigation Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory was issued (ORNL 1990). The WAG 2 RI Plan was structured with a short-term component to be conducted while upgradient WAGs are investigated and remediated, and a long-term component that will complete the RI process for WAG 2 following remediation of upgradient WAGs. RI activities for the short-term component were initiated with the approval of the Environmental Protection Agency, Region IV (EPA), and the Tennessee Department of Environment and Conservation (TDEC). This report presents the results of an investigation of the risk associated with possible future releases of 137 Cs due to an extreme flood. The results are based on field measurements made during storms and computer model simulations

  13. Remediation strategies for contaminated territories resulting from Chernobyl accident. Final report

    International Nuclear Information System (INIS)

    Jacob, P.; Fesenko, S.; Firsakova, S.K.

    2001-03-01

    The present report realizes a settlement specific approach to derive remediation strategies and generalizes the results to the whole affected area. The ultimate aim of the study is to prepare possible investment projects on remediation activities in the contaminated territories. Its current aim was to identify the areas and the remedial actions that should be primarily supported and their corresponding cost. The present report starts with an outline of the methodology of deriving remediation strategies, a description of data for 70 representative settlements and of parameters of the remedial actions considered, and a classification of the contaminated territory according to radiological criteria. After summarising aspects of the contamination situation and applications of remedial actions in the past, dose calculations and derived remediation strategies for the representative settlements are described. These are generalized to the total contaminated territory. Within the contaminated territory private produce is of main importance for the radionuclide intake. At the end of the report, radiological aspects of the produce of collective farms are described. (orig.)

  14. Superfund Record of Decision (EPA Region 4): Maxey Flats Nuclear Disposal site, Fleming County, KY. (First remedial action), September 1991. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    The 280-acre Maxey Flats Nuclear Disposal site is an inactive low-level radioactive waste disposal facility in Fleming County, Kentucky. The estimated 663 people who reside within 2.5 miles of the site use the public water supply for drinking purposes. From 1962 to 1977, Nuclear Engineering Company, Inc. (NECO), operated a solid by-product, source, and special nuclear material disposal facility under a license with the State. Several State investigations in the 1970's revealed that leachate contaminated with tritium and other radioactive substances was migrating from the disposal trenches to unrestricted areas. The Record of Decision (ROD) addresses final remediation of soil, debris, and associated leachate. The primary contaminants of concern affecting the soil and debris are VOCs including benzene, TCE, and toluene; metals including arsenic and lead; and radioactive materials. The selected remedial action for the site is included

  15. Addendum to the Phase 2 Sampling and Analysis Plan for the Clinch River Remedial Investigation

    International Nuclear Information System (INIS)

    1994-03-01

    This document is an addendum to the Phase 2 Sampling and Analysis Plan for the Clinch River Remedial Investigation (DOE 1993). The Department of Energy--Oak Ridge Operations (DOE-ORO) is proposing this addendum to the US Envianmental Protection Agency, Region IV (EPA-IV), and the Tennessee Department of Environment and Conservation (TDEC) as a reduced sampling program on the Clinch River arm of Watts Bar Reservoir and on Poplar Creek. DOE-ORO is proposing to maximize the use of existing data and minimize the collection of new data for water, sediment, and biota during Phase 2 of the Clinch River Remedial Investigation. The existing data along with the additional data collected in Phase 2 would be used to perform a baseline risk assessment and make remedial decisions. DOE-ORO considers that the existing data, the additional data collected in Phase 2, and on-site remedial investigation data would be sufficient to understand the nature and extent of the contamination problem in the Clinch River, perform a baseline risk assessment,and make remedial decisions. This addendum is organized in three sections. The first section provides background information and describes a rationale for modifying the Phase 2 Sampling and Analysis Plan. Section 2 presents a summary of the existing data for the Clinch River arm of Watts Bar Reservoir and an evaluation of the sufficiency of this data for a baseline human health and ecological risk assessment. Section 3 describes the revised Phase 2 Sampling and Analysis Plan for surface water, sediment, and biota in the Clinch River OU and in the Poplar Creek OU

  16. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Volume 2, Appendices D and E: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  17. Remedial investigation for the 200-BP-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Buckmaster, M.A.

    1991-01-01

    The Hanford Site, Richland, Washington, contains over 1500 identified waste sites that will be characterized and remediated over the next 30 years. In support of the ''Hanford Federal Facility Agreement and Consent Order,'' the US Department of Energy has initiated a remedial investigation/feasibility study (RI/FS) at the 200-BP-1 operable unit. The 200-BP-1 RI is the first Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) investigation on the Hanford Site that involves drilling into highly radioactive and chemically contaminated soils. The initial phase of the site characterization is oriented toward determining the nature and extent of any contamination present in the vicinity of the 200-BP-1 operable unit. The major focus of the Phase I RI is the drilling and sampling of 10 inactive waste disposal units which received low level radioactive liquid waste

  18. Comment and response document for the final remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1996-05-01

    This document for the final remedial action plan and site design has been prepared for US Department of Energy Environmental Restoration Division as part of the Uranium Mill Tailings Remedial Action plan. Comments and responses are included for the site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado

  19. Outstanding Junior Investigator Award. Final report

    International Nuclear Information System (INIS)

    Ellison, J.A.

    1995-01-01

    The OJI supported research of J. Ellison has been concentrated in two areas: study of Wγ and Zγ production at the Tevatron, which probes the trilinear boson coupling; design, fabrication and testing of silicon microstrip detectors for the D0 upgrade silicon tracking system. The Wγ analysis using data from the first D0 run (∼14 pb -1 integrated luminosity) has been completed - J. Ellison and a postdoctoral research working with him (B. Choudhary) were responsible for the muon channel analysis. This analysis is an important test of the Standard Model (SM), since it probes the nature of the WWγ coupling, which is related to the W boson magnetic dipole and electric quadrupole moments. Any deviation from the SM value of the WWγ coupling would be an indication of either composite structure of the W or higher order loop corrections involving physics beyond the SM. The analysis has resulted in the world's most sensitive limits on the WWγ coupling parameters. In addition the author has also worked on an analysis of Zγ production which has yielded sensitive limits on the ZZγ and Zγγ couplings. The work on the D0 Silicon Tracker has also made very good progress. The team led by J. Ellison includes two postdoctoral researchers (A. Bischoff and C. Boswell), one graduate student (M. Mason) and three undergraduate students. They have fully evaluated proptotype detectors which were designed at UCR and have completed a detailed simulation study of the detector performance for different strip geometries. The results were used to optimize the design of the final D0 detectors, for which UR has sole responsibility. The author has completed the mask design for the 3-chip barrel detectors and production of the final detectors as now begun

  20. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 3: Ecological risk assessment

    International Nuclear Information System (INIS)

    Hlohowskyj, I.; Hayse, J.; Kuperman, R.; Van Lonkhuyzen, R.

    2000-01-01

    The Environmental Management Division of the U.S. Army Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation (RI) and feasibility study (FS) of the J-Field area at APG, pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. As part of that activity, Argonne National Laboratory (ANL) conducted an ecological risk assessment (ERA) of the J-Field site. This report presents the results of that assessment

  1. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 3: Ecological risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hlohowskyj, I.; Hayse, J.; Kuperman, R.; Van Lonkhuyzen, R.

    2000-02-25

    The Environmental Management Division of the U.S. Army Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation (RI) and feasibility study (FS) of the J-Field area at APG, pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. As part of that activity, Argonne National Laboratory (ANL) conducted an ecological risk assessment (ERA) of the J-Field site. This report presents the results of that assessment.

  2. Radiological surveillance of Remedial Action activities at the processing site, Falls City, Texas. Final report

    International Nuclear Information System (INIS)

    1993-04-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological surveillance of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site in Falls City, Texas. This surveillance was conducted March 22--26, 1993. No findings were identified during the surveillance. Three site-specific observations and three programmatic observations are presented in this report. The overall conclusion from the surveillance is that the radiological aspects of the Falls City, Texas, remedial action program are performed adequately. However, some of the observations identify that there is potential for improving certain aspects of the occupational radiological air sampling, ensuring analytical data quality, and in communicating with the DOE and TAC on the ore sampling methods. The TAC has also received and is currently reviewing the RAC's responses regarding the observations identified during the radiological surveillance performed October 29--30, 1992

  3. Linking deposit morphology and clogging in subsurface remediation: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, David C. [University of Colorado Denver

    2013-12-11

    Groundwater is a crucial resource for water supply, especially in arid and semiarid areas of the United States west of the 100th meridian. Accordingly, remediation of contaminated groundwater is an important application of science and technology, particularly for the U.S. Department of Energy (DOE), which oversees a number of groundwater remediation sites from Cold War era mining. Groundwater remediation is complex, because it depends on identifying, locating, and treating contaminants in the subsurface, where remediation reactions depend on interacting geological, hydrological, geochemical, and microbiological factors. Within this context, permeability is a fundamental concept, because it controls the rates and pathways of groundwater flow. Colloid science is intimately related to permeability, because when colloids are present (particles with equivalent diameters between 1 nanometer and 10 micrometers), changes in hydrological or geochemical conditions can trigger a detrimental reduction in permeability called clogging. Accordingly, clogging is a major concern in groundwater remediation. Several lines of evidence suggest that clogging by colloids depends on (1) colloid deposition, and (2) deposit morphology, that is, the structure of colloid deposits, which can be quantified as a fractal dimension. This report describes research, performed under a 2-year, exploratory grant from the DOE’s Subsurface Biogeochemical Research (SBR) program. This research employed a novel laboratory technique to simultaneously measure flow, colloid deposition, deposit morphology, and permeability in a flow cell, and also collected field samples from wells at the DOE’s Old Rifle remediation site. Field results indicate that suspended solids at the Old Rifle site have fractal structures. Laboratory results indicate that clogging is associated with colloid deposits with smaller fractal dimensions, in accordance with previous studies on initially clean granular media. Preliminary

  4. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    International Nuclear Information System (INIS)

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd 3 ) (2.1 million cubic meters [m 3 ]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m 3 ) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd 3 (420,000 m 3 ). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd 3 (2.58 million m 3 ). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations

  5. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

  6. Final Remedial Investigation Sampling Plan Addendum. Milan Army Ammunition Plant Remedial Investigation Southern Study Area (Operable Unit No. 5)

    Science.gov (United States)

    1997-09-01

    91-D-0012 Task Order No. 0007 2.4.7 Milan Army Ammunition Plant, Phytoremediation Pilot Study, USAEC, 1996 .. .............................. 2-28 2.5...indicated that heavy metal contamination (lead, chromium, and mercury ) was present at relatively low levels, and explosive contamination was limited to...and MI172 where lead was found at 22.9 j.g/1 and 18.4 Ig/l, respectively. 2.4.7 Milan Army Ammunition Plant, Phytoremediation Pilot Study, USAEC, 1996

  7. Superfund record of decision (EPA Region 3): Paoli Rail Yard, Paoli, PA. (First remedial action), July 1992. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    The 428-acre Paoli Rail Yard site is a maintenance, storage, and repair facility located north of Paoli in Chester County, Pennsylvania. Soil contamination in and around the car shop is attributed to releases of fuel oil and PCB-laden transformer fluid from rail cars during maintenance and repair activities. In 1985, EPA identified PCB contamination in soil and sediment, and on building surfaces. The rail companies agreed to address site clean-up activities, including erosion, sedimentation, and stormwater characteristics and control, decontamination, soil sampling, excavation of 3,500 cubic yards residential soil, and implementation of worker protection measures. The ROD provides a final remedy for contaminated soil (from the rail yard and residences), sediment, and structures at the Paoli Rail Yard, and contaminated ground water. The primary contaminants of concern affecting the soil, sediment, debris, and ground water are VOCs, including benzene, ethylbenzene, toluene, xylenes; and other organics, including PCBs. The selected remedial action for the site are included

  8. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    Ludowise, J.D.

    2006-01-01

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project

  9. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Ludowise

    2006-12-12

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

  10. Control of a long reach manipulator with suspension cables for waste storage tank remediation. Final report

    International Nuclear Information System (INIS)

    Wang, S.L.

    1994-01-01

    A long reach manipulator will be used for waste remediation in large underground storage tanks. The manipulator's slenderness makes it flexible and difficult to control. A low-cost and effective method to enhance the manipulator's stiffness is proposed in this research by using suspension cables. These cables can also be used to accurately measure the position of the manipulator's wrist

  11. Remedial investigation/feasibility study report for Lower Watts Bar Reservoir Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This document is the combined Remedial Investigation and Feasibility Study Report for the lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch river. This area has received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received contaminants, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. There is little data regarding the quantities of most contaminants potentially released from the ORR to the Clinch River, particularly for the early years of ORR operations. Estimates of the quantities released during this period are available for most radionuclides and some inorganic contaminants, indicating that releases 30 to 50 years ago were much higher than today. Since the early 1970s, the release of potential contaminants has been monitored for compliance with environmental law and reported in the annual environmental monitoring reports for the ORR.

  12. Remedial investigation/feasibility study report for Lower Watts Bar Reservoir Operable Unit

    International Nuclear Information System (INIS)

    1995-03-01

    This document is the combined Remedial Investigation and Feasibility Study Report for the lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch river. This area has received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received contaminants, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. There is little data regarding the quantities of most contaminants potentially released from the ORR to the Clinch River, particularly for the early years of ORR operations. Estimates of the quantities released during this period are available for most radionuclides and some inorganic contaminants, indicating that releases 30 to 50 years ago were much higher than today. Since the early 1970s, the release of potential contaminants has been monitored for compliance with environmental law and reported in the annual environmental monitoring reports for the ORR

  13. Field Investigation Plan for 1301-N and 1325-N Facilities Sampling to Support Remedial Design

    International Nuclear Information System (INIS)

    Weiss, S. G.

    1998-01-01

    This field investigation plan (FIP) provides for the sampling and analysis activities supporting the remedial design planning for the planned removal action for the 1301-N and 1325-N Liquid Waste Disposal Facilities (LWDFs), which are treatment, storage,and disposal (TSD) units (cribs/trenches). The planned removal action involves excavation, transportation, and disposal of contaminated material at the Environmental Restoration Disposal Facility (ERDF).An engineering study (BHI 1997) was performed to develop and evaluate various options that are predominantly influenced by the volume of high- and low-activity contaminated soil requiring removal. The study recommended that additional sampling be performed to supplement historical data for use in the remedial design

  14. Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Crow, N.B.; Lamarre, A.L.

    1990-08-01

    This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

  15. Investigation of universal plasma instabilities. Final report

    International Nuclear Information System (INIS)

    Lashinsky, H.

    1977-01-01

    This project was undertaken in order to carry out a comprehensive experimental investigation of universal plasma instabilities under a variety of conditions and a wide range of experimental parameters to scale the results appropriately to make comparisons with plasmas of thermonuclear interest. Of particular importance are the roles played by collisions and resonance particles (Landau damping and excitation) and the various stages in the development of the instabilities i.e., the linear onset of the instability, the quasilinear stage, and the transition to turbulence. General nonlinear effects such as mode locking and mode competition, and the relation of these phenomena to plasma turbulence, are also of great interest and were studied experimentally. The ultimate aim was to measure certain plasma transport coefficients in the plasma under stable and turbulent conditions with the particular view of evaluating the effect of the universal plasma instabilities of plasma confinement in a magnetic field

  16. Phase 1 remedial investigation report for 200-BP-1 operable unit. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The US Department of Energy (DOE) Hanford Site, in Washington State is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November 1989 included the 200 Areas of the Hanford Site on the National Priority List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). Inclusion on the NPL initiated the remedial investigation (RD process for the 200-BP-1 operable unit. These efforts are being addressed through the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989) which was negotiated and approved by the DOE, the EPA, and the State of Washington Department of Ecology (Ecology) in May 1989. This agreement, known as the Tri-Party Agreement, governs all CERCLA efforts at Hanford. In March of 1990, the Department of Energy, Richland Operations (DOE-RL) issued a Remedial Investigation/Feasibility Study (RI/FS) work plan (DOE-RL 1990a) for the 200-BP-1 operable unit. The work plan initiated the first phase of site characterization activities associated with the 200-BP-1 operable unit. The purpose of the 200-BP-1 operable unit RI is to gather and develop the necessary information to adequately understand the risks to human health and the environment posed by the site and to support the development and analysis of remedial alternatives during the FS. The RI analysis will, in turn, be used by Tri-Party Agreement signatories to make a risk-management-based selection of remedies for the releases of hazardous substances that have occurred from the 200-BP-1 operable unit.

  17. Phase 1 remedial investigation report for 200-BP-1 operable unit

    International Nuclear Information System (INIS)

    1993-09-01

    The US Department of Energy (DOE) Hanford Site, in Washington State is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November 1989 included the 200 Areas of the Hanford Site on the National Priority List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). Inclusion on the NPL initiated the remedial investigation (RD process for the 200-BP-1 operable unit. These efforts are being addressed through the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989) which was negotiated and approved by the DOE, the EPA, and the State of Washington Department of Ecology (Ecology) in May 1989. This agreement, known as the Tri-Party Agreement, governs all CERCLA efforts at Hanford. In March of 1990, the Department of Energy, Richland Operations (DOE-RL) issued a Remedial Investigation/Feasibility Study (RI/FS) work plan (DOE-RL 1990a) for the 200-BP-1 operable unit. The work plan initiated the first phase of site characterization activities associated with the 200-BP-1 operable unit. The purpose of the 200-BP-1 operable unit RI is to gather and develop the necessary information to adequately understand the risks to human health and the environment posed by the site and to support the development and analysis of remedial alternatives during the FS. The RI analysis will, in turn, be used by Tri-Party Agreement signatories to make a risk-management-based selection of remedies for the releases of hazardous substances that have occurred from the 200-BP-1 operable unit

  18. Investigation of Remedial Education Course Scores as a Predictor of Introduction-Level Course Performances

    Science.gov (United States)

    Ulmer, Ward; Means, Darris R.; Cawthon, Tony W.; Kristensen, Sheryl A.

    2016-01-01

    This study explores whether performance in remedial English and remedial math is a predictor of success in a college-level introduction English or college-level math class; and whether demographic variables increase the likelihood of remedial English and remedial math as a predictor of success in a college-level introduction English or…

  19. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Fire Department Hose Training Facility (904-113G)

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-04-01

    This report documents the Resource Conservation and Recovery Act (RCRA) Facility Investigation/Remedial Investigation/Baseline Risk Assessment (RFI/RI/BRA) for the Fire Department Hose Training Facility (FDTF) (904-113G).

  20. Ecological risk assessment guidance for preparation of remedial investigation/feasibility study work plans

    International Nuclear Information System (INIS)

    Pentecost, E.D.; Vinikour, W.S.

    1993-08-01

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial assessment investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfired Amendments and Reauthorization Act of 1986 (SARA), an RI/FS work plan win have to be developed as part of the site-remediation scoping the process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites. An overview analysis of early ecological risk assessment methods (i.e., in the 1980s) at Superfund sites was conducted by the EPA (1989a). That review provided a perspective of attention given to ecological issues in some of the first RI/FS studies. By itself, that reference is of somewhat limited value; it does, however, establish a basis for comparison of past practices in ecological risk with current, more refined methods

  1. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  2. 200 Areas Remedial Investigation/Feasibility Study Implementation Plan - Environmental Restoration Program

    International Nuclear Information System (INIS)

    Knepp, A. J.

    1999-01-01

    The 200 Areas Remedial Investigation/Feasibility Study Implementation Plan - Environmental Restoration Program (Implementation Plan) addresses approximately 700 soil waste sites (and associated structures such as pipelines) resulting from the discharge of liquids and solids from processing facilities to the ground (e.g., ponds, ditches, cribs,burial grounds) in the 200 Areas and assigned to the Environmental Restoration Program. The Implementation Plan outlines the framework for implementing assessment activities in the 200 Areas to ensure consistency in documentation, level of characterization, and decision making. The Implementation Plan also consolidates background information and other typical work plan materials, to serve as a single referenceable source for this type of information

  3. WSSRAP chemical plant geotechnical investigations for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1990-12-01

    This document has been prepared for the United states Department of Energy (DOE) Weldon Spring Site Remedial Action Project (WSSRAP) by the Project Management Contractor (PMC), which consists of MK-Ferguson Company (MKF) and Morrison Knudsen Corporation Environmental Services Group (MKES) with Jacobs Engineering Group (JEG) as MKF's predesignated subcontractor. This report presents the results of site geotechnical investigations conducted by the PMC in the vicinity of the Weldon Spring chemical plant and raffinate pits (WSCP/RP) and in potential on-site and off-site clayey material borrow sources. The WSCP/RP is the proposed disposal cell (DC) site. 39 refs., 24 figs., 12 tabs

  4. Status of remedial investigation activities in the Hanford Site 300 Area groundwater operable unit

    International Nuclear Information System (INIS)

    Hulstrom, L.C.; Innis, B.E.; Frank, M.A.

    1993-09-01

    The Phase 1 remedial investigation (RI) and Phase 1 and 2 feasibility studies (FS) for the 300-FF-5 groundwater operable unit underlying the 300 Area on the Hanford Site have been completed. Analysis and evaluation of soil, sediment, and surface water, and biotic sampling data, groundwater chemistry, and radiological data gathered over the past 3 years has been completed. Risk assessment calculations have been performed. Use of the data gathered, coupled with information from an automated water level data collection system, has enabled engineers to track three plumes that represent the most significant contamination of the groundwater

  5. Final remediation of the provisional storage near Zavratec. Separation of waste, decontamination and radiological measurements

    International Nuclear Information System (INIS)

    Stepisnik, M.; Zeleznik, N.; Mele, I.

    2000-01-01

    This paper presents remedial activities in Zavratec during winter 1999 - 2000. The difficult and slow process of separation radioactive from non-radioactive waste is explained, and the measuring techniques and equipment for separation are presented. The measurements of storage contamination and its decontamination, involving different practical problems, are described in detail. As a result, the initial volume of the waste was reduced to 50%, in spite of the extended decontamination works. The waste has been relocated to the Brinje storage facility. Measurements inside and outside the Zavratec facility after decontamination showed that no radioactivity higher than the natural background was present. The facility was released for unrestricted use. (author)

  6. Remedial investigation/feasibility study report for lower Watts Bar Reservoir Operable Unit

    International Nuclear Information System (INIS)

    1994-08-01

    This document is the combined Remedial Investigation and Feasibility Study Report for the Lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch River. This area has received hazardous substances released over a period of 50 years from the U.S. Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received containments, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. Water-soluble contaminants released to ORR surface waters are rapidly diluted upon entering the Clinch River and then quickly transported downstream to the Tennessee River where further dilution occurs. Almost the entire quantity of these diluted contaminants rapidly flows through LWBR. In contrast, particle-associated contaminants tend to accumulate in the lower Clinch River and in LWBR in areas of sediment deposition. Those particle-associated contaminants that were released in peak quantities during the early years of ORR operations (e.g., mercury and 137 Cs) are buried under as much as 80 cm of cleaner sediment in LWBR. Certain contaminants, most notably polychlorinated biphenyls (PCBs), have accumulated in LWBR biota. The contamination of aquatic biota with PCBs is best documented for certain fish species and extends to reservoirs upstream of the ORR, indicating a contamination problem that is regional in scope and not specific to the ORR

  7. 300-FF-1 operable unit remedial investigation phase II report: Physical separation of soils treatability study

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This report describes the approach and results of physical separations treatability tests conducted at the Hanford Site in the North Process Pond of the 300-FF-1 Operable Unit. Physical separation of soils was identified as a remediation alternative due to the potential to significantly reduce the amount of contaminated soils prior to disposal. Tests were conducted using a system developed at Hanford consisting of modified EPA equipment integrated with screens, hoppers, conveyors, tanks, and pumps from the Hanford Site. The treatability tests discussed in this report consisted of four parts, in which an estimated 84 tons of soil was processed: (1) a pre-test run to set up the system and adjust system parameters for soils to be processed; (2) a baseline run to establish the performance of the system - Test No. 1; (3) a final run in which the system was modified as a result of findings from the baseline run - Test No. 2; and (4) water treatment.

  8. 300-FF-1 operable unit remedial investigation phase II report: Physical separation of soils treatability study

    International Nuclear Information System (INIS)

    1994-04-01

    This report describes the approach and results of physical separations treatability tests conducted at the Hanford Site in the North Process Pond of the 300-FF-1 Operable Unit. Physical separation of soils was identified as a remediation alternative due to the potential to significantly reduce the amount of contaminated soils prior to disposal. Tests were conducted using a system developed at Hanford consisting of modified EPA equipment integrated with screens, hoppers, conveyors, tanks, and pumps from the Hanford Site. The treatability tests discussed in this report consisted of four parts, in which an estimated 84 tons of soil was processed: (1) a pre-test run to set up the system and adjust system parameters for soils to be processed; (2) a baseline run to establish the performance of the system - Test No. 1; (3) a final run in which the system was modified as a result of findings from the baseline run - Test No. 2; and (4) water treatment

  9. Final record of decision for remedial actions at Operable Unit 4

    International Nuclear Information System (INIS)

    1994-12-01

    This decision document presents the selected remedial action for Operable Unit 4 of the Fernald Site in Fernald, Ohio. This remedial action was selected in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and to the extent practicable 40 Code of Federal Regulations (CFR) Part 300, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). For Operable Unit 4 at the FEMP, DOE has chosen to complete an integrated CERCLA/NEPA process. This decision was based on the longstanding interest on the part of local stakeholders to prepare an Environmental Impact Statement (EIS) on the restoration activities at the FEMP and on the recognition that the draft document was issued and public comments received. Therefore, this single document is intended to serve as DOE's Record of Decision (ROD) for Operable Unit 4 under both CERCLA and NEPA; however, it is not the intent of the DOE to make a statement on the legal applicability of NEPA to CERCLA actions

  10. Remedial investigation/feasibility study work plan for the 300-FF-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1990-03-01

    Over 1,400 waste facilities have been identified on the Hanford Site. Most of the waste facilities are located within geographic areas on the Hanford Site that are referred to as the 100, 200, 300, 400, and 1100 areas. The purpose of this work plan is to document the project scoping process and to outline all remedial investigation/feasibility study (RI/FS) activities, to determine the nature and extent of the threat presented by releases of hazardous substances from the operable unit, and to evaluate proposed remedies for such releases. The goal of the 300-FF-1 remedial investigation (RI) is to provide sufficient information needed to conduct the feasibility study (FS), by determining the nature and extent of the threat to public health and the environment posed by releases of hazardous substances from 300-FF-1, and the performance of specific remedial technologies. 62 refs., 28 figs., 48 tabs

  11. Investigations of Cu, Pb and Zn partitioning by sequential extraction in harbour sediments after electrodialytic remediation

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Villumsen, Arne

    2010-01-01

    remediation time. A three step sequential extraction scheme (BCR), with an extra residual step, was used to evaluate the heavy metal distribution in the sediments before and after electrodialytic remediation. Cu was mainly associated with the oxidisable phase of the sediment, both before and after remediation...

  12. Phase I remedial investigation report for the 300-FF-5 operable unit, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    The focus of this remedial investigation (RI) is the 300-FF-5 operable unit, one of five operable units associated with the 300 Area aggregate of the U.S. Department of Energy`s (DOE`s) Hanford Site. The 300-FF-5 operable unit is a groundwater operable unit beneath the 300-FF-1, 300-FF-2, and 300-FF-3 source operable units. This operable unit was designated to include all contamination detected in the groundwater and sediments below the water table that emanates from the 300-FF-1, 300-FF-2, and 300-FF-3 operable units (DOE-RL 1990a). In November 1989, the U.S. Environmental Protection Agency (EPA) placed the 300 Area on the National Priorities List (NPL) contained within Appendix B of the National Oil and Hazardous Substance Pollution Contingency Plan (NCP, 53 FR 51391 et seq.). The EPA took this action pursuant to their authority under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, 42 USC 9601 et seq.). The DOE Richland Operations Office (DOE-RL), the EPA and Washington Department of Ecology (Ecology) issued the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), in May 1989 (Ecology et al. 1992, Rev. 2). This agreement, among other matters, governs all CERCLA efforts at the Hanford Site. In June 1990, a remedial investigation/feasibility study (RI/FS) workplan for the 300-FF-5 operable unit was issued pursuant to the Tri-Party Agreement.

  13. Phase I remedial investigation report for the 300-FF-5 operable unit, Volume 1

    International Nuclear Information System (INIS)

    1994-01-01

    The focus of this remedial investigation (RI) is the 300-FF-5 operable unit, one of five operable units associated with the 300 Area aggregate of the U.S. Department of Energy's (DOE's) Hanford Site. The 300-FF-5 operable unit is a groundwater operable unit beneath the 300-FF-1, 300-FF-2, and 300-FF-3 source operable units. This operable unit was designated to include all contamination detected in the groundwater and sediments below the water table that emanates from the 300-FF-1, 300-FF-2, and 300-FF-3 operable units (DOE-RL 1990a). In November 1989, the U.S. Environmental Protection Agency (EPA) placed the 300 Area on the National Priorities List (NPL) contained within Appendix B of the National Oil and Hazardous Substance Pollution Contingency Plan (NCP, 53 FR 51391 et seq.). The EPA took this action pursuant to their authority under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, 42 USC 9601 et seq.). The DOE Richland Operations Office (DOE-RL), the EPA and Washington Department of Ecology (Ecology) issued the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), in May 1989 (Ecology et al. 1992, Rev. 2). This agreement, among other matters, governs all CERCLA efforts at the Hanford Site. In June 1990, a remedial investigation/feasibility study (RI/FS) workplan for the 300-FF-5 operable unit was issued pursuant to the Tri-Party Agreement

  14. FY 1995 remedial investigation work plan for Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Watkins, D.R.; Herbes, S.E.

    1994-09-01

    Field activities to support the remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) include characterization of the nature and extent of contamination in WAG 2, specifically to support risk-based remediation decisions. WAG 2 is the major drainage system downgradient of other WAGs containing significant sources of contamination at ORNL. The RI of WAG 2 is developed in three phases: Phase 1, initial scoping characterization to determine the need for early action; Phase 2, interim activities during remediation of upgradient WAGs to evaluate potential changes in the contamination status of WAG 2 that would necessitate reevaluation of the need for early action; and Phase 3, completion of the RI process following remediation of upslope WAGs. Specifically, Phase 2 activities are required to track key areas to determine if changes have occurred in WAG 2 that would require (1) interim remedial action to protect human health and the environment or (2) changes in remedial action plans and schedules for WAG2 because of changing contaminant release patterns in upslope WAGs or because of the effects of interim remedial or removal actions in other WAGs. This report defines activities to be conducted in FY 1995 for completion of the Phase 1 RI and initiation of limited Phase 2 field work

  15. Remedial investigation/feasibility study for the David Witherspoon, Inc., 901 Site, Knoxville, Tennessee: Volume 2, Appendixes

    International Nuclear Information System (INIS)

    1996-10-01

    This document contains the appendixes for the remedial investigation and feasibility study for the David Witherspoon, Inc., 901 site in Knoxville, Tennessee. The following topics are covered in the appendixes: (A) David Witherspoon, Inc., 901 Site Historical Data, (B) Fieldwork Plans for the David Witherspoon, Inc., 901 Site, (C) Risk Assessment, (D) Remediation Technology Discussion, (E) Engineering Support Documentation, (F) Applicable or Relevant and Appropriate Requirements, and (G) Cost Estimate Documentation

  16. Remedial investigation/feasibility study for the David Witherspoon, Inc., 901 Site, Knoxville, Tennessee: Volume 2, Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This document contains the appendixes for the remedial investigation and feasibility study for the David Witherspoon, Inc., 901 site in Knoxville, Tennessee. The following topics are covered in the appendixes: (A) David Witherspoon, Inc., 901 Site Historical Data, (B) Fieldwork Plans for the David Witherspoon, Inc., 901 Site, (C) Risk Assessment, (D) Remediation Technology Discussion, (E) Engineering Support Documentation, (F) Applicable or Relevant and Appropriate Requirements, and (G) Cost Estimate Documentation.

  17. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Appendix D, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two designated inactive uranium mill tailings sites near Rifle, Colorado, and the proposed disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  18. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Appendix D, Final report

    International Nuclear Information System (INIS)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two designated inactive uranium mill tailings sites near Rifle, Colorado, and the proposed disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions

  19. FY 1995 Remedial Investigation Work Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Watkins, D.R.; Herbes, S.E.

    1994-12-01

    The purpose of this project is to provide key information needed by decision makers to expedite the process of environmental restoration and to provide the data base required by the Remedial Investigation/Feasibility Study (RI/FS) for Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL). WAG 2 is the major drainage system downgradient of other WAGs that contain significant sources of contamination at ORNL. Field activities to support the remedial investigation for the RI portion include characterization of the nature and extent of contamination in WAG 2 [consisting of White Oak Creek (WOC) and associated tributaries and floodplain, White Oak Lake (WOL), and White Oak Creek Embayment (WOCE)], specifically to support risk-based remediation decisions. The project consists of three phases: Phase 1, initial scoping characterization to determine the need for early action; Phase 2, interim activities during remediation of upslope WAGs to evaluate potential changes in the contamination status of WAG 2 that would necessitate revaluation of the need for early action; and Phase 3, completion of the RI process following remediation of upslope WAGs. Overall RI objectives, consistent with ORNL Environmental Restoration (ER) Program strategic objectives to reduce risks and comply with environmental regulations, are discussed in the WAG 2 Remedial Investigation Plan

  20. Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, Paul [Univ. of Kentucky, Lexington, KY (United States)

    2013-11-07

    The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites as well as contaminated sites around the United States and beyond.

  1. Remedial Investigation of Hanford Site Releases to the Columbia River - 13603

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, J.A.; Hulstrom, L.C. [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States); Sands, J.P. [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

    2013-07-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation

  2. Investigation on reusing water treatment residuals to remedy soil contaminated with multiple metals in Baiyin, China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changhui; Zhao, Yuanyuan [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875 (China); Pei, Yuansheng, E-mail: yspei@bnu.edu.cn [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer Fe/Al water treatment residuals (FARs) can stabilize As, Pb, Ni, Zn, Cr and Cu. Black-Right-Pointing-Pointer FARs cannot stabilize Ba and Cd. Black-Right-Pointing-Pointer The properties of FARs and soil affect the FARs' ability of stabilizing metals. - Abstract: In this work, the remediation of soils contaminated with multiple metals using ferric and alum water treatment residuals (FARs) in Baiyin, China, was investigated. The results of metals fractionation indicated that after the soil was treated with FARs, arsenic (As), lead (Pb), nickel (Ni), zinc (Zn) and copper (Cu) could be transformed into more stable forms, i.e., As bound in crystalline Fe/Al oxides and other metals in the oxidable and residual forms. However, the forms of chromium (Cr) and cadmium (Cd) were unaffected. Interestingly, due to the effect of FARs, barium (Ba) was predominantly transformed into more mobile forms. The bioaccessibility extraction test demonstrated that the FARs reduced the bioaccessibility of As by 25%, followed by Cu, Cr, Zn, Ni and Pb. The bioaccessibility of Cd and Ba were increased; in particular, there was an increase of 41% for Ba at the end of the test. In conclusion, the FARs can be used to remedy soil contaminated with multiple metals, but comprehensive studies are needed before practical applications of this work.

  3. Investigation on reusing water treatment residuals to remedy soil contaminated with multiple metals in Baiyin, China

    International Nuclear Information System (INIS)

    Wang, Changhui; Zhao, Yuanyuan; Pei, Yuansheng

    2012-01-01

    Highlights: ► Fe/Al water treatment residuals (FARs) can stabilize As, Pb, Ni, Zn, Cr and Cu. ► FARs cannot stabilize Ba and Cd. ► The properties of FARs and soil affect the FARs’ ability of stabilizing metals. - Abstract: In this work, the remediation of soils contaminated with multiple metals using ferric and alum water treatment residuals (FARs) in Baiyin, China, was investigated. The results of metals fractionation indicated that after the soil was treated with FARs, arsenic (As), lead (Pb), nickel (Ni), zinc (Zn) and copper (Cu) could be transformed into more stable forms, i.e., As bound in crystalline Fe/Al oxides and other metals in the oxidable and residual forms. However, the forms of chromium (Cr) and cadmium (Cd) were unaffected. Interestingly, due to the effect of FARs, barium (Ba) was predominantly transformed into more mobile forms. The bioaccessibility extraction test demonstrated that the FARs reduced the bioaccessibility of As by 25%, followed by Cu, Cr, Zn, Ni and Pb. The bioaccessibility of Cd and Ba were increased; in particular, there was an increase of 41% for Ba at the end of the test. In conclusion, the FARs can be used to remedy soil contaminated with multiple metals, but comprehensive studies are needed before practical applications of this work.

  4. Final Work Plan for a Remedial Action Plan in Support of the Risk-Based Approach to Remediation at KC-135 Crash Site

    National Research Council Canada - National Science Library

    1994-01-01

    ... receptor exposure to fuel-hydrocarbon- contaminated environmental media at the KC-135 Crash Site. The second goal is to implement any necessary and appropriate remedial technologies at the KC-135 Crash Site...

  5. Superfund record of decision (EPA Region 4): Ciba-Geigy Site (McIntosh Plant), Washington County, McIntosh, AL. (Third remedial action), July 1992. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    The 1,500-acre Ciba-Geigy site is an active chemical manufacturer in an industrial area in McIntosh, Washington County, Alabama. A wetlands area borders the site property, and part of the site lies within the floodplain of the Tombigbee River. In 1985, EPA issued a RCRA permit that included a corrective action plan requiring Ciba-Geigy to remove and treat ground water and surface water contamination at the site. Further investigations by EPA revealed 11 former waste management areas of potential contamination onsite. These areas contain a variety of waste, debris, pesticide by-products and residues. The ROD addresses a final remedy for OU4, which includes contaminated soil and sludge in former waste management Area 8 and the upper dilute ditch. The primary contaminants of concern affecting the soil, sludge, and debris are VOCs, including benzene, toluene, and xylenes; other organics, including pesticides; metals, including arsenic, chromium, and lead; and inorganics, including cyanide. The selected remedial action for the site are included

  6. Superfund Record of Decision (EPA region 2): Glen Ridge Radium site, Essex County, NJ. (Second remedial action), June 1990. Final report

    International Nuclear Information System (INIS)

    1990-01-01

    The 90-acre Glen Ridge Radium site is a residential community in the Borough of Glen Ridge, Essex County, New Jersey. The site is adjacent to another Superfund site, the Montclair/West Orange site. The Glen Ridge site includes a community of 274 properties serviced by surface reservoirs in northern New Jersey. In the early 1900s, a radium processing or utilization facility was located in the vicinity of the site. EPA investigations in 1981 and 1983 confirmed the presence of gamma radiation contamination in the Glen Ridge area and in several adjacent houses. The ROD complements the previous 1989 ROD for this site and provides a final remedy. The primary contaminant of concern affecting the soil is radium 226

  7. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1, main text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This document is the combined Remedial Investigation/Feasibility Study (RI/FS) Report for the Clinch River/Poplar Creek Operable Unit (CR/PC OU), an off-site OU associated with environmental restoration activities at the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). As a result of past, present, and potential future releases of hazardous substances into the environment, the ORR was placed on the National Priorities List in December 1989 (54 FR 48184). Sites on this list must be investigated for possible remedial action, as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 42 U.S.C. 9601, et seq.). This report documents the findings of the remedial investigation of this OU and the feasibility of potential remedial action alternatives. These studies are authorized by Sect. 117 of CERCLA and were conducted in accordance with the requirements of the National Contingency Plan (40 CFR Part 300). DOE, the U.S. Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC) have entered into a Federal Facility Agreement (FFA), as authorized by Sect. 120 of CERCLA and Sects. 3008(h) and 6001 of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901, et seq.). The purpose of this agreement is to ensure a coordinated and effective response for all environmental restoration activities occurring at the ORR. In addition to other responsibilities, the FFA parties mutually define the OU boundaries, set remediation priorities, establish remedial investigation priorities and strategies, and identify and select remedial actions. A copy of this FFA is available from the DOE Information Resource Center in Oak Ridge, Tennessee.

  8. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1, main text

    International Nuclear Information System (INIS)

    1996-03-01

    This document is the combined Remedial Investigation/Feasibility Study (RI/FS) Report for the Clinch River/Poplar Creek Operable Unit (CR/PC OU), an off-site OU associated with environmental restoration activities at the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). As a result of past, present, and potential future releases of hazardous substances into the environment, the ORR was placed on the National Priorities List in December 1989 (54 FR 48184). Sites on this list must be investigated for possible remedial action, as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 42 U.S.C. 9601, et seq.). This report documents the findings of the remedial investigation of this OU and the feasibility of potential remedial action alternatives. These studies are authorized by Sect. 117 of CERCLA and were conducted in accordance with the requirements of the National Contingency Plan (40 CFR Part 300). DOE, the U.S. Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC) have entered into a Federal Facility Agreement (FFA), as authorized by Sect. 120 of CERCLA and Sects. 3008(h) and 6001 of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901, et seq.). The purpose of this agreement is to ensure a coordinated and effective response for all environmental restoration activities occurring at the ORR. In addition to other responsibilities, the FFA parties mutually define the OU boundaries, set remediation priorities, establish remedial investigation priorities and strategies, and identify and select remedial actions. A copy of this FFA is available from the DOE Information Resource Center in Oak Ridge, Tennessee

  9. 42 CFR 8.34 - Court review of final administrative action; exhaustion of administrative remedies.

    Science.gov (United States)

    2010-10-01

    ... HEALTH AND HUMAN SERVICES GENERAL PROVISIONS CERTIFICATION OF OPIOID TREATMENT PROGRAMS Procedures for... Withdrawal of Approval of an Accreditation Body § 8.34 Court review of final administrative action...

  10. Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report

    International Nuclear Information System (INIS)

    Morris, R.

    1996-05-01

    Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. The DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2

  11. Superfund Record of Decision (EPA Region 9): Nineteenth Avenue Landfill, Phoenix, AZ. (First remedial action), September 1989. Final report

    International Nuclear Information System (INIS)

    1989-01-01

    The 213-acre Nineteenth Avenue Landfill is in an industrial area of Maricopa County, Phoenix, Arizona. State permitted landfill operations were conducted from 1957 to 1979 during which time approximately nine million cubic yards of municipal refuse, solid and liquid industrial wastes, and some medical wastes and materials containing low levels of radioactivity were deposited in the landfill. The State ordered the landfill closed in 1979 due to the periodic inundation of the landfill by flood waters from the Salt River Channel. Subsequently, the city covered the site with fill, stockpiled soil for final capping, installed ground water monitoring wells, built berms around the landfill, and installed a methane gas collection system. The remedial action is designed to mitigate threats resulting from flooding of the landfill, which has occurred intermittently since 1965. The primary contaminants of concern in the soil/refuse include VOCs such as toluene and xylenes

  12. Work plan for the remedial investigation/feasibility study-environmental assessment for the Colonie site, Colonie, New York

    International Nuclear Information System (INIS)

    1990-06-01

    This work plan has been prepared to document the scoping and planning process performed by the US Department of Energy (DOE) to support remedial action activities at the Colonie site. The site is located in eastern New York State in the town of Colonie near the city of Albany. Remedial action of the Colonie site is being planned as part of DOE's Formerly Utilized Sites Remedial Action Program. The DOE is responsible for controlling the release of all radioactive and chemical contaminants from the site. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation/feasibility study (RI/FS) must be prepared to support the decision-making process for evaluating remedial action alternatives. This work plan contains a summary of information known about the site as of January 1988, presents a conceptual site model that identifies potential routes of human exposure to site containments, identifies data gaps, and summarizes the process and proposed studies that will be used to fill the data gaps. In addition, DOE activities must be conducted in compliance with the National Environmental Policy Act (NEPA), which requires consideration of the environmental consequences of a proposed action as part of its decision-making process. This work also describes the approach that will be used to evaluate potential remedial action alternatives and includes a description of the organization, project controls, and task schedules that will be employed to fulfill the requirements of both CERCLA and NEPA. 48 refs., 18 figs., 25 tabs

  13. Argonne's Expedited Site Characterization: An integrated approach to cost- and time-effective remedial investigation

    International Nuclear Information System (INIS)

    Burton, J.C.; Walker, J.L.; Aggarwal, P.K.; Meyer, W.T.

    1995-01-01

    Argonne National Laboratory has developed a methodology for remedial site investigation that has proven to be both technically superior to and more cost- and time-effective than traditional methods. This methodology is referred to as the Argonne Expedited Site Characterization (ESC). Quality is the driving force within the process. The Argonne ESC process is abbreviated only in time and cost and never in terms of quality. More usable data are produced with the Argonne ESC process than with traditional site characterization methods that are based on statistical-grid sampling and multiple monitoring wells. This paper given an overview of the Argonne ESC process and compares it with traditional methods for site characterization. Two examples of implementation of the Argonne ESC process are discussed to illustrate the effectiveness of the process in CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) and RCRA (Resource Conservation and Recovery Act) programs

  14. An Investigation of Social Factors Affecting on Personnel Job Satisfaction of Remedial Service Insurance Department

    Directory of Open Access Journals (Sweden)

    Sayyed Yaser Ebrahimian Jolodar

    2012-01-01

    Full Text Available Because of the paramount importance of job satisfaction and due to its main consequences such as reduction of work absence and resignation, personnel promotion and society‟s health, and more importantly, its role in achievement of organization goals, this study aimed at investigating the effects of six social factors including personnel‟s belief, salary and benefits, participation in organizational decision-making, sense of job security, interaction with colleagues and meeting the basic needs of personnel on job satisfaction. The statistical population of this study was the personnel of Remedial Service Insurance Department in Sari and the questionnaire was distributed among them. The results showed that there is a significant and positive correlation among all these factors and they have meaningful effects on personnel job satisfaction based on multiple regression analysis. Furthermore, findings revealed that personnel‟s belief about their job has the most effects on job satisfaction.

  15. REVIEW REPORT: BUILDING C-400 THERMAL TREATMENT 90 PERCENT REMEDIAL DESIGN REPORT AND SITE INVESTIGATION, PGDP, PADUCAH, KENTUCKY

    International Nuclear Information System (INIS)

    Looney, B; Jed Costanza, J; Eva Davis, E; Joe Rossabi, J; Lloyd Stewart, L; Hans Stroo, H

    2007-01-01

    potential for system underperformance, and other unforeseen conditions These themes weave through the ITR report and the various analyses and recommendations. The ITR team recognizes that a number of technologies are available for treatment of TCE sources. Further, the team supports the regulatory process through which the selected remedy is being implemented, and concurs that ERH is a potentially viable remedial technology to meet the RAOs adjacent to C-400. Nonetheless, the ITR team concluded that additional efforts are needed to provide an adequate basis for the planned ERH design, particularly in the highly permeable Regional Gravel Aquifer (RGA), where sustaining target temperatures present a challenge. The ERH design modeling in the 90% RDR does not fully substantiate that heating in the deep RGA, at the interface with the McNairy formation, will meet the design goals; specifically the target temperatures. Full-scale implementation of ERH to meet the RAOs is a challenge in the complex hydrogeologic setting at PGDP. Where possible, risks to the project identified in this ITR report as ''issues'' and ''recommendations'' should be mitigated as part of the final design process to increase the likelihood of remedial success. The ITR efforts were organized into five lines of inquiry (LOIs): (1) Site investigation and target zone delineation; (2) Performance objectives; (3) Project and design topics; (4) Health and safety; and (5) Cross cutting and independent cost evaluation. Within each of these LOIs, the ITR team identified a series of unresolved issues--topics that have remaining uncertainties or potential project risks. These issues were analyzed and one or more recommendations were developed for each. In the end, the ITR team identified 27 issues and provided 50 recommendations. The issues and recommendations are briefly summarized below, developed in Section 5, and consolidated into a single list in Section 6. The ITR team concluded that there are substantive

  16. Systematically biological prioritizing remediation sites based on datasets of biological investigations and heavy metals in soil

    Science.gov (United States)

    Lin, Wei-Chih; Lin, Yu-Pin; Anthony, Johnathen

    2015-04-01

    metals were then quantified based on the overall consistency between realizations. Finally, Information-Gap Decision Theory (IGDT) was applied to rank the remediation priorities of contaminated sites in terms of both spatial consensus of multiple heavy metal realizations and the priority of specific conservation areas. Our results show that the crowd-sourced optimization algorithm developed in this study is effective at selecting suitable data from crowd-sourced data. By using this technique the available sample data increased to a total number of 96, 162, 72, 62, 69 and 62 or, that is, 2.6, 1.6, 2.5, 1.6, 1.2 and 1.8 times that originally available through the GBIF professionally-assembled database. Additionally, for all species considered the performance of models, in terms of test-AUC values, based on the combination of both data sources exceeded those models which were based on a single data source. Furthermore, the additional optimization-selected data lowered the overall variability, and therefore uncertainty, of model outputs. Based on the projected species distributions, our results revealed that around 30% of high species hotspot areas were also identified as contaminated. The decision-making tool, IGDT, successfully yielded remediation plans in terms of specific ecological value requirements, false positive tolerance rates of contaminated areas, and expected decision robustness. The proposed approach can be applied both to identify high conservation priority sites contaminated by heavy metals, based on the combination of screened crowd-sourced and professionally-collected data, and in making robust remediation decisions.

  17. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

  18. Application of in situ measurement for site remediation and final status survey of decommissioning KRR site

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Bum; Nam, Jong Soo; Choi, Yong Suk; Seo, Bum Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    In situ gamma spectrometry has been used to measure environmental radiation, assumptions are usually made about the depth distribution of the radionuclides of interest in the soil. The main limitation of in situ gamma spectrometry lies in determining the depth distribution of radionuclides. The objective of this study is to develop a method for subsurface characterization by in situ measurement. The peak to valley method based on the ratio of counting rate between the photoelectric peak and Compton region was applied to identify the depth distribution. The peak to valley method could be applied to establish the relation between the spectrally derived coefficients (Q) with relaxation mass per unit area (β) for various depth distribution in soil. The in situ measurement results were verified by MCNP simulation and calculated correlation equation. In order to compare the depth distributions and contamination levels in decommissioning KRR site, in situ measurement and sampling results were compared. The in situ measurement results and MCNP simulation results show a good correlation for laboratory measurement. The simulation relationship between Q and source burial for the source layers have exponential relationship for a variety depth distributions. We applied the peak to valley method to contaminated decommissioning KRR site to determine a depth distribution and initial activity without sampling. The observed results has a good correlation, relative error between in situ measurement with sampling result is around 7% for depth distribution and 4% for initial activity. In this study, the vertical activity distribution and initial activity of {sup 137}Cs could be identifying directly through in situ measurement. Therefore, the peak to valley method demonstrated good potential for assessment of the residual radioactivity for site remediation in decommissioning and contaminated site.

  19. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    International Nuclear Information System (INIS)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board's view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program

  20. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site near Gunnison, Colorado. Final

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The presence of contaminated uranium mill tailings adjacent to the city of Gunnison has been a local concern for many years. The following issues were identified during public meetings that were held by the DOE prior to distribution of an earlier version of this EA. Many of these issues will require mitigation. Groundwater contamination; in December 1989, a herd of 105 antelope were introduced in an area that includes the Landfill disposal site. There is concern that remedial action-related traffic in the area would result in antelope mortality. The proposed Tenderfoot Mountain haul road may restrict antelope access to their water supply; a second wildlife issue concerns the potential reduction in sage grouse use of breeding grounds (leks) and nesting habitat; the proposed Tenderfoot Mountain haul road would cross areas designated as wetlands by US Army Corps of Engineers (COE); the proposed disposal site is currently used for grazing by cattle six weeks a year in the spring. Additional concerns were stated in comments on a previous version of this EA. The proposed action is to consolidate and remove all contaminated materials associated with the Gunnison processing site to the Landfill disposal site six air miles east of Gunnison. All structures on the site (e.g., water tower, office buildings) were demolished in 1991. The debris is being stored on the site until it can be incorporated into the disposal cell at the disposal site. All contaminated materials would be trucked to the Landfill disposal site on a to-be-constructed haul road that crosses BLM-administered land.

  1. The remedial investigation/feasibility study process at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1993-01-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), manages and operates the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, under a cost-plus-award-fee contract administered by the Department of Energy's (DOE) Oak Ridge Field office (Field Office). Energy Systems' environmental restoration program is responsible for eliminating or reducing to prescribed safe levels the risks to the environment or to human health and safety posed by inactive and surplus sites and facilities that have been contaminated with radioactive, hazardous, or mixed wastes. Energy Systems subcontracted to perform the remedial investigation and feasibility study (RI/FS) at ORNL. The objective of our audit was to determine if the RI/FS at ORNL had been implemented in a manner that ensured accomplishment of the goals and objectives of the DOE Environmental Restoration Program. The audit disclosed that the subcontractor did not fully meet its contractual requirements. Specifically, environmental data produced by the subcontractor is of questionable value for meeting its contractual requirement to provide data supporting permanent remedial action. This condition occurred because neither the subcontractor nor Energy Systems adequately implemented all essential management controls, and neither Energy Systems nor DOE provided adequate contract administration. As a result, DOE has received little value for its RI/FS expenditures. We have recommended that DOE determine the allowability of an estimated $45 million of subcontractor RI/FS cost at ORNL, plus the cost of Energy Systems administering the subcontract. Furthermore, DOE will continue to pay unnecessary costs and experience cost growth and project delays until effective project management controls are implemented

  2. Waste Area Grouping 2 Remedial Investigation Phase 1 Seep Task data report: Contaminant source area assessment

    International Nuclear Information System (INIS)

    Hicks, D.S.

    1996-03-01

    This report presents the findings of the Waste Area Grouping (WAG) 2, Phase 1 Remedial Investigation (RI) Seep Task efforts during 1993 and 1994 at Oak Ridge National Laboratory (ORNL). The results presented here follow results form the first year of sampling, 1992, which are contained in the Phase 1 RI report for WAG 2 (DOE 1995a). The WAG 2 Seep Task efforts focused on contaminants in seeps, tributaries, and main streams within the White Oak Creek (WOC) watershed. This report is designed primarily as a reference for contaminants and a resource for guiding remedial decisions. Additional in-depth assessments of the Seep Task data may provide clearer understandings of contaminant transport from the different source areas in the WOC watershed. WAG 2 consists of WOC and its tributaries downstream of the ORNL main plant area, White Oak Lake, the White Oak Creek Embayment of the Clinch River, and the associated flood plains and subsurface environment. The WOC watershed encompasses ORNL and associated WAGs. WAG 2 acts as an integrator for contaminant releases from the contaminated sites at ORNL and as the conduit transporting contaminants to the Clinch River. The main objectives of the Seep Task were to identify and characterize seeps, tributaries and source areas that are responsible for the contaminant releases to the main streams in WAG 2 and to quantify their input to the total contaminant release from the watershed at White Oak Dam (WOD). Efforts focused on 90 Sr, 3 H, and 137 Cs because these contaminants pose the greatest potential human health risk from water ingestion at WOD. Bimonthly sampling was conducted throughout the WOC watershed beginning in March 1993 and ending in August 1994. Samples were also collected for metals, anions, alkalinity, organics, and other radionuclides

  3. Operable Unit 1 remedial investigation report, Eielson Air Force Base, Alaska

    International Nuclear Information System (INIS)

    Gilmore, T.J.; Fruland, R.M.; Liikala, T.L.

    1994-06-01

    This remedial investigation report for operable Unit 1 (OU-1) at Eielson Air Force Base presents data, calculations, and conclusions as to the nature and extent of surface and subsurface contamination at the eight source areas that make up OU-1. The information is based on the 1993 field investigation result and previous investigations. This report is the first in a set of three for OU-1. The other reports are the baseline risk assessment and feasibility study. The information in these reports will lead to a Record of Decision that will guide and conclude the environmental restoration effort for OU-1 at Eielson Air Force Base. The primary contaminants of concern include fuels and fuel-related contaminants (diesel; benzene, toluene, ethylbenzene, and xylene; total petroleum hydrocarbon; polycyclic aromatic hydrocarbons), maintenance-related solvents and cleaners (volatile chlorinated hydrocarbons such as trichloroothylene), polychlorinated biphenyls, and dichlorodiphenyltrichloroethane (DDT). The origins of contaminants of concern include leaks from storage tanks, drums and piping, and spills. Ongoing operations and past sitewide practices also contribute to contaminants of concern at OU-1 source areas. These include spraying mixed oil and solvent wastes on unpaved roads and aerial spraying of DDT

  4. Environmental Restoration Program pollution prevention performance measures for FY 1993 and 1994 remedial investigations

    International Nuclear Information System (INIS)

    1993-03-01

    The Martin Marietta Energy Systems, Inc., Environmental Restoration (ER) Program adopted a Pollution Prevention Program in March 1991. The program's mission is to minimize waste and prevent pollution in remedial investigations (RI), feasibility studies (FS), decontamination and decommissioning (D ampersand D), and surveillance and maintenance (S ampersand M) site program activities. Mission success will result in volume and/or toxicity reduction of generated waste. Energy Systems is producing a fully developed a Numerical Scoring System (NSS) and actually scoring the generators of Investigation Derived Waste (IDW) at six ER sites: Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant, the Oak Ridge K-25 site, Paducah Gaseous Diffusion Plant (Paducah), and Portsmouth Uranium Enrichment Complex (Portsmouth). This report summarizes the findings of this initial numerical scoring evaluation and shows where improvements in the overall ER Pollution prevention program may be required. This report identifies a number of recommendations that, if implemented, would help to improve site-performance measures. The continued development of the NSS will support generators in maximizing their Pollution Prevention/Waste Minimization efforts. Further refinements of the NSS, as applicable suggest comments and/or recommendations for improvement

  5. Remedial actions at the former Union Carbide Corporation uranium mill sites, Rifle, Garfield County, Colorado: Final environmental impact statement

    International Nuclear Information System (INIS)

    1990-03-01

    This appendix provides the information needed to understand the conceptual designs for the remedial action alternatives addressed in this environmental impact statement (EIS). It is intended to provide sufficient details for the reader to evaluate the feasibility and assess the impacts of each remedial action alternative. It is not intended to provide the detailed engineering necessary to implement the alternatives. Details of the preferred remedial action will be presented in the remedial action plan (RAP). The remedial action alternatives addressed in this EIS include no action, stabilization at the New Rifle site, disposal at the Estes Gulch site, and disposal at the Lucas Mesa site. All alternatives include interim actions to remediate existing health and safety hazards to the Rifle community that presently exist at the Old and New Rifle processing sites. 21 figs., 18 tabs

  6. Remedial investigation report on Waste Area Group 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    International Nuclear Information System (INIS)

    1995-03-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives

  7. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    International Nuclear Information System (INIS)

    1995-09-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives.

  8. Hydrogeological site investigation for the efficient remediation of uranium mining sites -- an integrated approach

    International Nuclear Information System (INIS)

    Biehler, D.; Jaquet, O.; Croise, J.; Lavanchy, J.-M.

    2002-01-01

    The currently practised remediation of former uranium mines in Eastern Germany involves the flooding of underground and open pit mines, and the stabilization of waste rock dumps and tailings ponds, e.g. by dewatering, covering, improving dams, cleaning effluents. This article presents examples demonstrating that the remediation concepts developed and implemented have failed their targets, resulting in uncontrolled flow behaviour and migration of contaminated water, leading to increased costs and additional threats to the environment. A generic series of steps for an improved remediation management with respect to financial efforts and environmental safety are proposed in terms of an integrated approach. (author)

  9. Phase I remedial investigation report of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Miller, D.E.

    1995-07-01

    This report presents the activities and findings of the first phase of a three-phase remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, and updates the scope and strategy for WAG-2-related efforts. WAG 2 contains White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake, White Oak Creek Embayment on the Clinch River, and the associated floodplain and subsurface environment. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This report includes field activities completed through October 1992. The remediation of WAG 2 is scheduled to follow the cessation of contaminant input from hydrologically upgradient WAGs. While upgradient areas are being remediated, the strategy for WAG 2 is to conduct a long-term monitoring and investigation program that takes full advantage of WAG 2's role as an integrator of contaminant fluxes from other ORNL WAGs and focuses on four key goals: (1) Implement, in concert with other programs, long-term, multimedia environmental monitoring and tracking of contaminants leaving other WAGs, entering WAG 2, and being transported off-site. (2) Provide a conceptual framework to integrate and develop information at the watershed-level for pathways and processes that are key to contaminant movement, and so support remedial efforts at ORNL. (3) Provide periodic updates of estimates of potential risk (both human health and ecological) associated with contaminants accumulating in and moving through WAG 2 to off-site areas. (4) Support the ORNL Environmental Restoration Program efforts to prioritize, remediate, and verify remedial effectiveness for contaminated sites at ORNL, through long-term monitoring and continually updated risk assessments

  10. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1983-07-01

    This report provides a summary of the conceptual design and other information necessary to understand the proposed remedial action at the expanded Canonsburg, Pennsylvania site. This design constitutes the current approach to stabilizing the radioactively contaminated materials in place in a manner that would fully protect the public health and environment. This summary is intended to provide sufficient detail for the reader to understand the proposed remedial action and the anticipated environmental impacts. The site conceptual design has been developed using available data. In some cases, elements of the design have not been developed fully and will be made final during the detailed design process.

  11. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume II. Appendices

    International Nuclear Information System (INIS)

    1983-07-01

    This report provides a summary of the conceptual design and other information necessary to understand the proposed remedial action at the expanded Canonsburg, Pennsylvania site. This design constitutes the current approach to stabilizing the radioactively contaminated materials in place in a manner that would fully protect the public health and environment. This summary is intended to provide sufficient detail for the reader to understand the proposed remedial action and the anticipated environmental impacts. The site conceptual design has been developed using available data. In some cases, elements of the design have not been developed fully and will be made final during the detailed design process

  12. Basewide Groundwater Operable Unit. Groundwater Operable Unit Remedial Investigation/Feasibility Study Report. Volume 1

    Science.gov (United States)

    1994-06-01

    units would be reused in the remedy. Contingency measures to be included in the remedy are potential metals removal prior to water end use, potential...onbase reuse of a portion of the water, and wellhead treatment on offbase supply wells. The contingency measures will only be implemented if necessary...94 LEGEND Ouatmar aluvi dposts agua Frmaion(cosoldatd aluval epoits W iead rdetilnsMhte omtin(neitccnlmeae ansoe9ndkeca F 70 Quvatei-lernayalvu e pk

  13. Responses to comments on the remedial investigation/feasibility study-environmental impact statement for remedial action at the Chemical Plant area of the Weldon Spring site (November 1992)

    International Nuclear Information System (INIS)

    1993-06-01

    The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE's predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The integrated remedial investigation/feasibility study-environmental impact statement (RI/FS-EIS) documents for the chemical plant area were issued to the public in November 1992 as the draft RI/FS-EIS. (The CERCLA RI/FS is considered final when issued to the public, whereas per the NEPA process, an EIS is initially issued as a draft and is finalized after substantive public comments have been addressed.) Four documents made up the draft RI/FS-EIS, which is hereafter referred to as the RI/FS-EIS: (1) the RI (DOE 1992d), which presents general information on the site environment and the nature and extent of contamination; (2) the baseline assessment (BA) (DOE 1992a), which evaluates human health and environmental effects that might occur if no cleanup actions were taken; (3) the FS (DOE 1992b), which develops and evaluates alternatives for site cleanup; and (4) the proposed plan (PP) (DOE 1992c), which summarizes key information from the RI, BA, and FS reports and identifies DOE's preferred alternative for remedial action. This comment response document combined with those four documents constitutes the final RI/FS-EIS for the chemical plant area

  14. Responses to comments on the remedial investigation/feasibility study-environmental impact statement for remedial action at the Chemical Plant area of the Weldon Spring site (November 1992)

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE`s predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The integrated remedial investigation/feasibility study-environmental impact statement (RI/FS-EIS) documents for the chemical plant area were issued to the public in November 1992 as the draft RI/FS-EIS. (The CERCLA RI/FS is considered final when issued to the public, whereas per the NEPA process, an EIS is initially issued as a draft and is finalized after substantive public comments have been addressed.) Four documents made up the draft RI/FS-EIS, which is hereafter referred to as the RI/FS-EIS: (1) the RI (DOE 1992d), which presents general information on the site environment and the nature and extent of contamination; (2) the baseline assessment (BA) (DOE 1992a), which evaluates human health and environmental effects that might occur if no cleanup actions were taken; (3) the FS (DOE 1992b), which develops and evaluates alternatives for site cleanup; and (4) the proposed plan (PP) (DOE 1992c), which summarizes key information from the RI, BA, and FS reports and identifies DOE`s preferred alternative for remedial action. This comment response document combined with those four documents constitutes the final RI/FS-EIS for the chemical plant area.

  15. Measures for radiation prevention and remediation of islightly radioactive contaminated sites by phytoremediation and subsequent utilization of the loaded plant residues (PHYTOREST). Final report

    International Nuclear Information System (INIS)

    Willscher, Sabine; Werner, Peter; Jablonski, Lukasz; Wittig, Juliane

    2013-01-01

    In the presented scientific research project, the radiation protection of soil surfaces impacted by former industrial utilization or mining was investigated. This radiation protection of the contaminated soil surfaces was carried out by bioremediation techniques. The soil surfaces include larger agricultural or forestry areas useful for the production of sustainable plant-based raw materials and renewable energies. The contaminated areas show a positive climatic water balance with a subsequent impact of SM/R contaminants onto the adjacent ground water. During this scientific research project, the introduction of sustainable, biosphere conserving methods for a long-term remediation of slightly to moderately HM/R- contaminated areas was investigated; these areas are characterized by a radiotoxic amplifying potential due to a continued occurrence of radionuclides and heavy metals/ metalloids. The insights into transfer processes from the soil substrate over the mediating soil water phase and by microbes into the plant roots, into the shoots and the leaves of the plants represent necessary requirements for the control of SM/R transfer into the plants and its optimization. In this research project, considerable investigations were carried out for the understanding of binding of HM/R in the different plant compartments, also depending on different soil additives. The obtained first scientific results and their practical applicability were transformed onto experimental soil areas under natural field conditions. The transfer processes could be optimized and finally bioremediation efficiency could be enhanced due to the accompanying modifications (different soil additives of the field experiments). This new remediation method, further developed to a field application, represents a new tool for the stabilization / and extraction of HM/R on the field site and improves the efficiency of bioremediation processes. A pacification of the large areas with slightly to medium

  16. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  17. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-10-01

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are

  18. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    International Nuclear Information System (INIS)

    1996-01-01

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings ' ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings.' Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in

  19. Groundwater monitoring for remedial investigation in the Oriskany-Whitestown Sand Plain, Oneida County, New York

    International Nuclear Information System (INIS)

    Kewer, R.P.; Birckhead, E.F.

    1992-01-01

    The 50-acre Whitestown Landfill is listed by NYSDEC as a Class 2 inactive hazardous waste disposal site. During Remedial Investigations, a 23-well groundwater monitoring system was installed, exploring Wisconsin age glaciofluvial deposits of the Oriskany-Whitestown sand plain. These were described in the late 19th century as deltaic sediments deposited in a proglacial lake. However, no recent studies and only limited subsurface data were available, prompting a two-phase installation program. The landfill is located above steep bluffs 70 feet above the Mohawk River and Oriskany Creek valleys. Beneath the landfill, Phase I identified a gradational sequence of coarse to fine deltaic sediments with glacial till. This sequence was partly eroded and overlain by alluvium and colluvium in the valleys. The landfill was constructed on surficial deposits of coarse fluviodeltaic gravel. These were underlain by deltaic deposits grading from sand to silt with depth, the lower silts comprising the uppermost aquifer. The silts made identification of the water table difficult during drilling and caused problems in meeting a stringent development criterion for turbidity. Phase I found that the saturated zone, up to 50 feet thick, is perched on glaciolacustrine clays and, locally, tills, which were the lower boundary of the system investigated. Partly influenced by the clays, groundwater and contaminant movement was to the adjoining valley, causing off-site impacts in the shallow alluvial/colluvial aquifer. Therefore, Phase 11 focused on characterizing flow and groundwater quality in the discharge area, particularly with respect to an adjacent residence and wetlands. Contamination was found to extend northward only as far as the Old Erie Canal, which parallels the base of the bluff. Only limited off-site involvement was documented which will be monitored in the post-closure period using the installed well system

  20. RCRA corrective action ampersand CERCLA remedial action reference guide

    International Nuclear Information System (INIS)

    1994-07-01

    This reference guide provides a side-by-side comparison of RCRA corrective action and CERCLA Remedial Action, focusing on the statutory and regulatory requirements under each program, criterial and other factors that govern a site's progress, and the ways in which authorities or requirements under each program overlap and/or differ. Topics include the following: Intent of regulation; administration; types of sites and/or facilities; definition of site and/or facility; constituents of concern; exclusions; provisions for short-term remedies; triggers for initial site investigation; short term response actions; site investigations; remedial investigations; remedial alternatives; clean up criterial; final remedy; implementing remedy; on-site waste management; completion of remedial process

  1. Sampling and Analysis Plan for White Oak Creek Watershed Remedial Investigation supplemental sampling, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-05-01

    This Sampling and Analysis (SAP) presents the project requirements for proposed soil sampling to support the White Oak Creek Remedial Investigation/Feasibility Study at Oak Ridge National Laboratory. During the Data Quality Objectives process for the project, it was determined that limited surface soils sampling is need to supplement the historical environmental characterization database. The primary driver for the additional sampling is the need to identify potential human health and ecological risks at various sites that have not yet proceeded through a remedial investigation. These sites include Waste Area Grouping (WAG)3, WAG 4, WAG 7, and WAG 9. WAG 4 efforts are limited to nonradiological characterization since recent seep characterization activities at the WAG have defined the radiological problem there

  2. Environmental, Safety, and Health Plan for the remedial investigation/feasibility study at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-05-01

    This Environmental, Safety, and Health (ES ampersand H) Plan presents the concepts and methodologies to be followed during the remedial investigation/feasibility study (RI/FS) for Oak Ridge National Laboratory (ORNL) to protect the health and safety of employees, the public, and the environment. This ES ampersand H Plan acts as a management extension for ORNL and Martin Marietta Energy Systems, Inc. (Energy Systems) to direct and control implementation of the project ES ampersand H program. The subsections that follow describe the program philosophy, requirements, quality assurance measures, and methods for applying the ES ampersand H program to individual waste area grouping (WAG) remedial investigations. Hazardous work permits (HWPs) will be used to provide task-specific health and safety requirements

  3. Record of Decision Remedial Alternative Selection for the Gunsite 113 Access Road (631-24G) Operable Unit: Final Action

    International Nuclear Information System (INIS)

    Palmer, E.

    1997-01-01

    This decision document presents the selected remedial action for the Gunsite 113 Access Road Unit located at the Savannah River Site near Aiken, SC. The selected action was developed in accordance with CERCLA, as amended, and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The selected remedy satisfies both CERCLA and RCRA 3004(U) requirements. This decision is based ont he Administrative Record File for this specific RCRA/CERCLA Unit

  4. Iowa Hill Pumped Storage Project Investigations - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, David [Sacramento Municipal Unitlity District, Sacramento, CA (United States)

    2016-07-01

    This Final Technical Report is a summary of the activities and outcome of the Department of Energy (DOE) Assistance Agreement DE-EE0005414 with the Sacramento Municipal Utility District (SMUD). The Assistance Agreement was created in 2012 to support investigations into the Iowa Hill Pumped-storage Project (Project), a new development that would add an additional 400 MW of capacity to SMUD’s existing 688MW Upper American River Hydroelectric Project (UARP) in the Sierra Nevada mountains east of Sacramento, California.

  5. Final work plan : environmental site investigation at Sylvan Grove, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Science Division)

    2012-07-15

    what future CCC/USDA actions may be necessary, with the ultimate goal of achieving classification of the Sylvan Grove site at no further action status. The proposed activities are to be performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory, a nonprofit, multidisciplinary research center operated by the UChicago Argonne, LLC, for the U.S. Department of Energy. Argonne provides technical assistance to the CCC/USDA concerning environmental site characterization and remediation at former grain storage facilities. Argonne issued a Master Work Plan (Argonne 2002) that has been approved by the KDHE. The Master Work Plan describes the general scope of all investigations at former CCC/USDA facilities in Kansas and provides guidance for these investigations. That document should be consulted for the complete details of plans for work associated with the former CCC/USDA facility at Sylvan Grove.

  6. ANNUAL REPORT FOR THE FINAL GROUNDWATER REMEDIATION, TEST AREA NORTH, OPERABLE UNIT 1-07B, FISCAL YEAR 2009

    Energy Technology Data Exchange (ETDEWEB)

    FORSYTHE, HOWARD S

    2010-04-14

    This Annual Report presents the data and evaluates the progress of the three-component remedy implemented for remediation of groundwater contamination at Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory Site. Overall, each component is achieving progress toward the goal of total plume remediation. In situ bioremediation operations in the hot spot continue to operate as planned. Progress toward the remedy objectives is being made, as evidenced by continued reduction in the amount of accessible residual source and decreases in downgradient contaminant flux, with the exception of TAN-28. The injection strategy is maintaining effective anaerobic reductive dechlorination conditions, as evidenced by complete degradation of trichloroethene and ethene production in the biologically active wells. In the medial zone, the New Pump and Treat Facility operated in standby mode. Trichloroethene concentrations in the medial zone wells are significantly lower than the historically defined concentration range of 1,000 to 20,000 μg/L. The trichloroethene concentrations in TAN-33, TAN-36, and TAN-44 continue to be below 200 μg/L. Monitoring in the distal zone wells outside and downgradient of the plume boundary demonstrate that some plume expansion has occurred, but less than the amount allowed in the Record of Decision Amendment. Additional data need to be collected for wells in the monitored natural attenuation part of the plume to confirm that the monitored natural attenuation part of the remedy is proceeding as predicted in the modeling.

  7. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah. Volume 1, Text, Appendices A, B, and C: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M.L. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Alkema, K. [Utah Dept. of Health, Salt Lake City, UT (United States). Environmental Health Div.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement.

  8. Final Remedial Investigation Report Area of Contamination (AOC) 57. Volume III. Appendices E through Q

    Science.gov (United States)

    2000-06-01

    hydrocarbon (PAH) contamination from parking lot runoff. Although some residual TPHC and PAH concentrations remained in Area 1 soils after the removal...formulations and has industrial uses in tanneries, as well as the glass and wine making industries. Toxicity depends on its chemical form. Arsenic is an...nature and is an essential element. Copper deficiency is characterized by anemia and is used for medicinal purposes as an emetic and an astringent . Acute

  9. Final Remedial Investigation Report Area of Contamination (AOC) 57. Volume II. Appendices A through D

    Science.gov (United States)

    2000-06-01

    2 TPHC SPLT SAMPLE RESULTS 1996 FmD PROGRAM FORT DEVENS, MAssACHUSETrS Fl~w SAMPLE OPF-SrrE ON-SrrE ISEAI EF 573106 TPHC 18300 1000 57* 2 EF573006...U ; r r ýC co .. ~ ~ 4 OO 00 ftA -tt ~ 1j ’CJ~ . V Var V AL v vv vv v v vv vv 000 0000 C𔃺 ’ 0000 - a00 a00 coC’ 00U1 00 N (D Q.0 0.0. 0.0 D . 0.0 0

  10. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    International Nuclear Information System (INIS)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D.

    1994-08-01

    The objective of DOE's Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ''demonstration'' version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing

  11. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D. [Enserch Environmental Corp., Richland, WA (United States)

    1994-08-01

    The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.

  12. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah

    International Nuclear Information System (INIS)

    Matthews, M.L.; Alkema, K.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement

  13. Investigations involving oxidation-reduction (REDOX) pretreatment in conjunction with biological remediation of contaminated soils

    International Nuclear Information System (INIS)

    Montemagno, C.D.; Peters, R.W.; Tyree, A.

    1991-01-01

    Oxidation-reduction (REDOX) reactions are among the most important reactions involved in the environmental engineering field. Oxidation is a reaction in which the oxidation state of the treated compound is increased, i.e., the material loses electrons. Reduction involves the addition of a chemical (reducing) agent which lowers the oxidation state of a substance, i.e., the material gains electrons. Both processes of oxidation and reduction occur together. All REDOX reactions are thermodynamically based. There are a number of oxidizing agents which have been reported in the technical literature for treatment of refractory organic compounds. Common oxidizing agents include: hydrogen peroxide, ozone, ultraviolet (UV) irradiation, and combinations thereof, such as UV/ozone and UV/peroxide. A gradient of REDOX reactions is possible, depending on such factors as the oxidation-reduction reaction conditions, the availability of electron donors and acceptors, and the nature of the organic compounds involved. A review of the technical literature revealed that the majority of the oxidation-reduction applications have been in the areas of wastewater treatment and groundwater remediation, with very little attention devoted to the potential of using REDOX technologies for remediation of hydrocarbon contaminated soils. In this particular study, feasibility studies were performed on gasoline- contaminated soil. These studies focused on three major phases: 1) containment of the contamination by addition of tailoring agents to the soil, 2) biological remediation either performed in situ or on-site (using a slurry reactor system), and 3) pretreatment of the contaminated soils using REDOX systems, prior to biological remediation. This particular paper focuses on the third phase of the project, aimed at ''softening'' the refractory organics resulting in the formation of organic compounds which are more amenable to biological degradation. This paper focuses its attention on the use of

  14. Investigations involving oxidation-reduction (REDOX) pretreatment in conjunction with biological remediation of contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Montemagno, C. D. [Argonne National Laboratory, Argonne, IL (United States); Peters, R. W.; Tyree, A.

    1991-07-01

    Oxidation-reduction (REDOX) reactions are among the most important reactions involved in the environmental engineering field. Oxidation is a reaction in which the oxidation state of the treated compound is increased, i.e., the material loses electrons. Reduction involves the addition of a chemical (reducing) agent which lowers the oxidation state of a substance, i.e., the material gains electrons. Both processes of oxidation and reduction occur together. All REDOX reactions are thermodynamically based. There are a number of oxidizing agents which have been reported in the technical literature for treatment of refractory organic compounds. Common oxidizing agents include: hydrogen peroxide, ozone, ultraviolet (UV) irradiation, and combinations thereof, such as UV/ozone and UV/peroxide. A gradient of REDOX reactions is possible, depending on such factors as the oxidation-reduction reaction conditions, the availability of electron donors and acceptors, and the nature of the organic compounds involved. A review of the technical literature revealed that the majority of the oxidation-reduction applications have been in the areas of wastewater treatment and groundwater remediation, with very little attention devoted to the potential of using REDOX technologies for remediation of hydrocarbon contaminated soils. In this particular study, feasibility studies were performed on gasoline- contaminated soil. These studies focused on three major phases: 1) containment of the contamination by addition of tailoring agents to the soil, 2) biological remediation either performed in situ or on-site (using a slurry reactor system), and 3) pretreatment of the contaminated soils using REDOX systems, prior to biological remediation. This particular paper focuses on the third phase of the project, aimed at ''softening'' the refractory organics resulting in the formation of organic compounds which are more amenable to biological degradation. This paper focuses its attention on the use of

  15. Investigations on detonation shock dynamics and related topics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States). Dept. of Theoretical and Applied Mechanics

    1993-11-01

    This document is a final report that summarizes the research findings and research activities supported by the subcontract DOE-LANL-9-XG8-3931P-1 between the University of Illinois (D. S. Stewart Principal Investigator) and the University of California (Los Alamos National Laboratory, M-Division). The main focus of the work has been on investigations of Detonation Shock Dynamics. A second emphasis has been on modeling compaction of energetic materials and deflagration to detonation in those materials. The work has led to a number of extensions of the theory of Detonation Shock Dynamics (DSD) and its application as an engineering design method for high explosive systems. The work also enhanced the hydrocode capabilities of researchers in M-Division by modifications to CAVEAT, an existing Los Alamos hydrocode. Linear stability studies of detonation flows were carried out for the purpose of code verification. This work also broadened the existing theory for detonation. The work in this contract has led to the development of one-phase models for dynamic compaction of porous energetic materials and laid the groundwork for subsequent studies. Some work that modeled the discrete heterogeneous behavior of propellant beds was also performed. The contract supported the efforts of D. S. Stewart and a Postdoctoral student H. I. Lee at the University of Illinois.

  16. Final programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Ground Water Project. Volume 2

    International Nuclear Information System (INIS)

    1996-10-01

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project is to eliminate, reduce, or address to acceptable levels the potential health and environmental consequences of milling activities. One of the first steps in the UMTRA Ground Water Project is the preparation of the Programmatic Environmental Impact Statement (PEIS). This report contains the comments and responses received on the draft PEIS

  17. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  18. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy's (DOE's) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow

  19. Investigation of phyco-remediation of road salt run-off with marine microalgae Nannochloropsis gaditana.

    Science.gov (United States)

    Devasya, Roopa; Bassi, Amarjeet

    2017-11-15

    Phyco-remediation is an environmental-friendly method, which involves the application of beneficial microalgae to treat wastewater-containing pollutants for a diverse range of conditions. Several industrial processes generate hyper saline wastewater, which is a significant challenge for conventional wastewater treatment, and the disposal of saline waters also has a negative impact on the environment. Road salt run-off is one such saline wastewater stream not currently treated and one that contributes significantly to negatively impacting receiving bodies of water. In this study, Nannochloropsis microalgae were able to assimilate >95% of the nitrates within 8 days in road salt concentrations ranging from 2.6% to 4.4% under phototrophic cultivation mode. Biomass yields of 1-2 g/l of culture were obtained with the maximum lipid of 22% (g/g) biomass in the road salt media. The crude road salt media provided all the essential micronutrients needed for algal cultivation. The fatty acid composition analysis of the obtained lipid composed of C16 and C18 over 45% of FAME are suitable for biofuel. This study has established that the use of road salt containing nitrate and phosphate nutrients will support the growth of marine micro algae for remediation of a waste water system that are the concern at winter-prevalent regions.

  20. Management and Data Management Plan for Remedial Investigation at Fort George G. Meade Landfill and Preliminary Assessment/Site Investigation at the Former Gaithersburg NIKE Control and Launch Areas

    National Research Council Canada - National Science Library

    Edwards, D

    1989-01-01

    Work assignments under this contract will include a Preliminary Assessment/Site Investigation at the former Gaithersburg NIKE Control and Launch Areas and a Remedial Investigation at the Fort Meade...

  1. Field Sampling and Analysis Plan for the Remedial Investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-10-01

    This report provides responses to US Environmental Protection Agency Region IV EPA-M and Tennessee Department of Environment and Conservation Oversite Division (TDEC-O) comments on report ORNL/ER-58, Field Sampling and Analysis Plan for the Remedial Investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Waste Area Grouping (WAG) 2 consists of the White Oak Creek (WOC) drainage system downgradient of the major ORNL WAGs in the WOC watershed. A strategy for the remedial investigation (RI) of WAG2 was developed in report ES/ER-14 ampersand Dl, Remedial Investigation Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This strategy takes full advantage of WAG2's role as an integrator of contaminant releases from the ORNL WAGs in the WOC watershed, and takes full advantage of WAG2's role as a conduit for contaminants from the ORNL site to the Clinch River. The strategy calls for a multimedia environmental monitoring and characterization program to be conducted in WAG2 while upgradient contaminant sources are being remediated. This monitoring and characterization program will (1) identify and quantify contaminant fluxes, (2) identify pathways of greatest concern for human health and environmental risk, (3) improve conceptual models of contaminant movement, (4) support the evaluation of remedial alternatives, (5) support efforts to prioritize sites for remediation, (6) document the reduction in contaminant fluxes following remediation, and (7) support the eventual remediation of WAG2. Following this strategy, WAG2 has been termed an ''integrator WAG,'' and efforts in WAG2 over the short term are directed toward supporting efforts to remediate the contaminant ''source WAGS'' at ORNL

  2. Superfund Record of Decision (EPA Region 2): Ramapo Landfill Site, Rockland County, NY. (First remedial action), March 1992. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    The 60-acre former landfill site is located on a 96-acre tract in the Town of Ramapo, Rockland County, New York, about 35 miles northwest of New York City. Utility corridors lie on three sides of the site, including high-voltage power transmission lines. The site is currently being used as a compaction and transfer facility by the Town of Ramapo. Trash and debris are weighed at a weigh station/guardhouse, compacted at a baler facility in the northeastern corner of the site, and transferred to the Al Turi Landfill in Goshen, New York. The ROD represents the entire remedial action for the site by controlling source of contamination and the generation of leachate, and treatment of contaminated ground water. The primary contaminants of concern affecting soil, ground water, and surface water are VOCs, including benzene; other organics; and metals, including arsenic, chromium, and lead. The selected remedial action for the site is included

  3. Superfund Record of Decision (EPA Region 2): Sinclair Refinery, Allegany County, Wellsville, NY. (Second remedial action), September 1991. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    The Sinclair Refinery site is a former refinery in Wellsville, Allegany County, New York. The site is composed of a 90-acre refinery area, 10-acre landfill area, and 14-acre offsite tank farm. From 1901 to 1958, the site was used to process Pennsylvania grade crude oil until a fire in 1958 halted operations. Currently, some private companies and the State University of New York occupy the site. A 1981 site inspection revealed that debris from the eroding landfill area has washed into and contaminated the Genesee River. The ROD addresses OU2, remediation of the remaining contaminated areas at the site located within the 90-acre refinery area and the offsite tank farm including the contaminated ground water beneath the refinery. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene and xylenes, semi-volatile compounds including naphthalene and nitrobenzene, and metals including arsenic and lead. The selected remedial action for the site is included

  4. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1: Main text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  5. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 3. Appendix E

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document contains Appendix E: Toxicity Information and Uncertainty Analysis, description of methods, from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  6. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 4. Appendix F

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This section contains ecotoxicological profiles for the COPECs for the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The ecotoxicological information is presented for only those endpoints for which the chemicals are COPECs. The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  7. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 4. Appendix F

    International Nuclear Information System (INIS)

    1995-09-01

    This section contains ecotoxicological profiles for the COPECs for the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The ecotoxicological information is presented for only those endpoints for which the chemicals are COPECs. The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include 137 Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and 137 Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River

  8. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 1. Main text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This is the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  9. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 3. Appendix E

    International Nuclear Information System (INIS)

    1995-09-01

    This document contains Appendix E: Toxicity Information and Uncertainty Analysis, description of methods, from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include 137 Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and 137 Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River

  10. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 1. Main text

    International Nuclear Information System (INIS)

    1995-09-01

    This is the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include 137 Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and 137 Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River

  11. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  12. RCRA Facility Investigation/Remedial Investigation Report for Gunsite 720 Rubble Pit Unit (631-16G) - March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1996-03-01

    Gunsite 720 Rubble Pit Unit is located on the west side of SRS. In the early to mid 1980`s, while work was being performed in this area, nine empty, partially buried drums, labeled `du Pont Freon 11`, were found. As a result, Gunsite 720 became one of the original waste units specified in the SRS RCRA Facility Assessment (RFA). The drums were excavated on July 30, 1987 and placed on a pallet at the unit. Both the drums and pallet were removed and disposed of in October 1989. The area around the drums was screened during the excavation and the liquid (rainwater) that collected in the excavated drums was sampled prior to disposal. No evidence of hazardous materials was found. Based on the review of the analytical data and screening techniques used to evaluate all the chemicals of potential concern at Gunsite 720 Rubble Pit Unit, it is recommended that no further remedial action be performed at this unit.

  13. RCRA Facility Investigation/Remedial Investigation Report for Gunsite 720 Rubble Pit Unit (631-16G) - March 1996

    International Nuclear Information System (INIS)

    Palmer, E.

    1996-03-01

    Gunsite 720 Rubble Pit Unit is located on the west side of SRS. In the early to mid 1980's, while work was being performed in this area, nine empty, partially buried drums, labeled 'du Pont Freon 11', were found. As a result, Gunsite 720 became one of the original waste units specified in the SRS RCRA Facility Assessment (RFA). The drums were excavated on July 30, 1987 and placed on a pallet at the unit. Both the drums and pallet were removed and disposed of in October 1989. The area around the drums was screened during the excavation and the liquid (rainwater) that collected in the excavated drums was sampled prior to disposal. No evidence of hazardous materials was found. Based on the review of the analytical data and screening techniques used to evaluate all the chemicals of potential concern at Gunsite 720 Rubble Pit Unit, it is recommended that no further remedial action be performed at this unit

  14. RCRA Facility Investigation/Remedial Investigation Report for the Gunsite 113 Access Road Unit (631-24G) - March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1996-03-01

    Gunsite 113 Access Road Unit is located in the northeast corner of SRS. In the mid 1980`s, sparse vegetation, dead trees, and small mounds of soil were discovered on a portion of the road leading to Gunsite 113. This area became the Gunsite 113 Access Road Unit (Gunsite 113). The unit appears to have been used as a spoil dirt and / or road construction debris disposal area. There is no documentation or record of any hazardous substance management, disposal, or any type of waste disposal at this unit. Based upon the available evidence, there are no potential contaminants of concern available for evaluation by a CERCLA baseline risk assessment. Therefore, there is no determinable health risk associated with Gunsite 113. In addition, it is also reasonable to conclude that, since contamination is below risk-based levels, the unit presents no significant ecological risk. It is recommended that no further remedial action be performed at this unit.

  15. RCRA Facility Investigation/Remedial Investigation Report for the Gunsite 113 Access Road Unit (631-24G) - March 1996

    International Nuclear Information System (INIS)

    Palmer, E.

    1996-03-01

    Gunsite 113 Access Road Unit is located in the northeast corner of SRS. In the mid 1980's, sparse vegetation, dead trees, and small mounds of soil were discovered on a portion of the road leading to Gunsite 113. This area became the Gunsite 113 Access Road Unit (Gunsite 113). The unit appears to have been used as a spoil dirt and / or road construction debris disposal area. There is no documentation or record of any hazardous substance management, disposal, or any type of waste disposal at this unit. Based upon the available evidence, there are no potential contaminants of concern available for evaluation by a CERCLA baseline risk assessment. Therefore, there is no determinable health risk associated with Gunsite 113. In addition, it is also reasonable to conclude that, since contamination is below risk-based levels, the unit presents no significant ecological risk. It is recommended that no further remedial action be performed at this unit

  16. Experimental and Numerical Investigations of Soil Desiccation for Vadose Zone Remediation: Report for Fiscal Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.

    2008-02-04

    Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple Phases–Water-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.

  17. Remedial investigation plan for Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee: Responses to regulator comments

    International Nuclear Information System (INIS)

    1991-05-01

    This document, ES/ER-6 ampersand D2, is a companion document to ORNL/RAP/Sub-87/99053/4 ampersand R1, Remedial Investigation Plan for ORNL Waste Area Grouping 1, dated August 1989. This document lists comments received from the Environmental Protection Agency, Region 4 (EPA) and the Tennessee Department of Health and Environment (TDHE) and responses to each of these comments. As requested by EPA, a revised Remedial Investigation (RI) Plan for Waste Area Grouping (WAG) 1 will not be submitted. The document is divided into two Sections and Appendix. Section I contains responses to comments issued on May 22, 1990, by EPA's Region 4 program office responsible for implementing the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Section 2 contains responses to comments issued on April 7, 1989, by EPA's program office responsible for implementing the Resource Conservation and Recovery Act (RCRA); these comments include issues raised by the TDHE. The Appendix contains the attachments referenced in a number of the responses. 35 refs

  18. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the sediment transport modeling task

    International Nuclear Information System (INIS)

    Holt, V.L.; Baron, L.A.

    1994-05-01

    This site-specific Work Plan/Health and Safety Checklist (WP/HSC) is a supplement to the general health and safety plan (HASP) for Waste Area Grouping (WAG) 2 remedial investigation and site investigation (WAG 2 RI ampersand SI) activities [Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169)] and provides specific details and requirements for the WAG 2 RI ampersand SI Sediment Transport Modeling Task. This WP/HSC identifies specific site operations, site hazards, and any recommendations by Oak Ridge National Laboratory (ORNL) health and safety organizations [i.e., Industrial Hygiene (IH), Health Physics (HP), and/or Industrial Safety] that would contribute to the safe completion of the WAG 2 RI ampersand SI. Together, the general HASP for the WAG 2 RI ampersand SI (ORNL/ER-169) and the completed site-specific WP/HSC meet the health and safety planning requirements specified by 29 CFR 1910.120 and the ORNL Hazardous Waste Operations and Emergency Response (HAZWOPER) Program Manual. In addition to the health and safety information provided in the general HASP for the WAG 2 RI ampersand SI, details concerning the site-specific task are elaborated in this site-specific WP/HSC, and both documents, as well as all pertinent procedures referenced therein, will be reviewed by all field personnel prior to beginning operations

  19. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the soil and sediment task

    International Nuclear Information System (INIS)

    Holt, V.L.; Burgoa, B.B.

    1993-12-01

    This document is a site-specific work plan/health and safety checklist (WP/HSC) for a task of the Waste Area Grouping 2 Remedial Investigation and Site Investigation (WAG 2 RI ampersand SI). Title 29 CFR Part 1910.120 requires that a health and safety program plan that includes site- and task-specific information be completed to ensure conformance with health- and safety-related requirements. To meet this requirement, the health and safety program plan for each WAG 2 RI ampersand SI field task must include (1) the general health and safety program plan for all WAG 2 RI ampersand SI field activities and (2) a WP/HSC for that particular field task. These two components, along with all applicable referenced procedures, must be kept together at the work site and distributed to field personnel as required. The general health and safety program plan is the Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169). The WP/HSCs are being issued as supplements to ORNL/ER-169

  20. Cost estimating for CERCLA remedial alternatives a unit cost methodology

    International Nuclear Information System (INIS)

    Brettin, R.W.; Carr, D.J.; Janke, R.J.

    1995-06-01

    The United States Environmental Protection Agency (EPA) Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA, Interim Final, dated October 1988 (EPA 1988) requires a detailed analysis be conducted of the most promising remedial alternatives against several evaluation criteria, including cost. To complete the detailed analysis, order-of-magnitude cost estimates (having an accuracy of +50 percent to -30 percent) must be developed for each remedial alternative. This paper presents a methodology for developing cost estimates of remedial alternatives comprised of various technology and process options with a wide range of estimated contaminated media quantities. In addition, the cost estimating methodology provides flexibility for incorporating revisions to remedial alternatives and achieves the desired range of accuracy. It is important to note that the cost estimating methodology presented here was developed as a concurrent path to the development of contaminated media quantity estimates. This methodology can be initiated before contaminated media quantities are estimated. As a result, this methodology is useful in developing cost estimates for use in screening and evaluating remedial technologies and process options. However, remedial alternative cost estimates cannot be prepared without the contaminated media quantity estimates. In the conduct of the feasibility study for Operable Unit 5 at the Fernald Environmental Management Project (FEMP), fourteen remedial alternatives were retained for detailed analysis. Each remedial alternative was composed of combinations of remedial technologies and processes which were earlier determined to be best suited for addressing the media-specific contaminants found at the FEMP site, and achieving desired remedial action objectives

  1. DOE-EMSP Final Report: Characterization of Changes in Colloid and DNAPL Affecting Surface Chemistry and Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Susan E. Powers; Stefan J. Grimberg; Miles Denham

    2007-02-07

    The waste disposal to the M-area basin and A-14 outfall at the Savannah River Department of Energy facility in Aiken SC (USA) included a wide variety of inorganic aqueous flows and organic solvents in the form of dense non-aqueous phase liquids (DNAPL). The DNAPL has migrated through the subsurface resulting in widespread groundwater contamination. The goal of this research was to identify and quantify processes that could have affected the migration and remediation of the DNAPL in the subsurface. It was hypothesized that the variety of waste disposed at this site could have altered the mineral, microbial and DNAPL properties at this site relative to other DNAPL sites. The DNAPL was determined to have a very low interfacial tension and is suspected to be distributed in fine grained media, thereby reducing the effectiveness of soil vapor extraction remediation efforts. Although the DNAPL is primarily comprised of tetrachloroethene and trichloroethane, it also contains organic acids and several heavy metals. Experimental results suggest that iron from the aqueous and DNAPL phases undergoes precipitation and dechlorination reactions at the DNAPL-water interface, contributing to the low interfacial tension and acidity of the DNAPL. Biological activity in the contaminated region can also contribute to the low interfacial tension. PCE degrading bacteria produce biosurfactants and adhere to the DNAPL-water interface when stressed by high tetrachloroethene or low dissolved oxygen concentrations. The presence of iron can reduce the interfacial tension by nearly an order of magnitude, while the PCE degraders reduced the interfacial tension by nearly 50%. Abiotic changes in the mineral characteristics were not found to be substantially different between contaminated and background samples. The research completed here begins to shed some insight into the complexities of DNAPL fate and migration at sites where co-disposal of many different waste products occurred. Quantifying

  2. Investigation regarding bridge expansion joints deterioration in pakistan and its remedial measures

    International Nuclear Information System (INIS)

    Ajwad, A.

    2014-01-01

    The Concrete bridges are a vital part of highway infrastructure in Pakistan. The main problem that exists is the deterioration of most of them over the past 20 years or so. The main reason for this is the deviation from specified construction procedures and the negligence of the maintenance departments due to several reasons. At the moment National Highway Authority (NHA) owns about 5000 bridges in number across the country and according to a survey, about 30 percent of them are either not up to the mark or are out of service. The fund that NHA reserves every year for the maintenance purposes ranges from PKR 500 to 600 million which is very limited when it comes across the scope of the work. It means that expensive testing and retrofitting techniques that need to be implemented can never be achieved practically. This research is focused on case studies involving deterioration of bridge expansion joints only. All the deficiencies with their root causes and remedial measures are discussed in detail. The research is based upon wide experience of authors and will prove to be a cherished standard and beneficial reference article for working engineers engaged in fresh construction as well as renovation and repairs of concrete highway bridges. (author)

  3. The Challenges Of Investigating And Remediating Port Hope's Small-Scale Urban Properties - 13115

    Energy Technology Data Exchange (ETDEWEB)

    Veen, Walter van; Case, Glenn; Benson, John; Herod, Judy [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada); Yule, Adam [Public Works and Government Services Canada, Port Hope, Ontario (Canada)

    2013-07-01

    An important component of the Port Hope Project, the larger of the two projects comprising the Port Hope Area Initiative (PHAI), is the investigation of all 4,800 properties in the Municipality of Port Hope for low level radioactive waste (LLRW) and the remediation of approximately 10% of these. Although the majority of the individual properties are not expected to involve technically sophisticated remediation programs, the large number of property owners and individually unique properties are expected to present significant logistic challenges that will require a high degree of planning, organization and communication. The protocol and lessons learned described will be of interest to those considering similar programs. Information presented herein is part of a series of papers presented by the PHAI Management Office (PHAI MO) at WM Symposium '13 describing the history of the Port Hope Project and current project status. Other papers prepared for WM Symposium '13 address the large-scale site cleanup and the construction of the long-term waste management facility (LTWMF) where all of the LLRW will be consolidated and managed within an engineered, above-ground mound. (authors)

  4. Radiological surveillance of Remedial Action activities at the processing site, Ambrosia Lake, New Mexico, April 12--16, 1993. Final report

    International Nuclear Information System (INIS)

    1993-04-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological surveillance of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site in Ambrosia Lake, New Mexico. The requirements and attributes examined during the audit were developed from reviewing working-level procedures developed by the RAC. Objective evidence, comments, and observations were verified based on investigating procedures, documentation, records located at the site, personal interviews, and tours of the site. No findings were identified during this audit. Ten site-specific observations, three good practice observations, and five programmatic observations are presented in this report. The overall conclusion from the surveillance is that the radiological aspects of the Ambrosia Lake, New Mexico, remedial action program are performed adequately. The results of the good practice observations indicate that the site health physics (HP) staff is taking the initiative to address and resolve potential issues, and implement suggestions useful to the UMTRA Project. However, potential exists for improving designated storage areas for general items, and the RAC Project Office should consider resolving site-specific and procedural inconsistencies

  5. Final report for the network authentication investigation and pilot.

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, John M.; Dautenhahn, Nathan; Miller, Marc M.; Wiener, Dallas J; Witzke, Edward L.

    2006-11-01

    New network based authentication mechanisms are beginning to be implemented in industry. This project investigated different authentication technologies to see if and how Sandia might benefit from them. It also investigated how these mechanisms can integrate with the Sandia Two-Factor Authentication Project. The results of these investigations and a network authentication path forward strategy are documented in this report.

  6. Remedial Investigation/Feasibility Study Fort Dix U.S. Army Installation Fort Dix, New Jersey

    Science.gov (United States)

    1994-01-01

    METHOD: PARTICULATE FILTER; GRAVIMETRIC: (NIOSH VOL. Ill I 8583 , NUISANCE DUST (TOTAL)). »OSHA REVOKED THE FINAL RULE LIMITS OF JANUARY 19, 1989 IN...VJ ISO .- i-.i^ !...= : \\J~::— :!__’ii!-!lS . l~>.-- -.^ - ORAL-MCUSE LD50i 5SS0 MO/KG ORAL-rAf-iivifcii i LD50: 750 MG

  7. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3: Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin.

  8. Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination

  9. Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

  10. Phase 1 data summary report for the Clinch River Remedial Investigation: Health risk and ecological risk screening assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Holladay, S.K.; Hook, L.A.; Levine, D.A.; Longman, R.C.; McGinn, C.W.; Skiles, J.L.; Suter, G.W.; Williams, L.F.

    1992-12-01

    The Clinch River Remedial Investigation (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants released from the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. The contaminants released since the early 1940s include a variety of radionuclides, metals, and organic compounds. The purpose of this report is to summarize the results of Phase 1 of the CRRI. Phase 1 was designed to (1) obtain high-quality data to confirm existing historical data for contaminant levels in fish, sediment, and water from the CR/WBR; (2) determine the in the range of contaminant concentrations present river-reservoir system; (3) identify specific contaminants of concern; and (4) establish the reference (background) concentrations for those contaminants.

  11. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3: Appendix C

    International Nuclear Information System (INIS)

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin

  12. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-12-01

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

  13. Final Work Plan: Targeted Investigation at York, Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    The targeted investigation at York will be implemented in phases, so that data collected and interpretations developed at each stage of the program can be evaluated to guide subsequent phases most effectively. Section 2 of this Work Plan presents a brief overview of the York site, its geologic and hydrologic setting, and the previous CCC/USDA investigations. Section 3, outlines the proposed technical program for the targeted investigation, and Section 4 describes the investigative methods to be employed. A community relations plan is in Section 5, and Section 6 includes health and safety information. In addition to this site-specific Work Plan, the Master Work Plan (Argonne 2002) developed by Argonne for CCC/USDA investigations in Nebraska should be consulted for complete details of the methods and procedures to be used at York.

  14. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-12-01

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste fadities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCIA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RIFA)/RCRA Facility Investigation (RFI)/Coffective Measures Study (CMS)/Corrective Measures Implementation process. Under CERCLA, the actions follow the Pre at sign ary Assessment/Site Investigation (PA/Sl) Remedial Investigation Feasibility Study (RI/FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCIA into an RI Work Plan for the lint phase of characterization of Bear Creek Valley (BCV) Operable Unit (OU) 4

  15. Final disposal of nuclear waste. An investigated issue

    International Nuclear Information System (INIS)

    Palmu, J.; Nikula, A.

    1996-01-01

    Since 1978, the nuclear power companies have co-ordinated joint studies of nuclear waste disposal through the Nuclear Waste Commission of Finnish Power Companies. The studies are done primarily to gather basic data, with a view to implementing nuclear waste management in a safe, economical and timely way. The power companies' research, development and design work with regard to nuclear waste has been progressing according to the schedule set by the Government, and Finland has received international recognition for its advanced nuclear waste management programme. Last year, the nuclear power companies set up a joint company, Posiva Oy, to manage the final disposal of spent uranium fuel. (orig.)

  16. The role of historical operations information for supporting remedial investigation work at the former Harshaw Chemical Site

    International Nuclear Information System (INIS)

    Johnson, R.; Peterson, J.; Picel, K.; Kolhoff, A.; Devaughn, J.

    2008-01-01

    In the early stages of hazardous, toxic, and radioactive waste (HTRW) site investigations, basic record searches are performed to help direct the agencies investigating contaminated sites to areas of concern and to identify contaminants of interest (COI). Plans developed on the basis of this preliminary research alone are often incomplete and result in unexpected discoveries either while in the field investigating the site or after the reports have been written. Many of the sites investigated under the Formerly Utilized Sites Remedial Action program (FUSRAP) have complex histories that are slowly uncovered over the life of the project. Because of programmatic constraints, nuances of these sites are often discovered late in their programs and result in increased expenditures in order to fully characterize the site, perform a robust feasibility study, and recommend appropriate alternatives for remediation. By identifying resources for public records, classified records, historic aerial photographs, and other sources of site-specific historical information, a process can be established to optimize the collection of information and to develop efficient and complete project plans. In many cases, interviews with past site employees are very useful tools. In combining what is found in the records, observed on historic aerial photographs, and heard from former employees and family members, teams investigating these sites can begin to compile sound and more complete conceptual site models (CSMs). The former Harshaw Chemical Site (HCS) illustrates this discovery process. HCS is part of FUSRAP. Preliminary investigations by the US Department of Energy (DOE) in the 1970s provided an initial CSM of activities that had taken place that may have resulted in contamination. The remedial investigation (RI) conducted by the US Army Corps of Engineers (USACE) was designed around this CSM. The RI work, however, identified a number of site conditions that were unexpected, including new

  17. Systematic investigation of SLC final focus tolerances to errors

    International Nuclear Information System (INIS)

    Napoly, O.

    1996-10-01

    In this paper we review the tolerances of the SLC final focus system. To calculate these tolerances we used the error analysis routine of the program FFADA which has been written to aid the design and the analysis of final focus systems for the future linear colliders. This routine, complete by S. Fartoukh, systematically reviews the errors generated by the geometric 6-d Euclidean displacements of each magnet as well as by the field errors (normal and skew) up to the sextipolar order. It calculates their effects on the orbit and the transfer matrix at the second order in the errors, thus including cross-talk between errors originating from two different magnets. It also translates these effects in terms of tolerance derived from spot size growth and luminosity loss. We have run the routine for the following set of beam IP parameters: σ * x = 2.1 μm; σ * x' = 300 μrd; σ * x = 1 mm; σ * y = 0.55 μm; σ * y' = 200 μrd; σ * b = 2 x 10 -3 . The resulting errors and tolerances are displayed in a series of histograms which are reproduced in this paper. (author)

  18. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the ecological assessment task, Kingfisher Study

    International Nuclear Information System (INIS)

    Holt, V.L.; Baron, L.A.

    1994-05-01

    This report provides specific details and requirements for the WAG 2 remedial investigation and site investigation Ecological Assessment Task, Kingfisher Study, including information that will contribute to safe completion of the project. The report includes historical background; a site map; project organization; task descriptions and hazard evaluations; controls; and monitoring, personal protective equipment, decontamination, and medical surveillance program requirements. The report also includes descriptions of site personnel and their certifications as well as suspected WAG 2 contaminants and their characteristics. The primary objective of the WAG 2 Kingfisher Study is to assess the feasibility of using kingfishers as biological monitors of contaminants on the Oak Ridge Reservation (ORR). Kingfisher sample collection will be used to determine the levels of contaminants and degree of bioaccumulation within a common piscivorous bird feeding on contaminated fish from streams on the ORR

  19. Quality assurance/quality control summary report on phase 2 of the Clinch River remedial investigation at the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, S.K.; Anderson, H.M.; Benson, S.B.; Bevelhimer, M.S.; Brandt, C.C.; Chavannes, C.M.; Cook, R.B.; Evans, D.A.; Ford, C.J.; Harris, R.A.; Horwedel, B.M.; Jackson, B.L.

    1996-12-01

    Quality assurance (QA) objectives for Phase 2 were that (1) scientific data generated would withstand scientific and legal scrutiny; (2) data would be gathered using appropriate procedures for sample collection, sample handling and security, chain of custody, laboratory analyses, and data reporting; (3) data would be of known precision and accuracy; and (4) data would meet data quality objectives defined in the Phase 2 Sampling and Analysis Plan. A review of the QA systems and quality control (QC) data associated with the Phase 2 investigation is presented to evaluate whether the data were of sufficient quality to satisfy Phase 2 objectives. The data quality indicators of precision, accuracy, representativeness, comparability, completeness, and sensitivity were evaluated to determine any limitations associated with the data. Data were flagged with qualifiers that were associated with appropriate reason codes and documentation relating the qualifiers to the reviewer of the data. These qualifiers were then consolidated into an overall final qualifier to represent the quality of the data to the end user. In summary, reproducible, precise, and accurate measurements consistent with CRRI objectives and the limitations of the sampling and analytical procedures used were obtained for the data collected in support of the Phase 2 Remedial Investigation.

  20. Quality assurance/quality control summary report on phase 2 of the Clinch River remedial investigation at the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Holladay, S.K.; Anderson, H.M.; Benson, S.B.; Bevelhimer, M.S.; Brandt, C.C.; Chavannes, C.M.; Cook, R.B.; Evans, D.A.; Ford, C.J.; Harris, R.A.; Horwedel, B.M.; Jackson, B.L.

    1996-12-01

    Quality assurance (QA) objectives for Phase 2 were that (1) scientific data generated would withstand scientific and legal scrutiny; (2) data would be gathered using appropriate procedures for sample collection, sample handling and security, chain of custody, laboratory analyses, and data reporting; (3) data would be of known precision and accuracy; and (4) data would meet data quality objectives defined in the Phase 2 Sampling and Analysis Plan. A review of the QA systems and quality control (QC) data associated with the Phase 2 investigation is presented to evaluate whether the data were of sufficient quality to satisfy Phase 2 objectives. The data quality indicators of precision, accuracy, representativeness, comparability, completeness, and sensitivity were evaluated to determine any limitations associated with the data. Data were flagged with qualifiers that were associated with appropriate reason codes and documentation relating the qualifiers to the reviewer of the data. These qualifiers were then consolidated into an overall final qualifier to represent the quality of the data to the end user. In summary, reproducible, precise, and accurate measurements consistent with CRRI objectives and the limitations of the sampling and analytical procedures used were obtained for the data collected in support of the Phase 2 Remedial Investigation

  1. Final Work Plan: Phase I Investigation at Bladen, Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division. Applied Geosciences and Environmental Management Section; Yan, Eugene [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division

    2014-07-01

    The village of Bladen is a town of population approximately 237 in the northwest part of Webster County, Nebraska, 30 mi southwest of Hastings and 140 mi southwest of Lincoln, Nebraska. In 2000, the fumigant-related compound carbon tetrachloride was detected in public water supply well PWS 68-1, at a trace level. Low-level contamination, below the maximum contamination level (MCL) of 5.0 μg/L, has been detected intermittently in well PWS 68-1 since 2000, including in the last sample taken in July 2013. In 2006, the village installed a new well, PWS 2006-1, that remains free of contamination. Because the carbon tetrachloride found in well PWS 68-1 might be linked to historical use of fumigants containing carbon tetrachloride at grain storage facilities, including its former facility in Bladen, the CCC/USDA is proposing an investigation to (1) delineate the source and extent of the carbon tetrachloride contamination potentially associated with its former facility, (2) characterize pathways and controlling factors for contaminant migration in the subsurface, and (3) establish a basis for estimating potential health and environmental risks. The work will be performed in accordance with the Intergovernmental Agreement established between the NDEQ and the Farm Service Agency of the USDA. The site investigation at Bladen will be implemented in phases, so that data collected and interpretations developed during each phase can be evaluated to determine if a subsequent phase of investigation is warranted and, if warranted, to provide effective guidance for the subsequent investigation activities. This Work Plan identifies the specific technical objectives and defines the scope of work proposed for the Phase I investigation by compiling and evaluating historical data. The proposed investigation activities will be performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research

  2. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report

    International Nuclear Information System (INIS)

    1990-02-01

    This radiologic characterization of tho two inactive uranium millsites at Rifle, Colorado, was conducted by Bendix Field Engineering Corporation (Bendix) for the US Department of Energy (DOE), Grand Junction Projects Office, in accord with a Statement of Work prepared by the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor, Jacobs Engineering Group, Inc. (Jacobs). The purpose of this project is to define the extent of radioactive contamination at the Rifle sites that exceeds US Environmental Protection Agency, (EPA) standards for UMTRA sites. The data presented in this report are required for characterization of the areas adjacent to the tailings piles and for the subsequent design of cleanup activities. An orientation visit to the study area was conducted on 31 July--1 August 1984, in conjunction with Jacobs, to determine the approximate extent of contaminated area surrounding tho piles. During that visit, survey control points were located and baselines were defined from which survey grids would later be established; drilling requirements were assessed; and radiologic and geochemical data were collected for use in planning the radiologic fieldwork. The information gained from this visit was used by Jacobs, with cooperation by Bendix, to determine the scope of work required for the radiologic characterization of the Rifle sites. Fieldwork at Rifle was conducted from 1 October through 16 November 1984

  3. Final programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Ground Water Project. Volume 1

    International Nuclear Information System (INIS)

    1996-10-01

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project is to eliminate, reduce, or address to acceptable levels the potential health and environmental consequences of milling activities by meeting Environmental Protection Agency (EPA) ground water standards. One of the first steps in the UMTRA Ground Water Project is the preparation of this Programmatic Environmental Impact Statement (PEIS). The EPA standards allow the use of different strategies for achieving compliance with the standards. This document analyzes the potential impacts of four alternatives for conducting the Ground Water Project. Each of the four alternatives evaluated in the PEIS is based on a different mix of strategies to meet EPA ground water standards. The PEIS is intended to serve as a programmatic planning document that provides an objective basis for determining site-specific ground water compliance strategies and data and information that can be used to prepare site-specific environmental impact analyses more efficiently. DOE will prepare appropriate further National Environmental Policy Act documentation before making site-specific decisions to implement the Ground Water Project. Affected States, Tribes, local government agencies, and members of the public have been involved in the process of preparing this PEIS; DOE encourages their continued participation in the site-specific decision making process

  4. Harvesting Environmental Microalgal Blooms for Remediation and Resource Recovery: A Laboratory Scale Investigation with Economic and Microbial Community Impact Assessment

    Directory of Open Access Journals (Sweden)

    Jagroop Pandhal

    2017-12-01

    Full Text Available A laboratory based microflotation rig termed efficient FLOtation of Algae Technology (eFLOAT was used to optimise parameters for harvesting microalgal biomass from eutrophic water systems. This was performed for the dual objectives of remediation (nutrient removal and resource recovery. Preliminary experiments demonstrated that chitosan was more efficient than alum for flocculation of biomass and the presence of bacteria could play a positive role and reduce flocculant application rates under the natural conditions tested. Maximum biomass removal from a hyper-eutrophic water retention pond sample was achieved with 5 mg·L−1 chitosan (90% Chlorophyll a removal. Harvesting at maximum rates showed that after 10 days, the bacterial diversity is significantly increased with reduced cyanobacteria, indicating improved ecosystem functioning. The resource potential within the biomass was characterized by 9.02 μg phosphate, 0.36 mg protein, and 103.7 μg lipid per mg of biomass. Fatty acid methyl ester composition was comparable to pure cultures of microalgae, dominated by C16 and C18 chain lengths with saturated, monounsaturated, and polyunsaturated fatty acids. Finally, the laboratory data was translated into a full-size and modular eFLOAT system, with estimated costs as a novel eco-technology for efficient algal bloom harvesting.

  5. Final report investigation project agricultural products and environment

    International Nuclear Information System (INIS)

    Loria, L.G.; Jimenez Dam, R.; Mora Rodriguez, P.

    1998-01-01

    The document presents the after-action report on six investigation projects: Thermoluminescence, Spectrometry gamma of low level, Agricultural products, Radon in the subsoil, Nuclear instrumentation, and X-ray fluorescence, executed between 1995-1997 by the Laboratory of Physical Nuclear Applied of the University of Costa Rica, in the which objectives are shown, applied methodology as well as the achievements and results each project. (Author) [es

  6. Remedial investigation and feasibility study for the Lawrence Livermore National Laboratory Site 300 Pit 7 Complex

    Energy Technology Data Exchange (ETDEWEB)

    Taffet, M.J. (Lawrence Livermore National Lab., CA (USA)); Oberdorfer, J.A. (San Jose State Univ., CA (USA)); McIlvride, W.A. (Weiss Associates, Oakland, CA (USA))

    1989-10-01

    This report summarizes the results and conclusions of the investigation of tritium and other compounds in ground water in the vicinity of landfills at the Lawrence Livermore National Laboratory (LLNL) Site 300 Pit 7 Complex. 91 refs., 110 figs., 43 tabs.

  7. Theoretical investigations of grout seal longevity - Final report

    International Nuclear Information System (INIS)

    Alcorn, S.; Coons, W.; Christian-Frear, T.; Wallace, M.

    1992-04-01

    Theoretical investigations into the longevity of repository seals have dealt primarily with the development of a methodology to evaluate interactions between portland cement-based grout and groundwater. Evaluation of chemical thermodynamic equilibria between grout and groundwater, and among grout, groundwater, and granitic host rock phases using the geochemical codes EQ3NR/EQ6 suggests that a fracture filled with grout and saturated with groundwater will tend to fill and 'tighten' with time. Results of these investigations suggest that cement grout seals will maintain an acceptable level of performance for tens of thousands to millions of years, provided the repository is sited where groundwater chemistry is compatible with the seals and hydrologic gradients are low. The results of the grout: groundwater: rock calculations suggest that buffering of the fracture seals chemical systems by the granite rock may be important in determining the long-term fate of grout seals and the resulting phase assemblage in the fracture. The similarity of the modelled reaction products to those observed in naturally filled fractures suggests that with time equilibrium will be approached and grouted fractures subject to low hydrologic gradients will continue to seal. If grout injected into fractures materially reduces groundwater flux, the approach to chemical equilibrium will likely be accelerated. In light of this, even very thin or imperfectly grouted fractures would tighten in suitable hydrogeologic environments. (29 refs.) (au)

  8. CST receiver tube qualification, Phase 1, Investigation - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mack, I.; Rossy, J.-P.

    2010-05-15

    In this report the different application possibilities for concentrated solar thermal (CST) systems are studied. Further, the possible measuring methods for characterising and qualifying the receivers with their embedded absorber tubes are investigated. The investigations show that CST systems can be used as an environmentally friendly alternative to fossil fuels in many applications. The best known one is the generation of electrical power, but concentrated solar energy can also be used for desalination, industrial process heat, and for cooling of buildings. Industrial process heat is a large potential area with temperature in the range of 120 {sup o}C to over 400 {sup o}C. Heat below 400 {sup o}C can be provided by various parabolic trough and Fresnel systems, which are optimised for the temperature required. In order to further increase the usage of CST systems, it is of great importance to provide standards for the qualification and characterisation of the different components of the CST systems. Huge efforts are currently made to define a standard for evacuated receiver tubes. For the characterisation of the black absorber tubes the development is still at the beginning, although the need here is also given. (authors)

  9. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    1983-07-01

    The environmental impacts associated with remedial actions in connection with residual radioactive materials remaining at the inactive uranium processing site located in Canonsburg, Washington County, Pennsylvania are evaluated. The Canonsburg site is an 18.5-acre property that was formerly owned by the Vitro Rare Metals Company. The expanded Canonsburg site would be 30-acre property that would include the Canonsburg site (the former Vitro Rare Metals plant), seven adjacent private houses, and the former Georges Pottery property. During the period 1942 through 1957 the Vitro Manufacturing Company and its successor, the Vitro Corporation of America, processed onsite residues and ores, and government-owned ores, concentrates, and scraps to extract uranium and other rare metals. The Canonsburg site is now the Canon Industrial Park. In addition to storing the residual radioactive materials of this process at the Canonsburg site, about 12,000 tons of radioactively contaminated materials were transferred to a railroad landfill in Burrell Township, Indiana County, Pennsylvania. This Canonsburg FEIS evaluates five alternatives for removing the potential public health hazard associated with the radioactively contaminated materials. In addition to no action, these alternatives involve various combinations of stabilization of the radioactively contaminated materials in place or decontamination of the Canonsburg and Burrell sites by removing the radioactively contaminated materials to another location. In addition to the two sites mentioned, a third site located in Hanover Township, Washington County, Pennsylvania has been considered as a disposal site to which the radioactively contaminated materials presently located at either of the other two sites might be moved.

  10. Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume I

    International Nuclear Information System (INIS)

    1983-07-01

    The environmental impacts associated with remedial actions in connection with residual radioactive materials remaining at the inactive uranium processing site located in Canonsburg, Washington County, Pennsylvania are evaluated. The Canonsburg site is an 18.5-acre property that was formerly owned by the Vitro Rare Metals Company. The expanded Canonsburg site would be 30-acre property that would include the Canonsburg site (the former Vitro Rare Metals plant), seven adjacent private houses, and the former Georges Pottery property. During the period 1942 through 1957 the Vitro Manufacturing Company and its successor, the Vitro Corporation of America, processed onsite residues and ores, and government-owned ores, concentrates, and scraps to extract uranium and other rare metals. The Canonsburg site is now the Canon Industrial Park. In addition to storing the residual radioactive materials of this process at the Canonsburg site, about 12,000 tons of radioactively contaminated materials were transferred to a railroad landfill in Burrell Township, Indiana County, Pennsylvania. This Canonsburg FEIS evaluates five alternatives for removing the potential public health hazard associated with the radioactively contaminated materials. In addition to no action, these alternatives involve various combinations of stabilization of the radioactively contaminated materials in place or decontamination of the Canonsburg and Burrell sites by removing the radioactively contaminated materials to another location. In addition to the two sites mentioned, a third site located in Hanover Township, Washington County, Pennsylvania has been considered as a disposal site to which the radioactively contaminated materials presently located at either of the other two sites might be moved

  11. Sealing of investigation boreholes, Phase 4 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Drawrite AB, Luleaa Technical University, Luleaa (Sweden); Ramqvist, Gunnar [El-Tekno AB, Figeholm (Sweden); Bockgaard, Niclas [Golder Associates, Goeteborg (Sweden); Ekman, Lennart [LE Geokonsult AB, Baelinge (Sweden)

    2011-09-15

    The report describes the outcome of Phase 4 of the project 'Sealing of investigation boreholes', which deals with 1) characterization and planning of borehole sealing, 2) performance and quality assessment, 3) sealing of large diameter holes, and 4) interaction of clay and concrete plugs. A specific goal was to find ways to characterize, plan and seal of boreholes so that their impact on the overall hydraulic performance of the repository rock can predicted and controlled. The work comprised selection of representative 'reference holes' at the Laxemar and Forsmark sites for development of a general programme for planning and simulating implementation of borehole plugging campaigns, considering also cost issues. A second aim was to define and quantify the role of seals in the reference holes for finding out how important sealing really is. A third was to test a practical way to seal large diameter boreholes and a fourth to find out how concrete matures and performs in contact with smectite clay. The study demonstrated, in conclusion, the need for developing techniques for preparing deep boreholes before lasting seals are installed in them, since poor sealing can short-circuit hydraulically important fracture zones intersected by the holes. The practically oriented sealing activities showed that the technique developed for tight sealing of large-diameter boreholes is practical and feasible. The issue of chemical stability was investigated by testing the performance and constitution of a plug consisting of CBI concrete in contact with smectite-rich seals for almost three years. This study showed that none of them underwent substantial degradation in this period of time, but chemical reactions and thereby generated changes in physical behaviour of the plug components had taken place, particularly in the clay. The rate of degradation is, however, not yet known. It was concluded from this study that it is suitable to carry out a corresponding

  12. Sealing of investigation boreholes, Phase 4 - Final report

    International Nuclear Information System (INIS)

    Pusch, Roland; Ramqvist, Gunnar; Bockgaard, Niclas; Ekman, Lennart

    2011-09-01

    The report describes the outcome of Phase 4 of the project 'Sealing of investigation boreholes', which deals with 1) characterization and planning of borehole sealing, 2) performance and quality assessment, 3) sealing of large diameter holes, and 4) interaction of clay and concrete plugs. A specific goal was to find ways to characterize, plan and seal of boreholes so that their impact on the overall hydraulic performance of the repository rock can predicted and controlled. The work comprised selection of representative 'reference holes' at the Laxemar and Forsmark sites for development of a general programme for planning and simulating implementation of borehole plugging campaigns, considering also cost issues. A second aim was to define and quantify the role of seals in the reference holes for finding out how important sealing really is. A third was to test a practical way to seal large diameter boreholes and a fourth to find out how concrete matures and performs in contact with smectite clay. The study demonstrated, in conclusion, the need for developing techniques for preparing deep boreholes before lasting seals are installed in them, since poor sealing can short-circuit hydraulically important fracture zones intersected by the holes. The practically oriented sealing activities showed that the technique developed for tight sealing of large-diameter boreholes is practical and feasible. The issue of chemical stability was investigated by testing the performance and constitution of a plug consisting of CBI concrete in contact with smectite-rich seals for almost three years. This study showed that none of them underwent substantial degradation in this period of time, but chemical reactions and thereby generated changes in physical behaviour of the plug components had taken place, particularly in the clay. The rate of degradation is, however, not yet known. It was concluded from this study that it is suitable to carry out a corresponding investigation of the plugs

  13. Final Report on Investigation of the Electron Interactions in Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Philip [Columbia University

    2015-02-14

    In graphene, combined with the real spin degree of freedom, which exhibits SU(2) symmetry, the total internal degrees of freedom of graphene carriers is thus described by a larger SU(4) symmetry, which produces a richer space for potential phenomena of emergent correlated electron phenomena. The major part of this proposal is exploring this unique multicomponent correlated system in the quantum limit. In the current period of DOE BES support we have made several key advances that will serve as a foundation for the new studies in this proposal. Employing the high-mobility encapsulated graphene heterostructures developed during the current phase of research, we have investigated spin and valley quantum Hall ferromagnetism in graphene and discovered a spin phase transition leading to a quantum spin Hall analogue. We have also observed the fractal quantum Hall effect arising from the Hofstadter’s butterfly energy spectrum. In addition, we have discovered multiband transport phenomena in bilayer graphene at high carrier densities.

  14. Final report : Hanover environmental site investigation, 2009-2010.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Science Division)

    2011-06-07

    The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated a grain storage facility at the northeastern edge of the city of Hanover, Kansas, from 1950 until the early 1970s. During this time, commercial grain fumigants containing carbon tetrachloride were in common use by the grain storage industry to preserve grain in their facilities. In February 1998, trace to low levels of carbon tetrachloride were detected in two private lawn and garden wells near the former grain storage facility at Hanover, as part of a statewide USDA private well sampling program that was implemented by the Kansas Department of Health and Environment (KDHE) near former CCC/USDA facilities. In July 2007, the CCC/USDA sampled indoor air at nine residences on or adjacent to its former facility to address the residents concerns. Low levels of carbon tetrachloride were detected at four of the nine homes. Consequently, the CCC/USDA has conducted investigations, under the direction of the KDHE, to determine the source and extent of the carbon tetrachloride contamination that might be associated with the former facility. In July 2007, the CCC/USDA sampled indoor air at nine residences on or adjacent to its former facility to address the residents concerns regarding vapor intrusion (VI). Low levels of carbon tetrachloride were detected at four of the nine homes. Because carbon tetrachloride found in private wells and indoor air at Hanover might be linked to historical use of fumigants containing carbon tetrachloride at its former grain storage facility, the CCC/USDA has conducted investigations to determine the source and extent of the carbon tetrachloride contamination that may be associated with the former facility. The results of the comprehensive investigation at Hanover indicate that no unacceptable risk to human health currently exists from exposure to surface and subsurface soils by either ingestion, inhalation or dermal contact. No risk is

  15. Remedial investigation report on the abandoned nitric acid pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    Upper East Fork Poplar Creek OU-2 consists of the Abandoned Nitric Acid Pipeline. This pipeline was installed in 1951 to transport liquid wastes {approximately} 4,800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. A total of nineteen locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The nineteen samples collected below the pipeline were analyzed by the Y-12 Plant laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. The results of the baseline human health risk assessment for the Abandoned Nitric Acid Pipeline contaminants of potential concern show no unacceptable risks to human health via incidental ingestion of soil, inhalation of dust, dermal contact with the soil, or external exposure to radionuclides in the ANAP soils, under the construction worker and/or the residential land-use scenarios.

  16. Remedial investigation report on the abandoned nitric acid pipeline at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-12-01

    Upper East Fork Poplar Creek OU-2 consists of the Abandoned Nitric Acid Pipeline. This pipeline was installed in 1951 to transport liquid wastes ∼ 4,800 ft from Buildings 9212, 9215, and 9206 to the S-3 Ponds. Materials known to have been discharged through the pipeline include nitric acid, depleted and enriched uranium, various metal nitrates, salts, and lead skimmings. A total of nineteen locations were chosen to be investigated along the pipeline for the first phase of this Remedial Investigation. Sampling consisted of drilling down to obtain a soil sample at a depth immediately below the pipeline. Additional samples were obtained deeper in the subsurface depending upon the depth of the pipeline, the depth of the water table, and the point of auger refusal. The nineteen samples collected below the pipeline were analyzed by the Y-12 Plant laboratory for metals, nitrate/nitrite, and isotopic uranium. Samples collected from three boreholes were also analyzed for volatile organic compounds because these samples produced a response with organic vapor monitoring equipment. The results of the baseline human health risk assessment for the Abandoned Nitric Acid Pipeline contaminants of potential concern show no unacceptable risks to human health via incidental ingestion of soil, inhalation of dust, dermal contact with the soil, or external exposure to radionuclides in the ANAP soils, under the construction worker and/or the residential land-use scenarios

  17. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This volume is in support of the findings of an investigation into contamination of the Clinch River and Poplar Creek near the Oak Ridge Reservation (for more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities there). It addresses the quality assurance objectives for measuring the data, presents selected historical data, contains data from several discrete water characterization studies, provides data supporting the sediment characterization, and contains data related to several biota characterization studies.

  18. Report on investigation of remedial measures for the radiation reduction and radioactive decontamination of Elliot Lake, Ontario

    International Nuclear Information System (INIS)

    1981-02-01

    This is the fourth annual report on a program to monitor and reduce radon daughter exposures in the town of Elliot Lake, Ontario. Twelve month's WL survey measurements were completed in 1980 and showed that 22 houses exceeded the remedial action criterion of 0.02 WL. In a few cases gamma radiation levels were high enough to require remedial action in driveways and public areas, but not inside houses. During 1980 remedial work was carried out on 85 buildings; work was completed on 58. The most frequent routes of entry for radon and radon daughters were untrapped weeping tile connected to a floor drain or sump, and the wall to floor joint

  19. Experimental Investigation of Radio-Turbulence Induced Diffusion -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, H. B.; Usman, S.

    2005-07-07

    The outcome of this research project suggests that the transport of radon in water is significantly greater than that predicted solely by molecular diffusion. The original study was related to the long term storage of {sup 226}Ra-bearing sand at the DOE Fernald site and determining whether a barrier of water covering the sand would be effective in reducing the emanation of {sup 222}Rn from the sand. Initial observations before this study found the transport of radon in water to be greater than that predicted solely by molecular diffusion. Fick's law on diffusion was used to model the transport of radon in water including the impact associated with radioactive decay. Initial measurements suggested that the deposition of energy in water associated with the radioactive decay process influences diffusion and enhances transport of radon. A multi-region, one-dimensional, steady-state transport model was used to analyze the movement of radon through a sequential column of air, water and air. An effective diffusion coefficient was determined by varying the thickness of the water column and measuring the time for transport of {sup 222}Rn through of the water barrier. A one-region, one-dimensional transient diffusion equation was developed to investigate the build up of radon at the end of the water column to the time when a steady-state, equilibrium condition was achieved. This build up with time is characteristic of the transport rate of radon in water and established the basis for estimating the effective diffusion coefficient for {sup 222}Rn in water. Several experiments were conducted using different types and physical arrangements of water barriers to examine how radon transport is influenced by the water barrier. Results of our measurements confirm our theoretical analyses which suggest that convective forces other than pure molecular diffusion impact the transport of {sup 222}Rn through the water barrier. An effective diffusion coefficient is defined that

  20. Laboratory investigations of stormwater remediation via slag: Effects of metals on phosphorus removal

    International Nuclear Information System (INIS)

    Okochi, Nnaemeka C.; McMartin, Dena W.

    2011-01-01

    The use of electric arc furnace (EAF) slag for the removal of phosphorus (P) from various simulated stormwater blends was investigated in the laboratory. The form of P measured was the inorganic orthophosphate (PO 4 -P). The stormwater solutions used in this preliminary study were synthesized as blends of P and typical concentrations of some of the most common and abundant metals in stormwater (e.g. cadmium, copper, lead and zinc), and contacted with EAF slag to determine P removal efficiency and sorptive competition. Results showed that the presence of cadmium, lead and zinc had minimal effect on the removal process; copper was a significant inhibitor of P uptake by the EAF slag media. P removal was greatest in the metal-free and multi-metal stormwater solutions.

  1. Laboratory investigations of stormwater remediation via slag: Effects of metals on phosphorus removal.

    Science.gov (United States)

    Okochi, Nnaemeka C; McMartin, Dena W

    2011-03-15

    The use of electric arc furnace (EAF) slag for the removal of phosphorus (P) from various simulated stormwater blends was investigated in the laboratory. The form of P measured was the inorganic orthophosphate (PO(4)-P). The stormwater solutions used in this preliminary study were synthesized as blends of P and typical concentrations of some of the most common and abundant metals in stormwater (e.g. cadmium, copper, lead and zinc), and contacted with EAF slag to determine P removal efficiency and sorptive competition. Results showed that the presence of cadmium, lead and zinc had minimal effect on the removal process; copper was a significant inhibitor of P uptake by the EAF slag media. P removal was greatest in the metal-free and multi-metal stormwater solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Laboratory investigations of stormwater remediation via slag: Effects of metals on phosphorus removal

    Energy Technology Data Exchange (ETDEWEB)

    Okochi, Nnaemeka C. [Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); McMartin, Dena W., E-mail: dena.mcmartin@uregina.ca [Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada)

    2011-03-15

    The use of electric arc furnace (EAF) slag for the removal of phosphorus (P) from various simulated stormwater blends was investigated in the laboratory. The form of P measured was the inorganic orthophosphate (PO{sub 4}-P). The stormwater solutions used in this preliminary study were synthesized as blends of P and typical concentrations of some of the most common and abundant metals in stormwater (e.g. cadmium, copper, lead and zinc), and contacted with EAF slag to determine P removal efficiency and sorptive competition. Results showed that the presence of cadmium, lead and zinc had minimal effect on the removal process; copper was a significant inhibitor of P uptake by the EAF slag media. P removal was greatest in the metal-free and multi-metal stormwater solutions.

  3. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (July 2005)

    International Nuclear Information System (INIS)

    2005-01-01

    The U.S. Department of Energy (DOE or the Department) is proposing to clean up surface contamination and implement a ground water compliance strategy to address contamination that resulted from historical uranium-ore processing at the Moab Uranium Mill Tailings Site (Moab site), Grand County, Utah. Pursuant to the National Environmental Policy Act (NEPA), 42 United States Code (U.S.C.) (section) 4321 et seq., DOE prepared this environmental impact statement (EIS) to assess the potential environmental impacts of remediating the Moab site and vicinity properties (properties where uranium mill tailings were used as construction or fill material before the potential hazards associated with the tailings were known). DOE analyzed the potential environmental impacts of both on-site and off-site remediation and disposal alternatives involving both surface and ground water contamination. DOE also analyzed the No Action alternative as required by NEPA implementing regulations promulgated by the Council on Environmental Quality. DOE has determined that its preferred alternatives are the off-site disposal of the Moab uranium mill tailings pile, combined with active ground water remediation at the Moab site. The preferred off-site disposal location is the Crescent Junction site, and the preferred method of transportation is rail. The basis for this determination is discussed later in this Summary. DOE has entered into agreements with 12 federal, tribal, state, and local agencies to be cooperating agencies in the development and preparation of this EIS. Several of the cooperating agencies have jurisdiction by law and intend to use the EIS to support their own decisionmaking. The others have expertise relevant to potential environmental, social, or economic impacts within their geographic regions. During the preparation of the EIS, DOE met with the cooperating agencies, provided them with opportunities to review preliminary versions of the document, and addressed their comments

  4. Data compilation task report for the source investigation of the 300-FF-1 operable unit phase 1 remedial investigation

    International Nuclear Information System (INIS)

    Young, J.S.; Fruland, R.M.; Fruchter, J.S.

    1990-02-01

    This report provides additional information on facility and waste characteristics for the 300-FF-1 operable unit. The additional information gathered and reported includes meetings and on-site visits with current and past personnel having knowledge of operations in the operable unit, a more precise determination of the location of the Process Sewer lines and Retired Radioactive Liquid Waste Sewer, a better understanding of the phosphoric acid spill at the 340 Complex, and a search for engineering plans and environmental reports related to the operable unit. As a result of this data-gathering effort, recommendations for further investigation include characterization of the 307 Trenches to determine the origin of an underlying uranium plume in the groundwater, more extensive sampling of near-surface and dike sediments in the North and South Process Ponds to better define the extent of horizontal contamination, and detection of possible leaks in the abandoned Radioactive Waste Sewer by either electromagnetic induction or remote television camera inspection techniques. 16 refs., 4 figs., 5 tabs

  5. Source evaluation report phase 2 investigation: Limited field investigation. Final report: United States Air Force Environmental Restoration Program, Eielson Air Force Base, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This report describes the limited field investigation work done to address issues and answer unresolved questions regarding a collection of potential contaminant sources at Eielson Air Force Base (AFB), near Fairbanks, Alaska. These sources were listed in the Eielson AFB Federal Facility Agreement supporting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of the base. The limited field investigation began in 1993 to resolve all remaining technical issues and provide the data and analysis required to evaluate the environmental hazard associated with these sites. The objective of the limited field investigation was to allow the remedial project managers to sort each site into one of three categories: requiring remedial investigation/feasibility study, requiring interim removal action, or requiring no further remedial action.

  6. Data base management plan for the remedial investigation/feasibility study at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-11-01

    This Data Base Management (DBM) Plan has been prepared for use by Bechtel National, Inc. (Bechtel) and its subcontractors in the performance of the Oak Ridge National Laboratory (ORNL) Remedial Investigation/Feasibility Study (RI/FS) program activities. The RI/FS program is being performed under subcontract to Martin Marietta Energy Systems, Inc. (Energy Systems), the contractor operating ORNL for the Department of Energy. This DBM Plan defines the procedures and protocol to be followed in developing and maintaining the data base used by Bechtel and its subcontractors for RI/FS activities at ORNL; describes the management controls, policies, and guidelines to be followed; and identifies responsible positions and their Energy Systems functions. The Bechtel RI/FS data base will be compatible with the Oak Ridge Environmental Information System and will include data obtained from field measurements and laboratory and engineering analyses. Personnel health and safety information, document control, and project management data will also be maintained as part of the data base. The computerized data management system is being used to organize the data according to application and is capable of treating data from any given site as a variable entity. The procedures required to implement the DBM Plan are cross-referenced to specific sections of the plan

  7. Remedial investigation/feasibility study work plan for the 100-BC-5 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-07-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The Tri-Party Agreement requires that the cleanup programs at the Hanford Site integrate the requirements of CERCLA, RCRA, and Washington State's dangerous waste (the state's RCRA-equivalent) program. This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-BC-5 operable unit. The 100-B/C Area consists of the 100-BC-5 groundwater operable unit and four source operable units. The 100-BC-5 operable unit includes all contamination found in the aquifer soils and water beneath the 100-B/C Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination

  8. Remedial investigation/feasibility study work plan for the 100-FR-3 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Figure 1-1 shows the location of these areas. Under the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1990a), signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-FR-3 operable unit. The 100-K Area consists of the 100-FR-3 groundwater operable unit and two source operable units. The 100-FR-3 operable unit includes all contamination found in the aquifer soils and water beneath the 100-F Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination. A separate work plan has been initiated for the 100-FR-1 source operable unit (DOE-RL 1992a)

  9. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland: Volume 2, Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S.; Martino, L.; Patton, T.

    1995-03-01

    J-Field encompasses about 460 acres at the southern end of the Gunpowder Neck Peninsula in the Edgewood Area of APG (Figure 2.1). Since World War II, the Edgewood Area of APG has been used to develop, manufacture, test, and destroy chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). For the purposes of this project, J-Field has been divided into eight geographic areas or facilities that are designated as areas of concern (AOCs): the Toxic Burning Pits (TBP), the White Phosphorus Burning Pits (WPP), the Riot Control Burning Pit (RCP), the Robins Point Demolition Ground (RPDG), the Robins Point Tower Site (RPTS), the South Beach Demolition Ground (SBDG), the South Beach Trench (SBT), and the Prototype Building (PB). The scope of this project is to conduct a remedial investigation/feasibility study (RI/FS) and ecological risk assessment to evaluate the impacts of past disposal activities at the J-Field site. Sampling for the RI will be carried out in three stages (I, II, and III) as detailed in the FSP. A phased approach will be used for the J-Field ecological risk assessment (ERA).

  10. Remedial investigation/feasibility study work plan for the 100-FR-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-08-01

    Four areas of the Hanford Site (the 100, 200,300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1990a), signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. This work plan and the attached supporting project plans establish the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-FR-1 operable unit. The 100-FR-1 source operable unit is one of two source operable units in the 100-F Area. Source operable units include facilities and unplanned release sites that are potential sources of hazardous substance contamination. The groundwater affected or potentially affected by the entire 100-F Area is considered as a separate operable unit, the 100-FR-3 groundwater operable unit. A separate work plan has been initiated for the 100-FR-3 operable unit (DOE/RL 1992a)

  11. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Field Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, P.; Biang, R.; Dolak, D.; Dunn, C.; Martino, L.; Patton, T.; Wang, Y.; Yuen, C.

    1995-03-01

    The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. J-Field is within the Edgewood Area of APG in Harford County, Maryland (Figure 1. 1). Since World War II activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA) (predecessor to the US Army Environmental Center [AEC]). As part of a subsequent USATHAMA -environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-002-1355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in data were collected to model, groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today.

  12. Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1993-05-01

    This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency's (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter

  13. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    K. L. Vialetti

    2008-05-20

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  14. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Rodovsky

    2007-04-12

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  15. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    Rodovsky, T.J.

    2006-01-01

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site

  16. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Rodovsky

    2006-12-06

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  17. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    TRodovsky, T.J.

    2007-01-01

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site

  18. Data Base Management Plan for the remedial investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-10-01

    This Data Base Management Plan describes the gathering, verifying, analyzing, reporting, and archiving of data generated during the remedial investigation of Waste Area Grouping 10, Operable Unit 3. This investigation will produce data documenting wellhead surveys, well headspace gas pressure measurements, geophysical surveys, water level measurements, and borehole geophysical logs. Close Support Laboratory analyses will be performed on well headspace gas and well water samples

  19. Quality assurance/quality control summary report for Phase 1 of the Clinch River remedial investigation. Environmental Restoration Program

    International Nuclear Information System (INIS)

    Holladay, S.K.; Bevelhimer, M.S.; Brandt, C.C.

    1994-07-01

    The Clinch River Remedial Investigation (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants released from the US Department of Energy Oak Ridge Reservation and to assess potential risks to human health and the environment associated with these contaminants. Primary areas of investigation are Melton Hill Reservoir, the Clinch River from Melton Hill Dam to its confluence with the Tennessee River, Poplar Creek, and Watts Bar Reservoir. Phase 1 of the CRRI was a preliminary study in selected areas of the Clinch River/Watts Bar Reservoir. Fish, sediment, and water samples were collected and analyzed for inorganic, organic, and radiological parameters. Phase 1 was designed to (1) obtain high-quality data to confirm existing historical data for contaminant levels; (2) determine the range of contaminant concentrations present in the river-reservoir system; (3) identify specific contaminants of concern; and (4) establish the reference (background) concentrations for those contaminants. Quality assurance (QA) objectives for Phase I were that (1) scientific data generated would withstand scientific scrutiny; (2) data would be gathered using appropriate procedures for field sampling, chain-of-custody, laboratory analyses, and data reporting; and (3) data would be of known precision and accuracy. These objectives were met through the development and implementation of (1) a QA oversight program of audits and surveillances; (2) standard operating procedures accompanied by a training program; (3) field sampling and analytical laboratory quality control requirements; (4) data and records management systems; and (5) validation of the data by an independent reviewer. Approximately 1700 inorganic samples, 1500 organic samples, and 2200 radiological samples were analyzed and validated. The QA completeness objective for the project was to obtain valid analytical results for at least 95% of the samples collected

  20. The Department of Energy's Remedial Action Assessment System (RAAS): Decision support tools for performing streamlined feasibility studies

    International Nuclear Information System (INIS)

    White, M.K.

    1994-06-01

    The United States Department of Energy (DOE) faces the major task of cleaning up hundreds of waste sites across the nation, which will require completion of a large number of remedial investigation/feasibility studies (RI/FSs). The intent of each RI/FS is to characterize the waste problems and environmental conditions at the operable unit level, segment the remediation problem into manageable medium-specific and contaminant-specific pieces, define corresponding remediation objectives, and identify remedial response actions to satisfy those objectives. The RI/FS team can then identify combinations of remediation technologies that will meet the remediation objectives. Finally, the team must evaluate these remedial alternatives in terms of effectiveness, implementability, cost, and acceptability. The Remedial Action Assessment System (RAAS) is being developed by Pacific Northwest Laboratory (PNL) to support DOE in this effort

  1. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  2. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site

  3. Remedial investigation/feasibility study work plan for the 100-BC-5 Operable Unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-04-01

    Four areas of the Hanford Site (the 100, 200, 300 and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Figure 1-1 shows the location of these areas. Under the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1990a), signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste and other CERCLA hazardous substances. Also included in the Tri-Party Agreement are 55 Resource Conservation and Recovery Act (RCRA) treatment, storage, or disposal (TSD) facilities that will be closed or permitted to operate in accordance with RCRA regulations, under the authority of Chapter 173-303 Washington Administrative Code (WAC). Some of the TSD facilities are included in the operable units. This work plant and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-BC-5 operable unit. The 100-B/C Area consists of the 100-BC-5 groundwater operable unit and four source operable units. The 100-BC-5 operable unit includes all contamination found in the aquifer soils and water beneath the 100-B/C Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination

  4. Remedial investigation/feasibility study work plan for the 100-KR-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-07-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Figure 1-1 shows the location of these areas. Under the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1990a), signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. Also included in the Tri-Party Agreement are 55 Resource Conservation and Recovery Act (RCRA) treatment, storage, or disposal (TSD) facilities that will be closed or permitted to operate in accordance with RCRA regulations, under the authority of Chapter 173-303 Washington Administrative Code (WAC). Some of the TSD facilities are included in the operable units. This work plan and the attached supporting project plans establish the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-1 operable unit. The 100-KR-1 source operable unit is one of three source operable units in the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of hazardous substance contamination

  5. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah: Appendices C--E. Final report

    International Nuclear Information System (INIS)

    1993-02-01

    This document provides appendices C, D, and E this Remedial Action Plan (RAP) which is a revision of the original Mexican Hat Remedial Action Plan and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. Appendix C provide the Radiological Support Plan, Appendix D provides the Site Characterization, and Appendix E provides the Water Resources Protection Strategy

  6. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah: Appendices C--E. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    This document provides appendices C, D, and E this Remedial Action Plan (RAP) which is a revision of the original Mexican Hat Remedial Action Plan and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. Appendix C provide the Radiological Support Plan, Appendix D provides the Site Characterization, and Appendix E provides the Water Resources Protection Strategy.

  7. ICDF Complex Remedial Action Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Heileson

    2006-12-01

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  8. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented.

  9. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime`s, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives.

  10. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives.

  11. Remedial investigation work plan for the Upper East Fork Poplar Creek Characterization Area, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-03-01

    More than 200 contaminated sites created by past waste management practices have been identified at the Y-12 Plant. Many of the sites have been grouped into operable units based on priority and on investigative and remediation requirements. The Y-12 Plant is one of three major facilities on the ORR. The ORR contains both hazardous and mixed-waste sites that are subject to regulations promulgated under the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986. Under RCRA guidelines and requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions

  12. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-07-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives

  13. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime's, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives

  14. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1999-01-01

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented

  15. Environmental, Safety, and Health Plan for the remedial investigation/feasibility study at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Revision 1, Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C. M.; El-Messidi, O. E.; Cowser, D. K.; Kannard, J. R.; Carvin, R. T.; Will, III, A. S.; Clark, Jr., C.; Garland, S. B.

    1993-05-01

    This Environmental, Safety, and Health (ES&H) Plan presents the concepts and methodologies to be followed during the remedial investigation/feasibility study (RI/FS) for Oak Ridge National Laboratory (ORNL) to protect the health and safety of employees, the public, and the environment. This ES&H Plan acts as a management extension for ORNL and Martin Marietta Energy Systems, Inc. (Energy Systems) to direct and control implementation of the project ES&H program. The subsections that follow describe the program philosophy, requirements, quality assurance measures, and methods for applying the ES&H program to individual waste area grouping (WAG) remedial investigations. Hazardous work permits (HWPs) will be used to provide task-specific health and safety requirements.

  16. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendix B, Technical findings and conclusions

    International Nuclear Information System (INIS)

    1995-03-01

    This Remedial Investigation Report on Waste Area Grouping, (NVAG) 5 at Oak Ridge National Laboratory was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting, the results of a site chacterization for public review. This work was performed under Work Breakdown Structure 1.4.12.6.1.05.40.02 (Activity Data Sheet 3305, ''WAG 5''). Publication of this document meets a Federal Facility Agreement milestone of March 31, 1995. This document provides the Environmental Restoration Program with information about the results of investigations performed at WAG 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding, the need for subsequent remediation work at WAG 5

  17. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendix B, Technical findings and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This Remedial Investigation Report on Waste Area Grouping, (NVAG) 5 at Oak Ridge National Laboratory was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting, the results of a site chacterization for public review. This work was performed under Work Breakdown Structure 1.4.12.6.1.05.40.02 (Activity Data Sheet 3305, ``WAG 5``). Publication of this document meets a Federal Facility Agreement milestone of March 31, 1995. This document provides the Environmental Restoration Program with information about the results of investigations performed at WAG 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding, the need for subsequent remediation work at WAG 5.

  18. Remedial investigation report on the Melton Valley Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions.

  19. Remedial investigation report on the Melton Valley Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary

    International Nuclear Information System (INIS)

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions

  20. Investigation of the Use of "Cucumis Sativus" for Remediation of Chromium from Contaminated Environmental Matrices: An Interdisciplinary Instrumental Analysis Project

    Science.gov (United States)

    Butler, Lynsey R.; Edwards, Michael R.; Farmer, Russell; Greenly, Kathryn J.; Hensler, Sherri; Jenkins, Scott E.; Joyce, J. Michael; Mann, Jason A.; Prentice, Boone M.; Puckette, Andrew E.; Shuford, Christopher M.; Porter, Sarah E. G.; Rhoten, Melissa C.

    2009-01-01

    An interdisciplinary, semester-long project is presented in which students grow Cucumis sativus (cucumber) plants from seeds and study the ability of the plants to remediate a heavy metal from contaminated soil or water or both. Phytoremediation strategies for environmental cleanup are presented as possible alternatives to chemical based clean-up…

  1. Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

    1993-07-01

    This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan)

  2. Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

    1993-07-01

    This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

  3. Comment and response document for the final remedial action plan site design for stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1995-09-01

    This document consists of comments and responses; the reviewers are the U.S. Nuclear Regulatory Commission (NRC), Colorado Dept. of Public Health and Environment, and the remedial action contractor (RAC)

  4. Radiological audit of remedial action activities at the processing sites Mexican Hat, Utah and Monument Valley, Arizona. Audit date: May 3--7, 1993, Final report

    International Nuclear Information System (INIS)

    1993-05-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing sites in Mexican Hat, Utah, and Monument Valley, Arizona. This audit was conducted May 3--7, 1993, by Bill James and Gerry Simiele of the TAC. Three site-specific findings and four observations were identified during the audit and are presented in this report. The overall conclusion from the audit is that the majority of the radiological aspects of the Mexican Hat, Utah, and Monument Valley, Arizona, remedial action programs are performed adequately. However, the findings identify that there is some inconsistency in following procedures and meeting requirements for contamination control, and a lack of communication between the RAC and the DOE on variances from the published remedial action plan (RAP)

  5. Remedial action plan and site design for stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Final report, Appendixes to attachment 3

    International Nuclear Information System (INIS)

    1994-06-01

    This document contains supporting appendices to attachment 3 for the remedial action and site stabilization plan for Maybell, Colorado UMTRA site. Appendix A includes the Hydrological Services Calculations and Appendix B contains Ground Water Quality by Location data

  6. Final report of the 2. committee of investigation of the 11. legislative period. Nuclear exports

    International Nuclear Information System (INIS)

    1990-01-01

    On the subject of 'nuclear exports' the Committee dealt with political and legal principles of the Federal Government's nuclear export policy, particularly questions concerning the Non-Proliferation Treaty, and scientific-technical cooperation of the FRG with other countries, especially Argentina, Brazil, India, and Pakistan. Individual export transactions were then investigated, followed by a general assessment of the FRG's nuclear policy. - Concerning non-proliferation policy there have been certain administrative weaknesses in converting control measures into practice. Remedy is expected from the duty of terms to report deliveries punctually and completely and subsequent supervision. - The illegal transactions with India and Pakistan require improvements in the legal instruments, in the execution of administrative measures, and in border controls. Decisive steps have been introduced. (HSCH) [de

  7. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Ludowise

    2009-06-17

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site. A material at risk calculation was performed that determined the radiological inventory for each burial ground to be Hazard Category 3.

  8. Final Hazard Categorization and Auditable Safety Analysis for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Rodovsky

    2006-03-01

    This report presents the initial hazard categorization, final hazard categorization and auditable safety analysis for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  9. Final work plan : investigation of potential contamination at the former USDA facility in Powhattan, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2007-02-02

    This Work Plan outlines the scope of work to be conducted to investigate the subsurface contaminant conditions at the property formerly leased by the Commodity Credit Corporation (CCC) in Powhattan, Kansas (Figure 1.1). Data obtained during this event will be used to (1) evaluate potential contaminant source areas on the property; (2) determine the vertical and horizontal extent of potential contamination; and (3) provide recommendations for future action, with the ultimate goal of assigning this site No Further Action status. The planned investigation includes groundwater monitoring requested by the Kansas Department of Health and Environment (KDHE), in accordance with Section V of the Intergovernmental Agreement between the KDHE and the Farm Service Agency of the U.S. Department of Agriculture (USDA). The work is being performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. A nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy, Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at former CCC/USDA grain storage facilities. Argonne issued a Master Work Plan (Argonne 2002) that has been approved by the KDHE. The Master Work Plan describes the general scope of all investigations at former CCC/USDA facilities in Kansas and provides guidance for these investigations. It should be consulted for the complete details of plans for work associated with the former CCC/USDA facility at Powhattan.

  10. Data Base Management Plan for the remedial investigation of Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-07-01

    The remedial investigation (RI) for Waste Area Grouping (WAG) 5 will involve gathering, verifying, analyzing, reporting, and archiving numerous types of field and analytical data. Field investigations will produce data documenting surficial and geophysical surveys, geologic and hydrogeologic logs, aquifer tests, water level measurements, geophysical logs, and stream and seepage flow measurements. Laboratory analyses will be performed on soil, surface water, groundwater, and sediment samples collected during field investigations. All data resulting from these activities will be contained in the Bechtel RI/feasibility study (FS) project data base and will be managed in accordance with the RI/FS Data Base Management Plan and this WAG-specific plan. This Data Base Management Plan describes the gathering, verifying, analyzing, reporting, and archiving of data generated during Bechtel's remedial investigation of Waste Area Grouping 5. This investigation will produce data documenting surficial surveys, geophysical surveys, geologic and hydrologic logs, aquifer tests, water level measurements, geophysical logs, and stream and seep flow measurements. Also, laboratory analyses will be performed on soil, surface water, groundwater, and sediment samples. The 1500 series of Bechtel project procedures, ''Data Base Management,'' and the project Data Base Management Plan will be used to ensure that data are handled properly

  11. Final Remedial Investigation Report Area of Contamination (AOC) 57. Volume I. Text Sections 1 Through 10, Figures and Tables

    Science.gov (United States)

    2000-06-01

    choke cherry ( Prunus virginiana ), maleberry (Lyonia ligustrina), and paper birch (Betula papyrifera). Herbaceous species observed in this habitat...portion of this habitat include sheep laurel, witch hazel (Hamamelis virginiana ), nannyberry, choke cherry, clubmoss (Lycopodium carolinianum), and ferns

  12. Litigation Technical Support and Services Rocky Mountain Arsenal. Biota Remedial Investigation, Version 3.2. Volume 4

    Science.gov (United States)

    1989-05-01

    is not justified. .. mmnt 19t L~age 4-43.n tame sgnpeclt The exclusion of certain analytes from certain species (arsenic from mall3rds, DDE from mule...achieve. The 13 ppm figure was calculated using two overly conservative sources: ti) shrews accumulate more cadmium than other small mýnrnals, and (2...tI1BUTION CODE APPROVE.D FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED O IJ. ABSTRA(t (Mjumum200 woJi) tn THE PURPOSE Or TH4E BIOTA REMEDIAL INV

  13. Alternative Remedies

    Science.gov (United States)

    ... Home › Aging & Health A to Z › Alternative Remedies Font ... medical treatment prescribed by their healthcare provider. Using this type of alternative therapy along with traditional treatments is ...

  14. Genealogy Remediated

    DEFF Research Database (Denmark)

    Marselis, Randi

    2007-01-01

    Genealogical websites are becoming an increasingly popular genre on the Web. This chapter will examine how remediation is used creatively in the construction of family history. While remediation of different kinds of old memory materials is essential in genealogy, digital technology opens new...... possibilities. Genealogists use their private websites to negotiate family identity and hereby create a sense of belonging in an increasingly complex society. Digital technologies enhance the possibilities of coorporation between genealogists. Therefore, the websites are also used to present archival...

  15. Remedial investigation work plan for Chestnut Ridge Operable Unit 4 (Rogers Quarry/Lower McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge Y-12 Plant includes - 800 acres near the northeast comer of the reservation and adjacent to the city of Oak Ridge (Fig. 1-1). The plant is a manufacturing and developmental engineering facility that produced components for various nuclear weapons systems and provides engineering support to other Energy Systems facilities. More than 200 contaminated sites have been identified at the Y-12 Plant that resulted from past waste management practices. Many of the sites have operable units (OUs) based on priority and on investigative and remediation requirements. This Remedial Investigation RI work plan specifically addresses Chestnut Ridge OU 4. Chestnut Ridge OU 4 consists of Rogers Quarry and Lower McCoy Branch (MCB). Rogers Quarry, which is also known as Old Rogers Quarry or Bethel Valley Quarry was used for quarrying from the late 1940s or early 1950s until about 1960. Since that time, the quarry has been used for disposal of coal ash and materials from Y-12 production operations, including classified materials. Disposal of coal ash ended in July 1993. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern, support an Ecological Risk Assessment and a Human Health Risk Assessment, support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this work plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU 4. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the risk posed to human health and the environment by OU 4.

  16. Environmental, Safety, and Health Plan for the remedial investigation of the liquid low-level waste tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    The Environmental, Safety, and Health (ES ampersand H) Plan presents the concepts and methodologies to be used during the Oak Ridge National Laboratory (ORNL) RI/FS project to protect the health and safety of employees, the public, and the environment. The ES ampersand H Plan acts as a management extension for ORNL and Energy Systems to direct and control implementation of the project ES ampersand H program. This report describes the program philosophy, requirements, quality assurance measures, and methods for applying the ES ampersand H program to individual task remedial investigations, project facilities, and other major tasks assigned to the project

  17. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2, Appendix A: Characterization methods and data summary

    International Nuclear Information System (INIS)

    1995-03-01

    This appendix presents background regulatory and technical information regarding the solid waste management units (SWMUs) at Waste Area Grouping (WAG) 5 to address requirements established by the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). The Department of energy (DOE) agreed to conduct remedial investigations (RIs) under the FFA at various sites at Oak Ridge National Laboratory (ORNL), including SWMUs and other areas of concern on WAG 5. The appendix gives an overview of the regulatory background to provide the context in which the WAG 5 RI was planned and implemented and documents how historical sources of data, many of which are SWMU-specific, were evaluated and used

  18. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    International Nuclear Information System (INIS)

    1996-11-01

    This document contains Appendixes A ''Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed'' and B ''Human Health Risk Assessment for White Oak Creek / Melton Valley Area'' for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites

  19. Data Management Plan and Functional System Design for the Information Management System of the Clinch River Remedial Investigation and Waste Area Grouping 6

    Energy Technology Data Exchange (ETDEWEB)

    Ball, T.; Brandt, C.; Calfee, J.; Garland, M.; Holladay, S.; Nickle, B.; Schmoyer, D.; Serbin, C.; Ward, M. [Oak Ridge National Lab., TN (United States)

    1994-03-01

    The Data Management Plan and Functional System Design supports the Clinch River Remedial Investigation (CRRI) and Waste Area Grouping (WAG) 6 Environmental Monitoring Program. The objective of the Data Management Plan and Functional System Design is to provide organization, integrity, security, traceability, and consistency of the data generated during the CRRI and WAG 6 projects. Proper organization will ensure that the data are consistent with the procedures and requirements of the projects. The Information Management Groups (IMGs) for these two programs face similar challenges and share many common objectives. By teaming together, the IMGs have expedited the development and implementation of a common information management strategy that benefits each program.

  20. Waste Area Group 10, Operable Unit 10-08, Remedial Investigation/Feasibility Study Annual Status Report for Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Wells

    2007-05-09

    This report provides a status of the progress made in Fiscal Year 2006 on tasks identified in the Waste Area Group 10, Operable Unit 10-08, Remedial Investigation/Feasibility Study Work Plan. Major accomplishments include: (1) groundwater sampling and review of the groundwater monitoring data, (2) installation of a Sitewide groundwater-level monitoring network, (3) update of the Groundwater Monitoring and Field Sampling Plan of Operable Unit 10-08, (4) re-evaluation of the risk at Site TSF-08, (5) progress on the Operable Unit 10-08 Sitewide Groundwater Model.

  1. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 2. Biota and representative concentrations of contaminants. Appendixes A, B, C, D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OU`s). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  2. Developing a programmatic approach to investigating and remediating many unrelated comprehensive environmental response, compensation, and liability act sites at Kelly Air Force Base

    International Nuclear Information System (INIS)

    Kamp, G.; Regan, P.; Ninesteel, R.; Martin, R.

    1988-01-01

    Kelly Air Force Base (AFB), which was founded in 1917, is involved in logistics and maintenance activities supporting the Air Logistics Command. In addition, Kelly AFB hosts over 50 tenant organizations representing the Air Force, Department of Defense, and other government agencies. Over the years waste disposal from this complex was conducted in a manner that led to the identification of over 30 sites to be included in the Installation Restoration Program (IRP) after the Phase 1 investigation. A methodology was needed to prioritize the Remedial Investigations and Feasibility Study (RI/FS) activities for the sites. A Strategy Plan was developed that involved reviewing and interpreting existing data, identifying data voids relative to site specific RI/FS activities, and developing methodology to prioritize activities. Sites were prioritized, and a comprehensive IRP planning document was developed. One data deficiency was revealed -- the lack of understanding of the Basewide hydrogeologic conditions necessary to establish an effective restoration program. A Hydrogeologic Investigation was initiated to provide this data. This data will allow better interpretation of the interaction of the sites, particularly those in close proximity, and improved planning of remediation activities

  3. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 4. Information related to the feasibility study and ARARs. Appendixes G, H, I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  4. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3 -- Appendix B: Technical findings and conclusions

    International Nuclear Information System (INIS)

    1995-09-01

    This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. Sections B1.1 through B1.4 present an overview of the environmental setting of WAG 5, including location, population, land uses, ecology, and climate, and Sects. B1.5 through B1.7 give site-specific details (e.g., topography, soils, geology, and hydrology). The remediation investigation (RI) of WAG 5 did not entail en exhaustive characterization of all physical attributes of the site; the information presented here focuses on those most relevant to the development and verification of the WAG 5 conceptual model. Most of the information presented in this appendix was derived from the RI field investigation, which was designed to complement the existing data base from earlier, site-specific studies of Solid Waste Storage Area (SWSA) 5 and related areas.

  5. Response to comments on remedial investigation report for the Plating Shop Container Areas (S-334 and S-351) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-12-01

    The Plating Shop Container Storage Areas site is composed of two solid waste management units (SWMUs) designated S-334 and S-351. Both SWMUs were previously sampled during a remedial investigation (RI) in 1989. Samples were collected at the ground surface, 2 ft below the ground surface, and 4 ft below the ground surface. Beryllium, chromium, cyanide, lead, uranium, and nickel were detected at slightly elevated concentrations at both SWMU locations within the site. The samples were not analyzed for organics. The samples collected for the Resource Conservation and Recovery Act Facility Investigation (RFI) should have been analyzed for volatile organic contaminants. The site was resampled in August 1991. Samples were collected from between 1 ft to 3 ft from the boreholes drilled for the original RFI. In addition, samples were obtained from the same depth horizons that were sampled previously. These additional samples were analyzed for volatile organics. Tetrachloroethene was detected in some of the samples at concentrations up to 86 μg/kg. The baseline risk assessment was revised to incorporate the organic sampling data. The risks are unchanged as a result of information from the latest sampling effort (10 -7 ). This report, ES/ER-36 ampersand D2, is a companion document to Es/ER-36 ampersand D1, Remedial Investigation Report, Plating Shop Container Areas (S-334 and S-351), Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

  6. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 3. Risk assessment information. Appendixes E, F

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 3 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  7. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 3: Appendixes E and F -- Risk assessment information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  8. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 5. Appendixes J, K, L, M, and N-other supporting information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 5 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  9. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 2. Appendixes A, B, C, D

    International Nuclear Information System (INIS)

    1995-09-01

    This document contains appendices A (water characterization), B (sediment characterization), C (biota Characterization), D (applicable or relevant and appropriate requirements) from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include 137 Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and 137 Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River

  10. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 2. Appendixes A, B, C, D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document contains appendices A (water characterization), B (sediment characterization), C (biota Characterization), D (applicable or relevant and appropriate requirements) from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  11. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  12. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2 -- Appendix A: Characterization methods and data summary

    International Nuclear Information System (INIS)

    1995-09-01

    This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. This appendix presents background regulatory and technical information regarding the solid waste management units (SWMUs) at WAG 5 to address requirements established by the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). The US Department of Energy (DOE) agreed to conduct remedial investigations (RIs) under the FFA at various sites at Oak Ridge National Laboratory (ORNL), including SWMUs and other areas of concern on WAG 5. The appendix gives an overview of the regulatory background to provide the context in which the WAG 5 RI was planned and implemented and documents how historical sources of data, many of which are SWMU-specific, were evaluated and used.

  13. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-03-01

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI

  14. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located {approximately}800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1.

  15. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI.

  16. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located ∼800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1

  17. Cost and schedule estimate to construct the tunnel and shaft remedial shielding concept, Los Alamos Meson Physics Facility, Los Alamos National Laboratory, Los Alamos, New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-30

    The report provides an estimate of the cost and associated schedule to construct the tunnel and shaft remedial shielding concept. The cost and schedule estimate is based on a preliminary concept intended to address the potential radiation effects on Line D and Line Facilities in event of a beam spill. The construction approach utilizes careful tunneling methods based on available excavation and ground support technology. The tunneling rates and overall productivity on which the cost and project schedule are estimated are based on conservative assumptions with appropriate contingencies to address the uncertainty associated with geological conditions. The report is intended to provide supplemental information which will assist in assessing the feasibility of the tunnel and shaft concept and justification for future development of this particular aspect of remedial shielding for Line D and Line D Facilities.

  18. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Final report

    International Nuclear Information System (INIS)

    1996-08-01

    This document contains the page changes for Attachment 3, Ground Water Hydrology Report dated August, 1996 for the Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings at Slick Rock, Colorado. This portion of Attachment 3 contains the Table of Contents pages i and ii, and pages numbered 3-3 through 3-56 of the Ground Water Hydrology Report. Also included are the cover sheets for Appendix A, B, and C to Attachment 3

  19. Remedial actions at the former Vanadium Corporation of America uranium mill site, Durango, La Plata County, Colorado. Volume II. Appendices. Final Environmental Impact Statement

    International Nuclear Information System (INIS)

    1985-10-01

    Volume 2 contains the following: addendums to Appendices A - Conceptual Designs and Engineering Evaluations for Remedial Action Alternative 3b, D - Meteorological and Air-Quality Information, F - Water Resources Information, H - Radiological Information, I - Information on Populations, Socioeconomics, and Land Use; Appendix K - List of Agencies, Organizations, and Persons Receiving Copies of this Statement; Appendix L - Wildlife Mitigation Plan; Appendix M - Seismic Evaluation; Appendix N - Tourism Evaluation; and Appendix O - Permits, Licenses, and Approvals

  20. Superfund record of decision (EPA Region 4): Whitehouse Waste Oil Pits Site, Duval County, Jacksonville, FL. (First remedial action), (Amendment), June 1992. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    The 7-acre Whitehouse Waste Oil Pits site was used by Allied Petroleum Products (Allied) to dispose of acidic waste oil sludges from its oil reclamation process in Whitehouse, Duval County, Florida. A cypress swamp system and residential area are immediately adjacent to the site. The acid sludge produced in the first step and clay used to decolorize the oil were dumped into the unlined pits at the site. A 1985 ROD addressed source control as a containment remedy consisting of a slurry wall construction, soil cap, and a ground water recovery and treatment system; however, EPA has re-evaluated the 1985 ROD selection and determined that the containment remedy failed to meet the requirements of SARA. As a result, the ROD Amendment focuses on an alternative for treating Whitehouse wastes by eliminating direct contact risk associated with pit soil/sludge wastes and preventing contaminated ground water in the surficial aquifer from migrating laterally. The primary contaminants of concern that affect the soil, sediment, surface water, and ground water are VOCs, including benzene, toluene, and xylenes; organics, including PCBs and phenols; and metals, including arsenic, chromium, and lead. The amended remedial action for the site are included

  1. In-situ remediation of TCE by ERD in clay tills. Feasibility and performance of full-scale application insights gained through an integrated investigative approach for 2 sites

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Damgaard, Ida; Chambon, Julie Claire Claudia

    -scale applications of ERD in clay tills were investigated in a research project in-cluding 2 sites in Denmark undergoing remediation since 2006. Site remediation approach. At the Sortebrovej site an emulsified oil donor (EOS) and a bio-augmentation culture (KB1®) with specific degraders Dehalococcoides were injected......Background/Objectives. Remediation of trichloroethene (TCE) in clay and other low permeabil-ity geologic media, where groundwater flow occurs preferentially in higher permeability sand lenses or fractures, is a significant challenge. At older sites, much of the contaminant mass is pre......-sent as a sorbed phase in the matrix due to matrix diffusion. The principal challenge for in situ remediation in clay is to achieve effective contact between contaminant and bioremediation addi-tives (e.g., organic electron donors and bioaugmentation cultures). The feasibility and perfor-mance of full...

  2. Work plan for the remedial investigation/feasibility study-environmental assessment for the quarry residuals operable unit at the Weldon Spring Site

    International Nuclear Information System (INIS)

    1994-01-01

    The US Department of Energy (DOE) is conducting cleanup activities at the Weldon Spring site, which is located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis. The Weldon Spring site consists of two noncontiguous areas -- the chemical plant area, which includes four raffinate pits, and the quarry. Cleanup activities at the Weldon Spring site are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, incorporating the values of the National Environmental Policy Act (NEPA). The contents of the documents prepared for the project are not intended to represent a statement regarding the legal applicability of NEPA to remedial actions conducted under CERCLA. In accordance with the integrated CERCLA/NEPA approach, a remedial investigation/feasibility study-environmental assessment (RI/FS-EA) is being conducted to evaluate conditions and potential responses for the quarry residuals operable unit (QROU). This operable unit consists of the following areas and/or media: the residual material remaining at the Weldon Spring quarry after removal of the pond water and bulk waste; underlying groundwater; and other media located in the surrounding vicinity of the quarry, including adjacent soil, surface water, and sediment in Femme Osage Slough. This work plan identifies the activities within the RI/FS-EA process that are being proposed to address contamination remaining at the quarry area

  3. Work plan for the remedial investigation/feasibility study-environmental assessment for the quarry residuals operable unit at the Weldon Spring Site

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The US Department of Energy (DOE) is conducting cleanup activities at the Weldon Spring site, which is located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis. The Weldon Spring site consists of two noncontiguous areas -- the chemical plant area, which includes four raffinate pits, and the quarry. Cleanup activities at the Weldon Spring site are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, incorporating the values of the National Environmental Policy Act (NEPA). The contents of the documents prepared for the project are not intended to represent a statement regarding the legal applicability of NEPA to remedial actions conducted under CERCLA. In accordance with the integrated CERCLA/NEPA approach, a remedial investigation/feasibility study-environmental assessment (RI/FS-EA) is being conducted to evaluate conditions and potential responses for the quarry residuals operable unit (QROU). This operable unit consists of the following areas and/or media: the residual material remaining at the Weldon Spring quarry after removal of the pond water and bulk waste; underlying groundwater; and other media located in the surrounding vicinity of the quarry, including adjacent soil, surface water, and sediment in Femme Osage Slough. This work plan identifies the activities within the RI/FS-EA process that are being proposed to address contamination remaining at the quarry area.

  4. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  5. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    International Nuclear Information System (INIS)

    1996-11-01

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy's Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings

  6. Remedial investigation work plan for the Upper East Fork Poplar Creek characterization area, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    The Oak Ridge Y-12 Plant, located within the Oak Ridge Reservation (ORR), is owned by the US Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions. The need to complete RIs in a timely manner resulted in the establishment of the Upper East Fork Poplar Creek (UEFPC) Characterization Area (CA) and the Bear Creek CA. The CA approach considers the entire watershed and examines all appropriate media within it. The UEFPC CA, which includes the main Y-12 Plant area, is an operationally and hydrogeologically complex area that contains numerous contaminants and containment sources, as well as ongoing industrial and defense-related activities. The UEFPC CA also is the suspected point of origin for off-site groundwater and surface-water contamination. The UEFPC CA RI also will address a carbon-tetrachloride/chloroform-dominated groundwater plume that extends east of the DOE property line into Union Valley, which appears to be connected with springs in the valley. In addition, surface water in UEFPC to the Lower East Fork Poplar Creek CA boundary will be addressed. Through investigation of the entire watershed as one ''site,'' data gaps and contaminated areas will be identified and prioritized more efficiently than through separate investigations of many discrete units.

  7. Hydrogeological and hydrogeochemical investigations in boreholes - Final report of the phase I geochemical investigations of the Stripa groundwaters

    International Nuclear Information System (INIS)

    Nordstroem, D.K.; Carlsson, L.; Fontes, J.C.; Frits, P.; Moser, H.; Olsson, T.

    1985-07-01

    The hydrogeochemical investigations of Phase I of the Stripa Project (1980-1984) have been completed, and the results are presented in this final report. All chemical and isotopic data on the groundwaters from the beginning to the Stripa Project to the present (1977-84) are tabulated an used in the final interpretations. The background geology and hydrology is summarized and updated along with new analyses of the Stripa grantie. Water-rock interactions form a basic framework for the changes in major-element chemistry with depth, including carbonate geochemistry, the fluid-inclusion hypothesis, redox processes, and mineral precipitation. The irregular distribution of chloride suggests channelling is occurring and the effect of thermomechanical perturbations on the groundwater chemistry is documented. Stable and radioactive isotpes provide information of the origin and evolution of the groundwater itself and of several elments within the groundwater. Subsurface production of radionuclides is documented in these investigations, and a general picture of uranium transformations during weathering is presented. One of the primary conclusions reached in these studies is that different dissolved constituents will provide different residence times because they have different origins and different evolutionary histories that may or may not be related to the overall evolution of the groundwater itself. (author)

  8. French uranium mining sites remediation

    International Nuclear Information System (INIS)

    Roche, M.

    2002-01-01

    Following a presentation of the COGEMA's general policy for the remediation of uranium mining sites and the regulatory requirements, the current phases of site remediation operations are described. Specific operations for underground mines, open pits, milling facilities and confining the milled residues to meet long term public health concerns are detailed and discussed in relation to the communication strategies to show and explain the actions of COGEMA. A brief review of the current remediation situation at the various French facilities is finally presented. (author)

  9. The Fukushima Daiichi nuclear accident final report of the AESJ investigation committee

    CERN Document Server

    Atomic Energy Society of Japan

    2015-01-01

    The Magnitude 9 Great East Japan Earthquake on March 11, 2011, followed by a massive tsunami struck  TEPCO’s Fukushima Daiichi Nuclear Power Station and triggered an unprecedented core melt/severe accident in Units 1 – 3. The radioactivity release led to the evacuation of local residents, many of whom still have not been able to return to their homes. As a group of nuclear experts, the Atomic Energy Society of Japan established the Investigation Committee on the Nuclear Accident at the Fukushima Daiichi Nuclear Power Station, to investigate and analyze the accident from scientific and technical perspectives for clarifying the underlying and fundamental causes, and to make recommendations. The results of the investigation by the AESJ Investigation Committee has been compiled herewith as the Final Report. Direct contributing factors of the catastrophic nuclear incident at Fukushima Daiichi NPP initiated by an unprecedented massive earthquake/ tsunami – inadequacies in tsunami measures, severe accident ma...

  10. Environmental, safety, and health plan for the remedial investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-10-01

    This document outlines the environmental, safety, and health (ES ampersand H) approach to be followed for the remedial investigation of Waste Area Grouping (WAG) 10 at Oak at Ridge National Laboratory. This ES ampersand H Plan addresses hazards associated with upcoming Operable Unit 3 field work activities and provides the program elements required to maintain minimal personnel exposures and to reduce the potential for environmental impacts during field operations. The hazards evaluation for WAG 10 is presented in Sect. 3. This section includes the potential radiological, chemical, and physical hazards that may be encountered. Previous sampling results suggest that the primary contaminants of concern will be radiological (cobalt-60, europium-154, americium-241, strontium-90, plutonium-238, plutonium-239, cesium-134, cesium-137, and curium-244). External and internal exposures to radioactive materials will be minimized through engineering controls (e.g., ventilation, containment, isolation) and administrative controls (e.g., procedures, training, postings, protective clothing)

  11. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 5. Appendixes G, H, I, J

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Quality Assurance/Quality Control (QA/QC) Program for Phase 2 of the Clinch River Remedial Investigation (CRRI) was designed to comply with both Department of Energy (DOE) Order 5700.6C and Environmental Protection Agency (EPA) QAMS-005/80 (EPA 1980a) guidelines. QA requirements and the general QA objectives for Phase 2 data were defined in the Phase 2 Sampling and Analysis Plan (SAP)-Quality Assurance Project Plan, and scope changes noted in the Phase 2 Sampling and Analysis Plan Addendum. The QA objectives for Phase 2 data were the following: (1) Scientific data generated will withstand scientific and legal scrutiny. (2) Data will be gathered using appropriate procedures for sample collection, sample handling and security, chain of custody (COC), laboratory analyses, and data reporting. (3) Data will be of known precision and accuracy. (4) Data will meet data quality objectives (DQOs) defined in the Phase 2 SAP.

  12. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Appendixes A and B

    International Nuclear Information System (INIS)

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin

  13. Waste management plan for the remedial investigation/feasibility study of Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-12-01

    This plan defines the criteria and methods to be used for managing waste generated during activities associated with Waste Area Grouping (WAG) 5 at Oak Ridge National Laboratory (ORNL). WAG 5 is located in Melton Valley, south of the main ORNL plant area. It contains 17 solid waste management units (SWMUs) to be evaluated during the remedial investigation. The SWMUs include three burial areas, two hydrofracture facilities, two settling ponds, eight tanks, and two low-level liquid waste leak sites. These locations are all considered to be within the WAG 5 area of contamination (AOC). The plan contains provisions for safely and effectively managing soils, rock cuttings, development and sampling water, decontamination fluids, and disposable personal protective equipment (PPE) consistent with the Environmental Protection Agency (EPA) guidance of May 1991 (EPA 1991). Consistent with EPA guidance, this plan is designed to protect the environment and the health and safety of workers and the public

  14. Phase 1 data summary report for the Clinch River Remedial Investigation: Health risk and ecological risk screening assessment. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Holladay, S.K.; Hook, L.A.; Levine, D.A.; Longman, R.C.; McGinn, C.W.; Skiles, J.L.; Suter, G.W.; Williams, L.F.

    1992-12-01

    The Clinch River Remedial Investigation (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants released from the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. The contaminants released since the early 1940s include a variety of radionuclides, metals, and organic compounds. The purpose of this report is to summarize the results of Phase 1 of the CRRI. Phase 1 was designed to (1) obtain high-quality data to confirm existing historical data for contaminant levels in fish, sediment, and water from the CR/WBR; (2) determine the in the range of contaminant concentrations present river-reservoir system; (3) identify specific contaminants of concern; and (4) establish the reference (background) concentrations for those contaminants.

  15. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Appendixes A and B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin.

  16. Field sampling and analysis plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Boston, H.L.; Ashwood, T.L.; Borders, D.M.; Chidambariah, V.; Downing, D.J.; Fontaine, T.A.; Ketelle, R.H.; Lee, S.Y.; Miller, D.E.; Moore, G.K.; Suter, G.W.; Tardiff, M.F.; Watts, J.A.; Wickliff, D.S.

    1992-02-01

    This field sampling and analysis (S ampersand A) plan has been developed as part of the Department of Energy's (DOE's) remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) located in Oak Ridge, Tennessee. The S ampersand A plan has been written in support of the remedial investigation (RI) plan for WAG 2 (ORNL 1990). WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake (WOL), White Oak Creek embayment (WOCE) on the Clinch River, and the associated floodplain and subsurface environment (Fig. 1.1). The WOC system is the surface drainage for the major ORNL WAGs and has been exposed to a diversity of contaminants from operations and waste disposal activities in the WOC watershed. WAG 2 acts as a conduit through which hydrologic fluxes carry contaminants from upgradient areas to the Clinch River. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This document describes the following: an overview of the RI plan, background information for the WAG 2 system, and objectives of the S ampersand A plan; the scope and implementation of the first 2 years of effort of the S ampersand A plan and includes recent information about contaminants of concern, organization of S ampersand A activities, interactions with other programs, and quality assurance specific to the S ampersand A activities; provides details of the field sampling plans for sediment, surface water, groundwater, and biota, respectively; and describes the sample tracking and records management plan

  17. Field sampling and analysis plan for the remedial investigation of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.L.; Ashwood, T.L.; Borders, D.M.; Chidambariah, V.; Downing, D.J.; Fontaine, T.A.; Ketelle, R.H.; Lee, S.Y.; Miller, D.E.; Moore, G.K.; Suter, G.W.; Tardiff, M.F.; Watts, J.A.; Wickliff, D.S.

    1992-02-01

    This field sampling and analysis (S & A) plan has been developed as part of the Department of Energy`s (DOE`s) remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) located in Oak Ridge, Tennessee. The S & A plan has been written in support of the remedial investigation (RI) plan for WAG 2 (ORNL 1990). WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake (WOL), White Oak Creek embayment (WOCE) on the Clinch River, and the associated floodplain and subsurface environment (Fig. 1.1). The WOC system is the surface drainage for the major ORNL WAGs and has been exposed to a diversity of contaminants from operations and waste disposal activities in the WOC watershed. WAG 2 acts as a conduit through which hydrologic fluxes carry contaminants from upgradient areas to the Clinch River. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This document describes the following: an overview of the RI plan, background information for the WAG 2 system, and objectives of the S & A plan; the scope and implementation of the first 2 years of effort of the S & A plan and includes recent information about contaminants of concern, organization of S & A activities, interactions with other programs, and quality assurance specific to the S & A activities; provides details of the field sampling plans for sediment, surface water, groundwater, and biota, respectively; and describes the sample tracking and records management plan.

  18. Remedial investigation report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    International Nuclear Information System (INIS)

    1994-08-01

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when the ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures Implementation process. Under CERCLA, the actions follow the preliminary assessment/site investigation/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. This document incorporates requirements under both RCRA and CERCLA in the form of an RI report for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2

  19. Final Phase II report : QuickSite(R) investigation, Everest, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Research)

    2003-11-01

    this reason, the CCC/USDA is conducting an environmental site investigation to determine the source(s) and extent of the carbon tetrachloride contamination at Everest and to assess whether the contamination requires remedial action. The investigation at Everest is being performed by the Environmental Research Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. At these facilities, Argonne is applying its QuickSite{reg_sign} environmental site characterization methodology. This methodology has been applied successfully at a number of former CCC/USDA facilities in Kansas and Nebraska and has been adopted by the American Society for Testing and Materials (ASTM 1998) as standard practice for environmental site characterization. Phase I of the QuickSite{reg_sign} investigation examined the key geologic, hydrogeologic, and hydrogeochemical relationships that define potential contaminant migration pathways at Everest (Argonne 2001). Phase II of the QuickSite{reg_sign} investigation at Everest was undertaken with the primary goal of delineating and improving understanding of the distribution of carbon tetrachloride contamination in groundwater at this site and the potential source area(s) that might have contributed to this contamination. To address this goal, four specific technical objectives were developed to guide the Phase II field studies. Sampling of near-surface soils at the former Everest CCC/USDA facility that was originally planned for Phase I had to be postponed until October 2000 because of access restrictions. Viable vegetation was not available for sampling then. This period is termed the first session of Phase II

  20. Remedial investigation work plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Turner, R.R.; Bogle, M.A.; Clapp, R.B.; Dearstone, K.; Dreier, R.B.; Early, T.O.; Herbes, S.E.; Loar, J.M.; Parr, P.D.; Southworth, G.R.

    1991-07-01

    As part of its response to Resource Conservation and Recovery Act (RCRA), the US Department of Energy had agreed to further investigate contamination of Bear Creek and its floodplain resulting from releases of hazardous waste or hazardous constituents from the Y-12 Plant solid waste management units (SWMU) located in the Bear Creek watershed. That proposed RCRA Facility Investigation has been modified to incorporate the requirements of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) into a Remedial Investigation (RI) Plan for Bear Creek. This document is the RI Plan for Bear Creek and its flood-of-record floodplain. The following assumptions were made in the preparation of this RI Plan: (1) That source-area groundwater monitoring will be conducted as a part of the comprehensive groundwater monitoring plan for the Bear Creek Hydrogeologic Regime; and (2) that postclosure activities associated with each SWMU do not explicitly include a comprehensive assessment of surface water, sediment, and floodplain soil contamination in Bear Creek and its tributaries. The RI Plan is thus intended to provide a more comprehensive evaluation of Bear Creek and its floodplain than that provided by the investigative monitoring and risk assessment activities associated with the ten individual SWMUs. RI activities will be carefully coordinated with other monitoring and assessment activities to avoid redundancy and to maximize the utility of data gathered during the investigation. 121 refs., 61 figs., 46 tabs

  1. Superfund Record of Decision (EPA Region 9): North Hollywood/Burbank Well Field Area 1, San Fernando Valley Site, California (first remedial action), September 1987. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-24

    The North Hollywood - Burbank Well Field (NHBWF) is located within the San Fernando Valley Ground Water basin, which can provide drinking water for approximately 500,000 people residing in the San Fernando Valley and Los Angeles. In 1980 TCE and PCE were discovered in 25% of DWP's wells. In July 1981, DWP and the Southern California Association of Governments began a two-year study funded by EPA. The study revealed the occurrence of ground-water contamination plume patterns that are spreading toward the southeast. The primary contaminant of concern to the ground-water is TCE with PCE and other VOCs present. The selected remedial action for the site is ground-water pump and treatment using aeration and granular-activated-carbon - air-filtering units, with discharge to the DWP Pumping Station for chlorination and distribution. Spent carbon will be removed and replaced with fresh carbon, with the spent carbon scheduled either for disposal or regeneration. The estimated capital cost for this remedial action is $2,192,895 with present worth OandM of $2,284,105.

  2. Superfund Record of Decision (EPA Region 5): Buckeye Reclamation Landfill Site, Belmont County, OH. (First remedial action), August 1991. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    The 658-acre Buckeye Reclamation site contains a 50-acre former landfill in Richland Township, Belmont County, Ohio. Land use in the area is predominantly agricultural, rural residential, and strip mining. A total of 46 domestic wells and springs are located within 1 mile of the site. The original topography of the valley has been altered by coal mining and landfill operations. Solid industrial wastes also were disposed of with municipal wastes elsewhere in the landfill. In 1980, the Waste Pit was filled with sludge, mine spoil, and overburden soil; covered with soil and garbage; and seeded. Results of the RI indicate various levels of contamination in all media sampled, except air. The Record of Decision (ROD) addresses the remediation of contaminated leachate and ground water and eliminates exposure to contaminated surface soil. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, TCE, and toluene; other organics including PAHs; and metals including arsenic, chromium, beryllium, and lead. The selected remedial action for the site is included

  3. Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1995-08-01

    US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure

  4. Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure.

  5. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2.

  6. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-05-01

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2

  7. SCOPE safety-controls optimization by performance evaluation: A systematic approach for safety-related decisions at the Hanford Tank Remediation System. Phase 1, final report

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, K.D.; Williams, D.C.; Slezak, S.E.; Young, M.L. [and others

    1996-12-01

    The Department of Energy`s Hanford Tank Waste Remediation system poses a significant challenge for hazard management because of the uncertainty that surrounds many of the variables that must be considered in decisions on safety and control strategies. As a result, site managers must often operate under excessively conservative and expensive assumptions. This report describes a systematic approach to quantifying the uncertainties surrounding the critical parameters in control decisions (e.g., condition of the tanks, kinds of wastes, types of possible accidents) through the use of expert elicitation methods. The results of the elicitations would then be used to build a decision support system and accident analysis model that would allow managers to see how different control strategies would affect the cost and safety of a facility configuration.

  8. Superfund Record of Decision (EPA Region 3): Southern Maryland Wood Treating Site, Hollywood, Maryland (first remedial action) June 1988. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-29

    The Southern Maryland Wood Treating (SMWT) site is located in Hollywood, St. Mary's County, Maryland. The site is situated within a wetland area in a drainage divide such that runoff from the site discharges into Brooks Run and McIntosh Run tributaries, which flow into the Potomac River. The area surrounding the site is predominantly used for agricultural and residential purposes. Currently, part of the site is being used as a retail outlet for pretreated lumber and crab traps. The waste generated at the site included retort and cylinder sludges, process wastes, and material spillage. These wastes were in six onsite unlined lagoons. The primary contaminants of concern affecting the onsite ground water, soil, surface water, sediments, and debris include: VOCs, PNA, and base/neutral acid extractables. The selected remedial action for the site is included.

  9. SCOPE safety-controls optimization by performance evaluation: A systematic approach for safety-related decisions at the Hanford Tank Remediation System. Phase 1, final report

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Williams, D.C.; Slezak, S.E.; Young, M.L.

    1996-12-01

    The Department of Energy's Hanford Tank Waste Remediation system poses a significant challenge for hazard management because of the uncertainty that surrounds many of the variables that must be considered in decisions on safety and control strategies. As a result, site managers must often operate under excessively conservative and expensive assumptions. This report describes a systematic approach to quantifying the uncertainties surrounding the critical parameters in control decisions (e.g., condition of the tanks, kinds of wastes, types of possible accidents) through the use of expert elicitation methods. The results of the elicitations would then be used to build a decision support system and accident analysis model that would allow managers to see how different control strategies would affect the cost and safety of a facility configuration

  10. Superfund record of decision (EPA Region 4): Potter's septic tank service pits site, Brunswick County, Sandy Creek, NC. (First remedial action), August 1992. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    The 5-acre Potter's Septic Tank Service Pits (Potter's Pits) is located in a rural section of Brunswick County, North Carolina. The site is situated within a residential community known as the Town of Sandy Creek. Disposal practices consisted of placing petroleum waste products and septic tank sludges either in shallow unlined pits or directly on the land surface. The ROD addresses the ground water treatment and contaminated soils at the site. Primary contaminants of concern affecting surface and subsurface soil are VOCs and semi-VOCs, including napthalene, metals, and pesticides. Ground water is contaminated with VOCs, including benzene, ethyl benzene, toluene; other organics including naphthalene, and xylenes; and metals, including chromium and lead. The selected remedial action for the site includes excavating all soils that exceed the soil clean-up standards; treating contaminated soils by using an onsite ex-situ thermal desorption process; performing secondary treatment of the concentrated organic contaminants, and sampling and analyzing the treatment residue

  11. The value of auditing negative lower GI investigations preceding a final diagnosis of colorectal cancer.

    Science.gov (United States)

    Somasekar, A; James, L; Stephenson, B M; Thompson, I W; Vellacott, K D; Allison, M C

    2009-09-01

    To review all preceding 'negative' large bowel investigations in patients with a final diagnosis of colorectal cancer, and to examine whether delayed diagnosis was associated with worse outcome. Details were gathered on all patients with a new diagnosis of colorectal adenocarcinoma presenting over 4.5 years. For each patient the hospital's clinical workstation and radiology and endoscopy databases were interrogated for all flexible sigmoidoscopies, colonoscopies and barium enemas during the 5 years prior to diagnosis. Among the 570 patients, 28 (5%) had undergone colonoscopy and/or flexible sigmoidoscopy that had not shown colorectal cancer during the 5 years preceding final diagnosis, and a further 28 (5%) had undergone 'negative' barium enemas. Polyp surveillance might have missed four lesions destined to become malignant. Correspondingly there were three patients undergoing IBD surveillance found to have CRC, having had a negative complete colonoscopy within the preceding 5 years. Among patients undergoing de novo colonoscopy for diagnosis the true miss rate was only one patient per year. At August 2007, 29 (58%) of those with delayed diagnosis were still alive, compared with 216 (42%) of those diagnosed during initial investigation (chi2 = 5.04, P auditing the quality assurance of lower gastrointestinal diagnostic services. Despite the delay, late diagnosis was found to be associated with improved survival and a lower likelihood of metastatic disease.

  12. Remedial Investigation Work Plan for Upper East Fork Poplar Creek Operable Unit 3 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one or more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan.

  13. Remedial Investigation Work Plan for Upper East Fork Poplar Creek Operable Unit 3 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-08-01

    Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one or more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan

  14. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Central Shops Burning/Rubble Pit (631-6G), Volume 1 Final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Burning/Rubble Pits at the Savannah River Site were usually shallow excavations approximately 3 to 4 meters in depth. Operations at the pits consisted of collecting waste on a continuous basis and burning on a monthly basis. The Central Shops Burning/Rubble Pit 631- 6G (BRP6G) was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal of paper, lumber, cans and empty galvanized steel drums. The unit may have received other materials such as plastics, rubber, rags, cardboard, oil, degreasers, or drummed solvents. The BRP6G was operated from 1951 until 1955. After disposal activities ceased, the area was covered with soil. Hazardous substances, if present, may have migrated into the surrounding soil and/or groundwater. Because of this possibility, the United States Environmental Protection Agency (EPA) has designated the BRP6G as a Solid Waste Management Unit (SWMU) subject to the Resource Conservation Recovery Act/Comprehensive Environmental Response, Compensation and Liability Act (RCRA/CERCLA) process.

  15. Data Quality Assessment Report for the Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    L.C. Hulstrom

    2010-09-21

    This report summarizes the results of the data quality assessment that was performed on the analytical data generated in connection with the 2008/2009 surface water, sediment, and soil data collection; groundwater upwelling investigation sample collection; and fish tissue sample collection.

  16. Data Quality Assessment Report for the Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    L.C. Hulstrom

    2010-08-10

    This report summarizes the results of the data quality assessment that was performed on the analytical data generated in connection with the 2008/2009 surface water, sediment, and soil data collection; groundwater upwelling investigation sample collection; and fish tissue sample collection.

  17. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

  18. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    International Nuclear Information System (INIS)

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC section 7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management

  19. Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Etnier, E.L.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Greeley, M.S.; Halbrook, R.S.; Harris, R.A.; Holladay, S.K.; Hook, L.A.; Howell, P.L.; Kszos, L.A.; Levine, D.A.; Skiles, J.L.; Suter, G.W.

    1992-12-01

    This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory agencies have encouraged the adoption of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) terminology; therefore, the Clinch River activity is now referred to as the Clinch River Remedial Investigation (CRRI), not the Clinch River RCRA Facility Investigation. Part 1 of this document is the plan for sampling and analysis (S A) during Phase 2 of the CRRI. Part 2 is a revision of the Quality Assurance Project Plan for the CRRI, and Part 3 is a revision of the Environmental Health and Safety Plan for the CRRI. The Clinch River RI (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the DOE Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. Primary areas of investigation are Melton Hill Reservoir, the Clinch River from Melton Hill Dam to its confluence with the Tennessee River, Poplar Creek, and Watts Bar Reservoir. The contaminants identified in the Clinch River/Watts Bar Reservoir (CR/WBR) downstream of the ORR are those associated with the water, suspended particles, deposited sediments, aquatic organisms, and wildlife feeding on aquatic organisms. The purpose of the Phase 2 S A Plan is to describe the proposed tasks and subtasks developed to meet the primary objectives of the CRRI.

  20. Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan

    International Nuclear Information System (INIS)

    Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Etnier, E.L.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Greeley, M.S.; Halbrook, R.S.; Harris, R.A.; Holladay, S.K.; Hook, L.A.; Howell, P.L.; Kszos, L.A.; Levine, D.A.; Skiles, J.L.; Suter, G.W.

    1992-12-01

    This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory agencies have encouraged the adoption of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) terminology; therefore, the Clinch River activity is now referred to as the Clinch River Remedial Investigation (CRRI), not the Clinch River RCRA Facility Investigation. Part 1 of this document is the plan for sampling and analysis (S ampersand A) during Phase 2 of the CRRI. Part 2 is a revision of the Quality Assurance Project Plan for the CRRI, and Part 3 is a revision of the Environmental Health and Safety Plan for the CRRI. The Clinch River RI (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the DOE Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. Primary areas of investigation are Melton Hill Reservoir, the Clinch River from Melton Hill Dam to its confluence with the Tennessee River, Poplar Creek, and Watts Bar Reservoir. The contaminants identified in the Clinch River/Watts Bar Reservoir (CR/WBR) downstream of the ORR are those associated with the water, suspended particles, deposited sediments, aquatic organisms, and wildlife feeding on aquatic organisms. The purpose of the Phase 2 S ampersand A Plan is to describe the proposed tasks and subtasks developed to meet the primary objectives of the CRRI

  1. Drilling of deep boreholes and associated geological investigations. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Anttila, P.

    1983-12-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for the final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 metres in the winter of 1984. The choice of drilling method and equipment depends on the geological circumstances and the target of the investigation. The most common drilling methods used with the investigations of nuclear waste disposal are diamond core drilling and percussion drilling. The Precambrian bedrock outcropping in Finland exists also in Sweden and Canada, where deep boreholes have been done down to more than 1000 metres using diamond core drilling. This method can be also used in Finland and equipment for the drilling are available. One of the main targets of the investigation is to clarify the true strike and dip of fractures and other discontinuities. The methods used abroad are taking of oriented cores, borehole television survey and geophysical measurements. TV-survey and geophysical methods seem to be most favourable in deep boreholes. Also the accurate position (inclination, bearing) of the borehole is essential to know and many techniques are used for measuring of it. Investigations performed on the core samples include core logging and laboratory tests. For the core logging there is no uniform practice concerning the nuclear waste investigations. Different counries use their own classifications. All of these, however, are based on the petrography and fracture properties of the rock samples. Laboratory tests (petrographical and rock mechanical tests) are generally performed according to the recommendations of international standards. The large volumes of data obtained during investigations require computer techniques which allow more comprehensive collection, storage and processing of data. This kind of systems are already used in Sweden and Canada, for instance, and they could be utilize in Finland

  2. Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hulstrom, L.

    2011-02-07

    This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

  3. Uranium Mill Tailings Remedial Action Project Environmental Line Management Audit Action Plan. Final report. Audit, October 26, 1992--November 6, 1992

    International Nuclear Information System (INIS)

    1993-07-01

    This Action Plan contains responses, planned actions, and estimated costs for addressing the findings discovered in the Environmental Management Audit conducted for the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRA), October 26 through November 6, 1992. This document should be read in conjunction with the Audit Report to ensure the findings addressed in this document are fully understood. The scope of the UMTRA Environmental Management Audit was comprehensive and encompassed all areas of environmental management except environmental programs pertaining to the National Environmental Policy Act (NEPA) compliance. The Audit Report listed 18 findings: 11 were identified as compliance findings, and the remaining 7 were best management practice findings. Root cause analysis was performed on all the findings. The results of the analysis as well as planned corrective actions are summarized in Section 5.0. All planned actions were prioritized using the Tiger Team Assessment Corrective Action Plan system. Based on assigned priorities, all planned actions were costed by fiscal year. This Action Plan contains a description of the organizational and management structures to be used to implement the Action Plan, a brief discussion of root cause analysis and funding, followed by the responses and planned actions for each finding. A member of the UMTRA Project Office (PO) has been assigned responsibility for tracking the progress on each of the findings. The UMTRA PO staff wrote and/or approved all of the corrective actions recorded in this Action Plan

  4. Superfund Record of Decision (EPA Region 5): Ossineke Groundwater Contamination Site, Alpena County, Ossineke, MI. (First remedial action), June 1991. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    The Ossineke Ground Water Contamination site is an area overlying a contaminated aquifer in Ossineke, Alpena County, Michigan. The site hydrogeology is characterized by an upper aquifer and lower confined aquifer, both of which supply drinking water to local residents. Historically there have been two contaminant source areas of concern within Ossineke. Area 1 is in the center of the Town of Ossineke where two gas stations are located, consisting of underground storage tanks, and a former automobile rustproofing shop. Area 2 is a laundry and dry cleaning facility that has an associated wash water pond containing chlorinated hydrocarbons and VOCs. The State advised all users of the upper aquifer to stop using their wells. In 1982, the State discovered that a snow plow had hit a gasoline pump causing an unknown amount of gasoline to spill and, subsequently, contaminate the basements of several businesses. In 1986, the State replaced residential wells affected by ground water contamination. Because the contaminants of concern have been confirmed to be related to petroleum releases from underground storage tanks, the Superfund program does not have the authority to address cleanup under CERLCLA. The selected remedial action for the site is that no further action

  5. Superfund Record of Decision (EPA Region 8): Denver Radium/Card Corporation Property, Colorado (third remedial action), June 1987. Final report

    International Nuclear Information System (INIS)

    1987-01-01

    The Denver Radium/Card Corporation property is a 17.2-acre site located in Denver, Colorado. In 1979, the EPA discovered a reference to the National Radium Institute in 1916 U.S. Bureau of Mines report. Subsequent field research revealed the presence of thirty-one radioactive sites in the Denver Metropolitan area, one of these being Card property, the location of the original Pittsburgh Radium Company processing facility. The site consists of five buildings and an oil and waste water pond at the eastern boundary. There is no serious public health risk at present from radium or its decay products, most notable radion gas. However, there is the potential for increased public health risk if the radium contaminated materials are misused or inadvertently spread. Currently, radium has been detected in the soil, sediment, and underneath the True Truss building. EPA's preferred remedial action for the Card property is permanent offsite disposal. However, the alternative can not be implemented until a suitable offsite facility is designated

  6. Quality assurance plan for the Close Support Laboratory for the remedial investigation at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-08-01

    The primary purpose of the Close Support Laboratory (CSL) is to provide rapid radiological screening of investigation-derived samples before they are shipped to off-site laboratories for more detailed analyses. Analyses for volatile organic compounds and miscellaneous water quality parameters are also performed at the CSL. CSL data are also used to select samples for off-site laboratory analysis, for rapid qualitative and quantitative determinations, and for other processes when off-site analysis is not needed and/or is impractical. This plan specifies methods of implementing analytical and radiological protocols and procedures for the documentation, handling, control, and analysis of samples and describes the levels of authority and responsibility for laboratory operation. Specific quality control methods used by the CSL for individual analyses are described in project procedures

  7. Investigation, assessment and remediation of the water pathway in the surroundings of the Culmitzsch A tailings impoundment

    International Nuclear Information System (INIS)

    Schulze, G.; Paul, M.; Priester, J.; Schoepfer, C.

    1998-01-01

    Several large tailings impoundments in Saxony and Thuringia are the result of the extensive uranium mining and milling in Eastern Germany after World War II. The Culmitzsch tailings pond in Eastern Thuringia was constructed within a former uranium open pit mine and is located within the Culmitzsch trench fault. The tailings impoundment includes two ponds (Culmitzsch A and B) which are separated by an internal dam with an impervious core. The Culmitzsch A pond covers an area of 158 ha, the maximum tailings thickness is 70 m. Between this pond (elevation of up to 340 m above sea-level) and the Lerchenbach creek (265.. 280 m above sea-level) a steep gradient exists. So the valley of the Lerchenbach is the general discharge area for the seepage of the pond which is a result of dewatering by gravity and consolidation. The seepage water migrates through the southern dam of the impoundment and through permeable layers which are in contact with the tailings. About 400 groundwater wells were installed within three aquifers in order to clarify the flow direction and the degree of contamination of the groundwater as well as to investigate the geohydraulic properties of the rocks in the surroundings of the pond. Based on the results of this investigation programme a three-dimensional hydrogeological model was built up which reflects the general relationships between the pond and its geological setting as well as the water balance of the whole system. Presently a catchment system exists which gathers all surface waters with significant uranium and salt concentrations. Moreover dewatering wells on the beach zone of the pond and catchment wells in the downstream area of the impoundment have been installed. Before being released to the receiving streams seepage and freewater are treated in a two-step water treatment plant in order to decrease their uranium, radium and arsenic contents. (orig.) [de

  8. Final Report for Grant No. DE-FG02-97ER62492 ''Engineering Deinococcus radiodurans for Metal Remediation in Radioactive Mixed Waste Sites''

    International Nuclear Information System (INIS)

    Michael J.; Daly, Ph.D.

    2005-01-01

    The groundwater and sediments of numerous U. S. Department of Energy (DOE) field sites are contaminated with mixtures of heavy metals (e.g., Hg, Cr, Pd) and radionuclides (e.g., U, Tc), as well as the fuel hydrocarbons benzene, toluene, ethylbenzene and xylenes (BTEX); chlorinated hydrocarbons, such as trichloroethylene (TCE); and polychlorinated biphenyls (PCBs). The remediation of such mixed wastes constitutes an immediate and complex waste management challenge for DOE, particularly in light of the costliness and limited efficacy of current physical and chemical strategies for treating mixed wastes. In situ bioremediation via natural microbial processes (e.g., metal reduction) remains a potent, potentially cost-effective approach to the reductive immobilization or detoxification of environmental contaminants. Seventy million cubic meters of soil and three trillion liters of groundwater have been contaminated by leaking radioactive waste generated in the United States during the Cold War. A cleanup technology is being developed based on the extremely radiation resistant bacterium Deinococcus radiodurans. Our recent isolation and characterization of D. radiodurans from a variety of DOE environments, including highly radioactive sediments beneath one of the leaking tanks (SX-108) at the Hanford Site in south-central Washington state, underscores the potential for this species to survive in such extreme environments. Research aimed at developing D. radiodurans for metal remediation in radioactive waste sites was started by this group in September 1997 with support from DOE NABIR grant DE-FG02-97ER62492. Our grant was renewed for the period 2000-2003, which includes work on the thermophilic radiation resistant bacterium Deinococcus geothermalis. Work funded by the existing grant contributed to 18 papers in the period 1997-2004 on the fundamental biology of D. radiodurans and its design for bioremediation of radioactive waste environments. Our progress since September

  9. Responsiveness summary for the remedial investigation/feasibility study for management of the bulk wastes at the Weldon Spring quarry, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    Peterson, J.M.; MacDonell, M.M.

    1990-08-01

    The US Department of Energy (DOE) is responsible for conducting remedial actions at the Weldon Spring site in St. Charles County, Missouri, under its Surplus Facilities Management Program. The site consists of a quarry and a chemical plant area located about 6.4 km (4 mi) northeast of the quarry. The quarry is surrounded by the Weldon Spring Wildfire Area and is near an alluvial well field that constitutes a major source of potable water for St. Charles County; the nearest supply well is located about 0.8 km (0.5 mi) southeast of the quarry. From 1942 to 1969, the quarry was used for the disposal of various radioactively and chemically contaminated materials. Bulk wastes in the quarry consist of contaminated soils and sediments, rubble, metal debris, and equipment. As part of overall site remediation, DOE is proposing to conduct an interim remedial action at the quarry to manage the radioactively and chemically contaminated bulk wastes contained therein. Potential remedial action alternatives for managing the quarry bulk wastes have been evaluated consistent with US Environmental Protection Agency (EPA) guidance for conducting remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. The contents of these documents were developed in consultation with EPA Region VII and the state of Missouri and reflect the focused scope defined for this interim remedial action. 9 refs

  10. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV.

  11. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV

  12. Defining the role of risk assessment in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation process at the DOE-OR

    International Nuclear Information System (INIS)

    Miller, P.D.; McGinn, C.W.; Purucker, S.T.; White, R.K.

    1994-08-01

    The risk assessment strategy that will be implemented on the Oak Ridge Reservation has been standardized to ensure consistency and technical defensibility in all risk assessment activities and is presented within this document. The strategy emphasizes using existing environmental data in screening risk analyses to aid in identifying chemicals of potential concern, operable units that could pursue a no further investigation determination, and operable units that may warrant early response actions. The screening risk analyses include a comparison of measured chemical concentrations to preliminary remediation goals, performing a most likely exposure and integration point assessment, and performing a screening ecological risk assessment. This document focuses heavily on the screening risk analyses and relies on existing U.S. Environmental Protection Agency risk assessment guidance to provide specific details on conducting baseline risk assessments. However, the document does contain a section on the baseline risk assessment process that details the exposure pathways to be evaluated on the Oak Ridge Reservation. This document will be used in conjunction with existing Martin Marietta Energy Systems, Inc. Environmental Restoration risk assessment standards, policies, procedures, and technical memoranda. The material contained herein will be periodically updated as the strategy is tried and tested and as the risk assessment methodology is revised. The primary purpose for this document is to present the proposed strategy to the Tennessee Department of Environment and Conservation and the U.S. Environmental Protection Agency, Region IV and receive concurrence or additional comments on the material presented herein

  13. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 6: Appendix G -- Baseline ecological risk assessment report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix G contains ecological risks for fish, benthic invertebrates, soil invertebrates, plants, small mammals, deer, and predator/scavengers (hawks and fox). This risk assessment identified significant ecological risks from chemicals in water, sediment, soil, and shallow ground water. Metals and PCBs are the primary contaminants of concern.

  14. Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill 1, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-09-01

    The intent and scope of the work plan are to assemble all data necessary to facilitate selection of remediation alternatives for the sites in Bear Creek Valley Operable Unit 1 (BCV OU 1) such that the risk to human health and the environment is reduced to acceptable levels based on agreements with regulators. The ultimate goal is to develop a final Record Of Decision (ROD) for all of the OUs in BCV, including the integrator OU. However, the initial aim of the source OUs is to develop a ROD for interim measures. For source OUs such as BCV OU 1, data acquisition will not be carried out in a single event, but will be carried out in three stages that accommodate the schedule for developing a ROD for interim measures and the final site-wide ROD. The three stages are as follows: Stage 1, Assemble sufficient data to support decisions such as the need for removal actions, whether to continue with the remedial investigation (RI) process, or whether no further action is required. If the decision is made to continue the RI/FS process, then: Stage 2, Assemble sufficient data to allow for a ROD for interim measures that reduce risks to the human health and the environment. Stage 3, Provide input from the source OU that allows a final ROD to be issued for all OUs in the BCV hydrologic regime. One goal of the RI work plan will be to ensure that sampling operations required for the initial stage are not repeated at later stages. The overall goals of this RI are to define the nature and extent of contamination so that the impact of leachate, surface water runoff, and sediment from the OU I sites on the integrator OU can be evaluated, the risk to human health and the environment can be defined, and the general physical characteristics of the subsurface can be determined such that remedial alternatives can be screened

  15. Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill 1, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The intent and scope of the work plan are to assemble all data necessary to facilitate selection of remediation alternatives for the sites in Bear Creek Valley Operable Unit 1 (BCV OU 1) such that the risk to human health and the environment is reduced to acceptable levels based on agreements with regulators. The ultimate goal is to develop a final Record Of Decision (ROD) for all of the OUs in BCV, including the integrator OU. However, the initial aim of the source OUs is to develop a ROD for interim measures. For source OUs such as BCV OU 1, data acquisition will not be carried out in a single event, but will be carried out in three stages that accommodate the schedule for developing a ROD for interim measures and the final site-wide ROD. The three stages are as follows: Stage 1, Assemble sufficient data to support decisions such as the need for removal actions, whether to continue with the remedial investigation (RI) process, or whether no further action is required. If the decision is made to continue the RI/FS process, then: Stage 2, Assemble sufficient data to allow for a ROD for interim measures that reduce risks to the human health and the environment. Stage 3, Provide input from the source OU that allows a final ROD to be issued for all OUs in the BCV hydrologic regime. One goal of the RI work plan will be to ensure that sampling operations required for the initial stage are not repeated at later stages. The overall goals of this RI are to define the nature and extent of contamination so that the impact of leachate, surface water runoff, and sediment from the OU I sites on the integrator OU can be evaluated, the risk to human health and the environment can be defined, and the general physical characteristics of the subsurface can be determined such that remedial alternatives can be screened.

  16. Investigation of modern methods of probalistic sensitivity analysis of final repository performance assessment models (MOSEL)

    International Nuclear Information System (INIS)

    Spiessl, Sabine; Becker, Dirk-Alexander

    2017-06-01

    Sensitivity analysis is a mathematical means for analysing the sensitivities of a computational model to variations of its input parameters. Thus, it is a tool for managing parameter uncertainties. It is often performed probabilistically as global sensitivity analysis, running the model a large number of times with different parameter value combinations. Going along with the increase of computer capabilities, global sensitivity analysis has been a field of mathematical research for some decades. In the field of final repository modelling, probabilistic analysis is regarded a key element of a modern safety case. An appropriate uncertainty and sensitivity analysis can help identify parameters that need further dedicated research to reduce the overall uncertainty, generally leads to better system understanding and can thus contribute to building confidence in the models. The purpose of the project described here was to systematically investigate different numerical and graphical techniques of sensitivity analysis with typical repository models, which produce a distinctly right-skewed and tailed output distribution and can exhibit a highly nonlinear, non-monotonic or even non-continuous behaviour. For the investigations presented here, three test models were defined that describe generic, but typical repository systems. A number of numerical and graphical sensitivity analysis methods were selected for investigation and, in part, modified or adapted. Different sampling methods were applied to produce various parameter samples of different sizes and many individual runs with the test models were performed. The results were evaluated with the different methods of sensitivity analysis. On this basis the methods were compared and assessed. This report gives an overview of the background and the applied methods. The results obtained for three typical test models are presented and explained; conclusions in view of practical applications are drawn. At the end, a recommendation

  17. Investigation of modern methods of probalistic sensitivity analysis of final repository performance assessment models (MOSEL)

    Energy Technology Data Exchange (ETDEWEB)

    Spiessl, Sabine; Becker, Dirk-Alexander

    2017-06-15

    Sensitivity analysis is a mathematical means for analysing the sensitivities of a computational model to variations of its input parameters. Thus, it is a tool for managing parameter uncertainties. It is often performed probabilistically as global sensitivity analysis, running the model a large number of times with different parameter value combinations. Going along with the increase of computer capabilities, global sensitivity analysis has been a field of mathematical research for some decades. In the field of final repository modelling, probabilistic analysis is regarded a key element of a modern safety case. An appropriate uncertainty and sensitivity analysis can help identify parameters that need further dedicated research to reduce the overall uncertainty, generally leads to better system understanding and can thus contribute to building confidence in the models. The purpose of the project described here was to systematically investigate different numerical and graphical techniques of sensitivity analysis with typical repository models, which produce a distinctly right-skewed and tailed output distribution and can exhibit a highly nonlinear, non-monotonic or even non-continuous behaviour. For the investigations presented here, three test models were defined that describe generic, but typical repository systems. A number of numerical and graphical sensitivity analysis methods were selected for investigation and, in part, modified or adapted. Different sampling methods were applied to produce various parameter samples of different sizes and many individual runs with the test models were performed. The results were evaluated with the different methods of sensitivity analysis. On this basis the methods were compared and assessed. This report gives an overview of the background and the applied methods. The results obtained for three typical test models are presented and explained; conclusions in view of practical applications are drawn. At the end, a recommendation

  18. 29 CFR 101.24 - Final disposition of a charge which has been held pending investigation of the petition.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Final disposition of a charge which has been held pending investigation of the petition. 101.24 Section 101.24 Labor Regulations Relating to Labor NATIONAL LABOR...)(7) and 9(c) of the Act § 101.24 Final disposition of a charge which has been held pending...

  19. Best Practices for Fuel System Contamination Detection and Remediation

    Science.gov (United States)

    2016-01-15

    The University of Dayton Research Institute Best Practices for Fuel System Contamination Detection and Remediation Final Report Marlin D... Remediation Executive Summary: Fuel contamination is a broad term commonly applied to anything that causes a fuel test to fail quality assurance...Statement A: Approved for public release: distribution unlimited. 1 Best Practices for Fuel System Contamination Detection and Remediation Contents

  20. EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF NEW POWER CYCLES AND ADVANCED FALLING FILM HEAT EXCHANGERS; FINAL

    International Nuclear Information System (INIS)

    Arsalan Razani; Kwang J. Kim

    2001-01-01

    The final report for the DOE/UNM grant number DE-FG26-98FT40148 discusses the accomplishments of both the theoretical analysis of advanced power cycles and experimental investigation of advanced falling film heat exchangers. This final report also includes the progress report for the third year (period of October 1, 2000 to September 30, 2001). Four new cycles were studied and two cycles were analyzed in detail based on the second law of thermodynamics. The first cycle uses a triple combined cycle, which consists of a topping cycle (Brayton/gas), an intermediate cycle (Rankine/steam), and a bottoming cycle (Rankine/ammonia). This cycle can produce high efficiency and reduces the irreversibility of the Heat Recovery Steam Generator (HRSC) of conventional combined power cycles. The effect of important system parameters on the irreversibility distribution of all components in the cycle under reasonable practical constraints was evaluated. The second cycle is a combined cycle, which consists of a topping cycle (Brayton/gas) and a bottoming cycle (Rankine/ammonia) with integrated compressor inlet air cooling. This innovative cycle can produce high power and efficiency. This cycle is also analyzed and optimized based on the second the second law to obtain the irreversibility distribution of all components in the cycle. The results of the studies have been published in peer reviewed journals and ASME conference proceeding. Experimental investigation of advanced falling film heat exchangers was conducted to find effective additives for steam condensation. Four additives have been selected and tested in a horizontal tube steam condensation facility. It has been observed that heat transfer additives have been shown to be an effective way to increase the efficiency of conventional tube bundle condenser heat exchangers. This increased condensation rate is due to the creation of a disturbance in the liquid condensate surround the film. The heat transfer through such a film has

  1. Formerly utilized MED/AEC sites remedial action program: radiological survey of the Building Site 421, United States, Watertown Arsenel, Watertown, MA. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    This report contains the results of surveys of the current radiological condition of the Building Site 421, United States Arsenal Watertown, Watertown, Massachusetts. Findings of this survey indicate there are four spots involving an area of less than 6000 cm/sup 2/ of identifiable low-level residual radioactivity on the concrete pad which is all that remains of Building Site 421. The largest spot is approximately 5000 cm/sup 2/. The other three spots are 100 cm/sup 2/ or less. The beta-gamma readings at these spots are 8.4 x 10/sup 2/ dis/min-100 cm/sup 2/, 2.2 x 10/sup 5/ dis/min-100 cm/sup 2/, 2.2 x 10/sup 5/ dis/min-100 cm/sup 2/ and 8.5 x 10/sup 4/ dis/min-100 cm/sup 2/. No alpha contamination was found at these locations. Gamma spectral analysis of a chip of contaminated concrete from one of the spots indicates that the contaminant is natural uranium. This contamination is fixed in the concrete and does not present an internal or external exposure hazard under present conditions. A hypothetical hazard analysis under a conservative set of assumed conditions indicates minimal internal hazard. The highest End Window contact reading was 0.09 mR/h. None of the other three spots indicated an elevated direct reading with the End Window Detector. Radon daughter concentrations were determined at three locations on the Building 421 pad. These were 0.00013 WL, 0.00011 WL and 0.00009 WL. According to the Surgeon General's Guidelines found in 10 CFR 712, radon daughter concentrations below 0.03 WL do not require remedial action in structures other than private dwellings and schools. Soil samples taken about the site indicate no elevated levels above the natural background levels in the soil. A gamma spectral analysis of a water sample obtained from the storm sewer line near the Building 421 pad indicates no elevated radioactivity in the sample. It was therefore felt that no contamination is present in this sewer.

  2. Formerly utilized MED/AEC sites remedial action program: radiological survey of the Building Site 421, United States, Watertown Arsenel, Watertown, MA. Final report

    International Nuclear Information System (INIS)

    1980-02-01

    This report contains the results of surveys of the current radiological condition of the Building Site 421, United States Arsenal Watertown, Watertown, Massachusetts. Findings of this survey indicate there are four spots involving an area of less than 6000 cm 2 of identifiable low-level residual radioactivity on the concrete pad which is all that remains of Building Site 421. The largest spot is approximately 5000 cm 2 . The other three spots are 100 cm 2 or less. The beta-gamma readings at these spots are 8.4 x 10 2 dis/min-100 cm 2 , 2.2 x 10 5 dis/min-100 cm 2 , 2.2 x 10 5 dis/min-100 cm 2 and 8.5 x 10 4 dis/min-100 cm 2 . No alpha contamination was found at these locations. Gamma spectral analysis of a chip of contaminated concrete from one of the spots indicates that the contaminant is natural uranium. This contamination is fixed in the concrete and does not present an internal or external exposure hazard under present conditions. A hypothetical hazard analysis under a conservative set of assumed conditions indicates minimal internal hazard. The highest End Window contact reading was 0.09 mR/h. None of the other three spots indicated an elevated direct reading with the End Window Detector. Radon daughter concentrations were determined at three locations on the Building 421 pad. These were 0.00013 WL, 0.00011 WL and 0.00009 WL. According to the Surgeon General's Guidelines found in 10 CFR 712, radon daughter concentrations below 0.03 WL do not require remedial action in structures other than private dwellings and schools. Soil samples taken about the site indicate no elevated levels above the natural background levels in the soil. A gamma spectral analysis of a water sample obtained from the storm sewer line near the Building 421 pad indicates no elevated radioactivity in the sample. It was therefore felt that no contamination is present in this sewer

  3. An investigation into e-learning acceptance and gender amongst final year students

    Directory of Open Access Journals (Sweden)

    Willie Chinyamurindi

    2015-08-01

    Objectives: The objective of this study was to investigate the acceptance of the e-learning system within a South African HE setting, including the influential role of gender in the acceptance of such a system. Method: Quantitative data was collected through a cross-sectional survey using 113 registered final year students at a South African university who were making use of an e-learning system as part of their teaching delivery. The measuring instrument used was the technology acceptance instrument (TAI and included measures of computer self-efficacy (CSE, perceived ease of use (PEU, perceived usefulness (PU, and behavioural intention to use (BIU. Results: The presence of a gender divide was found to exist in this study. Women’s ratings of the acceptance of e-learning systems were found to be slightly higher than those of the male respondents. In addition to this, elements of the TAI were found to be related to one another. Conclusion: The study concludes by arguing that lecturers and facilitators need to pay attention to usage patterns of e-learning systems as they affect how such systems are adopted by their students. Therefore, preceding student acceptance of electronic learning systems should be efforts to address any issues that affect the acceptance and effective utilisation of such systems.

  4. Remedial action and waste disposal project -- 300-FF-1 remedial action readiness assessment plan

    International Nuclear Information System (INIS)

    April, J.G.; Carlson, R.A.; Greif, A.A.; Johnson, C.R.; Orewiler, R.I.; Perry, D.M.; Plastino, J.C.; Roeck, F.V.; Tuttle, B.G.

    1997-04-01

    This Readiness Assessment Plan presents the methodology used to assess the readiness of the 300-FF-1 Remedial Action Project. Remediation involves the excavation, treatment if applicable, and final disposal of contaminated soil and debris associated with the waste sites in the 300-FF-1 Operable Unit. The scope of the 300-FF-1 remediation is to excavate, transport, and dispose of contaminated solid from sites identified in the 300-FF-1 Operable Unit

  5. Final master work plan : environmental investigations at former CCC/USDA facilities in Kansas, 2002 revision.

    Energy Technology Data Exchange (ETDEWEB)

    Burton, J. C.; Environmental Research

    2003-01-23

    The Commodity Credit Corporation (CCC) of the U.S. Department of Agriculture (USDA) has entered into an interagency agreement with the U.S. Department of Energy (DOE) under which Argonne National Laboratory provides technical assistance for hazardous waste site characterization and remediation for the CCC/USDA. Carbon tetrachloride is the contaminant of primary concern at sites in Kansas where former CCC/USDA grain storage facilities were located. Argonne applies its QuickSite(reg sign) Expedited Site Characterization (ESC) approach to these former facilities. The QuickSite environmental site characterization methodology is Argonne's proprietary implementation of the ESC process (ASTM 1998). Argonne has used this approach at several former CCC/USDA facilities in Kansas, including Agenda, Agra, Everest, and Frankfort. The Argonne ESC approach revolves around a multidisciplinary, team-oriented approach to problem solving. The basic features and steps of the QuickSite methodology are as follows: (1) A team of scientists with diverse expertise and strong field experience is required to make the process work. The Argonne team is composed of geologists, geochemists, geophysicists, hydrogeologists, chemists, biologists, engineers, computer scientists, health and safety personnel, and regulatory staff, as well as technical support staff. Most of the staff scientists are at the Ph.D. level; each has on average, more than 15 years of experience. The technical team works together throughout the process. In other words, the team that plans the program also implements the program in the field and writes the reports. More experienced scientists do not remain in the office while individuals with lesser degrees or experience carry out the field work. (2) The technical team reviews, evaluates, and interprets existing data for the site and the contaminants there to determine which data sets are technically valid and can be used in initially designing the field program. A basic

  6. Innovative technology for expedited site remediation of extensive surface and subsurface contamination

    International Nuclear Information System (INIS)

    Audibert, J.M.E.; Lew, L.R.

    1994-01-01

    Large scale surface and subsurface contamination resulted from numerous releases of feed stock, process streams, waste streams, and final product at a major chemical plant. Soil and groundwater was contaminated by numerous compounds including lead, tetraethyl lead, ethylene dibromide, ethylene dichloride, and toluene. The state administrative order dictated that the site be investigated fully, that remedial alternative be evaluated, and that the site be remediated within a year period. Because of the acute toxicity and extreme volatility of tetraethyl lead and other organic compounds present at the site and the short time frame ordered by the regulators, innovative approaches were needed to carry out the remediation while protecting plant workers, remediation workers, and the public

  7. An in vitro based investigation of the cytotoxic effect of water extracts of the Chinese herbal remedy LD on cancer cells

    Directory of Open Access Journals (Sweden)

    Jones Lucy A

    2009-09-01

    Full Text Available Abstract Background Long Dan Xie Gan Wan (LD, a Chinese herbal remedy formulation, is traditionally used to treat a range of conditions, including gall bladder diseases, hepatitis, hyperthyroidism, migraines but it is not used for the management or treatment of cancer. However some of its herbal constituents, specifically Radix bupleuri, Radix scutellariae and Rhizoma alismatis have been shown to inhibit the growth of cancer cells. Thus, the aim of the study was to investigate the impact of LD on cancer cells in vitro. Methods HL60 and HT29 cancer cell lines were exposed to water extracts of LD (1:10, 1:50, 1:100 and/or 1:1000 prepared from a 3 mg/30 ml stock and for both cell lines growth, apoptotic induction, alterations in cell cycle characteristics and genotoxicity were investigated. The specificity of the action of LD on these cancer cell lines was also investigated by determining its effect on human peripheral blood lymphocytes. Preliminary chemical analysis was carried out to identify cytotoxic constituents of LD using HPLC and LCMS. Results LD was significantly cytotoxic to, and induced apoptosis in, both cell lines. Apoptotic induction appeared to be cell cycle independent at all concentrations of LD used (1:10, 1:50 and 1:100 for the HL60 cell lines and at 1:10 for the HT29 cell line. At 1:50 and 1:100 apoptotic induction by LD appeared to be cell cycle dependent. LD caused significant genotoxic damage to both cell lines compared to their respective controls. The specificity study showed that LD exerted a moderate cytotoxic action against non-proliferating and proliferating blood lymphocytes but not apoptosis. Chemical analysis showed that a number of fractions were found to exert a significant growth inhibitory effect. However, the molecular weights of compounds within these fractions did not correspond to those from the herbal constituents of LD. Conclusion It is possible that LD may have some chemotherapeutic potential. However

  8. Remedial action and waste disposal project: 100-DR-1 remedial action readiness evaluation plan

    International Nuclear Information System (INIS)

    April, J.G.; Bryant, D.L.; Calverley, C.

    1996-08-01

    This plan presents the method used to assess the readiness of the 100- DR-1 Remedial Action Project. Remediation of the 100-D sites (located on the Hanford Site) involves the excavation (treatment if applicable) and final disposal of contaminated soil and debris associated with the high-priority waste sites in the 100 Areas

  9. Remedial investigation report on Bear Creek Valley Operable Unit 2 (rust spoil area, spoil area 1, and SY-200 yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2. Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This document contains the appendices to the Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The appendices include Current and historical soil boring and groundwater monitoring well information, well construction logs, and field change orders; Analytical data; Human health risk assessment data; and Data quality.

  10. Remedial investigation report on Bear Creek Valley Operable Unit 2 (rust spoil area, spoil area 1, and SY-200 yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2. Appendixes

    International Nuclear Information System (INIS)

    1994-08-01

    This document contains the appendices to the Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The appendices include Current and historical soil boring and groundwater monitoring well information, well construction logs, and field change orders; Analytical data; Human health risk assessment data; and Data quality

  11. An Investigation of Detect, Practice, and Repair to Remedy Math-Fact Deficits in a Group of Third-Grade Students

    Science.gov (United States)

    Poncy, Brian C.; Skinner, Christopher H.; Axtell, Philip K.

    2010-01-01

    A multiple-probe-across-problem-sets (tasks) design was used to evaluate the effects of the Detect, Practice, and Repair (DPR) on multiplication-fact fluency development in seven third-grade students nominated by their teacher as needing remediation. DPR is a multicomponent intervention and begins with a group-administered, metronome-paced…

  12. 300-FF-1 remedial design report/remedial action work plan

    International Nuclear Information System (INIS)

    Gustafson, F.W.

    1997-02-01

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes

  13. 300-FF-1 remedial design report/remedial action work plan

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, F.W.

    1997-02-01

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes.

  14. Groundwater remediation in the Straz leaching operation

    International Nuclear Information System (INIS)

    Novak, J.

    2001-01-01

    The locality affected by consequences of the chemical mining of the uranium during underground leaching 'in situ' is found in the area of the Czech Republic in the northeastern part of the Ceska Lipa district. In the contribution the complex groundwater remediation project is discussed. First, the risks of the current state are expressed. Then the alternatives of remediation of the both Cenomanian and Turonian aquifers are presented. Evaluation of the remediation alternatives with the view to the time-consumption, economy, ecology and the elimination of unacceptable risks for the population and environment is done. Finally, the present progress of remediation and the conception of remediation of chemical mining on deposit of Straz pod Ralskem are presented. (orig.)

  15. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Attachment 2, Geology report. Revised final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    Detailed investigations of geologic, geomorphic, and seismic conditions at the Bodo Canyon disposal site were conducted. The purpose of these investigations was basic site characterization and identification of potential geologic hazards that could affect long-term site stability. Subsequent engineering studies, such as analyses of hydrologic and liquefaction hazards, used the data developed in these studies. The geomorphic analysis was employed in the design of effective erosion protection. Studies of the regional and local seismotectonic setting, which included a detailed search for possible capable faults within a 65 kilometer radius of the site, provided the basis for seismic design parameters. The scope of work performed included the following: Compilation and analysis of previous published and unpublished geologic literature and maps; Review of historical and instrumental earthquake data; Review of site-specific subsurface geologic data, including lithologic and geophysical logs of exploratory boreholes advanced in the site area; Photogeologic interpretations of existing conventional aerial photographs; and, Ground reconnaissance and mapping of the site region.

  16. Investigation of Pore Scale Processes That Affect Soil Vapor Extraction. Final Technical Report EMSP 70045

    International Nuclear Information System (INIS)

    Valocchi, Albert J.; Werth, Charles W.; Webb, Andrew W.

    2004-01-01

    Dense nonaqueous phase liquid (DNAPL) contamination in the vadose zone is a significant problem at Department of Energy sites. Soil vapor extraction (SVE) is commonly used to remediate DNAPLs from the vadose zone. In most cases, a period of high recovery has been followed by a sustained period of low recovery. This behavior has been attributed to multiple processes including slow interphase mass transfer, retarded vapor phase transport, and diffusion from unswept zones of low permeability. This research project used a combination of laboratory experimentation and mathematical modeling to determine how these various processes interact to limit the removal of DNAPL components in heterogeneous porous media during SVE. Our results were applied to scenarios typical of the carbon tetrachloride spill zone at the Hanford Site. Our results indicate that: (a) the initial distribution of the spilled DNAPL (i.e., the spill-zone architecture) has a major influence upon the performance of any subsequent SVE operations; (b) while the pattern of higher and lower conductivity soil zones has an important impact upon spill zone architecture, soil moisture distribution plays an even larger role when there are large quantities of co-disposed waste-water (as in the Hanford scenario); (c) depending upon soil moisture dynamics, liquid DNAPL that is trapped by surrounding water is extremely difficult to remove by SVE; (d) natural barometric pumping can remove a large amount of the initial DNAPL mass for spills occurring close to the land surface, and hence the initial spilled inventory will be over-estimated if this process is neglected

  17. Current state and future prospects of remedial soil protection. Background

    Energy Technology Data Exchange (ETDEWEB)

    Frauenstein, Joerg

    2009-08-15

    The legal basis for soil protection in the Federal Republic of Germany is: -The Act on Protection against Harmful Changes to Soil and on Rehabilitation of Contaminated Sites (Federal Soil Protection Act) (Bundes-Bodenschutzgesetz - BBodSchG) of 1998 [1] -The Federal Soil Protection and Contaminated Sites Ordinance (BBodSchV) of 1999 [2]. In Germany, the Federal Government has legislative competence in the field of soil protection. The Lander (German federal states), in turn, are responsible for enforcement of the BBodSchG and the BBodSchV; they may also issue supplementary procedural regulations. According to Article 1 BBodschG, the purpose of the Act is inter alia to protect and restore the functions of the soil on a permanent sustainable basis. These actions shall include prevention of harmful soil changes as well as rehabilitating soil, contaminated sites and waters contaminated by such sites in such a way that any contamination remains permanently below the hazard threshold. Whilst prevention aims to protect and preserve soil functions on a long-term basis, the object of remediation is mainly to avert concrete hazards in a spatial, temporal and manageable causative context. ''Remedial soil protection'' encompasses a tiered procedure in which a suspicion is verified successively and with least-possible effort and in which the circumstances of the individual case at hand are taken into account in deciding whether or not a need for remediation exists. It comprises the systematic stages of identifying, investigating and assessing suspect sites and sites suspected of being contaminated with a view to their hazard potential, determining whether remediation is necessary, remediating identified harmful soil changes and contaminated sites, and carrying out, where necessary, aftercare measures following final inspection of the remedial measure. (orig.)

  18. Measures for radiation prevention and remediation of islightly radioactive contaminated sites by phytoremediation and subsequent utilization of the loaded plant residues (PHYTOREST). Final report; Massnahmen zur Strahlenschutzvorsorge radioaktiv belasteter Grossflaechen durch Sanierung mittels Phytoremediation und anschliessende Verwertung der belasteten Pflanzenreststoffe (PHYTOREST). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Willscher, Sabine; Werner, Peter [TU Dresden, Pirna (Germany). Inst. fuer Abfallwirtschaft und Altlasten; Jablonski, Lukasz; Wittig, Juliane

    2013-12-30

    In the presented scientific research project, the radiation protection of soil surfaces impacted by former industrial utilization or mining was investigated. This radiation protection of the contaminated soil surfaces was carried out by bioremediation techniques. The soil surfaces include larger agricultural or forestry areas useful for the production of sustainable plant-based raw materials and renewable energies. The contaminated areas show a positive climatic water balance with a subsequent impact of SM/R contaminants onto the adjacent ground water. During this scientific research project, the introduction of sustainable, biosphere conserving methods for a long-term remediation of slightly to moderately HM/R- contaminated areas was investigated; these areas are characterized by a radiotoxic amplifying potential due to a continued occurrence of radionuclides and heavy metals/ metalloids. The insights into transfer processes from the soil substrate over the mediating soil water phase and by microbes into the plant roots, into the shoots and the leaves of the plants represent necessary requirements for the control of SM/R transfer into the plants and its optimization. In this research project, considerable investigations were carried out for the understanding of binding of HM/R in the different plant compartments, also depending on different soil additives. The obtained first scientific results and their practical applicability were transformed onto experimental soil areas under natural field conditions. The transfer processes could be optimized and finally bioremediation efficiency could be enhanced due to the accompanying modifications (different soil additives of the field experiments). This new remediation method, further developed to a field application, represents a new tool for the stabilization / and extraction of HM/R on the field site and improves the efficiency of bioremediation processes. A pacification of the large areas with slightly to medium

  19. A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation.

    Science.gov (United States)

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-01-01

    An iron ore mine site in Swaziland is currently (2015) in a derelict state as a consequence of past (1964-1988) and present (2011 - current) iron ore mining operations. In order to control problems associated with mine wastes, the Swaziland Water Services Corporation (SWSC) recently (2013) proposed the application of biosolids in sites degraded by mining operations. It is thought that this practice could generally improve soil conditions and enhance plant reestablishment. More importantly, the SWSC foresees this as a potential solution to the biosolids disposal problems. In order to investigate the effects of biosolids and plants in soil physicochemical conditions of iron mine soils, we conducted two plant growth trials. Trial 1 consisted of tailings that received biosolids and topsoil (TUSB mix) while in trial 2, tailings received biosolids only (TB mix). In the two trials, the application rates of 0 (control), 10, 25, 50, 75 and 100 t ha(-1) were used. After 30 days of equilibration, 25 seeds of Cynodon dactylon were sown in each pot and thinned to 10 plants after 4 weeks. Plants were watered twice weekly and remained under greenhouse conditions for 12 weeks, subsequent to which soils were subjected to chemical analysis. According to the results obtained, there were significant improvements in soil parameters related to fertility such as organic matter (OM), water holding capacity (WHC), cation exchange capacity (CEC), ammonium [Formula: see text] , magnesium (Mg(2+)), calcium (Ca(2+)) and phosphorus ( [Formula: see text] ). With regard to heavy metals, biosolids led to significant increases in soil total concentrations of Cu, Zn, Cd, Hg and Pb. The higher concentrations of Zn and Cu in treated tailings compared to undisturbed adjacent soils are a cause for concern because in the field, this might work against the broader objectives of mine soil remediation, which include the recolonization of reclaimed sites by soil-dwelling organisms. Therefore, while

  20. Investigation of focusing of relativistic electron and positron bunches moving in cold plasma. Final report

    International Nuclear Information System (INIS)

    Amatuni, A.Ts.; Elbakian, S.S.; Khachatryan, A.G.; Sekhpossian, E.V.

    1995-03-01

    This document is the final report on a project to study focusing effects of relativistic beams of electrons and positrons interacting with a cold plasma. The authors consider three different models for the overdense cold plasma - electron bunch interaction. They look at coulomb effects, wakefield effects, bunch parameters, and the effects of trains of pulses on focusing properties

  1. Investigation of the hadronic final state in electron-proton interactions at HERA

    International Nuclear Information System (INIS)

    Dake, A.

    1995-01-01

    The main subject of this thesis is the study of the hardronic final state in deep-inelastic electron-proton scattering. Theexperiment described in this thesis is performed with such a high resolution that the substructure of the proton is probed by the electron beam with a resolution of less than 10 -15 cm. (orig./HSI)

  2. Investigation of the hadronic final state in electron-proton interactions at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Dake, A

    1995-09-18

    The main subject of this thesis is the study of the hardronic final state in deep-inelastic electron-proton scattering. Theexperiment described in this thesis is performed with such a high resolution that the substructure of the proton is probed by the electron beam with a resolution of less than 10{sup -15} cm. (orig./HSI).

  3. Remedial Investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-09-01

    This Remedial Investigation (RI) work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. The potential for release of contamination to receptors through the various media is addressed, and a sampling and analysis plan is presented to determine the extent of release of contamination to the surrounding environment. Proposed activities include walkover radiation surveys at all sites, soil borings at SY-200, piezometer installation and water table sampling at SA-1 and SY-200, and surface water and sediment runoff sampling at all three sites. Data from the site characterization activities will be combined with data from ongoing site-wide monitoring programs (i.e., groundwater, surface water, and biological monitoring) to provide input for a screening-level risk assessment and evaluation of altemative remedial actions

  4. Responses to comments on the Remedial Investigation/Feasibility Study-Environmental Impact Statement for Remedial Action at the chemical plant area of the Weldon Spring Site, November 1992

    International Nuclear Information System (INIS)

    1993-06-01

    The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE's predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The Weldon Spring site is on the National Priorities List (NPL) of the US Environmental Protection Agency (EPA). The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The RI/FS-EIS for remedial action at the chemical plant area of the Weldon Spring site was issued to the public on November 20, 1992. This public comment response document presents a summary of the major issues identified in both oral and written comments on the RI/FS-EIS and DOE's responses to those issues. This document also provides individual responses to the written comments

  5. Mold: Cleanup and Remediation

    Science.gov (United States)

    ... National Center for Environmental Health (NCEH) Cleanup and Remediation Recommend on Facebook Tweet Share Compartir On This ... CDC and EPA on mold cleanup, removal and remediation. Cleanup information for you and your family Homeowner’s ...

  6. Investigations on THM effects in buffer, EDZ and argillaceous host rock. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, M.; Breustedt, M.; Li, S.; Polster, M.; Schirmer, S.

    2013-11-15

    In the Federal Republic of Germany the final disposal of heat-generating radioactive waste in clay formations is investigated as an alternative to the reference concept in a salt formation. The main concern when switching to a clay host rock is the high amount of heat released from the canisters into the clay rock over a long period of time. It is still an open question to what extent the host rock formation is affected by the released heat and if this is a threat to safety. The released heat from the canisters is a load on the whole barrier system, which consists of the geotechnical barriers (buffer and plugs) and the geological barrier. The temperature has a direct impact on the buffer, the excavative damaged zone (EDZ) and the surrounding host rock. The buffer has specific thermo-physical properties that significantly influence the temperature evolution in the near field so that a temperature load on the buffer is of special concern. Thus, with regard to thermal criteria, the buffer plays a significant role for the design of the emplacement fields. An open question is whether the use of admixtures could enhance the thermo-physical properties so that the heat release into the host rock would be more efficient. Due to the permanent heat release and the continuous emplacement of additional canisters, the in-situ stress state in the vicinity of the emplacement boreholes continuously varies during the operational period and beyond. It is an open question how the EDZ of emplacement boreholes evolves in the long term with regard to its fissure system and mainly its permeability. A closure of the EDZ and a corresponding decrease in its permeability are necessary to enhance the tightness of the barrier system, especially to avoid a preferential pathway through the EDZ around the openings. The host rock has specific properties that are necessary to ensure a safe enclosure of the waste. A change in the host rock temperature may change these properties irreversibly. This is

  7. The Follow-up IAEA International Mission on Remediation of Large Contaminated Areas Off-Site the Fukushima Daiichi Nuclear Power Plant, Tokyo and Fukushima Prefecture, Japan, 14-21 October 2013. Final Report

    International Nuclear Information System (INIS)

    2014-01-01

    In October 2011, the IAEA conducted an International Mission to Japan to support the remediation of large contaminated areas off-site TEPCO's Fukushima Daiichi Nuclear Power Plant (NPP). In response to the request made by the Government of Japan, in October 2013, the IAEA organized a follow-up International Mission on remediation of large contaminated areas off-site TEPCO's Fukushima Daiichi NPP (hereinafter referred to as the 'Follow-up Mission' or the 'Mission') with the main purpose of evaluating the progress of the on-going remediation works achieved since the previous mission in October 2011. The Follow-up Mission Team involved 13 international experts. Additionally, 3 experts of the Working Group 5 (Subgroup 5.2, Remediation) in charge of preparing the IAEA Report on TEPCO Fukushima Daiichi Accident accompanied the Mission as observers to obtain first-hand information for the report. The Follow-up Mission had the following three objectives: 1. To provide assistance to Japan in assessing the progress made with the remediation of the Special Decontamination Area (not included in the previous mission of 2011) and the Intensive Contamination Survey Areas; 2. To review remediation strategies, plans and works, in view of the advice provided by the previous mission on remediation of large contaminated off-site areas; and 3. To share its findings with the international community as lessons learned. The Mission was conducted through the assessment of information provided to the Team and by means of professional and open discussions with the relevant institutions in Japan, including national, prefectural and local institutions. The Japanese authorities provided comprehensive information on their remediation programme. The Mission Team visited the affected areas, including several sites where activities on remediation were conducted. The Team also visited some temporary storage sites for radioactive waste and soil generated in the remediation activities, as well as a

  8. Topical Day on Site Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Vandenhove, H [ed.

    1996-09-18

    Ongoing activities at the Belgian Nuclear Research Centre relating to site remediation and restoration are summarized. Special attention has been paid to the different phases of remediation including characterization, impact assessment, evaluation of remediation actions, and execution of remediation actions.

  9. Multi-agency radiation survey and site investigation manual (MARSIM). Final report

    International Nuclear Information System (INIS)

    1997-12-01

    The MARSSIM provides information on planning, conducting, evaluating, and documenting building surface and surface soil final status radiological surveys for demonstrating compliance with dose or risk-based regulations or standards. The MARSSIM is a multi-agency consensus document that was developed collaboratively by four Federal agencies having authority and control over radioactive materials: Department of Defense (DOD), Department of Energy (DOE), Environmental Protection Agency (EPA), and Nuclear Regulatory Commission (NRC). The MARSSIM's objective is to describe a consistent approach for planning, performing, and assessing building surface and surface soil final status surveys to meet established dose or risk-based release criteria, while at the same time encouraging an effective use of resources

  10. Multi-agency radiation survey and site investigation manual (MARSIM). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The MARSSIM provides information on planning, conducting, evaluating, and documenting building surface and surface soil final status radiological surveys for demonstrating compliance with dose or risk-based regulations or standards. The MARSSIM is a multi-agency consensus document that was developed collaboratively by four Federal agencies having authority and control over radioactive materials: Department of Defense (DOD), Department of Energy (DOE), Environmental Protection Agency (EPA), and Nuclear Regulatory Commission (NRC). The MARSSIM`s objective is to describe a consistent approach for planning, performing, and assessing building surface and surface soil final status surveys to meet established dose or risk-based release criteria, while at the same time encouraging an effective use of resources.

  11. An Investigation of the Compensatory Effectiveness of Assistive Technology on Postsecondary Students with Learning Disabilities. Final Report.

    Science.gov (United States)

    Murphy, Harry; Higgins, Eleanor

    This final report describes the activities and accomplishments of a 3-year study on the compensatory effectiveness of three assistive technologies, optical character recognition, speech synthesis, and speech recognition, on postsecondary students (N=140) with learning disabilities. These technologies were investigated relative to: (1) immediate…

  12. Technologies for remediation of radioactively contaminated sites

    International Nuclear Information System (INIS)

    1999-06-01

    This report presents particulars on environmental restoration technologies (control and treatment) which can be applied to land based, radioactively contaminated sites. The media considered include soils, groundwater, surface water, sediments, air, and terrestrial and aquatic vegetation. The technologies addressed in this report can be categorized as follows: self-attenuation (natural restoration); in-situ treatment; removal of contamination; ex-situ treatment; and transportation and final disposal. The report provides also background information about and a general approach to remediation of radioactively contaminated sites as well as some guidance for the selection of a preferred remediation technology. Examples of remediation experience in Australia and Canada are given it annexes

  13. Technologies for remediation of radioactively contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    This report presents particulars on environmental restoration technologies (control and treatment) which can be applied to land based, radioactively contaminated sites. The media considered include soils, groundwater, surface water, sediments, air, and terrestrial and aquatic vegetation. The technologies addressed in this report can be categorized as follows: self-attenuation (natural restoration); in-situ treatment; removal of contamination; ex-situ treatment; and transportation and final disposal. The report provides also background information about and a general approach to remediation of radioactively contaminated sites as well as some guidance for the selection of a preferred remediation technology. Examples of remediation experience in Australia and Canada are given it annexes Refs, figs, tabs

  14. Site investigations for final disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Aeikaes, T.; Laine, T.

    1982-12-01

    Research concerning disposal of high-level nuclear waste of the Industrial Power Company Ltd has focused on deep underground disposal in Finnish precambrian bedrock. The present target is to have a repository for high-level waste in operation by 2020. Selection of the repository site is based on site investigations. In addition to geosciences, selection of appropriate site includes many branches of studies; engineering, safety analysis, ecology, transport, demography etc. The investigations required for site selection for high-level waste have been arranged in a sequence of four phases. The aim of the phases is that investigations become more and more detailed as the selection process continues. Phase I of the investigations is the characterization of potential areas. This comprises establishment of criteria for site selection and identification of areas that meet selection criteria. Objective of these studies is to determine areas for phase II field investigations. The studies are largely made by reviewing existing data and remote-sensing techniques. Phase II field investigations will be undertaken between 1986-1992. The number of potential candidates for repository site is reduced to few preferred areas by preceeding generic study. The site selection process culminates in phase III in site confirmation studies carried out at 2...3 most suitable sites during 1992-2010. This is then followed by phase IV, which comprises very detailed investigations at the selected site. An alternative for these investigations is to undertake them by using pilot shaft and drifts. Active development is taking place in all phases concerning investigation methods, criteria, parameters, data processing and modelling. The applicability of the various investigation methods and techniques is tested in a deep borehole in phase I. The co-operation with countries with similar geological conditions makes it possible to compare results obtained by different techniques

  15. Remediation trials of crude oil contaminated soil using different ...

    African Journals Online (AJOL)

    A 3 month remediation trial of the use of detergent and sawdust in different combination forms in the restoration of a crude oil contaminated tropical soil was investigated. 8 remediation treatments labeled A – H in addition to the control (I) were used in 10 kg soil artificially polluted with 300 ml crude oil each. Remediation ...

  16. Final report on the surface-based investigation (phase 1) at the Mizunami Underground Laboratory project

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Seno, Yasuhiro; Nakama, Shigeo; Tsuruta, Tadahiko; Amano, Kenji; Takeuchi, Ryuji; Matsuoka, Toshiyuki; Onoe, Hironori; Mizuno, Takashi; Ohyama, Takuya; Hama, Katsuhiro; Sato, Toshinori; Kuji, Masayoshi; Kuroda, Hidetaka; Semba, Takeshi; Uchida, Masahiro; Sugihara, Kozo; Sakamaki, Masanori; Iwatsuki, Teruki

    2007-03-01

    The Mizunami Underground Laboratory (MIU) Project is a comprehensive research project investigating the deep underground environment within crystalline rock being conducted by Japan Atomic Energy Agency at Mizunami City in Gifu Prefecture, central Japan and its role is defined in 'Framework for Nuclear Energy Policy' by Japan Atomic Energy Commission. The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of 20 years. The overall project goals of the MIU Project from Phase I through to Phase III are: 1) to establish techniques for investigation, analysis and assessment of the deep geological environment, and 2) to develop a range of engineering for deep underground application. During Phase I, the overall project goals were supported by Phase I goals. For the overall project goals 1), the Phase I goals were set to construct models of the geological environment from all surface-based investigation results that describe the geological environment prior to excavation and predict excavation response. For the overall project goals 2), the Phase I goals were set to formulate detailed design concepts and a construction plan for the underground facilities. This report summarizes the Phase I investigation which was completed in March 2005. The authors believe this report will make an important milestone, since this report clarifies how the Phase I goals are achieved and evaluate the future issues thereby direct the research which will be conducted during Phase II. With regard to the overall project goals 1), 'To establish techniques for investigation, analysis and assessment of the deep geological environment,' a step-wise investigation was conducted by iterating investigation, interpretation, and assessment, thereby understanding of geologic environment was progressively and effectively improved with progress of investigation. An optimal procedure from

  17. Screening of Potential Remediation Methods for the 200-ZP-1 Operable Unit at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Nimmons, Michael J.; Johnson, Christian D.; Dresel, P EVAN.; Murray, Christopher J.

    2006-08-07

    A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-ZP-1 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final. The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers). COC with similar properties were grouped for the screening evaluation. The screening evaluation was conducted in two primary steps. The initial screening step evaluated potential remediation methods based on whether they can be effectively applied within the environmental setting of the 200-ZP-1 Operable Unit for the specified contaminants. In the second step, potential remediation methods were screened using scoping calculations to estimate the scale of infrastructure, overall quantities of reagents, and conceptual approach for applying the method for each defined grouping of COC. Based on these estimates, each method was screened with respect to effectiveness, implementability, and relative cost categories of the CERCLA feasibility study screening process defined in EPA guidance.

  18. Characterization and remediation of soil prior to construction of an on-site disposal facility at Fernald

    International Nuclear Information System (INIS)

    Hunt, A.; Jones, G.; Nelson, K.

    1998-03-01

    During the production years at the Feed Materials Production Center (FMPC), the soil of the site and the surrounding areas was surficially impacted by airborne contamination. The volume of impacted soil is estimated at 2.2 million cubic yards. During site remediation, this contamination will be excavated, characterized, and disposed of. In 1986 the US Environmental Protection Agency (EPA) and the Department of Energy (DOE) entered into a Federal Facility Compliance Agreement (FFCA) covering environmental impacts associated with the FMPC. A site wide Remedial Investigation/Feasibility Study (RI/FS) was initiated pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act (CERCLA). The DOE has completed the RI/FS process and has received approval of the final Records of Decision. The name of the facility was changed to the Fernald Environmental Management Project (FEMP) to emphasize the change in mission to environmental restoration. Remedial actions which address similar scopes of work or types of contaminated media have been grouped into remedial projects for the purpose of managing the remediation of the FEMP. The Soil Characterization and Excavation Project (SCEP) will address the remediation of FEMP soils, certain waste units, at- and below-grade material, and will certify attainment of the final remedial limits (FRLs) for the FEMP. The FEMP will be using an on-site facility for low level radioactive waste disposal. The facility will be an above-ground engineered structure constructed of geological material. The area designated for construction of the base of the on-site disposal facility (OSDF) is referred to as the footprint. Contaminated soil within the footprint must be identified and remediated. Excavation of Phase 1, the first of seven remediation areas, is complete

  19. Remedial investigation report on waste area grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 4, Appendix C, Risk assessment

    International Nuclear Information System (INIS)

    1995-09-01

    Waste Area Grouping (WAG) 5 is part of Oak Ridge National Laboratory (ORNL) and is located on the United States Department of Energy's Oak Ridge Reservation (DOE-ORR). The site lies southeast of Haw Ridge in Melton Valley and comprises approximately 32 ha (80 ac) [12 ha (30 ac) of forested area and the balance in grassed fields]. Waste Area Grouping 5 consists of several contaminant source areas for the disposal of low-level radioactive, transuranic (TRU), and fissile wastes (1959 to 1973) as well as inorganic and organic chemical wastes. Wastes were buried in trenches and auger holes. Radionuclides from buried wastes are being transported by shallow groundwater to Melton Branch and White Oak Creek. Different chemicals of potential concern (COPCs) were identified (e.g., cesium-137, strontium-90, radium-226, thorium-228, etc.); other constituents and chemicals, such as vinyl chloride, bis(2-ethylhexyl)phthalate, trichloroethene, were also identified as COPCs. Based on the results of this assessment contaminants of concern (COCs) were subsequently identified. The objectives of the WAG 5 Baseline Human Health Risk Assessment (BHHRA) are to document the potential health hazards (i.e., risks) that may result from contaminants on or released from the site and provide information necessary for reaching informed remedial decisions. As part of the DOE-Oak Ridge Operations (ORO), ORNL and its associated waste/contamination sites fall under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as Superfund under the Superfund Amendments and Reauthorization Act (SARA). The results of the BHHRA will (1) document and evaluate risks to human health, (2) help determine the need for remedial action, (3) determine chemical concentrations protective of current and future human receptors, and (4) help select and compare various remedial alternatives.

  20. Drill core investigations from the TMI-2 pressure vessel. Final report

    International Nuclear Information System (INIS)

    Sturm, D.; Katerbau, K.H.; Maile, K.; Ruoff, H.

    1994-01-01

    For the evaluation of the results obtained in TMI-2 VIP and for the preparation of the continuing discussion in the OECD and of research measures in the national sphere but also for the appraisal of the effect of the results to date on safety philosophy and safety research in Germany, the present research project, inter alia, was commenced. In content was: a) Furtherance of the OECD-NEA-TMI-2 Vessel Investigation Project in dealing with the testing programme by active collaboration in the Programme Review Group, by participation in ad-hoc meetings on the question of specimen extraction, by advice on the conduct of metallographic, metallurgical and mechanical investigations on the specimens from the RPV bottom head and by assessment of the findings. b) Investigation of specimens from the bottom head of the TMI-2 reactor pressure vessel. c) Investigation of specimens from archive material. The investigations reach the widely agreed conclusion that during the accident a hot spot developed in the bottom head of the reactor in which for a time of about 30 minutes a maximum temperature of some 1100 C or greater than 900 C prevailed. Around this zone there is a region with temperatures higher than ca. 730 C (A 1 ) whilst the predominant portion of the head had not been heated beyond the 1 temperature. (orig.) [de

  1. Shemya AFB, Alaska 1992 IRP field investigation report. Volume 1: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force`s Installation Restoration Program (IRP). As a part of the IRP program, field investigations were performed in 1992 to obtain the information needed to assess what future actions willneed to be carried out at each site. The island`s drinking water supply was also investigated. Activities completed at 10 selected sites during the 1992 field investigation included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities.

  2. Current good manufacturing practice and investigational new drugs intended for use in clinical trials. Final rule.

    Science.gov (United States)

    2008-07-15

    The Food and Drug Administration (FDA) is amending the current good manufacturing practice (CGMP) regulations for human drugs, including biological products, to exempt most phase 1 investigational drugs from complying with the regulatory CGMP requirements. FDA will continue to exercise oversight of the manufacture of these drugs under FDA's general statutory CGMP authority and through review of the investigational new drug applications (IND). In addition, elsewhere in this issue of the Federal Register, FDA is announcing the availability of a guidance document entitled "Guidance for Industry: CGMP for Phase 1 Investigational Drugs" dated November 2007 (the companion guidance). This guidance document sets forth recommendations on approaches to compliance with statutory CGMP for the exempted phase 1 investigational drugs. FDA is taking this action to focus a manufacturer's effort on applying CGMP that is appropriate and meaningful for the manufacture of the earliest stage investigational drug products intended for use in phase 1 clinical trials while ensuring safety and quality. This action will also streamline and promote the drug development process.

  3. Laboratory Investigation of Rheology and Infiltration Process of Non-Newtonian Fluids through Porous Media in a Non-Isothermal Flow Regime for Effective Remediation of Contaminants

    Science.gov (United States)

    Naseer, F.

    2017-12-01

    Contamination of soil and groundwater by adsorbent (persistent) contaminants have been a major concern. Mine tailings, Acid mine drainage, waste disposal areas, active or abandoned surface and underground mines are some major causes of soil and water contamination. It is need of the hour to develop cost effective and efficient remediation techniques for clean-up of soil and aquifers. The objective of this research is to study a methodology of using non-Newtonian fluids for effective remediation of adsorbent contaminants in porous media under non-isothermal flow regimes. The research comprises of three components. Since, non-Newtonian fluid rheology has not been well studied in cold temperatures, the first component of the objective is to expose a non-Newtonian fluid (Guar gum solution) to different temperatures ranging from 30 °C through -5 °C to understand the change in viscosity, shear strength and contact angle of the fluid. Study of the flow characteristic of non-Newtonian fluids in complex porous media has been limited. Hence, the second component of this study will focus on a comparison of flow characteristics of a Newtonian fluid, non-Newtonian fluid and a combination of both fluids in a glass-tube-bundle setup that will act as a synthetic porous media. The study of flow characteristics will also be done for different thermal regimes ranging from -5 °C to 30 °C. The third component of the research will be to compare the effectiveness Guar gum to remediate a surrogate adsorbed contaminant at a certain temperature from the synthetic porous media. Guar gum is biodegradable and hence it is benign to the environment. Through these experiments, the mobility and behavior of Guar gum under varying temperature ranges will be characterized and its effectiveness in removing contaminants from soils will be understood. The impact of temperature change on the fluid and flow stability in the porous medium will be examined in this research. Guar gum is good suspension

  4. FInal Report: Site Investigation Results, 2009-2011, at Inman, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Sciences Div.

    2015-05-01

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility at the southern edge of the city of Inman, Kansas, from 1954 to 1965. During this time, commercial grain fumigants containing carbon tetrachloride were in common use by the grain storage industry to preserve grain in their facilities. In 1997, trace to low levels of carbon tetrachloride (below the maximum contamination level [MCL] of 5.0 μg/L) were detected in three private wells near the former grain storage facility at Inman, as part of a statewide USDA private well sampling program that was implemented by the Kansas Department of Health and Environment (KDHE) near former CCC/USDA facilities. No public water supply wells were identified in 1998 by the KDHE within 1 mi of the town. Carbon tetrachloride is the contaminant of primary concern at sites associated with grain storage operations. To determine whether the former CCC/USDA facility at Inman is a potential contaminant source and its possible relationship to the contamination in groundwater, the CCC/USDA agreed to conduct investigations at Inman. The investigations were performed by the Environmental Science Division of Argonne National Laboratory in accordance with the Intergovernmental Agreement between the KDHE and the Farm Service Agency of the USDA. Argonne, on behalf of the CCC/USDA, developed a Work Plan (Argonne 2007) and subsequently a Summary of Investigation Results and Proposed Work Plan (Appendix A) for a phased site investigation. The proposed work was approved by the KDHE (2007, 2011). The investigations were conducted from November 2009 to September 2011, as proposed in the two work plans. This report presents the findings of the 2009-2011 investigations at Inman.

  5. Lead immobilization in thermally remediated soils and igneous rocks

    International Nuclear Information System (INIS)

    Hickmott, D.D.; Carey, J.W.; Stimac, J.; Larocque, A.; Abell, R.; Gauerke, E.; Eppler, A.

    1997-01-01

    This is the final report for a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The principal goal of this project was to investigate the speciation of lead in the environment at LANL and to determine the feasibility of using thermal remediation methods to immobilize lead in the environment. Lead occurs as pyromorphite [Pb(PO 4 ) 3 (Cl, OH)], cerussite (PbCO 3 ) and galena (PbS) in vapor-phase-altered Bandelier Tuff samples. LANL soils primarily contain cerussite and PbO. Thermal remediation experiments at high temperatures (up to 400 C) suggest that thermal immobilization of highly-reactive Pb compounds in the environment may be feasible, but that this technique is not optimal for more refractory lead phases such as cerussite and PbO

  6. Investigation of the seismicity at regional and teleseismic distances following underground nuclear detonations. Final technical report

    International Nuclear Information System (INIS)

    Willis, D.E.; Stubenrauch, A.; Willis, M.E.

    1977-01-01

    The main emphasis of the investigation was to determine the seismicity of the Nevada Test Site area during a time period which encompassed a lull in the testing program. The time period studied extends from April 1, 1973 to October 1, 1975. The aftershock sequence of nuclear shots fired on Pahute Mesa during late 1975 and early 1976 were also included

  7. Shemya AFB, Alaska 1992 IRP field investigation report. Volume 4, Appendixes E and F: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force`s Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island`s drinking water supply was also investigated. Activities completed at 10 selected sites included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal, to be avoided during drilling activities. This report contains appendices E and F with information on the following: soil boring logs, and data validation of samples analyzed.

  8. Final report of the 2. committee of investigation of the 11. legislative period. Bribes

    International Nuclear Information System (INIS)

    1990-01-01

    According to the findings of the Transnuklear Committee there is no connection between payoffs and illegal actions pursuant to atomic law. The bribes probably were intended to improve contacts with recipients within the sense of 'image cultivation'. - The criminal aspect has been investigated by the prosecution authorities. (HSCH) [de

  9. Final Report for grant entitled "Production of Astatine-211 for U.S. Investigators"

    Energy Technology Data Exchange (ETDEWEB)

    Wilbur, Daniel Scott

    2012-12-12

    Alpha-particle emitting radionuclides hold great promise in the therapy of cancer, but few alpha-emitters are available to investigators to evaluate. Of the alpha-emitters that have properties amenable for use in humans, 211At is of particular interest as it does not have alpha-emitting daughter radionuclides. Thus, there is a high interest in having a source of 211At for sale to investigators in the US. Production of 211At is accomplished on a cyclotron using an alpha-particle beam irradiation of bismuth metal. Unfortunately, there are few cyclotrons available that can produce an alpha particle beam for that production. The University of Washington has a cyclotron, one of three in the U.S., that is currently producing 211At. In the proposed studies, the things necessary for production and shipment of 211At to other investigators will be put into place at UW. Of major importance is the efficient production and isolation of 211At in a form that can be readily used by other investigators. In the studies, production of 211At on the UW cyclotron will be optimized by determining the best beam energy and the highest beam current to maximize 211At production. As it would be very difficult for most investigators to isolate the 211At from the irradiated target, the 211At-isolation process will be optimized and automated to more safely and efficiently obtain the 211At for shipment. Additional tasks to make the 211At available for distribution include obtaining appropriate shipping vials and containers, putting into place the requisite standard operating procedures for Radiation Safety compliance at the levels of 211At activity to be produced / shipped, and working with the Department of Energy, Isotope Development and Production for Research and Applications Program, to take orders, make shipments and be reimbursed for costs of production and shipment.

  10. Final Report: Results of Environmental Site Investigation at Sylvan Grove, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-01

    Sylvan Grove is located in western Lincoln County, approximately 60 mi west of Salina, Kansas (Figure 1.1). From 1954 to 1966, the Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated a grain storage facility at the northeastern edge of Sylvan Grove. During this time, commercial grain fumigants containing carbon tetrachloride were in common use to preserve grain in storage. In 1998, the Kansas Department of Health and Environment (KDHE) found carbon tetrachloride above the maximum contaminant level (MCL) of 5 μg/L in groundwater from one private well used for livestock and lawn and garden watering. The 1998 KDHE sampling at Sylvan Grove was conducted under the USDA private well sampling program. To determine whether the former CCC/USDA facility at Sylvan Grove is a potential contaminant source and its possible relationship to the contamination in groundwater, the CCC/USDA proposed to conduct an environmental site investigation, in accordance with the Intergovernmental Agreement between the KDHE and the Farm Service Agency (FSA) of the USDA. Argonne National Laboratory, on behalf of the CCC/USDA, developed a work plan (Argonne 2012) for the site investigation and a supplemental work plan for indoor and ambient air sampling (Appendix A). The proposed work was approved by the KDHE (2012a, 2013). The investigations were performed by the Environmental Science Division of Argonne National Laboratory, on behalf of the CCC/USDA. The main activities for the site investigation were conducted in June 2012, and indoor and ambient air sampling was performed in February 2013. This report presents the findings of the investigations at Sylvan Grove.

  11. Drama, dissensus, remediation and a fluttering butterfly

    DEFF Research Database (Denmark)

    Kusk, Hanne

    2017-01-01

    Why is it important to pay attention to democracy and polyphony when working with remediation in a multimodal drama project in introductory schooling? This question is elucidated and investigated in this article on the basis of a drama project case study conducted at Hundborg Friskole. The study...... is analysed on the basis of the concepts of remediation (Bolter and Grusin 1999; Christoffersen 2009), dissensus (Biesta 2013; Rancière 2013), dialogue and polyphony (Dysthe, Bernhardt and Esbjørn 2012). The examples in the investigation show how dialogue, polyphony and dissensus influence the art......-based process of remediation, and how this impacts children’s democratic education....

  12. Investigation of reactions and species dominating low temperature combustion - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, T.; Radi, P.; Knopp, G.; Tulej, M.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Paul Scherrer Institute PSI in Switzerland on the quantitative description of ignition. processes and the influence of peroxy radicals that determine ignition and speciation of the intermediates initially present and, thereby, the progress of subsequent reactions. The authors note that for the preparation of peroxy radicals, a dedicated molecular beam apparatus has been built by the PSI's 'Molecular Dynamics' group. A novel radical source is operational. In many cases, specific radicals can be prepared with high selectivity. A description of flame chemistry is being worked on that can reliably predict the speciation of intermediate products during ignition. Laser-based measurement techniques are being applied at PSI to measure the static and dynamic properties of alkyl peroxy radicals in order to accurately describe their reaction behaviour in combustion processes. A dedicated synchrotron beam line is installed at the Swiss Light Source (SLS) that extends the available range of spectroscopic measurements into the VUV (vacuum-ultraviolet) wavelength domain. The results obtained are presented and discussed.

  13. Can we trust corporates GHG inventories? An investigation among Canada's large final emitters

    International Nuclear Information System (INIS)

    Talbot, David; Boiral, Olivier

    2013-01-01

    In the public sphere and the literature on climate strategies, the measurability of corporate GHG emissions tends to be taken for granted, and few empirical studies have examined the reliability of such data. The present case study, which was conducted among 10 Canadian companies considered as large final emitters and three auditing firms, focuses on the factors which could affect the perceived credibility of GHG inventories and the strategic implications of these. The qualitative, inductive study allows identifying three main factors which affect trust in business inventories: technical issues and complexity of GHG measurements, lack of transparency on the part of the companies and unreliability of verification mechanisms. The study also makes it possible to evaluate the implications of uncertainties concerning GHG inventories which are of strategic importance for companies and policy makers. While the reliability of GHG measurement is taken for granted at the political level, uncertainties in this area can in fact have a huge impact on the establishment of the cap and trade system. The study also contributes to the literature on carbon accounting by shedding light on underexplored ethical issues, including the lack of independence of auditors and its implications. - Highlights: • The complexity of GHG emission measurement is underestimated in the public sphère. • The data disclosed by companies to the different stakeholders lack transparency. • The auditors' lack of competence and independence undermine the credibility of audit reports

  14. Investigation of reactions and species dominating low temperature combustion - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Radi, P.; Knopp, G.; Johnson, M.; Boedi, A.; Gerber, T.

    2009-12-15

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of work done at the Paul Scherrer Institute (PSI) in Switzerland. The project 'Investigation of reactions and species dominating low temperature combustion' involves the characterisation of species that govern ignition. A base established for the spectroscopic investigation of peroxy radicals is discussed. The two-fold aim of this project is discussed which includes the measurement of molecular features such as binding energies and dissociation patterns of well-studied and spectroscopically accessible molecules and radicals as well as the application of the measurement techniques to alkyl peroxy radicals. This was done in order to improve the database of a class of molecules playing a dominant role in combustion and atmospheric chemistry. Several experimental techniques that are to be developed to achieve these aims are looked at. Achievements made are discussed and future work to be carried out is noted.

  15. Investigation of perturbation techniques for nonlinear difference equations and other related topics: Final technical report

    International Nuclear Information System (INIS)

    Mickens, R.E.

    1986-01-01

    Investigations in mathematical physics are summarized for projects concerning a nonlinear wave equation; a second-order nonlinear difference equation; singular, nonlinear oscillators; and numerical instabilities. All of the results obtained through these research efforts have been presented in seminars and professional meetings and conferences. Further, all of these results have been published in the scientific literature. A list of exact references are given in the appendices to this report

  16. Investigations on backfilling and sealing of chambers and shafts in a final salt repository

    International Nuclear Information System (INIS)

    Glaess, F.; Kappei, G.; Schmidt, M.W.; Schwieger, K.; Starke, C.; Taubert, E.; Wallmueller, R.; Walter, F.; Tischle, N.R.; Haensel, W.; Meyer, T.

    1991-03-01

    Soil mechanical laboratory investigations as well as geotechnical in situ measurements were carried out. The laboratory tests provided important information on the material behaviour of selected backfill and sealing materials. Initial conclusions on the long-term behaviour of backfill and seals as well as on their interaction with the rock were gained with the results of in situ measurements in backfilled chambers and seals and in the surrounding rock of the Asse salt mine. (orig./DG) [de

  17. Investigation of high purity beryllium for the International Thermonuclear Experimental Reactor (ITER), Task 002. Final report

    International Nuclear Information System (INIS)

    Vagin, S.P.

    1995-05-01

    The report includes a description of experimental abilities of Solid Structure Research Laboratory of IAE NNC RK, a results of microstructural characterization of A-4 grade polycrystal Beryllium produced at the Ulba metal plant and a technical project-for irradiation experiments. Technical project contains a detailed description of five proposed experiments, clearing behavior of Beryllium materials under the influence of irradiation, temperature, helium and hydrogen accumulation. Complex irradiation jobs, microstructural investigations and mechanical tests are planned in the framework of these experiments

  18. Evaluation and determination of soil remediation schemes using a modified AHP model and its application in a contaminated coking plant.

    Science.gov (United States)

    Li, Xingang; Li, Jia; Sui, Hong; He, Lin; Cao, Xingtao; Li, Yonghong

    2018-07-05

    Soil remediation has been considered as one of the most difficult pollution treatment tasks due to its high complexity in contaminants, geological conditions, usage, urgency, etc. The diversity in remediation technologies further makes quick selection of suitable remediation schemes much tougher even the site investigation has been done. Herein, a sustainable decision support hierarchical model has been developed to select, evaluate and determine preferred soil remediation schemes comprehensively based on modified analytic hierarchy process (MAHP). This MAHP method combines competence model and the Grubbs criteria with the conventional AHP. It not only considers the competence differences among experts in group decision, but also adjusts the big deviation caused by different experts' preference through sample analysis. This conversion allows the final remediation decision more reasonable. In this model, different evaluation criteria, including economic effect, environmental effect and technological effect, are employed to evaluate the integrated performance of remediation schemes followed by a strict computation using above MAHP. To confirm the feasibility of this developed model, it has been tested by a benzene workshop contaminated site in Beijing coking plant. Beyond soil remediation, this MAHP model would also be applied in other fields referring to multi-criteria group decision making. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Confirmatory radiological survey of the Grand Junction Projects Office Remedial Action Project exterior portions, 1989-1995

    International Nuclear Information System (INIS)

    Forbes, G.H.; Egidi, P.V.

    1997-04-01

    The purpose of this independent assessment was to provide the U.S. Department of Energy (DOE) with an independent verification (IV) that the soil at the Grand Junction Projects Office (GJPO) complies with applicable DOE guidelines. Oak Ridge National Laboratory/ Environmental Technology Section (ORNL/ETS) which is also located at the GJPO, was assigned by DOE as the Independent Verification Contractor (IVC). The assessment included reviews of the decontamination and decommissioning plan, annual environmental monitoring reports, data in the pre- and post-remedial action reports, reassessment reports and IV surveys. Procedures and field methods used during the remediation were reviewed, commented on, and amended as needed. The IV surveys included beta-gamma and gamma radiation scans, soil sampling and analyses. Based on the data presented in the post-remedial action report and the results of the IV surveys, the remediation of the outdoor portions of the GJPO has achieved the objectives. Residual deposits of uranium contamination may exist under asphalt because the original characterization was not designed to identify uranium and subsequent investigations were limited. The IVC recommends that this be addressed with the additional remediation. The IVC is working with the remedial action contractor (RAC) to assure that final documentation WM be sufficient for certification. The IVC will address additional remediation of buildings, associated utilities, and groundwater in separate reports. Therefore, this is considered a partial verification

  20. Functional remediation components: A conceptual method of evaluating the effects of remediation on risks to ecological receptors.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael; Bunn, Amoret; Downs, Janelle; Jeitner, Christian; Pittfield, Taryn; Salisbury, Jennifer

    2016-01-01

    Governmental agencies, regulators, health professionals, tribal leaders, and the public are faced with understanding and evaluating the effects of cleanup activities on species, populations, and ecosystems. While engineers and managers understand the processes involved in different remediation types such as capping, pump and treat, and natural attenuation, there is often a disconnect between (1) how ecologists view the influence of different types of remediation, (2) how the public perceives them, and (3) how engineers understand them. The overall goal of the present investigation was to define the components of remediation types (= functional remediation). Objectives were to (1) define and describe functional components of remediation, regardless of the remediation type, (2) provide examples of each functional remediation component, and (3) explore potential effects of functional remediation components in the post-cleanup phase that may involve continued monitoring and assessment. Functional remediation components include types, numbers, and intensity of people, trucks, heavy equipment, pipes, and drill holes, among others. Several components may be involved in each remediation type, and each results in ecological effects, ranging from trampling of plants, to spreading invasive species, to disturbing rare species, and to creating fragmented habitats. In some cases remediation may exert a greater effect on ecological receptors than leaving the limited contamination in place. A goal of this conceptualization is to break down functional components of remediation such that managers, regulators, and the public might assess the effects of timing, extent, and duration of different remediation options on ecological systems.

  1. Deep brine recognition upstream the EBE syndicate. Geochemical and isotopic investigations. Final report

    International Nuclear Information System (INIS)

    2009-01-01

    The authors report and discuss the results obtained after performing a drilling upstream the drinkable water harnessing field of a water supply syndicate in Alsace (Ensisheim, Bollwiller and surroundings), in order to confirm the existence of a deep brine source. This brine is diluted by recent waters. The first isotopic investigations do not allow the origin of this brine to be identified, but fractures due to some seismic events are suspected. The report presents the drilling and the various aspects of the chemical and isotopic studies (sampling, physico-chemical analysis, dating, identification of various isotopes)

  2. Investigation of the fundamentals of low-energy nanosecond pulse ignition: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Zhang, Anqi [Argonne National Lab. (ANL), Argonne, IL (United States); Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Biruduganti, Munidhar [Argonne National Lab. (ANL), Argonne, IL (United States); Bihari, Bipin [Argonne National Lab. (ANL), Argonne, IL (United States); Matusik, Katarzyna E. [Argonne National Lab. (ANL), Argonne, IL (United States); Duke, Daniel J. [Argonne National Lab. (ANL), Argonne, IL (United States); Powell, Christopher F. [Argonne National Lab. (ANL), Argonne, IL (United States); Kastengren, Alan L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    A detailed investigation of the fundamentals of low-energy nanosecond pulse ignition was performed with the objective to overcome the barrier presented by limited knowledge and characterization of nonequilibrium plasma ignition for realistic internal combustion engine applications (be it in the automotive or power generation field) and shed light on the mechanisms which improve the performance of the advanced TPS ignition system compared to conventional state-of-the-art hardware. Three main tasks of the research included experimental evaluation on a single-cylinder automotive gasoline engine, experimental evaluation on a single-cylinder stationary natural gas engine and energy quantification using x-ray diagnostics.

  3. Ecological investigations at power plant cooling lakes, reservoirs, and ponds: an annotated bibliography. Final report

    International Nuclear Information System (INIS)

    Yost, F.E.; Talmage, S.S.

    1981-06-01

    Presented as an annotated bibliography are 541 references dealing with ecological investigations at power plants which use cooling lakes, ponds, or reservoirs. The references were obtained from open literature and from environmental reports and impact statements prepared for or by the electric utility industry. The literature covers the period 1950 through mid-1980. Topics covered include site-specific studies at facilities using cooling lakes, ponds, or reservoirs, as well as special studies, engineering studies, and general studies. References are arranged alphabetically by author and indexes are provided to personal and corporate authors, facility names, regions, and taxonomic names

  4. Planned investigations for packing materials for a waste package in a salt repository: [Final report

    International Nuclear Information System (INIS)

    Shade, J.W.; Bunnell, L.R.; Thornton, T.A.

    1987-10-01

    A considerable number of materials have been either proposed or investigated as packing materials for nuclear waste package systems. Almost always the expandable clays, such as the smectites contained in commercial bentonites, have received the most attention when their primary function is to retard groundwater flow. Other materials including zeolites, metals, and dessicants are considered as special-purpose additives. Materials that tend to hydrolyze and lead to porosity reduction, such as silicates, oxides, and sulfates, have also been suggested as packing materials. All these types of materials are also considered as components of tailored mixtures to achieve a broad range of packing material performance. Some of these materials are reviewed, along with proposed candidate materials, with respect to the properties required to function in a salt repository. The investigation of packing materials is composed of five studies which are discussed below. Initial candidates will consist of calcium hydroxide, a sodium silicate, and a cement-gypsum mixture in addition to the reference crushed salt. Consequently these tests will be necessary to determine properties of individual components and to optimize properties of mixtures. 13 refs., 7 figs., 1 tab

  5. Investigation of post-accidental management conditions. Complete final report dated July 31, 2009

    International Nuclear Information System (INIS)

    2009-01-01

    After a presentation of the process which resulted in the setting up of an investigation aimed at testing recommendations for post-accidental management, this report indicates the objectives of this investigation: to study the application of recommendations made by the CODIR-PA (Management Committee - Post-Accidental Management) to the operators of the milk sector, and to define an action plan to carry on and resume production. According to the adopted methodology, the study comprised two phases. The first one comprised an analysis of applications in the milk sector, the study of operational consequences on a zoning proposed by the CORDI-PA on the milk sector and on milk products, and the study of the acceptability and feasibility of considered options. The second phase addressed the elaboration of an action plan to carry on and resume the activity. While identifying and assessing the various risks, it identified critical issues for carrying on or resuming milk production in a contaminated territory, and defined an action plan to implement by anticipation or in the post-accidental situation

  6. Investigations of Heat Recovery in Different Refrigeration System Solutions in Supermarkets. Effsys2 project final report

    Energy Technology Data Exchange (ETDEWEB)

    Sawalha, Same; Chen, Yang

    2010-07-01

    Supermarkets are intensive energy consumers with constantly increasing number of installations. About 50 % of the energy consumption in the supermarket is absorbed by the refrigeration system to cover the cooling demands. Simultaneously, heating is needed in the supermarket where the rejected heat from the refrigeration system is usually higher than the needs. It is an interesting possibility to utilize the rejected heat from the refrigeration system to cover the heating needs in supermarkets. The objective of this project is to investigate the heat recovery performance of the new refrigeration system solutions in supermarket applications. The focus is on environmentally friendly systems with natural working fluids, mainly CO{sub 2} trans-critical systems. The project analyzes the temperature levels and capacities of rejected heat from different system solutions and investigates its matching with the heating needs in supermarkets. Using simulation tools this project also aims at defining the system solution/s which has good energy efficiency for simultaneous cooling and heat recovery.

  7. Sampling and analysis plan for volatile organic compounds in storm drain for the Upper East Fork Poplar Creek characterization area remedial investigation at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-03-01

    The Oak Ridge Y-12 Plant, located within the Oak Ridge Reservation (ORR), is owned by the US Department of Energy and managed by Lockheed Martin Energy Systems, Inc. The Y-12 Plant is one of three major facilities on the ORR. The ORR contains both hazardous- and mixed-waste sites that are subject to regulations promulgated under the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986. Under RCRA guidelines and requirements from the Tennessee Department of Environment and Conservation, the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire ORR was placed on the National Priorities List of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions

  8. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 2. Appendixes A, B, C, and D-Biota and representative concentrations of contaminants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 2 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  9. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 4. Appendixes G, H, and I and information related to the feasibility study and ARARs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 4 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  10. Corrective Action Investigation Plan for the CNTA Subsurface Sites (CAU Number 443), Revision 1; FINAL

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Investigation Plan (CAIP) describes the U.S. Department of Energy's (DOE's) planned environmental investigation of the subsurface Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) No. 443. The CNTA is located in Hot Creek Valley in Nye County, Nevada, adjacent to U.S. Highway 6, about 48 kilometers (km) (30 miles[mi]) north of Warm Springs, Nevada. The CNTA was the site of Project Faultless, a nuclear device detonated in the subsurface by the U.S. Atomic Energy Commission (AEC) in January 1968. The purposes of this test were to gauge the seismic effects of a relatively large, high-yield detonation completed in Hot Creek Valley (outside the Nevada Test Site) and to determine the suitability of the site for future large detonations. The yield of the Faultless test was between 200 kilotons and 1 megaton. Two similar tests were planned for the CNTA, but neither of them was completed. Based on the general definition of a corrective action investigation (CAI) from Section IV.14 of the Federal Facility Agreement and Consent Order (FFACO), the purpose of the CAI is ''to gather data sufficient to characterize the nature, extent, and rate of migration or potential rate of migration from releases or discharges of pollutants or contaminants and/or potential releases or discharges from corrective action units identified at the facilities''. For CNTA CAU 443 the concepts developed for the Underground Test Area (UGTA) CAUs will be applied on a limited scale. For the UGTA CAUs, ''the objective of the CAI process is to define boundaries around each UGTA CAU that establish areas that contain water that may be unsafe for domestic and municipal use,'' as stated in Appendix VI of the FFACO (1996). Based on this strategy the CAI for CAU 443 will start with modeling using existing data. New data collection activities are generally contingent upon the results of the modeling and may or may not be part of the CAI. Specific objectives of the CAI ar e as

  11. Investigations into the resuspension of plutonium in the biosphere. Final report

    International Nuclear Information System (INIS)

    Baechmann, K.

    1991-01-01

    In order to compare the resuspension behaviour of Pu with that of other elements, inactive elements were included into the investigations. The following measurements were made: 1. Determination of Pu surface contamination of the ground and of surface concentration of the inactive elements; 2. vertical distributions of the elements in the atmosphere; 3. particle size distributions of the elements; 4. element correlations; 5. determination of resuspension parameters. The measurements were made over a longer period of time in order to detect changes of Pu and of the inactive elements in terms of time and space. With the same resuspension behaviour of Pu and inactive elements, the latter, because of their quick determinability, could serve as model elements to predict Pu behaviour. (orig.) [de

  12. A final report to investigate the state-of-the-art of district heating metering systems

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    This study investigates the existing heat meters and metering schemes utilized to measure the amount of energy extracted from a district heating hot water supply by a heat exchanger in domestic applications. Various types of commercially available heat meters are tabulated, including a recently developed Dutch device which output an analogue signal proportional to the energy extracted. Discussions outline methods of potentially cost effective multimetering concepts for use in new housing and apartment applications, as well as single family dwelling units. Data retrieval systems, with potential metering/monitoring schemes are discussed, including a proposed network for remote sensing, central integrating and tabulating function applicable to multi-dwelling unit installations. 5 refs., 9 figs., 1 tab.

  13. Experimental investigation of acoustic agglomeration systems for fine particle control. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, D.T.; Lee, P.; Wegrzyn, J.; Chou, K.H.; Cheng, M.T.; Patel, S.

    1979-10-01

    The feasibility of using an acoustic agglomerator (AA) as a preconditioner in the upstream of conventional devices such as an electrostatic precipitator, a scrubber, a filter, or a cyclone are investigated. The objective is to agglomerate all finer particles into coarser ones in an acoustic agglomerator and then remove them more effectively by one of the conventional devices. Laboratory-scale experiments were performed using NH/sub 4/Cl and fly ash redispersed aerosols. Turbulence caused by intensive sound fields under standing-wave condition has been found to be extremely effective for aerosol agglomeration. The nature and the energy dissipation rate of the acoustic turbulence are determined by using hot-film (or hot-wire) anemometry and Fast Fourier Transform (FFT) data processing equipment. The root-mean-square turbulent velocity, which is directly proportional to acoustic agglomeration rate, is experimentally found to have a I/sup 1/2/(I: acoustic intensity) dependence, but is relatively independent of the acoustic frequency. The results obtained from this program show that acoustic agglomeration is effective as a particle pre-conditioner which can increase approximately one order of magnitude in mean particle diameter (2..mu..m ..-->.. 20..mu..m). As a flow-through standing wave device, it can be used to facilitate the removal of dust particles in a subsequent inertia base separation device.

  14. An investigation of radon release and mobility in the subsurface environment. Final project report

    International Nuclear Information System (INIS)

    Thomas, D.

    1997-01-01

    Processes affecting transport of volatile species in the shallow soil column have recently been recognized as having a substantial impact on a broad array of real world problems. Investigations of volatile transport have ranged from studies of probable health impacts of radon infiltration into homes to pesticide and volatile organic contaminant mobility in the soil column. The objectives of many of these studies has been the development of numerical models of vapor phase (and solute) transport in shallow soils. An early model, LEACHM, developed by Hutson and Wagenent was recently modified enabling it to describe both solute and vapor phase transport of volatile chemicals in the soil. Subsequent tests of the latter model, named LEACHV, showed that use outside of a very restricted range of soil conditions resulted in large mass balance errors and unreasonable values for soil gas concentrations and vapor flux. The present research was undertaken in an effort to identify and correct the subroutines responsible for the problems and to allow the model to describe vapor phase transport in a much broader range of soil conditions

  15. Analytical and experimental investigation of ringless-piston concept. Final report, September 1986-November 1987

    Energy Technology Data Exchange (ETDEWEB)

    Dickey, D.W.; Wood, C.D.

    1988-03-01

    The purpose of this project was to analytically and experimentally investigate the concept of a ringless-piston internal combustion engine. A joint objective was to design, build, and test a ringless piston to improve ringless piston engine performance. A computer model was developed to predict ringed and ringless piston engine performance. Experimental performance data were then collected by operating a small, liquid-cooled, two-stroke gasoline engine with and without the piston ring on the stock aluminum and Southwest Research Institute prototype steel piston. The experimental performance data were then compared with the results of the computer model. The results showed that a piston engine can operate without piston rings. Ringless-piston engine power and efficiency were found to be defined by the expression C/NBS, where C = piston-to-bore diametrical clearance, N = engine speed in rpm, B = engine bore, and S = engine stroke. There was good agreement between predicted and measured performance reperformance can be improved by using piston and liner materials that have similar coefficients of thermal expansion.

  16. Investigation of lithium thionyl chloride battery safety hazards. Final technical report Sep 81-Nov 82

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.C.; Dampier, F.W.; Wang, P.; Bennett, J.M.

    1983-01-01

    The chemistry of discharge and overdischarge in Li/SOCl/sub 2/ cells has been examined with Raman emission, Fourier transform infrared, and electron spin resonance spectroscopies to determine if any hazardous reactions can occur. Under moderate discharge rate at room temperature, the electrolyte from discharged and cathode limited overdischarged cells contains primarily LiAlCl/sub 4/.3 SO/sub 2/, LiAlCl.2 SOCl/sub 2/, and perhaps LiAlCl/sub 4/.SOCl/sub 2/.SO/sub 2/; traces of SO/sub 3/ are indicated. Three free radicals are present at low concentrations on discharge and cathode limited overdischarged with two additional radicals appearing on extended anode limited overdischarge. At least one of these is cationic polymeric sulfur. Both FTIR and ESR suggest intermediates exist with lifetimes on the order of days from discharge and overcharge. No hazardous reactions were observed at anytime. Pressure from SO/sub 2/, a principal result of discharge, remains low due to the LiAlCl/sub 4/.3 SO/sub 2/, complex in solution. Scanning electron and optical microscopic investigations lithium dendrite structure. Individual dendrites do not grow any longer than about 50 microns or any thicker that about four microns in diameter before branching at random angles. The extent of dendritic growth and the fate of the dentrites depends on the discharge conditions. No overcharged hazards were encountered in this study though several hazard scenarios suggested themselves.

  17. Final Scientific Report: Experimental Investigation of Reconnection in a Line-tied Plasma

    International Nuclear Information System (INIS)

    Forest, Cary

    2016-01-01

    This grant used funding from the NSF/DoE Partnership on Plasma Science to investigate magnetic reconnection phenomena in a line-tied pinch experiment. The experiment was upgraded from a previous device intended to study fusion plasma-related instabilities to a new configuration capable of studying a number of new, previously unstudied configurations. A high spatial and time resolution array of magnetic probes was constructed to measure time evolving structures present as instability and turbulence developed. The most important new equilibrium made possible by this grant was a Zero-Net-Current equilibrium that models the footpoint twisting of solar flux tubes that occurs prior to solar eruptions (flares and coronal mass ejections). This new equilibrium was successfully created in the lab, and it exhibited a host of instabilities. In particular, at low current when the equilibrium was not overly stressed, a saturated internal kink mode oscillation was observed. At high current, 2 D magnetic turbulence developed which we attribute to the lack of a equilibrium brought about by a subcritical transition to turbulence. A second set of experiments involved the turbulent interactions of a collection of flux tubes all being twisted independently, a problem known as the Parker Problem. Current profiles consisting of 2, 3 and 4 guns were used to impose a fine scale drive, and resulted in a new experimental platform in which the injection scale of the magnetic turbulence could be controlled. First experiments in this configuration support the conclusion that an inverse cascade of magnetic energy occurred which self-organized the plasma into a nearly axisymmetric current distribution.

  18. The harm of petroleum-polluted soil and its remediation research

    Science.gov (United States)

    Wang, Shuguang; Xu, Yan; Lin, Zhaofeng; Zhang, Jishi; Norbu, Namkha; Liu, Wei

    2017-08-01

    Land resources are the foundation of human's survival and development, and it's one of the most valuable natural resources of each country. In view of the serious problems of petroleum pollution to soil caused during the exploration and development processes, this article based on a large number of literature researches, firstly discussed the compositions and properties of petroleum contaminants, secondly investigated some restoration methods for the current situation of petroleum polluted soil, compared and analyzed the advantages and disadvantages of three kinds of bioremediation technologies. Finally, according to the deficiencies of previous research and existing problems, made an outlook of the physical and chemical remediation, bioremediation, and microbe-plant remediation, to provide some enlightenments for petroleum-contaminated soil remediation.

  19. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Karlsmose, Bodil; Ottosen, Lisbeth M.; Hansen, Lene

    1999-01-01

    The paper gives an overview of how heavy metals can be found in the soil and the theory of electrodialytic remediation. Basically electrodialytic remediation works by passing electric current through the soil, and the heavy metals in ionic form will carry some of the current. Ion-exchange membranes...... prevents the protons and the hydroxides ions from the electrode processes to enter the soil. The heavy metals are collected in a concentration compartment, which is separated from the soil by ion-exchange membranes. Examples from remediation experiments are shown, and it is demonstrated that it is possible...... to remediate soil polluted with heavy metals be this method. When adding desorbing agents or complexing agents, chosing the right current density, electrolyte and membranes, the proces can be optimised for a given remediation situation. Also electroosmosis is influencing the system, and if extra water...

  20. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix B of Attachment 3: Groundwater hydrology report, Attachment 4: Water resources protection strategy, Final

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Attachment 3 Groundwater Hydrology Report describes the hydrogeology, water quality, and water resources at the processing site and Dry Flats disposal site. The Hydrological Services calculations contained in Appendix A of Attachment 3, are presented in a separate report. Attachment 4 Water Resources Protection Strategy describes how the remedial action will be in compliance with the proposed EPA groundwater standards.

  1. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 5: Appendix F - Baseline human health risk assessment report

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix F documents potential risks and provides information necessary for making remediation decisions. A quantitative analysis of the inorganic, organic, and radiological site-related contaminants found in various media is used to characterize the potential risks to human health associated with exposure to these contaminants

  2. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 5: Appendix F -- Baseline human health risk assessment report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix F documents potential risks and provides information necessary for making remediation decisions. A quantitative analysis of the inorganic, organic, and radiological site-related contaminants found in various media is used to characterize the potential risks to human health associated with exposure to these contaminants.

  3. Final work plan : supplemental upward vapor intrusion investigation at the former CCC/USDA grain storage facility in Hanover, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2008-12-15

    chloroform into four homes located on or adjacent to the former CCC/USDA facility. The technical objective will be accomplished by collecting sub-slab vapor samples. The preliminary data collected during the July 2007 investigation did not fully address the source of or migration pathway for the carbon tetrachloride detected in the four homes. The scope of work proposed here will generate additional data needed to help evaluate whether the source of the detected carbon tetrachloride is vapor intrusion attributable to activities of the CCC/USDA. The additional vapor sampling at Hanover will be performed, on behalf of the CCC/USDA, by the Environmental Science Division of Argonne National Laboratory and H&P Mobile Geochemistry of San Diego (http://www.handpmg.com). Argonne is a nonprofit, multidisciplinary research center operated by UChicago Argonne, LLC, for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. The professional staff members of H&P Mobile Geochemistry are nationally leading experts in soil gas sampling and vapor intrusion investigations.

  4. Final work plan : investigation of potential contamination at the former CCC/USDA grain storage facility in Hanover, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2008-11-19

    Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by UChicago Argonne, LLC, for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. Seven technical objectives have been proposed for the Hanover investigation. They are as follows: (1) Identify the sources and extent of soil contamination beneath the former CCC/USDA facility; (2) Characterize groundwater contamination beneath the former CCC/USDA facility; (3) Determine groundwater flow patterns; (4) Define the vertical and lateral extent of the groundwater plume outside the former CCC/USDA facility; (5) Evaluate the aquifer and monitor the groundwater system; (6) Identify any other potential sources of contamination that are not related to activities of the CCC/USDA; and (7) Determine whether there is a vapor intrusion problem at the site attributable to the former CCC/USDA facility. The technical objectives will be accomplished in a phased approached. Data collected during each phase will be evaluated to determine whether the subsequent phase is necessary. The KDHE project manager and the CCC/USDA will be contacted during each phase and kept apprised of the results. Whether implementation of each phase of work is necessary will be discussed and mutually agreed upon by the CCC/USDA and KDHE project managers.

  5. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  6. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report

    International Nuclear Information System (INIS)

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas

  7. Tank waste remediation system mission analysis report

    International Nuclear Information System (INIS)

    Acree, C.D.

    1998-01-01

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces

  8. 48 CFR 903.970 - Remedies.

    Science.gov (United States)

    2010-10-01

    ... PRACTICES AND PERSONAL CONFLICTS OF INTEREST Whistleblower Protections for Contractor Employees 903.970 Remedies. (a) Contractors found to have retaliated against an employee in reprisal for such disclosure.... However, a contractor's disagreement and refusal to comply with a final decision could result in a...

  9. Remedial pulse programme for the production of monoenergetic ion beams of low energy

    International Nuclear Information System (INIS)

    Olubuyide, O.A.

    1975-01-01

    The technique involves an extension of sequential pulse techniques. An ion swarm is produced in a conventional mass-spectrometer ion source by a short electron beam pulse. Immediately, this swarm is accelerated impulsively by a short high voltage pulse on the repeller. The principal disadvantage of impulsive acceleration is that the final energy distribution of the ion swarm is broad especially at the lowest energies. At some instant during the passage of the ion swarm across the chamber second pulse is applied to the repeller--a ''remedial'' pulse which will accelerate the ions throughout the remainder of their passage and whose amplitude will be time-dependent. Slower ions must travel a greater distance in this ''remedial'' field than faster ions and will experience a proportionately greater increase in velocity from it. In this way, the remedial pulse can cause all the ions to acquire the same velocity at the exit slit. A limited experimental investigation has been made to examine the application of the proposed remedial pulse technique to existing ion sources. Application of the remedial pulse to impulsively-accelerated ion swarms reduced the energy distribution in the manner predicted by the theory but the quantitative reduction measured experimentally--a factor of approximately 2--was substantially less than the theoretical prediction of a factor of approximately 4. The limitations were characterized and a means of overcoming them was suggested in a new ion source of improved design. (Diss. Abstr. Int., B)

  10. Work plan for the remedial investigation/feasibility study-environmental impact statement for the Weldon Spring site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    Peterson, J.M.; MacDonell, M.M.; Haroun, L.A.; Nowadly, F.K.; Knight, W.C.; Vajda, G.F.

    1988-08-01

    The Weldon Spring Site Remedial Action Project is being conducted as a Major System Acquisition under the Surplus Facilities Management Program (SFMP) of the US Department of Energy (DOE). The major goals of the SFMP are to eliminate potential hazards to the public and the environment that are associated with contamination at SFMP sites and to make surplus real property available for other uses to the extent possible. The Weldon Spring site is located near Weldon Spring, Missouri, about 48 km (30 mi) west of St. Louis. It is surrounded by large tracts of land owned by the federal government and the state of Missouri. The site consists of four raffinate pits, an inactive chemical plant, and a contaminated quarry. The raffinate pits and chemical plant are on adjoining land about 3.2 km (2 mi) southwest of the junction of Missouri (State) Route 94 and US Route 40/61, with access from Route 94. The quarry is located in a comparatively remote area about 6.4 km (4 mi) south-southwest of the raffinate pits and chemical plant area; the quarry can also be accessed from Route 94. These areas are fenced and closed to the public. From 1941 to 1944, the US Department of the Army operated the Weldon Spring Ordnance Works, constructed on the land that is now the Weldon Spring site, for production of trinitrotoluene (TNT) and dinitrotoluene (DNT). The Army used the quarry for disposal of rubble contaminated with TNT. In the mid 1950s, 83 ha (205 acres) of the ordnance works property was transferred to the US Atomic Energy Commission (AEC); this is now the raffinate pits and chemical plant area. An additional 6 ha (15 acres) was later transferred to the AEC for expansion of waste storage capacity. 23 refs., 37 figs., 21 tabs

  11. Status report: Fernald site remediation

    International Nuclear Information System (INIS)

    Craig, J.R. Jr.; Saric, J.A.; Schneider, T.; Yates, M.K.

    1995-01-01

    The Fernald site is rapidly transitioning from a Remedial Investigation/ Feasibility Study (RI/FS) site to one where design and construction of the remedies dominates. Fernald is one of the first sites in the Department of Energy (DOE) complex to accomplish this task and real physical progress is being made in moving the five operable units through the CERCLA process. Two of the required Records of Decision (ROD) are in hand and all five operable units will have received their RODs (IROD for OU3) by the end of 1995. Pre-design investigations, design work or construction are now in progress on the operable units. The lessons learned from the work done to date include implementing innovations in the RI and FS process as well as effective use of Removal Actions to begin the actual site remediation. Also, forging close working relationships with the Federal and State Regulators, citizens action groups and the Fernald Citizens Task Force has helped move the program forward. The Fernald successes have been achieved by close coordination and cooperation among all groups working on the projects and by application of innovative technologies within the decision making process

  12. Superfund Green Remediation

    Science.gov (United States)

    Green remediation is the practice of considering all environmental effects of site cleanup and incorporating options – like the use of renewable energy resources – to maximize the environmental benefits of cleanups.

  13. Use of isotope techniques in lake dynamics investigations. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    2001-03-01

    The Co-ordinated Research Programme (CRP) on the Use of Isotope Techniques in Lake Dynamics Investigations was launched with the aim of assessing the potential of environmental isotope techniques in studying the dynamics of surface water bodies and related problems such as: dynamics of solutes; sediment focusing; establishment of water balance components; vulnerability to pollution. The CRP enabled a number of isotope and geochemical studies to be carried out on small and large water bodies, with the general aim of understanding of the dynamics of these systems under the growing anthropogenic influence. This publication is a compilation of the papers presented at the final Research Co-ordination Meeting (RCM) held in Rehovot, Israel, from 10 to 13 March 1997. Individual contributions have been indexed separately

  14. Environmental Remediation Data Management Tools

    International Nuclear Information System (INIS)

    Wierowski, J. V.; Henry, L. G.; Dooley, D. A.

    2002-01-01

    Computer software tools for data management can improve site characterization, planning and execution of remediation projects. This paper discusses the use of two such products that have primarily been used within the nuclear power industry to enhance the capabilities of radiation protection department operations. Advances in digital imaging, web application development and programming technologies have made development of these tools possible. The Interactive Visual Tour System (IVTS) allows the user to easily create and maintain a comprehensive catalog containing digital pictures of the remediation site. Pictures can be cataloged in groups (termed ''tours'') that can be organized either chronologically or spatially. Spatial organization enables the user to ''walk around'' the site and view desired areas or components instantly. Each photo is linked to a map (floor plan, topographical map, elevation drawing, etc.) with graphics displaying the location on the map and any available tour/component links. Chronological organization enables the user to view the physical results of the remediation efforts over time. Local and remote management teams can view these pictures at any time and from any location. The Visual Survey Data System (VSDS) allows users to record survey and sample data directly on photos and/or maps of areas and/or components. As survey information is collected for each area, survey data trends can be reviewed for any repetitively measured location or component. All data is stored in a Quality Assurance (Q/A) records database with reference to its physical sampling point on the site as well as other information to support the final closeout report for the site. The ease of use of these web-based products has allowed nuclear power plant clients to plan outage work from their desktop and realize significant savings with respect to dose and cost. These same tools are invaluable for remediation and decommissioning planning of any scale and for recording

  15. MGP site remediation: Working toward presumptive remedies

    International Nuclear Information System (INIS)

    Larsen, B.R.

    1996-01-01

    Manufactured Gas Plants (MGPs) were prevalent in the United States during the 19th and first half of the 20th centuries. MGPs produced large quantities of waste by-products, which varied depending on the process used to manufacture the gas, but most commonly were tars and polynuclear aromatic hydrocarbons. There are an estimated 3,000 to 5,000 abandoned MGP sites across the United States. Because these sites are not concentrated in one geographic location and at least three different manufacturing processes were used, the waste characteristics are very heterogeneous. The question of site remediation becomes how to implement a cost-effective remediation with the variety of cleanup technologies available for these sites. Because of the significant expenditure required for characterization and cleanup of MGP sites, owners and regulatory agencies are beginning to look at standardizing cleanup technologies for these sites. This paper discusses applicable cleanup technologies and the attitude of state regulatory agencies towards the use of presumptive remedies, which can reduce the amount of characterization and detailed analysis necessary for any particular site. Additionally, this paper outlines the process of screening and evaluating candidate technologies, and the progress being made to match the technology to the site

  16. Strategic planning for remediation projects

    International Nuclear Information System (INIS)

    Tapp, J.W.

    1995-01-01

    Remediation projects may range from a single leaking storage tank to an entire plant complex or producing oil and gas field. Strategic planning comes into play when the contamination of soil and groundwater is extensive. If adjacent landowners have been impacted or the community at large is concerned about the quality of drinking water, then strategic planning is even more important. (1) To manage highly complex interrelated issues--for example, the efforts expended on community relations can alter public opinion, which can impact regulatory agency decisions that affect cleanup standards, which can...and so on. (2) To ensure that all potential liabilities are managed--for example, preparation for the defense of future lawsuits is essential during site investigation and remediation. (3) To communicate with senior management--when the remediation team provides a strategic plan that includes both technical and business issues, senior management has the opportunity to become more involved and make sound policy decisions. The following discusses the elements of a strategic plan, who should participate in it, and the issues that should be considered

  17. Final report on neutron irradiation at low temperature to investigate plastic instability and a high temperature to study cavitation

    International Nuclear Information System (INIS)

    Singh, B.N.; Eldrup, M.; Golubov, S.I.; Edwards, D.J.; Jung, P.

    2005-01-01

    Effects of neutron irradiation on defect accumulation and physical and mechanical properties of pure iron and F82H and EUROFER 97 ferritic-martensitic steels have been investigated. Tensile specimens were neutron irradiated to a dose level of 0,23 dpa at 333 and 573 K. Electrical resistivity and tensile properties were measured both in the unirradiated and irradiated condition. Some additional specimens of pure iron were irradiated at 333 K to doses of 10-3, 10-2 and 10-1 dpa and tensile tested at 333 K. To investigate the effect of helium on cavity nucleation and growth, specimens of pure iron and EUROFER 97 were implanted with different amounts of helium at 323 K and subsequently neutron irradiated to doses of 10-3, 10-2 and 10-1 dpa at 323 K. Defect microstructures were investigated using positron annihilation spectroscopy (PAS) and transmission electron microscopy (TEM). Numerical calculations, based on the production bias model (PBM) were carried out to study the details of evolution of cavities with and without helium generation. The phenomena of dislocation decoration and raft formation, which are important for understanding radiation hardening and plastic flow localization, have been studied using the Kinetic Monte Carlo (KMC) code during a realistic dynamic irradiation of bcc iron at 300 K. Molecular dynamics (MD) simulations have been carried out to study the stress dependencies of dislocation velocity and drag coefficient for an edge dislocation decorated with small SIA loops.The present report describes both experimental procedure and calculational methodology employed in the present work. The main results of all these investigations, both experimental and theoretical, are highlighted with appropriate examples. Finally, a brief summary is given of the main results conclusions. (au)

  18. Evaluation of select trade-offs between ground-water remediation and waste minimization for petroleum refining industry

    International Nuclear Information System (INIS)

    Andrews, C.D.; McTernan, W.F.; Willett, K.K.

    1996-01-01

    An investigation comparing environmental remediation alternatives and attendant costs for a hypothetical refinery site located in the Arkansas River alluvium was completed. Transport from the land's surface to and through the ground water of three spill sizes was simulated, representing a base case and two possible levels of waste minimization. Remediation costs were calculated for five alternative remediation options, for three possible regulatory levels and alternative site locations, for four levels of technology improvement, and for eight different years. It is appropriate from environmental and economic perspectives to initiate significant efforts and expenditures that are necessary to minimize the amount and type of waste produced and disposed during refinery operations; or conversely, given expected improvements in technology, is it better to wait until remediation technologies improve, allowing greater environmental compliance at lower costs? The present work used deterministic models to track a light nonaqueous phase liquid (LNAPL) spill through the unsaturated zone to the top of the water table. Benzene leaching from LNAPL to the ground water was further routed through the alluvial aquifer. Contaminant plumes were simulated over 50 yr of transport and remediation costs assigned for each of the five treatment options for each of these years. The results of these efforts show that active remediation is most cost effective after a set point or geochemical quasi-equilibrium is reached, where long-term improvements in technology greatly tilt the recommended option toward remediation. Finally, the impacts associated with increasingly rigorous regulatory levels present potentially significant penalties for the remediation option, but their likelihood of occurrence is difficult to define

  19. Electrodialytic remediation of soil polluted with heavy metals

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Hansen, Lene

    1999-01-01

    In this paper, the importance of some parameters for the efficiency of electrodialytic soil remediation are evaluated. The parameters investigated are pH, the limiting current density and the adding of desorbing agents to the soil. Three parameters are found to be of greatest importance. Results...... show that the electrodialytic soil remediation can be optimized by understanding and adjusting of these parameters. For scaling up of the remediation method these parameters are of crucial importance....

  20. Investigation of the solution properties of the transuranium elements. Final report, July 1, 1979-September 30, 1984

    International Nuclear Information System (INIS)

    Ensor, D.D.

    1984-01-01

    This final report summarizes the significant results obtained during our investigation of the fundamental solution properties of the transuranium elements for the period July 1, 1979 to September 30, 1984. Primary interest of the project was the development of improved separation methods for the trivalent actinide elements from each other and from the chemically similar trivalent lanthanide elements using solvent extraction techniques. Two different synergistic systems were investigated. The combination of dialkynaphthalenesulfonic acids with a crown ether or an oxime was an attempt to combine the excellent ion exchange properties of the sulfonic extractant with a synergistic agent which would improve the selectivity of the extraction system. The results showed that the presence of the crown ether improved the extraction of the light lanthanides by approximately 50% while the heavy lanthanides were unaffected. The use of the oxime in combination with the sulfonic acid extractant showed significant enhancement for all metal ions studied but little, if any, selectivity. The use of novel oxygen donors as synergistic agents in combination with thenoyltrifluoroacetone provided significant enhancement for the extraction of trivalent lanthanides and actinides. The data showed the best selectivity was obtained using a linear polyether as the synergistic agent. The crown ether and the cryptand showed significant synergistic capabilities but lacked selectivity due to their rigid cavities. The results of this study indicate that the linear polyether is more promising as a synergistic agent because of its flexibility and ease of chemical modification of the end groups. 10 figures, 5 tables

  1. Investigation of radon, thoron, and their progeny near the earth's surface. Final report, 1 January 1994 - 31 December 1997

    International Nuclear Information System (INIS)

    Schery, S.D.; Wasiolek, P.T.

    1998-01-01

    This is the final report for DOE Grant DE-FG03-94ER6178, covering a performance period of 1 January 1994 through 31 December 1997. The DOE award amount for this period was $547,495. The objective of the project as stated in its proposal was open-quotes to improve our understanding of the physical processes controlling the concentration of radon, thoron, and their progeny in the atmospheric environment.close quotes The original project was directed at developing underlying science that would help with evaluation of the health hazard from indoor radon in the United States and implementation of corrective measures that might be employed to reduce the health hazard. As priorities within the Office of Health and Environment (OHER) changed, and the radon research program was phased out, emphasis of the project was shifted somewhat to be also relevant to other interests of the OHER, namely global pollution and climate change and pollution resulting from energy production. This final report is brief, since by reference it can direct the reader to the comprehensive research publications that have been generated by the project. In section 2, we summarize the main accomplishments of the project and reference the primary publications. There were seven students who received support from the project and their names are listed in section 3. One of these students (Fred Yarger, Ph.D. candidate) continues to work on research initiated through this project. No post-docs received support from the project, although one of the co-principal investigators (Dr. Piotr Wasiolek) received the majority of his salary from the project. The project also provided part-time support for a laboratory manager (Dr. Maryla Wasiolek). Section 4 lists chronologically the reports and publications resulting from the project (references 1 through 12), and the Appendix provides abstracts of major publications and reports

  2. Interim report on the scientific investigations in the Animas River watershed, Colorado to facilitate remediation decisions by the U.S. Bureau of Land Management and the U.S. Forest Service, March 29, 2000 meeting, Denver, Colorado

    Science.gov (United States)

    ,

    2000-01-01

    presumed to be impacted by historical mining activities. The Animas River watershed (fig. 1) was selected by the State and Federal agencies as one of two watersheds in the U.S. to be studied in detail by the USGS in the AML Initiative. Beginning in October 1997, each of the four Divisions of the USGS (Water Resources, Geologic, Biological Resources, and National Mapping) initiated a collaborative integrated science study of the watershed. Funds were provided from USGS base funding to each of the four Divisions in response to the priorities set by Congressional action and within the flexibility provided by the budgetary framework funding individual research programs. The AML Initiative provides for a five-year focused scientific effort in the two watersheds with final synthesis of the scientific results from each to be published in 2001. Publications are released on the AML web site on a regular basis (http://amli.usgs.gov/amli). On March 29, 2000, the USGS hosted a meeting for the BLM and USFS to discuss remediation options that were under consideration for the summer of 2000. The purpose of this report is to provide an overview of the scientific rational provided by the USGS to meet objective one above, and to summarize our preliminary interpretations of our data. Additional information from sites on private lands have been collected by the State of Colorado, EPA, and the ARSG. Unfortunately, these data have not been fully supplied to the USGS so our conclusions are based only upon our data. These interpretations provide science-based constraints on possible remediation options to be considered by the FLMA, the State, and local property owners in the Animas River watershed. The report is presented in outline format to facilitate discussion of remediation options at the March 29, 2000 meeting. Not all historical mining sites within the watershed are on public lands. This should not be construed to be a final report of the USGS

  3. To fail is human: remediating remediation in medical education.

    Science.gov (United States)

    Kalet, Adina; Chou, Calvin L; Ellaway, Rachel H

    2017-12-01

    Remediating failing medical learners has traditionally been a craft activity responding to individual learner and remediator circumstances. Although there have been moves towards more systematic approaches to remediation (at least at the institutional level), these changes have tended to focus on due process and defensibility rather than on educational principles. As remediation practice evolves, there is a growing need for common theoretical and systems-based perspectives to guide this work. This paper steps back from the practicalities of remediation practice to take a critical systems perspective on remediation in contemporary medical education. In doing so, the authors acknowledge the complex interactions between institutional, professional, and societal forces that are both facilitators of and barriers to effective remediation practices. The authors propose a model that situates remediation within the contexts of society as a whole, the medical profession, and medical education institutions. They also outline a number of recommendations to constructively align remediation principles and practices, support a continuum of remediation practices, destigmatize remediation, and develop institutional communities of practice in remediation. Medical educators must embrace a responsible and accountable systems-level approach to remediation if they are to meet their obligations to provide a safe and effective physician workforce.

  4. Remediation of PAH-contaminated soil using Achromobacter sp

    International Nuclear Information System (INIS)

    Cutright, T.J.; Lee, S.

    1994-01-01

    Several technologies have the potential to effectively remediate soil contaminated with polycyclic aromatic hydrocarbons (PAHs): solvent extraction, coal-oil agloflotation, supercritical extraction, and bioremediation. Due to the cost effectiveness and in-situ treatment capabilities of bioremediation, studies were conducted to determine the efficiency of Achromobacter sp. to remediate an industrial contaminated soil sample. Specifically, the use of three different mineral salt solutions in conjunction with the Achromobacter sp. was investigated. The molecular identification of the contaminants and their respective levels after remediation were determined using a Hewlett-Packard 1050 HPLC. Preliminary results show a 92% remediation for the use of two of the mineral salt solutions after 20 days' treatment. After 8 weeks, the remediation efficiency reached 99%. Bioremediation was also critically compared to the other potential remediation technologies

  5. Seismic VSP and HSP surveys on preliminary investigation areas in Finland for final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Keskinen, J.; Cosma, C.; Heikkinen, P.

    1992-10-01

    Seismic reflection surveys in boreholes were carried out for Teollisuuden Voima Oy at five sites in Finland (Eurajoki Olkiluoto, Hyrynsalmi Veitsivaara, Konginkangas Kivetty, Kuhmo Romuvaara and Sievi Syyry). The vertical Seismic Profiling (VSP) surveys were a part of the investigation programme for the final disposal of spent nuclear fuel. The purpose was to detect fractured zones, lithological contacts and other anomalies in the structure of the rockmass and to determine their position and orientation. Horizontal Seismic Profiling (HSP) was used at the Olkiluoto site, additionally to VSP. The data has been organized in profiles containing seismograms recorded from the same shotpoint (shot gathers). One of the most powerful processing methods used with this project has been the Image Space Filtering, a new technique, which has been developed (in the project) for seismic reflection studies in crystalline rock. The method can be applied with other rock types where steeply inclined or vertical anomalies are of interest. It acts like a multichannel filter, enhancing the reflected events and also as an interpretation tool, to estimate the strength and position of the reflectors. This approach has been of great help in emphasizing the weak reflections from uneven and sometimes vanishing interfaces encountered in crystalline

  6. Remediating a design tool

    DEFF Research Database (Denmark)

    Jensen, Mads Møller; Rädle, Roman; Klokmose, Clemens N.

    2018-01-01

    digital sticky notes setup. The paper contributes with a nuanced understanding of what happens when remediating a physical design tool into digital space, by emphasizing focus shifts and breakdowns caused by the technology, but also benefits and promises inherent in the digital media. Despite users......' preference for creating physical notes, handling digital notes on boards was easier and the potential of proper documentation make the digital setup a possible alternative. While the analogy in our remediation supported a transfer of learned handling, the users' experiences across technological setups impact......Sticky notes are ubiquitous in design processes because of their tangibility and ease of use. Yet, they have well-known limitations in professional design processes, as documentation and distribution are cumbersome at best. This paper compares the use of sticky notes in ideation with a remediated...

  7. Thermal soil remediation

    International Nuclear Information System (INIS)

    Nelson, D.

    1999-01-01

    The environmental properties and business aspects of thermal soil remediation are described. Thermal soil remediation is considered as being the best option in cleaning contaminated soil for reuse. The thermal desorption process can remove hydrocarbons such as gasoline, kerosene and crude oil, from contaminated soil. Nelson Environmental Remediation (NER) Ltd. uses a mobile thermal desorption unit (TDU) with high temperature capabilities. NER has successfully applied the technology to target heavy end hydrocarbon removal from Alberta's gumbo clay in all seasons. The TDU consist of a feed system, a counter flow rotary drum kiln, a baghouse particulate removal system, and a secondary combustion chamber known as an afterburner. The technology has proven to be cost effective and more efficient than bioremediation and landfarming

  8. Degradation of oil products in a soil from a Russian Barents hot-spot during electrodialytic remediation

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Lejon, Tore; Jensen, Pernille Erland

    2016-01-01

    A highly oil-polluted soil from Krasnoe in North-West Russia was used to investigate the degradation of organic pollutants during electrodialytic remediation. Removal efficiencies were up to 70 % for total hydrocarbons (THC) and up to 65 % for polyaromatic hydrocarbons (PAH). Relatively more...... of the lighter PAH compounds and THC fractions were degraded. A principal component analysis (PCA) revealed a difference in the distribution of PAH compounds after the remediation. The observed clustering of experiments in the PCA scores plot was assessed to be related to the stirring rate. Multivariate analysis...... of the experimental settings and final concentrations in the 12 experiments revealed that the stirring rate of the soil suspension was by far the most important parameter for the remediation for both THC and PAH. Light was the second most important variable for PAH and seems to influence degradation. The experimental...

  9. Electrodialytic remediation of CCA treated waste wood in pilot scale

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Christensen, Iben Vernegren; Ottosen, Lisbeth M.

    2005-01-01

    study the utility of the method Electrodialytic Remediation was demonstrated for handling of CCA treated waste wood in pilot scale. The electrodialytic remediation method, which uses a low level DC current as the cleaning agent, combines elektrokinetic movement of ions in the wood matrix with the princi......-ples of electrodialysis. It has previously been shown that it is possible to remove Cu, Cr and As from CCA treated wood using electrodialytic remediation in laboratory scale (Ribeiro et al., 2000; Kristensen et al., 2003), but until now, the method had not been studied in larger scale. The pilot scale plant used...... in this study was designed to contain up to 2 m3 wood chips. Six remediation experiments were carried out. In these experiments, the process was up-scaled stepwise by increasing the distance between the electrodes from initially 60 cm to fi-nally 150 cm. The remediation time was varied between 11 and 21 days...

  10. Remedial technology and characterization development at the SRS F/H Retention Basins using the DOE SAFER methodology

    International Nuclear Information System (INIS)

    Miles, W.C. Jr.; Kuelske, K.J.

    1994-01-01

    The Streamlined Approach For Environmental Restoration (SAFER) is a strategy used to accelerate and improve the environmental assessment and remediation of the F/H Retention Basins at the Savannah River Site (SRS). TMs strategy combines the data quality objectives (DQO) process and the observational approach to focus on data collection and converge on a remedial action early. This approach emphasizes stakeholder involvement throughout the Remedial Investigation/Feasibility Study (RI/FS) process. The SAFER methodology is being applied to the characterization, technology development, and remediation tasks for the F/H Retention Basins. This ''approach was initiated in the scoping phase of these projects through the involvment of major stakeholders; Department of Energy (DOE)-Savannah River Field Office, DOE-Headquarters, Westinghouse Savannah River Company, United States Environmental Protection Agency (EPA) Region IV, and the state of South Carolina Department of Health and Environmental Control (SCDHEC), in the development of the Remedial Investigation (RI) workplans. A major activity that has been initiated is the development and implementation of a phase I workplan to identify preliminary contaminants of concern (pCOCs). A sampling plan was developed and approved by the major stakeholders for preliminary characterization of wastes remaining in the F/H Retention Basins. The involvement of stakeholders, development of a site conceptual model, development of remedial objectives for probable conditions, identification of the problem and reasonable deviations, and development of initial decision rules in the planning stages will ensure that preliminary data needs are identified and obtained prior to the initiation of the assessment and implementation phases of the projects resulting in the final remediation of the sites in an accelerated and more cost effective manner

  11. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Hansen, Lene

    1997-01-01

    It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective......It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective...

  12. Addendum to the remedial investigation report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant Oak Ridge, Tennessee. Volume 1: Main text

    International Nuclear Information System (INIS)

    1995-04-01

    This addendum to the Remedial Investigation (RI) Report on Bear Creek Valley Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. This addendum is a supplement to a document that was previously issued in January 1995 and that provided the Environmental Restoration Program with information about the results of the 1993 investigation performed at OU 2. The January 1995 D2 version of the RI Report on Bear Creek Valley OU 2 included information on risk assessments that have evaluated impacts to human health and the environment. Information provided in the document formed the basis for the development of the Feasibility Study Report. This addendum includes revisions to four chapters of information that were a part of the document issued in January 1995. Specifically, it includes revisions to Chaps. 2, 3, 4, and 9. Volume 1 of this document is not being reissued in its entirety as a D3 version because only the four chapters just mentioned have been affected by requested changes. Note also that Volume 2 of this RI Report on Bear Creek Valley OU 2 is not being reissued in conjunction with Volume 1 of this document because there have been no changes requested or made to the previously issued version of Volume 2 of this document.

  13. Department of Energy Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    Franco, P.J.

    1989-01-01

    This paper discusses the hazardous waste remedial actions program (HAZWRAP) which manages approximately 200 hazardous waste projects. These projects include preliminary assessments, site inspections, and remedial investigation/feasibility studies. The author describes the procedures HAZWRAP follows to ensure quality. The discussion covers the quality assurance aspects of project management, project planning, site characterization, document control and technical teamwork

  14. 48 CFR 22.1504 - Violations and remedies.

    Science.gov (United States)

    2010-10-01

    ... to cooperate as required in accordance with the clause at 52.222-19, Child Labor Cooperation with Authorities and Remedies, with an investigation of the use of forced or indentured child labor by an Inspector... contractor knew of the violation. (b) Remedies. (1) The contracting officer may terminate the contract. (2...

  15. 32 CFR 634.10 - Remedial driver training programs.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Remedial driver training programs. 634.10 Section 634.10 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Driving Privileges § 634.10 Remedial driver training programs. (a) Navy...